WorldWideScience

Sample records for reduce electrical peak

  1. Reducing Electricity Demand Peaks by Scheduling Home Appliances Usage

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana; Kardaras, Georgios; Iversen, Villy Bæk

    2011-01-01

    Nowadays there is a tendency to consume electricity during the same period of the day leading to demand peaks. Regular energy consumption habits lead to demand peaks at specific temporal intervals, because users consume power at the same time. In order to avoid demand peaks, users’ appliances...... should consume electricity in a more temporarily distributed way. A new methodology to schedule the usage of home appliances is proposed and analyzed in this paper. The main concept behind this approach is the aggregation of home appliances into priority classes and the definition of a maximum power...... consumption limit, which is not allowed to be exceeded during peak hours. The scenario simulated describes a modern household, where the electrical devices are classified in low and high priority groups. The high priority devices are always granted power in order to operate without temporal restrictions...

  2. Reducing electricity demand peaks by scheduling home appliances usage

    Energy Technology Data Exchange (ETDEWEB)

    Rossello-Busquet, A.; Kardaras, G.; Baek Iversen, V.; Soler, J.; Dittmann, L.

    2011-05-15

    Nowadays there is a tendency to consume electricity during the same period of the day leading to demand peaks. Regular energy consumption habits lead to demand peaks at specific temporal intervals, because users consume power at the same time. In order to avoid demand peaks, users' appliances should consume electricity in a more temporarily distributed way. A new methodology to schedule the usage of home appliances is proposed and analyzed in this paper. The main concept behind this approach is the aggregation of home appliances into priority classes and the definition of a maximum power consumption limit, which is not allowed to be exceeded during peak hours. The scenario simulated describes a modern household, where the electrical devices are classified in low and high priority groups. The high priority devices are always granted power in order to operate without temporal restrictions. On the contrary, the low priority devices have to pause their operation, when the algorithm dictates it, and resume it in the future. This can become beneficial for both energy companies and users. The electricity suppliers companies will be capable of regulating power generation during demand peaks periods. Moreover, users can be granted lower electricity bill rates for accepting delaying the operation of some of their appliances. In order to analyze this scenario, teletraffic engineering theory, which is used in evaluating the performance of telecommunication networks, is used. A reversible fair scheduling (RFS) algorithm, which was originally developed for telecommunication networks, is applied. The purpose is to analyze how a power consumption limit and priorities for home appliances will affect the demand peak and the users' everyday life. Verification of the effectiveness of the RFS algorithm is done by means of simulation and by using real data for power consumption and operation hours. The defined maximum power limit of 750 and 1000 Watt was not exceeded during

  3. Climate change and peak demand for electricity: Evaluating policies for reducing peak demand under different climate change scenarios

    Science.gov (United States)

    Anthony, Abigail Walker

    This research focuses on the relative advantages and disadvantages of using price-based and quantity-based controls for electricity markets. It also presents a detailed analysis of one specific approach to quantity based controls: the SmartAC program implemented in Stockton, California. Finally, the research forecasts electricity demand under various climate scenarios, and estimates potential cost savings that could result from a direct quantity control program over the next 50 years in each scenario. The traditional approach to dealing with the problem of peak demand for electricity is to invest in a large stock of excess capital that is rarely used, thereby greatly increasing production costs. Because this approach has proved so expensive, there has been a focus on identifying alternative approaches for dealing with peak demand problems. This research focuses on two approaches: price based approaches, such as real time pricing, and quantity based approaches, whereby the utility directly controls at least some elements of electricity used by consumers. This research suggests that well-designed policies for reducing peak demand might include both price and quantity controls. In theory, sufficiently high peak prices occurring during periods of peak demand and/or low supply can cause the quantity of electricity demanded to decline until demand is in balance with system capacity, potentially reducing the total amount of generation capacity needed to meet demand and helping meet electricity demand at the lowest cost. However, consumers need to be well informed about real-time prices for the pricing strategy to work as well as theory suggests. While this might be an appropriate assumption for large industrial and commercial users who have potentially large economic incentives, there is not yet enough research on whether households will fully understand and respond to real-time prices. Thus, while real-time pricing can be an effective tool for addressing the peak load

  4. Residential demand response reduces air pollutant emissions on peak electricity demand days in New York City

    International Nuclear Information System (INIS)

    Gilbraith, Nathaniel; Powers, Susan E.

    2013-01-01

    Many urban areas in the United States have experienced difficulty meeting the National Ambient Air Quality Standards (NAAQS), partially due to pollution from electricity generating units. We evaluated the potential for residential demand response to reduce pollutant emissions on days with above average pollutant emissions and a high potential for poor air quality. The study focused on New York City (NYC) due to non-attainment with NAAQS standards, large exposed populations, and the existing goal of reducing pollutant emissions. The baseline demand response scenario simulated a 1.8% average reduction in NYC peak demand on 49 days throughout the summer. Nitrogen oxide and particulate matter less than 2.5 μm in diameter emission reductions were predicted to occur (−70, −1.1 metric tons (MT) annually), although, these were not likely to be sufficient for NYC to meet the NAAQS. Air pollution mediated damages were predicted to decrease by $100,000–$300,000 annually. A sensitivity analysis predicted that substantially larger pollutant emission reductions would occur if electricity demand was shifted from daytime hours to nighttime hours, or the total consumption decreased. Policies which incentivize shifting electricity consumption away from periods of high human and environmental impacts should be implemented, including policies directed toward residential consumers. - Highlights: • The impact of residential demand response on air emissions was modeled. • Residential demand response will decrease pollutant emissions in NYC. • Emissions reductions occur during periods with high potential for poor air quality. • Shifting demand to nighttime hours was more beneficial than to off-peak daytime hours

  5. Reducing electricity consumption peaks with parametrised dynamic pricing strategies given maximal unit prices

    NARCIS (Netherlands)

    N.F. Höning (Nicolas); J.A. La Poutré (Han); F. Lopes; Z. Vale; J. Sousa; H. Coelho

    2013-01-01

    htmlabstractDemand response is a crucial mechanism for flattening of peak loads. For its implementation, we not only require consumers who react to price changes, but also intelligent strategies to select prices. We propose a parametrised meta-strategy for dynamic pricing and identify suitable

  6. Financial incentive approaches for reducing peak electricity demand, experience from pilot trials with a UK energy provider

    International Nuclear Information System (INIS)

    Bradley, Peter; Coke, Alexia; Leach, Matthew

    2016-01-01

    Whilst tariff-based approaches to load-shifting are common in the residential sector, incentive-based approaches are rare. This is so, even though providing customers incentives to shape their power consumption patterns has substantial potential. This paper presents findings from an exploratory UK pilot study that trials financial payments and detailed energy feedback to incentivise load-shifting of residential electricity consumption. An intervention study was implemented measuring actual energy use by individual households as well as conducting surveys and interviews. From the trials it was found that the approaches resulted in reductions in peak time energy use. Evidence from the study found that the incentives-based approaches were able to overcome some of the barriers to response experienced in Time-of-Use studies, though less good on others. Interestingly, the height of the barriers varied by the electricity-using practice and the incentivising approach applied. The height of the barriers also varied by participant. The study concludes by identifying that broad participation in demand response is likely to require a suite of incentivising approaches that appeal to different people, a key policy finding of interest to international agencies, government, public and private sector entities. - Highlights: • Novel study of financial incentive approaches for shifting residential energy. • First academic paper comprehensively identifying barriers to time of use tariffs. • First study reporting barriers to financial incentive approaches for demand response. • Incentive study design can be applied by government and energy companies.

  7. Experimental Evaluation of Simple Thermal Storage Control Strategies in Low-Energy Solar Houses to Reduce Electricity Consumption during Grid On-Peak Periods

    Directory of Open Access Journals (Sweden)

    Kyoung-Ho Lee

    2015-08-01

    Full Text Available There is growing interest in zero-energy and low-energy buildings, which have a net energy consumption (on an annual basis of almost zero. Because they can generate both electricity and thermal energy through the use of solar photovoltaic (PV and solar thermal collectors, and with the help of reduced building thermal demand, low-energy buildings can not only make a significant contribution to energy conservation on an annual basis, but also reduce energy consumption and peak demand. This study focused on electricity consumption during the on-peak period in a low-energy residential solar building and considers the use of a building’s thermal mass and thermal storage to reduce electricity consumption in summer and winter by modulation of temperature setpoints for heat pump and indoor thermostats in summer and additional use of a solar heating loop in winter. Experiments were performed at a low-energy solar demonstration house that has solar collectors, hot water storage, a ground-coupled heat pump, and a thermal storage tank. It was assumed that the on-peak periods were from 2 pm to 5 pm on hot summer days and from 5 pm to 8 pm on cold winter days. To evaluate the potential for utilizing the building’s thermal storage capacity in space cooling and heating, the use of simple control strategies on three test days in summer and two test days in the early spring were compared in terms of net electricity consumption and peak demand, which also considered the electricity generation from solar PV modules on the roof of the house.

  8. Electricity Portfolio Management: Optimal Peak / Off-Peak Allocations

    OpenAIRE

    Huisman, Ronald; Mahieu, Ronald; Schlichter, Felix

    2007-01-01

    textabstractElectricity purchasers manage a portfolio of contracts in order to purchase the expected future electricity consumption profile of a company or a pool of clients. This paper proposes a mean-variance framework to address the concept of structuring the portfolio and focuses on how to allocate optimal positions in peak and off-peak forward contracts. It is shown that the optimal allocations are based on the difference in risk premiums per unit of day-ahead risk as a measure of relati...

  9. Peak Electric Load Relief in Northern Manhattan

    Directory of Open Access Journals (Sweden)

    Hildegaard D. Link

    2014-08-01

    Full Text Available The aphorism “Think globally, act locally,” attributed to René Dubos, reflects the vision that the solution to global environmental problems must begin with efforts within our communities. PlaNYC 2030, the New York City sustainability plan, is the starting point for this study. Results include (a a case study based on the City College of New York (CCNY energy audit, in which we model the impacts of green roofs on campus energy demand and (b a case study of energy use at the neighborhood scale. We find that reducing the urban heat island effect can reduce building cooling requirements, peak electricity loads stress on the local electricity grid and improve urban livability.

  10. Households' hourly electricity consumption and peak demand in Denmark

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Baldini, Mattia; Hansen, Lars Gårn

    2017-01-01

    consumption, we analyse the contribution of appliances and new services, such as individual heat pumps and electric vehicles, to peak consumption and the need for demand response incentives to reduce the peak.Initially, the paper presents a new model that represents the hourly electricity consumption profile...... of households in Denmark. The model considers hourly consumption profiles for different household appliances and their contribution to annual household electricity consumption. When applying the model to an official scenario for annual electricity consumption, assuming non-flexible consumption due...... to a considerable introduction of electric vehicles and individual heat pumps, household consumption is expected to increase considerably, especially peak hour consumption is expected to increase.Next the paper presents results from a new experiment where household customers are given economic and/or environmental...

  11. Commodity hydrogen from off-peak electricity

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, K.; Biederman, N.; Konopka, A.

    1977-01-01

    This paper considers the use of off-peak electrical power as an energy source for the electrolytic production of hydrogen. The present industrial uses for hydrogen are examined to determine if hydrogen produced in this fashion would be competitive with the industry's onsite production or existing hydrogen prices. The paper presents a technical and economic feasibility analysis of the various components required and of the operation of the system as a whole including production, transmission, storage, and markets.

  12. Electric peak power forecasting by year 2025

    International Nuclear Information System (INIS)

    Alsayegh, O.A.; Al-Matar, O.A.; Fairouz, F.A.; Al-Mulla Ali, A.

    2005-01-01

    Peak power demand in Kuwait up to the year 2025 was predicted using an artificial neural network (ANN) model. The aim of the study was to investigate the effect of air conditioning (A/C) units on long-term power demand. Five socio-economic factors were selected as inputs for the simulation: (1) gross national product, (2) population, (3) number of buildings, (4) imports of A/C units, and (5) index of industrial production. The study used socio-economic data from 1978 to 2000. Historical data of the first 10 years of the studied time period were used to train the ANN. The electrical network was then simulated to forecast peak power for the following 11 years. The calculated error was then used for years in which power consumption data were not available. The study demonstrated that average peak power rates increased by 4100 MW every 5 years. Various scenarios related to changes in population, the number of buildings, and the quantity of A/C units were then modelled to estimate long-term peak power demand. Results of the study demonstrated that population had the strongest impact on future power demand, while the number of buildings had the smallest impact. It was concluded that peak power growth can be controlled through the use of different immigration policies, increased A/C efficiency, and the use of vertical housing. 7 refs., 2 tabs., 6 figs

  13. Electric peak power forecasting by year 2025

    Energy Technology Data Exchange (ETDEWEB)

    Alsayegh, O.A.; Al-Matar, O.A.; Fairouz, F.A.; Al-Mulla Ali, A. [Kuwait Inst. for Scientific Research, Kuwait City (Kuwait). Div. of Environment and Urban Development

    2005-07-01

    Peak power demand in Kuwait up to the year 2025 was predicted using an artificial neural network (ANN) model. The aim of the study was to investigate the effect of air conditioning (A/C) units on long-term power demand. Five socio-economic factors were selected as inputs for the simulation: (1) gross national product, (2) population, (3) number of buildings, (4) imports of A/C units, and (5) index of industrial production. The study used socio-economic data from 1978 to 2000. Historical data of the first 10 years of the studied time period were used to train the ANN. The electrical network was then simulated to forecast peak power for the following 11 years. The calculated error was then used for years in which power consumption data were not available. The study demonstrated that average peak power rates increased by 4100 MW every 5 years. Various scenarios related to changes in population, the number of buildings, and the quantity of A/C units were then modelled to estimate long-term peak power demand. Results of the study demonstrated that population had the strongest impact on future power demand, while the number of buildings had the smallest impact. It was concluded that peak power growth can be controlled through the use of different immigration policies, increased A/C efficiency, and the use of vertical housing. 7 refs., 2 tabs., 6 figs.

  14. Particle creation by peak electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Gavrilov, S.P. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Herzen State Pedagogical University of Russia, Department of General and Experimental Physics, St. Petersburg (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo, SP (Brazil)

    2016-08-15

    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially increasing and another exponentially decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered. (orig.)

  15. Electricity portfolio management : optimal peak/off-peak allocations

    NARCIS (Netherlands)

    Huisman, R.; Mahieu, R.J.; Schlichter, F.

    2009-01-01

    Electricity purchasers manage a portfolio of contracts in order to purchase the expected future electricity consumption profile of a company or a pool of clients. This paper proposes a mean-variance framework to address the concept of structuring the portfolio and focuses on how to optimally

  16. Electricity Portfolio Management: Optimal Peak / Off-Peak Allocations

    NARCIS (Netherlands)

    R. Huisman (Ronald); R.J. Mahieu (Ronald); F. Schlichter (Felix)

    2007-01-01

    textabstractElectricity purchasers manage a portfolio of contracts in order to purchase the expected future electricity consumption profile of a company or a pool of clients. This paper proposes a mean-variance framework to address the concept of structuring the portfolio and focuses on how to

  17. Forecasting Strategies for Predicting Peak Electric Load Days

    Science.gov (United States)

    Saxena, Harshit

    Academic institutions spend thousands of dollars every month on their electric power consumption. Some of these institutions follow a demand charges pricing structure; here the amount a customer pays to the utility is decided based on the total energy consumed during the month, with an additional charge based on the highest average power load required by the customer over a moving window of time as decided by the utility. Therefore, it is crucial for these institutions to minimize the time periods where a high amount of electric load is demanded over a short duration of time. In order to reduce the peak loads and have more uniform energy consumption, it is imperative to predict when these peaks occur, so that appropriate mitigation strategies can be developed. The research work presented in this thesis has been conducted for Rochester Institute of Technology (RIT), where the demand charges are decided based on a 15 minute sliding window panned over the entire month. This case study makes use of different statistical and machine learning algorithms to develop a forecasting strategy for predicting the peak electric load days of the month. The proposed strategy was tested for a whole year starting May 2015 to April 2016 during which a total of 57 peak days were observed. The model predicted a total of 74 peak days during this period, 40 of these cases were true positives, hence achieving an accuracy level of 70 percent. The results obtained with the proposed forecasting strategy are promising and demonstrate an annual savings potential worth about $80,000 for a single submeter of RIT.

  18. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States

    Science.gov (United States)

    Bartos, Matthew; Chester, Mikhail; Johnson, Nathan; Gorman, Brandon; Eisenberg, Daniel; Linkov, Igor; Bates, Matthew

    2016-11-01

    Climate change may constrain future electricity supply adequacy by reducing electric transmission capacity and increasing electricity demand. The carrying capacity of electric power cables decreases as ambient air temperatures rise; similarly, during the summer peak period, electricity loads typically increase with hotter air temperatures due to increased air conditioning usage. As atmospheric carbon concentrations increase, higher ambient air temperatures may strain power infrastructure by simultaneously reducing transmission capacity and increasing peak electricity load. We estimate the impacts of rising ambient air temperatures on electric transmission ampacity and peak per-capita electricity load for 121 planning areas in the United States using downscaled global climate model projections. Together, these planning areas account for roughly 80% of current peak summertime load. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with future temperature projections to determine the percent change in rated ampacity. Next, we assess the impact of climate change on electricity load by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We find that by mid-century (2040-2060), increases in ambient air temperature may reduce average summertime transmission capacity by 1.9%-5.8% relative to the 1990-2010 reference period. At the same time, peak per-capita summertime loads may rise by 4.2%-15% on average due to increases in ambient air temperature. In the absence of energy efficiency gains, demand-side management programs and transmission infrastructure upgrades, these load increases have the potential to upset current assumptions about future electricity supply adequacy.

  19. Climate Change Impacts on Peak Electricity Consumption: US vs. Europe.

    Science.gov (United States)

    Auffhammer, M.

    2016-12-01

    It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond. This finding is at odds with the relatively modest increase in climate driven impacts on consumption. Comprehensive high frequency load balancing authority level data have not been used previously to parameterize the relationship between electric demand and temperature for any major economy. Using statistical models we analyze multi-year data from load balancing authorities in the United States of America and the European Union, which are responsible for more than 90% of the electricity delivered to residential, industrial, commercial and agricultural customers. We couple the estimated response functions between total daily consumption and daily peak load with an ensemble of downscaled GCMs from the CMIP5 archive to simulate climate change driven impacts on both outcomes. We show moderate and highly spatially heterogeneous changes in consumption. The results of our peak load simulations, however, suggest significant changes in the intensity and frequency of peak events throughout the United States and Europe. As the electricity grid is built to endure maximum load, which usually occurs on the hottest day of the year, our findings have significant implications for the construction of costly peak generating and transmission capacity.

  20. Kinetic energy storage of off-peak electricity

    International Nuclear Information System (INIS)

    Simpson, L.A.; Oldaker, I.E.; Stermscheg, J.

    1975-09-01

    The concept of using large flywheels to store off-peak electricity has been considered. The development of high strength composite materials has made possible improvements in the energy storage capacity of such devices. The problems involved in designing large flywheels and their economic advantages over alternative means of energy storage are discussed. The economic arguments are based on the present or near future capabilities and costs of structural composite materials. The flywheel costs turn out to be considerably higher than for many alternative schemes including advanced batteries, gas turbine generators and pumped storage schemes. (author)

  1. Analysis on factors affecting household customers decision in using electricity at peak time and its correlation towards saving electricity

    Science.gov (United States)

    Pasasa, Linus; Marbun, Parlin; Mariza, Ita

    2015-09-01

    The purpose of this paper is to study and analyse the factors affecting customer decisions in using electricity at peak-load hours (between 17.00 to 22.00 WIB) and their behaviors towards electricity conservation in Indonesian household. The underlying rationale is to influence a reduction in energy consumption by stimulating energy saving behaviors, thereby reducing the impact of energy use on the environment. How is the correlation between the decisions in using electricity during peak load hours with the household customer's behavior towards saving electricity? The primary data is obtained by distributing questionnaires to customers of PT. PLN Jakarta Raya and Tangerang Distribution from Household segment. The data is analysed using the Structural Equation Model (SEM) and AMOS Software. The research is finding that all factors (Personal, Social, PLN Services, Psychological, and Cultural) are positively influence customer decision in using electricity at peak load hours. There is a correlation between the decisions in using electricity during peak load hours with the household customer's behavior towards saving electricity.

  2. Battery Peak Power Shaving Strategy to Prolong Battery Life for Electric Buses

    NARCIS (Netherlands)

    Pham, T.H.; Rosea, B.; Wilkins, S.

    2016-01-01

    This paper presents a battery peak power shaving strategy for battery electric buses. The developed strategy restricts the battery charge/discharge power when the propulsion power demand is high to avoid high deterioration of the battery capacity during operation. Without reducing the propulsion

  3. Measurements and simulations for peak electrical load reduction in cooling dominated climate

    International Nuclear Information System (INIS)

    Sadineni, Suresh B.; Boehm, Robert F.

    2012-01-01

    Peak electric demand due to cooling load in the Desert Southwest region of the US has been an issue for the electrical energy suppliers. To address this issue, a consortium has been formed between the University of Nevada Las Vegas, Pulte Homes (home builder) and NV Energy (local utility) in order to reduce the peak load by more than 65%. The implemented strategies that were used to accomplish that goal consist of energy efficiency in homes, onsite electricity generation through roof integrated PV, direct load control, and battery storage at the substation level. The simulation models developed using building energy analysis software were validated against measured data. The electrical energy demand for the upgraded home during peak period (1:00–7:00 PM) decreased by approximately 37% and 9% compared to a code standard home of the same size, due to energy efficiency and PV generation, respectively. The total decrease in electrical demand due to energy efficiency and PV generation during the peak period is 46%. Additionally, a 2.2 °C increase in thermostat temperature from 23.9 °C to 26.1 °C between 4:00 PM and 7:00 PM has further decreased the average demand during the peak period by 69% of demand from a standard home. -- Highlights: ► A study to demonstrate peak load reductions of 65% at the substation. ► A new residential energy efficient community named Villa Trieste is being developed. ► The peak demand from the homes has decreased by 37% through energy efficiency. ► A 1.8 kWp system along with energy efficiency measures decreased peak by 46%.

  4. Learning to REDUCE: A Reduced Electricity Consumption Prediction Ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Aman, Saima; Chelmis, Charalampos; Prasanna, Viktor

    2016-02-12

    Utilities use Demand Response (DR) to balance supply and demand in the electric grid by involving customers in efforts to reduce electricity consumption during peak periods. To implement and adapt DR under dynamically changing conditions of the grid, reliable prediction of reduced consumption is critical. However, despite the wealth of research on electricity consumption prediction and DR being long in practice, the problem of reduced consumption prediction remains largely un-addressed. In this paper, we identify unique computational challenges associated with the prediction of reduced consumption and contrast this to that of normal consumption and DR baseline prediction.We propose a novel ensemble model that leverages different sequences of daily electricity consumption on DR event days as well as contextual attributes for reduced consumption prediction. We demonstrate the success of our model on a large, real-world, high resolution dataset from a university microgrid comprising of over 950 DR events across a diverse set of 32 buildings. Our model achieves an average error of 13.5%, an 8.8% improvement over the baseline. Our work is particularly relevant for buildings where electricity consumption is not tied to strict schedules. Our results and insights should prove useful to the researchers and practitioners working in the sustainable energy domain.

  5. Assessment of end-use electricity consumption and peak demand by Townsville's housing stock

    International Nuclear Information System (INIS)

    Ren, Zhengen; Paevere, Phillip; Grozev, George; Egan, Stephen; Anticev, Julia

    2013-01-01

    We have developed a comprehensive model to estimate annual end-use electricity consumption and peak demand of housing stock, considering occupants' use of air conditioning systems and major appliances. The model was applied to analyse private dwellings in Townsville, Australia's largest tropical city. For the financial year (FY) 2010–11 the predicted results agreed with the actual electricity consumption with an error less than 10% for cooling thermostat settings at the standard setting temperature of 26.5 °C and at 1.0 °C higher than the standard setting. The greatest difference in monthly electricity consumption in the summer season between the model and the actual data decreased from 21% to 2% when the thermostat setting was changed from 26.5 °C to 27.5 °C. Our findings also showed that installation of solar panels in Townville houses could reduce electricity demand from the grid and would have a minor impact on the yearly peak demand. A key new feature of the model is that it can be used to predict probability distribution of energy demand considering (a) that appliances may be used randomly and (b) the way people use thermostats. The peak demand for the FY estimated from the probability distribution tracked the actual peak demand at 97% confidence level. - Highlights: • We developed a model to estimate housing stock energy consumption and peak demand. • Appliances used randomly and thermostat settings for space cooling were considered. • On-site installation of solar panels was also considered. • Its' results agree well with the actual electricity consumption and peak demand. • It shows the model could provide the probability distribution of electricity demand

  6. Residential implementation of critical-peak pricing of electricity

    International Nuclear Information System (INIS)

    Herter, Karen

    2007-01-01

    This paper investigates how critical-peak pricing (CPP) affects households with different usage and income levels, with the goal of informing policy makers who are considering the implementation of CPP tariffs in the residential sector. Using a subset of data from the California Statewide Pricing Pilot of 2003-04, average load change during summer events, annual percent bill change, and post-experiment satisfaction ratings are calculated across six customer segments, categorized by historical usage and income levels. Findings show that high-use customers respond significantly more in kW reduction than do low-use customers, while low-use customers save significantly more in percentage reduction of annual electricity bills than do high-use customers-results that challenge the strategy of targeting only high-use customers for CPP tariffs. Across income levels, average load and bill changes were statistically indistinguishable, as were satisfaction rates-results that are compatible with a strategy of full-scale implementation of CPP rates in the residential sector. Finally, the high-use customers earning less than $50,000 annually were the most likely of the groups to see bill increases-about 5% saw bill increases of 10% or more-suggesting that any residential CPP implementation might consider targeting this customer group for increased energy efficiency efforts

  7. Research on Double Price Regulations and Peak Shaving Reserve Mechanism in Coal-Electricity Supply Chain

    Directory of Open Access Journals (Sweden)

    Hongjun Peng

    2013-01-01

    Full Text Available The game models were used to study the mechanism of coal-electricity price conflict under conditions of double price regulations of coal and electricity. Based on this, the peak shaving reserve mechanism was designed to probe into the countermeasures against the coal-electricity price conflicts. The study revealed that in the boom seasons of coal demand, the initiatives of the coal enterprises to supply thermal coal and the electricity enterprises to order thermal coal are reduced under conditions of double price regulations. However, under the circumstances of coal price marketization, in the boom seasons of coal demand the thermal coal price may go up obviously, the initiatives of the coal enterprises to supply thermal coal are increased, and meanwhile the initiatives of the power enterprises to order thermal coal are decreased dramatically. The transportation capacity constraint of coal supply leads to the evident decrease of the initiatives of coal enterprises for the thermal coal supply. The mechanism of peak shaving reserve of thermal coal may not only reduce the price of coal market but also increase the enthusiasm of the power enterprises to order more thermal coal and the initiatives of the coal enterprises to supply more thermal coal.

  8. Impacts of Using Distributed Energy Resources to Reduce Peak Loads in Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lunacek, Monte S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jones, Birk [Univ. of New Mexico, Albuquerque, NM (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-28

    To help the United States develop a modern electricity grid that provides reliable power from multiple resources as well as resiliency under extreme conditions, the U.S. Department of Energy (DOE) is leading the Grid Modernization Initiative (GMI) to help shape the future of the nation's grid. Under the GMI, DOE funded the Vermont Regional Initiative project to provide the technical support and analysis to utilities that need to mitigate possible impacts of increasing renewable generation required by statewide goals. Advanced control of distributed energy resources (DER) can both support higher penetrations of renewable energy by balancing controllable loads to wind and photovoltaic (PV) solar generation and reduce peak demand by shedding noncritical loads. This work focuses on the latter. This document reports on an experiment that evaluated and quantified the potential benefits and impacts of reducing the peak load through demand response (DR) using centrally controllable electric water heaters (EWHs) and batteries on two Green Mountain Power (GMP) feeders. The experiment simulated various hypothetical scenarios that varied the number of controllable EWHs, the amount of distributed PV systems, and the number of distributed residential batteries. The control schemes were designed with several objectives. For the first objective, the primary simulations focused on reducing the load during the independent system operator (ISO) peak when capacity charges were the primary concern. The second objective was to mitigate DR rebound to avoid new peak loads and high ramp rates. The final objective was to minimize customers' discomfort, which is defined by the lack of hot water when it is needed. We performed the simulations using the National Renewable Energy Laboratory's (NREL's) Integrated Energy System Model (IESM) because it can simulate both electric power distribution feeder and appliance end use performance and it includes the ability to simulate

  9. Impact of roof integrated PV orientation on the residential electricity peak demand

    International Nuclear Information System (INIS)

    Sadineni, Suresh B.; Atallah, Fady; Boehm, Robert F.

    2012-01-01

    Highlights: ► A study to demonstrate peak load reductions at the substation. ► A new residential energy efficient community named Villa Trieste is being developed. ► The peak demand from the homes has decreased by 38% through energy efficiency. ► Orientation of roof integrated PV has less influence on the summer peak demand. ► Increasing thermostat temperature during peak by 1 °C can significantly reduce peaks. -- Abstract: Peak electricity demand has been an issue in the Desert Southwest region of the US, due to extreme summer temperatures. To address this issue, a consortium was formed between the University of Nevada, Las Vegas, Pulte Homes, and NV Energy. An energy efficient residential community was developed by the team in Las Vegas with approximately 200 homes to study substation-level peak reduction strategies. A summer peak reduction of more than 65%, between 1:00 PM and 7:00 PM, compared to code standard housing developments is the targeted goal of the project. Approximately 50 homes are already built and some are occupied. The energy performances of the homes have been monitored and are presented in this paper. Several peak electric load reduction strategies such as energy efficiency in buildings, roof integrated photovoltaics (PV) and direct load control have been applied. Though all the homes in the developed community are installed with 1.8 kW p PV systems, the orientation of the PV system depends on the building orientation. Focus of this paper is to find the impact of PV orientation on the peak load from a building. In addition, different time-of-use (TOU) energy pricing options are offered by the local electrical utility company. Hence it is important to find an optimal pricing option for each building. A computer model has been developed for one of the homes in the new development using building energy simulation code, ENERGY-10. Calculations on the PV orientations have shown that a south and 220° (i.e. 40° west of due south

  10. Estimate of China's energy carbon emissions peak and analysis on electric power carbon emissions

    Directory of Open Access Journals (Sweden)

    Zhi-Xuan Wang

    2014-12-01

    Full Text Available China's energy carbon emissions are projected to peak in 2030 with approximately 110% of its 2020 level under the following conditions: 1 China's gross primary energy consumption is 5 Gtce in 2020 and 6 Gtce in 2030; 2 coal's share of the energy consumption is 61% in 2020 and 55% in 2030; 3 non-fossil energy's share increases from 15% in 2020 to 20% in 2030; 4 through 2030, China's GDP grows at an average annual rate of 6%; 5 the annual energy consumption elasticity coefficient is 0.30 in average; and 6 the annual growth rate of energy consumption steadily reduces to within 1%. China's electricity generating capacity would be 1,990 GW, with 8,600 TW h of power generation output in 2020. Of that output 66% would be from coal, 5% from gas, and 29% from non-fossil energy. By 2030, electricity generating capacity would reach 3,170 GW with 11,900 TW h of power generation output. Of that output, 56% would be from coal, 6% from gas, and 37% from non-fossil energy. From 2020 to 2030, CO2 emissions from electric power would relatively fall by 0.2 Gt due to lower coal consumption, and relatively fall by nearly 0.3 Gt with the installation of more coal-fired cogeneration units. During 2020–2030, the portion of carbon emissions from electric power in China's energy consumption is projected to increase by 3.4 percentage points. Although the carbon emissions from electric power would keep increasing to 118% of the 2020 level in 2030, the electric power industry would continue to play a decisive role in achieving the goal of increase in non-fossil energy use. This study proposes countermeasures and recommendations to control carbon emissions peak, including energy system optimization, green-coal-fired electricity generation, and demand side management.

  11. Robust peak-shaving for a neighborhood with electric vehicles

    NARCIS (Netherlands)

    Gerards, Marco Egbertus Theodorus; Hurink, Johann L.

    2016-01-01

    Demand Side Management (DSM) is a popular approach for grid-aware peak-shaving. The most commonly used DSM methods either have no look ahead feature and risk deploying flexibility too early, or they plan ahead using predictions, which are in general not very reliable. To counter this, a DSM approach

  12. Implementing peak load reduction algorithms for household electrical appliances

    International Nuclear Information System (INIS)

    Dlamini, Ndumiso G.; Cromieres, Fabien

    2012-01-01

    Considering household appliance automation for reduction of household peak power demand, this study explored aspects of the interaction between household automation technology and human behaviour. Given a programmable household appliance switching system, and user-reported appliance use times, we simulated the load reduction effectiveness of three types of algorithms, which were applied at both the single household level and across all 30 households. All three algorithms effected significant load reductions, while the least-to-highest potential user inconvenience ranking was: coordinating the timing of frequent intermittent loads (algorithm 2); moving period-of-day time-flexible loads to off-peak times (algorithm 1); and applying short-term time delays to avoid high peaks (algorithm 3) (least accommodating). Peak reduction was facilitated by load interruptibility, time of use flexibility and the willingness of users to forgo impulsive appliance use. We conclude that a general factor determining the ability to shift the load due to a particular appliance is the time-buffering between the service delivered and the power demand of an appliance. Time-buffering can be ‘technologically inherent’, due to human habits, or realised by managing user expectations. There are implications for the design of appliances and home automation systems. - Highlights: ► We explored the interaction between appliance automation and human behaviour. ► There is potential for considerable load shifting of household appliances. ► Load shifting for load reduction is eased with increased time buffering. ► Design, human habits and user expectations all influence time buffering. ► Certain automation and appliance design features can facilitate load shifting.

  13. Contribution to performing gas solutions and the complementarity of energies to address electric peak consumptions

    International Nuclear Information System (INIS)

    2015-01-01

    This article aims at outlining the contribution that gas-based solutions may have for the reduction of the seasonal electricity peak consumption. After having recalled the principles related to electricity peak consumption (daily peak in summer and in winter due to the use of various equipment which lasts few hours, seasonal peak in winter due to the use of electric heating which may last several weeks) and the associated evolution of electricity consumptions over the last years, this article describes the main challenges related to the electric peak consumption: how to maintain the balance in real time between production and consumption. In France, the network manager must use, beside nuclear power stations, thermal productions (gas or coal-based) which result in higher CO 2 emissions. Electricity imports from Germany also degrade the French carbon footprint. Thus, the management of daily and seasonal peaks can be based on three levers of action: to act on supply by developing capacities to face the residual peak, to act on demand by smoothing the load curve by controlling the load of electric equipment, or to act on demand by a global reduction of the thermo-sensitive consumption of electricity

  14. Impact of peak electricity demand in distribution grids: a stress test

    NARCIS (Netherlands)

    Hoogsteen, Gerwin; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria; Schuring, Friso; Kootstra, Ben

    2015-01-01

    The number of (hybrid) electric vehicles is growing, leading to a higher demand for electricity in distribution grids. To investigate the effects of the expected peak demand on distribution grids, a stress test with 15 electric vehicles in a single street is conducted and described in this paper.

  15. The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use. A review

    International Nuclear Information System (INIS)

    Newsham, Guy R.; Bowker, Brent G.

    2010-01-01

    Peak demand for electricity in North America is expected to grow, challenging electrical utilities to supply this demand in a cost-effective, reliable manner. Therefore, there is growing interest in strategies to reduce peak demand by eliminating electricity use, or shifting it to non-peak times. This strategy is commonly called 'demand response'. In households, common strategies are time-varying pricing, which charge more for energy use on peak, or direct load control, which allows utilities to curtail certain loads during high demand periods. We reviewed recent North American studies of these strategies. The data suggest that the most effective strategy is a critical peak price (CPP) program with enabling technology to automatically curtail loads on event days. There is little evidence that this causes substantial hardship for occupants, particularly if they have input into which loads are controlled and how, and have an override option. In such cases, a peak load reduction of at least 30% is a reasonable expectation. It might be possible to attain such load reductions without enabling technology by focusing on household types more likely to respond, and providing them with excellent support. A simple time-of-use (TOU) program can only expect to realise on-peak reductions of 5%. (author)

  16. A fuzzy-stochastic simulation-optimization model for planning electric power systems with considering peak-electricity demand: A case study of Qingdao, China

    International Nuclear Information System (INIS)

    Yu, L.; Li, Y.P.; Huang, G.H.

    2016-01-01

    In this study, a FSSOM (fuzzy-stochastic simulation-optimization model) is developed for planning EPS (electric power systems) with considering peak demand under uncertainty. FSSOM integrates techniques of SVR (support vector regression), Monte Carlo simulation, and FICMP (fractile interval chance-constrained mixed-integer programming). In FSSOM, uncertainties expressed as fuzzy boundary intervals and random variables can be effectively tackled. In addition, SVR coupled Monte Carlo technique is used for predicting the peak-electricity demand. The FSSOM is applied to planning EPS for the City of Qingdao, China. Solutions of electricity generation pattern to satisfy the city's peak demand under different probability levels and p-necessity levels have been generated. Results reveal that the city's electricity supply from renewable energies would be low (only occupying 8.3% of the total electricity generation). Compared with the energy model without considering peak demand, the FSSOM can better guarantee the city's power supply and thus reduce the system failure risk. The findings can help decision makers not only adjust the existing electricity generation/supply pattern but also coordinate the conflict interaction among system cost, energy supply security, pollutant mitigation, as well as constraint-violation risk. - Highlights: • FSSOM (Fuzzy-stochastic simulation-optimization model) is developed for planning EPS. • It can address uncertainties as fuzzy-boundary intervals and random variables. • FSSOM can satisfy peak-electricity demand and optimize power allocation. • Solutions under different probability levels and p-necessity levels are analyzed. • Results create tradeoff among system cost and peak-electricity demand violation risk.

  17. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    International Nuclear Information System (INIS)

    Conklin, Jim; Forsberg, Charles W.

    2007-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR

  18. Extreme daily increases in peak electricity demand: Tail-quantile estimation

    International Nuclear Information System (INIS)

    Sigauke, Caston; Verster, Andréhette; Chikobvu, Delson

    2013-01-01

    A Generalized Pareto Distribution (GPD) is used to model extreme daily increases in peak electricity demand. The model is fitted to years 2000–2011 recorded data for South Africa to make a comparative analysis with the Generalized Pareto-type (GP-type) distribution. Peak electricity demand is influenced by the tails of probability distributions as well as by means or averages. At times there is a need to depart from the average thinking and exploit information provided by the extremes (tails). Empirical results show that both the GP-type and the GPD are a good fit to the data. One of the main advantages of the GP-type is the estimation of only one parameter. Modelling of extreme daily increases in peak electricity demand helps in quantifying the amount of electricity which can be shifted from the grid to off peak periods. One of the policy implications derived from this study is the need for day-time use of electricity billing system similar to the one used in the cellular telephone/and fixed line-billing technology. This will result in the shifting of electricity demand on the grid to off peak time slots as users try to avoid high peak hour charges. - Highlights: ► Policy makers should design demand response strategies to save electricity. ► Peak electricity demand is influenced by tails of probability distributions. ► Both the GSP and the GPD are a good fit to the data. ► Accurate assessment of level and frequency of extreme load forecasts is important.

  19. A robust flexible-probabilistic programming method for planning municipal energy system with considering peak-electricity price and electric vehicle

    International Nuclear Information System (INIS)

    Yu, L.; Li, Y.P.; Huang, G.H.; An, C.J.

    2017-01-01

    Highlights: • A robust flexible probabilistic programming method is developed for planning MES. • Multiple uncertainties with various violations and satisfaction levels are examined. • Solutions of considering peak electricity prices and electric vehicles are analyzed. • RFPP-MES can better improve energy system reliability and abate pollutant emission. - Abstract: Effective electric power systems (EPS) planning with considering electricity price of 24-h time is indispensable in terms of load shifting, pollutant mitigation and energy demand-supply reliability as well as reducing electricity expense of end-users. In this study, a robust flexible probabilistic programming (RFPP) method is developed for planning municipal energy system (MES) with considering peak electricity prices (PEPs) and electric vehicles (EVs), where multiple uncertainties regarded as intervals, probability distributions and flexibilities as well as their combinations can be effectively reflected. The RFPP-MES model is then applied to planning Qingdao’s MES, where electrical load of 24-h time is simulated based on Monte Carlo. Results reveal that: (a) different time intervals lead to changes of energy supply patterns, the energy supply patterns would tend to the transition from self-supporting dominated (i.e. in valley hours) to outsourcing-dominated (i.e. in peak hours); (b) 15.9% of total imported electricity expense would be reduced compared to that without considering PEPs; (c) with considering EVs, the CO_2 emissions of Qingdao’s transportation could be reduced directly and the reduction rate would be 2.5%. Results can help decision makers improve energy supply patterns, reduce energy system costs and abate pollutant emissions as well as adjust end-users’ consumptions.

  20. Recruiting, Training, Retaining, and Promoting the Workforce of the Future at Comanche Peak Steam Electric Station

    International Nuclear Information System (INIS)

    Sunseri, M.

    1999-01-01

    TXU Electric expects to encounter a relatively high turnover in the workforce in the coming years. To prepare for this challenge and to maintain a high level of performance, a number of approaches are being implemented. These approaches involve recruiting experienced personnel, recruiting and developing local nonexperienced personnel, and developing current employees. Through these approaches, TXU Electric expects to maintain a high-quality workforce for the continued support of Comanche Peak Steam Electric Station

  1. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  2. Government procurement of peak capacity in the New Zealand electricity market

    International Nuclear Information System (INIS)

    Poletti, Steve

    2009-01-01

    This paper analyzes the impact of government procurement of reserve electricity generation capacity on the long-run equilibrium in the electricity market. The approach here is to model the electricity market in a context where the supply companies have market power. The model is then used to analyze the impact of government direct supply of peak capacity on the market. We find that the firms build less peak-generation capacity when the government procures peak generating capacity. The long-run equilibrium with N firms and government capacity of K G results in an increase of total peak generation capacity of K G /(N+1) compared to the long-run equilibrium with no government capacity. Supply disruptions of baseline capacity during the peak time period are also considered. It is found that peak prices do not go up any further with (anticipated) supply disruptions. Instead the entire cost of the extra peakers is borne by customers on traditional meters and off-peak customers who face real-time pricing. (author)

  3. The Risk of Residential Peak Electricity Demand: A Comparison of Five European Countries

    Directory of Open Access Journals (Sweden)

    Jacopo Torriti

    2017-03-01

    Full Text Available The creation of a Europe-wide electricity market combined with the increased intermittency of supply from renewable sources calls for an investigation into the risk of aggregate peak demand. This paper makes use of a risk model to assess differences in time-use data from residential end-users in five different European electricity markets. Drawing on the Multinational Time-Use Survey database, it assesses risk in relation to the probability of electrical appliance use within households for five European countries. Findings highlight in which countries and for which activities the risk of aggregate peak demand is higher and link smart home solutions (automated load control, dynamic pricing and smart appliances to different levels of peak demand risk.

  4. Security of supply, energy spillage control and peaking options within a 100% renewable electricity system for New Zealand

    International Nuclear Information System (INIS)

    Mason, I.G.; Page, S.C.; Williamson, A.G.

    2013-01-01

    In this paper, issues of security of supply, energy spillage control, and peaking options, within a fully renewable electricity system, are addressed. We show that a generation mix comprising 49% hydro, 23% wind, 13% geothermal, 14% pumped hydro energy storage peaking plant, and 1% biomass-fuelled generation on an installed capacity basis, was capable of ensuring security of supply over an historic 6-year period, which included the driest hydrological year on record in New Zealand since 1931. Hydro spillage was minimised, or eliminated, by curtailing a proportion of geothermal generation. Wind spillage was substantially reduced by utilising surplus generation for peaking purposes, resulting in up to 99.8% utilisation of wind energy. Peaking requirements were satisfied using 1550 MW of pumped hydro energy storage generation, with a capacity factor of 0.76% and an upper reservoir storage equivalent to 8% of existing hydro storage capacity. It is proposed that alternative peaking options, including biomass-fuelled gas turbines and demand-side measures, should be considered. As a transitional policy, the use of fossil-gas–fuelled gas turbines for peaking would result in a 99.8% renewable system on an energy basis. Further research into whether a market-based system is capable of delivering such a renewable electricity system is suggested. - Highlights: • A 100% renewable electricity system was modelled over a 6-year period. • Security of supply was demonstrated, including for the driest year since 1931. • Stored energy spillage was controlled by using flexible base-load generation. • Wind energy utilisation of 99.8% was obtained. • Transitional use of fossil gas for peaking resulted in a 99.8% renewable system

  5. Regulating electricity demand peaks for home appliances using reversible fair scheduling

    DEFF Research Database (Denmark)

    Kardaras, Georgios; Rossello Busquet, Ana; Iversen, Villy Bæk

    2010-01-01

    This paper describes a novel methodology for regulating electricity demand peaks for home appliances. To achieve this objective, we will make use of the reversible fair scheduling algorithm originally developed for telecommunication networks. The main concept behind this approach is the aggregati...

  6. Analysis of the same day of the week increases in peak electricity ...

    African Journals Online (AJOL)

    Modelling of the same day of the week increases in peak electricity demand improves the reliability of a power network if an accurate assessment of the level and frequency of future extreme load forecasts is carried out. Key words: Gibbs sampling, generalized single pareto, generalized pareto distribution, pareto quantile ...

  7. Forecasting monthly peak demand of electricity in India—A critique

    International Nuclear Information System (INIS)

    Rallapalli, Srinivasa Rao; Ghosh, Sajal

    2012-01-01

    The nature of electricity differs from that of other commodities since electricity is a non-storable good and there have been significant seasonal and diurnal variations of demand. Under such condition, precise forecasting of demand for electricity should be an integral part of the planning process as this enables the policy makers to provide directions on cost-effective investment and on scheduling the operation of the existing and new power plants so that the supply of electricity can be made adequate enough to meet the future demand and its variations. Official load forecasting in India done by Central Electricity Authority (CEA) is often criticized for being overestimated due to inferior techniques used for forecasting. This paper tries to evaluate monthly peak demand forecasting performance predicted by CEA using trend method and compare it with those predicted by Multiplicative Seasonal Autoregressive Integrated Moving Average (MSARIMA) model. It has been found that MSARIMA model outperforms CEA forecasts both in-sample static and out-of-sample dynamic forecast horizons in all five regional grids in India. For better load management and grid discipline, this study suggests employing sophisticated techniques like MSARIMA for peak load forecasting in India. - Highlights: ► This paper evaluates monthly peak demand forecasting performance by CEA. ► Compares CEA forecasts it with those predicted by MSARIMA model. ► MSARIMA model outperforms CEA forecasts in all five regional grids in India. ► Opportunity exists to improve the performance of CEA forecasts.

  8. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Yoon, Donghee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  9. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    International Nuclear Information System (INIS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed

  10. Technical Specifications, Comanche Peak Steam Electric Station, Unit 1 (Docket No. 50-445)

    International Nuclear Information System (INIS)

    1990-04-01

    The Technical Specifications for Comanche Peak Steam Electric Station, Unit 1 were prepared by the US Nuclear Regulatory Commission. They set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility, as set forth in Section 50.36 of Title 10 of the Code of Federal Regulations Part 50, for the protection of the health and safety of the public

  11. Modelling and analysis of a novel compressed air energy storage system for trigeneration based on electrical energy peak load shifting

    International Nuclear Information System (INIS)

    Lv, Song; He, Wei; Zhang, Aifeng; Li, Guiqiang; Luo, Bingqing; Liu, Xianghua

    2017-01-01

    Highlights: • A new CAES system for trigeneration based on electrical peak load shifting is proposed. • The theoretical models and the thermodynamics process are established and analyzed. • The relevant parameters influencing its performance have been discussed and optimized. • A novel energy and economic evaluation methods is proposed to evaluate the performance of the system. - Abstract: The compressed air energy storage (CAES) has made great contribution to both electricity and renewable energy. In the pursuit of reduced energy consumption and relieving power utility pressure effectively, a novel trigeneration system based on CAES for cooling, heating and electricity generation by electrical energy peak load shifting is proposed in this paper. The cooling power is generated by the direct expansion of compressed air, and the heating power is recovered in the process of compression and storage. Based on the working principle of the typical CAES, the theoretical analysis of the thermodynamic system models are established and the characteristics of the system are analyzed. A novel method used to evaluate energy and economic performance is proposed. A case study is conducted, and the economic-social and technical feasibility of the proposed system are discussed. The results show that the trigeneration system works efficiently at relatively low pressure, and the efficiency is expected to reach about 76.3% when air is compressed and released by 15 bar. The annual monetary cost saving annually is about 53.9%. Moreover, general considerations about the proposed system are also presented.

  12. A novel graphene nanoribbon FET with an extra peak electric field (EFP-GNRFET) for enhancing the electrical performances

    Energy Technology Data Exchange (ETDEWEB)

    Akbari Eshkalak, Maedeh [Young Researchers and Elite Club, Lahijan Branch, Islamic Azad University, Lahijan (Iran, Islamic Republic of); Anvarifard, Mohammad K., E-mail: m.anvarifard@guilan.ac.ir [Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar-Vajargah (Iran, Islamic Republic of)

    2017-04-25

    This work has provided an efficient technique to improve the electrical performance for the Graphene Nanoribbon Field Effect Transistors (GNRFETs) successfully. The physical gate length is divided into two gates named as the original gate and the other one as the virtual gate. We have applied a voltage source between these gates to control the channel of the GNRFETs. This technique has created an extra peak electric field in the middle of the channel resulting in the redistribution of surface potential profile. The proposed structure named as EFP-GNRFET has been compared with a simple GNRFET and has shown many improvements in terms of the critical parameters such as short channel effects, leakage current, subthreshold swing, ON-state to OFF-state current ratio, transconductance, output conductance and voltage gain. The structures under the study in this paper benefits from the Non-Equilibrium Green Function (NEGF) approach for solving Schrödinger equation coupled with the two-dimensional (2D) Poisson equation in a self-consistent manner. - Highlights: • Proposal of a novel graphene nanoribbon FET. • Creation of an extra peak in electric field. • Modification of the channel potential with the help of virtual gate. • Considerable improvement on electrical performances.

  13. A channel-by-channel method of reducing the errors associated with peak area integration

    International Nuclear Information System (INIS)

    Luedeke, T.P.; Tripard, G.E.

    1996-01-01

    A new method of reducing the errors associated with peak area integration has been developed. This method utilizes the signal content of each channel as an estimate of the overall peak area. These individual estimates can then be weighted according to the precision with which each estimate is known, producing an overall area estimate. Experimental measurements were performed on a small peak sitting on a large background, and the results compared to those obtained from a commercial software program. Results showed a marked decrease in the spread of results around the true value (obtained by counting for a long period of time), and a reduction in the statistical uncertainty associated with the peak area. (orig.)

  14. An exploratory analysis of California residential customer response to critical peak pricing of electricity

    International Nuclear Information System (INIS)

    Herter, Karen; McAuliffe, Patrick; Rosenfeld, Arthur

    2007-01-01

    This paper summarizes the results from an exploratory analysis of residential customer response to a critical peak pricing (CPP) experiment in California, in which 15 times per year participating customers received high price signals dispatched by a local electricity distribution company. The high prices were about three times the on-peak price for the otherwise applicable time-of-use rate. Using hourly load data collected during the 15-month experiment, we find statistically significant load reduction for participants both with and without automated end-use control technologies. During 5-h critical peak periods, participants without control technology used up to 13% less energy than they did during normal peak periods. Participants equipped with programmable communicating thermostats used 25% and 41% less for 5 and 2h critical events, respectively. Thus, this paper offers convincing evidence that the residential sector can provide substantial contributions to retail demand response, which is considered a potential tool for mitigating market power, stabilizing wholesale market prices, managing system reliability, and maintaining system resource adequacy. (author)

  15. A model of market power in electricity industries subject to peak load pricing

    International Nuclear Information System (INIS)

    Arellano, Maria-Soledad; Serra, Pablo

    2007-01-01

    This paper studies the exercise of market power in price-regulated electricity industries under peak-load pricing and merit order dispatching, but where investment decisions are taken by independent generating companies. Within this context, we show that producers can exercise market power by under-investing in base-load capacity, compared to the welfare-maximizing configuration. We also show that when there is free entry with an exogenous fixed entry cost that is later sunk, more intense competition results in higher welfare but fewer firms. (author)

  16. Observation, modeling, and temperature dependence of doubly peaked electric fields in irradiated silicon pixel sensors

    CERN Document Server

    Swartz, M.; Allkofer, Y.; Bortoletto, D.; Cremaldi, L.; Cucciarelli, S.; Dorokhov, A.; Hoermann, C.; Kim, D.; Konecki, M.; Kotlinski, D.; Prokofiev, Kirill; Regenfus, Christian; Rohe, T.; Sanders, D.A.; Son, S.; Speer, T.

    2006-01-01

    We show that doubly peaked electric fields are necessary to describe grazing-angle charge collection measurements of irradiated silicon pixel sensors. A model of irradiated silicon based upon two defect levels with opposite charge states and the trapping of charge carriers can be tuned to produce a good description of the measured charge collection profiles in the fluence range from 0.5x10^{14} Neq/cm^2 to 5.9x10^{14} Neq/cm^2. The model correctly predicts the variation in the profiles as the temperature is changed from -10C to -25C. The measured charge collection profiles are inconsistent with the linearly-varying electric fields predicted by the usual description based upon a uniform effective doping density. This observation calls into question the practice of using effective doping densities to characterize irradiated silicon.

  17. Operational and structural measures to reduce hydro-peaking impact on fish larvae

    International Nuclear Information System (INIS)

    Kopecki, Ianina; Schneider, Matthias

    2016-01-01

    Eco-hydraulic investigations studying the effects of hydro-peaking on river biota are gaining in importance. Negative effects of rapid flow fluctuations due to hydro power production are well documented by many studies, with the larvae and juvenile fish identified among the mostly affected life stages. Therefore, elaboration of efficient hydro-peaking mitigation strategies is an important issue for energy companies as well as for water body administrations responsible for the fulfilment of WFD requirements. The present case study strives for practical solutions allowing to minimize or compensate the negative effects of hydro-peaking on the fish fauna of the 7 km long river reach on the river Lech (southern Germany). Model based investigations allow to access the impact from currently authorized discharge regime, suggest operational and structural measures within the reach in terms of reducing the risk of stranding for fish larvae and select the measures most easy to implement and with the largest ecological benefit. The paper describes the approach for accessing the effects of hydro-peaking based on 2D hydrodynamic modelling, fuzzy logic based habitat modelling and information on cutting-edge biological investigations on fish larvae from Lunz experimental facility (Austria). (authors)

  18. The origin of double peak electric field distribution in heavily irradiated silicon detectors

    CERN Document Server

    Eremin, V; Li, Z

    2002-01-01

    The first observation of double peak (DP) electric field distribution in heavily neutron irradiated (>10 sup 1 sup 4 n/cm sup 2) semiconductor detectors has been published about 6 yr ago. However, this effect was not quantitatively analyzed up to now. The explanation of the DP electric field distribution presented in this paper is based on the properties of radiation induced deep levels in silicon, which act as deep traps, and on the distribution of the thermally generated free carrier concentration in the detector bulk. In the frame of this model, the earlier published considerations on the so-called 'double junction (DJ) effect' are discussed as well. The comparison of the calculated electric field profiles at different temperatures with the experimental ones allows one to determine a set of deep levels. This set of deep levels, and their charge filling status are essential to the value and the distribution of space charge in the space charge region in the range of 305-240 K, which is actual temperature ran...

  19. Reducing consumption of electric current and energy carriers. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Ruppo, A.S.; Gruzdev, Yu.M.

    1985-01-01

    Evaluates the energy conservation program developed by the Giproshakht research institute is evaluated. The program was used in the Afanas'evo hydraulic mine in the Tulaugol association (with annual coal output of 2.1 Mt). Energy conservation program consisted of 2 groups of tasks: reducing energy consumption of the mine, and reducing energy consumption during the maximum demand hours in the morning and evening. The following methods were used: reducing idle running of chain and belt conveyors, separate draining of mine water free of dust and rock particles (reducing range of water cleaning), use of automatic control systems for mine blowers, automatic control of the system for coal drying, more efficient use of coal and materials transport in the mine. Energy demand of the mine during peak demand hours was reduced by adjusting fluctuations of energy consumption of the mine to fluctuations of energy demand in the power system of the area, e.g. by reducing mine draining in the morning and evening and operating at full capacity during the time of reduced energy demand. Using the energy conservation measures economized 4,324,300 kWh electric energy annually.

  20. Elevated-constant pH control assessment at TXU's Comanche peak steam electric station

    International Nuclear Information System (INIS)

    Fellers, B.; Perkins, D.; Bosma, J.; Deshon, J.

    2002-01-01

    Industry experience with axial offset anomaly (AOA) has raised the importance of crud management strategies. Elevated-constant pH control is recognized as one potential solution. Additionally, minimizing radiation fields remains a high industry goal which is supported by this strategy. An investigation of industry experience and experimental data has supported a strategy of constant at-temperature pH of 7.4, requiring as much as 6-ppm lithium at the beginning-of-cycle (BOC). This approach, in a modern high temperature plant with high boron requirements, necessitated a careful assessment of potential risk for increased susceptibility to corrosion for both fuel cladding and RCS structural materials. This paper presents results of the assessment for Comanche peak steam electric station (CPSES) and plans for a demonstration of this practice. (author)

  1. Assessment of high temperature nuclear energy storage systems for the production of intermediate and peak-load electric power

    International Nuclear Information System (INIS)

    Fox, E.C.; Fuller, L.C.; Silverman, M.D.

    1977-01-01

    Increased cost of energy, depletion of domestic supplies of oil and natural gas, and dependence on foreign suppliers, have led to an investigation of energy storage as a means to displace the use of oil and gas presently being used to generate intermediate and peak-load electricity. Dedicated nuclear thermal energy storage is investigated as a possible alternative. An evaluation of thermal storage systems is made for several reactor concepts and economic comparisons are presented with conventional storage and peak power producing systems. It is concluded that dedicated nuclear storage has a small but possible useful role in providing intermediate and peak-load electric power

  2. Slag Evaluation to Reduce Energy Consumption and EAF Electrical Instability

    OpenAIRE

    Vieira,Deisi; Almeida,Rodolfo Arnaldo Montecinos de; Bielefeldt,Wagner Viana; Vilela,Antônio Cezar Faria

    2016-01-01

    In steel mills that operate with electric arc furnaces (EAF), it is interesting to ensure greater stability to the electric arc to aim at less distortion in the electrical system, with consequent reduction in electric power consumption. The slag foaming increases electric arc stability by reducing the total harmonic distortion (THD) between EAF phases. In this study, information about the chemical composition of the slag and electrical parameters of an EAF were collected. With the composition...

  3. Sound-Intensity Feedback During Running Reduces Loading Rates and Impact Peak.

    Science.gov (United States)

    Tate, Jeremiah J; Milner, Clare E

    2017-08-01

    Study Design Controlled laboratory study, within-session design. Background Gait retraining has been proposed as an effective intervention to reduce impact loading in runners at risk of stress fractures. Interventions that can be easily implemented in the clinic are needed. Objective To assess the immediate effects of sound-intensity feedback related to impact during running on vertical impact peak, peak vertical instantaneous loading rate, and vertical average loading rate. Methods Fourteen healthy, college-aged runners who ran at least 9.7 km/wk participated (4 male, 10 female; mean ± SD age, 23.7 ± 2.0 years; height, 1.67 ± 0.08 m; mass, 60.9 ± 8.7 kg). A decibel meter provided real-time sound-intensity feedback of treadmill running via an iPad application. Participants were asked to reduce the sound intensity of running while receiving continuous feedback for 15 minutes, while running at their self-selected preferred speed. Baseline and follow-up ground reaction force data were collected during overground running at participants' self-selected preferred running speed. Results Dependent t tests indicated a statistically significant reduction in vertical impact peak (1.56 BW to 1.13 BW, P≤.001), vertical instantaneous loading rate (95.48 BW/s to 62.79 BW/s, P = .001), and vertical average loading rate (69.09 BW/s to 43.91 BW/s, P≤.001) after gait retraining, compared to baseline. Conclusion The results of the current study support the use of sound-intensity feedback during treadmill running to immediately reduce loading rate and impact force. The transfer of within-session reductions in impact peak and loading rates to overground running was demonstrated. Decreases in loading were of comparable magnitude to those observed in other gait retraining methods. J Orthop Sports Phys Ther 2017;47(8):565-569. Epub 6 Jul 2017. doi:10.2519/jospt.2017.7275.

  4. High Electricity Demand in the Northeast U.S.: PJM Reliability Network and Peaking Unit Impacts on Air Quality.

    Science.gov (United States)

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Henderson, Barron H; Carlton, Annmarie G

    2016-08-02

    On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.S. and estimate air quality for four emission scenarios with the Community Multiscale Air Quality (CMAQ) model during the July 2006 heat wave. Further, we population-weight ambient values as a surrogate for potential population exposure. Emissions from electricity reliability networks negatively impact air quality in their own region and in neighboring geographic areas. Monitored and controlled PJM peaking units are generally located in economically depressed areas and can contribute up to 87% of hourly maximum PM2.5 mass locally. Potential population exposure to peaking unit PM2.5 mass is highest in the model domain's most populated cities. Average daily temperature and national gross domestic product steer peaking unit heat input. Air quality planning that capitalizes on a priori knowledge of local electricity demand and economics may provide a more holistic approach to protect human health within the context of growing energy needs in a changing world.

  5. Lessons learned while implementing a safety parameter display system at the Comanche Peak steam electric station

    International Nuclear Information System (INIS)

    Hagar, B.

    1987-01-01

    With the completion of site Verification and Validation tests, the Safety Parameter Display System (SPDS) will be fully operational at the Comanche Peak Steam Electric Station. Implementation of the SPDS, which began in 1982, included: modifying generic Safety Assessment System Software; developing site-specific displays and features; installing and integrating system equipment into the plant; modifying station heating, ventilation, and air conditioning systems to provide necessary cooling; installing an additional uninterruptible power supply system to provide necessary power; and training station personnel in the operation and use of the system. Lessons learned during this project can be discussed in terms of an ideal SPDS implementation project. Such a project would design and implement an SPDS for a plant that is already under construction or operating, and would progress through a sequence of activities that includes: (1) developing and documenting the system design bases, and including all major design influences; (2) developing a database description and system functional specifications to clarify specific system requirements; (3) developing detailed system hardware and software design specifications to fully describe the system, and to enable identification of necessary site design changes early in the project; (4) implementing the system design; (5) configuring and extensively testing the system prior to routine system operation; and (6) tuning the system after the completion of system installation. The ideal project would include future system users in design development and system testing, and would use Verification and Validation techniques throughout the project to ensure that each sequential step is appropriate and correct

  6. ptimal setpoint operation to reduce peak drying of a church organ

    Directory of Open Access Journals (Sweden)

    A. W.M. van Schijndel

    2008-03-01

    Full Text Available The paper presents the characteristics of the Walloon Church in Delft (Netherlands and a description of constraints for the indoor climate, giving criteria for the indoor air temperature and relative humidity with the focus on the preservation of the monumental church organ. The set point operation of the Heating Venting and Air Conditioning (HVAC system is evaluated by simulation. The next main model components are presented and combined in a single integrated model: 1 a whole building response model for simulating the indoor temperature and relative humidity, 2 a Partial Differential Equation (PDE based model for simulating detailed dynamic moisture transport in the monumental wood (church organ and 3 a SimuLink controller model. The building model is validated with measurements. The main advantage of the integrated model is that it directly simulates the impact of HVAC control set point strategies on the indoor climate and the church organ. Two types of control strategies are discussed. The first type is a limited indoor air temperature-changing rate. The second type is a limited indoor air relative humidity changing rate. Recommendations from international literature suggest that 1 a changing rate of 2 K/h will preserve the interior of churches and 2 a limited drying rate is important for the conservation of monumental wood. This preliminary study shows that a limitation of indoor air temperature changing rate of 2 K/h can reduce the peak drying rates by a factor 20 and a limitation of the relative humidity changing rate of 2%/h can reduce the peak drying rates by a factor 50. The second strategy has the disadvantage that the heating time is not constant.

  7. Remediation scenarios for attenuating peak flows and reducing sediment transport in Fountain Creek, Colorado, 2013

    Science.gov (United States)

    Kohn, Michael S.; Fulton, John W.; Williams, Cory A.; Stogner, Sr., Robert W.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Fountain Creek Watershed, Flood Control and Greenway District assessed remediation scenarios to attenuate peak flows and reduce sediment loads in the Fountain Creek watershed. To evaluate these strategies, the U.S. Army Corps of Engineers Hydrologic Engineering Center (HEC) hydrologic and hydraulic models were employed. The U.S. Army Corps of Engineers modeling system HEC-HMS (Hydrologic Modeling System) version 3.5 was used to simulate runoff in the Fountain Creek watershed, Colorado, associated with storms of varying magnitude and duration. Rain-gage precipitation data and radar-based precipitation data from the April 28–30, 1999, and September 14–15, 2011, storm events were used in the calibration process for the HEC-HMS model. The curve number and lag time for each subwatershed and Manning's roughness coefficients for each channel reach were adjusted within an acceptable range so that the simulated and measured streamflow hydrographs for each of the 12 USGS streamgages approximated each other. The U.S. Army Corps of Engineers modeling system HEC-RAS (River Analysis System) versions 4.1 and 4.2 were used to simulate streamflow and sediment transport, respectively, for the Fountain Creek watershed generated by a particular storm event. Data from 15 USGS streamgages were used for model calibration and 7 of those USGS streamgages were used for model validation. The calibration process consisted of comparing the simulated water-surface elevations and the cross-section-averaged velocities from the model with those surveyed in the field at the cross section at the corresponding 15 and 7 streamgages, respectively. The final Manning’s roughness coefficients were adjusted between –30 and 30 percent at the 15 calibration streamgages from the original left, right, and channel-averaged Manning's roughness coefficients upon completion of calibration. The U.S. Army Corps of Engineers modeling system HEC

  8. Hydrogen or Fossil Combustion Nuclear Combined Cycle Systems for Baseload and Peak Load Electricity Production. Annex X

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    A combined cycle power plant is described that uses: (i) heat from a high temperature nuclear reactor to meet baseload electrical demands; and (ii) heat from the same high temperature reactor and burning natural gas, jet fuel or hydrogen to meet peak load electrical demands. For baseload electricity production, fresh air is compressed, then flows through a heat exchanger, where it is heated to between 700 and 900{sup o}C by using heat provided by a high temperature nuclear reactor via an intermediate heat transport loop, and finally exits through a high temperature gas turbine to produce electricity. The hot exhaust from the Brayton cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high temperature reactor. Natural gas, jet fuel or hydrogen is then injected into the hot air in a combustion chamber, combusts and heats the air to 1300{sup o}C - the operating conditions for a standard natural gas fired combined cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until required. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electrical grid can vary from zero (i.e. when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. As nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil fired turbines) to meet spinning reserve requirements and stabilize the electrical grid. This combined

  9. Utility Sector Impacts of Reduced Electricity Demand

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  10. Electric Car Users’ Time of Charging Problem under Peak Load Pricing When Delay in Charging Time Involves Uncertain Cost

    DEFF Research Database (Denmark)

    Fetene, Gebeyehu Manie

    The problem of peak load arises when demand fluctuates over time while the pro- duction technology is not flexible (or making it flexible is economically inefficient) and/or when a product is non-storable (or storage cost is huge). Peak load is a com- mon problem in consumption of public utilities......, on the one hand, observed cost saving benefit of postponing the time of charging to off-peak lower fee of charging and, on the other hand, the cost of delay in departure time for planned trips and uncertain cost of late charging associated with likelihood occur- rence of unanticipated trip before the car...... of electricity. The electric vehicle (EV) users choice of time of charging problem under PLP is different from that of general households using energy for house appliances since there is uncertain cost to the former as- sociated with likelihood occurrence of unanticipated trips such as visiting hospital...

  11. Modelling of electric characteristics of 150-watt peak solar panel using Boltzmann sigmoid function under various temperature and irradiance

    Science.gov (United States)

    Sapteka, A. A. N. G.; Narottama, A. A. N. M.; Winarta, A.; Amerta Yasa, K.; Priambodo, P. S.; Putra, N.

    2018-01-01

    Solar energy utilized with solar panel is a renewable energy that needs to be studied further. The site nearest to the equator, it is not surprising, receives the highest solar energy. In this paper, a modelling of electrical characteristics of 150-Watt peak solar panels using Boltzmann sigmoid function under various temperature and irradiance is reported. Current, voltage, temperature and irradiance data in Denpasar, a city located at just south of equator, was collected. Solar power meter is used to measure irradiance level, meanwhile digital thermometer is used to measure temperature of front and back panels. Short circuit current and open circuit voltage data was also collected at different temperature and irradiance level. Statistically, the electrical characteristics of 150-Watt peak solar panel can be modelled using Boltzmann sigmoid function with good fit. Therefore, it can be concluded that Boltzmann sigmoid function might be used to determine current and voltage characteristics of 150-Watt peak solar panel under various temperature and irradiance.

  12. Chronic ketamine reduces the peak frequency of gamma oscillations in mouse prefrontal cortex ex vivo

    Directory of Open Access Journals (Sweden)

    James M. McNally

    2013-09-01

    Full Text Available Abnormalities in EEG gamma band oscillations (GBO, 30-80 Hz serve as a prominent biomarker of schizophrenia (Sz, associated with positive, negative and cognitive symptoms. Chronic, subanesthetic administration of antagonists of N-methyl-D-aspartate receptors (NMDAR, such as ketamine, elicits behavioral effects and alterations in cortical interneurons similar to those observed in Sz. However, the chronic effects of ketamine on neocortical GBO are poorly understood. Thus, here we examine the effects of chronic (5 daily i.p. injections application of ketamine (5 and 30 mg/kg and the more specific NMDAR antagonist, MK-801 (0.02, 0.5, and 2 mg/kg, on neocortical GBO ex vivo. Oscillations were generated by focal application of the glutamate receptor agonist, kainate, in coronal brain slices containing the prelimbic cortex. This region constitutes the rodent analogue of the human dorsolateral prefrontal cortex, a brain region strongly implicated in Sz-pathophysiology. Here we report the novel finding that chronic ketamine elicits a reduction in the peak oscillatory frequency of kainate-elicited oscillations (from 47 to 40 Hz at 30 mg/kg. Moreover, the power of GBO in the 40-50 Hz band was reduced. These findings are reminiscent of both the reduced resonance frequency and power of cortical oscillations observed in Sz clinical studies. Surprisingly, MK-801 had no significant effect, suggesting care is needed when equating Sz-like behavioral effects elicited by different NMDAR antagonists to alterations in GBO activity. We conclude that chronic ketamine in the mouse mimics GBO abnormalities observed in Sz patients. Use of this ex vivo slice model may be useful in testing therapeutic compounds which rescue these GBO abnormalities.

  13. Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving

    Energy Technology Data Exchange (ETDEWEB)

    Castello, Charles C [ORNL

    2013-01-01

    This research presents a comparison of two control systems for peak load shaving using local solar power generation (i.e., photovoltaic array) and local energy storage (i.e., battery bank). The purpose is to minimize load demand of electric vehicle supply equipment (EVSE) on the electric grid. A static and dynamic control system is compared to decrease demand from EVSE. Static control of the battery bank is based on charging and discharging to the electric grid at fixed times. Dynamic control, with 15-minute resolution, forecasts EVSE load based on data analysis of collected data. In the proposed dynamic control system, the sigmoid function is used to shave peak loads while limiting scenarios that can quickly drain the battery bank. These control systems are applied to Oak Ridge National Laboratory s (ORNL) solar-assisted electric vehicle (EV) charging stations. This installation is composed of three independently grid-tied sub-systems: (1) 25 EVSE; (2) 47 kW photovoltaic (PV) array; and (3) 60 kWh battery bank. The dynamic control system achieved the greatest peak load shaving, up to 34% on a cloudy day and 38% on a sunny day. The static control system was not ideal; peak load shaving was 14.6% on a cloudy day and 12.7% on a sunny day. Simulations based on ORNL data shows solar-assisted EV charging stations combined with the proposed dynamic battery control system can negate up to 89% of EVSE load demand on sunny days.

  14. Peak reduction in decentralised electricity systems : Markets and prices for flexible planning

    NARCIS (Netherlands)

    Höning, N.F.

    2016-01-01

    In contemporary societies, industrial processes as well as domestic activities rely to a large degree on a well-functioning electricity system. This reliance exists both structurally (the system should always be available) and economically (the prices for electricity affect the costs of operating a

  15. Saving energy and reducing CO2 with electricity

    International Nuclear Information System (INIS)

    Yau, T.S.; Zaininger, H.W.

    1991-10-01

    Surprising potential exists for new and enhanced electric technologies to reduce energy use and CO 2 emission. Widespread deployment of these technologies could reduce energy use by up to 7 quads in 2010 and a corresponding reduction in carbon dioxide emission of up to 440 million tons. Electricity's unique high form value allows for efficiency at the point of end-use that is multiples of the efficiency possible in gas- or oil-fueled systems. The efficiency advantage at the point of end use more than offset the disadvantage of the high losses in the production of electricity. Hence, widespread deployment of many electric end uses will reduce the nation's total energy requirements. Major technologies which hold the greatest potential include electric process heating, industrial electrotechnologies, electric vehicles, information technologies that substitute electronic communication for transportation of people, and electric heat pumps for space heating, cooling and water heating. Wider use of these beneficial technologies in combination with the efficient use of electricity can reduce the nation's primary energy use and Co 2 emissions from electric generation by more than a quarter. 35 refs., 50 figs., 69 tabs

  16. Optimum Insulation Thickness for Walls and Roofs for Reducing Peak Cooling Loads in Residential Buildings in Lahore

    Directory of Open Access Journals (Sweden)

    SIBGHA SIDDIQUE SIDDIQUE

    2016-10-01

    Full Text Available Thermal insulation is the most effective energy saving measure for cooling in buildings. Therefore, the main subject of many engineering investigations is the selection and determination of the optimum insulation thickness. In the present study, the optimum insulation thickness on external walls and roofs is determined based on the peak cooling loads for an existing residential building in Lahore, Pakistan. Autodesk® Revit 2013 is used for the analysis of the building and determination of the peak cooling loads. The analysis shows that the optimum insulation thickness to reduce peak cooling loads up to 40.1% is 1 inch for external walls and roof respectively.

  17. Optimum Insulation Thickness for Walls and Roofs for Reducing Peak Cooling Loads in Residential Buildings in Lahore

    International Nuclear Information System (INIS)

    Siddique, S.; Arif, S.; Khan, A.; Alam, A.T.

    2016-01-01

    Thermal insulation is the most effective energy saving measure for cooling in buildings. Therefore, the main subject of many engineering investigations is the selection and determination of the optimum insulation thickness. In the present study, the optimum insulation thickness on external walls and roofs is determined based on the peak cooling loads for an existing residential building in Lahore, Pakistan. Autodesk at the rate Revit 2013 is used for the analysis of the building and determination of the peak cooling loads. The analysis shows that the optimum insulation thickness to reduce peak cooling loads up to 40.1 percent is 1 inch for external walls and roof respectively. (author)

  18. New electric technologies to reduce global warming impacts

    International Nuclear Information System (INIS)

    Courtright, H.A.

    1994-01-01

    Advanced electric technologies hold significant potential to reduce global warming impact through reduction of primary fuel needed to power end-use applications. These reductions can occur in two forms: (1) reduced kilowatt-hour usage and power plant emissions through efficiency improvements and technological enhancements of existing electrically-driven applications; (2) the development of new electric technologies to replace traditional fossil-fuel driven applications which can result in less overall primary energy consumption and lower overall emissions. Numerous new electric technologies are presently being developed by the Electric Power Research Institute. The technologies reviewed in this paper include: Microwave Fabric Dryer, Advanced Heat Pumps, Heat Pump Water Heater, Infrared Sand Reclaimer, Freeze Concentration, Membrane Water Recovery, Microwave Petrochemical Production, Infrared Drying, and Electric Vehicles. Full commercialization of these technologies can result in significant energy savings and CO 2 reductions, in addition to improving the competitiveness of businesses using these technologies

  19. Assessing and Reducing Miscellaneous Electric Loads (MELs) in Lodging

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Emily M.

    2011-09-01

    Miscellaneous electric loads (MELs) are the loads outside of a building's core functions of heating, ventilating, air conditioning, lighting, and water heating. This report reviews methods to reduce MELs in lodging.

  20. Peak Shaving and Alternative Power: A Question of Economy, Quality of Life and Quality of Electricity

    National Research Council Canada - National Science Library

    Smith, David

    1999-01-01

    .... Fuel cells offer a variety of options for co-generation and power management. A prudent use of the by-products of electric generation from a fuel cell could increase efficiency of the plant and provide cost savings to the user...

  1. Peak performance & reducing stage fright : implementation research HeartMath training programme with students of the Prince Claus Conservatoire

    NARCIS (Netherlands)

    Mak, Peter

    2010-01-01

    Stage fright among musicians and music students is a severe problem, and a problem moreover that is not easily talked about. This researchreport is a reflection of the project Peak Performance & Reducing Stage Fright, in which six students of the Prince Claus Conservatoire got the opportunity to

  2. Peak shifting and cross-class subsidization: The impacts of solar PV on changes in electricity costs

    International Nuclear Information System (INIS)

    Johnson, Erik; Beppler, Ross; Blackburn, Chris; Staver, Benjamin; Brown, Marilyn; Matisoff, Daniel

    2017-01-01

    The expansion of distributed solar necessitates additional research into the impacts on both utilities and their customers. In this paper we use New Jersey solar data, PJM market data, and demand profiles from a PJM utility to investigate rate and bill impacts of large-scale solar penetration. In addition to the subsidization of solar adopters by non-participants, we highlight the channels through which cross-subsidization of rate classes can arise in practice. The results of our study indicate that the fear of a utility “death spiral” may be exaggerated. Significant solar can be incorporated with only a 2% increase in non-participant bills. At high levels of penetration, distributed solar has the potential to alter the system peak hour which affects the allocation of costs across rate-classes. As the peak hour shifts to the evening when solar production diminishes, residential customers face higher distribution costs. Policy makers and utilities need to be aware of these challenges in designing the next generation of rates that are better aligned with cost causality. - Highlights: • We develop a model of electricity costs with large amounts of solar adoption. • Solar adoption leads to cost redistribution across customer classes. • Costs are redistributed partially because peak utility load shifts later in the day. • Residential distributed solar generation affects electricity bills the most. • We confirm the subsidy of participants by non-participants in net metering programs.

  3. Peak electricity demand and social practice theories: Reframing the role of change agents in the energy sector

    International Nuclear Information System (INIS)

    Strengers, Yolande

    2012-01-01

    Demand managers currently draw on a limited range of psychology and economic theories in order to shift and shed peak electricity demand. These theories place individual consumers and their attitudes, behaviours and choices at the centre of the problem. This paper reframes the issue of peak electricity demand using theories of social practices, contending that the ‘problem’ is one of transforming, technologically-mediated social practices. It reflects on how this body of theory repositions and refocuses the roles and practices of professions charged with the responsibility and agency for affecting and managing energy demand. The paper identifies three areas where demand managers could refocus their attention: (i) enabling co-management relationships with consumers; (ii) working beyond their siloed roles with a broader range of human and non-human actors; and (iii) promoting new practice ‘needs’ and expectations. It concludes by critically reflecting on the limited agency attributed to ‘change agents’ such as demand managers in dominant understandings of change. Instead, the paper proposes the need to identify and establish a new group of change agents who are actively but often unwittingly involved in reconfiguring the elements of problematic peaky practices. - Highlights: ► I reframe peak electricity demand as a problem of changing social practices. ► Micro-grids, and dynamic pricing reorient household routines and enable co-management. ► Infrastructures inside and outside the home configure peaky practices. ► Demand managers are encouraged to promote and challenge consumer ‘needs’. ► I identify a new group of change agents implicated in peaky practices.

  4. Applying Smart Grid Technology For Reducing Electric Energy Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Roy

    2010-09-15

    In recent years the term 'Smart Grid' has become a widely used buzz word with respect to the operation of Electric Power Systems. One analysis has suggested that a Smart Grid could potentially reduce annual energy consumption in the USA by 56 to 203 billion kWh in 2030, corresponding to a 1.2 to 4.3% reduction in projected retail electricity sales in 2030. This paper discusses some of the smart grid technologies pertaining to the operation of electric power distribution networks.

  5. Online peak power prediction based on a parameter and state estimator for lithium-ion batteries in electric vehicles

    International Nuclear Information System (INIS)

    Pei, Lei; Zhu, Chunbo; Wang, Tiansi; Lu, Rengui; Chan, C.C.

    2014-01-01

    The goal of this study is to realize real-time predictions of the peak power/state of power (SOP) for lithium-ion batteries in electric vehicles (EVs). To allow the proposed method to be applicable to different temperature and aging conditions, a training-free battery parameter/state estimator is presented based on an equivalent circuit model using a dual extended Kalman filter (DEKF). In this estimator, the model parameters are no longer taken as functions of factors such as SOC (state of charge), temperature, and aging; instead, all parameters will be directly estimated under the present conditions, and the impact of the temperature and aging on the battery model will be included in the parameter identification results. Then, the peak power/SOP will be calculated using the estimated results under the given limits. As an improvement to the calculation method, a combined limit of current and voltage is proposed to obtain results that are more reasonable. Additionally, novel verification experiments are designed to provide the true values of the cells' peak power under various operating conditions. The proposed methods are implemented in experiments with LiFePO 4 /graphite cells. The validating results demonstrate that the proposed methods have good accuracy and high adaptability. - Highlights: • A real-time peak power/SOP prediction method for lithium-ion batteries is proposed. • A training-free method based on DEKF is presented for parameter identification. • The proposed method can be applied to different temperature and aging conditions. • The calculation of peak power under the current and voltage limits is improved. • Validation experiments are designed to verify the accuracy of prediction results

  6. Investment in peak production means, future pitfall of the electricity sector deregulation?

    International Nuclear Information System (INIS)

    Peluchon, B.

    2008-01-01

    The electricity markets seem to have experienced problems of under-investment over and over again, hence regular crises which manifest themselves in very high price levels and the threat of power cuts. An explanation of this phenomenon is given in the literature under the heading 'problem of lacking revenue': a certain number of imperfections prevent the wholesale markets from generating enough revenue to encourage the building of new capacities. The purpose of this article is to present these issues as well as the solutions envisaged to remedy them: what is known as 'convergent' designs of capacity markets. However the fact that the operational reserves may be considered as a public good stops these designs from being considered as a definitive remedy to the problem of lacking revenue. (author)

  7. Strategic elements of steam cycle chemistry control practices at TXU's Comanche Peak steam electric station

    International Nuclear Information System (INIS)

    Fellers, B.; Stevens, J.; Nichols, G.

    2002-01-01

    Early industry experience defined the critical importance of Chemistry Control Practices to maintaining long-term performance of PWR steam generators. These lessons provided the impetus for a number of innovations and alternate practices at Comanche Peak. For example, advanced amine investigations and implementation of results provided record low iron transport and deposition. The benefits of the surface-active properties of dimethyl-amine exceeded initial expectations. Operation of pre-coat polishers and steam generator blowdown demineralizers in the amine cycle enabled optimization of amine concentrations and stable pH control. The strategy for coordinated control of oxygen and hydrazine dosing complemented the advanced amine program for protective oxide stabilization. Additionally, a proactive chemical cleaning was performed on Unit 1 to prevent degradations from general fouling of steam generator tube-tube support plate (TSP) and top-of-tubesheet (TTS) crevices. This paper shares the results of these innovations and practices. Also, the bases, theory, and philosophy supporting the strategic elements of program will be presented. (authors)

  8. Further Development of the Nordic Electricity Market - a Common Solution for Investments in Transmission, Congestion Management and Peak Load Capacity

    International Nuclear Information System (INIS)

    Granstroem, Per-Olof

    2005-06-01

    The Nordic market fits well into place as a regional market in the over all European development, and it is therefore necessary to change the perspectives from a national one to a common Nordic approach. Despite the fact that the Nordic market is seen as a success, significant further improvements for customers and society can be made through deeper Nordic integration. The ongoing work on the Nordic electricity market within the Nordic Council of Ministers is therefore very welcomed and the Nordel report 'Enhancing Efficient Functioning of the Nordic Electricity Market' constitutes a good basis material for the further development of the market. There is a need to accelerate the pace of the harmonisation process, by making a clear timetable and prioritisation for the further work. Key issues for the next step are: Harmonisation of the legal framework and hence intensified co-operation among the Nordic governments; Implementation of the five known transmission investments, including a cost-benefit analysis; A more precise definition of the TSO responsibilities and core businesses, including operational reserves a prerequisite for further work on, e.g. the peak load issue; Initiation of cost-benefit analysis concerning future transmission investments; Guaranteed cross border capacity for market players; An analysis on settlement of imbalances and how this is affecting the peak load issue

  9. Error Reduction in an Operating Environment - Comanche Peak Steam Electric Station

    International Nuclear Information System (INIS)

    Blevins, Mike; Gallman, Jim

    1998-01-01

    After having outlined that a program to manage human performance and to reduce human performance errors has reached an 88% error reduction rate and a 99% significant error reduction rate, the authors present this program. It takes three cornerstones of human performance management into account: training, leadership and procedures. Other aspects are introduced: communication, corrective action programs, a root cause analysis, seven steps of self checking, trending, and a human performance enhancement program. These other aspects and their relationships are discussed. Program strengths and downsides are outlined, as well as actions needed for success. Another approach is then proposed which comprises proactive interventions and indicators for human performance. These indicators are identified and introduced by analyzing the anatomy of an event. The limitations of this model are discussed

  10. MODELING CONTROLLED ASYNCHRONOUS ELECTRIC DRIVES WITH MATCHING REDUCERS AND TRANSFORMERS

    Directory of Open Access Journals (Sweden)

    V. S. Petrushin

    2015-04-01

    Full Text Available Purpose. Working out of mathematical models of the speed-controlled induction electric drives ensuring joint consideration of transformers, motors and loadings, and also matching reducers and transformers, both in static, and in dynamic regimes for the analysis of their operating characteristics. Methodology. At mathematical modelling are considered functional, mass, dimensional and cost indexes of reducers and transformers that allows observing engineering and economic aspects of speed-controlled induction electric drives. The mathematical models used for examination of the transitive electromagnetic and electromechanical processes, are grounded on systems of nonlinear differential equations with nonlinear coefficients (parameters of equivalent circuits of motors, varying in each operating point, including owing to appearances of saturation of magnetic system and current displacement in a winding of a rotor of an induction motor. For the purpose of raise of level of adequacy of models a magnetic circuit iron, additional and mechanical losses are considered. Results. Modelling of the several speed-controlled induction electric drives, different by components, but working on a loading equal on character, magnitude and a demanded control range is executed. At use of characteristic families including mechanical, at various parameters of regulating on which performances of the load mechanism are superimposed, the adjusting characteristics representing dependences of a modification of electrical, energy and thermal magnitudes from an angular speed of motors are gained. Originality. The offered complex models of speed-controlled induction electric drives with matching reducers and transformers, give the chance to realize well-founded sampling of components of drives. They also can be used as the design models by working out of speed-controlled induction motors. Practical value. Operating characteristics of various speed-controlled induction electric

  11. One watt initiative: A global effort to reduce leaking electricity

    International Nuclear Information System (INIS)

    Meier, Alan K.; LeBot, Benoit

    1999-01-01

    Many domestic appliances and commercial equipment consume some electric power when they are switched off or not performing their primary purpose. The typical loss per appliance is low (from 1 to 25 W) but, when multiplied by the billions of appliances in houses and in commercial buildings, standby losses represent a significant fraction of total electricity use. Several initiatives to reduce standby losses have appeared in different parts of the world. One proposal, the 1-watt plan, seeks to harmonize these initiatives by establishing a single target for all appliances. This paper explains the background to the 1-watt plan, identifies some unresolved aspects, and gives some estimates of energy savings

  12. Reduced dielectric response in spatially varying electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2015-01-01

    relations between the flux and the gradient of the polarization. Comparison between the theory and molecular dynamics simulations confirms this effect. The effect is significant for small length scale electric field variations and the inclusion of the flux is thus important in nanoscale modeling......In this paper, the dynamical equation for polarization is derived. From this the dielectric response to a spatially varying electric field is analyzed showing a reduced response due to flux of polarization in the material. This flux is modeled as a diffusive process through linear constitutive...

  13. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Unit 2 (Docket No. 50-446)

    International Nuclear Information System (INIS)

    1992-09-01

    This document supplement 25 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Unit 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, 23, and 24 to that report were published. This supplement deals primarily with Unit 2 issues; however, it also references evaluations for several Unit 1 licensing items resolved since Supplement 24 was issued

  14. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Unit 2 (Docket No. 50-446)

    International Nuclear Information System (INIS)

    1993-02-01

    Supplement 26 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Unit 2, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, 23, 24, and 25 to that report were published. This supplement deals primarily with Unit 2 issues; however, it also references evaluations for several licensing issues that relate to Unit 1, which have been resolved since Supplement 25 was issued

  15. Valence of wind power, photovoltaic and peak-load power plants as a part of the entire electricity system

    International Nuclear Information System (INIS)

    Schüppel, A.

    2014-01-01

    The transition to a higher share of renewable energy sources in the electricity sector leads to a multitude of challenges for the current electricity system. Within this thesis, the development of wind power and photovoltaics generation capacities in Germany is analysed based on the evaluation of technical and economic criteria. In order to derive those criteria, different scenarios with a separated and combined increase of wind and photovoltaics capacity are simulated using the model ATLANTIS. The results are compared to a reference scenario without additional wind and PV capacities. Furthermore, the value and functionality of the energy only market based on economic methods, as well as the value of peak load power plants based on opportunity costs are determined. The results of this thesis show, that the current market system is able to gain an additional annual welfare of four to six billion Euro at the best. This result shows that the task of optimising the power plant dispatch is well fulfilled by the current market design. However, the effects, e.g. fuel costs, which may influence this margin. The value of wind power and photovoltaics within the overall electricity system can be derived from the effort which is necessary to integrate these generation technologies into the existing system, and the changes in total costs of electricity generation. Based on the evaluation of time dependencies (seasonality of energy yield from wind and PV) as well as the development of total generation costs, the conclusion can be drawn that wind power is the more suitable RES generation technology for Germany. However, when it comes to grid integration measures, PV shows better results due to a higher generation potential in Southern Germany, which leads to a higher degree of utilisation. Therefore, there is no need to transport electricity from Northern to Southern Germany as it is the case with wind power. A common expansion of wind power and photovoltaics even shows slight

  16. Cut Electric Bills by Controlling Demand

    Science.gov (United States)

    Grumman, David L.

    1974-01-01

    Electric bills can be reduced by lowering electric consumption and by controlling demand -- the amount of electricity used at a certain point in time. Gives tips to help reduce electric demand at peak power periods. (Author/DN)

  17. Reducing Carbon Dioxide Emissions from Electricity Sector Using Smart Electric Grid Applications

    Directory of Open Access Journals (Sweden)

    Lamiaa Abdallah

    2013-01-01

    Full Text Available Approximately 40% of global CO2 emissions are emitted from electricity generation through the combustion of fossil fuels to generate heat needed to power steam turbines. Burning these fuels results in the production of carbon dioxide (CO2—the primary heat-trapping, “greenhouse gas” responsible for global warming. Applying smart electric grid technologies can potentially reduce CO2 emissions. Electric grid comprises three major sectors: generation, transmission and distribution grid, and consumption. Smart generation includes the use of renewable energy sources (wind, solar, or hydropower. Smart transmission and distribution relies on optimizing the existing assets of overhead transmission lines, underground cables, transformers, and substations such that minimum generating capacities are required in the future. Smart consumption will depend on the use of more efficient equipment like energy-saving lighting lamps, enabling smart homes and hybrid plug-in electric vehicles technologies. A special interest is given to the Egyptian case study. Main opportunities for Egypt include generating electricity from wind and solar energy sources and its geographical location that makes it a perfect center for interconnecting electrical systems from the Nile basin, North Africa, Gulf, and Europe. Challenges include shortage of investments, absence of political will, aging of transmission and distribution infrastructure, and lack of consumer awareness for power utilization.

  18. Reducing the threat of wildlife-vehicle collisions during peak tourism periods using a Roadside Animal Detection System.

    Science.gov (United States)

    Grace, Molly K; Smith, Daniel J; Noss, Reed F

    2017-12-01

    Roadside Animal Detection Systems (RADS) aim to reduce the frequency of wildlife-vehicle collisions. Unlike fencing and wildlife passages, RADS do not attempt to keep animals off the road; rather, they attempt to modify driver behavior by detecting animals near the road and warning drivers with flashing signs. A RADS was installed in Big Cypress National Park (Florida, USA) in 2012 in response to an increased number of Florida panther mortalities. To assess driver response, we measured the speed of individual cars on the road when the RADS was active (flashing) and inactive (not flashing) during the tourist season (November-March) and the off-season (April-October), which vary dramatically in traffic volume. We also used track beds and camera traps to assess whether roadside activity of large mammal species varied between seasons. In the tourist season, the activation of the RADS caused a significant reduction in vehicle speed. However, this effect was not observed in the off-season. Track and camera data showed that the tourist season coincided with peak periods of activity for several large mammals of conservation interest. Drivers in the tourist season generally drove faster than those in the off-season, so a reduction in speed in response to the RADS is more beneficial in the tourist season. Because traffic volume and roadside activity of several species of conservation interest both peak during the tourist season, our study indicates that the RADS has the potential to reduce the number of accidents during this period of heightened risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. An Optimal Domestic Electric Vehicle Charging Strategy for Reducing Network Transmission Loss While Taking Seasonal Factors into Consideration

    Directory of Open Access Journals (Sweden)

    Yuancheng Zhao

    2018-01-01

    Full Text Available With the rapid growth of domestic electric vehicle charging loads, the peak-valley gap and power fluctuation rate of power systems increase sharply, which can lead to the increase of network losses and energy efficiency reduction. This paper tries to regulate network loads and reduce power system transmission loss by optimizing domestic electric vehicle charging loads. In this paper, a domestic electric vehicle charging loads model is first developed by analyzing the key factors that can affect users’ charging behavior. Subsequently, the Monte Carlo method is proposed to simulate the power consumption of a cluster of domestic electric vehicles. After that, an optimal electric vehicle charging strategy based on the 0-1 integer programming is presented to regulate network daily loads. Finally, by taking the IEEE33 distributed power system as an example, this paper tries to verify the efficacy of the proposed optimal charging strategy and the necessity for considering seasonal factors when scheduling electric vehicle charging loads. Simulation results show that the proposed 0-1 integer programming method does have good performance in reducing the network peak-valley gap, voltage fluctuation rate, and transmission loss. Moreover, it has some potential to further reduce power system transmission loss when seasonal factors are considered.

  20. The reduced basis method for the electric field integral equation

    International Nuclear Information System (INIS)

    Fares, M.; Hesthaven, J.S.; Maday, Y.; Stamm, B.

    2011-01-01

    We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, for many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.

  1. Assessing and Reducing Miscellaneous Electric Loads (MELs) in Banks

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Emily M.

    2012-09-01

    Miscellaneous electric loads (MELs) are loads outside of a building's core functions of heating, ventilating, air conditioning, lighting, and water heating. MELs are a large percentage of total building energy loads. This report reviews methods for reducing MELs in Banks. Reducing MELs in a bank setting requires both local and corporate action. Corporate action centers on activities to prioritize and allocate the right resources to correct procurement and central control issues. Local action includes branch assessment or audits to identify specific loads and needs. The worksheet at the end of this guide can help with cataloging needed information and estimating savings potential. The following steps provide a guide to MEL reductions in Bank Branches. The general process has been adapted from a process developed for office buildings the National Renewable Energy Laboratory (NREL, 2011).

  2. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation

    Science.gov (United States)

    Young, D.; Willett, F.; Memberg, W. D.; Murphy, B.; Walter, B.; Sweet, J.; Miller, J.; Hochberg, L. R.; Kirsch, R. F.; Ajiboye, A. B.

    2018-04-01

    Objective. Functional electrical stimulation (FES) is a promising technology for restoring movement to paralyzed limbs. Intracortical brain-computer interfaces (iBCIs) have enabled intuitive control over virtual and robotic movements, and more recently over upper extremity FES neuroprostheses. However, electrical stimulation of muscles creates artifacts in intracortical microelectrode recordings that could degrade iBCI performance. Here, we investigate methods for reducing the cortically recorded artifacts that result from peripheral electrical stimulation. Approach. One participant in the BrainGate2 pilot clinical trial had two intracortical microelectrode arrays placed in the motor cortex, and thirty-six stimulating intramuscular electrodes placed in the muscles of the contralateral limb. We characterized intracortically recorded electrical artifacts during both intramuscular and surface stimulation. We compared the performance of three artifact reduction methods: blanking, common average reference (CAR) and linear regression reference (LRR), which creates channel-specific reference signals, composed of weighted sums of other channels. Main results. Electrical artifacts resulting from surface stimulation were 175  ×  larger than baseline neural recordings (which were 110 µV peak-to-peak), while intramuscular stimulation artifacts were only 4  ×  larger. The artifact waveforms were highly consistent across electrodes within each array. Application of LRR reduced artifact magnitudes to less than 10 µV and largely preserved the original neural feature values used for decoding. Unmitigated stimulation artifacts decreased iBCI decoding performance, but performance was almost completely recovered using LRR, which outperformed CAR and blanking and extracted useful neural information during stimulation artifact periods. Significance. The LRR method was effective at reducing electrical artifacts resulting from both intramuscular and surface FES, and

  3. Decreasing fuel cost weight in electric utility business. ; Urged peak measures and management constitution improvement. Denki jigyo no nenryohi weight wa gensho. ; Isogareru peak taisaku to keiei taishitsu kaizen

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The electric power industry has made stable and economic power supply possible by advancing diversification in power sources and shifting the petroleum supply sources to southern countries and China. The cost constitution of the electric utility business in the fiscal year 1992 was such that the ratio of fuel cost is 15.9% against the total cost amount of 13 trillion 399.3 billion yen. As opposed, the fuel cost percent in the fiscal 1980 was 37.7%. This means that the effect of the fuel cost on the total cost has become smaller even if the fuel cost varies as a result of external factors including fluctuation in foreign exchange rates. Peaks in the power demand have been recorded in day time in high summer when air conditioning demand increases, which have been growing year after year. Expenses to maintain facilities and functions to deal with this demand increase have been increasing. The owned capital ratio in the electric power business was 15.7% in the fiscal 1992, which is by far lower than the average of whole industry of 28%. Execution of measures against the power peaks and improvement of the management constitution are the problems posed on the electric power industry. 4 figs., 1 tab.

  4. Air quality enhancement by reducing emissions from electric power industry

    International Nuclear Information System (INIS)

    Hamzeh, Ali

    2006-01-01

    The electric power industry is responsible for electricity generations, transmission and distribution. The system is dominated by thermal electricity generation (in Syria its share is about 80%). The fossil fuels used in te thermal power plants are a major stationary source of greenhouse gases (GHG) in addition to other pollutant. The primary GHG are CO 2 , NO x , SO 2 , CO, and VOC, of which CO 2 is believed to account for about half of the global warming. There are many approaches to reduce the amount of pollutants emitted from power systems. The best measures as given mainly by Intergovernmental Panel on Climate Change (IPCC), 1996 are presented in the paper. From the efficiency and sustainability side of view, the implementation of these approaches cannot be done optimally without an integrated environmental management program (EMP). The paper proposes an EMP as a conceptual strategy using a set of evaluation criteria to be applied on the power system on concern. As a final item, a case study of the Syrian power system is presented. The energy system in Syria emitted about 115 million tons of CO 2 in the year 2000. The electric power system alone consumes approximately 36% of the total consumed fossil fuels in the country, and is responsible of about 35-40% of the CO 2 emissions. The Syrian power system has three major problems (like many systems in the region) which need to be resolved in order to improve its operation and consequently to reduce the emission of green house gases. First, the technical electrical losses are about 25-30% of net generated electricity. Second, the power factor has reached alarming levels in various parts of the power system. Third, the efficiencies in all power plant units are very low and still decreasing rapidly. The paper gives an overview of the energy sector in Syria showing a significant potential for energy efficiency and environmental protection projects. The main outcome of the case study is a comprehensive program

  5. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States.

    Science.gov (United States)

    Auffhammer, Maximilian; Baylis, Patrick; Hausman, Catherine H

    2017-02-21

    It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond [Rose S, et al. (2014) Understanding the Social Cost of Carbon: A Technical Assessment ]. The empirical literature has shown significant increases in climate-driven impacts on overall consumption, yet has not focused on the cost implications of the increased intensity and frequency of extreme events driving peak demand, which is the highest load observed in a period. We use comprehensive, high-frequency data at the level of load balancing authorities to parameterize the relationship between average or peak electricity demand and temperature for a major economy. Using statistical models, we analyze multiyear data from 166 load balancing authorities in the United States. We couple the estimated temperature response functions for total daily consumption and daily peak load with 18 downscaled global climate models (GCMs) to simulate climate change-driven impacts on both outcomes. We show moderate and heterogeneous changes in consumption, with an average increase of 2.8% by end of century. The results of our peak load simulations, however, suggest significant increases in the intensity and frequency of peak events throughout the United States, assuming today's technology and electricity market fundamentals. As the electricity grid is built to endure maximum load, our findings have significant implications for the construction of costly peak generating capacity, suggesting additional peak capacity costs of up to 180 billion dollars by the end of the century under business-as-usual.

  6. Using Geothermal Electric Power to Reduce Carbon Footprint

    Science.gov (United States)

    Crombie, George W.

    Human activities, including the burning of fossil fuels, increase carbon dioxide levels, which contributes to global warming. The research problem of the current study examined if geothermal electric power could adequately replace fossil fuel by 2050, thus reducing the emissions of carbon dioxide while avoiding potential problems with expanding nuclear generation. The purpose of this experimental research was to explore under what funding and business conditions geothermal power could be exploited to replace fossil fuels, chiefly coal. Complex systems theory, along with network theory, provided the theoretical foundation for the study. Research hypotheses focused on parameters, such as funding level, exploration type, and interfaces with the existing power grid that will bring the United States closest to the goal of phasing out fossil based power by 2050. The research was conducted by means of computer simulations, using agent-based modeling, wherein data were generated and analyzed. The simulations incorporated key information about the location of geothermal resources, exploitation methods, transmission grid limits and enhancements, and demand centers and growth. The simulation suggested that rapid and aggressive deployment of geothermal power plants in high potential areas, combined with a phase out of coal and nuclear plants, would produce minimal disruptions in the supply of electrical power in the United States. The implications for social change include reduced risk of global warming for all humans on the planet, reduced pollution due to reduction or elimination of coal and nuclear power, increased stability in energy supply and prices in the United States, and increased employment of United States citizens in jobs related to domestic energy production.

  7. Assessment of MTI Water Temperature Retrievals with Ground Truth from the Comanche Peak Steam Electric Station Cooling Lake

    International Nuclear Information System (INIS)

    Kurzeja, R.J.

    2002-01-01

    Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at the Squaw Creek reservoir at the Comanche Peak Steam Electric Station near Granbury Texas. Temperatures calculated for thirty-four images covering the period May 2000 to March 2002 are compared with water temperatures measured at 10 instrumented buoy locations supplied by the Savannah River Technology Center. The data set was used to examine the effect of image quality on temperature retrieval as well as to document any bias between the sensor chip arrays (SCA's). A portion of the data set was used to evaluate the influence of proximity to shoreline on the water temperature retrievals. This study found errors in daytime water temperature retrievals of 1.8 C for SCA 2 and 4.0 C for SCA 1. The errors in nighttime water temperature retrievals were 3.8 C for SCA 1. Water temperature retrievals for nighttime appear to be related to image quality with the largest positive bias for the highest quality images and the largest negative bias for the lowest quality images. The daytime data show no apparent relationship between water temperature retrieval error and image quality. The average temperature retrieval error near open water buoys was less than corresponding values for the near-shore buoys. After subtraction of the estimated error in the ground truth data, the water temperature retrieval error was 1.2 C for the open-water buoys compared to 1.8 C for the near-shore buoys. The open-water error is comparable to that found at Nauru

  8. Detection of thoracic vascular structures by electrical impedance tomography: a systematic assessment of prominence peak analysis of impedance changes.

    Science.gov (United States)

    Wodack, K H; Buehler, S; Nishimoto, S A; Graessler, M F; Behem, C R; Waldmann, A D; Mueller, B; Böhm, S H; Kaniusas, E; Thürk, F; Maerz, A; Trepte, C J C; Reuter, D A

    2018-02-28

    Electrical impedance tomography (EIT) is a non-invasive and radiation-free bedside monitoring technology, primarily used to monitor lung function. First experimental data shows that the descending aorta can be detected at different thoracic heights and might allow the assessment of central hemodynamics, i.e. stroke volume and pulse transit time. First, the feasibility of localizing small non-conductive objects within a saline phantom model was evaluated. Second, this result was utilized for the detection of the aorta by EIT in ten anesthetized pigs with comparison to thoracic computer tomography (CT). Two EIT belts were placed at different thoracic positions and a bolus of hypertonic saline (10 ml, 20%) was administered into the ascending aorta while EIT data were recorded. EIT images were reconstructed using the GREIT model, based on the individual's thoracic contours. The resulting EIT images were analyzed pixel by pixel to identify the aortic pixel, in which the bolus caused the highest transient impedance peak in time. In the phantom, small objects could be located at each position with a maximal deviation of 0.71 cm. In vivo, no significant differences between the aorta position measured by EIT and the anatomical aorta location were obtained for both measurement planes if the search was restricted to the dorsal thoracic region of interest (ROIs). It is possible to detect the descending aorta at different thoracic levels by EIT using an intra-aortic bolus of hypertonic saline. No significant differences in the position of the descending aorta on EIT images compared to CT images were obtained for both EIT belts.

  9. Analysis of output power and capacity reduction in electrical storage facilities by peak shift control of PV system with bifacial modules

    International Nuclear Information System (INIS)

    Obara, Shin’ya; Konno, Daisuke; Utsugi, Yuta; Morel, Jorge

    2014-01-01

    Highlights: • Characteristics of a large-scale power plant using bifacial solar cell is described. • Conversion efficiency of bifacial photovoltaics obtained using 3D-CAD modeling. • Power supply of bifacial PV can be matched with demand by adjusting the orientation. - Abstract: Bifacial photovoltaics are widely investigated with the aim of reducing the amount of silicon used and increasing conversion efficiencies. The output power of bifacial photovoltaics depends on the quantity of solar radiation incident on the reverse face. Furthermore, controlling the orientation can distribute the times of peak power output in the morning and afternoon to better match the demand. In this study, the demand patterns of individual houses or the whole Hokkaido region were analyzed assuming the substitution of a conventional large-scale electric power system with one using bifacial photovoltaics. The supply–demand balances and electrical storage capacities were investigated. When comparing a large scale solar power plant (mega-solar power plant) using monofacial photovoltaics or vertical bifacial photovoltaics (in which the orientation could be adjusted), the supply–demand could be better balanced for individual houses in the latter case, thereby allowing the storage capacity to be reduced. A bifacial solar module was modeled by 3D-CAD (three dimensional computer aided design) and thermal fluid analysis. The module temperature distribution of bifacial photovoltaics was calculated with respect to the environmental conditions (wind flow, direct and diffuse solar radiation, etc.) and internal heat generation, as well as the orientation of the solar panels. Furthermore, the output power of bifacial photovoltaics can be easily obtained from the analysis result of modular temperature distribution and the relation between temperature and output power

  10. Reducing lighting electricity use in underground metro stations

    International Nuclear Information System (INIS)

    Casals, Miquel; Gangolells, Marta; Forcada, Núria; Macarulla, Marcel

    2016-01-01

    Highlights: • Lighting systems are big energy consumers in underground metro stations. • An adaptive lighting system strategy is developed for underground stations. • Dimming controls are based on station occupancy levels and maintenance cycles. • The k-means clustering technique is used to identify stations’ occupancy patterns. • Savings were found to amount to 255.47 MW h in 2 years for a case study metro network. - Abstract: Lighting systems are usually one of the largest electrical end-uses in underground metro stations. Taking into account that budget restrictions in publicly owned companies hinder energy efficiency retrofit projects that require high initial investments, affordable energy saving strategies are needed. This paper presents a low-cost approach for reducing lighting electricity use in underground stations, without affecting passengers’ comfort or the metro operator’s service. For this purpose, an adaptive lighting strategy of dimming the illuminance levels of artificial light sources has been developed. Dimming controls are based on the occupancy of the station, and the preventive maintenance and cleaning cycles of the luminaires. The stations’ monthly occupancy patterns are defined through the k-means clustering technique. To illustrate its effectiveness, the method was applied to 115 underground stations of the Barcelona metro network. The results revealed overall electricity savings of 255.47 MW h on a biannual basis, which represents 36.22% of the stations’ baseline lighting consumption. Individual energy savings were found to range from 25 to 87.5 MW h/year in the stations of the Barcelona metro network, depending on the number and profile of station users. The research findings will undoubtedly be useful for the future energy efficiency project plans of worldwide metro operators and managers of other underground spaces.

  11. Peak regulation right

    International Nuclear Information System (INIS)

    Gao, Z. |; Ren, Z.; Li, Z.; Zhu, R.

    2005-01-01

    A peak regulation right concept and corresponding transaction mechanism for an electricity market was presented. The market was based on a power pool and independent system operator (ISO) model. Peak regulation right (PRR) was defined as a downward regulation capacity purchase option which allowed PRR owners to buy certain quantities of peak regulation capacity (PRC) at a specific price during a specified period from suppliers. The PRR owner also had the right to decide whether or not they would buy PRC from suppliers. It was the power pool's responsibility to provide competitive and fair peak regulation trading markets to participants. The introduction of PRR allowed for unit capacity regulation. The PRR and PRC were rated by the supplier, and transactions proceeded through a bidding process. PRR suppliers obtained profits by selling PRR and PRC, and obtained downward regulation fees regardless of whether purchases are made. It was concluded that the peak regulation mechanism reduced the total cost of the generating system and increased the social surplus. 6 refs., 1 tab., 3 figs

  12. Final Environmental Statement related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1989-10-01

    In September 1981, the staff of the Nuclear Regulatory Commission (NRC) issued its Final Environmental Statement (NUREG-0775) related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446), located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. The NRC has prepared this supplement to NUREG-0775 to present its evaluation of the alternative of operating Comanche Peak with the installation of further severe-accident-mitigation design features. The NRC has discovered no substantial changes in the proposed action as previously evaluated in the Final Environmental Statement that are relevant to environmental concerns and bearing on the licensing of Comanche Peak Steam Electric Station, Units 1 and 2. 6 refs., 3 tabs

  13. Electric fans for reducing adverse health impacts in heatwaves.

    Science.gov (United States)

    Gupta, Saurabh; Carmichael, Catriona; Simpson, Christina; Clarke, Mike J; Allen, Claire; Gao, Yang; Chan, Emily Y Y; Murray, Virginia

    2012-07-11

    Heatwaves are hot weather events, which breach regional or national thresholds, that last for several days. They are likely to occur with increasing frequency in some parts of the world. The potential consequences were illustrated in Europe in August 2003 when there were an estimated 30,000 excess deaths due to a heatwave. Electric fans might be used with the intention of reducing the adverse health effects of a heatwave. Fans do not cool the ambient air but can be used to draw in cooler air from outside when placed at an open window. The aim of the fans would be to increase heat loss by increasing the efficiency of all normal methods of heat loss, but particularly by evaporation and convection methods. However, it should be noted that increased sweating can lead to dehydration and electrolyte imbalances if these fluids and electrolytes are not replaced quickly enough. Research has also identified important gaps in knowledge about the use of fans, which might lead to their inappropriate use. To determine whether the use of electric fans contributes to, or impedes, heat loss at high ambient temperatures during a heatwave, and to contribute to the evidence base for the public health impacts of heatwaves. We sought unpublished and published studies that had been published in any language. The review team were able to assess studies reported in English, Chinese, Dutch, French and German; and reports in other languages would have been translated into English as necessary. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, the Indian biomedical literature (IndMED and MedIND) and databases of Chinese literature (Chinese Journal Net and Digital Periodical of WanFang Data). The most recent electronic searches were done in April 2012. We also checked the reference lists of relevant articles and the websites of relevant national and international organisations, and consulted with researchers and policy makers with experience in

  14. Application of either gas or diesel generator group in peak time (economy in electric energy expenses); Aplicacao de grupo gerador diesel ou gas nos horarios de ponta (economia nos gastos com energia eletrica)

    Energy Technology Data Exchange (ETDEWEB)

    Pereto, Antonio Soares [SABESP - Companhia de Saneamento Basico do Estado de Sao Paulo , SP (Brazil)

    1998-07-01

    This paper intend to demonstrate the results obtained with electric power expenses by applying electric energy generator groups during peak time in the Basic Sanitation Company of the Sao Paulo state, B R.

  15. Energy Management Systems to Reduce Electrical Energy Consumption

    OpenAIRE

    Oriti, Giovanna

    2015-01-01

    EXECUTIVE SUMMARY An energy management system comprises an electrical energy storage element such as a battery, renewable electrical energy sources such as solar and wind, a digital signal processing controller and a solid state power converter to interface the elements together. This hardware demonstration in the lab at the Naval Postgraduate School will focus on solid state power conversion methods to improve the reliability and efficiency of electrical energy consumption by Navy facilit...

  16. Potential contribution of consumer production and cogeneration to peak electricity supply in France over the next decade

    International Nuclear Information System (INIS)

    Timbert, G.; Coiffard, J.

    1991-01-01

    This study revealed considerable potential for the development of independently generated electricity in general and of cogeneration in particular in France; this growth is related to the following factors: increased fuel costs, new price scales for the purchase of independently generated electricity or for the sale of gas produced under the same conditions, development of appropriate financing schemes, modification of the regulatory threshold limiting power sold to the EDF public utility, improved know-how, special investment schemes, tax encouragement

  17. Final environmental statement related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2: (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1981-09-01

    The proposed action is the issuance of operating licenses to the Texas Utilities Generating Company for the startup and operation of Units 1 and 2 of the Comanche Peak Steam Electric Station located on Squaw Creek Reservoir in Somervell County, Texas, about 7 km north-northeast of Glen Rose, Texas, and about 65 km southwest of Fort Worth in north-central Texas. The information in this environmental statement represents the second assessment of the environmental impact associated with the Comanche Peak Steam Electric Station pursuant to the guidelines of the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51 of the Commission's Regulations. After receiving an application to construct this station, the staff carried out a review of impact that would occur during its construction and operation. This evaluation was issued as a Final Environmental Statement -- Construction Phase. After this environmental review, a safety review, an evaluation by the Advisory Committee on Reactor Safeguards, and public hearings in Glen Rose, Texas, the US Atomic Energy Commission (now US Nuclear Regulatory Commission) issued construction permits for the construction of Units 1 and 2 of the Comanche Peak Steam Electric Station. 16 figs., 34 tabs

  18. Monitoring biofouling communities could reduce impacts to mussel aquaculture by allowing synchronisation of husbandry techniques with peaks in settlement.

    Science.gov (United States)

    Sievers, Michael; Dempster, Tim; Fitridge, Isla; Keough, Michael J

    2014-02-01

    Fouling organisms in bivalve aquaculture cause significant economic losses for the industry. Managing biofouling is typically reactive, and involves time- and labour-intensive removal techniques. Mussel spat settlement and biofouling were documented over 20 months at three mussel farms within Port Phillip Bay (PPB), Australia to determine if knowledge of settlement patterns could assist farmers in avoiding biofouling. Mussel spat settlement was largely confined to a 2-month period at one farm. Of the problematic foulers, Ectopleura crocea settlement varied in space and time at all three farms, whilst Ciona intestinalis and Pomatoceros taeniata were present predominantly at one farm and exhibited more distinct settlement periods. Within PPB, complete avoidance of biofouling is impossible. However, diligent monitoring may help farmers avoid peaks in detrimental biofouling species and allow them to implement removal strategies such as manual cleaning, and postpone grading and re-socking practices, until after these peaks.

  19. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures.

    Science.gov (United States)

    Schwamb, Timo; Burg, Brian R; Schirmer, Niklas C; Poulikakos, Dimos

    2009-10-07

    This paper introduces an electrical four-point measurement method enabling thermal and electrical conductivity measurements of nanoscale materials. The method was applied to determine the thermal and electrical conductivity of reduced graphene oxide flakes. The dielectrophoretically deposited samples exhibited thermal conductivities in the range of 0.14-2.87 W m(-1) K(-1) and electrical conductivities in the range of 6.2 x 10(2)-6.2 x 10(3) Omega(-1) m(-1). The measured properties of each flake were found to be dependent on the duration of the thermal reduction and are in this sense controllable.

  20. Consequences of reduced production of electricity in nuclear power plants

    International Nuclear Information System (INIS)

    The Swedish Power Administration has assessed the possibilities of expanding electric power sources other than nuclear power plants for the years 1980 and 1985. Reports on costs in the form of loss of capital and increased operating costs involved in the dismantling of nuclear power plants are made in Supplement 1. The economics division of the Finance Department, starting with a long-range study model of the Swedish economy, has calculated the consequences of a cutback in electric power up to 1980 for Sweden's economy and employment in that year. The consequences of reduction of electricity supplies up to 1985 are summarized in Supplement 2 in this report. It is concluded that in order to be able to manage the problem of supplying electricity by 1985, it will be necessary to increase oil power above what was assumed in the energy policy program. There will have to be new oil-based power as well. According to the Power Administration, oil-power facilities can be expanded to varying degrees, depending upon when the decision is made. The Power Administration's calculations show that 125 TWh is possible in 1985 without nuclear power only if a decision for discontinuation is made in the fall of 1976. This is based on very optimistic assumptions about the time of execution of a program for oil-steam operation, and also on the assumption that extreme measures will be initiated to force expansion of both district-heating distribution and power + heat facilities. Oil consumption for production of electricity in such an electric power system would be about 9 million m 3 , which is about 5 times more than at present and about one-third of the present total consumption of petroleum products in Sweden

  1. Online Estimation of Peak Power Capability of Li-Ion Batteries in Electric Vehicles by a Hardware-in-Loop Approach

    Directory of Open Access Journals (Sweden)

    Fengchun Sun

    2012-05-01

    Full Text Available Battery peak power capability estimations play an important theoretical role for the proper use of the battery in electric vehicles. To address the failures in relaxation effects and real-time ability performance, neglecting the battery’s design limits and other issues of the traditional peak power capability calculation methods, a new approach based on the dynamic electrochemical-polarization (EP battery model, taking into consideration constraints of current, voltage, state of charge (SoC and power is proposed. A hardware-in-the-loop (HIL system is built for validating the online model-based peak power capability estimation approach of batteries used in hybrid electric vehicles (HEVs and a HIL test based on the Federal Urban Driving Schedules (FUDS is used to verify and evaluate its real-time computation performance, reliability and robustness. The results show the proposed approach gives a more accurate estimate compared with the hybrid pulse power characterization (HPPC method, avoiding over-charging or over-discharging and providing a powerful guarantee for the optimization of HEVs power systems. Furthermore, the HIL test provides valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms.

  2. Applying Psychology to Economic Policy Design: Using Incentive Preserving Rebates to Increase Acceptance of Critical Peak Electricity Pricing

    OpenAIRE

    Letzler, Robert

    2007-01-01

    This project extends the idea that policy makers should address problems by improving economic incentives. This project adds that presenting incentives in a way that reflects how people make decisions can sometimes improve consumers’ responses to the incentives and policy outcomes. This paper uses behavioral economics to propose ways to increase electricity policy effectiveness. The cost of generating power fluctuates enormously from hour to hour but most customers pay time-invariant prices f...

  3. Assessing incentive contracts for reducing residential electricity consumption: new experimental methods for new results

    International Nuclear Information System (INIS)

    Frachet, Laure

    2013-01-01

    Facing economic, political and environmental stakes, electricity providers are nowadays developing incentive tools, in order to reduce consumer's demand, particularly during peak demand periods. For residential customers, these tools can be tariffs (dynamic pricing of time-of-use tariffs), or informative devices or services (feedbacks on historical or real-time consumption, given on various media). They might go along with automation systems that can help cutting of some electric devices when needed. In order to evaluate the capacity of these settings among their customers, electricity utilities are developing quite a few studies, which are mainly field experiment often called pilots. During these pilots, demand response tools are implemented on a population sample. These long and expensive studies lid to quantitative and qualitative analysis. We have compiled about 40 of them and extract from this survey some generalizable teachings. We have shown what these results were and highlighted pilot programs' methodological limits. In order to propose a substitute to these heavy experimentations, we assessed the capacity or experimental economics. This relatively new discipline's objective is to evaluation the efficiency of institutions, like markets, but also to study what animate economic agents' behaviour, e.g. preferences, beliefs, cognitive biases, willingness to pay... We were also able to elaborate an experimental protocol dedicated to the evaluation of some demand response contracts' acceptability. The results collected during 14 experimental sessions gave us some innovative clues and insight on these contracts acceptability. But, beyond these results, we have demonstrated that even if experimental economics can't obviously be a substitute for field experiments, it can represent an interesting exploratory methodology. To sum up the experimental economics can take part of residential customers' behaviour understanding, performing

  4. Cut down the peak daytime demand for electricity at the residence; Jutaku ni okeru denryoku fuka heijunka

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, O. [Kumamoto University, Kumamoto (Japan). Faculty of Engineering

    1996-09-05

    For leveling of power load in small-scale buildings and houses, a test house with actual size was constructed in order to examine soil heat storage system using photovoltaic power generation system and nighttime power. A hundred of polycrystal silicone solar cells with about 5 kW and twenty of amorphous ones were fixed on the roof, to connect with commercial power source by the system interconnection having inverse power flow. For leveling of power load in the periods of heating and cooling, soil heat storage system was applied using nighttime power. Pipes for circulating cooling and heating water were embedded. Heat pump was operated only in the time zone of nighttime power, to obtain cooling and heating source for fan coil unit in the daytime. The sold power was larger than purchased power under continuous cooling condition for twelve hours in summer. Since cooling load was supplied from nighttime power with lower price, there was a large peak cut effect in the daytime. As a result of the tests using a house with actual size, the system was found to be applied practically both in summer and in winter. Effectiveness of peak cut of power load in summer was also provided. 7 refs., 10 figs., 2 tabs.

  5. Data supporting the assessment of biomass based electricity and reduced GHG emissions in Cuba.

    Science.gov (United States)

    Sagastume Gutiérrez, Alexis; Cabello Eras, Juan J; Vandecasteele, Carlo; Hens, Luc

    2018-04-01

    Assessing the biomass based electricity potential of developing nations like Cuba can help to reduce the fossil fuels dependency and the greenhouse gas emissions. The data included in this study present the evolution of electricity production and greenhouse gas emissions in Cuba. Additionally, the potentialities to produce biomass based electricity by using the most significant biomass sources in Cuba are estimated. Furthermore, estimations of the potential reductions of greenhouse gas emissions, resulting from implementing the biomass based electricity potential of the different sources discussed in the study, are included. Results point to the most promising biomass sources for electricity generation and their potential to reduce GHG emissions.

  6. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1990-02-01

    Supplement 23 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and supplements 1, 2, 3, 4, 6, 12, 21, and 22 to that report were published. This supplement also includes the evaluations for licensing items resolved since Supplement 22 was issued. Supplement 5 has not been issued. Supplements 7, 8, 9, 10, and 11 were limited to the staff evaluation of allegations investigated by the NRC Technical Review Team. Supplement 13 presented the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan, which was formulated by the applicant to resolve various construction and design issues raised by sources external to TU Electric. Supplements 14 through 19 presented the staff's evaluation of the CPSES Corrective Action Program: large- and small-bore piping and pipe supports (Supplement 14); cable trays and cable tray hangers (Supplement 15); conduit supports (Supplement 16); mechanical, civil/structural, electrical, instrumentation and controls, and systems portions of the heating, ventilation, and air conditioning (HVAC) system workscopes (Supplement 17); HVAC structural design (Supplement 18); and equipment qualification (Supplement 19). Supplement 20 presented the staff's evaluation of the Comanche Peak Response Team implementation of the CPRT Program

  7. Variability of electricity load patterns and its effect on demand response: A critical peak pricing experiment on Korean commercial and industrial customers

    International Nuclear Information System (INIS)

    Jang, Dongsik; Eom, Jiyong; Jae Park, Min; Jeung Rho, Jae

    2016-01-01

    To the extent that demand response represents an intentional electricity usage adjustment to price changes or incentive payments, consumers who exhibit more-variable load patterns on normal days may be capable of altering their loads more significantly in response to dynamic pricing plans. This study investigates the variation in the pre-enrollment load patterns of Korean commercial and industrial electricity customers and their impact on event-day loads during a critical peak pricing experiment in the winter of 2013. Contrary to conventional approaches to profiling electricity loads, this study proposes a new clustering technique based on variability indices that collectively represent the potential demand–response resource that these customers would supply. Our analysis reveals that variability in pre-enrollment load patterns does indeed have great predictive power for estimating their impact on demand–response loads. Customers in relatively low-variability clusters provided limited or no response, whereas customers in relatively high-variability clusters consistently presented large load impacts, accounting for most of the program-level peak reductions. This study suggests that dynamic pricing programs themselves may not offer adequate motivation for meaningful adjustments in load patterns, particularly for customers in low-variability clusters. - Highlights: • A method of clustering customers by variability indices is developed. • Customers in high-variability clusters provide substantial peak reductions. • Low-variability clusters exhibit limited reductions. • For low-variability customers, alternative policy instruments is well advised. • A model of discerning customer's demand response potential is suggested.

  8. Does photovoltaics reduce the environmental intensity of Swiss electrical power?

    International Nuclear Information System (INIS)

    Stucki, M.; Frischknecht, R.

    2010-01-01

    This article presents and discusses knowledge gained from current eco-balances made concerning electricity from solar cells. The use of photovoltaic systems in Switzerland, especially in the light of climate warming, as well as discussions on appropriate locations for the disposal of nuclear wastes are examined. The authors are of the opinion that current eco-balances can provide an objective basis for the development of qualified answers to such questions. The eco-balances for electricity generated by solar cells is discussed in detail. The development of photovoltaic technologies since 1992 is examined and scenarios for the period up to 2050 are discussed. Comparisons are made concerning solar power in Switzerland and Europe and the advantages of using solar power in Switzerland as a replacement for power from non-renewable resources in Europe are discussed

  9. Reducing the Vulnerability of Electric Power Grids to Terrorist Attacks

    Energy Technology Data Exchange (ETDEWEB)

    Ross Baldick; Thekla Boutsika; Jin Hur; Manho Joung; Yin Wu; Minqi Zhong

    2009-01-31

    This report describes the development of a cascading outage analyzer that, given an initial disturbance on an electric power system, checks for thermal overloads, under-frequency and over-frequency conditions, and under-voltage conditions that would result in removal of elements from the system. The analyzer simulates the successive tripping of elements due to protective actions until a post-event steady state or a system blackout is reached.

  10. Estimates of peak electric fields induced by Transcranial magnetic stimulation in pregnant women as patients using an FEM full-body model.

    Science.gov (United States)

    Yanamadala, J; Noetscher, G M; Makarov, S N; Pascual-Leone, A

    2017-07-01

    Transcranial magnetic stimulation (TMS) for treatment of depression during pregnancy is an appealing alternative to fetus-threatening drugs. However, no studies to date have been performed that evaluate the safety of TMS for a pregnant mother patient and her fetus. A full-body FEM model of a pregnant woman with about 100 tissue parts has been developed specifically for the present study. This model allows accurate computations of induced electric field in every tissue given different locations of a shape-eight coil, a biphasic pulse, common TMS pulse durations, and using different values of the TMS intensity measured in SMT (Standard Motor Threshold) units. Our simulation results estimate the maximum peak values of the electric field in the fetal area for every fetal tissue separately and for the TMS intensity of one SMT unit.

  11. Evaluation of the Fourier Frequency Spectrum Peaks of Milk Electrical Conductivity Signals as Indexes to Monitor the Dairy Goats’ Health Status by On-Line Sensors

    Directory of Open Access Journals (Sweden)

    Mauro Zaninelli

    2015-08-01

    Full Text Available The aim of this study is a further characterization of the electrical conductivity (EC signal of goat milk, acquired on-line by EC sensors, to identify new indexes representative of the EC variations that can be observed during milking, when considering not healthy (NH glands. Two foremilk gland samples from 42 Saanen goats, were collected for three consecutive weeks and for three different lactation stages (LS: 0–60 Days In Milking (DIM; 61–120 DIM; 121–180 DIM, for a total amount of 1512 samples. Bacteriological analyses and somatic cells counts (SCC were used to define the health status of the glands. With negative bacteriological analyses and SCC < 1,000,000 cells/mL, glands were classified as healthy. When bacteriological analyses were positive or showed a SCC > 1,000,000 cells/mL, glands were classified as NH. For each milk EC signal, acquired on-line and for each gland considered, the Fourier frequency spectrum of the signal was calculated and three representative frequency peaks were identified. To evaluate data acquired a MIXED procedure was used considering the HS, LS and LS × HS as explanatory variables in the statistical model.Results showed that the studied frequency peaks had a significant relationship with the gland’s health status. Results also explained how the milk EC signals’ pattern change in case of NH glands. In fact, it is characterized by slower fluctuations (due to the lower frequencies of the peaks and by an irregular trend (due to the higher amplitudes of all the main frequency peaks. Therefore, these frequency peaks could be used as new indexes to improve the performances of algorithms based on multivariate models which evaluate the health status of dairy goats through the use of gland milk EC sensors.

  12. Evaluation of the Fourier Frequency Spectrum Peaks of Milk Electrical Conductivity Signals as Indexes to Monitor the Dairy Goats’ Health Status by On-Line Sensors

    Science.gov (United States)

    Zaninelli, Mauro; Agazzi, Alessandro; Costa, Annamaria; Tangorra, Francesco Maria; Rossi, Luciana; Savoini, Giovanni

    2015-01-01

    The aim of this study is a further characterization of the electrical conductivity (EC) signal of goat milk, acquired on-line by EC sensors, to identify new indexes representative of the EC variations that can be observed during milking, when considering not healthy (NH) glands. Two foremilk gland samples from 42 Saanen goats, were collected for three consecutive weeks and for three different lactation stages (LS: 0–60 Days In Milking (DIM); 61–120 DIM; 121–180 DIM), for a total amount of 1512 samples. Bacteriological analyses and somatic cells counts (SCC) were used to define the health status of the glands. With negative bacteriological analyses and SCC 1,000,000 cells/mL, glands were classified as NH. For each milk EC signal, acquired on-line and for each gland considered, the Fourier frequency spectrum of the signal was calculated and three representative frequency peaks were identified. To evaluate data acquired a MIXED procedure was used considering the HS, LS and LS × HS as explanatory variables in the statistical model.Results showed that the studied frequency peaks had a significant relationship with the gland’s health status. Results also explained how the milk EC signals’ pattern change in case of NH glands. In fact, it is characterized by slower fluctuations (due to the lower frequencies of the peaks) and by an irregular trend (due to the higher amplitudes of all the main frequency peaks). Therefore, these frequency peaks could be used as new indexes to improve the performances of algorithms based on multivariate models which evaluate the health status of dairy goats through the use of gland milk EC sensors. PMID:26307993

  13. Physical and electrical characterization of reduced graphene oxide

    Indian Academy of Sciences (India)

    The wide-range industrial application of graphene-related compounds has led to ... The method completely avoids the use of toxic and environmentally harmful reducing agents commonly used in the chemical reduction of GO to obtain RGO.

  14. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2: Docket No. 50-445 and 50-446

    International Nuclear Information System (INIS)

    1988-11-01

    Supplement 20 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of CPRT implementation of the Comanche Peak Response Team (CPRT) Program Plan and the issue-specific action plans (ISAPs), as well as the CPRT's investigations to determine the adequacy of various types of programs and hardware at CPSES. The results and conclusions of the CPRT activities are documented in a results report for each ISAP, a Collective Evaluation Report (CER), and a Collective Significance Report (CSR). This supplement also presents the staff's safety evaluation of TU Electric's root cause assessment of past CPSES design deficiencies and weaknesses. The NRC staff concludes that the CPRT has adequately implemented its investigative activities related to the design, construction, construction quality assurance/quality control, and testing at CPSES. The NRC staff further concludes that the CPRT evaluation of the results of its investigation is thorough and complete and its recommendations for corrective actions are sufficient to resolve identified deficiencies

  15. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small

  16. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1988-11-01

    Supplement 19 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the Texas Utilities Electric Company's (lead applicant's) corrective action program (CAP) related to equipment qualification. The scope and methodology for the CAP workscope, as summarized in Revision 0 to the Equipment Qualification Project Status Report and as detailed in related documents, were developed to resolve various issues raised by the Comanche Peak Response Team (CPRT) and the NRC staff to ensure that plant equipment is appropriately environmentally and/or seismically and dynamically qualified and documented in accordance with the validated plant design resulting from other CAP scopes of work for Unit 1 and areas common to Units 1 and 2. The staff concludes that the CAP workscope for equipment qualification provides a comprehensive program for resolving the concerns identified by the CPRT and the NRC staff, including issues raised in the Comanche Peak Safety Evaluation Report and its supplements, and its implementation will ensure that the environmental and/or seismic and dynamic qualification of equipment at CPSES satisfies the validated plant design and the applicable requirements of 10 CFR Part 50. As is routine staff practice, the NRC staff will verify the adequacy of implementation of the environmental and seismic and dynamic equipment qualification program at CPSES during inspections that will take place before fuel loading. 97 refs

  17. Does Peak Urine Flow Rate Predict the Development of Incident Lower Urinary Tract Symptoms in Men with Mild to No Current Symptoms? Results from REDUCE.

    Science.gov (United States)

    Simon, Ross M; Howard, Lauren E; Moreira, Daniel M; Roehrborn, Claus; Vidal, Adriana; Castro-Santamaria, Ramiro; Freedland, Stephen J

    2017-09-01

    We determined whether decreased peak urine flow is associated with future incident lower urinary tract symptoms in men with mild to no lower urinary tract symptoms. Our population consisted of 3,140 men from the REDUCE (Reduction by Dutasteride of Prostate Cancer Events) trial with mild to no lower urinary tract symptoms, defined as I-PSS (International Prostate Symptom Score) less than 8. REDUCE was a randomized trial of dutasteride vs placebo for prostate cancer prevention in men with elevated prostate specific antigen and negative biopsy. I-PSS measures were obtained every 6 months throughout the 4-year study. The association between peak urine flow rate and progression to incident lower urinary tract symptoms, defined as the first of medical treatment, surgery or sustained and clinically significant lower urinary tract symptoms, was tested by multivariable Cox models, adjusting for various baseline characteristics and treatment arm. On multivariable analysis as a continuous variable, decreased peak urine flow rate was significantly associated with an increased risk of incident lower urinary tract symptoms (p = 0.002). Results were similar in the dutasteride and placebo arms. On univariable analysis when peak flow was categorized as 15 or greater, 10 to 14.9 and less than 10 ml per second, flow rates of 10 to 14.9 and less than 10 ml per second were associated with a significantly increased risk of incident lower urinary tract symptoms (HR 1.39, p = 0.011 and 1.67, p urinary tract symptoms a decreased peak urine flow rate is independently associated with incident lower urinary tract symptoms. If confirmed, these men should be followed closer for incident lower urinary tract symptoms. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1990-04-01

    Supplement 24 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, and 23 to that report were published. This supplement also includes the evaluations for licensing items resolved since Supplement 23 was issued. Supplement 5 has not been issued. Supplements 7, 8, 9, 10, and 11 were limited to the staff evaluation of allegations investigated by the NRC Technical Review Team. Supplement 13 represented the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan, which was formulated by the applicant to resolve various construction and design issues raised by sources external to TU Electric. Supplements 14 through 19 presented the staff's evaluation of the CPSES Corrective Action Program: large- and small-bore piping and pipe supports (Supplement 14); cable trays and cable tray hangers (Supplement 15); conduit supports (Supplement 16); mechanical, civil/structural, electrical, instrumentation and controls, and systems portions of the heating, ventilation, and air conditioning (HVAC) system workscopes (Supplement 17); HVAC structural design (Supplement 18); and equipment qualification (Supplement 19). Supplement 20 presented the staff's evaluation of the CPRT implementation of its Program Plan and the issue-specific action plans, as well as the CPRT's investigations to determine the adequacy of various types of programs and hardware at CPSES

  19. Opportunities for reducing greenhouse gas, energy use, and electricity use in the Greater Toronto area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-16

    The Clean Air Partnership (CAP) was interested in scanning and prioritizing energy efficiency opportunities to reduce energy use and the associated greenhouse gas emissions in the greater Toronto area (GTA). A study was conducted to scope out the most promising program directions for the GTA should government funding become available to launch the initiative, based on the relative technical potential of energy efficiency (and some fuel substitution) measures in the targeted sectors. A report to the Ontario Power Authority (OPA) focused on the residential and institutional sectors. These included new and existing residential buildings, condominiums and single-family homes, with special detail provided on appliances and central air conditioning; as well as municipal, university, school, and hospital buildings, with special attention towards measures to make street and traffic signal lighting more energy efficient. This letter provided a summary of findings. Next steps were also presented. It was recommended that three market transformation initiatives be designed and implemented to realize the technical potential for reductions in peak electricity and carbon dioxide emissions reductions. These three programs were discussed with reference to the energy efficient lighting collaborative; a green loan program for new homes and condominiums; and a community residential CDM program. A market transformation framework was also presented. It addressed the five key steps in the movement of a product from the manufacturer to the end user, namely availability; awareness; accessibility; affordability; and acceptance. 1 tab., 3 figs.

  20. A fresh look at weather impact on peak electricity demand and energy use of buildings using 30-year actual weather data

    International Nuclear Information System (INIS)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-01-01

    Highlights: • Weather has a significant impact on both the peak electricity demand and energy use. • Weather impact varies with building type, building efficiency level, and location. • Simulated results using TMY3 weather data can under or over estimate those of AMY. • It is crucial to assess performance of buildings using long-term actual weather data. • Findings enable building stakeholders to make better decisions on weather impact. - Abstract: Buildings consume more than one third of the world’s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980–2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: (1) annual weather variation has a greater impact on the peak electricity demand than it does

  1. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2. Docket Nos. 50-445 and 50-446

    International Nuclear Information System (INIS)

    1983-03-01

    Supplement No. 3 to the Safety Evaluation Report (SER) related to the operation of the Comanche Peak Steam electric Station, Units 1 and 2, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. the facility is located in Somervell County, Texas. Subject to favorable resolution of the items identified in this supplement, the staff concludes that the facility can be operated by the applicatn without endangering the health and safety of the public. This document provides the NRC staff's evaluation of the outstanding and confirmatory issues that have been resolved since Supplement No. 2 was issued in January 1982, and addresses changes to the SER and its earlier supplements which have resulted from the receipt of additonal information from the applicant during the period of January throught October 1982

  2. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2: Docket Nos. 50-445 and 50-446

    International Nuclear Information System (INIS)

    1988-07-01

    Supplement 15 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the applicant's Corrective Action Program (CAP) related to the design of cable trays and cable tray hangers. The scope and methodologies for the CAP workscope as summarized in Revision O to the cable tray and cable tray hanger project status report and as detailed in related documents referenced in this evaluation were developed to resolve various design issues raised by the Atomic Safety and Licensing Board (ASLB) the intervenor, Citizens Association for Sound Energy (CASE); the Comanche Peak Response Team (CPRT); CYGNA Energy Services (CYGNA); and the NRC staff. The NRC staff concludes that the CAP workscope for cable trays and cable tray hangers provides a comprehensive program for resolving the associated technical concerns identified by the ASLB, CASE, CPRT, CYGNA, and the NRC staff and its implementation ensures that the design of cable trays and cable tray hangers at CPSES satisfies the applicable requirements of 10 CFR Part 50

  3. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1990-01-01

    Supplement 22 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station, Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, and 21 to that report. This supplement also includes the evaluations for licensing items resolved since Supplement 21 was issued. Supplement 5 has been cancelled. Supplements 7 through 11 were limited to the staff evaluation of allegations investigated by the NRC Technical Review Team. Supplement 13 presented the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan, which was formulated by the applicant to resolve various construction and design issues raised by sources external to the applicant. Supplements 14 through 20 presented the staff's evaluation of the applicant's Corrective Action Program and CPRT activities. Items identified in Supplements 7, 8, 9, 10, 11, 13, 14, and 15 through 20 are not included in this supplement, except to the extent that they affect the applicant's Final Safety Analysis Report. 154 refs., 24 figs., 8 tabs

  4. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1988-03-01

    Supplement 14 to the Safety Evaluation Report related to the operation of the Comanche Peak Stam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somerville County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the applicants' Corrective Action Program (CAP0 related to large ans small bore piping and pipe supports. The scope and methodologies for CAP workshop as summarized in revision O to the large and small bore piping project status reports and as detailed in related documents referenced in this evaluation were developed to resolve various design issues raised by the Atomic Safety and Licensing Board (ASLB);the intervenor, Citizens Association for Sound Energy (CASE);the Camanche Peak Response Team (CPRT);SYGNA Energy Services (CYGNA);and the NRC staff. The NRC staff concludes that the CAP workscopes for large and small bore piping provide a comprehensive program for resolving the associated technical concerns identified by the ASLB, CASE, CPRT, CYGNA, and the NRC staff and their implementation ensures that the design of large and small bore piping and pipe supports at CPSES satisfies the applicable requirements of 10 CFR 50

  5. Using Economic Incentives to Reduce Electricity Consumption: A field Experiment in Matsuyama, Japan

    Directory of Open Access Journals (Sweden)

    Kenichi Mizobuchi

    2012-01-01

    Full Text Available This study examines the effectiveness of economic incentives in promoting electricity-conservation behavior among Japanese households. Fifty-three Japanese households participated in a field experiment and were offered monetary rewards depending on their rate of reduction in electricity consumption. To avoid bias in sample selection, which is typically present in previous studies, we adopted a request-based approach for recruiting participants. Results showed that only 34% of the participants succeeded in reducing their electricity consumption, and the average reduction rate was –4.8%. Econometric analysis confirmed that monetary rewards had a positive influence on the electricity conservation behavior, especially of family members who typically stay at home on weekdays. Responses to the questionnaires administered before and after the experiment suggest that participants may have underestimated the marginal costs of the electricity conservation behavior. The efficacy of economic incentives, established in our study, offers a potential measure for encouraging electricity-conservation behavior among Japanese households.

  6. Peak-Seeking Control For Reduced Fuel Consumption: Flight-Test Results For The Full-Scale Advanced Systems Testbed FA-18 Airplane

    Science.gov (United States)

    Brown, Nelson

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.

  7. Accelerated electricity conservation in Juneau, Alaska: A study of household activities that reduced demand 25%

    International Nuclear Information System (INIS)

    Leighty, Wayne; Meier, Alan

    2011-01-01

    An avalanche destroyed the main hydroelectric transmission line to Juneau, Alaska in April, 2008. Diesel-generated electricity was substituted, causing electricity prices to increase 500% for 45 days. Electricity demand fell by 25% during the supply disruption. Most of the reduction occurred before the higher rates were implemented. Some conservation - about 8% of historic consumption - persisted after the transmission line was repaired and prices returned to normal. Consumers reduced energy use through a combination of new habits and technical improvements. A survey of residential consumers indicated that the average household undertook 10 conservation actions, with major changes in lighting, space heating, fuel switching, and water and appliance use. We propose a method for prioritizing conservation actions for promotion according to their impact in electricity savings (as a function of popularity, effectiveness, and persistence) and a dynamic framework for electricity use before, during, and after a supply disruption (i.e., both the magnitude and rates of change in electricity conservation). - Research highlights: → An electricity supply disruption caused prices to increase 500% for 45 days. → Electricity conservation of 25% occurred in a matter of days. → Electricity conservation of 8% persisted after the supply disruption was repaired. → Conservation occurred through behavior change and technology adoption. → The disruption induced consumers to try new behaviors that became new habits.

  8. Potential for reducing global carbon emissions from electricity production-A benchmarking analysis

    International Nuclear Information System (INIS)

    Ang, B.W.; Zhou, P.; Tay, L.P.

    2011-01-01

    We present five performance indicators for electricity generation for 129 countries using the 2005 data. These indicators, measured at the national level, are the aggregate CO 2 intensity of electricity production, the efficiencies of coal, oil and gas generation and the share of electricity produced from non-fossil fuels. We conduct a study on the potential for reducing global energy-related CO 2 emissions from electricity production through simple benchmarking. This is performed based on the last four performance indicators and the construction of a cumulative curve for each of these indicators. It is found that global CO 2 emissions from electricity production would be reduced by 19% if all these indicators are benchmarked at the 50th percentile. Not surprisingly, the emission reduction potential measured in absolute terms is the highest for large countries such as China, India, Russia and the United States. When the potential is expressed as a percentage of a country's own emissions, few of these countries appear in the top-five list. - Research highlights: → We study variations in emissions per kWh of electricity generated among countries. → We analyze emissions from electricity production through benchmarking. → Estimates of reduction in emissions are made based on different assumptions.

  9. SYSTEM FOR AUTOMATIC SELECTION OF THE SPEED RATE OF ELECTRIC VEHICLES FOR REDUCING THE POWER CONSUMPTION

    Directory of Open Access Journals (Sweden)

    K. O. Soroka

    2017-06-01

    Full Text Available Purpose. The work is aimed to design a system for automatic selection of the optimal traffic modes and automatic monitoring of the electric energy consumption by electric transport. This automatic system should provide for the minimum energy expenses. Methodology. Current methodologies: 1 mathematical modeling of traffic modes of ground electric vehicles; 2 comparison of modelling results with the statistical monitoring; 3 system development for automatic choice of traffic modes of electric transport with minimal electrical energy consumptions taking into account the given route schedules and the limitations imposed by the general traffic rules. Findings. The authors obtained a mathematical dependency of the energy consumption by electric transport enterprises on the monthly averaged environment temperature was obtained. A system which allows for an automatic selection of the speed limit and provides automatic monitoring of the electrical energy consumption by electric vehicles was proposed in the form of local network, which works together with existing GPS system. Originality. A mathematical model for calculating the motion curves and energy consumption of electric vehicles has been developed. This model takes into account the characteristic values of the motor engine and the steering system, the change of the mass when loading or unloading passengers, the slopes and radii of the roads, the limitations given by the general traffic rules, and other factors. The dependency of the energy consumption on the averaged monthly environment temperature for public electric transport companies has been calculated. Practical value. The developed mathematical model simplifies the calculations of the traffic dynamics and energy consumption. It can be used for calculating the routing maps, for design and upgrade of the power networks, for development of the electricity saving measures. The system simplifies the work of the vehicle driver and allows reducing

  10. 'Peak oil' or 'peak demand'?

    International Nuclear Information System (INIS)

    Chevallier, Bruno; Moncomble, Jean-Eudes; Sigonney, Pierre; Vially, Rolland; Bosseboeuf, Didier; Chateau, Bertrand

    2012-01-01

    This article reports a workshop which addressed several energy issues like the objectives and constraints of energy mix scenarios, the differences between the approaches in different countries, the cost of new technologies implemented for this purposes, how these technologies will be developed and marketed, which will be the environmental and societal acceptability of these technical choices. Different aspects and issues have been more precisely presented and discussed: the peak oil, development of shale gases and their cost (will non conventional hydrocarbons modify the peak oil and be socially accepted?), energy efficiency (its benefits, its reality in France and other countries, its position in front of the challenge of energy transition), and strategies in the transport sector (challenges for mobility, evolution towards a model of sustainable mobility)

  11. Aerial radiological survey of the Comanche Peak Steam Electric Station and surrounding area, Glen Rose, Texas. Date of Survey: March 1982

    International Nuclear Information System (INIS)

    1982-12-01

    An aerial radiological survey was performed from 1 to 9 March 1982 over a 260-square-kilometer area centered on the Comanche Peak Steam Electric Station located in Somervell County, Texas. The survey was conducted by the Energy Measurements Group of EG and G for the US Nuclear Regulatory Commission. All gamma ray data were collected by flying parallel lines spaced 152 meters (500 feet) apart at an altitude of 91 meters (300 feet) above ground level. Count rates obtained from the aerial platform were converted to total exposure rates at 1 meter above the ground and are presented in the form of an isoradiation contour map. The observed exposure rates ranged from 6 to 12 microroentgens per hour (μR/h), with the average background ranging from 6 to 8 μR/h. These values include an estimated cosmic ray contribution of 3.8 μR/h. The exposure rates obtained from ground-based measurements taken in typical background locations within the survey area displayed positive agreement with the aerial data

  12. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1988-11-01

    Supplement 18 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the applicant's Corrective Action Program (CAP) related to the structural design of the heating, ventilation, and air conditioning (HVAC) systems. The scope and methodologies for the CAP workscope as summarized in Revision 0 to the HVAC project status report and as detailed in related documents referenced in this evaluation were developed to resolve the technical concerns identified in the HVAC area. The NRC staff concludes that the CAP workscope for the HVAC structural design provides a comprehensive program for resolving the associated technical concerns and its implementation ensures that the structural design of the HVAC systems at CPSES satisfies the applicable requirements of 10 CFR Part 50. 32 refs

  13. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 7

    International Nuclear Information System (INIS)

    1985-01-01

    Supplement 7 to the Safety Evaluation Report for the Texas Utilities Electric Company application for a license to operate Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445, 50-446), located in Somervell County, Texas, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Comanche Peak Technical Review of the US Nuclera Regulatory Commission. This supplement provides the results of the staff's evaluation and resolution of approximately 80 technical concerns and allegations in the areas of Electric/Instrumentation and Test Programs regarding construction and plant readiness testing practices at the Comanche Peak facility. Issues raised during Atomic Safety and Licensing Board hearings will be dealt with in future supplements to the Safety Evaluation Report

  14. Electrical current mediated interconversion between graphene oxide to reduced grapene oxide

    Science.gov (United States)

    Teoh, H. F.; Tao, Y.; Tok, E. S.; Ho, G. W.; Sow, C. H.

    2011-04-01

    In this work, we demonstrate that graphene oxide (GO) can be reversibly converted to reduced-graphene-oxide (rGO) through the use of electric current. Strong electric field could cause ionization of water molecules in air to generate H+ ions at cathode, causing GO to be reduced. When the bias is reversed, the same electrode becomes positive and OH- ions are produced. According to Le Chatelier Principle, it then favors the reverse reaction, converting rGO back to GO, GO+2H++2e-=>rGO+H2O. X-ray spectroscopy and Raman spectroscopy were carried to verify the conversion reversibility in the reversed process.

  15. A New Contribution in Reducing Electric Field Distribution Within/Around Medium Voltage Underground Cable Terminations

    Directory of Open Access Journals (Sweden)

    S. S. Desouky

    2017-10-01

    Full Text Available Ιn medium voltage cables, the stress control layers play an important part in controlling the electric field distribution around the medium voltage underground cable terminations. Underground cable accessories, used in medium voltage cable systems, need a stress control tube in order to maintain and control the insulation level which is designed for long life times. The term “electrical stress control” refers to the cable termination analysis of optimizing the electrical stress in the area of insulation shield cutback to reduce the electrical field concentration at this point in order to reduce breakdown in the cable insulation. This paper presents the effect of some materials of different relative permittivities and geometrical regulation with the curved shape stress relief cones on the electric field distribution of cable termination. The optimization was done by comparing the results of eight materials used. Also, the effect of the change in the thickness of the stress control tube is presented. The modeling design is very important for engineers to find the optimal solution of terminator design of medium voltage cables. This paper also describes the evolution of stress control systems and their benefits. A developed program using Finite Element Method (FEM has calculated a numerical study to the stress control layering electric field distribution.

  16. Energetic audit at the Hotel Punta Leona and solutions to reduce the spend in electricity

    International Nuclear Information System (INIS)

    Hernandez Madrigal, Tattiana; Gamboa Iglesias, Francisco Javier; Saenz Roldan, Esteban

    2013-01-01

    An energy audit is realized at the Hotel Punta Leona to determine the solutions in the reducing of the spend in electricity. The energy conservation opportunities are pointed in the rooms of Selvamar, Torremar, Arenas and Chalets. A system that stores, warms and distributes is identified in a optimal area to take advantage the solar energy. A storage system and food refrigeration are designed in the Restaurante Carabelas. Electricity consumption in different areas of the hotel and spend of potency of the household appliances of the rooms selected were measured with high technology equipment. Thermals leakages are analyzed by an infrared camera. The solar incidence taken advantage in the hotel facilities is determined. Topics such as energy audit, heat transfer, the sun and refrigeration systems are developed. Recommendations to reduce the electricity consumption in the areas studied are mentioned. An economic analysis is developed to justify the replacement of some equipment and the project profitability [es

  17. Peak medial (but not lateral) hamstring activity is significantly lower during stance phase of running. An EMG investigation using a reduced gravity treadmill.

    Science.gov (United States)

    Hansen, Clint; Einarson, Einar; Thomson, Athol; Whiteley, Rodney

    2017-09-01

    The hamstrings are seen to work during late swing phase (presumably to decelerate the extending shank) then during stance phase (presumably stabilizing the knee and contributing to horizontal force production during propulsion) of running. A better understanding of this hamstring activation during running may contribute to injury prevention and performance enhancement (targeting the specific role via specific contraction mode). Twenty active adult males underwent surface EMG recordings of their medial and lateral hamstrings while running on a reduced gravity treadmill. Participants underwent 36 different conditions for combinations of 50%-100% altering bodyweight (10% increments) & 6-16km/h (2km/h increments, i.e.: 36 conditions) for a minimum of 6 strides of each leg (maximum 32). EMG was normalized to the peak value seen for each individual during any stride in any trial to describe relative activation levels during gait. Increasing running speed effected greater increases in EMG for all muscles than did altering bodyweight. Peak EMG for the lateral hamstrings during running trials was similar for both swing and stance phase whereas the medial hamstrings showed an approximate 20% reduction during stance compared to swing phase. It is suggested that the lateral hamstrings work equally hard during swing and stance phase however the medial hamstrings are loaded slightly less every stance phase. Likely this helps explain the higher incidence of lateral hamstring injury. Hamstring injury prevention and rehabilitation programs incorporating running should consider running speed as more potent stimulus for increasing hamstring muscle activation than impact loading. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Potential for reducing global carbon emissions from electricity production-A bench marking analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ang, B.W.; Zhou, P.; Tay, L.P. [National University of Singapore (Singapore). Department of Industrial and Systems Engineering

    2011-05-15

    We present five performance indicators for electricity generation for 129 countries using the 2005 data. These indicators, measured at the national level, are the aggregate CO{sub 2} intensity of electricity production, the efficiencies of coal, oil and gas generation and the share of electricity produced from non-fossil fuels. We conduct a study on the potential for reducing global energy-related CO{sub 2} emissions from electricity production through simple bench marking. This is performed based on the last four performance indicators and the construction of a cumulative curve for each of these indicators. It is found that global CO{sub 2} emissions from electricity production would be reduced by 19% if all these indicators are benchmarked at the 50th percentile. Not surprisingly, the emission reduction potential measured in absolute terms is the highest for large countries such as China, India, Russia and the United States. When the potential is expressed as a percentage of a country's own emissions, few of these countries appear in the top-five list. 14 refs., 8 figs., 4 tabs.

  19. Reducing operating costs: A collaborative approach between industry and electric utilities

    International Nuclear Information System (INIS)

    Tyers, B.; Sibbald, L.

    1993-01-01

    The unit cost of electricity to industrial consumers is expected to increase at a rate of 5% annually in the 1990s. The partnership that has been created between Amoco Canada Petroleum Company and TransAlta Utilities to control the cost of electricity is described. To allow the company to receive lower rates for interruptible power, a number of measures have been taken. The Amoco Whitecourt plant has standby generators in reserve that can be used when utility power is not available. A Pembina compressor can be turned off for up to 12 hours, at 30 minutes notice, without affecting field pressure. At the East Crossfield plant sales gas can be compressed using electricity or a gas-driven engine. Spot market energy is used in a number of plants allowing electric drive alternatives to plant operators and offering short term energy markets. TransAlta invests in electrical equipment such as switchgear as well as transmission lines and transformers. New rate alternatives offered by TransAlta Utilities include review of the need for a demand ratchet, additional time of use rates, unbundling of rates allowing power purchase from alternative sources, rates that follow product costs, reduced rates for conversion of gas to electric drives certain circumstances, energy audits, and power factor credits. 5 figs

  20. Efficient Use of Behavioral Tools to Reduce Electricity Demand of Domestic Consumers

    Directory of Open Access Journals (Sweden)

    Elbaz Shimon

    2016-12-01

    Full Text Available Purpose: The present study investigated the main literature on the subject of methods and policies for reducing the electricity demand of domestic consumers, in order to identify the place of behavioral tools. Methodology: We used secondary sources, performing a literature review, together with analysis and synthesis. Findings: Policy makers prefer to use tools offered by neoclassical economics, such as various forms of taxation, fines and financial incentives in order to make domestic electricity consumers save electricity, on the assumption that consumers will make rational decisions while maximizing their personal benefit. However, studies conducted in recent years in the field of behavioral economics, which are based on the assumption that consumers’ decisions are not rational and are affected by cognitive biases, showed that the use of behavioral tools, such as detailed online information (feedback,social comparison information, information on varying rates (dynamic pricing and general information (advertising campaign, are tools that are not less appropriate than the ones the neoclassical economics offers, mainly because electricity is an invisible product and consumers are unable to assess it by normal cognitive measures. Using an interdisciplinary combination of behavioral tools that come from a variety of approaches taken from a wide variety of different academic fields, it is possible to receive efficient results in the endeavor of reducing electricity demand. Implications: Although the neoclassical economics still remains the fundamental theory used by policymakers, it is recommended to consider behavioral economics as a complementary approach to the neoclassical economics, and combine behavioral tools in the policymakers’ toolbox, especially when those tools do not require a significant financial investment, thus efficiently maximizing the reduction of electricity demand among domestic consumers. These theoretical results will be

  1. Reducing CO2 emissions on the electric grid through a carbon disincentive policy

    International Nuclear Information System (INIS)

    Li, Chiao-Ting; Peng, Huei; Sun, Jing

    2013-01-01

    This paper studies the operation of an electric grid with renewable wind generation and plug-in electric vehicles (PEVs). In particular, PEVs will be the controllable demand that can mitigate the intermittency in wind generation and improve the capacity factors of the non-renewable generation assets on the grid. Optimization problems are formulated to minimize the costs of electricity generation, and two approaches are proposed to address the grid CO 2 emission in the optimization. The first approach directly penalizes CO 2 in the objective function, and the second approach adopts a carbon disincentive policy to alter the dispatch order of power plants, so that expensive low-CO 2 plants can replace cheap high-CO 2 plants. These two approaches result in very different outcomes: the first approach affects only the PEV charging demand on the grid and does not result in significant CO 2 reduction, whereas the second approach controls both the generation and load, and CO 2 can be reduced substantially. In addition, the carbon disincentive policy, unlike a carbon tax, does not collect any revenue; therefore, the increase in electricity cost is minimal. The effect of the proposed algorithms on the grid electricity cost and carbon emission is analyzed in details and reported. - Highlights: • We study the tradeoff between CO 2 emissions and generation cost on an electric grid. • The tradeoff was shown by Pareto fronts obtained from optimizations. • Pareto fronts shows that a carbon disincentive is effective in reducing emissions. • Controlling both supply and demand on the grid is necessary to reduce CO 2 and costs

  2. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  3. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 8

    International Nuclear Information System (INIS)

    1985-02-01

    Supplement 8 to the Safety Evaluation Report for the Texas Utilities Electric Company application for a license to operate Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445, 50-446), located in Somervell County, Texas, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Comanche Peak Technical Review Team of the US Nuclear Regulatory Commission. This Supplement provides the results of the staff's evaluation and resolution of approximately 80 technical concerns and allegations relating to civil and structural and miscellaneous issues regarding construction and plant readiness testing practices at the Comanche Peak facility. Issues raised during recent Atomic Safety and Licensing Board hearings will be dealt with in future supplements to the Safety Evaluation Report

  4. Traditional Medicinal Herbs and Food Plants Have the Potential to Inhibit Key Carbohydrate Hydrolyzing Enzymes In Vitro and Reduce Postprandial Blood Glucose Peaks In Vivo

    Directory of Open Access Journals (Sweden)

    M. Fawzi Mahomoodally

    2012-01-01

    Full Text Available We hypothesized that some medicinal herbs and food plants commonly used in the management of diabetes can reduce glucose peaks by inhibiting key carbohydrate hydrolyzing enzymes. To this effect, extracts of Antidesma madagascariense (AM, Erythroxylum macrocarpum (EM, Pittosporum senacia (PS, and Faujasiopsis flexuosa (FF, Momordica charantia (MC, and Ocimum tenuiflorum (OT were evaluated for α-amylase and α-glucosidase inhibitory effects based on starch-iodine colour changes and PNP-G as substrate, respectively. Only FF and AM extracts/fractions were found to inhibit α-amylase activity significantly (P<0.05 and coparable to the drug acarbose. Amylase bioassay on isolated mouse plasma confirmed the inhibitory potential of AM and FF extracts with the ethyl acetate fraction of FF being more potent (P<0.05 than acarbose. Extracts/fractions of AM and MC were found to inhibit significantly (P<0.05 α-glucosidase activity, with IC50 comparable to the drug 1-deoxynojirimycin. In vivo studies on glycogen-loaded mice showed significant (P<0.05 depressive effect on elevation of postprandial blood glucose following ingestion of AM and MC extracts. Our findings tend to provide a possible explanation for the hypoglycemic action of MC fruits and AM leaf extracts as alternative nutritional therapy in the management of diabetes.

  5. Incorporation of polydimethylsiloxane with reduced graphene oxide and zinc oxide for tensile and electrical properties

    Science.gov (United States)

    Danial, N. S.; Ramli, Muhammad. M.; Halin, D. S. C.; Hong, H. C.; Isa, S. Salwa M.; Abdullah, M. M. A. B.; Anhar, N. A. M.; Talip, L. F. A.; Mazlan, N. S.

    2017-09-01

    Polydimethylsiloxane (PDMS) is an organosilicon polymer that is commonly used to incorporate with other fillers. PDMS in high viscous liquid form is mechanically stirred with reduced graphene oxide (rGO) and mixed with zinc oxide (ZnO) with specific ratio, thus rendering into two types of samples. The mechanical and electrical properties of both samples are characterized. The result shows that PDMS sample with 50 mg rGO has the highest tensile strength with the value of 9.1 MPa. For electrical properties, sample with the lowest resistance is PDMS with 50 mg rGO and ZnO with the value of l.67×l05 Ω. This experiment shows the significant role of conductive fillers like rGO and ZnO incorporated in polymeric material such as PDMS to improve its electrical properties.

  6. Impact of Smart Grid Technologies on Peak Load to 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The IEA's Smart Grids Technology Roadmap identified five global trends that could be effectively addressed by deploying smart grids. These are: increasing peak load (the maximum power that the grid delivers during peak hours), rising electricity consumption, electrification of transport, deployment of variable generation technologies (e.g. wind and solar PV) and ageing infrastructure. Along with this roadmap, a new working paper -- Impact of Smart Grid Technologies on Peak Load to 2050 -- develops a methodology to estimate the evolution of peak load until 2050. It also analyses the impact of smart grid technologies in reducing peak load for four key regions; OECD North America, OECD Europe, OECD Pacific and China. This working paper is a first IEA effort in an evolving modelling process of smart grids that is considering demand response in residential and commercial sectors as well as the integration of electric vehicles.

  7. Reducing the electricity consumption of small ventilation installations; Reduktion des Elektrizitaetsverbrauchs von Klein-Lueftungsanlagen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Furter, R.; Casartelli, E.; Lang, M.

    2010-03-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at how the electricity consumption of small ventilation installations can be reduced. Residential ventilation systems - also known as comfort ventilation systems - have to fulfil demands placed on energy efficiency, comfort and hygiene. The results of exemplary measurements of the electrical power consumption that have been made in order to estimate the current situation of ventilation systems and of air handling units in apartments and single family houses are presented and discussed. Air networks were simulated at nominal air flow with different pressure losses for nine different ventilation units. The most important conclusion of this work is quoted as being that the internal pressure losses of the ventilation units have to be reduced and the design recommendation for the air network has to be reconsidered. Also the authors are of the opinion that hygiene requirements must be more rigorously respected.

  8. Asheville, North Carolina: Reducing Electricity Demand through Building Programs & Policies (City Energy: From Data to Decisions)

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-09-29

    This fact sheet "Asheville, North Carolina: Reducing Electricity Demand through Building Programs & Policies" explains how the City of Asheville used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  9. Public health benefits of strategies to reduce greenhouse-gas emissions: low-carbon electricity generation.

    Science.gov (United States)

    Markandya, Anil; Armstrong, Ben G; Hales, Simon; Chiabai, Aline; Criqui, Patrick; Mima, Silvana; Tonne, Cathryn; Wilkinson, Paul

    2009-12-12

    In this report, the third in this Series on health and climate change, we assess the changes in particle air pollution emissions and consequent effects on health that are likely to result from greenhouse-gas mitigation measures in the electricity generation sector in the European Union (EU), China, and India. We model the effect in 2030 of policies that aim to reduce total carbon dioxide (CO(2)) emissions by 50% by 2050 globally compared with the effect of emissions in 1990. We use three models: the POLES model, which identifies the distribution of production modes that give the desired CO(2) reductions and associated costs; the GAINS model, which estimates fine particulate matter with aerodynamic diameter 2.5 microm or less (PM(2.5)) concentrations; and a model to estimate the effect of PM(2.5) on mortality on the basis of the WHO's Comparative Risk Assessment methods. Changes in modes of production of electricity to reduce CO(2) emissions would, in all regions, reduce PM(2.5) and deaths caused by it, with the greatest effect in India and the smallest in the EU. Health benefits greatly offset costs of greenhouse-gas mitigation, especially in India where pollution is high and costs of mitigation are low. Our estimates are approximations but suggest clear health gains (co-benefits) through decarbonising electricity production, and provide additional information about the extent of such gains.

  10. Electrical characterization of reduced graphene oxide (rGO) on organic thin film transistor (OTFT)

    Science.gov (United States)

    Musa, Nurhazwani; Halim, Nurul Farhanah Ab.; Ahmad, Mohd Noor; Zakaria, Zulkhairi; Hashim, Uda

    2017-03-01

    A green method and eco-friendly solution were used to chemically reduce graphene oxide (GO) to graphene using green reductant. In this study, graphene oxide (GO) were prepared by using Tours method. Then, reduced graphene oxides (rGO) were prepared by using three typical reduction agents: L-ascorbic acid (L-AA), formamidinesulfinic acid (FAS) and sodium sulfite (Na2SO3). The reduced materials were characterized by Fourier transform infrared spectroscopy (FTIR), Thermo gravimetric analysis (TGA) and X-ray diffraction (XRD). Graphene based organic thin film transistor (G-OTFT) was prepared by a spin coating and thermal evaporation technique. The electrical characterization of G-OTFT was analyzed by using semiconductor parameter analyzer (SPA). The G-OTFT devices show p-type semiconducting behaviour. This article focuses on the synthesis and reduction of graphene oxide using three different reductants in order to maximise its electrical conductivity. The rGO product demonstrated a good electrical conductivity performance with highly sensitivity sensor.

  11. Selection of values of design peak heat flux to reduce the risk of waterside corrosion in F.R. steam generators

    International Nuclear Information System (INIS)

    Bolt, P.R.; Garnsey, R.

    1975-01-01

    Attention is drawn to the high levels of peak heat Flux that can exist in sodium heated steam generators. The strength of the relationship between heat, flux and both deposition rate and the concentration of salts is discussed. Relevant steam generator operational experience obtained on the C.E.G.B. system is described and tentative proposals are made for limits to he to the peak heat flux values used in F.R. steam generator design. (author)

  12. Selection of values of design peak heat flux to reduce the risk of waterside corrosion in F.R. steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Bolt, P R; Garnsey, R

    1975-07-01

    Attention is drawn to the high levels of peak heat Flux that can exist in sodium heated steam generators. The strength of the relationship between heat, flux and both deposition rate and the concentration of salts is discussed. Relevant steam generator operational experience obtained on the C.E.G.B. system is described and tentative proposals are made for limits to he to the peak heat flux values used in F.R. steam generator design. (author)

  13. Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite

    Science.gov (United States)

    Radoń, Adrian; Włodarczyk, Patryk; Łukowiec, Dariusz

    2018-05-01

    The article presents the influence of reduction by hydrogen in statu nascendi and modification by hydrogen peroxide on the structure and electrical conductivity of electrochemically exfoliated graphite. It was confirmed that the electrochemical exfoliation can be used to produce oxidized nanographite with an average number of 25 graphene layers. The modified electrochemical exfoliated graphite and reduced electrochemical exfoliated graphite were characterized by high thermal stability, what was associated with removing of labile oxygen-containing groups. The presence of oxygen-containing groups was confirmed using Fourier-transform infrared spectroscopy. Influence of chemical modification by hydrogen and hydrogen peroxide on the electrical conductivity was determined in wide frequency (0.1 Hz-10 kHz) and temperature range (-50 °C-100 °C). Material modified by hydrogen peroxide (0.29 mS/cm at 0 °C) had the lowest electrical conductivity. This can be associated with oxidation of unstable functional groups and was also confirmed by analysis of Raman spectra. The removal of oxygen-containing functional groups by hydrogen in statu nascendi resulted in a 1000-fold increase in the electrical conductivity compared to the electrochemical exfoliated graphite.

  14. Ab initio theories of electric transport in solid systems with reduced dimensions

    International Nuclear Information System (INIS)

    Weinberger, Peter

    2003-01-01

    Ab initio theories of electric transport in solid systems with reduced dimensions, i.e., systems that at best are characterized by two-dimensional translational invariance, are reviewed in terms of a fully relativistic description of the Kubo-Greenwood equation. As the use of this equation requires concepts such as collinearity and non-collinearity in order to properly define resistivities or resistances corresponding to particular magnetic configurations, respective consequences of the (local) density functional theory are recalled in quite a detailed manner. Furthermore, since theoretical descriptions of solid systems with reduced dimensions require quantum mechanical methods different from bulk systems (three-dimensional periodicity), the so-called Screened Korringa-Kohn-Rostoker (SKKR-) method for layered systems is introduced together with a matching coherent potential approximation (inhomogeneous CPA). The applications shown are mainly meant to illustrate various aspects of electric transport in solid systems with reduced dimensions and comprise not only current-in-plane (CIP) experiments, but also current perpendicular to the planes of atoms geometries, consequences of tunneling, and finite nanostructures at or on metallic substrates. In order to give a more complete view of available ab initio methods also a non-relativistic approach based on the Tight Binding Linear Combination of muffin tin orbitals (TB-LMTO-) method and the so-called Kubo-Landauer equation in terms of transmission and reflection matrices is presented. A compilation of references with respect to ab-initio type approaches not explicitly discussed in here finally concludes the discussion of electric properties in solid systems with reduced dimensions

  15. Enhanced ordering reduces electric susceptibility of liquids confined to graphene slit pores

    Science.gov (United States)

    Terrones, Jeronimo; Kiley, Patrick J.; Elliott, James A.

    2016-01-01

    The behaviours of a range of polar and non-polar organic liquids (acetone, ethanol, methanol, N-methyl-2-pyrrolidone (NMP), carbon tetrachloride and water) confined to 2D graphene nanochannels with thicknesses in the range of 4.5 Å to 40 Å were studied using classical molecular dynamics and hybrid density functional theory. All liquids were found to organise spontaneously into ordered layers parallel to the confining surfaces, with those containing polar molecules having their electric dipoles aligned parallel to such surfaces. In particular, monolayers of NMP showed remarkable in-plane ordering and low molecular mobility, suggesting the existence of a previously unknown 2D solid-like phase. Calculations for polar liquids showed dramatically reduced static permittivities normal to the confining surfaces; these changes are expected to improve electron tunnelling across the liquid films, modifying the DC electrical properties of immersed assemblies of carbon nanomaterials. PMID:27265098

  16. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such

  17. A decision support model for reducing electric energy consumption in elementary school facilities

    International Nuclear Information System (INIS)

    Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok

    2012-01-01

    Highlights: ► Decision support model is developed to reduce CO 2 emission in elementary schools. ► The model can select the school to be the most effective in energy savings. ► Decision tree improved the prediction accuracy by 1.83–3.88%. ► Using the model, decision-maker can save the electric-energy consumption by 16.58%. ► The model can make the educational-facility improvement program more effective. -- Abstract: The South Korean government has been actively promoting an educational-facility improvement program as part of its energy-saving efforts. This research seeks to develop a decision support model for selecting the facility expected to be effective in generating energy savings and making the facility improvement program more effective. In this research, project characteristics and electric-energy consumption data for the year 2009 were collected from 6282 elementary schools located in seven metropolitan cities in South Korea. In this research, the following were carried out: (i) a group of educational facilities was established based on electric-energy consumption, using a decision tree; (ii) a number of similar projects were retrieved from the same group of facilities, using case-based reasoning; and (iii) the accuracy of prediction was improved, using the combination of genetic algorithms, the artificial neural network, and multiple regression analysis. The results of this research can be useful for the following purposes: (i) preliminary research on the systematic and continuous management of educational facilities’ electric-energy consumption; (ii) basic research on electric-energy consumption prediction based on the project characteristics; and (iii) practical research for selecting an optimum facility that can more effectively apply an educational-facility improvement program as a decision support model.

  18. Consumer responses to time varying prices for electricity

    International Nuclear Information System (INIS)

    Thorsnes, Paul; Williams, John; Lawson, Rob

    2012-01-01

    We report new experimental evidence of the household response to weekday differentials in peak and off-peak electricity prices. The data come from Auckland, New Zealand, where peak residential electricity consumption occurs in winter for heating. Peak/off-peak price differentials ranged over four randomly selected groups from 1.0 to 3.5. On average, there was no response except in winter. In winter, participant households reduced electricity consumption by at least 10%, took advantage of lower off-peak prices but did not respond to the peak price differentials. Response varied with house and household size, time spent away from home, and whether water was heated with electricity. - Highlights: ► Seasonal effects in winter. ► High conservation effect from information. ► Higher peak prices no effect on peak use. ► Low off-peak prices encourage less conservation off-peak.

  19. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 11

    International Nuclear Information System (INIS)

    1985-05-01

    Supplement 11 to the Safety Evaluation Report for the Texas Utilities Electric Company application for a license to operate Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445, 50-446), located in Somervell County, Texas, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Comanche Peak Technical Review Team (TRT) of the US Nuclear Regulatory Commission (NRC) and is in two parts. Part 1 (Appendix 0) of this supplement provides the results of the TRT's evaluation of approximately 124 concerns and allegations relating specifically to quality assurance and quality control (QA/QC) issues regarding construction proctices at the Comanche Peak facility. Part 2 (Appendix P) contains an overall summary and conclusion of the QA/QC aspects of the NRC Technical Review Team efforts as reported in supplemental Safety Evaluation Report SERs 7, 8, 9, and 10. Since QA/QC issues are also contained in each of the other supplements, the TRT considered that such a summary and conclusion from all supplements was necessary for a complete TRT description of QA/QC activities at Comanche Peak

  20. Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property

    International Nuclear Information System (INIS)

    Sadhukhan, Sourav; Ghosh, Tapas Kumar; Rana, Dipak; Roy, Indranil; Bhattacharyya, Amartya; Sarkar, Gunjan; Chakraborty, Mukut; Chattopadhyay, Dipankar

    2016-01-01

    Highlights: • RGO-1 and RGO-2 were synthesized by green method using different phytoextracts. • M. indica L., S. tuberosum L. phytoextracts act as reducing and stabilizing agents. • Conjugated structure of graphene is established following partial reduction of GO. • Electrical conductivities of RGO-1 and RGO-2 are higher than GO. - Abstract: An environmentally friendly method has been applied for the preparation of reduced graphene oxide (RGO). This method was developed by using polyphenols that contained a phytoextract of Mangifera indica L. along with Solanum tuberosum L. as reducing agents since they are non-toxic and naturally available. The phytoextracts used in the production of RGO was set between 60 and 70 °C. Graphene oxide (GO) was prepared by modified Hummer’s method as reported in earlier findings. Structural and morphological studies demonstrate that the part of the oxygen functionalities in GO can be removed by following green reduction. Characterizations of the resulting product have been done by X-ray diffraction, FTIR, UV–vis and Raman spectroscopy. FESEM, TEM, EDX spectrum, TGA, DLS and Zeta potential measurements of the samples have also been carried out to study the morphological, thermal and surface charge characteristics. Electrical conductivity was also measured to check the extent of reduction of GO to RGO.

  1. Electrical Properties of Conductive Cotton Yarn Coated with Eosin Y Functionalized Reduced Graphene Oxide.

    Science.gov (United States)

    Kim, Eunju; Arul, Narayanasamy Sabari; Han, Jeong In

    2016-06-01

    This study reports the fabrication and investigation of the electrical properties of two types of conductive cotton yarns coated with eosin Y or eosin B functionalized reduced graphene (RGO) and bare graphene oxide (GO) using dip-coating method. The surface morphology of the conductive cotton yarn coated with reduced graphene oxide was observed by Scanning Electron Microscope (SEM). Due to the strong electrostatic attractive forces, the negatively charged surface such as the eosin Y functionalized reduced graphene oxide or bare GO can be easily coated to the positively charged polyethyleneimine (PEI) treated cotton yarn. The maximum current for the conductive cotton yarn coated with eosin Y functionalized RGO and bare GO with 20 cycles repetition of (5D + R) process was found to be 793.8 μA and 3482.8 μA. Our results showed that the electrical conductivity of bare GO coated conductive cotton yarn increased by approximately four orders of magnitude with the increase in the dipping cycle of (5D+R) process.

  2. Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property

    Energy Technology Data Exchange (ETDEWEB)

    Sadhukhan, Sourav [Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Department of Chemistry, Budge Budge Institute of Technology, Nischintapur, Budge Budge, Kolkata 700137 (India); Ghosh, Tapas Kumar [Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India); Rana, Dipak [Department of Chemical and Biological Engineering, Industrial Membrane Research Institute, University of Ottawa, 161 Louis Pasteur St., Ottawa, Ontario K1 N 6N5 (Canada); Roy, Indranil; Bhattacharyya, Amartya; Sarkar, Gunjan [Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Chakraborty, Mukut [Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India); Chattopadhyay, Dipankar, E-mail: dipankar.chattopadhyay@gmail.com [Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India)

    2016-07-15

    Highlights: • RGO-1 and RGO-2 were synthesized by green method using different phytoextracts. • M. indica L., S. tuberosum L. phytoextracts act as reducing and stabilizing agents. • Conjugated structure of graphene is established following partial reduction of GO. • Electrical conductivities of RGO-1 and RGO-2 are higher than GO. - Abstract: An environmentally friendly method has been applied for the preparation of reduced graphene oxide (RGO). This method was developed by using polyphenols that contained a phytoextract of Mangifera indica L. along with Solanum tuberosum L. as reducing agents since they are non-toxic and naturally available. The phytoextracts used in the production of RGO was set between 60 and 70 °C. Graphene oxide (GO) was prepared by modified Hummer’s method as reported in earlier findings. Structural and morphological studies demonstrate that the part of the oxygen functionalities in GO can be removed by following green reduction. Characterizations of the resulting product have been done by X-ray diffraction, FTIR, UV–vis and Raman spectroscopy. FESEM, TEM, EDX spectrum, TGA, DLS and Zeta potential measurements of the samples have also been carried out to study the morphological, thermal and surface charge characteristics. Electrical conductivity was also measured to check the extent of reduction of GO to RGO.

  3. Abdominal Hollowing Reduces Lateral Trunk Displacement During Single-Leg Squats in Healthy Females But Does Not Affect Peak Hip Abduction Angle or Knee Abductio Angle/Moment.

    Science.gov (United States)

    Linde, Lukas D; Archibald, Jessica; Lampert, Eve C; Srbely, John Z

    2017-07-17

    Females suffer 4-6 times more non-contact anterior cruciate ligament (ACL) injuries than males due to neuromuscular control deficits of the hip musculature leading to increases in hip adduction angle, knee abduction angle, and knee abduction moment during dynamic tasks such as single-leg squats. Lateral trunk displacement has been further related to ACL injury risk in females, leading to the incorporation of core strength/stability exercises in ACL preventative training programs. However, the direct mechanism relating lateral trunk displacement and lower limb ACL risk factors is not well established. To assess the relationship between lateral trunk displacement and lower limb measures of ACL injury risk by altering trunk control through abdominal activation techniques during single-leg squats in healthy females. Interventional Study Setting: Movement and Posture Laboratory Participants: 13 healthy females (21.3±0.88y, 1.68±0.07m, 58.27±5.46kg) Intervention: Trunk position and lower limb kinematics were recorded using an optoelectric motion capture system during single-leg squats under differing conditions of abdominal muscle activation (abdominal hollowing, abdominal bracing, control), confirmed via surface electromyography. Lateral trunk displacement, peak hip adduction angle, peak knee abduction angle/moment, and average muscle activity from bilateral internal oblique, external oblique, and erector spinae muscles. No differences were observed for peak lateral trunk displacement, peak hip adduction angle or peak knee abduction angle/moment. Abdominal hollowing and bracing elicited greater muscle activation than the control condition, and bracing was greater than hollowing in four of six muscles recorded. The lack of reduction in trunk, hip, and knee measures of ACL injury risk during abdominal hollowing and bracing suggests that these techniques alone may provide minimal benefit in ACL injury prevention training.

  4. High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.

    Science.gov (United States)

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2)  g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability. N-RGO also showed excellent cycling stability and preserved 96 % of the initial specific capacitance after 100 000 cycles. Near-edge X-ray absorption fine-structure spectroscopy results provided evidenced for the recovery of π conjugation in the carbon networks with the removal of oxygenated groups and revealed chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Energy and exergy analysis of electricity generation from natural gas pressure reducing stations

    International Nuclear Information System (INIS)

    Neseli, Mehmet Alparslan; Ozgener, Onder; Ozgener, Leyla

    2015-01-01

    Highlights: • Forecasting the recoverable energy from natural gas pressure reduction stations. • Electricity generation through pressure reduction stations via turboexpanders. • A thermodynamics analysis of PRS. - Abstract: Electricity generation or power recovery through pressure reduction stations (PRS) for general use has not been realized in Izmir. The main objective of the present study was to do a case study for calculating electricity to be recovered in one natural gas pressure reduction stations in Izmir. It is the first forecasting study to obtain energy from natural gas pressure-reducing stations in Izmir. Energy can be obtained from natural gas PRS with turbo-expanders instead of using throttle valves or regulators from the PRS. The exergy performance of PRS with TE is evaluated in this study. Exergetic efficiencies of the system and components are determined to assess their individual performances. Based upon pressure change and volumetric flow rate, it can be obtained by recovering average estimated installed capacity and annual energy 494.24 kW, 4113.03 MW h, respectively. In terms of estimated installed capacity power and annual energy, the highest level is 764.88 kW, approximately 6365.34 MW h, in Aliaga PRS. Also it can be seen that CO 2 emission factor average value is 295.45 kg/MW h

  6. SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems.

    Science.gov (United States)

    Mileva, Ana; Nelson, James H; Johnston, Josiah; Kammen, Daniel M

    2013-08-20

    The United States Department of Energy's SunShot Initiative has set cost-reduction targets of $1/watt for central-station solar technologies. We use SWITCH, a high-resolution electricity system planning model, to study the implications of achieving these targets for technology deployment and electricity costs in western North America, focusing on scenarios limiting carbon emissions to 80% below 1990 levels by 2050. We find that achieving the SunShot target for solar photovoltaics would allow this technology to provide more than a third of electric power in the region, displacing natural gas in the medium term and reducing the need for nuclear and carbon capture and sequestration (CCS) technologies, which face technological and cost uncertainties, by 2050. We demonstrate that a diverse portfolio of technological options can help integrate high levels of solar generation successfully and cost-effectively. The deployment of GW-scale storage plays a central role in facilitating solar deployment and the availability of flexible loads could increase the solar penetration level further. In the scenarios investigated, achieving the SunShot target can substantially mitigate the cost of implementing a carbon cap, decreasing power costs by up to 14% and saving up to $20 billion ($2010) annually by 2050 relative to scenarios with Reference solar costs.

  7. Building Automation and Control Systems and Electrical Distribution Grids: A Study on the Effects of Loads Control Logics on Power Losses and Peaks

    Directory of Open Access Journals (Sweden)

    Salvatore Favuzza

    2018-03-01

    Full Text Available Growing home comfort is causing increasing energy consumption in residential buildings and a consequent stress in urban medium and low voltage distribution networks. Therefore, distribution system operators are obliged to manage problems related to the reliability of the electricity system and, above all, they must consider investments for enhancing the electrical infrastructure. The purpose of this paper is to assess how the reduction of building electricity consumption and the modification of the building load profile, due to load automation, combined with suitable load control programs, can improve network reliability and distribution efficiency. This paper proposes an extensive study on this issue, considering various operating scenarios with four load control programs with different purposes, the presence/absence of local generation connected to the buildings and different external thermal conditions. The study also highlights how different climatic conditions can influence the effects of the load control logics.

  8. A novel normalization method based on principal component analysis to reduce the effect of peak overlaps in two-dimensional correlation spectroscopy

    Science.gov (United States)

    Wang, Yanwei; Gao, Wenying; Wang, Xiaogong; Yu, Zhiwu

    2008-07-01

    Two-dimensional correlation spectroscopy (2D-COS) has been widely used to separate overlapped spectroscopic bands. However, band overlap may sometimes cause misleading results in the 2D-COS spectra, especially if one peak is embedded within another peak by the overlap. In this work, we propose a new normalization method, based on principal component analysis (PCA). For each spectrum under discussion, the first principal component of PCA is simply taken as the normalization factor of the spectrum. It is demonstrated that the method works well with simulated dynamic spectra. Successful result has also been obtained from the analysis of an overlapped band in the wavenumber range 1440-1486 cm -1 for the evaporation process of a solution containing behenic acid, methanol, and chloroform.

  9. Reducing Electrical Consumption in the Forest Products Industry Using Lean Thinking

    Directory of Open Access Journals (Sweden)

    Scott William Lyon

    2014-01-01

    Full Text Available The forest products industry has an opportunity to reduce energy costs using energy management practices, thereby boosting its global competitiveness. Increasing manufacturing costs have contributed significantly to the decline of the forest products manufacturing industries in the U.S.; these increasing costs limit manufacturers’ abilities to compete with their global competitors. U.S. companies are continually improving their products, processes, finances, and business practices to better compete with global marketplaces; however, they may not be seizing all of the opportunities available through more efficient energy consumption practices. By eliminating non-valued added activities, lean thinking is an example of one tool that may improve performance and reduce costs. A case study was conducted at a cabinet manufacturer in Virginia to examine the impact of lean thinking on the consumption of electricity in the manufacturing process. An energy management system was used to provide rapid feedback on electrical energy consumption for production operations. Significant changes were observed after implementing energy reduction practices identified by lean thinking tools.

  10. Reducing Energy Demand Using Wheel-Individual Electric Drives to Substitute EPS-Systems

    Directory of Open Access Journals (Sweden)

    Jürgen Römer

    2018-01-01

    Full Text Available The energy demand of vehicles is influenced, not only by the drive systems, but also by a number of add-on systems. Electric vehicles must satisfy this energy demand completely from the battery. Hence, the use of power steering systems directly result in a range reduction. The “e2-Lenk” joint project funded by the German Federal Ministry of Education and Research (BMBF involves a novel steering concept for electric vehicles to integrate the function of steering assistance into the drive-train. Specific distribution of driving torque at the steered axle allows the steering wheel torque to be influenced to support the steering force. This provides a potential for complete substitution of conventional power steering systems and reduces the vehicle’s energy demand. This paper shows the potential of wheel-individual drives influencing the driver’s steering torque using a control technique based on classical EPS control plans. Compared to conventional power-assisted steering systems, a reduced energy demand becomes evident over a wide range of operating conditions.

  11. Temperature-based on-column solute focusing in capillary liquid chromatography reduces peak broadening from pre-column dispersion and volume overload when used alone or with solvent-based focusing.

    Science.gov (United States)

    Groskreutz, Stephen R; Horner, Anthony R; Weber, Stephen G

    2015-07-31

    On-column focusing is essential for satisfactory performance using capillary scale columns. On-column focusing results from generating transient conditions at the head of the column that lead to high solute retention. Solvent-based on-column focusing is a well-known approach to achieve this. Temperature-assisted on-column focusing (TASF) can also be effective. TASF improves focusing by cooling a short segment of the column inlet to a temperature that is lower than the column temperature during the injection and then rapidly heating the focusing segment to the match the column temperature. A troublesome feature of an earlier implementation of TASF was the need to leave the capillary column unpacked in that portion of the column inside the fitting connecting it to the injection valve. We have overcome that problem in this work by packing the head of the column with solid silica spheres. In addition, technical improvements to the TASF instrumentation include: selection of a more powerful thermo-electric cooler to create faster temperature changes and electronic control for easy incorporation into conventional capillary instruments. Used in conjunction with solvent-based focusing and with isocratic elution, volumes of paraben samples (esters of p-hydroxybenzoic acid) up to 4.5-times the column liquid volume can be injected without significant bandspreading due to volume overload. Interestingly, the shapes of the peaks from the lowest volume injections that we can make, 30nL, are improved when using TASF. TASF is very effective at reducing the detrimental effects of pre-column dispersion using isocratic elution. Finally, we show that TASF can be used to focus the neuropeptide galanin in a sample solvent with elution strength stronger than the mobile phase. Here, the stronger solvent is necessitated by the need to prevent peptide adsorption prior to and during analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Temperature-based on-column solute focusing in capillary liquid chromatography reduces peak broadening from precolumn dispersion and volume overload when used alone or with solvent-based focusing

    Science.gov (United States)

    Groskreutz, Stephen R.; Horner, Anthony R.; Weber, Stephen G.

    2015-01-01

    On-column focusing is essential for satisfactory performance using capillary scale columns. On-column focusing results from generating transient conditions at the head of the column that lead to high solute retention. Solvent-based on-column focusing is a well-known approach to achieve this. Temperature-assisted on-column focusing (TASF) can also be effective. TASF improves focusing by cooling a short segment of the column inlet to a temperature that is lower than the column temperature during the injection and then rapidly heating the focusing segment to the match the column temperature. A troublesome feature of an earlier implementation of TASF was the need to leave the capillary column unpacked in that portion of the column inside the fitting connecting it to the injection valve. We have overcome that problem in this work by packing the head of the column with solid silica spheres. In addition, technical improvements to the TASF instrumentation include: selection of a more powerful thermo-electric cooler to create faster temperature changes and electronic control for easy incorporation into conventional capillary instruments. Used in conjunction with solvent-based focusing and with isocratic elution, volumes of paraben samples (esters of p-hydroxybenzoic acid) up to 4.5-times the column liquid volume can be injected without significant bandspreading due to volume overload. Interestingly, the shapes of the peaks from the lowest volume injections that we can make, 30 nL, are improved when using TASF. TASF is very effective at reducing the detrimental effects of precolumn dispersion using isocratic elution. Finally, we show that TASF can be used to focus the neuropeptide galanin in a sample solvent with elution strength stronger than the mobile phase. Here, the stronger solvent is necessitated by the need to prevent peptide adsorption prior to and during analysis. PMID:26091787

  13. A comparison of four methods to evaluate the effect of a utility residential air-conditioner load control program on peak electricity use

    Energy Technology Data Exchange (ETDEWEB)

    Newsham, Guy R., E-mail: guy.newsham@nrc-cnrc.gc.ca [National Research Council Canada-Institute for Research in Construction, Building M24, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Birt, Benjamin J. [National Research Council Canada-Institute for Research in Construction, Building M24, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Rowlands, Ian H. [University of Waterloo, Ontario (Canada)

    2011-10-15

    We analyzed the peak load reductions due to a residential direct load control program for air-conditioners in southern Ontario in 2008. In this program, participant thermostats were increased by 2 deg. C for four hours on five event days. We used hourly, whole-house data for 195 participant households and 268 non-participant households, and four different methods of analysis ranging from simple spreadsheet-based comparisons of average loads on event days, to complex time-series regression. Average peak load reductions were 0.2-0.9 kWh/h per household, or 10-35%. However, there were large differences between event days and across event hours, and in results for the same event day/hour, with different analysis methods. There was also a wide range of load reductions between individual households, and only a minority of households contributed to any given event. Policy makers should be aware of how the choice of an analysis method may affect decisions regarding which demand-side management programs to support, and how they might be incentivized. We recommend greater use of time-series methods, although it might take time to become comfortable with their complexity. Further investigation of what type of households contribute most to aggregate load reductions would also help policy makers better target programs. - Highlights: > We analyzed peak load reductions due to residential a/c load control. > We used four methods, ranging from simple comparisons to time-series regression. > Average peak load reductions were 0.2-0.9 kW per household, varying by method. > We recommend a move towards time-series regression for future studies. > A minority of participant households contributed to a given load control event.

  14. VFDs: Are They Electrical Parasites?

    Science.gov (United States)

    Frank, Ned

    2013-01-01

    Variable Frequency Drives (VFDs) are electronic speed controllers used mainly to modulate and reduce the overall speed and power consumption of an electrical motor. They can be used as soft starters for equipment that has a large rotational mass, thus reducing belt ware and large electrical peaks when starting large pieces of equipment. VFDs have…

  15. Composite structure of ZnO films coated with reduced graphene oxide: structural, electrical and electrochemical properties

    Science.gov (United States)

    Shuai, Weiqiang; Hu, Yuehui; Chen, Yichuan; Hu, Keyan; Zhang, Xiaohua; Zhu, Wenjun; Tong, Fan; Lao, Zixuan

    2018-02-01

    ZnO films coated with reduced graphene oxide (RGO-ZnO) were prepared by a simple chemical approach. The graphene oxide (GO) films transferred onto ZnO films by spin coating were reduced to RGO films by two steps (exposed to hydrazine vapor for 12 h and annealed at 600 °C). The crystal structures, electrical and photoluminescence properties of RGO-ZnO films on quartz substrates were systematically studied. The SEM images illustrated that RGO layers have successfully been coated on the ZnO films very tightly. The PL properties of RGO-ZnO were studied. PL spectra show two sharp peaks at 390 nm and a broad visible emission around 490 nm. The resistivity of RGO-ZnO films was measured by a Hall measurement system, RGO as nanofiller considerably decrease the resistivity of ZnO films. An electrode was fabricated, using RGO-ZnO films deposited on Si substrate as active materials, for super capacitor application. By comparison of different results, we conclude that the RGO-ZnO composite material couples possess the properties of super capacitor. Project supported by the National Natural Science Foundation of China (Nos. 61464005, 51562015), the Natural Science Foundation of Jiangxi Province (Nos. 20143ACB21004, 20151BAB212008, 20171BAB216015), the Jiangxi Province Foreign Cooperation Projects, China (No. 20151BDH80031), the Leader Training Object Project of Major Disciplines Academic and Technical of Jiangxi Province (No. 20123BCB22002), and the Key Technology R & D Program of the Jiangxi Provine of Science and Technology (No. 20171BBE50053).

  16. Increasing the maximally random jammed density with electric field to reduce the fat level in chocolate

    Science.gov (United States)

    Tao, R.; Tang, H.

    Chocolate is one of the most popular food types and flavors in the world. Unfortunately, at present, chocolate products contain too much fat, leading to obesity. For example, a typical molding chocolate has various fat up to 40% in total and chocolate for covering ice cream has fat 50 -60%. Especially, as children are the leading chocolate consumers, reducing the fat level in chocolate products to make them healthier is important and urgent. While this issue was called into attention and elaborated in articles and books decades ago and led to some patent applications, no actual solution was found unfortunately. Why is reducing fat in chocolate so difficult? What is the underlying physical mechanism? We have found that this issue is deeply related to the basic science of soft matters, especially to their viscosity and maximally random jammed (MRJ) density φx. All chocolate productions are handling liquid chocolate, a suspension with cocoa solid particles in melted fat, mainly cocoa butter. The fat level cannot be lower than 1-φxin order to have liquid chocolate to flow. Here we show that that with application of an electric field to liquid chocolate, we can aggregate the suspended particles into prolate spheroids. This microstructure change reduces liquid chocolate's viscosity along the flow direction and increases its MRJ density significantly. Hence the fat level in chocolate can be effectively reduced. We are looking forward to a new class of healthier and tasteful chocolate coming to the market soon. Dept. of Physics, Temple Univ, Philadelphia, PA 19122.

  17. Approaches for Reduced Order Modeling of Electrically Actuated von Karman Microplates

    KAUST Repository

    Saghir, Shahid

    2016-07-25

    This article presents and compares different approaches to develop reduced order models for the nonlinear von Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. Results among the various reduced-order modes are compared and are also validated by comparing to results of the finite-element model. Further, the reduced order models are employed to capture the forced dynamic response of the microplate under small and large vibration amplitudes. Comparison of the different approaches are made for this case. Keywords: electrically actuated microplates, static analysis, dynamics of microplates, diaphragm vibration, large amplitude vibrations, nonlinear dynamics

  18. Does electrical stimulation reduce spasticity after stroke? A randomized controlled study.

    Science.gov (United States)

    Bakhtiary, Amir H; Fatemy, Elham

    2008-05-01

    To investigate the therapeutic effect of electrical stimulation on plantarflexor spasticity in stroke patients. A randomized controlled clinical trial study. Rehabilitation clinic of Semnan University of Medical Sciences. Forty stroke patients (aged from 42 to 65 years) with ankle plantarflexor spasticity. Fifteen minutes of inhibitory Bobath techniques were applied to one experimental group and a combination of 9 minutes of electrical stimulation on the dorsiflexor muscles and inhibitory Bobath techniques was applied to another group for 20 sessions daily. Passive ankle joint dorsiflexion range of motion, dorsiflexion strength test, plantarflexor muscle tone by Modified Ashworth Scale and soleus muscle H-reflex. The mean change of passive ankle joint dorsiflexion in the combination therapy group was 11.4 (SD 4.79) degrees versus 6.1 (SD 3.09) degrees, which was significantly higher (P = 0.001). The mean change of plantarflexor muscle tonicity measured by the Modified Ashworth Scale in the combination therapy group was -1.6 (SD 0.5) versus -1.1 (SD 0.31) in the Bobath group (P = 0.001). Dorsiflexor muscle strength was also increased significantly (P = 0.04) in the combination therapy group (0.7 +/- 0.37) compared with the Bobath group (0.4 +/- 0.23). However, no significant change in the amplitude of H-reflex was found between combination therapy (-0.41 +/- 0.29) and Bobath (-0.3 +/- 0.28) groups. Therapy combining Bobath inhibitory technique and electrical stimulation may help to reduce spasticity effectively in stroke patients.

  19. Reducing deuterium-tritium ice roughness by electrical heating of the saturated vapor

    International Nuclear Information System (INIS)

    Mapoles, E.R.; Sater, J.D.; Monsler, E.; Pipes, J.

    1996-01-01

    High gain targets for inertial confinement fusion (ICF) contain a layer of deuterium-tritium (DT) ice which surrounds a volume of DT gas in thermal equilibrium with the solid. The roughness of the cryogenic fuel layer inside of ICF targets is one of the sources of imperfections which cause implosions to deviate from perfect one dimensional performance. Experiments at Lawrence Livermore National Laboratory have shown that applying a heat flux across the inner surface of a hydrogen layer such as that inside an ICF target reduces the intrinsic roughness of the surface. We have developed a technique to generate this heat flux by applying and electric field to the DT vapor in the center of these shells. This vapor has a small but significant conductivity due to ionization caused by beta decay of tritium in the vapor and the solid. We describe here experiments using a 1.15 GHz cavity to apply an electric field to frozen DT inside of a sapphire test cell. The cell and cavity geometry allows visual observation of the frozen layers

  20. Anomalous electrical signals associated with microbial activity: Results from Iron and Nitrate-Reducing Columns

    Science.gov (United States)

    Aaron, R. B.; Zheng, Q.; Flynn, P.; Singha, K.; Brantley, S.

    2008-12-01

    Three flow-through columns outfitted with Ag/AgCl electrodes were constructed to test the effects of different microbial processes on the geophysical measurements of self potential (SP), bulk electrical conductivity (σ b), and induced polarization (IP). The columns were filled with sieved, Fe-bearing subsurface sediment from the Delmarva Peninsula near Oyster, VA, inoculated (9:1 ratio) with a freshly-collected, shallow subsurface sediment from a wetland floodplain (Dorn Creek) near Madison, WI. Each of the columns was fed anoxic and sterile PIPES buffered artificial groundwater (PBAGW) containing different concentrations of acetate and nitrate. The medium fed to Column 1 (nitrate-reducing) was amended with 100 μM acetate and 2 mM nitrate. Column 2 (iron-reducing) was run with PBAGW containing 1.0 mM acetate and 0 mM nitrate. Column 3 (alternating redox state) was operated under conditions designed to alternately stimulate nitrate-reducing and iron-reducing populations to provide conditions, i.e., the presence of both nitrate and microbially-produced Fe(II), that would allow growth of nitrate-dependent Fe(II)-oxidizing populations. We operated Column 3 with a cycling strategy of 14-18 days of high C medium (1 mM acetate and 100 μ M nitrate) followed by 14-18 days of low C medium (100 μ M acetate and 2 mM nitrate). Effluent chemistry (NO3-, NO2-, NH4+, acetate, and Fe2+) was sampled daily for four months so as to be concurrent with the electrical measurements. We observed chemical evidence of iron reduction (dissolved [Fe(II)] = 0.2mM) in the effluent from the iron reduction and alternating redox columns. Chemical depletion of NO3- ([NO3-] ranged from 1 to 0.02mM), the production of NO2-, and possible production of NH4+ (0.2 mM) was observed in the nitrate reducing column as well as the alternating redox column. All three columns displayed loss of acetate as microbial activity progressed. σ b remained constant in the alternating redox column (~0.15 S

  1. Spatial peak-load pricing

    International Nuclear Information System (INIS)

    Arellano, M. Soledad; Serra, Pablo

    2007-01-01

    This article extends the traditional electricity peak-load pricing model to include transmission costs. In the context of a two-node, two-technology electric power system, where suppliers face inelastic demand, we show that when the marginal plant is located at the energy-importing center, generators located away from that center should pay the marginal capacity transmission cost; otherwise, consumers should bear this cost through capacity payments. Since electric power transmission is a natural monopoly, marginal-cost pricing does not fully cover costs. We propose distributing the revenue deficit among users in proportion to the surplus they derive from the service priced at marginal cost. (Author)

  2. Transcutaneous electrical nerve stimulation reduces acute low back pain during emergency transport.

    Science.gov (United States)

    Bertalanffy, Alexander; Kober, Alexander; Bertalanffy, Petra; Gustorff, Burkhard; Gore, Odette; Adel, Sharam; Hoerauf, Klaus

    2005-07-01

    Patients with acute low back pain may require emergency transport because of pain and immobilization. Transcutaneous electrical nerve stimulation (TENS) is a nonpharmaceutical therapy for patients with low back pain. To evaluate the efficacy of paramedic-administered TENS in patients with acute low back pain during emergency transport. This was a prospective, randomized study involving 74 patients transported to hospital. The patients were randomly assigned to two groups: group 1 (n = 36) was treated with true TENS, while group 2 (n = 36) was treated with sham TENS. The authors recorded pain and anxiety as the main outcome variables using a visual analog scale (VAS). The authors recorded a significant (p pain reduction (mean +/- standard deviation) during transport in group 1 (79.2 +/- 6.5 mm VAS to 48.9 +/- 8.2 mm VAS), whereas pain scores remained unchanged in group 2 (75.9 +/- 16.4 mm VAS and 77.1 +/- 11.2 mm VAS). Similarly, the scores for anxiety were significantly reduced (p TENS was found to be effective and rapid in reducing pain during emergency transport of patients with acute low back pain and should be considered due to its ease of use and lack of side effects in the study population.

  3. The benefits and costs of reducing emissions from the electricity sector.

    Science.gov (United States)

    Palmer, Karen; Burtraw, Dallas; Shih, Jhih-Shyang

    2007-04-01

    Recent federal policy proposals to reduce emissions of sulfur dioxide (SO(2)), nitrogen oxides (NO(x)), and mercury from the US electricity sector promise important improvements in air quality and reductions in acid deposition. The cost of achieving these reductions depends on the form and stringency of the regulation. In this research, we analyze the economic benefits and costs of the US Environmental Protection Agency's (EPA's) Clean Air Interstate Rule (CAIR) as characterized in the supplemental rule proposed in June 2004, and the Clean Air Mercury Rule (CAMR) as proposed in February 2004. The assessment integrates a model of the electricity sector, two models of atmospheric transport of air pollutants, and a model of environmental and public health endpoints affected by pollution. We model explicitly the emissions of SO(2), NO(x), mercury and carbon dioxide (CO(2)) and the effects of changes in emissions of SO(2) and NO(x) on environmental and public health. The manner in which mercury emissions are regulated will have important implications not only for the cost of the regulation, but also for emission levels for SO(2) and NO(x) and where those emissions are located. We find the economic benefits of CAIR and CAMR are far greater than the costs. Recent estimates of benefits of reductions in mercury and acidification indicate that our model captures the lion's share of quantifiable benefits. We also find that the EPA would have been justified on economic grounds in pursuing additional SO(2) emissions reductions beyond the requirements of CAIR.

  4. Increasing electric vehicle policy efficiency and effectiveness by reducing mainstream market bias

    International Nuclear Information System (INIS)

    Green, Erin H.; Skerlos, Steven J.; Winebrake, James J.

    2014-01-01

    Plug-in electric vehicles (PEVs) provide an opportunity for reducing energy use and emissions in the transportation sector. Currently, a number of federal policies are in place to incentivize deployment of PEVs to mainstream consumers with demographics and vehicle attribute preferences most common to today's new vehicle purchasers. This article argues that policies intending to give PEVs a foothold in the market should not focus on mainstream consumers and should instead focus on niche markets—specifically carsharing and postal fleets—and early adopters including green consumers. Two arguments can be made in support of eliminating the mainstream market bias of current policies toward a policy of cultivating niche markets. The first is efficiency: so far PEV policies featuring a mainstream market bias have proven to be inefficient and costly. The second is effectiveness: it is becoming increasingly evident that PEV policies would be more effective in achieving potential societal benefits if they focused on early adopters and niche markets using such approaches as strategic niche management, accessible loans and financing, and appropriately targeted incentives. PEV policies focused on early adopters and niche markets would create complementary system effects that will lead to increased PEV market penetration and realization of intended societal benefits. - Highlights: • We argue that U.S. electric vehicle policies are inefficient and ineffective. • We introduce “mainstream consumer bias” as an explanation for policy deficiencies. • We propose an alternative policy agenda to address some of these policy problems. • Proposed policy options include strategic niche management, targeted R and D and incentives, and loans

  5. Effect of rose water on structural, optical and electrical properties of composites of reduced graphene oxide-poly (vinyl alcohol) (PVA) grafted with silver nanoparticles

    Science.gov (United States)

    Kumar, Devender; Wadhwa, Heena; Mahendia, Suman; Chand, Fakir; Kumar, Shyam

    2017-02-01

    In this work, nanocomposites of reduced graphene oxide-poly (vinyl alcohol) (PVA) grafted with silver nanoparticles (rGO-PVA-Ag) were prepared in the absence and presence of rose water. The optical characterizations of prepared nanocomposites were done through UV-visible spectroscopy and Transmission Electron Microscopy (TEM) and Raman spectroscopy was employed for the surface characterization. The grafted silver (Ag) nanoparticles are found to be almost spherical in shape with reduction in their mean diameter from 47 nm to 26 nm after addition of rose water. The UV-visible absorption spectra of as-prepared rGO-PVA-Ag nanocomposites without and with rose water depicted surface plasmon resonance (SPR) peak at around 448 nm which coincides with the predicted spectra from simulation based on the Mie Theory. The electrical dc conductivity measurements as the function of temperature from room temperature to 55 °C were investigated. It has been found that use of rose water in synthesis process increases the electrical conductivity of the rGO-PVA-Ag. The mode of the electrical conduction in the composites can be explained using Efros-Shklovskii Variable Range Hopping mechanism (ES VRH).

  6. The role of advanced nuclear plants in reducing the environmental and economic impact of greenhouse emissions on electrical generation

    International Nuclear Information System (INIS)

    Redding, J.; Veitch, C.

    1995-01-01

    The paper discusses the potential impact of imposing economic penalties (externalities) in an effort to reduce emission levels and environmental effect of existing and newly constructed electric facilities, on the selection of generation technology and fuel type, and how the nuclear industry's efforts to develop the next generation of nuclear power facilities will provide an economic, low emission generating option to meet the expanding global electrical needs. The efforts of the US nuclear industry to improve the performance and economics of the existing and next generation facilities are presented, focusing on General Electric's Advanced Boiling Water Reactor and Simplified Boiling Water Reactor. 5 refs., 4 figs., 2 tabs

  7. Increasing coal-fired power generation efficiency to reduce electric cost and environmental emissions

    International Nuclear Information System (INIS)

    Torrens, I.M.; Stenzel, W.C.

    1997-01-01

    New generating capacity required globally between 1993 and 2010 is estimated to be around 1500 GW, of which some two-thirds will be outside the OECD, and some 40 % in the Asian non-OECD countries. Coal is likely to account for a substantial fraction of this new generation. Today's state-of-the-art supercritical coal-fired power plant has a conversion efficiency of some 42-45 %. The capital cost increase associated with the supercritical or ultra-supercritical pulverized coal power plant compared to a conventional subcritical plant is small to negligible. The increased efficiency associated with the supercritical plant leads to an actual reduction in the total cost of electricity generated in cents/kWh, relative to a conventional plant. Despite this, the power sector continues to build subcritical plants and has no near term plans to increase the efficiency of power plants in the projects it is developing. Advanced clean coal technologies such as integrated gasification combined cycle and pressurized fluidized bed combustion will be selected for independent power projects only in very specific circumstances. Advanced clean coal plants can be operated reliably and with superior performance, and specifically that their present estimated capital costs can be reduced substantially to a point where they are competitive with state-of-the-art pulverized coal technologies. (R.P.)

  8. A New System to Estimate and Reduce Electrical Energy Consumption of Domestic Hot Water in Spain

    Directory of Open Access Journals (Sweden)

    Alberto Gutierrez-Escolar

    2014-10-01

    Full Text Available Energy consumption rose about 28% over the 2001 to 2011 period in the Spanish residential sector. In this environment, domestic hot water (DHW represents the second highest energy demand. There are several methodologies to estimate DHW consumption, but each methodology uses different inputs and some of them are based on obsolete data. DHW energy consumption estimation is a key tool to plan modifications that could enhance this consumption and we decided to update the methodologies. We studied DHW consumption with data from 10 apartments in the same building during 18 months. As a result of the study, we updated one chosen methodology, adapting it to the current situation. One of the challenges to improve efficiency of DHW use is that most of people are not aware of how it is consumed in their homes. To help this information to reach consumers, we developed a website to allow users to estimate the final electrical energy needed for DHW. The site uses three estimation methodologies and chooses the best fit based on information given by the users. Finally, the application provides users with recommendations and tips to reduce their DHW consumption while still maintaining the desired comfort level.

  9. Electricity

    CERN Document Server

    Basford, Leslie

    2013-01-01

    Electricity Made Simple covers the fundamental principles underlying every aspect of electricity. The book discusses current; resistance including its measurement, Kirchhoff's laws, and resistors; electroheat, electromagnetics and electrochemistry; and the motor and generator effects of electromagnetic forces. The text also describes alternating current, circuits and inductors, alternating current circuits, and a.c. generators and motors. Other methods of generating electromagnetic forces are also considered. The book is useful for electrical engineering students.

  10. Sizing community energy storage systems to reduce transformer overloading with emphasis on plug-in electric vehicle loads

    Science.gov (United States)

    Trowler, Derik Wesley

    The research objective of this study was to develop a sizing method for community energy storage systems with emphasis on preventing distribution transformer overloading due to plug-in electric vehicle charging. The method as developed showed the formulation of a diversified load profile based upon residential load data for several customers on the American Electric Power system. Once a load profile was obtained, plug-in electric vehicle charging scenarios which were based upon expected adoption and charging trends were superimposed on the load profile to show situations where transformers (in particular 25 kVA, 50 kVA, and 100 kVA) would be overloaded during peak hours. Once the total load profiles were derived, the energy and power requirements of community energy storage systems were calculated for a number of scenarios with different combinations of numbers of homes and plug-in electric vehicles. The results were recorded and illustrated into charts so that one could determine the minimum size per application. Other topics that were covered in this thesis were the state of the art and future trends in plug-in electric vehicle and battery chemistry adoption and development. The goal of the literature review was to confirm the already suspected notion that Li-ion batteries are best suited and soon to be most cost-effective solution for applications requiring small, efficient, reliable, and light-weight battery systems such as plug-in electric vehicles and community energy storage systems. This thesis also includes a chapter showing system modeling in MATLAB/SimulinkRTM. All in all, this thesis covers a wide variety of considerations involved in the designing and deploying of community energy storage systems intended to mitigate the effects of distribution transformer overloading.

  11. Cooling the Campus: Experiences from a Pilot Study to Reduce Electricity Use at Tufts University, USA, Using Social Marketing Methods

    Science.gov (United States)

    Marcell, Kristin; Agyeman, Julian; Rappaport, Ann

    2004-01-01

    A community-based social marketing (CBSM) campaign to reduce student electricity use and greenhouse gas emissions was undertaken at Tufts University in Medford, Massachusetts. Social marketing methods follow a commercial marketing model and involve market research into the planning, pricing, communication, distribution, and evaluation of methods…

  12. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446): Supplement No. 21

    International Nuclear Information System (INIS)

    1989-04-01

    Supplement 21 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, and 12 to that report were published. This supplement also lists the new issues that have been identified since Supplement 12 was issued and includes the evaluations for licensing items resolved in this interim period. 21 refs

  13. Battery Electric Vehicles can reduce greenhouse has emissions and make renewable energy cheaper in India

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Anand R [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Witt, Maggie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sheppard, Colin [Humboldt State Univ., Arcata, CA (United States); Harris, Andrew [Humboldt State Univ., Arcata, CA (United States)

    2015-07-01

    India's National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020. There are widespread concerns, both within and outside the government, that the Indian grid is not equipped to accommodate additional power demand from battery electric vehicles (BEVs). Such concerns are justified on the grounds of India's notorious power sector problems pertaining to grid instability and chronic blackouts. Studies have claimed that deploying BEVs in India will only

  14. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 13

    International Nuclear Information System (INIS)

    1986-05-01

    Supplement 13 to the Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan which was formulated by the applicant to resolve various construction and design issues raised by the Atomic Safety and Licensing Board, allegers, intervenor Citizens Association for Sound Energy (CASE), NRC inspections of various types, and Cygna Energy Services while conducting its independent design assessment. The NRC staff concludes that the CPRT Program Plan provides an overall structure for addressing all existing issues and any future issues which may be identified from further evaluations, and if properly implemented will provide important evidence of the design and construction quality of CPSES, and will identify any needed corrective action. The report identifies items to be addressed by the NRC staff during the implementation phase

  15. REDUCING ENERGY CONSUMPTION BY PASSENGER CAR WITH USING OF NON-ELECTRICAL HYBRID DRIVE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Tomas Skrucany

    2017-03-01

    Full Text Available Not only electrical hybrid technology is used for drivetrain of passenger cars. Also other systems using non-electrical principles (hydraulic or air pressure, mechanical energy storage can be found in current vehicles. There is a quantification of the spared energy by using a hybrid vehicle in the paper. Driving cy-cle ECE 15 was chosen as a platform for simulation of driving resistances.

  16. Using Economic Incentives to Reduce Electricity Consumption: A field Experiment in Matsuyama, Japan

    OpenAIRE

    Kenichi Mizobuchi; Kenji Takeuchi

    2012-01-01

    This study examines the effectiveness of economic incentives in promoting electricity-conservation behavior among Japanese households. Fifty-three Japanese households participated in a field experiment and were offered monetary rewards depending on their rate of reduction in electricity consumption. To avoid bias in sample selection, which is typically present in previous studies, we adopted a request-based approach for recruiting participants. Results showed that only 34% of the participants...

  17. Core fueling to produce peaked density profiles in large tokamaks

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; McGuire, K.M.; Schmidt, G.L.; Zweben, S.J.

    1994-06-01

    Peaking the density profile increases the usable bootstrap current and the average fusion power density; this could reduce the current drive power and increase the net output of power producing tokamaks. The use of neutral beams and pellet injection to produce peaked density profiles is assessed. We show that with radially ''hollow'' diffusivity profiles (and no particle pinch) moderately peaked density profiles can be produced by particle source profiles which are peaked off-axis. The fueling penetration requirements can therefore be relaxed and this greatly improves the feasibility of generating peaked density profiles in large tokamaks. In particular, neutral beam fueling does not require MeV particle energy. Even with beam voltages of ∼200 keV, however, exceptionally good particle confinement, τ p much-gt τ E is required to achieve net electrical power generation. In system with no power production requirement (e.g., neutron sources) neutral beam fueling should be capable of producing peaked density profiles in devices as large as ITER. Fueling systems with low energy cost per particle (such as cryogenic pellet injection) must be used in power producing tokamaks when τ p ∼ τ E . Simulations with pellet injection speeds of 7 km/sec show the peaking factor, n eo /left-angle n e right-angle, approaching 2

  18. Core fuelling to produce peaked density profiles in large tokamaks

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; McGuire, K.M.; Schmidt, G.L.; Zweben, S.J.

    1995-01-01

    Peaking the density profile increases the usable bootstrap current and the average fusion power density; this could reduce the current drive power and increase the net output of power producing tokamaks. The use of neutral beams and pellet injection to produce peaked density profiles is assessed. It is shown that with radially 'hollow' diffusivity profiles (and no particle pinch) moderately peaked density profiles can be produced by particle source profiles that are peaked off-axis. The fuelling penetration requirements can therefore be relaxed and this greatly improves the feasibility of generating peaked density profiles in large tokamaks. In particular, neutral beam fuelling does not require Megavolt particle energies. Even with beam voltages of ∼ 200 keV, however, exceptionally good particle confinement is needed to achieve net electrical power generation. The required ratio of particle to thermal diffusivities is an order of magnitude outside the range reported for tokamaks. In a system with no power production requirement (e.g., neutron sources) neutral beam fuelling should be capable of producing peaked density profiles in devices as large as ITER. Fuelling systems with low energy cost per particle - such as cryogenic pellet injection - must be used in power producing tokamaks when τ P ∼ τ E . Simulations with pellet injection speeds of 7 km/s show that the peaking factor, n e0 / e >, approaches 2. (author). 65 refs, 8 figs

  19. Influencing Factors and Development Trend Analysis of China Electric Grid Investment Demand Based on a Panel Co-Integration Model

    OpenAIRE

    Jinchao Li; Lin Chen; Yuwei Xiang; Jinying Li; Dong Peng

    2018-01-01

    Electric grid investment demand analysis is significant to reasonably arranging construction funds for the electric grid and reduce costs. This paper used the panel data of electric grid investment from 23 provinces of China between 2004 and 2016 as samples to analyze the influence between electric grid investment demand and GDP, population scale, social electricity consumption, installed electrical capacity, and peak load based on co-integration tests. We find that GDP and peak load have pos...

  20. Peak Shaving Considering Streamflow Uncertainties | Iwuagwu ...

    African Journals Online (AJOL)

    The main thrust of this paper is peak shaving with a Stochastic hydro model. In peak sharing, the amount of hydro energy scheduled may be a minimum but it serves to replace less efficient thermal units. The sample system is die Kainji hydro plant and the thermal units of the National Electric Power Authority. The random ...

  1. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  2. Energy efficiency to reduce residential electricity and natural gas use under climate change.

    Science.gov (United States)

    Reyna, Janet L; Chester, Mikhail V

    2017-05-15

    Climate change could significantly affect consumer demand for energy in buildings, as changing temperatures may alter heating and cooling loads. Warming climates could also lead to the increased adoption and use of cooling technologies in buildings. We assess residential electricity and natural gas demand in Los Angeles, California under multiple climate change projections and investigate the potential for energy efficiency to offset increased demand. We calibrate residential energy use against metered data, accounting for differences in building materials and appliances. Under temperature increases, we find that without policy intervention, residential electricity demand could increase by as much as 41-87% between 2020 and 2060. However, aggressive policies aimed at upgrading heating/cooling systems and appliances could result in electricity use increases as low as 28%, potentially avoiding the installation of new generation capacity. We therefore recommend aggressive energy efficiency, in combination with low-carbon generation sources, to offset projected increases in residential energy demand.

  3. Strategies to reduce electricity consumption on dairy farms : an economic and environmental assessment

    NARCIS (Netherlands)

    Upton, J.R.

    2014-01-01

    The aim of this thesis was to assess how, and to what extent, do managerial and technology changes affect electricity consumption, associated costs and greenhouse gas (GHG) emissions of dairy farms. Dairy farms in Ireland are expected to expand in the future, due to policy incentives and the

  4. Future electricity: the challenge of reducing both carbon and water footprint

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2016-01-01

    We estimate the consumptive water footprint (WF) of electricity and heat in 2035 for the four energy scenarios of the International Energy Agency (IEA) and a fifth scenario with a larger percentage of solar energy. Counter-intuitively, the ‘greenest’ IEA scenario (with the smallest carbon footprint)

  5. Future electricity: The challenge of reducing both carbon and water footprint.

    Science.gov (United States)

    Mekonnen, Mesfin M; Gerbens-Leenes, P W; Hoekstra, Arjen Y

    2016-11-01

    We estimate the consumptive water footprint (WF) of electricity and heat in 2035 for the four energy scenarios of the International Energy Agency (IEA) and a fifth scenario with a larger percentage of solar energy. Counter-intuitively, the 'greenest' IEA scenario (with the smallest carbon footprint) shows the largest WF increase over time: an increase by a factor four over the period 2010-2035. In 2010, electricity from solar, wind, and geothermal contributed 1.8% to the total. The increase of this contribution to 19.6% in IEA's '450 scenario' contributes significantly to the decrease of the WF of the global electricity and heat sector, but is offset by the simultaneous increase of the use of firewood and hydropower. Only substantial growth in the fractions of energy sources with small WFs - solar, wind, and geothermal energy - can contribute to a lowering of the WF of the electricity and heat sector in the coming decades. The fifth energy scenario - adapted from the IEA 450 scenario but based on a quick transition to solar, wind and geothermal energy and a minimum in bio-energy - is the only scenario that shows a strong decline in both carbon footprint (-66%) and consumptive WF (-12%) in 2035 compared to the reference year 2010. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Energy conservation prospects through electric load management

    Energy Technology Data Exchange (ETDEWEB)

    El-Shirbeeny, E H.T.

    1984-04-01

    In this paper, concepts of electric load management are discussed for effective energy conservation. It is shown that the conservation program must be comprehensive to provide solutions to the problems facing the electric consumer, the electric utility and the society by reducing the rate of growth of energy consumption and power system peak demand requirements. The impact of energy management programs on electric energy conservation is examined, with emphasis on efficiency, storage, cogeneration and controls with computers.

  7. Practical load management - Peak shaving using photovoltaics

    International Nuclear Information System (INIS)

    Berger, W.

    2009-01-01

    This article takes a look at how photovoltaic (PV) power generation can be used in a practical way to meet peak demands for electricity. Advice is provided on how photovoltaics can provide peak load 'shaving' through the correlation between its production and the peak loads encountered during the day. The situation regarding feed-in tariffs in Italy is discussed, as are further examples of installations in Germany and Austria. Further, an initiative of the American Southern California Edison utility is discussed which foresees the installation of large PV plant on the roofs of commercial premises to provide local generation of peak energy and thus relieve demands on their power transportation network.

  8. Electricity

    International Nuclear Information System (INIS)

    Tombs, F.

    1983-01-01

    The subject is discussed, with particular reference to the electricity industry in the United Kingdom, under the headings; importance and scope of the industry's work; future fuel supplies (estimated indigenous fossil fuels reserves); outlook for UK energy supplies; problems of future generating capacity and fuel mix (energy policy; construction programme; economics and pricing; contribution of nuclear power - thermal and fast reactors; problems of conversion of oil-burning to coal-burning plant). (U.K.)

  9. Peak Experience Project

    Science.gov (United States)

    Scott, Daniel G.; Evans, Jessica

    2010-01-01

    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  10. Electricity Recovery from Municipal Sewage Wastewater Using a Hydrogel Complex Composed of Microbially Reduced Graphene Oxide and Sludge

    Directory of Open Access Journals (Sweden)

    Naoko Yoshida

    2016-08-01

    Full Text Available Graphene oxide (GO has recently been shown to be an excellent anode substrate for exoelectrogens. This study demonstrates the applicability of GO in recovering electricity from sewage wastewater. Anaerobic incubation of sludge with GO formed a hydrogel complex that embeds microbial cells via π-π stacking of microbially reduced GO. The rGO complex was electrically conductive (23 mS·cm−1 and immediately produced electricity in sewage wastewater under polarization at +200 mV vs. Ag/AgCl. Higher and more stable production of electricity was observed with rGO complexes (179–310 μA·cm−3 than with graphite felt (GF; 79–95 μA·cm−3. Electrochemical analyses revealed that this finding was attributable to the greater capacitance and smaller internal resistance of the rGO complex. Microbial community analysis showed abundances of Geobacter species in both rGO and GF complexes, whereas more diverse candidate exoelectrogens in the Desulfarculaceae family and Geothrix genus were particularly prominent in the rGO complex.

  11. Employer Attitudes towards Peak Hour Avoidance

    NARCIS (Netherlands)

    Vonk Noordegraaf, D.M.; Annema, J.A.

    2012-01-01

    Peak Hour Avoidance is a relatively new Dutch mobility management measure. To reduce congestion frequent car drivers are given a financial reward for reducing the proportion of trips that they make during peak hours on a specific motorway section. Although previous studies show that employers are

  12. Employer attitudes towards peak hour avoidance

    NARCIS (Netherlands)

    Noordegraaf, D.M.V.; Annema, J.A.

    2012-01-01

    Peak Hour Avoidance is a relatively new Dutch mobility management measure. To reduce congestion frequent car drivers are given a financial reward for reducing the proportion of trips that they make during peak hours on a specific motorway section. Although previous studies show that employers are

  13. Combined treatment with mild heat, manothermosonication and pulsed electric fields reduces microbial growth in milk

    OpenAIRE

    Halpin, R. M.; Cregenzan-Alberti, O.; Whyte, P.; Lyng, J. G.; Noci, F.

    2013-01-01

    In recent years, there has been considerable interest in non-thermal milk processing. The objective of the present study was to assess the efficacy of two non-thermal technologies (manothermosonication; MTS, and pulsed electric fields; PEF) in comparison to thermal pasteurisation, by assessing the microbial levels of each of these milk samples post-processing. Homogenised milk was subjected to MTS (frequency; 20 kHz, amplitude; 27.9 μm, pressure; 225 kPa) at two temperatures (37 °C or 55 °C),...

  14. Chronic Electrical Stimulation at Acupoints Reduces Body Weight and Improves Blood Glucose in Obese Rats via Autonomic Pathway.

    Science.gov (United States)

    Liu, Jiemin; Jin, Haifeng; Foreman, Robert D; Lei, Yong; Xu, Xiaohong; Li, Shiying; Yin, Jieyun; Chen, Jiande D Z

    2015-07-01

    The aim of this study was to investigate effects and mechanisms of chronic electrical stimulation at acupoints (CEA) using surgically implanted electrodes on food intake, body weight, and metabolisms in diet-induced obese (DIO) rats. Thirty-six DIO rats were chronically implanted with electrodes at acupoints ST-36 (Zusanli). Three sets of parameters were tested: electrical acupuncture (EA) 1 (2-s on, 3-s off, 0.5 ms, 15 Hz, 6 mA), EA2 (same as EA1 but continuous pulses), and EA3 (same as EA2 but 10 mA). A chronic study was then performed to investigate the effects of CEA on body weight and mechanisms involving gastrointestinal hormones and autonomic functions. EA2 significantly reduced food intake without uncomfortable behaviors. CEA at EA2 reduced body weight and epididymal fat pad weight (P fasting plasma level of glucagon-like peptide-1 (GLP-1) and peptide YY (P < 0.05); the increase of GLP-1 was inversely correlated with postprandial blood glucose (R (2) = 0.89, P < 0.05); and the plasma ghrelin level remained unchanged. EA increased sympathetic activity (P < 0.01) and reduced vagal activity (P < 0.01). CEA at ST-36 reduces body weight and improves blood glucose possibly attributed to multiple mechanisms involving gastrointestinal motility and hormones via the autonomic pathway.

  15. Study on reduction of consumption and peak demand of electric power used in residential houses with solar heating and PV systems; Solar house no fuka heijunka to energy sakugen koka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, M.; Endo, T. [Kogakuin University, Tokyo (Japan)

    1994-12-08

    A model house was simulated to reduce the consumption and peak demand for the photovoltaic power generation system, and solar heat air heating and hot water supply system in the solar house. As a type of construction, both wooden construction and reinforced concrete (RC) construction were selected with a total floor area of 125m{sup 2}. All the rooms were equipped with an air conditioner by heat pump from the air thermal source. A solar heat floor heater was simultaneously installed on the first floor. The hot water supply load was 4.8MWh per year. A commercial grid-connected on-site system was applied to the photovoltaic power generation with a 20m{sup 2} wide monocrystalline Si solar cell panel. As for the fluctuation in power load, the peak at the time of rising is more reduced in the RC house than in the wooden house, because the former is smaller in temperature fluctuation than the latter during the intermittence of air conditioning (as per the specified operational schedule). Therefore, the power is more leveled off in the former than in the latter. Between both, difference was hardly made in energy consumption per year. The ratio of dependency was 47% upon the photovoltaic power generation system, while it was 50% and 77%, under the air heating power load and hot water supply power load, respectively, upon the solar heat air heating and hot water supply system, so that both systems were considerably effective in saving the energy. 5 refs., 7 figs., 1 tab.

  16. Peak-interviewet

    DEFF Research Database (Denmark)

    Raalskov, Jesper; Warming-Rasmussen, Bent

    Peak-interviewet er en særlig effektiv metode til at gøre ubevidste menneskelige ressourcer bevidste. Fokuspersonen (den interviewede) interviewes om en selvvalgt, personlig succesoplevelse. Terapeuten/coachen (intervieweren) spørger ind til processen, som ledte hen til denne succes. Herved afdæk...... fokuspersonen ønsker at tage op (nye mål eller nye processer). Nærværende workingpaper beskriver, hvad der menes med et peak-interview, peakinterviwets teoretiske fundament samt metodikken til at foretage et tillidsfuldt og effektiv peak-interview....

  17. Reduced Limit on the Permanent Electric Dipole Moment of ^{199}Hg.

    Science.gov (United States)

    Graner, B; Chen, Y; Lindahl, E G; Heckel, B R

    2016-04-22

    This Letter describes the results of the most recent measurement of the permanent electric dipole moment (EDM) of neutral ^{199}Hg atoms. Fused silica vapor cells containing enriched ^{199}Hg are arranged in a stack in a common magnetic field. Optical pumping is used to spin polarize the atoms orthogonal to the applied magnetic field, and the Faraday rotation of near-resonant light is observed to determine an electric-field-induced perturbation to the Larmor precession frequency. Our results for this frequency shift are consistent with zero; we find the corresponding ^{199}Hg EDM d_{Hg}=(-2.20±2.75_{stat}±1.48_{syst})×10^{-30}e cm. We use this result to place a new upper limit on the ^{199}Hg EDM |d_{Hg}|<7.4×10^{-30}e cm (95% C.L.), improving our previous limit by a factor of 4. We also discuss the implications of this result for various CP-violating observables as they relate to theories of physics beyond the standard model.

  18. Reducing Stiffness and Electrical Losses of High Channel Hybrid Nerve Cuff Electrodes

    National Research Council Canada - National Science Library

    Schuettler, M

    2001-01-01

    .... Interconnection lines were made of only 300 nm of sputtered gold, which led to high line drops. Cold electroplating was used to thicken the lines to 3 microns, which reduced the mean track resistance from 480 ohms to 10 ohms...

  19. Peak power ratio generator

    Science.gov (United States)

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  20. Peak Oil, Peak Coal and Climate Change

    Science.gov (United States)

    Murray, J. W.

    2009-05-01

    Research on future climate change is driven by the family of scenarios developed for the IPCC assessment reports. These scenarios create projections of future energy demand using different story lines consisting of government policies, population projections, and economic models. None of these scenarios consider resources to be limiting. In many of these scenarios oil production is still increasing to 2100. Resource limitation (in a geological sense) is a real possibility that needs more serious consideration. The concept of 'Peak Oil' has been discussed since M. King Hubbert proposed in 1956 that US oil production would peak in 1970. His prediction was accurate. This concept is about production rate not reserves. For many oil producing countries (and all OPEC countries) reserves are closely guarded state secrets and appear to be overstated. Claims that the reserves are 'proven' cannot be independently verified. Hubbert's Linearization Model can be used to predict when half the ultimate oil will be produced and what the ultimate total cumulative production (Qt) will be. US oil production can be used as an example. This conceptual model shows that 90% of the ultimate US oil production (Qt = 225 billion barrels) will have occurred by 2011. This approach can then be used to suggest that total global production will be about 2200 billion barrels and that the half way point will be reached by about 2010. This amount is about 5 to 7 times less than assumed by the IPCC scenarios. The decline of Non-OPEC oil production appears to have started in 2004. Of the OPEC countries, only Saudi Arabia may have spare capacity, but even that is uncertain, because of lack of data transparency. The concept of 'Peak Coal' is more controversial, but even the US National Academy Report in 2007 concluded only a small fraction of previously estimated reserves in the US are actually minable reserves and that US reserves should be reassessed using modern methods. British coal production can be

  1. Novel MSVPWM to reduce the inductor current ripple for Z-source inverter in electric vehicle applications.

    Science.gov (United States)

    Zhang, Qianfan; Dong, Shuai; Xue, Ping; Zhou, Chaowei; Cheng, ShuKang

    2014-01-01

    A novel modified space vector pulse width modulation (MSVPWM) strategy for Z-Source inverter is presented. By rearranging the position of shoot-through states, the frequency of inductor current ripple is kept constant. Compared with existing MSVPWM strategies, the proposed approach can reduce the maximum inductor current ripple. So the volume of Z-source network inductor can be designed smaller, which brings the beneficial effect on the miniaturization of the electric vehicle controller. Theoretical findings in the novel MSVPWM for Z-Source inverter have been verified by experiment results.

  2. Properly placed shade trees reduce summertime electricity bills in Sacramento, California

    Science.gov (United States)

    Geoffery H. Donovan; David R. Butry

    2009-01-01

    The discovery that shade trees can reduce home cooling costs is hardly surprising. Anybody who has sat under a tree on a warm summer day understands the shade benefit of trees. However, quantifying the effect a shade tree has on home energy use and carbon footprint, and identifying the optimal location for a shade tree, is less straightforward. Past studies that have...

  3. Technical Potential for Peak Load Management Programs in New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, B.J.

    2002-12-13

    Restructuring is attempting to bring the economic efficiency of competitive markets to the electric power industry. To at least some extent it is succeeding. New generation is being built in most areas of the country reversing the decades-long trend of declining reserve margins. Competition among generators is typically robust, holding down wholesale energy prices. Generators have shown that they are very responsive to price signals in both the short and long term. But a market that is responsive only on the supply side is only half a market. Demand response (elasticity) is necessary to gain the full economic advantages that restructuring can offer. Electricity is a form of energy that is difficult to store economically in large quantities. However, loads often have some ability to (1) conveniently store thermal energy and (2) defer electricity consumption. These inherent storage and control capabilities can be exploited to help reduce peak electric system consumption. In some cases they can also be used to provide system reliability reserves. Fortunately too, technology is helping. Advances in communications and control technologies are making it possible for loads ranging from residential through commercial and industrial to respond to economic signals. When we buy bananas, we don't simply take a dozen and wait a month to find out what the price was. We always ask about the price before we decide how many bananas we want. Technology is beginning to allow at least some customers to think about their electricity consumption the same way they think about most of their other purchases. And power system operators and regulators are beginning to understand that customers need to remain in control of their own destinies. Many customers (residential through industrial) are willing to respond to price signals. Most customers are not able to commit to specific responses months or years in advance. Electricity is a fluid market commodity with a volatile value to both

  4. Electrical stimulation reduces smokers' craving by modulating the coupling between dorsal lateral prefrontal cortex and parahippocampal gyrus.

    Science.gov (United States)

    Yang, Li-Zhuang; Shi, Bin; Li, Hai; Zhang, Wei; Liu, Ying; Wang, Hongzhi; Zhou, Yanfei; Wang, Ying; Lv, Wanwan; Ji, Xuebing; Hudak, Justin; Zhou, Yifeng; Fallgatter, Andreas J; Zhang, Xiaochu

    2017-08-01

    Applying electrical stimulation over the prefrontal cortex can help nicotine dependents reduce cigarette craving. However, the underlying mechanism remains ambiguous. This study investigates this issue with functional magnetic resonance imaging. Thirty-two male chronic smokers received real and sham stimulation over dorsal lateral prefrontal cortex (DLPFC) separated by 1 week. The neuroimaging data of the resting state, the smoking cue-reactivity task and the emotion task after stimulation were collected. The craving across the cue-reactivity task was diminished during real stimulation as compared with sham stimulation. The whole-brain analysis on the cue-reactivity task revealed a significant interaction between the stimulation condition (real vs sham) and the cue type (smoking vs neutral) in the left superior frontal gyrus and the left middle frontal gyrus. The functional connectivity between the left DLPFC and the right parahippocampal gyrus, as revealed by both psychophysical interaction analysis and the resting state functional connectivity, is altered by electrical stimulation. Moreover, the craving change across the real and sham condition is predicted by alteration of functional connectivity revealed by psychophysical interaction analysis. The local and long-distance coupling, altered by the electrical stimulation, might be the underlying neural mechanism of craving regulation. © The Author (2017). Published by Oxford University Press.

  5. A Simultaneous and Continuous Excitation Method for High-Speed Electrical Impedance Tomography with Reduced Transients and Noise Sensitivity

    Directory of Open Access Journals (Sweden)

    Antoine Dupré

    2018-03-01

    Full Text Available This paper presents a concept for soft field tomographic scan of all the projections of electromagnetic waves emanating from an array of electrodes. Instead of the sequential excitation of all pairs of electrodes in the list of all projections, the new method present here consists of a single and continuous excitation. This excitation signal is the linear combination of the excitation signals in the projection set at different AC frequencies. The response to a given projection is discriminated by selecting the corresponding AC frequency component in the signal spectra of the digitally demodulated signals. The main advantage of this method is the suppression of transients after each projection, which is particularly problematic in electrical impedance tomography due to contact impedance phenomena and skin effect. The second benefit over the sequential scan method is the increased number of samples for each measurement for reduced noise sensitivity with digital demodulation. The third benefit is the increased temporal resolution in high-speed applications. The main drawback is the increased number of signal sources required (one per electrode. This paper focuses on electrical impedance tomography, based on earlier work by the authors. An experimental proof-of-concept using a simple 4-electrodes electrical impedance tomographic system is presented using simulations and laboratory data. The method presented here may be extended to other modalities (ultrasonic, microwave, optical, etc..

  6. Conceptual design of a nucleo electric simulator with PBMR reactor based in Reduced order models

    International Nuclear Information System (INIS)

    Valle H, J.; Morales S, J.B.

    2005-01-01

    This project has as purpose to know to depth the operation of a PBMR nucleo electric type (Pebble Bed Modular Reactor), which has a reactor of moderate graphite spheres and fuel of uranium dioxide cooled with Helium and Brayton thermodynamic cycle. The simulator seeks to describe the dynamics of the one process of energy generation in the nuclear fuel, the process of transport toward the coolant one and the conversion to mechanical energy in the turbo-generators as well as in the heat exchangers indispensable for the process. The dynamics of reload of the fuel elements it is not modeled in detail but their effects are represented in the parameters of the pattern. They are modeled also the turbo-compressors of the primary circuit of the work fluid. The control of the power of the nuclear reactor is modeled by means of reactivity functions specified in the simulation platform. The proposed mathematical models will be settled in the platform of simulation of Simulink-Mat Lab. The proposed control panels for this simulator can be designed and to implement using the box of tools of Simulink that facilitates this process. The work presents the mathematical models more important used for their future implementation in Simulink. (Author)

  7. Newly developed integrated model to reduce risks in the electricity market

    International Nuclear Information System (INIS)

    Mo, Birger

    2001-01-01

    A new model which integrates hydro-scheduling and financial hedging has been developed in cooperation with Norsk Hydro. We believe the new tool will be useful for owners of hydropower plants that want to reduce risks in the power market. The model development started in 1997 and was financed by Norsk Hydro. As of 1998, the main financial contributor has been the Research Council of Norway through a project in the Strategic Institute Programme. (author)

  8. Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories.

    Directory of Open Access Journals (Sweden)

    Paulo S Boggio

    Full Text Available A recent study found that false memories were reduced by 36% when low frequency repetitive transcranial magnetic stimulation (rTMS was applied to the left anterior temporal lobe after the encoding (study phase. Here we were interested in the consequences on a false memory task of brain stimulation throughout the encoding and retrieval task phases. We used transcranial direct current stimulation (tDCS because it has been shown to be a useful tool to enhance cognition. Specifically, we examined whether tDCS can induce changes in a task assessing false memories. Based on our preliminary results, three conditions of stimulation were chosen: anodal left/cathodal right anterior temporal lobe (ATL stimulation ("bilateral stimulation"; anodal left ATL stimulation (with a large contralateral cathodal electrode--referred as "unilateral stimulation" and sham stimulation. Our results showed that false memories were reduced significantly after the two active conditions (unilateral and bilateral stimulation as compared with sham stimulation. There were no significant changes in veridical memories. Our findings show that false memories are reduced by 73% when anodal tDCS is applied to the anterior temporal lobes throughout the encoding and retrieval stages, suggesting a possible strategy for improving certain aspects of learning.

  9. Make peak flow a habit

    Science.gov (United States)

    Asthma - make peak flow a habit; Reactive airway disease - peak flow; Bronchial asthma - peak flow ... 2014:chap 55. National Asthma Education and Prevention Program website. How to use a peak flow meter. ...

  10. Automated asteroseismic peak detections

    DEFF Research Database (Denmark)

    de Montellano, Andres Garcia Saravia Ortiz; Hekker, S.; Themessl, N.

    2018-01-01

    Space observatories such as Kepler have provided data that can potentially revolutionize our understanding of stars. Through detailed asteroseismic analyses we are capable of determining fundamental stellar parameters and reveal the stellar internal structure with unprecedented accuracy. However......, such detailed analyses, known as peak bagging, have so far been obtained for only a small percentage of the observed stars while most of the scientific potential of the available data remains unexplored. One of the major challenges in peak bagging is identifying how many solar-like oscillation modes are visible...... of detected oscillation modes. The algorithm presented here opens the possibility for detailed and automated peak bagging of the thousands of solar-like oscillators observed by Kepler....

  11. Electrical charging characteristics of the hetero layer film for reducing water-borne paint contamination in electrostatic rotary atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y.; Imanishi, T.; Yoshida, O.; Mizuno, A. [ABB Japan, Tokyo (Japan)

    2010-07-01

    The electrostatic rotary atomizer is the most efficient of all liquid spray painting methods. Its use minimizes the waste of paint and reduces emissions of volatile organic compounds (VOCs). Water-borne painting processes which use water-soluble paint also reduce VOC emissions, but the atomizer body is easily contaminated by the paint mists. The Institute of Electrical and Electronics Engineers (IEEE) considered the causes of water-borne paint contamination and presented the experimental results of a contamination proof system in which the atomizer is surrounded by the repelling film that is charged and repels the incoming paint droplets. Among the key factors for repelling film were electrical properties, such as low capacitance and high insulation to keep high surface potential. Charging uniformity was found to be among the most important characteristic to avoid contamination. The pulse electro-acoustic (PEA) method was used to check these features using space charge measurements inside the repelling film. It was concluded that hetero layer films have more uniform charging characteristics than single layer films.

  12. Decentralized Electric Vehicle Charging Strategies for Reduced Load Variation and Guaranteed Charge Completion in Regional Distribution Grids

    Directory of Open Access Journals (Sweden)

    Weige Zhang

    2017-01-01

    Full Text Available A novel, fully decentralized strategy to coordinate charge operation of electric vehicles is proposed in this paper. Based on stochastic switching control of on-board chargers, this strategy ensures high-efficiency charging, reduces load variations to the grid during charging periods, achieves charge completion with high probability, and accomplishes approximate “valley-filling”. Further improvements on the core strategy, including individualized power management, adaptive strategies, and battery support systems, are introduced to further reduce power fluctuation variances and to guarantee charge completion. Stochastic analysis is performed to establish the main properties of the strategies and to quantitatively show the performance improvements. Compared with the existing decentralized charging strategies, the strategies proposed in this paper can be implemented without any information exchange between grid operators and electric vehicles (EVs, resulting in a communications cost reduction. Additionally, it is shown that by using stochastic charging rules, a grid-supporting battery system with a very small energy capacity can achieve substantial reduction of EV load fluctuations with high confidence. An extensive set of simulations and case studies with real-world data are used to demonstrate the benefits of the proposed strategies.

  13. Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: Experimental investigation and reduced-order modeling

    KAUST Repository

    Ruzziconi, Laura

    2013-06-10

    We present a study of the dynamic behavior of a microelectromechanical systems (MEMS) device consisting of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected, the first four experimental natural frequencies are identified and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. Several backward and forward frequency sweeps are acquired. The nonlinear behavior is highlighted, which includes ranges of multistability, where the nonresonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is also capable of capturing the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. © 2013 IOP Publishing Ltd.

  14. Puget Sound area electric reliability plan

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Various conservation, load management, and fuel switching programs were considered as ways to reduce or shift system peak load. These programs operate at the end-use level, such as residential water heat. Figure D-1a shows what electricity consumption for water heat looks like on normal and extreme peak days. Load management programs, such as water heat control, are designed to reduce electricity consumption at the time of system peak. On the coldest day in average winter, system load peaks near 8:00 a.m. In a winter with extremely cold weather, electricity consumption increases fr all hours, and the system peak shifts to later in the morning. System load shapes in the Puget Sound area are shown in Figure D-1b for a normal winter peak day (February 2, 1988) and extreme peak day (February 3, 1989). Peak savings from any program are calculated to be the reduction in loads on the entire system at the hour of system peak. Peak savings for all programs are measured at 8:00 a.m. on a normal peak day and 9:00 a.m. on an extreme peak day. On extremely cold day, some water heat load shifts to much later in the morning, with less load available for shedding at the time of system peak. Models of hourly end-use consumption were constructed to simulate the impact of conservation, land management, and fuel switching programs on electricity consumption. Javelin, a time-series simulating package for personal computers, was chosen for the hourly analysis. Both a base case and a program case were simulated. 15 figs., 7 tabs.

  15. Achievable peak electrode voltage reduction by neurostimulators using descending staircase currents to deliver charge.

    Science.gov (United States)

    Halpern, Mark

    2011-01-01

    This paper considers the achievable reduction in peak voltage across two driving terminals of an RC circuit when delivering charge using a stepped current waveform, comprising a chosen number of steps of equal duration, compared with using a constant current over the total duration. This work has application to the design of neurostimulators giving reduced peak electrode voltage when delivering a given electric charge over a given time duration. Exact solutions for the greatest possible peak voltage reduction using two and three steps are given. Furthermore, it is shown that the achievable peak voltage reduction, for any given number of steps is identical for simple series RC circuits and parallel RC circuits, for appropriate different values of RC. It is conjectured that the maximum peak voltage reduction cannot be improved using a more complicated RC circuit.

  16. Automated asteroseismic peak detections

    Science.gov (United States)

    García Saravia Ortiz de Montellano, Andrés; Hekker, S.; Themeßl, N.

    2018-05-01

    Space observatories such as Kepler have provided data that can potentially revolutionize our understanding of stars. Through detailed asteroseismic analyses we are capable of determining fundamental stellar parameters and reveal the stellar internal structure with unprecedented accuracy. However, such detailed analyses, known as peak bagging, have so far been obtained for only a small percentage of the observed stars while most of the scientific potential of the available data remains unexplored. One of the major challenges in peak bagging is identifying how many solar-like oscillation modes are visible in a power density spectrum. Identification of oscillation modes is usually done by visual inspection that is time-consuming and has a degree of subjectivity. Here, we present a peak-detection algorithm especially suited for the detection of solar-like oscillations. It reliably characterizes the solar-like oscillations in a power density spectrum and estimates their parameters without human intervention. Furthermore, we provide a metric to characterize the false positive and false negative rates to provide further information about the reliability of a detected oscillation mode or the significance of a lack of detected oscillation modes. The algorithm presented here opens the possibility for detailed and automated peak bagging of the thousands of solar-like oscillators observed by Kepler.

  17. Automated Critical Peak Pricing Field Tests: Program Descriptionand Results

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

    2006-04-06

    California utilities have been exploring the use of critical peak prices (CPP) to help reduce needle peaks in customer end-use loads. CPP is a form of price-responsive demand response (DR). Recent experience has shown that customers have limited knowledge of how to operate their facilities in order to reduce their electricity costs under CPP (Quantum 2004). While the lack of knowledge about how to develop and implement DR control strategies is a barrier to participation in DR programs like CPP, another barrier is the lack of automation of DR systems. During 2003 and 2004, the PIER Demand Response Research Center (DRRC) conducted a series of tests of fully automated electric demand response (Auto-DR) at 18 facilities. Overall, the average of the site-specific average coincident demand reductions was 8% from a variety of building types and facilities. Many electricity customers have suggested that automation will help them institutionalize their electric demand savings and improve their overall response and DR repeatability. This report focuses on and discusses the specific results of the Automated Critical Peak Pricing (Auto-CPP, a specific type of Auto-DR) tests that took place during 2005, which build on the automated demand response (Auto-DR) research conducted through PIER and the DRRC in 2003 and 2004. The long-term goal of this project is to understand the technical opportunities of automating demand response and to remove technical and market impediments to large-scale implementation of automated demand response (Auto-DR) in buildings and industry. A second goal of this research is to understand and identify best practices for DR strategies and opportunities. The specific objectives of the Automated Critical Peak Pricing test were as follows: (1) Demonstrate how an automated notification system for critical peak pricing can be used in large commercial facilities for demand response (DR). (2) Evaluate effectiveness of such a system. (3) Determine how customers

  18. Prefrontal electrical stimulation in nondepressed reduces levels of reported negative affects from daily stressors

    Directory of Open Access Journals (Sweden)

    Adelaide H Austin

    2016-03-01

    Full Text Available Negative emotional responses to the daily life stresses have cumulative effects which, in turn, impose wide-ranging negative constraints on emotional well being and neurocognitive performance (Kalueff et al, 2007, Charles et al, 2013, Nadler et al, 2010. Crucial cognitive functions such as memory and problem solving, as well more short term emotional responses (e.g., anticipation of- and response to- monetary rewards or losses are influenced by mood. The negative impact of these behavioural responses is felt at the individual level, but it also imposes major economic burden on modern healthcare systems. Although much research have been undertaken to understand the underlying mechanisms of depressed mood and design efficient treatment pathways, comparatively little was done to characterize mood modulations that remain within the boundaries of a healthy mental functioning. In one placebo-controlled experiments, we applied daily prefrontal transcranial Direct Current Stimulation (tDCS at five points in time, and found reliable improvements on self-reported mood evaluation. We replicated this finding in an independent double-blinded placebo-controlled experiment and showed that stimulation over a shorter period of time (3 days is sufficient to create detectable mood improvements. Taken together, our data show that repeated bilateral prefrontal tDCS can reduce psychological distress in nondepressed individuals.

  19. A reduced-order filtering approach for 3D dynamical electrical impedance tomography

    International Nuclear Information System (INIS)

    Voutilainen, A; Lehikoinen, A; Vauhkonen, M; Kaipio, J P

    2011-01-01

    Recently, it has been shown that the state estimation approach to process tomography can provide estimates that are significantly better than (a sequence of) conventional stationary snapshot estimates. One of the main obstacles of the adoption of the recursive state estimation algorithms, most commonly different versions of the Kalman filter, is the computational complexity. This is due to both the required large dimension for the state variable and the need to use iterative versions of the Kalman filter in such cases in which there are large contrasts or varying background. In this paper, we propose to use a reduced-order representation for the state variable. In particular, we propose to use the proper orthogonal decomposition-related basis for the state. We consider a simulation study with fluctuating background conductivity, and, in particular, with fluctuating contact impedances. We compare the proposed approach to three different versions of the Kalman filter having different computational complexities. We show that this approach allows the reduction of the dimension of the problem approximately by an order of magnitude and yields essentially as accurate estimates as the most accurate traditional Kalman filter version, the iterated extended Kalman filter

  20. Near-optimal order-reduced control for A/C (air-conditioning) system of EVs (electric vehicles)

    International Nuclear Information System (INIS)

    Chiu, Chien-Chin; Tsai, Nan-Chyuan; Lin, Chun-Chi

    2014-01-01

    This work is aimed to investigate the regulation problem for thermal comfortableness and propose control strategies for cabin environment of EVs (electric vehicles) by constructing a reduced-scale A/C (air-conditioning) system which mainly consists of two modules: ECB (environmental control box) and AHU (air-handling unit). Temperature and humidity in the ECB can be regulated by AHU via cooling, heating, mixing air streams and adjusting speed of fans. To synthesize the near-optimal controllers, the mathematical model for the system thermodynamics is developed by employing the equivalent lumped heat capacity approach, energy/mass conservation principle and the heat transfer theories. In addition, from the clustering pattern of system eigenvalues, the thermodynamics of the interested system can evidently be characterized by two-time-scale property. That is, the studied system can be decoupled into two subsystems, slow mode and fast mode, by singular perturbation technique. As to the optimal control strategies for EVs, by taking thermal comfortableness, humidity and energy consumption all into account, a series of optimal controllers is synthesized on the base of the order-reduced thermodynamic model. The feedback control loop for the experimental test rig is examined and realized by the aid of the control system development kit dSPACE DS1104 and the commercial software MATLAB/Simulink. To sum up, the intensive computer simulations and experimental results verify that the performance of the near-optimal order-reduced control law is almost as superior as that of standard LQR (Linear-Quadratic Regulator). - Highlights: • A reduced-scale test rig for A/C (air-conditioning) system to imitate the temperature/humidity of cabin in EV (electric vehicle) is constructed. • The non-linear thermodynamic model of A/C system can be decoupled by singular perturbation technique. • The temperature/humidity in cabin is regulated to the desired values by proposed optimal

  1. Liquid waste processing at Comanche Peak

    International Nuclear Information System (INIS)

    Hughes-Edwards, L.M.; Edwards, J.M.

    1996-01-01

    This article describes the radioactive waste processing at Comanche Peak Steam Electric Station. Topics covered are the following: Reduction of liquid radioactive discharges (system leakage, outage planning); reduction of waste resin generation (waste stream segregation, processing methodology); reduction of activity released and off-site dose. 8 figs., 2 tabs

  2. Can envelope codes reduce electricity and CO2 emissions in different types of buildings in the hot climate of Bahrain?

    International Nuclear Information System (INIS)

    Radhi, H.

    2009-01-01

    The depletion of non-renewable resources and the environmental impact of energy consumption, particularly energy use in buildings, have awakened considerable interest in energy efficiency. Building energy codes have recently become effective techniques to achieve efficiency targets. The Electricity and Water Authority in Bahrain has set a target of 40% reduction of building electricity consumption and CO 2 emissions to be achieved by using envelope thermal insulation codes. This paper investigates the ability of the current codes to achieve such a benchmark and evaluates their impact on building energy consumption. The results of a simulation study are employed to investigate the impact of the Bahraini codes on the energy and environmental performance of buildings. The study focuses on air-conditioned commercial buildings and concludes that envelope codes, at best, are likely to reduce the energy use of the commercial sector by 25% if the building envelope is well-insulated and efficient glazing is used. Bahraini net CO 2 emissions could drop to around 7.1%. The simulation results show that the current energy codes alone are not sufficient to achieve a 40% reduction benchmark, and therefore, more effort should be spent on moving towards a more comprehensive approach

  3. The influence of reduced graphene oxide on electrical conductivity of LiFePO4-based composite as cathode material

    International Nuclear Information System (INIS)

    Arifin, Muhammad; Aimon, Akfiny Hasdi; Winata, Toto; Abdullah, Mikrajuddin; Iskandar, Ferry

    2016-01-01

    LiFePO 4 is fascinating cathode active materials for Li-ion batteries application because of their high electrochemical performance such as a stable voltage at 3.45 V and high specific capacity at 170 mAh.g −1 . However, their low intrinsic electronic conductivity and low ionic diffusion are still the hindrance for their further application on Li-ion batteries. Therefore, the efforts to improve their conductivity are very important to elevate their prospecting application as cathode materials. Herein, we reported preparation of additional of reduced Graphene Oxide (rGO) into LiFePO 4 -based composite via hydrothermal method and the influence of rGO on electrical conductivity of LiFePO 4 −based composite by varying mass of rGO in composition. Vibration of LiFePO 4 -based composite was detected on Fourier Transform Infrared Spectroscopy (FTIR) spectra, while single phase of LiFePO 4 nanocrystal was observed on X-Ray Diffraction (XRD) pattern, it furthermore, Scanning Electron Microscopy (SEM) images showed that rGO was distributed around LiFePO4-based composite. Finally, the 4-point probe measurement result confirmed that the optimum electrical conductivity is in additional 2 wt% rGO for range 1 to 2 wt% rGO

  4. Peak-Seeking Control for Trim Optimization

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovators have developed a peak-seeking algorithm that can reduce drag and improve performance and fuel efficiency by optimizing aircraft trim in real time. The...

  5. Utilizing Physiological Principles of Motor Unit Recruitment to Reduce Fatigability of Electrically-Evoked Contractions: A Narrative Review.

    Science.gov (United States)

    Barss, Trevor S; Ainsley, Emily N; Claveria-Gonzalez, Francisca C; Luu, M John; Miller, Dylan J; Wiest, Matheus J; Collins, David F

    2018-04-01

    Neuromuscular electrical stimulation (NMES) is used to produce contractions to restore movement and reduce secondary complications for individuals experiencing motor impairment. NMES is conventionally delivered through a single pair of electrodes over a muscle belly or nerve trunk using short pulse durations and frequencies between 20 and 40Hz (conventional NMES). Unfortunately, the benefits and widespread use of conventional NMES are limited by contraction fatigability, which is in large part because of the nonphysiological way that contractions are generated. This review provides a summary of approaches designed to reduce fatigability during NMES, by using physiological principles that help minimize fatigability of voluntary contractions. First, relevant principles of the recruitment and discharge of motor units (MUs) inherent to voluntary contractions and conventional NMES are introduced, and the main mechanisms of fatigability for each contraction type are briefly discussed. A variety of NMES approaches are then described that were designed to reduce fatigability by generating contractions that more closely mimic voluntary contractions. These approaches include altering stimulation parameters, to recruit MUs in their physiological order, and stimulating through multiple electrodes, to reduce MU discharge rates. Although each approach has unique advantages and disadvantages, approaches that minimize MU discharge rates hold the most promise for imminent translation into rehabilitation practice. The way that NMES is currently delivered limits its utility as a rehabilitative tool. Reducing fatigability by delivering NMES in ways that better mimic voluntary contractions holds promise for optimizing the benefits and widespread use of NMES-based programs. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Demand Side Management: An approach to peak load smoothing

    Science.gov (United States)

    Gupta, Prachi

    A preliminary national-level analysis was conducted to determine whether Demand Side Management (DSM) programs introduced by electric utilities since 1992 have made any progress towards their stated goal of reducing peak load demand. Estimates implied that DSM has a very small effect on peak load reduction and there is substantial regional and end-user variability. A limited scholarly literature on DSM also provides evidence in support of a positive effect of demand response programs. Yet, none of these studies examine the question of how DSM affects peak load at the micro-level by influencing end-users' response to prices. After nearly three decades of experience with DSM, controversy remains over how effective these programs have been. This dissertation considers regional analyses that explore both demand-side solutions and supply-side interventions. On the demand side, models are estimated to provide in-depth evidence of end-user consumption patterns for each North American Electric Reliability Corporation (NERC) region, helping to identify sectors in regions that have made a substantial contribution to peak load reduction. The empirical evidence supports the initial hypothesis that there is substantial regional and end-user variability of reductions in peak demand. These results are quite robust in rapidly-urbanizing regions, where air conditioning and lighting load is substantially higher, and regions where the summer peak is more pronounced than the winter peak. It is also evident from the regional experiences that active government involvement, as shaped by state regulations in the last few years, has been successful in promoting DSM programs, and perhaps for the same reason we witness an uptick in peak load reductions in the years 2008 and 2009. On the supply side, we estimate the effectiveness of DSM programs by analyzing the growth of capacity margin with the introduction of DSM programs. The results indicate that DSM has been successful in offsetting the

  7. A lot left over: Reducing CO2 emissions in the United States’ electric power sector through the use of natural gas

    International Nuclear Information System (INIS)

    Lafrancois, Becky A.

    2012-01-01

    As the leading contributor of greenhouse gas emissions, the electricity sector stands to be impacted by policies seeking to curtail emissions. Instead of increasing electricity from renewable resources or nuclear power facilities, an alternative approach to reducing emissions in the electric power sector is changing the dispatch order of fossil fuels. Important differences between fossil fuels, and in the technologies used to burn them, make it possible to substantially reduce emissions from the sector. On average, each gigawatt-year of electricity generation switched from coal to natural gas reduces CO 2 emissions by 59 percent. As a result of significant investments in natural gas fired power plants in the United States between 1998 and 2005, there is an opportunity for electricity producers to take advantage of underutilized capacity. This is the first study to closely examine the new capital additions and analyze the technical potential for reductions in emissions. The analysis finds that 188 GW of capacity may be available to replace coal-fired baseload electricity generation. Utilizing this excess gas-fired capacity will reduce the sector's CO 2 emissions by 23 to 42 percent and reduce overall U.S. CO 2 emissions between 9 percent and 17 percent. - Highlights: ► Utilizing recently built natural gas fired power plants can significantly reduce CO 2 emissions in the United States. ► CO 2 emissions from electricity production can be reduced by 23–42 percent. ► U.S. overall CO 2 emissions reduced by 9–17 percent.

  8. Intraoperative hemidiaphragm electrical stimulation reduces oxidative stress and upregulates autophagy in surgery patients undergoing mechanical ventilation: exploratory study

    Directory of Open Access Journals (Sweden)

    Robert T. Mankowski

    2016-10-01

    Full Text Available Abstract Background Mechanical ventilation (MV during a cardio-thoracic surgery contributes to diaphragm muscle dysfunction that impairs weaning and can lead to the ventilator- induced diaphragm dysfunction. Especially, it is critical in older adults who have lower muscle reparative capacity following MV. Reports have shown that the intraoperative intermittent hemidiaphragm electrical stimulation can maintain and/or improve post-surgery diaphragm function. In particular, from a molecular point of view, intermittent electrical stimulation (ES may reduce oxidative stress and increase regulatory autophagy levels, and therefore improve diaphragm function in animal studies. We have recently shown in humans that intraoperative ES attenuates mitochondrial dysfunction and force decline in single diaphragm muscle fibers. The aim of this study was to investigate an effect of ES on oxidative stress, antioxidant status and autophagy biomarker levels in the human diaphragm during surgery. Methods One phrenic nerve was simulated with an external cardiac pacer in operated older subjects (62.4 ± 12.9 years (n = 8 during the surgery. The patients received 30 pulses per min every 30 min. The muscle biopsy was collected from both hemidiaphragms and frozen for further analyses. 4-hydroxynonenal (4-HNE, an oxidative stress marker, and autophagy marker levels (Beclin-1 and the ratio of microtubule-associated protein light chain 3, I and II-LC3 II/I protein concentrations were detected by the Western Blot technique. Antioxidant enzymatic activity copper-zinc (CuZnSOD and manganese (MnSOD superoxide dismutase were analyzed. Results Levels of lipid peroxidation (4-HNE were significantly lower in the stimulated side (p  0.05. Additionally, the protein concentrations of Beclin-1 and the LC3 II/I ratio were higher in the stimulated side (p < 0.05. Conclusion These results suggest that the intraoperative electrical stimulation decreases oxidative stress levels

  9. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    Science.gov (United States)

    Suhariningsih; Basuki Notobroto, Hari; Winarni, Dwi; Achmad Hussein, Saikhu; Anggono Prijo, Tri

    2017-05-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice (mus musculus), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared.

  10. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    International Nuclear Information System (INIS)

    Suhariningsih; Prijo, Tri Anggono; Notobroto, Hari Basuki; Winarni, Dwi; Hussein, Saikhu Achmad

    2017-01-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice ( mus musculus ), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared. (paper)

  11. Peak reading detector circuit

    International Nuclear Information System (INIS)

    Courtin, E.; Grund, K.; Traub, S.; Zeeb, H.

    1975-01-01

    The peak reading detector circuit serves for picking up the instants during which peaks of a given polarity occur in sequences of signals in which the extreme values, their time intervals, and the curve shape of the signals vary. The signal sequences appear in measuring the foetal heart beat frequence from amplitude-modulated ultrasonic, electrocardiagram, and blood pressure signals. In order to prevent undesired emission of output signals from, e. g., disturbing intermediate extreme values, the circuit consists of the series connections of a circuit to simulate an ideal diode, a strong unit, a discriminator for the direction of charging current, a time-delay circuit, and an electronic switch lying in the decharging circuit of the storage unit. The time-delay circuit thereby causes storing of a preliminary maximum value being used only after a certain time delay for the emission of the output signal. If a larger extreme value occurs during the delay time the preliminary maximum value is cleared and the delay time starts running anew. (DG/PB) [de

  12. Simulated predator stimuli reduce brain cell proliferation in two electric fish species, Brachyhypopomus gauderio and Apteronotus leptorhynchus.

    Science.gov (United States)

    Dunlap, Kent D; Keane, Geoffrey; Ragazzi, Michael; Lasky, Elise; Salazar, Vielka L

    2017-07-01

    The brain structure of many animals is influenced by their predators, but the cellular processes underlying this brain plasticity are not well understood. Previous studies showed that electric fish ( Brachyhypopomus occidentalis ) naturally exposed to high predator ( Rhamdia quelen ) density and tail injury had reduced brain cell proliferation compared with individuals facing few predators and those with intact tails. However, these field studies described only correlations between predator exposure and cell proliferation. Here, we used a congener Brachyhypopomus gauderio and another electric fish Apteronotus leptorhynchus to experimentally test the hypothesis that exposure to a predator stimulus and tail injury causes alterations in brain cell proliferation. To simulate predator exposure, we either amputated the tail followed by short-term (1 day) or long-term (17-18 days) recovery or repeatedly chased intact fish with a plastic rod over a 7 day period. We measured cell proliferation (PCNA+ cell density) in the telencephalon and diencephalon, and plasma cortisol, which commonly mediates stress-induced changes in brain cell proliferation. In both species, either tail amputation or simulated predator chase decreased cell proliferation in the telencephalon in a manner resembling the effect of predators in the field. In A. leptorhynchus , cell proliferation decreased drastically in the short term after tail amputation and partially rebounded after long-term recovery. In B. gauderio , tail amputation elevated cortisol levels, but repeated chasing had no effect. In A. leptorhynchus , tail amputation elevated cortisol levels in the short term but not in the long term. Thus, predator stimuli can cause reductions in brain cell proliferation, but the role of cortisol is not clear. © 2017. Published by The Company of Biologists Ltd.

  13. Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke

    Directory of Open Access Journals (Sweden)

    Meadmore Katie L

    2012-06-01

    Full Text Available Abstract Background Novel stroke rehabilitation techniques that employ electrical stimulation (ES and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL, a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this.

  14. The Effect of Varying Ultrafast Pulse Laser Energies on the Electrical Properties of Reduced Graphene Oxide Sheets in Solution

    Science.gov (United States)

    Ibrahim, Khaled H.; Irannejad, Mehrdad; Wales, Benjamin; Sanderson, Joseph; Musselman, Kevin P.; Yavuz, Mustafa

    2018-02-01

    Laser treatment of graphene oxide solution among other techniques is a well-established technique for producing reduced graphene sheets. However, production of high-quality ultra-low sheet resistance reduced graphene oxide (rGO) sheets in solution has been a challenge due to their high degree of randomness, defect-rich medium, and lack of controlability. Recent studies lack an in-depth analytic comparison of laser treatment parameters that yield the highest quality rGO sheets with a low defect ratio. Hence, in this study, we implement a comprehensive comparison of laser treatment parameters and their effect on the yielded rGO sheets from an electronic and physical standpoint. Ultra-low sheet resistance graphene oxide sheets were fabricated using ultrafast laser irradiation with different laser pulse energies in the range of 0.25-2 mJ. Laser treatment for 10 min using a pulse energy of 1 mJ resulted in an increase in the defect spacing, accompanied by a large red shift in the optical absorption of the C=C bond, indicating significant restoration of the s p 2 carbon bonds. These enhancements resulted in a significant reduction in the electrical resistance of the rGO flakes (up to 2 orders of magnitude), raising the electron mobility of the films produced using the irradiated graphene oxide a step closer to that of pristine graphene films. From this study, we can also deduce which exposure regimes result in the fabrication of quantum dots and continuous defect-free films.

  15. EPINEPHRINE OR GV-26 ELECTRICAL STIMULATION REDUCES INHALANT ANESTHESTIC RECOVERY TIME IN COMMON SNAPPING TURTLES (CHELYDRA SERPENTINA).

    Science.gov (United States)

    Goe, Alexandra; Shmalberg, Justin; Gatson, Bonnie; Bartolini, Pia; Curtiss, Jeff; Wellehan, James F X

    2016-06-01

    Prolonged anesthetic recovery times are a common clinical problem in reptiles following inhalant anesthesia. Diving reptiles have numerous adaptations that allow them to submerge and remain apneic for extended periods. An ability to shunt blood away from pulmonary circulation, possibly due to changes in adrenergic tone, may contribute to their unpredictable inhalant anesthetic recovery times. Therefore, the use of epinephrine could antagonize this response and reduce recovery time. GV-26, an acupuncture point with reported β-adrenergic and respiratory effects, has reduced anesthetic recovery times in other species. In this prospective randomized crossover study, six common snapping turtles (Chelydra serpentina) were anesthetized with inhalant isoflurane for 90 min. Turtles were assigned one of three treatments, given immediately following discontinuation of isoflurane: a control treatment (0.9% saline, at 0.1 ml/kg i.m.), epinephrine (0.1 mg/kg i.m.), or acupuncture with electrical stimulation at GV-26. Each turtle received all treatments, and treatments were separated by 48 hr. Return of spontaneous ventilation was 55% faster in turtles given epinephrine and 58% faster in the GV-26 group versus saline (P < 0.001). The times to movement and to complete recovery were also significantly faster for both treatments than for saline (P < 0.02). Treated turtles displayed increases in temperature not documented in the control (P < 0.001). Turtles administered epinephrine showed significantly increased heart rates and end-tidal CO(2) (P < 0.001). No adverse effects were noted in the study animals. The mechanisms of action were not elucidated in the present investigation. Nevertheless, the use of parenteral epinephrine or GV-26 stimulation in the immediate postanesthetic period produces clinically relevant reductions in anesthetic recovery time in common snapping turtle. Further research is necessary to evaluate the effects of concurrent GV-26 and epinephrine administration

  16. Biogenic volatile organic compound analyses by PTR-TOF-MS: Calibration, humidity effect and reduced electric field dependency.

    Science.gov (United States)

    Pang, Xiaobing

    2015-06-01

    Green leaf volatiles (GLVs) emitted by plants after stress or damage induction are a major part of biogenic volatile organic compounds (BVOCs). Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is a high-resolution and sensitive technique for in situ GLV analyses, while its performance is dramatically influenced by humidity, electric field, etc. In this study the influence of gas humidity and the effect of reduced field (E/N) were examined in addition to measuring calibration curves for the GLVs. Calibration curves measured for seven of the GLVs in dry air were linear, with sensitivities ranging from 5 to 10 ncps/ppbv (normalized counts per second/parts per billion by volume). The sensitivities for most GLV analyses were found to increase by between 20% and 35% when the humidity of the sample gas was raised from 0% to 70% relative humidity (RH) at 21°C, with the exception of (E)-2-hexenol. Product ion branching ratios were also affected by humidity, with the relative abundance of the protonated molecular ions and higher mass fragment ions increasing with humidity. The effect of reduced field (E/N) on the fragmentation of GLVs was examined in the drift tube of the PTR-TOF-MS. The structurally similar GLVs are acutely susceptible to fragmentation following ionization and the fragmentation patterns are highly dependent on E/N. Overall the measured fragmentation patterns contain sufficient information to permit at least partial separation and identification of the isomeric GLVs by looking at differences in their fragmentation patterns at high and low E/N. Copyright © 2015. Published by Elsevier B.V.

  17. Electrospun silk fibroin scaffolds coated with reduced graphene promote neurite outgrowth of PC-12 cells under electrical stimulation.

    Science.gov (United States)

    Aznar-Cervantes, Salvador; Pagán, Ana; Martínez, Jose G; Bernabeu-Esclapez, Antonia; Otero, Toribio F; Meseguer-Olmo, Luis; Paredes, Juan I; Cenis, Jose L

    2017-10-01

    Novel approaches to neural research require biocompatible materials capable to act as electrode structures or scaffolds for tissue engineering in order to stimulate or restore the functionality of damaged tissues. This work offers promising results that indicate the potential use of electrospun silk fibroin (SF) scaffolds coated with reduced graphene oxide (rGO) in this sense. The coated material becomes conductor and electroactive. A complete characterisation of SF/rGO scaffolds is provided in terms of electrochemistry, mechanical behaviour and chemical conformation of fibroin. The excellent biocompatibility of this novel material is proved with cultures of PC-12 cells. The coating with rGO improved the adhesion of cells in comparison with cells growing onto the surface of pure SF scaffolds. Also, the use of SF/rGO scaffolds combined with electrical stimulation promoted the differentiation into neural phenotypes reaching comparable or even superior levels to those obtained by means of the traditional treatment with neural growth factor (NGF). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A patient with severely reduced LV function and electrical storm saved by wearable cardioverter-defibrillator: a case report.

    Science.gov (United States)

    Strauss, Margit; Kouraki, Kleopatra; Skarlos, Alexandros; Zahn, Ralf; Kleemann, Thomas

    2013-06-01

    The wearable cardioverter-defibrillator (WCD) is indicated in patients who are considered to be at temporarily high risk for sudden cardiac death (SCD), when an implantable defibrillator is not yet clearly indicated. We report the case of a 41-year-old patient with a newly diagnosed severely reduced left ventricular (LV) function for suspected myocarditis and repeated nonsustained ventricular tachycardia (VT). This patient was supplied with a WCD who came back to the hospital 4 weeks after discharge with an electrical storm and adequate discharge of the WCD. After application of amiodarone, no further arrhythmias were detected during intrahospital course. For further risk stratification, we performed a magnetic field imaging (MFI), that was reported to be useful in risk assessment of SCD in patients with ischemic cardiomyopathy. This measurement showed a normal result, but we decided to give an implantable cardioverter-defibrillator (ICD) to the patient. During a follow-up of 1 year, no further arrhythmias occurred. With this case, we report the efficacy of a WCD, which is a novel tool in patients at temporarily high risk of SCD and we report a novel method of risk stratification in patients with a high risk of SCD.

  19. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 10

    International Nuclear Information System (INIS)

    1985-04-01

    This Supplement provides the results of the staff's evaluation and resolution of approximately 400 technical concerns and allegations in the mechanical and piping area regarding construction practices at the Comanche Peak facility. This report does not address the Walsh/Doyle allegations regarding deficiencies in the pipe support design process and the new allegations recently received by the staff

  20. The electric vehicles as a mean to reduce CO2 emissions and energy costs in isolated regions. The São Miguel (Azores) case study

    International Nuclear Information System (INIS)

    Camus, Cristina; Farias, Tiago

    2012-01-01

    Most of small islands around the world today, are dependent on imported fossil fuels for the majority of their energy needs especially for transport activities and electricity production. The use of locally renewable energy resources and the implementation of energy efficiency measures could make a significant contribution to their economic development by reducing fossil fuel imports. An electrification of vehicles has been suggested as a way to both reduce pollutant emissions and increase security of supply of the transportation sector by reducing the dependence on oil products imports and facilitate the accommodation of renewable electricity generation, such as wind and, in the case of volcanic islands like São Miguel (Azores) of the geothermal energy whose penetration has been limited by the valley electricity consumption level. In this research, three scenarios of EV penetration were studied and it was verified that, for a 15% LD fleet replacement by EVs with 90% of all energy needs occurring during the night, the accommodation of 10 MW of new geothermal capacity becomes viable. Under this scenario, reductions of 8% in electricity costs, 14% in energy, 23% in fossil fuels use and CO 2 emissions for the transportation and electricity production sectors could be expected. - Highlights: ► EVs impacts on the electric system in energy and power profiles, costs and emissions. ► At least an EV penetration of 15% is needed to allow new geothermal power production. ► Reductions in energy, fossil fuels use and CO 2 emissions of 9%, 16% and 17% respectively. ► Electricity production with more % of renewable technologies reduces unit costs.

  1. Economic effects of peak oil

    International Nuclear Information System (INIS)

    Lutz, Christian; Lehr, Ulrike; Wiebe, Kirsten S.

    2012-01-01

    Assuming that global oil production peaked, this paper uses scenario analysis to show the economic effects of a possible supply shortage and corresponding rise in oil prices in the next decade on different sectors in Germany and other major economies such as the US, Japan, China, the OPEC or Russia. Due to the price-inelasticity of oil demand the supply shortage leads to a sharp increase in oil prices in the second scenario, with high effects on GDP comparable to the magnitude of the global financial crises in 2008/09. Oil exporting countries benefit from high oil prices, whereas oil importing countries are negatively affected. Generally, the effects in the third scenario are significantly smaller than in the second, showing that energy efficiency measures and the switch to renewable energy sources decreases the countries' dependence on oil imports and hence reduces their vulnerability to oil price shocks on the world market. - Highlights: ► National and sectoral economic effects of peak oil until 2020 are modelled. ► The price elasticity of oil demand is low resulting in high price fluctuations. ► Oil shortage strongly affects transport and indirectly all other sectors. ► Global macroeconomic effects are comparable to the 2008/2009 crisis. ► Country effects depend on oil imports and productivity, and economic structures.

  2. Electric drive choices for light, medium, and heavy duty vehicles to reduce their climate change impact in Canada

    International Nuclear Information System (INIS)

    Fitzpatrick, N.P.

    2009-01-01

    The evolution of electric drive technologies from 1988, at the 9 th International Electric Vehicle Symposium (EVS 9) in Toronto, to 2007 at EVS 23 in Anaheim, is described. Total hybridization of Canada's fleet of light, medium and heavy duty vehicles would result in greenhouse reductions savings of 30 Mt of CO 2 E per year, similar to the saving from a 25% reduction in vehicle weight. Further savings in greenhouse reductions from plug-in hybrids require a battery cost similar to that needed for electric vehicles. Further development of both ultracapacitors and batteries is needed as is work on other parts of the electric drive supply chain. (author)

  3. Transcutaneous electrical nerve stimulation (TENS reduces pain and postpones the need for pharmacological analgesia during labour: a randomised trial

    Directory of Open Access Journals (Sweden)

    Licia Santos Santana

    2016-01-01

    analgesia for pain relief. Trial registration: NCT01600495. [Santana LS, Gallo RBS, Ferreira CHJ, Duarte G, Quintana SM, Marcolin AC (2016 Transcutaneous electrical nerve stimulation (TENS reduces pain and postpones the need for pharmacological analgesia during labour: a randomised trial. Journal of Physiotherapy 62: 29–34

  4. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for Approximately 500 km-Scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.; Valladares, C.

    2011-01-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F -peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983

  5. The plant for co-production of synfuel and electricity with reduced CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kler, A.M.; Tyurina, E.A.; Mednikov, A.S. [Russian Academy of Sciences, Irkutsk (Russian Federation). Energy Systems Inst.

    2013-07-01

    Consideration is given to the prospective technologies for combined production of synthetic fuel (SF) and electricity. The mathematical models of plant for co-production of synfuel and electricity (PCSE) intended for combined production of electricity and synthesis of methanol and dimethyl ether or membrane-based hydrogen production from coal were developed. They were used in the optimization studies on the installations. As a result of the studies, the design characteristics for the plant elements, the relationships between the SF and electricity productions, etc. were determined. These data were used to identify the ranges of SF price for various prices of fuel, electricity and equipment, and estimate the profitability of SF production. Special attention is paid to modeling of CO{sub 2} removal system as part of PCSE and studies on PCSE optimization. The account is taken of additional capital investments and power consumption in the systems.

  6. Reducing greenhouse gas emissions by inducing energy conservation and distributed generation from elimination of electric utility customer charges

    International Nuclear Information System (INIS)

    Pearce, Joshua M.; Harris, Paul J.

    2007-01-01

    This paper quantifies the increased greenhouse gas emissions and negative effect on energy conservation (or 'efficiency penalty') due to electric rate structures that employ an unavoidable customer charge. First, the extent of customer charges was determined from a nationwide survey of US electric tariffs. To eliminate the customer charge nationally while maintaining a fixed sum for electric companies for a given amount of electricity, an increase of 7.12% in the residential electrical rate was found to be necessary. If enacted, this increase in the electric rate would result in a 6.4% reduction in overall electricity consumption, conserving 73 billion kW h, eliminating 44.3 million metric tons of carbon dioxide, and saving the entire US residential sector over $8 billion per year. As shown here, these reductions would come from increased avoidable costs, thus leveraging an increased rate of return on investments in energy efficiency, energy conservation behavior, distributed energy generation, and fuel choices. Finally, limitations of this study and analysis are discussed and conclusions are drawn for proposed energy policy changes

  7. Generation Mix Study Focusing on Nuclear Power by Practical Peak Forecast

    International Nuclear Information System (INIS)

    Shin, Jung Ho; Roh, Myung Sub

    2013-01-01

    The excessive underestimation can lead to a range of problem; expansion of LNG plant requiring short construction period, the following increase of electricity price, low reserve margin and inefficient configuration of power source. With regard to nuclear power, the share of the stable and economic base load plant, nuclear power, can reduce under the optimum level. Amongst varied factors which contribute to the underestimate, immoderate target for demand side management (DSM) including double deduction of the constraint amount by DSM from peak demand forecast is one of the causes. The hypothesis in this study is that the better optimum generation mix including the adequate share of nuclear power can be obtained under the condition of the peak demand forecast without deduction of DSM target because this forecast is closer to the actual peak demand. In this study, the hypothesis is verified with comparison between peak demand forecast before (or after) DSM target application and the actual peak demand in the 3 rd through 5 th BPE from 2006 to 2010. Furthermore, this research compares and analyzes several generation mix in 2027 focusing on the nuclear power by a few conditions using the WASP-IV program on the basis of the 6 th BPE in 2013. According to the comparative analysis on the peak demand forecast and actual peak demand from 2006 to 2010, the peak demand forecasts without the deduction of the DSM target is closer to the actual peak demand than the peak demand forecasts considering the DSM target in the 3 th , 4 th , 5 th entirely. In addition, the generation mix until 2027 is examined by the WASP-IV. As a result of the program run, when considering the peak demand forecast without DSM reflection, since the base load plants including nuclear power take up adequate proportion, stable and economic supply of electricity can be achieved. On the contrary, in case of planning based on the peak demand forecast with DSM reflected and then compensating the shortage by

  8. Generation Mix Study Focusing on Nuclear Power by Practical Peak Forecast

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ho; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    The excessive underestimation can lead to a range of problem; expansion of LNG plant requiring short construction period, the following increase of electricity price, low reserve margin and inefficient configuration of power source. With regard to nuclear power, the share of the stable and economic base load plant, nuclear power, can reduce under the optimum level. Amongst varied factors which contribute to the underestimate, immoderate target for demand side management (DSM) including double deduction of the constraint amount by DSM from peak demand forecast is one of the causes. The hypothesis in this study is that the better optimum generation mix including the adequate share of nuclear power can be obtained under the condition of the peak demand forecast without deduction of DSM target because this forecast is closer to the actual peak demand. In this study, the hypothesis is verified with comparison between peak demand forecast before (or after) DSM target application and the actual peak demand in the 3{sup rd} through 5{sup th} BPE from 2006 to 2010. Furthermore, this research compares and analyzes several generation mix in 2027 focusing on the nuclear power by a few conditions using the WASP-IV program on the basis of the 6{sup th} BPE in 2013. According to the comparative analysis on the peak demand forecast and actual peak demand from 2006 to 2010, the peak demand forecasts without the deduction of the DSM target is closer to the actual peak demand than the peak demand forecasts considering the DSM target in the 3{sup th}, 4{sup th}, 5{sup th} entirely. In addition, the generation mix until 2027 is examined by the WASP-IV. As a result of the program run, when considering the peak demand forecast without DSM reflection, since the base load plants including nuclear power take up adequate proportion, stable and economic supply of electricity can be achieved. On the contrary, in case of planning based on the peak demand forecast with DSM reflected and then

  9. Peak load arrangements : Assessment of Nordel guidelines

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Two Nordic countries, Sweden and Finland, have legislation that empowers the TSO to acquire designated peak load resources to mitigate the risk for shortage situations during the winter. In Denmark, the system operator procures resources to maintain a satisfactory level of security of supply. In Norway the TSO has set up a Regulation Power Option Market (RKOM) to secure a satisfactory level of operational reserves at all times, also in winter with high load demand. Only the arrangements in Finland and Sweden fall under the heading of Peak Load Arrangements defined in Nordel Guidelines. NordREG has been invited by the Electricity Market Group (EMG) to evaluate Nordel's proposal for 'Guidelines for transitional Peak Load Arrangements'. The EMG has also financed a study made by EC Group to support NordREG in the evaluation of the proposal. The study has been taken into account in NordREG's evaluation. In parallel to the EMG task, the Swedish regulator, the Energy Markets Inspectorate, has been given the task by the Swedish government to investigate a long term solution of the peak load issue. The Swedish and Finnish TSOs have together with Nord Pool Spot worked on finding a harmonized solution for activation of the peak load reserves in the market. An agreement accepted by the relevant authorities was reached in early January 2009, and the arrangement has been implemented since 19th January 2009. NordREG views that the proposed Nordel guidelines have served as a starting point for the presently agreed procedure. However, NordREG does not see any need to further develop the Nordel guidelines for peak load arrangements. NordREG agrees with Nordel that the market should be designed to solve peak load problems through proper incentives to market players. NordREG presumes that the relevant authorities in each country will take decisions on the need for any peak load arrangement to ensure security of supply. NordREG proposes that such decisions should be

  10. Short- and long-run time-of-use price elasticities in Swiss residential electricity demand

    International Nuclear Information System (INIS)

    Filippini, Massimo

    2011-01-01

    This paper presents an empirical analysis on the residential demand for electricity by time-of-day. This analysis has been performed using aggregate data at the city level for 22 Swiss cities for the period 2000-2006. For this purpose, we estimated two log-log demand equations for peak and off-peak electricity consumption using static and dynamic partial adjustment approaches. These demand functions were estimated using several econometric approaches for panel data, for example LSDV and RE for static models, and LSDV and corrected LSDV estimators for dynamic models. The attempt of this empirical analysis has been to highlight some of the characteristics of the Swiss residential electricity demand. The estimated short-run own price elasticities are lower than 1, whereas in the long-run these values are higher than 1. The estimated short-run and long-run cross-price elasticities are positive. This result shows that peak and off-peak electricity are substitutes. In this context, time differentiated prices should provide an economic incentive to customers so that they can modify consumption patterns by reducing peak demand and shifting electricity consumption from peak to off-peak periods. - Highlights: → Empirical analysis on the residential demand for electricity by time-of-day. → Estimators for dynamic panel data. → Peak and off-peak residential electricity are substitutes.

  11. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 9

    International Nuclear Information System (INIS)

    1985-03-01

    This supplement addresses TUEC's analyses in support of its request to amend the Comanche Peak Final Safety Analysis Report to eliminate the commitment that coatings inside the reactor Containment Building be qualified for Units 1 and 2. In addition, this supplement provides the results of the staff's evaluation and resolution of 62 technical concerns and allegations in the coatings area for Unit 1. Because of the favorable resolution of the items discussed in this report, the staff concludes for the issues considered herein, that there is reasonable assurance that the facility can be operated by TUEC without endangering the health and safety of the public

  12. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    International Nuclear Information System (INIS)

    Lee, Duu-Jong; Lee, Chin-Yu; Chang, Jo-Shu

    2012-01-01

    Highlights: ► We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. ► Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. ► The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. ► The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  13. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duu-Jong, E-mail: cedean@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (China); Lee, Chin-Yu [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. Black-Right-Pointing-Pointer Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. Black-Right-Pointing-Pointer The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. Black-Right-Pointing-Pointer The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  14. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.

    Science.gov (United States)

    Foley, Joe P; Blackney, Donna M; Ennis, Erin J

    2017-11-10

    The origins of the peak capacity concept are described and the important contributions to the development of that concept in chromatography and electrophoresis are reviewed. Whereas numerous quantitative expressions have been reported for one- and two-dimensional separations, most are focused on chromatographic separations and few, if any, quantitative unbiased expressions have been developed for capillary or microchip zone electrophoresis. Making the common assumption that longitudinal diffusion is the predominant source of zone broadening in capillary electrophoresis, analytical expressions for the peak capacity are derived, first in terms of migration time, diffusion coefficient, migration distance, and desired resolution, and then in terms of the remaining underlying fundamental parameters (electric field, electroosmotic and electrophoretic mobilities) that determine the migration time. The latter expressions clearly illustrate the direct square root dependence of peak capacity on electric field and migration distance and the inverse square root dependence on solute diffusion coefficient. Conditions that result in a high peak capacity will result in a low peak capacity per unit time and vice-versa. For a given symmetrical range of relative electrophoretic mobilities for co- and counter-electroosmotic species (cations and anions), the peak capacity increases with the square root of the electric field even as the temporal window narrows considerably, resulting in a significant reduction in analysis time. Over a broad relative electrophoretic mobility interval [-0.9, 0.9], an approximately two-fold greater amount of peak capacity can be generated for counter-electroosmotic species although it takes about five-fold longer to do so, consistent with the well-known bias in migration time and resolving power for co- and counter-electroosmotic species. The optimum lower bound of the relative electrophoretic mobility interval [μ r,Z , μ r,A ] that provides the maximum

  15. Relaxation peak near 200 K in NiTi alloy

    Science.gov (United States)

    Zhu, J. S.; Schaller, R.; Benoit, W.

    1989-10-01

    Internal friction (IF), frequency ( f), electrical resistance ( R) and zero point movement of the torsion pendulum (ɛ) have been measured in near equi-atomic NiTi alloy in order to clarify the mechanism for the relaxation peak near 200 K. The height of the relaxation peak decreases successively with thermal cycling and settles down to a lower stable value in running 15 cycles. However, the electrical resistance of the sample shows a variation in contrast with the internal friction. Both of them will return to the initial state after a single annealing at 773 K for 1 h. The probable mechanism of this relaxation peak was discussed.

  16. Electric emissions from electrical appliances

    International Nuclear Information System (INIS)

    Leitgeb, N.; Cech, R.; Schroettner, J.

    2008-01-01

    Electric emissions from electric appliances are frequently considered negligible, and standards consider electric appliances to comply without testing. By investigating 122 household devices of 63 different categories, it could be shown that emitted electric field levels do not justify general disregard. Electric reference values can be exceeded up to 11-fold. By numerical dosimetry with homogeneous human models, induced intra-corporal electric current densities were determined and factors calculated to elevate reference levels to accounting for reduced induction efficiency of inhomogeneous fields. These factors were found not high enough to allow generally concluding on compliance with basic restrictions without testing. Electric appliances usually simultaneously emit both electric and magnetic fields exposing almost the same body region. Since the sum of induced current densities is limited, one field component reduces the available margin for the other. Therefore, superposition of electric current densities induced by either field would merit consideration. (authors)

  17. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice

    Science.gov (United States)

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Leonard, Stephen S.; Alway, Stephen E.

    2012-01-01

    Oxidative stress is a putative factor responsible for reducing function and increasing apoptotic signaling in skeletal muscle with aging. This study examined the contribution and functional significance of the xanthine oxidase enzyme as a potential source of oxidant production in aged skeletal muscle during repetitive in situ electrically stimulated isometric contractions. Xanthine oxidase activity was inhibited in young adult and aged mice via a subcutaneously placed time release (2.5 mg/day) allopurinol pellet, 7 days prior to the start of in situ electrically stimulated isometric contractions. Gastrocnemius muscles were electrically activated with 20 maximal contractions for three consecutive days. Xanthine oxidase activity was 65% greater in the gastrocnemius muscle of aged mice compared to young mice. Xanthine oxidase activity also increased after in situ electrically stimulated isometric contractions in muscles from both young (33%) and aged (28%) mice, relative to contralateral non-contracted muscles. Allopurinol attenuated the exercise-induced increase in oxidative stress, but it did not affect the elevated basal levels of oxidative stress that was associated with aging. In addition, inhibition of xanthine oxidase activity decreased caspase 3 activity, but it had no effect on other markers of mitochondrial associated apoptosis. Our results show that compared to control conditions, suppression of xanthine oxidase activity by allopurinol reduced xanthine oxidase activity, H2O2 levels, lipid peroxidation and caspase-3 activity, prevented the in situ electrically stimulated isometric contraction-induced loss of glutathione, prevented the increase of catalase and copper-zinc superoxide dismutase activities, and increased maximal isometric force in the plantar flexor muscles of aged mice after repetitive electrically evoked contractions. PMID:21530649

  18. A reduced-form approach for representing the impacts of wind and solar PV deployment on the structure and operation of the electricity system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Nils; Strubegger, Manfred; McPherson, Madeleine; Parkinson, Simon C.; Krey, Volker; Sullivan, Patrick

    2017-05-01

    In many climate change mitigation scenarios, integrated assessment models of the energy and climate systems rely heavily on renewable energy technologies with variable and uncertain generation, such as wind and solar PV, to achieve substantial decarbonization of the electricity sector. However, these models often include very little temporal resolution and thus have difficulty in representing the integration costs that arise from mismatches between electricity supply and demand. The global integrated assessment model, MESSAGE, has been updated to explicitly model the trade-offs between variable renewable energy (VRE) deployment and its impacts on the electricity system, including the implications for electricity curtailment, backup capacity, and system flexibility. These impacts have been parameterized using a reduced-form approach, which allows VRE integration impacts to be quantified on a regional basis. In addition, thermoelectric technologies were updated to include two modes of operation, baseload and flexible, to better account for the cost, efficiency, and availability penalties associated with flexible operation. In this paper, the modeling approach used in MESSAGE is explained and the implications for VRE deployment in mitigation scenarios are assessed. Three important stylized facts associated with integrating high VRE shares are successfully reproduced by our modeling approach: (1) the significant reduction in the utilization of non-VRE power plants; (2) the diminishing role for traditional baseload generators, such as nuclear and coal, and the transition to more flexible technologies; and (3) the importance of electricity storage and hydrogen electrolysis in facilitating the deployment of VRE.

  19. Pulsed electric field processing reduces the oxalate content of oca (Oxalis tuberosa) tubers while retaining starch grains and the general structural integrity of tubers.

    Science.gov (United States)

    Liu, Tingting; Burritt, David John; Eyres, Graham T; Oey, Indrawati

    2018-04-15

    The aims of this research were to investigate if pulsed electric field (PEF) treatments caused cellular/structural alterations in Oxalis tuberosa (oca) tubers and if PEF treatment could reduce tuber oxalate levels. Whole oca tubers were treated with PEF at different electric field strengths up to 1.2 kV/cm. PEF treatments above 0.5 kV/cm caused tubers to soften, but differences in the electrical properties of the tuber tissues led to an uneven PEF effect with the tuber inner cores softening more than the middle regions. Cell viability tests confirmed the unevenness of the PEF effect, however PEF caused no changes in overall tuber/tissue structure. Even at high electric field strengths the cell remained largely intact and most starch grains were retained within the cells. Despite the retention of starch, PEF treatment reduced tuber oxalate contents by almost 50% in some tissues and could potentially aid the development of low oxalate oca-based foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Reducing landscape restoration costs: Feasibility of generating electricity from invasive alien plant biomass on the Agulhas Plain, South Africa

    CSIR Research Space (South Africa)

    Stafford, William

    2017-06-01

    Full Text Available products and bioenergy. Using the Agulhas Plain as a case study, we assess the feasibility of using IAP biomass in modular 250 kWe wood gasifiers to produce electricity with biochar as a co-product. There is sufficient IAP biomass available over a 15 year...

  1. Influence of direct reduced iron on the energy balance of the electric arc furnace in steel industry

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Badr, Karim; Pfeifer, Herbert

    2011-01-01

    A model of the EAF energy efficiency was developed based on a closed mass and energy balance of the EAF melting process. This model was applied to industrial EAFs in steel industry charged with scrap or with mixes of scrap and DRI. Complex mass and energy conversion in the EAF was simplified with the introduction of mass and energy conversion efficiencies for the conversion of oxygen and the energy conversion of electrical energy in the electric arcs, chemical energy from the oxidation reactions in the melt and energy from the combustion of burner gas. It turned out that close agreement with observed process parameters from 16 EAFs is obtained by slight variations of the efficiency values. Especially the sensitivity of the steel temperature from the energy conversion efficiency of the electric arc energy indicates the importance of efficient foaming slag operation in EAF steel making. Characteristics and process parameters of DRI charged EAFs are discussed. Model results for a series of case studies illustrate the correlations between DRI chemical composition, DRI portion, oxygen consumption, etc. with electrical energy demand in order to indentify cost-effective EAF process conditions. -- Highlights: → Energy demand and carbon dioxide emission figures of EAF steelmaking processes based on steel scrap and DRI. → Complete energy balance of the EAF process using various input materials. → Application of the model to industrial EAF in steel industry in 4 case studies and discussion of model results. → Comparison with other models, critical discussion.

  2. Limitation of peak fitting and peak shape methods for determination of activation energy of thermoluminescence glow peaks

    CERN Document Server

    Sunta, C M; Piters, T M; Watanabe, S

    1999-01-01

    This paper shows the limitation of general order peak fitting and peak shape methods for determining the activation energy of the thermoluminescence glow peaks in the cases in which retrapping probability is much higher than the recombination probability and the traps are filled up to near saturation level. Right values can be obtained when the trap occupancy is reduced by using small doses or by post-irradiation partial bleaching. This limitation in the application of these methods has not been indicated earlier. In view of the unknown nature of kinetics in the experimental samples, it is recommended that these methods of activation energy determination should be applied only at doses well below the saturation dose.

  3. Electricity Storage. Technology Brief

    Energy Technology Data Exchange (ETDEWEB)

    Simbolotti, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome (Italy); Kempener, R. [International Renewable Energy Agency IRENA, Bonn (Germany)

    2012-04-15

    Electricity storage is a key technology for electricity systems with a high share of renewables as it allows electricity to be generated when renewable sources (i.e. wind, sunlight) are available and to be consumed on demand. It is expected that the increasing price of fossil fuels and peak-load electricity and the growing share of renewables will result in electricity storage to grow rapidly and become more cost effective. However, electricity storage is technically challenging because electricity can only be stored after conversion into other forms of energy, and this involves expensive equipment and energy losses. At present, the only commercial storage option is pumped hydro power where surplus electricity (e.g. electricity produced overnight by base-load coal or nuclear power) is used to pump water from a lower to an upper reservoir. The stored energy is then used to produce hydropower during daily high-demand periods. Pumped hydro plants are large-scale storage systems with a typical efficiency between 70% and 80%, which means that a quarter of the energy is lost in the process. Other storage technologies with different characteristics (i.e. storage process and capacity, conversion back to electricity and response to power demand, energy losses and costs) are currently in demonstration or pre-commercial stages and discussed in this brief report: Compressed air energy storage (CAES) systems, Flywheels; Electrical batteries; Supercapacitors; Superconducting magnetic storage; and Thermal energy storage. No single electricity storage technology scores high in all dimensions. The technology of choice often depends on the size of the system, the specific service, the electricity sources and the marginal cost of peak electricity. Pumped hydro currently accounts for 95% of the global storage capacity and still offers a considerable expansion potential but does not suit residential or small-size applications. CAES expansion is limited due to the lack of suitable

  4. Central peaking of magnetized gas discharges

    International Nuclear Information System (INIS)

    Chen, Francis F.; Curreli, Davide

    2013-01-01

    Partially ionized gas discharges used in industry are often driven by radiofrequency (rf) power applied at the periphery of a cylinder. It is found that the plasma density n is usually flat or peaked on axis even if the skin depth of the rf field is thin compared with the chamber radius a. Previous attempts at explaining this did not account for the finite length of the discharge and the boundary conditions at the endplates. A simple 1D model is used to focus on the basic mechanism: the short-circuit effect. It is found that a strong electric field (E-field) scaled to electron temperature T e , drives the ions inward. The resulting density profile is peaked on axis and has a shape independent of pressure or discharge radius. This “universal” profile is not affected by a dc magnetic field (B-field) as long as the ion Larmor radius is larger than a

  5. Preparation of SnO_2-Glass Composite Containing Cu Particles Reduced from Copper Ions in Glass Matrix : Effect of Glass Particle Size on Microstructure and Electrical Property

    OpenAIRE

    Haruhisa, SHIOMI; Kaori, UMEHARA; Faculty of Engineering and Design, Kyoto Institute of Technology; Faculty of Engineering and Design, Kyoto Institute of Technology

    2000-01-01

    An attempt was made to improve the electrical properties of SnO_2-glass composites by dispersing Cu particles with low resistivity and positive temperature coefficient of resistance(TCR)in the glass matrix. Cu metal particles were precipitated by reducing Cu_2O previously dissolved into the matrix glass by adding LaB_6 as a reducing agent. The effect of the glass particle size, which influences the homogeneity of LaB_6 dispersion in the powder mixture before firing, on the Cu precipitation in...

  6. Design of a high-torque machine with two integrated motors axes reducing the electric vehicle consumption

    Directory of Open Access Journals (Sweden)

    M. Chaieb

    2008-03-01

    Full Text Available The motorization of electric vehicle needs to work at a constant power on a wide range of speed. In order to be able to satisfy these requirements, we describe in this paper a solution, which consists in modifying of a simple structure of a permanent magnet motor by a double rotor structure integrating two motor axes into the same machine. This article describes, then, a design methodology of a permanent magnet motor with double rotor, radial flux, and strong starting torque for electric vehicles. This work consists on the analytical dimensioning of the motor by taking into account several operation constraints followed by a modelling by the finite elements method. This study is followed by the comparison between this motor and a motor with one rotor. A global model of the motor- converter is developed for the purpose to answer several optimisation problems

  7. Octant vectorcardiography - the evaluation by peaks.

    Science.gov (United States)

    Laufberger, V

    1982-01-01

    From the Frank lead potentials a computer prints out an elementary table. Therein, the electrical space of left ventricle depolarization is divided into eight spatial parts labelled by numbers 1-8 and called octants. Within these octants six peaks are determined labelled with letters ALPR-IS. Their localization is described by six-digit topograms characteristic for each patient. From 300 cases of patients after myocardial infarction, three data bases were compiled enabling every case to be classified into classes, subclasses and types. The follow up of patients according to these principles gives an objective and detailed image about the progress of coronary artery disease.

  8. Effect of a DC external electric field on the properties of a nonuniform microwave discharge in hydrogen at reduced pressures

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Yu. A., E-mail: lebedev@ips.ac.ru; Krashevskaya, G. V.; Tatarinov, A. V.; Titov, A. Yu.; Epshtein, I. L. [Russian Academy of Sciences, Topchiev Institute of Petrochemical Synthesis (Russian Federation)

    2017-01-15

    The effect of a dc external electrical field on the properties of a highly nonuniform electrode microwave discharge in hydrogen at a pressure of 1 Torr was studied using optical emission spectroscopy and selfconsistent two-dimensional simulations. It is shown that the negative voltage applied to the antenna electrode with respect to the grounded chamber increases the discharge radiation intensity, while the positive voltage does not affect the discharge properties. The simulation results agree well with the experimental data.

  9. Effect of a DC external electric field on the properties of a nonuniform microwave discharge in hydrogen at reduced pressures

    International Nuclear Information System (INIS)

    Lebedev, Yu. A.; Krashevskaya, G. V.; Tatarinov, A. V.; Titov, A. Yu.; Epshtein, I. L.

    2017-01-01

    The effect of a dc external electrical field on the properties of a highly nonuniform electrode microwave discharge in hydrogen at a pressure of 1 Torr was studied using optical emission spectroscopy and selfconsistent two-dimensional simulations. It is shown that the negative voltage applied to the antenna electrode with respect to the grounded chamber increases the discharge radiation intensity, while the positive voltage does not affect the discharge properties. The simulation results agree well with the experimental data.

  10. Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size

    International Nuclear Information System (INIS)

    Lotey, Gurmeet Singh; Verma, N. K.

    2012-01-01

    Pure and Gd-doped BiFeO 3 nanoparticles have been synthesized by sol–gel method. The significant effects of size and Gd-doping on structural, electrical, and magnetic properties have been investigated. X-ray diffraction study reveals that the pure BiFeO 3 nanoparticles possess rhombohedral structure, but with 10% Gd-doping complete structural transformation from rhombohedral to orthorhombic has been observed. The particle size of pure and Gd-doped BiFeO 3 nanoparticles, calculated using Transmission electron microscopy, has been found to be in the range 25–15 nm. Pure and Gd-doped BiFeO 3 nanoparticles show ferromagnetic character, and the magnetization increases with decrease in particle size and increase in doping concentration. Scanning electron microscopy study reveals that grain size decreases with increase in Gd concentration. Well-saturated polarization versus electric field loop is observed for the doped samples. Leakage current density decreases by four orders by doping Gd in BiFeO 3 . The incorporation of Gd in BiFeO 3 enhances spin as well as electric polarization at room temperature. The possible origin of enhancement in these properties has been explained on the basis of dopant and its concentration, phase purity, small particle, and grain size.

  11. Transcutaneous Electrical Nerve Stimulation (TENS) reduces pain, fatigue, and hyperalgesia while restoring central inhibition in primary fibromyalgia

    OpenAIRE

    Dailey, Dana L; Rakel, Barbara A; Vance, Carol GT; Liebano, Richard E; Anand, Amrit S; Bush, Heather M; Lee, Kyoung S; Lee, Jennifer E; Sluka, Kathleen A

    2013-01-01

    Because TENS works by reducing central excitability and activating central inhibition pathways, we tested the hypothesis that TENS would reduce pain and fatigue and improve function and hyperalgesia in people with fibromyalgia who have enhanced central excitability and reduced inhibition. The current study used a double-blinded randomized, placebo controlled cross-over design to test effects of a single treatment of TENS in people with fibromyalgia. Three treatments were assessed in random or...

  12. Enhancement of the electrical characteristics of MOS capacitors by reducing the organic content of H2O-diluted Spin-On-Glass based oxides

    International Nuclear Information System (INIS)

    Molina, Joel; Munoz, Ana; Torres, Alfonso; Landa, Mauro; Alarcon, Pablo; Escobar, Manuel

    2011-01-01

    In this work, the physical, chemical and electrical properties of Metal-Oxide-Semiconductor (MOS) capacitors with Spin-On-Glass (SOG)-based thin films as gate dielectric have been investigated. Experiments of SOG diluted with two different solvents (2-propanol and deionized water) were done in order to reduce the viscosity of the SOG solution so that thinner films (down to ∼20 nm) could be obtained and their general characteristics compared. Thin films of SOG were deposited on silicon by the sol-gel technique and they were thermally annealed using conventional oxidation furnace and Rapid Thermal Processing (RTP) systems within N 2 ambient after deposition. SOG dilution using non-organic solvents like deionized water and further annealing (at relatively high temperatures ≥450 deg. C) are important processes intended to reduce the organic content of the films. Fourier-Transform Infrared (FTIR) Spectroscopy results have shown that water-diluted SOG films have a significant reduction in their organic content after increasing annealing temperature and/or dilution percentage when compared to those of undiluted SOG films. Both current-voltage (I-V) and capacitance-voltage (C-V) measurements show better electrical characteristics for SOG-films diluted in deionized water compared to those diluted in 2-propanol (which is an organic solvent). The electrical characteristics of H 2 O-diluted SOG thin films are very similar to those obtained from high quality thermal oxides so that their application as gate dielectrics in MOS devices is promising. Finally, it has been demonstrated that by reducing the organic content of SOG-based thin films, it is possible to obtain MOS devices with better electrical properties.

  13. Peak loads and network investments in sustainable energy transitions

    Energy Technology Data Exchange (ETDEWEB)

    Blokhuis, Erik, E-mail: e.g.j.blokhuis@tue.nl [Eindhoven University of Technology, Department of Architecture, Building and Planning, Vertigo 8.11, P.O. Box 513, 5600MB Eindhoven (Netherlands); Brouwers, Bart [Eindhoven University of Technology, Department of Architecture, Building and Planning, Vertigo 8.11, P.O. Box 513, 5600MB Eindhoven (Netherlands); Putten, Eric van der [Endinet, Gas and Electricity Network Operations, P.O. Box 2005, 5600CA Eindhoven (Netherlands); Schaefer, Wim [Eindhoven University of Technology, Department of Architecture, Building and Planning, Vertigo 8.11, P.O. Box 513, 5600MB Eindhoven (Netherlands)

    2011-10-15

    Current energy distribution networks are often not equipped for facilitating expected sustainable transitions. Major concerns for future electricity networks are the possibility of peak load increases and the expected growth of decentralized energy generation. In this article, we focus on peak load increases; the effects of possible future developments on peak loads are studied, together with the consequences for the network. The city of Eindhoven (the Netherlands) is used as reference city, for which a scenario is developed in which the assumed future developments adversely influence the maximum peak loads on the network. In this scenario, the total electricity peak load in Eindhoven is expected to increase from 198 MVA in 2009 to 591-633 MVA in 2040. The necessary investments for facilitating the expected increased peak loads are estimated at 305-375 million Euros. Based upon these projections, it is advocated that - contrary to current Dutch policy - choices regarding sustainable transitions should be made from the viewpoint of integral energy systems, evaluating economic implications of changes to generation, grid development, and consumption. Recently applied and finished policies on energy demand reduction showed to be effective; however, additional and connecting policies on energy generation and distribution should be considered on short term. - Highlights: > Sustainable energy transitions can result in major electricity peak load increases. > Introduction of heat pumps and electrical vehicles requires network expansion. > Under worst case assumptions, peak loads in Eindhoven increase with 200% until 2040. > The necessary investment for facilitating this 2040 peak demand is Euro 305-375 million. > Future policy choices should be made from the viewpoint of the integral energy system.

  14. Peak loads and network investments in sustainable energy transitions

    International Nuclear Information System (INIS)

    Blokhuis, Erik; Brouwers, Bart; Putten, Eric van der; Schaefer, Wim

    2011-01-01

    Current energy distribution networks are often not equipped for facilitating expected sustainable transitions. Major concerns for future electricity networks are the possibility of peak load increases and the expected growth of decentralized energy generation. In this article, we focus on peak load increases; the effects of possible future developments on peak loads are studied, together with the consequences for the network. The city of Eindhoven (the Netherlands) is used as reference city, for which a scenario is developed in which the assumed future developments adversely influence the maximum peak loads on the network. In this scenario, the total electricity peak load in Eindhoven is expected to increase from 198 MVA in 2009 to 591-633 MVA in 2040. The necessary investments for facilitating the expected increased peak loads are estimated at 305-375 million Euros. Based upon these projections, it is advocated that - contrary to current Dutch policy - choices regarding sustainable transitions should be made from the viewpoint of integral energy systems, evaluating economic implications of changes to generation, grid development, and consumption. Recently applied and finished policies on energy demand reduction showed to be effective; however, additional and connecting policies on energy generation and distribution should be considered on short term. - Highlights: → Sustainable energy transitions can result in major electricity peak load increases. → Introduction of heat pumps and electrical vehicles requires network expansion. → Under worst case assumptions, peak loads in Eindhoven increase with 200% until 2040. → The necessary investment for facilitating this 2040 peak demand is Euro 305-375 million. → Future policy choices should be made from the viewpoint of the integral energy system.

  15. The electricity market 2002

    International Nuclear Information System (INIS)

    2002-01-01

    taxes. The price of electricity dropped between 1997 and 2000, but began rising again to all electricity customers during 2000 and 2001. During the same period, the network charges remained largely unchanged, while the tax on electricity increased substantially. This led to an increase in the total cost to domestic customers, whereas the cost to industrial customers, who are exempt from taxes, is lower. The reform has enabled customers to choose freely the supplier from whom they want to buy their electricity. An opinion poll shows that most customers know that they can choose their supplier, and 37 % have acted on this by changing to a different supplier or negotiating their electricity price. The market concentration has increased in recent years since the dominating companies in Nordic countries have bought shares in competing companies on the Nordic market. The power companies and electricity trading companies are being developed towards bigger and more integrated energy companies, with operations in several countries. In recent years, the former surplus generation capacity in Sweden has been reduced. The oil-fired condensing power stations that were previously used in Sweden as reserve capacity have been decommissioned, and the first reactor in Barsebaeck was shut down. Svenska Kraftnaet, the Swedish grid utility, purchased a power reserve before the winter of 2000/2001 in order to strengthen the power balance during consumption peaks. During the autumn of 2001, the Government also entrusted Svenska Kraftnaet with the task of safe-guarding electricity generation capacity during very cold weather. This was to be done by purchasing reserve power capacity. The assignment resulted in additional power generation capacity consisting of previously decommissioned power generation plants and companies that were prepared to reduce their power consumption voluntarily. The procurement of reserve capacity is a temporary transitional measure. In the Government assignment

  16. Critical analysis of the socialist proposition to reduce the nuclear share to 50% of the electric mix by 2025

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2011-01-01

    After having recalled the situation of the French energy mix in 2010, this paper analyses the consequences of the different options which can be chosen to balance a reduction of the nuclear share in this mix. These different scenarios are: replacement by fossil (gas or coal) energy plants, replacement by renewable energies (here comes a discussion of wind energy limitations), decrease of energy consumption and increase of gas-based energy production. The author also discusses a comparison between the use of a direct gas or fuel heating and the use of electricity produced by gas power plants

  17. High- and low-frequency transcutaneous electrical nerve stimulation does not reduce experimental pain in elderly individuals

    OpenAIRE

    Bergeron-V?zina, Kayla; Corriveau, H?l?ne; Martel, Marylie; Harvey, Marie-Philippe; L?onard, Guillaume

    2015-01-01

    Abstract Despite its widespread clinical use, the efficacy of transcutaneous electrical nerve stimulation (TENS) remains poorly documented in elderly individuals. In this randomized, double-blind crossover study, we compared the efficacy of high-frequency (HF), low-frequency (LF), and placebo (P) TENS in a group of 15 elderly adults (mean age: 67 ? 5 years). The effect of HF-, LF-, and P-TENS was also evaluated in a group of 15 young individuals (26 ? 5 years; same study design) to validate t...

  18. Efficient Power Scheduling in Smart Homes Using Hybrid Grey Wolf Differential Evolution Optimization Technique with Real Time and Critical Peak Pricing Schemes

    Directory of Open Access Journals (Sweden)

    Muqaddas Naz

    2018-02-01

    Full Text Available With the emergence of automated environments, energy demand by consumers is increasing rapidly. More than 80% of total electricity is being consumed in the residential sector. This brings a challenging task of maintaining the balance between demand and generation of electric power. In order to meet such challenges, a traditional grid is renovated by integrating two-way communication between the consumer and generation unit. To reduce electricity cost and peak load demand, demand side management (DSM is modeled as an optimization problem, and the solution is obtained by applying meta-heuristic techniques with different pricing schemes. In this paper, an optimization technique, the hybrid gray wolf differential evolution (HGWDE, is proposed by merging enhanced differential evolution (EDE and gray wolf optimization (GWO scheme using real-time pricing (RTP and critical peak pricing (CPP. Load shifting is performed from on-peak hours to off-peak hours depending on the electricity cost defined by the utility. However, there is a trade-off between user comfort and cost. To validate the performance of the proposed algorithm, simulations have been carried out in MATLAB. Results illustrate that using RTP, the peak to average ratio (PAR is reduced to 53.02%, 29.02% and 26.55%, while the electricity bill is reduced to 12.81%, 12.012% and 12.95%, respectively, for the 15-, 30- and 60-min operational time interval (OTI. On the other hand, the PAR and electricity bill are reduced to 47.27%, 22.91%, 22% and 13.04%, 12%, 11.11% using the CPP tariff.

  19. Upper limit of peak area

    International Nuclear Information System (INIS)

    Helene, O.A.M.

    1982-08-01

    The determination of the upper limit of peak area in a multi-channel spectra, with a known significance level is discussed. This problem is specially important when the peak area is masked by the background statistical fluctuations. The problem is exactly solved and, thus, the results are valid in experiments with small number of events. The results are submitted to a Monte Carlo test and applied to the 92 Nb beta decay. (Author) [pt

  20. Increased electricity use for reducing pressures on natural resources and environment - the case of the European union

    International Nuclear Information System (INIS)

    Camplani, A.

    1995-01-01

    The study, which is based on the energy scenario methodology, first developed the ''reference scenario'', based on a market-oriented approach, on changes in business, habits, policies and innovation following trends, on consolidated expectations about economic growth, quasi-stationary demography and energy service demand. Then, as the reference scenario proved not to satisfy even relaxed constraints for Sustainable Development, an ''alternative scenario'' was developed, still based on a market-oriented approach, but leaving ampler scope to innovation and more conducing to long-term investments, that leads to a decline of CO 2 emissions over the long term. Fostering the recourse to efficient end-use technologies (demand side) and prudent use of CO-2-free energies, both mainly based on electricity, are the two main instruments considered. A development path which, by 2020, is projected to involve 10% less energy, 5% more electricity, 20-25% less energy-related CO 2 emissions is identified and its implementation discussed in the framework of the European Union energy policy. 5 refs., 1 fig., 3 tabs

  1. A Multi-Objective Unit Commitment Model for Setting Carbon Tax to Reduce CO2 Emission: Thailand's Electricity Generation Case

    Directory of Open Access Journals (Sweden)

    Nuchjarin Intalar

    2015-07-01

    Full Text Available Carbon tax policy is a cost-effective instrument for emission reduction. However, setting the carbon tax is one of the challenging task for policy makers as it will lead to higher price of emission-intensive sources especially the utility price. In a large-scale power generation system, minimizing the operational cost and the environmental impact are conflicting objectives and it is difficult to find the compromise solution. This paper proposes a methodology of finding a feasible carbon tax rate on strategic level using the operational unit commitment model. We present a multi-objective mixed integer linear programming model to solve the unit commitment problem and consider the environmental impacts. The methodology of analyzing of the effect of carbon tax rates on the power generation, operating cost, and CO2 emission is also provided. The trade-off relationship between total operating cost and total CO2 emission is presented in the Pareto-optimal curve to analyze the feasible carbon tax rate that is influencing on electricity operating cost. The significant outcome of this paper is a modeling framework for the policy makers to determine the possible carbon tax that can be imposed on the electricity generation.

  2. Market Designs : A Survey and Analysis of Methods to Ensure Peak Capacity

    OpenAIRE

    Gullberg, Erik

    2008-01-01

    The production and consumption of electricity must be in balance in order to maintain the frequency in an electrical grid. During peak loads this may be troublesome to achieve due to lack of adequate production capabilities. Competitive electricity markets with price caps have a problem - insufficient revenues for peak production units which lead to mothballing or decommissioning of power plants. Inadequate production capability is solved through design of the electricity markets which render...

  3. Particle in cell simulation of peaking switch for breakdown evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Umbarkar, Sachin B.; Bindu, S.; Mangalvedekar, H.A.; Saxena, A.; Singh, N.M., E-mail: sachin.b.umbarkar@gmail.com [Department of Electric Engineering, Veermata Jijabai Technological Institute, Mumbai (India); Sharma, Archana; Saroj, P.C.; Mittal, K.C. [Accelerator Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Marx generator connected to peaking capacitor and peaking switch can generate Ultra-Wideband (UWB) radiation. A new peaking switch is designed for converting the existing nanosecond Marx generator to a UWB source. The paper explains the particle in cell (PIC) simulation for this peaking switch, using MAGIC 3D software. This peaking switch electrode is made up of copper tungsten material and is fixed inside the hermitically sealed derlin material. The switch can withstand a gas pressure up to 13.5 kg/cm{sup 2}. The lower electrode of the switch is connected to the last stage of the Marx generator. Initially Marx generator (without peaking stage) in air; gives the output pulse with peak amplitude of 113.75 kV and pulse rise time of 25 ns. Thus, we design a new peaking switch to improve the rise time of output pulse and to pressurize this peaking switch separately (i.e. Marx and peaking switch is at different pressure). The PIC simulation gives the particle charge density, current density, E counter plot, emitted electron current, and particle energy along the axis of gap between electrodes. The charge injection and electric field dependence on ionic dissociation phenomenon are briefly analyzed using this simulation. The model is simulated with different gases (N{sub 2}, H{sub 2}, and Air) under different pressure (2 kg/cm{sup 2}, 5 kg/cm{sup 2}, 10 kg/cm{sup 2}). (author)

  4. The electricity market 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-10-01

    charges and taxes. The price of electricity dropped between 1997 and 2000, but began rising again to all electricity customers during 2000 and 2001. During the same period, the network charges remained largely unchanged, while the tax on electricity increased substantially. This led to an increase in the total cost to domestic customers, whereas the cost to industrial customers, who are exempt from taxes, is lower. The reform has enabled customers to choose freely the supplier from whom they want to buy their electricity. An opinion poll shows that most customers know that they can choose their supplier, and 37 % have acted on this by changing to a different supplier or negotiating their electricity price. The market concentration has increased in recent years since the dominating companies in Nordic countries have bought shares in competing companies on the Nordic market. The power companies and electricity trading companies are being developed towards bigger and more integrated energy companies, with operations in several countries. In recent years, the former surplus generation capacity in Sweden has been reduced. The oil-fired condensing power stations that were previously used in Sweden as reserve capacity have been decommissioned, and the first reactor in Barsebaeck was shut down. Svenska Kraftnaet, the Swedish grid utility, purchased a power reserve before the winter of 2000/2001 in order to strengthen the power balance during consumption peaks. During the autumn of 2001, the Government also entrusted Svenska Kraftnaet with the task of safe-guarding electricity generation capacity during very cold weather. This was to be done by purchasing reserve power capacity. The assignment resulted in additional power generation capacity consisting of previously decommissioned power generation plants and companies that were prepared to reduce their power consumption voluntarily. The procurement of reserve capacity is a temporary transitional measure. In the Government

  5. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption

    International Nuclear Information System (INIS)

    Peterson, Scott B.; Michalek, Jeremy J.

    2013-01-01

    Federal electric vehicle (EV) policies in the United States currently include vehicle purchase subsidies linked to EV battery capacity and subsidies for installing charging stations. We assess the cost-effectiveness of increased battery capacity vs. nondomestic charging infrastructure installation for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks, and SUVs in the US. We find across a wide range of scenarios that the least-cost solution is for more drivers to switch to low-capacity plug-in hybrid electric vehicles (short electric range with gasoline backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are needed per vehicle, nondomestic charging infrastructure installation is substantially more expensive than increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium estimates. Cost effectiveness of all subsidies are lower under a binding fuel economy standard. Comparison of results to the structure of current federal subsidies shows that policy is not aligned with fuel savings potential, and we discuss issues and alternatives. - Highlights: ► We compare cost of PHEV batteries vs. charging infrastructure per gallon of gasoline saved. ► The lowest cost solution is to switch more drivers to low-capacity PHEVs and HEVs. ► If more gasoline savings is needed, batteries offer a better value than chargers. ► Extra batteries and chargers are both more costly per gal than oil premium estimates. ► Current subsidies are misaligned with fuel savings. We discuss alternatives.

  6. Peak Oil and other threatening peaks-Chimeras without substance

    International Nuclear Information System (INIS)

    Radetzki, Marian

    2010-01-01

    The Peak Oil movement has widely spread its message about an impending peak in global oil production, caused by an inadequate resource base. On closer scrutiny, the underlying analysis is inconsistent, void of a theoretical foundation and without support in empirical observations. Global oil resources are huge and expanding, and pose no threat to continuing output growth within an extended time horizon. In contrast, temporary or prolonged supply crunches are indeed plausible, even likely, on account of growing resource nationalism denying access to efficient exploitation of the existing resource wealth.

  7. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  8. Peak-load management, the security of supply warranty

    International Nuclear Information System (INIS)

    2010-01-01

    Even if France owns an efficient power generation park, largely exporting and clean (90% with no CO 2 emission), it encounters some difficulties during peak-load periods. The successive peak power demand records which are recorded each year represent as many alerts about a possible collapse of the power system. In order to warrant the electricity supply, the present day regulatory framework must be changed to allow the industrial players to carry out the necessary investments

  9. Peaking-factor of PWR

    International Nuclear Information System (INIS)

    Morioka, Noboru; Kato, Yasuji; Yokoi, M.

    1975-01-01

    Output peaking factor often plays an important role in the safety and operation of nuclear reactors. The meaning of the peaking factor of PWRs is categorized into two features or the peaking factor in core (FQ-core) and the peaking factor on the basis of accident analysis (or FQ-limit). FQ-core is the actual peaking factor realized in nuclear core at the time of normal operation, and FQ-limit should be evaluated from loss of coolant accident and other abnormal conditions. If FQ-core is lower than FQ-limit, the reactor may be operated at full load, but if FQ-core is larger than FQ-limit, reactor output should be controlled lower than FQ-limit. FQ-core has two kinds of values, or the one on the basis of nuclear design, and the other actually measured in reactor operation. The first FQ-core should be named as FQ-core-design and the latter as FQ-core-measured. The numerical evaluation of FQ-core-design is as follows; FQ-core-design of three-dimensions is synthesized with FQ-core horizontal value (X-Y) and FQ-core vertical value, the former one is calculated with ASSY-CORE code, and the latter one with one dimensional diffusion code. For the evaluation of FQ-core-measured, on-site data observation from nuclear reactor instrumentation or off-site data observation is used. (Iwase, T.)

  10. Electrical stimulation of paralyzed vibrissal muscles reduces endplate reinnervation and does not promote motor recovery after facial nerve repair in rats.

    Science.gov (United States)

    Sinis, Nektarios; Horn, Frauke; Genchev, Borislav; Skouras, Emmanouil; Merkel, Daniel; Angelova, Srebrina K; Kaidoglou, Katerina; Michael, Joern; Pavlov, Stoyan; Igelmund, Peter; Schaller, Hans-Eberhard; Irintchev, Andrey; Dunlop, Sarah A; Angelov, Doychin N

    2009-10-01

    The outcome of peripheral nerve injuries requiring surgical repair is poor. Recent work has suggested that electrical stimulation (ES) of denervated muscles could be beneficial. Here we tested whether ES has a positive influence on functional recovery after injury and surgical repair of the facial nerve. Outcomes at 2 months were compared to animals receiving sham stimulation (SS). Starting on the first day after end-to-end suture (facial-facial anastomosis), electrical stimulation (square 0.1 ms pulses at 5 Hz at an ex tempore established threshold amplitude of between 3.0 and 5.0V) was delivered to the vibrissal muscles for 5 min a day, 3 times a week. Restoration of vibrissal motor performance following ES or SS was evaluated using the video-based motion analysis and correlated with the degree of collateral axonal branching at the lesion site, the number of motor endplates in the target musculature and the quality of their reinnervation, i.e. the degree of mono- versus poly-innervation. Neither protocol reduced collateral branching. ES did not improve functional outcome, but rather reduced the number of innervated motor endplates to approximately one-fifth of normal values and failed to reduce the proportion of poly-innervated motor endplates. We conclude that ES is not beneficial for recovery of whisker function after facial nerve repair in rats.

  11. How to use your peak flow meter

    Science.gov (United States)

    ... meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak ... 2014:chap 55. National Asthma Education and Prevention Program website. How to use a peak flow meter. ...

  12. Peak effect in twinned superconductors

    International Nuclear Information System (INIS)

    Larkin, A.I.; Marchetti, M.C.; Vinokur, V.M.

    1995-01-01

    A sharp maximum in the critical current J c as a function of temperature just below the melting point of the Abrikosov flux lattice has recently been observed in both low- and high-temperature superconductors. This peak effect is strongest in twinned crystals for fields aligned with the twin planes. We propose that this peak signals the breakdown of the collective pinning regime and the crossover to strong pinning of single vortices on the twin boundaries. This crossover is very sharp and can account for the steep drop of the differential resistivity observed in experiments. copyright 1995 The American Physical Society

  13. Energy market and reserve market modeling in simultaneous and serial implementation methods with the aim of reducing electricity costs

    Directory of Open Access Journals (Sweden)

    Ramin Ghoraba

    2012-01-01

    Full Text Available In competitive electricity markets, power needed for the network’s reserve is purchased from the ancillary service market. In this market, producing units and buyers alike announce their offers. As will be seen, energy market and reserve market implementation is possible with simultaneous method and serial method by choosing each of the methods based on the type of market and other conditions. In this paper, the energy market and the active power reserve market are simulated in two formations as serial and simultaneous for a uniform pricing system. In each method, limitations of transferring power over the lines, based on available transfer capacity (ATC, is considered alongside the other constraints in the energy market and the active power reserve market. Then, during network overload, economic dispatch is accomplished between winner units in the reserve market by using a linear optimization problem, and needed power is provided from these units at a minimal cost. Finally, our proposed methods are implemented on an IEEE 39-bus test system and results are analyzed.

  14. Transcutaneous Electrical Nerve Stimulation (TENS) reduces pain, fatigue, and hyperalgesia while restoring central inhibition in primary fibromyalgia

    Science.gov (United States)

    Dailey, Dana L; Rakel, Barbara A; Vance, Carol GT; Liebano, Richard E; Anand, Amrit S; Bush, Heather M; Lee, Kyoung S; Lee, Jennifer E; Sluka, Kathleen A

    2014-01-01

    Because TENS works by reducing central excitability and activating central inhibition pathways, we tested the hypothesis that TENS would reduce pain and fatigue and improve function and hyperalgesia in people with fibromyalgia who have enhanced central excitability and reduced inhibition. The current study used a double-blinded randomized, placebo controlled cross-over design to test effects of a single treatment of TENS in people with fibromyalgia. Three treatments were assessed in random order: active TENS, placebo TENS, no TENS. The following measures were assessed before and after each TENS treatment: pain and fatigue at rest and movement, pressure pain thresholds (PPTs), 6 minute walk test (6MWT), range of motion (ROM), five time sit to stand test (FTSTS), and single leg stance (SLS). Conditioned pain modulation (CPM) was completed at end of testing. There was a significant decrease in pain and fatigue with movement for active TENS compared to placebo and no TENS. PPTs increased at site of TENS (spine) and outside site of TENS (leg) when compared to placebo TENS or no TENS. During Active TENS CPM was significantly stronger compared to placebo TENS and no TENS. No changes in functional tasks were observed with TENS. Thus, the current study suggests TENS has short-term efficacy in relieving symptoms of fibromyalgia while the stimulator is active. Future clinical trials should examine the effects of repeated daily delivery of TENS, similar to how TENS is used clinically, on pain, fatigue, function and quality of life in individuals with fibromyalgia. PMID:23900134

  15. Hubbert's Peak -- A Physicist's View

    Science.gov (United States)

    McDonald, Richard

    2011-04-01

    Oil, as used in agriculture and transportation, is the lifeblood of modern society. It is finite in quantity and will someday be exhausted. In 1956, Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Bartlett extended this work in publications and lectures on the finite nature of oil and its production peak and depletion. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. Central to these analyses are estimates of total ``oil in place'' obtained from engineering studies of oil reservoirs as this quantity determines the area under the Hubbert's Peak. Knowing the production history and the total oil in place allows us to make estimates of reserves, and therefore future oil availability. We will then examine reserves data for various countries, in particular OPEC countries, and see if these data tell us anything about the future availability of oil. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.

  16. The use of HANDIDET reg-sign non-electric detonator assemblies to reduce blast-induced overpressure at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Onagi, D.P.; Keith, S.G.; Kuzyk, G.W.

    1996-01-01

    A number of aspects of the Canadian concept for nuclear fuel waste disposal are being assessed by Atomic Energy of Canada Limited (AECL) in a series of experiments at its Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba, Canada. One of the major objectives of the work being carried out at the URL is to develop and evaluate the methods and technology to ensure safe, permanent disposal of Canada's nuclear fuel waste. In 1994, AECL excavated access tunnels and a laboratory room for the Quarried Block Fracture Migration Experiment (QBFME) at the 240 Level of the URL. This facility will be used to study the transport of radionuclides in natural fractures in quarried blocks of granite under in-situ groundwater conditions. The experiment is being carried out under a cooperative agreement with the Japan Atomic Energy Research Institute. The excavation of the QBFME access tunnels and laboratory was carried out using controlled blasting techniques that minimized blast-induced overpressure which could have damaged or interrupted other ongoing experiments in the vicinity. The majority of the blasts used conventional long delay non-electric detonators but a number of blasts were carried out using HANDIDET 250/6000 non-electric long delay detonator assemblies and HTD reg-sign non-electric short delay trunkline detonator assemblies. The tunnel and laboratory excavation was monitored to determine the levels of blast-induced overpressure. This paper describes the blasting and monitoring results of the blasts using HANDIDET non-electric detonator assemblies and the effectiveness of these detonators in reducing blast-induced overpressure

  17. The use of HANDIDET{reg_sign} non-electric detonator assemblies to reduce blast-induced overpressure at AECL`s Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Onagi, D.P.; Keith, S.G.; Kuzyk, G.W. [AECL, Pinawa, Manitoba (Canada). Underground Research Lab.; Proudfoot, D.F. [ICI Explosives Canada, North Delta, British Columbia (Canada)

    1996-12-01

    A number of aspects of the Canadian concept for nuclear fuel waste disposal are being assessed by Atomic Energy of Canada Limited (AECL) in a series of experiments at its Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba, Canada. One of the major objectives of the work being carried out at the URL is to develop and evaluate the methods and technology to ensure safe, permanent disposal of Canada`s nuclear fuel waste. In 1994, AECL excavated access tunnels and a laboratory room for the Quarried Block Fracture Migration Experiment (QBFME) at the 240 Level of the URL. This facility will be used to study the transport of radionuclides in natural fractures in quarried blocks of granite under in-situ groundwater conditions. The experiment is being carried out under a cooperative agreement with the Japan Atomic Energy Research Institute. The excavation of the QBFME access tunnels and laboratory was carried out using controlled blasting techniques that minimized blast-induced overpressure which could have damaged or interrupted other ongoing experiments in the vicinity. The majority of the blasts used conventional long delay non-electric detonators but a number of blasts were carried out using HANDIDET 250/6000 non-electric long delay detonator assemblies and HTD{reg_sign} non-electric short delay trunkline detonator assemblies. The tunnel and laboratory excavation was monitored to determine the levels of blast-induced overpressure. This paper describes the blasting and monitoring results of the blasts using HANDIDET non-electric detonator assemblies and the effectiveness of these detonators in reducing blast-induced overpressure.

  18. Transcutaneous electrical nerve stimulation (TENS) reduces pain and postpones the need for pharmacological analgesia during labour: a randomised trial.

    Science.gov (United States)

    Santana, Licia Santos; Gallo, Rubneide Barreto Silva; Ferreira, Cristine Homsi Jorge; Duarte, Geraldo; Quintana, Silvana Maria; Marcolin, Alessandra Cristina

    2016-01-01

    In the active phase of the first stage of labour, does transcutaneous electrical nerve stimulation (TENS) relieve pain or change its location? Does TENS delay the request for neuraxial analgesia during labour? Does TENS produce any harmful effects in the mother or the foetus? Are women in labour satisfied with the care provided? Randomised trial with concealed allocation, assessor blinding for some outcomes, and intention-to-treat analysis. Forty-six low-risk, primigravida parturients with a gestational age > 37 weeks, cervical dilation of 4cm, and without the use of any medications from hospital admission until randomisation. The principal investigator applied TENS to the experimental group for 30minutes starting at the beginning of the active phase of labour. A second investigator assessed the outcomes in both the control and experimental groups. Both groups received routine perinatal care. The primary outcome was pain severity after the intervention period, which was assessed using the 100-mm visual analogue scale. Secondary outcomes included: pain location, duration of the active phase of labour, time to pharmacological labour analgesia, mode of birth, neonatal outcomes, and the participant's satisfaction with the care provided. After the intervention, a significant mean difference in change in pain of 15mm was observed favouring the experimental group (95% CI 2 to 27). The application of TENS did not alter the location or distribution of the pain. The mean time to pharmacological analgesia after the intervention was 5.0hours (95% CI 4.1 to 5.9) longer in the experimental group. The intervention did not significantly impact the other maternal and neonatal outcomes. Participants in both groups were satisfied with the care provided during labour. TENS produces a significant decrease in pain during labour and postpones the need for pharmacological analgesia for pain relief. NCT01600495. Copyright © 2015. Published by Elsevier B.V.

  19. Is “smart charging” policy for electric vehicles worthwhile?

    International Nuclear Information System (INIS)

    Lyon, Thomas P.; Michelin, Mark; Jongejan, Arie; Leahy, Thomas

    2012-01-01

    Plug-in electric vehicles (PEVs) offer the potential for both reducing reliance on oil and reducing greenhouse gas emissions. However, they may also increase the demand for electricity during peak periods, thereby requiring the construction of new generating units and increasing total costs to electricity consumers. We evaluate the economic costs and benefits of policies that shift charging demand from daytime to off-peak nighttime hours, using data for two different independent system operators and considering a number of sensitivity analyses. We find that the total savings from demand-shifting run into the billions of dollars, though as a percentage of total electricity costs they are quite small. The value of smart charging policy varies significantly across electric grids. Time-of-use pricing is worthwhile under all of the cases we study, but the economic benefits of optimal charging of electric vehicles do not appear to justify investing in the smart grid infrastructure required to implement real-time pricing. - Highlights: ► Evaluates shifting charging time from peak to off-peak periods. ► Studies both MISO and PJM. ► Results depend on whether marginal fuel is coal or gas. ► Compares time-of-use pricing to real-time pricing.

  20. The role of rotational mechanisms in electron swarm parameters at low reduced electric field in N2, O2 and H2

    International Nuclear Information System (INIS)

    Ridenti, M A; Amorim, J; Alves, L L; Guerra, V

    2015-01-01

    The homogeneous Boltzmann equation for electrons in N 2 , O 2 and H 2 is solved under the classical two-term approximation, for reduced electric fields in the interval 10   −  4   −10 Td where the electron-neutral encounters are limited to elastic, rotational and vibrational collisions. Rotational excitations/de-excitations are described using the following three different approaches: the discrete inelastic/superelastic collisional operator, written for a number of rotational levels that depends on the molecular gas and the specific rotational cross sections considered; the continuous approximation for rotations; a modified version of the continuous approximation for rotations, including a Chapman–Cowling corrective term proportional to the gas temperature. The expression of the rotational collision operator for this latter approach is deduced here and the results show that it bridges the gap between the discrete and the continuous descriptions at low/intermediate reduced electric fields. The calculations are compared with the measurements for the available swarm parameters to assess the validity of the different approaches and cross sections adopted to describe the rotational mechanisms. (paper)

  1. Evaluating the approach to reduce the overrun cost of grid connected PV systems for the Spanish electricity sector: Performance analysis of the period 2010–2012

    International Nuclear Information System (INIS)

    Hoz, Jordi de la; Martín, Helena; Ballart, Jordi; Monjo, Lluis

    2014-01-01

    Highlights: • The cost of the Spanish PV promotion policy from 1998 to 2008 is formulated. • The range of scenarios for the cost evolution is determined. • The PV legal measures addressed to reduce the cost are formulated. • The savings range for the Spanish electricity sector has been determined. • The profitability loss of the facilities due to cost containment measures is assessed. - Abstract: A methodology for calculating the overrun cost to the Spanish electricity system caused by the large overshoot of the PV power targets under the RD 661/2007 is here presented. The elements influencing the cost have been identified, which has allowed proposing different scenarios for its possible evolution. Applying the same methodology, the range of savings achievable by the new energy policy developed in 2010–2012 to reduce this cost has been quantified. Inverting the point of view, the profitability reduction that these energy measures might have caused on the PV facilities has been also assessed. The conclusions obtained from the case of four specific facilities may give some insight about the general economic effects on the installations of the 2010–2012 new energy policy, and the consequences for the investors when the inadequacies of the regulatory schemes are tried to be corrected ex-post

  2. The spatial resolution of epidemic peaks.

    Directory of Open Access Journals (Sweden)

    Harriet L Mills

    2014-04-01

    Full Text Available The emergence of novel respiratory pathogens can challenge the capacity of key health care resources, such as intensive care units, that are constrained to serve only specific geographical populations. An ability to predict the magnitude and timing of peak incidence at the scale of a single large population would help to accurately assess the value of interventions designed to reduce that peak. However, current disease-dynamic theory does not provide a clear understanding of the relationship between: epidemic trajectories at the scale of interest (e.g. city; population mobility; and higher resolution spatial effects (e.g. transmission within small neighbourhoods. Here, we used a spatially-explicit stochastic meta-population model of arbitrary spatial resolution to determine the effect of resolution on model-derived epidemic trajectories. We simulated an influenza-like pathogen spreading across theoretical and actual population densities and varied our assumptions about mobility using Latin-Hypercube sampling. Even though, by design, cumulative attack rates were the same for all resolutions and mobilities, peak incidences were different. Clear thresholds existed for all tested populations, such that models with resolutions lower than the threshold substantially overestimated population-wide peak incidence. The effect of resolution was most important in populations which were of lower density and lower mobility. With the expectation of accurate spatial incidence datasets in the near future, our objective was to provide a framework for how to use these data correctly in a spatial meta-population model. Our results suggest that there is a fundamental spatial resolution for any pathogen-population pair. If underlying interactions between pathogens and spatially heterogeneous populations are represented at this resolution or higher, accurate predictions of peak incidence for city-scale epidemics are feasible.

  3. Mechanical Coupling between Muscle-Tendon Units Reduces Peak Stresses

    NARCIS (Netherlands)

    Maas, Huub; Finni, Taija

    2018-01-01

    The presence of mechanical linkages between synergistic muscles and their common tendons may distribute forces among the involved structures. We review studies, using humans and other animals, examining muscle and tendon interactions and discuss the hypothesis that connections between muscle bellies

  4. Oral Contraceptives Use by Young Women Reduces Peak Bone Mass

    National Research Council Canada - National Science Library

    Register, Thomas

    2002-01-01

    ...) OC supplemented with an androgen (methyltestosterone), or 4) an anti-androgen (bicalutamide) to determine the potential role that suppression of androgens plays on bone metabolism, bone architecture, and the attainment of PBM...

  5. Oral Contraceptives Use by Young Women Reduces Peak Bone Mass

    National Research Council Canada - National Science Library

    Register, Thomas

    2001-01-01

    ...) OC supplemented with an androgen (methyltestosterone), or (4) an anti-androgen (bicalutamide) to determine the potential role that suppression of androgens plays on bone metabolism, bone architecture, and the attainment of PBM...

  6. Keep it cool: Reducing energy peaks of reefers at terminals

    NARCIS (Netherlands)

    A. Verbraeck; dr. J.H.R. van Duin; M.A. Oey; H. Geerlings

    2016-01-01

    The increase in population, high standards of living and rapid urbanization has led to an increasing demand for food across the globe. The global trade has made it possible to meet this demand by enabling transport of different food products from one part of the world to another. In this trade,

  7. Mechanisms controlling temperature dependent mechanical and electrical behavior of SiH4 reduced chemically vapor deposited W

    International Nuclear Information System (INIS)

    Joshi, R.V.; Prasad, V.; Krusin-Elbaum, L.; Yu, M.; Norcott, M.

    1990-01-01

    The effects of deposition temperature on growth, composition, structure, adhesion properties, stress, and resistivity of chemically vapor deposited W deposited purely by SiH 4 reduction of WF 6 are discussed. At lower deposition temperatures, due to incomplete Si reduction reaction, a small amount of Si is incorporated in the film. This elemental Si in W is responsible for the observed high stresses and high resistivities over a wide temperature range. With the increase in the deposition temperature, the conversion of incorporated Si as well as the initial Si reduction are taking place, stimulating increased grain growth and thereby relieving stress and reducing resistivity. The optimum values for stress and resistivity are achieved around 500 degree C, as Si content is at its minimum. At higher temperatures the reaction between residual Si and W, is the prime cause of resistivity increase

  8. SPANISH PEAKS PRIMITIVE AREA, MONTANA.

    Science.gov (United States)

    Calkins, James A.; Pattee, Eldon C.

    1984-01-01

    A mineral survey of the Spanish Peaks Primitive Area, Montana, disclosed a small low-grade deposit of demonstrated chromite and asbestos resources. The chances for discovery of additional chrome resources are uncertain and the area has little promise for the occurrence of other mineral or energy resources. A reevaluation, sampling at depth, and testing for possible extensions of the Table Mountain asbestos and chromium deposit should be undertaken in the light of recent interpretations regarding its geologic setting.

  9. Neurofeedback training for peak performance

    OpenAIRE

    Marek Graczyk; Maria Pąchalska; Artur Ziółkowski; Grzegorz Mańko; Beata Łukaszewska; Kazimierz Kochanowicz; Andrzej Mirski; Iurii D. Kropotov

    2014-01-01

    [b]aim[/b]. One of the applications of the Neurofeedback methodology is peak performance in sport. The protocols of the neurofeedback are usually based on an assessment of the spectral parameters of spontaneous EEG in resting state conditions. The aim of the paper was to study whether the intensive neurofeedback training of a well-functioning Olympic athlete who has lost his performance confidence after injury in sport, could change the brain functioning reflected in changes in spontaneou...

  10. Power peaking nuclear reliability factors

    International Nuclear Information System (INIS)

    Hassan, H.A.; Pegram, J.W.; Mays, C.W.; Romano, J.J.; Woods, J.J.; Warren, H.D.

    1977-11-01

    The Calculational Nuclear Reliability Factor (CNRF) assigned to the limiting power density calculated in reactor design has been determined. The CNRF is presented as a function of the relative power density of the fuel assembly and its radial local. In addition, the Measurement Nuclear Reliability Factor (MNRF) for the measured peak hot pellet power in the core has been evaluated. This MNRF is also presented as a function of the relative power density and radial local within the fuel assembly

  11. Evaluation of concurrent peak responses

    International Nuclear Information System (INIS)

    Wang, P.C.; Curreri, J.; Reich, M.

    1983-01-01

    This report deals with the problem of combining two or more concurrent responses which are induced by dynamic loads acting on nuclear power plant structures. Specifically, the acceptability of using the square root of the sum of the squares (SRSS) value of peak values as the combined response is investigated. Emphasis is placed on the establishment of a simplified criterion that is convenient and relatively easy to use by design engineers

  12. Finding two-dimensional peaks

    International Nuclear Information System (INIS)

    Silagadze, Z.K.

    2007-01-01

    Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems

  13. Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm

    KAUST Repository

    Abbas, Ahmed; Kong, Xin-Bing; Liu, Zhi; Jing, Bing-Yi; Gao, Xin

    2013-01-01

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into p-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013

  14. Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm

    KAUST Repository

    Abbas, Ahmed

    2013-01-07

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into p-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013

  15. Drivers of peak sales for pharmaceutical brands

    NARCIS (Netherlands)

    Fischer, Marc; Leeflang, Peter S. H.; Verhoef, Peter C.

    2010-01-01

    Peak sales are an important metric in the pharmaceutical industry. Specifically, managers are focused on the height-of-peak-sales and the time required achieving peak sales. We analyze how order of entry and quality affect the level of peak sales and the time-to-peak-sales of pharmaceutical brands.

  16. Coupling mechanism of electric vehicle and grid under the background of smart grid

    Science.gov (United States)

    Dong, Mingyu; Li, Dezhi; Chen, Rongjun; Shu, Han; He, Yongxiu

    2018-02-01

    With the development of smart distribution technology in the future, electric vehicle users can not only charge reasonably based on peak-valley price, they can also discharge electricity into the power grid to realize their economic benefit when it’s necessary and thus promote peak load shifting. According to the characteristic that future electric vehicles can discharge, this paper studies the interaction effect between electric vehicles and the grid based on TOU (time of use) Price Strategy. In this paper, four scenarios are used to compare the change of grid load after implementing TOU Price Strategy. The results show that the wide access of electric vehicles can effectively reduce peak and valley difference.

  17. The cost of electrolytic hydrogen from off-peak power

    International Nuclear Information System (INIS)

    Stucki, S.

    1991-01-01

    The cost of electrolytic hydrogen depends on the capacity factor of the plant and the cost of electricity. Both these parameters are correlated if off-peak power is to be used for hydrogen production. Based on assumptions regarding the correlation between the electricity price and the availability of electric power, optimizations were run using a simple cost model for the electrolysis plant. The current density at which the electrolysis plant would be run is taken as a variable for optimization as well as the annual time of availability of electric power. The results of the optimizations show for a number of hypothetical electrolyser types that the optimum operation time or electricity price do not depend much on the technology used. Production cost of electrolytic hydrogen can, however, be cut by 30% by using advanced electrolysis technology. (author)

  18. The influence of reduced graphene oxide on electrical conductivity of LiFePO{sub 4}-based composite as cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Arifin, Muhammad; Aimon, Akfiny Hasdi; Winata, Toto; Abdullah, Mikrajuddin [Physics of Electronic Materials Research Division, Department of Physics, Institut Teknologi Bandung, Bandung 40132 Indonesia (Indonesia); Iskandar, Ferry, E-mail: ferry@fi.itb.ac.id [Physics of Electronic Materials Research Division, Department of Physics, Institut Teknologi Bandung, Bandung 40132 Indonesia (Indonesia); Research Center for Nanoscience and Nanotechnology Institut Teknologi Bandung, Bandung 40132 Indonesia (Indonesia)

    2016-02-08

    LiFePO{sub 4} is fascinating cathode active materials for Li-ion batteries application because of their high electrochemical performance such as a stable voltage at 3.45 V and high specific capacity at 170 mAh.g{sup −1}. However, their low intrinsic electronic conductivity and low ionic diffusion are still the hindrance for their further application on Li-ion batteries. Therefore, the efforts to improve their conductivity are very important to elevate their prospecting application as cathode materials. Herein, we reported preparation of additional of reduced Graphene Oxide (rGO) into LiFePO{sub 4}-based composite via hydrothermal method and the influence of rGO on electrical conductivity of LiFePO{sub 4}−based composite by varying mass of rGO in composition. Vibration of LiFePO{sub 4}-based composite was detected on Fourier Transform Infrared Spectroscopy (FTIR) spectra, while single phase of LiFePO{sub 4} nanocrystal was observed on X-Ray Diffraction (XRD) pattern, it furthermore, Scanning Electron Microscopy (SEM) images showed that rGO was distributed around LiFePO4-based composite. Finally, the 4-point probe measurement result confirmed that the optimum electrical conductivity is in additional 2 wt% rGO for range 1 to 2 wt% rGO.

  19. Optimal Design of an Axial-Flux Permanent-Magnet Middle Motor Integrated in a Cycloidal Reducer for a Pedal Electric Cycle

    Directory of Open Access Journals (Sweden)

    Yee-Pien Yang

    2015-12-01

    Full Text Available This paper proposes an optimal design of a middle motor integrated into a mid-drive unit for pedal electric cycles. This middle motor is an axial-flux permanent magnet brushless DC motor with a stator plate. Facing this plate is a rotor plate that acts as an eccentric component of a cycloidal reducer next to the stator. Both the middle motor and cycloidal reducer are easily installed on the same axle of the bike crankset. In the preliminary design, driving requirements are used to make the middle motor specifications. The numbers of stator slots and magnet poles on the rotor were chosen to achieve the best winding factor, and the winding layout was determined accordingly. A one-dimensional magnetic circuit model of the middle motor was built, and its shape was optimized utilizing a multifunctional optimization system tool. Finally, the resulting design was verified and refined by a finite element analysis. A prototype of the middle motor was fabricated with a stator made of a soft magnetic composite and integrated with a cycloidal reducer. Experimental results show that the motor has a sinusoidal back electromotive force. Additionally, it is easily controlled by sinusoidal currents with acceptable torque and speed curves.

  20. Blending of electricity pricing with time flavour - an analysis of net system benefit to an electric utility in India

    International Nuclear Information System (INIS)

    Bhardwaj, J.L.

    1992-01-01

    Demand-side Management is a powerful strategy for modifying electric energy consumption patterns for the mutual benefit of consumers, the supplier and the economy as a whole Time-of-use pricing of electricity suggest a policy where the price is time-differentiated so as to reduce contribution to the system-peak which determines the capacity and investments of a power-system. This paper describes a case-study of net system benefit to an electric utility in India by offering time-of-use tariff to high voltage (HV) industrial consumers. The study shows that there is a potential of shifting about 19% H.V. Industrial loads from peak to off-peak hours thereby benefitting both, the consumers and the utility. 1 fig., 2 tabs

  1. Pay for load demand - electricity pricing with load demand component

    International Nuclear Information System (INIS)

    Pyrko, Jurek; Sernhed, Kerstin; Abaravicius, Juozas

    2003-01-01

    This publication is part of a project called Direct and Indirect Load Control in Buildings. Peak load problems have attracted considerable attention in Sweden during last three winters, caused by a significant decrease in available reserve power, which is a consequence of political decisions and liberalisation of the electricity market. A possible way to lower peak loads, avoiding electricity shortages and reducing electricity costs both for users and utilities, is to make customers experience the price difference during peak load periods and, in this way, become more aware of their energy consumption pattern and load demand. As of January 1st 2001, one of the Swedish energy utilities - Sollentuna Energi - operating in the Stockholm area, introduced a new electricity tariff with differentiated grid fees based on a mean value of the peak load every month. This tariff was introduced for all residential customers in the service area. The objective of this study is to investigate the extent to which a Load Demand Component, included in electricity pricing, can influence energy use and load demand in residential buildings. What are the benefits and disadvantages for customers and utilities? This paper investigates the impact of the new tariff on the utility and different types of typical residential customers, making comparisons with previous tariff. Keywords Load demand, electricity pricing, tariff, residential customers, energy behaviour

  2. Cost-reflective electricity pricing: Consumer preferences and perceptions

    International Nuclear Information System (INIS)

    Hall, Nina L.; Jeanneret, Talia D.; Rai, Alan

    2016-01-01

    In Australia, residential electricity peak demand has risen steeply in recent decades, leading to higher prices as new infrastructure was needed to satisfy demand. One way of limiting further infrastructure-induced retail price rises is via ‘cost-reflective’ electricity network pricing that incentivises users to shift their demand to non-peak periods. Empowering consumers with knowledge of their energy usage is critical to maximise the potential benefits of cost-reflective pricing. This research consulted residential electricity consumers in three Australian states on their perceptions and acceptance of two cost-reflective pricing scenarios (Time-of-Use and Peak Capacity pricing) and associated technologies to support such pricing (smart meters, in-home displays and direct load control devices). An energy economist presented information to focus groups on the merits and limitations of each scenario, and participants’ views were captured. Almost half of the 53 participants were agreeable to Time-of-Use pricing, but did not have a clear preference for Peak Capacity pricing, where the price was based on the daily maximum demand. Participants recommended further information to both understand and justify the potential benefits, and for technologies to be introduced to enhance the pricing options. The results have implications for utilities and providers who seek to reduce peak demand. - Highlights: •Electricity price rises can be limited by ‘cost-reflective’ pricing. •We consulted residential electricity consumers on Time-of-Use and Peak Capacity pricing. •Understanding of peak electricity demand must increase to enable demand shift. •Interactive website could enable consumers to evaluate pricing options. •Smart meter adoption may increase if voluntary and includes an in-home display.

  3. Time-of-Use Rates and Electricity Costs of Representative New York Dairy Farms

    OpenAIRE

    Boisvert, Richard N.; Bills, Nelson L.; Middagh, Mark C.; Schenkel, Mark

    1992-01-01

    Electric utilities throughout the Nation are experimenting with strategies to reduce total electricity consumption or to alter the timing of electrical power use by their customers. This report focuses on one such strategy, time-of-use (TaU) electric rates, and the likely effect of this pricing option on the New York dairy sector. The purpose of the study is to assess the change in farm electrical energy costs when power is sold to dairymen at higher rates for periods of peak power demand and...

  4. Individual vision and peak distribution in collective actions

    Science.gov (United States)

    Lu, Peng

    2017-06-01

    People make decisions on whether they should participate as participants or not as free riders in collective actions with heterogeneous visions. Besides of the utility heterogeneity and cost heterogeneity, this work includes and investigates the effect of vision heterogeneity by constructing a decision model, i.e. the revised peak model of participants. In this model, potential participants make decisions under the joint influence of utility, cost, and vision heterogeneities. The outcomes of simulations indicate that vision heterogeneity reduces the values of peaks, and the relative variance of peaks is stable. Under normal distributions of vision heterogeneity and other factors, the peaks of participants are normally distributed as well. Therefore, it is necessary to predict distribution traits of peaks based on distribution traits of related factors such as vision heterogeneity and so on. We predict the distribution of peaks with parameters of both mean and standard deviation, which provides the confident intervals and robust predictions of peaks. Besides, we validate the peak model of via the Yuyuan Incident, a real case in China (2014), and the model works well in explaining the dynamics and predicting the peak of real case.

  5. Flip-flop logic circuit based on fully solution-processed organic thin film transistor devices with reduced variations in electrical performance

    Science.gov (United States)

    Takeda, Yasunori; Yoshimura, Yudai; Adib, Faiz Adi Ezarudin Bin; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2015-04-01

    Organic reset-set (RS) flip-flop logic circuits based on pseudo-CMOS inverters have been fabricated using full solution processing at a relatively low process temperatures of 150 °C or less. The work function for printed silver electrodes was increased from 4.7 to 5.4 eV through surface modification with a self-assembled monolayer (SAM) material. A bottom-gate, bottom-contact organic thin-film transistor (OTFT) device using a solution-processable small-molecular semiconductor material exhibited field-effect mobility of 0.40 cm2 V-1 s-1 in the saturation region and a threshold voltage (VTH) of -2.4 V in ambient air operation conditions. In order to reduce the variations in mobility and VTH, we designed a circuit with six transistors arranged in parallel, in order to average out their electrical characteristics. As a result, we have succeeded in reducing these variations without changing the absolute values of the mobility and VTH. The fabricated RS flip-flop circuits were functioned well and exhibited short delay times of 3.5 ms at a supply voltage of 20 V.

  6. Puget Sound Area Electric Reliability Plan. Appendix D, Conservation, Load Management and Fuel Switching Analysis : Draft Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1991-09-01

    Various conservation, load management, and fuel switching programs were considered as ways to reduce or shift system peak load. These programs operate at the end-use level, such as residential water heat. Figure D-1a shows what electricity consumption for water heat looks like on normal and extreme peak days. Load management programs, such as water heat control, are designed to reduce electricity consumption at the time of system peak. On the coldest day in average winter, system load peaks near 8:00 a.m. In a winter with extremely cold weather, electricity consumption increases fr all hours, and the system peak shifts to later in the morning. System load shapes in the Puget Sound area are shown in Figure D-1b for a normal winter peak day (February 2, 1988) and extreme peak day (February 3, 1989). Peak savings from any program are calculated to be the reduction in loads on the entire system at the hour of system peak. Peak savings for all programs are measured at 8:00 a.m. on a normal peak day and 9:00 a.m. on an extreme peak day. On extremely cold day, some water heat load shifts to much later in the morning, with less load available for shedding at the time of system peak. Models of hourly end-use consumption were constructed to simulate the impact of conservation, land management, and fuel switching programs on electricity consumption. Javelin, a time-series simulating package for personal computers, was chosen for the hourly analysis. Both a base case and a program case were simulated. 15 figs., 7 tabs.

  7. Norwegian hydropower a valuable peak power source

    Energy Technology Data Exchange (ETDEWEB)

    Brekke, Hermod

    2010-07-01

    Full text: The paper gives a historical technical review of the development and installation of approximately 20 000 MW of hydraulic turbines in Norway after World War II. The non polluting production of electricity was consumed for lightening and heating for civil consume and the growing electric furnace industry in Norway in addition to export in rainy years. The paper is mainly based on the authors experience in the design of large turbines, and control systems for operation of Francis Turbines and Reversible Pump Turbines for high and medium heads and Pelton turbines for high heads. During the last 15 years the development of small hydro power plants has also given an increasing contribution to the power production. A brief discussion will be given on the choice of equipment for small hydro production with a very small winter production and overload during the summer. The possibility of operation of a small hydropower plants connected to an isolated grid will also briefly be presented. In addition to the general design of turbines and control systems for large hydro plants, a detailed description will be given of the stability analysis for the governing system which was developed for the large high head plants with long high pressure tunnels systems. A discussion will be included on the introduction of the air cushioned surge chambers for fast stable operation of power plants with long tunnels, connected to isolated grids. Also the principle of stabilizing unstable turbine governing system by means of pressure feed back systems, will be presented and discussed. A description of such system developed in 1992, will be given proving that stability could be obtained in a system with long conduits connected to the turbines. However, the 'governing speed' needed for isolated operation could not be fulfilled without a fast by pass pressure relieve system for Francis turbines, which was not installed in the case for the analysis. Finally a discussion will be

  8. Managing peak loads in energy grids: Comparative economic analysis

    International Nuclear Information System (INIS)

    Zhuk, A.; Zeigarnik, Yu.; Buzoverov, E.; Sheindlin, A.

    2016-01-01

    One of the key issues in modern energy technology is managing the imbalance between the generated power and the load, particularly during times of peak demand. The increasing use of renewable energy sources makes this problem even more acute. Various existing technologies, including stationary battery energy storage systems (BESS), can be employed to provide additional power during peak demand times. In the future, integration of on-board batteries of the growing fleet of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) into the grid can provide power during peak demand hours (vehicle-to-grid, or V2G technology). This work provides cost estimates of managing peak energy demands using traditional technologies, such as maneuverable power plants, conventional hydroelectric, pumped storage plants and peaker generators, as well as BESS and V2G technologies. The derived estimates provide both per kWh and kW year of energy supplied to the grid. The analysis demonstrates that the use of battery storage is economically justified for short peak demand periods of <1 h. For longer durations, the most suitable technology remains the use of maneuverable steam gas power plants, gas turbine,reciprocating gas engine peaker generators, conventional hydroelectric, pumped storage plants. - Highlights: • Cost of managing peak energy demand employing different technologies are estimated. • Traditional technologies, stationary battery storage and V2G are compared. • Battery storage is economically justified for peak demand periods of <1 h. • V2G appears to have better efficiency than stationary battery storage in low voltage power grids.

  9. Establishment of peak bone mass.

    Science.gov (United States)

    Mora, Stefano; Gilsanz, Vicente

    2003-03-01

    Among the main areas of progress in osteoporosis research during the last decade or so are the general recognition that this condition, which is the cause of so much pain in the elderly population, has its antecedents in childhood and the identification of the structural basis accounting for much of the differences in bone strength among humans. Nevertheless, current understanding of the bone mineral accrual process is far from complete. The search for genes that regulate bone mass acquisition is ongoing, and current results are not sufficient to identify subjects at risk. However, there is solid evidence that BMD measurements can be helpful for the selection of subjects that presumably would benefit from preventive interventions. The questions regarding the type of preventive interventions, their magnitude, and duration remain unanswered. Carefully designed controlled trials are needed. Nevertheless, previous experience indicates that weight-bearing activity and possibly calcium supplements are beneficial if they are begun during childhood and preferably before the onset of puberty. Modification of unhealthy lifestyles and increments in exercise or calcium assumption are logical interventions that should be implemented to improve bone mass gains in all children and adolescents who are at risk of failing to achieve an optimal peak bone mass.

  10. Neurofeedback training for peak performance

    Directory of Open Access Journals (Sweden)

    Marek Graczyk

    2014-11-01

    Full Text Available [b]aim[/b]. One of the applications of the Neurofeedback methodology is peak performance in sport. The protocols of the neurofeedback are usually based on an assessment of the spectral parameters of spontaneous EEG in resting state conditions. The aim of the paper was to study whether the intensive neurofeedback training of a well-functioning Olympic athlete who has lost his performance confidence after injury in sport, could change the brain functioning reflected in changes in spontaneous EEG and event related potentials (ERPs. [b]case study[/b]. The case is presented of an Olympic athlete who has lost his performance confidence after injury in sport. He wanted to resume his activities by means of neurofeedback training. His QEEG/ERP parameters were assessed before and after 4 intensive sessions of neurotherapy. Dramatic and statistically significant changes that could not be explained by error measurement were observed in the patient. [b]conclusion[/b]. Neurofeedback training in the subject under study increased the amplitude of the monitoring component of ERPs generated in the anterior cingulate cortex, accompanied by an increase in beta activity over the medial prefrontal cortex. Taking these changes together, it can be concluded that that even a few sessions of neurofeedback in a high performance brain can significantly activate the prefrontal cortical areas associated with increasing confidence in sport performance.

  11. Reactor power peaking information display

    International Nuclear Information System (INIS)

    Book, T.L.; Kochendarfer, R.A.

    1986-01-01

    This patent describes a system for monitoring operating conditions within a nuclear reactor. The system consists of a method for measuring the operating parameters within the nuclear reactor, including the position of axial power shaping rods and regulating control rod. It also includes a method for determining from the operating parameters the operating limits before a power peaking condition exists within the nuclear reactor, and a method for displaying the operating limits which consists of a visual display permitting the continuous monitoring of the operating conditions within the nuclear reactor as a graph of the shaping rod position vs the regulating rod position having a permissible area and a restricted area. The permissible area is further divided into a recommended operating area for steady state operation and a cursor located on the graph to indicate the present operating condition of the nuclear reactor to allow an operator to view any need for corrective action based on the movement of the cursor out of the recommended operating area and to take any corrective transient action within the permissible area

  12. Neurofeedback training for peak performance.

    Science.gov (United States)

    Graczyk, Marek; Pąchalska, Maria; Ziółkowski, Artur; Mańko, Grzegorz; Łukaszewska, Beata; Kochanowicz, Kazimierz; Mirski, Andrzej; Kropotov, Iurii D

    2014-01-01

    One of the applications of the Neurofeedback methodology is peak performance in sport. The protocols of the neurofeedback are usually based on an assessment of the spectral parameters of spontaneous EEG in resting state conditions. The aim of the paper was to study whether the intensive neurofeedback training of a well-functioning Olympic athlete who has lost his performance confidence after injury in sport, could change the brain functioning reflected in changes in spontaneous EEG and event related potentials (ERPs). The case is presented of an Olympic athlete who has lost his performance confidence after injury in sport. He wanted to resume his activities by means of neurofeedback training. His QEEG/ERP parameters were assessed before and after 4 intensive sessions of neurotherapy. Dramatic and statistically significant changes that could not be explained by error measurement were observed in the patient. Neurofeedback training in the subject under study increased the amplitude of the monitoring component of ERPs generated in the anterior cingulate cortex, accompanied by an increase in beta activity over the medial prefrontal cortex. Taking these changes together, it can be concluded that that even a few sessions of neurofeedback in a high performance brain can significantly activate the prefrontal cortical areas associated with increasing confidence in sport performance.

  13. National energy peak leveling program (NEPLP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This three-volume report is responsive to the requirements of Contract E (04-3)-1152 to provide a detailed methodology, to include management, technology, and socio-economic aspects, of a voluntary community program of computer-assisted peak load leveling and energy conservation in commercial community facilities. The demonstration project established proof-of-concept in reducing the kW-demand peak by the unofficial goal of 10%, with concurrent kWh savings. This section of the three volume report is a final report appendix with information on the National Energy Peak Leveling Program (NEPLP).

  14. New England electric utility takes the lead

    Energy Technology Data Exchange (ETDEWEB)

    New England Electric System has taken several steps to reduce dependence on foreign oil, save its customers money, and encourage the development of energy resources tailored to meet the region's energy needs. The heart of the plan is a stated objective of reducing annual peaking demand for electrical growth from a projected 3.1% to 1.9%. Other activities initiated are: a solar hot water demonstration project; the NEPCO's burning of a mixture of pulverized coal and residual fuel oil in one of its boilers at Salem Harbor Station in Salem, Massachusetts; purchasing and trading electricity with industrial and private small power producers; and participating in an effort to develop a plan to convert the Brayton Point power plant in Somerset, Massachusetts from oil to coal.

  15. Australian retail electricity prices: Can we avoid repeating the rising trend of the past?

    International Nuclear Information System (INIS)

    Graham, Paul W.; Brinsmead, Thomas; Hatfield-Dodds, Steve

    2015-01-01

    After a stable or declining real trend that persisted for more than half a century, Australian retail electricity prices have experienced a substantial increase, in real terms, since 2007. This has mainly been driven by increases in the cost of electricity distribution and to a lesser degree in the cost of electricity generation. Reducing greenhouse gas emissions, which is a bipartisan political goal in Australia, will likely deliver further increases in generation costs due to the expected higher cost of low emission technology. Participating in global negotiations on emission reduction targets and designing efficient policy mechanisms have been a major focus of governments over the last several decades. In contrast, managing distribution system costs has received less attention. While there were a number of factors which drove historical increases in distribution costs, management of peak demand growth could help contain or reduce the extent to which consumers, particularly households, experience further increases in distribution costs. The paper demonstrates how different combinations of carbon price and peak demand scenarios could impact future residential and industrial retail electricity prices to 2050 and discusses some behavioural and technological solutions to manage peak demand and potential barriers to their deployment. - Highlights: • We identify the causes of the increase in Australian retail electricity prices. • We identify two sources of likely further cost pressures on electricity prices. • We estimate future retail electricity prices under five scenarios. • We discuss barriers and solutions to controlling peak demand growth.

  16. Using Hydrated Salt Phase Change Materials for Residential Air Conditioning Peak Demand Reduction and Energy Conservation in Coastal and Transitional Climates in the State of California

    Science.gov (United States)

    Lee, Kyoung Ok

    The recent rapid economic and population growth in the State of California have led to a significant increase in air conditioning use, especially in areas of the State with coastal and transitional climates. This fact makes that the electric peak demand be dominated by air conditioning use of residential buildings in the summer time. This extra peak demand caused by the use of air conditioning equipment lasts only a few days out of the year. As a result, unavoidable power outages have occurred when electric supply could not keep up with such electric demand. This thesis proposed a possible solution to this problem by using building thermal mass via phase change materials to reduce peak air conditioning demand loads. This proposed solution was tested via a new wall called Phase Change Frame Wall (PCFW). The PCFW is a typical residential frame wall in which Phase Change Materials (PCMs) were integrated to add thermal mass. The thermal performance of the PCFWs was first evaluated, experimentally, in two test houses, built for this purpose, located in Lawrence, KS and then via computer simulations of residential buildings located in coastal and transitional climates in California. In this thesis, a hydrated salt PCM was used, which was added in concentrations of 10% and 20% by weight of the interior sheathing of the walls. Based on the experimental results, under Lawrence, KS weather, the PCFWs at 10% and 20% of PCM concentrations reduced the peak heat transfer rates by 27.0% and 27.3%, on average, of all four walls, respectively. Simulated results using California climate data indicated that PCFWs would reduce peak heat transfer rates by 8% and 19% at 10% PCM concentration and 12.2% and 27% at 20% PCM concentration for the coastal and transitional climates, respectively. Furthermore, the PCFWs, at 10% PCM concentration, would reduce the space cooling load and the annual energy consumption by 10.4% and 7.2%, on average in both climates, respectively.

  17. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy

  18. The effect of climate change on electricity expenditures in Massachusetts

    International Nuclear Information System (INIS)

    Véliz, Karina D.; Kaufmann, Robert K.; Cleveland, Cutler J.; Stoner, Anne M.K.

    2017-01-01

    Climate change affects consumer expenditures by altering the consumption of and price for electricity. Previous analyses focus solely on the former, which implicitly assumes that climate-induced changes in consumption do not affect price. But this assumption is untenable because a shift in demand alters quantity and price at equilibrium. Here we present the first empirical estimates for the effect of climate change on electricity prices. Translated through the merit order dispatch of existing capacity for generating electricity, climate-induced changes in daily and monthly patterns of electricity consumption cause non-linear changes in electricity prices. A 2 °C increase in global mean temperature increases the prices for and consumption of electricity in Massachusetts USA, such that the average household’s annual expenditures on electricity increase by about 12%. Commercial customers incur a 9% increase. These increases are caused largely by higher prices for electricity, whose impacts on expenditures are 1.3 and 3.6 fold larger than changes in residential and commercial consumption, respectively. This suggests that previous empirical studies understate the effects of climate change on electricity expenditures and that policy may be needed to ensure that the market generates investments in peaking capacity to satisfy climate-driven changes in summer-time consumption. - Highlights: • Climate change increases summer peak of load curve in US state of Massachusetts. • Climate change increases electricity prices more than consumption. • Previous studies understate the effect of climate change on electricity expenditures. • Adaptation that reduces electricity demand may reduce the price effect. • Adaptation may raise prices by increasing capacity but lowering utilization rate.

  19. Electric Stimulation of Ear Reduces the Effect of Toll-Like Receptor 4 Signaling Pathway on Kainic Acid-Induced Epileptic Seizures in Rats

    Directory of Open Access Journals (Sweden)

    En-Tzu Liao

    2018-01-01

    Full Text Available Epilepsy is a common clinical syndrome with recurrent neuronal discharges in the temporal lobe, cerebral cortex, and hippocampus. Clinical antiepileptic medicines are often ineffective or of little benefit in 30% of epileptic patients and usually cause severe side effects. Emerging evidence indicates the crucial role of inflammatory mediators in epilepsy. The current study investigates the role of toll-like receptor 4 (TLR4 and its underlying mechanisms in kainic acid- (KA- induced epileptic seizures in rats. Experimental KA injection successfully initiated an epileptic seizure accompanied by increased expression of TLR4 in the prefrontal cortex, hippocampus, and somatosensory cortex. In addition, calcium-sensitive phosphorylated Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα increased after the initiation of the epileptic seizure. Furthermore, downstream-phosphorylated signal-regulated kinase (ERK, c-Jun NH2-terminal protein kinase (JNK, and p38 kinase simultaneously increased in these brain areas. Moreover, the transcriptional factor phosphorylated nuclear factor-κB (pNF-κB increased, suggesting that nucleus transcription was affected. Furthermore, the aforementioned molecules decreased by an electric stimulation (ES of either 2 Hz or 15 Hz of the ear in the three brain areas. Accordingly, we suggest that ES of the ear can successfully control epileptic seizures by regulating the TLR4 signaling pathway and has a therapeutic benefit in reducing epileptic seizures.

  20. Reduced electric-octupole transition probabilities, B(E3;O1+ → 31-), for even-even nuclides throughout the periodic table

    International Nuclear Information System (INIS)

    Spear, R.H.

    1988-11-01

    Adopted values for the excitation energy, E x( 3 1 - ), of the first 3 - state of the even-even nuclei are tabulated. Values of the reduced electric-octupole transition probability, B(E3;O 1 + → 3 1 - ), from the ground state to this state, as determined from Coulomb excitation, lifetime measurements, inelastic electron scattering, deformation parameters β 3 obtained from angular distributions of inelastically scattered nucleons and light ions, and other miscellaneous procedures are listed in separate Tables. Adopted values for B(E3; O 1 + → 3 1 - ) are presented in Table VII, together with the E3 transition strengths, in Weisskopf units, and the product E x( 3 1 - ) x B(E3; O 1 + → 3 1 - - ) expressed as a percentage of the energy-weighted E3 sum-rule strength. An evaluation is made of the reliability of B(E3; O 1 + → 3 1 - ) values deduced from deformation parameters β 3 . The literature has been covered to March 1988

  1. Electrical Stimulation at the ST36 Acupoint Protects against Sepsis Lethality and Reduces Serum TNF Levels through Vagus Nerve- and Catecholamine-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Albino Villegas-Bastida

    2014-01-01

    Full Text Available Electrical vagus nerve (VN stimulation during sepsis attenuates tumor necrosis factor (TNF production through the cholinergic anti-inflammatory pathway, which depends on the integrity of the VN and catecholamine production. To characterize the effect of electroacupuncture at ST36 (EA-ST36 on serum TNF, IL-6, nitrite, and HMGB1 levels and survival rates, based on VN integrity and catecholamine production, a sepsis model was induced in rats using cecal ligation and puncture (CLP. The septic rats were subsequently treated with EA-ST36 (CLP+ST36, and serum samples were collected and analyzed for cytokines levels. The serum TNF, IL-6, nitrite, and HMGB1 levels in the CLP+ST36 group were significantly lower compared with the group without treatment, the survival rates were significantly higher (P<0.05, and the acute organ injury induced by CLP was mitigated by EA-ST36; however, when subdiaphragmatic vagotomy was performed, the serum levels of TNF in the CLP+ST36 group did not show a significant difference compared with the group without electrostimulation, and, similarly, no significant difference in serum TNF levels was found under the pharmacological blockade of catecholamines. These results suggest that in rats with CLP sepsis models EA-ST36 reduces serum TNF levels through VN- and atecholamine-dependent mechanisms.

  2. Setting a standard for electricity pilot studies

    International Nuclear Information System (INIS)

    Davis, Alexander L.; Krishnamurti, Tamar; Fischhoff, Baruch; Bruine de Bruin, Wandi

    2013-01-01

    In-home displays, dynamic pricing, and automated devices aim to reduce residential electricity use—overall and during peak hours. We present a meta-analysis of 32 studies of the impacts of these interventions, conducted in the US or Canada. We find that methodological problems are common in the design of these studies, leading to artificially inflated results relative to what one would expect if the interventions were implemented in the general population. Particular problems include having volunteer participants who may have been especially motivated to reduce their electricity use, letting participants choose their preferred intervention, and having high attrition rates. Using estimates of bias from medical clinical trials as a guide, we recalculate impact estimates to adjust for bias, resulting in values that are often less than half of those reported in the reviewed studies. We estimate that in-home displays were the most effective intervention for reducing overall electricity use (∼4% using reported data; ∼3% after adjusting for bias), while dynamic pricing significantly reduced peak demand (∼11% reported; ∼6% adjusted), especially when used in conjunction with home automation (∼25% reported; ∼14% adjusted). We conclude with recommendations that can improve pilot studies and the soundness of decisions based on their results. -- Highlights: •We conduct a meta-analysis of field studies of in-home displays, dynamic pricing, and automation on overall and peak use. •Studies were assessed and adjusted for risk-of-bias from inadequate experimental design. •Most studies were at high risk-of-bias from multiple sources. •In-home displays provided the best overall reduction in energy use, approximately 3% after adjustment for risk-of-bias. •Even after adjustment, automation approximately doubled the effectiveness of dynamic pricing on peak reduction from 6% to 14%

  3. Online Reliable Peak Charge/Discharge Power Estimation of Series-Connected Lithium-Ion Battery Packs

    Directory of Open Access Journals (Sweden)

    Bo Jiang

    2017-03-01

    Full Text Available The accurate peak power estimation of a battery pack is essential to the power-train control of electric vehicles (EVs. It helps to evaluate the maximum charge and discharge capability of the battery system, and thus to optimally control the power-train system to meet the requirement of acceleration, gradient climbing and regenerative braking while achieving a high energy efficiency. A novel online peak power estimation method for series-connected lithium-ion battery packs is proposed, which considers the influence of cell difference on the peak power of the battery packs. A new parameter identification algorithm based on adaptive ratio vectors is designed to online identify the parameters of each individual cell in a series-connected battery pack. The ratio vectors reflecting cell difference are deduced strictly based on the analysis of battery characteristics. Based on the online parameter identification, the peak power estimation considering cell difference is further developed. Some validation experiments in different battery aging conditions and with different current profiles have been implemented to verify the proposed method. The results indicate that the ratio vector-based identification algorithm can achieve the same accuracy as the repetitive RLS (recursive least squares based identification while evidently reducing the computation cost, and the proposed peak power estimation method is more effective and reliable for series-connected battery packs due to the consideration of cell difference.

  4. Economic competitiveness of off-peak hydrogen production today - A European comparison

    International Nuclear Information System (INIS)

    Mansilla, C.; Dautremont, S.; Louyrette, J.; Albou, S.; Bourasseau, C.

    2013-01-01

    Hydrogen has a wide range of applications. In view of the environmental benefits, hydrogen can be produced by de-carbonized means. When alkaline electrolysis is the selected process, extra value is offered by flexible operation that could bring both; an opportunity to reduce the cost of hydrogen produced (by consuming electricity during off-peak hours, and stopping the process during peak hours) and also a complementary tool to help balancing of the electric system. This paper assesses the profitability of market-driven operation for three different markets: France, Germany and Spain, with an analysis on the spot market. The market that exhibits the biggest potential in terms of profitability thanks to flexible operation is the French one, for each studied year. France is also the country that has the smallest installed renewable capacity amongst three considered countries. The gain on the hydrogen production cost allowed by the optimization is less than 3%. Hence, market-driven operation does not seem highly favourable to valorize fluctuating hydrogen production, when only the market price opportunities are considered. The balancing tool provided by the electrolysis system needs to be specifically valorized, in order to make flexible operation profitable. (authors)

  5. Analysis of the need for intermediate and peaking technologies in the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Barrager, S.M.; Campbell, G.L.

    1980-04-01

    This analysis was conducted to assess the impact of load management on the future need for intermediate- and peak-generating technologies (IPTs) such as combustion turbines, pumped storage, and cycling coal plants. There will be a reduced need for IPTs if load-management activities such as time-of-use pricing, together with customer-owned energy-storage devices, hot-water-heater controls, and interruptible service, can economically remove most of the variation from electric-power demands. Therefore, the analysis assesses the need for IPTs in an uncertain future, which will probably include load management and time-differentiated electricity prices. Section 2 provides a condensed description of the models used in the analysis. (Details and data sets are contained in the appendixes.) Results of sensitivities on growth rates, model parameters, and appliance saturations are discussed in Section 3, which also contains the analysis of the potential impacts of customer energy storage, appliance control, and time-of-use pricing. The future need for intermediate and peaking technologies is analyzed in Section 4.

  6. Electrical transmission

    Energy Technology Data Exchange (ETDEWEB)

    Sayers, D P

    1960-05-01

    After briefly tracing the history of electricity transmission, trends in high voltage transmission and experiments being conducted on 650 kV are discussed. 5000 miles of the U.K. grid are operated at 132 kV and 1000 at 275 kV, ultimately to provide a super grid at 380 kV. Problems are insulation, radio interference and the cost of underground lines (16 times that of overhead lines). Also considered are the economics of the grid as a means of transporting energy and as a means of spreading the peak load over the power stations in the most efficient manner. Finally, the question of amenities is discussed.

  7. Electricity prices, large-scale renewable integration, and policy implications

    International Nuclear Information System (INIS)

    Kyritsis, Evangelos; Andersson, Jonas; Serletis, Apostolos

    2017-01-01

    This paper investigates the effects of intermittent solar and wind power generation on electricity price formation in Germany. We use daily data from 2010 to 2015, a period with profound modifications in the German electricity market, the most notable being the rapid integration of photovoltaic and wind power sources, as well as the phasing out of nuclear energy. In the context of a GARCH-in-Mean model, we show that both solar and wind power Granger cause electricity prices, that solar power generation reduces the volatility of electricity prices by scaling down the use of peak-load power plants, and that wind power generation increases the volatility of electricity prices by challenging electricity market flexibility. - Highlights: • We model the impact of solar and wind power generation on day-ahead electricity prices. • We discuss the different nature of renewables in relation to market design. • We explore the impact of renewables on the distributional properties of electricity prices. • Solar and wind reduce electricity prices but affect price volatility in the opposite way. • Solar decreases the probability of electricity price spikes, while wind increases it.

  8. Preliminary assessment of the tradeoffs between the electric motor and the transmission in electric vehicles

    Science.gov (United States)

    Levi, E.

    1983-01-01

    The efficiency, weight, and cost of various propulsion system for 4-passenger electric vehicles are compared. These systems comprise the electric motor and the required speed reducing transmission to obtain the appropriate speed at the wheel. Three types of motors, dc synchronous, and squirrel-cage were considered at 6000 ycm and 24 000 rpm for a peak power of 40 kW. Two types of gearing selected were a single speed differential and a differential with a differential with a 4-speed gearbox. Only components that were readily realizable within present state-of-the-art were considered.

  9. Optimum Peak Current Hysteresis Control for Energy Recovering Converter in CDI Desalination

    Directory of Open Access Journals (Sweden)

    Alberto M. Pernía

    2014-06-01

    Full Text Available Capacitive De-Ionization (CDI is becoming a suitable alternative for desalination. The low cost of the materials required and its reduced energy consumption can be critical factors for developing this technique. CDI technology does not require a high-pressure system and the energy storage capability of CDI cells allows it to be reused in other CDI cells, thus minimizing consumption. The goal of the power stage responsible of the energy recovery is transferring the stored energy from one cell to another with the maximum possible efficiency, thus allowing the desalination process to continue. Assuming hysteresis current control is implemented at the DC/DC (direct current converter, this paper aims to determine the optimum peak current through the inductor in each switching period with a view to maximizing overall efficiency. The geometrical parameters of the desalination cell and the NaCl concentration modify the cell electrical properties. The peak current control of the power stage should be adapted to the cell characteristics so that the efficiency behavior of the whole CDI system can be improved. The mathematical model defined in this paper allows the CDI plant automation using the peak inductor current as control variable, adapting its value to the salt concentration during the desalination process.

  10. Thermal Energy Storage for Building Load Management: Application to Electrically Heated Floor

    Directory of Open Access Journals (Sweden)

    Hélène Thieblemont

    2016-07-01

    Full Text Available In cold climates, electrical power demand for space conditioning becomes a critical issue for utility companies during certain periods of the day. Shifting a portion or all of it to off-peak periods can help reduce peak demand and reduce stress on the electrical grid. Sensible thermal energy storage (TES systems, and particularly electrically heated floors (EHF, can store thermal energy in buildings during the off-peak periods and release it during the peak periods while maintaining occupants’ thermal comfort. However, choosing the type of storage system and/or its configuration may be difficult. In this paper, the performance of an EHF for load management is studied. First, a methodology is developed to integrate EHF in TRNSYS program in order to investigate the impact of floor assembly on the EHF performance. Then, the thermal comfort (TC of the night-running EHF is studied. Finally, indicators are defined, allowing the comparison of different EHF. Results show that an EHF is able to shift 84% of building loads to the night while maintaining acceptable TC in cold climate. Moreover, this system is able to provide savings for the customer and supplier if there is a significant difference between off-peak and peak period electricity prices.

  11. Influencing Factors and Development Trend Analysis of China Electric Grid Investment Demand Based on a Panel Co-Integration Model

    Directory of Open Access Journals (Sweden)

    Jinchao Li

    2018-01-01

    Full Text Available Electric grid investment demand analysis is significant to reasonably arranging construction funds for the electric grid and reduce costs. This paper used the panel data of electric grid investment from 23 provinces of China between 2004 and 2016 as samples to analyze the influence between electric grid investment demand and GDP, population scale, social electricity consumption, installed electrical capacity, and peak load based on co-integration tests. We find that GDP and peak load have positive influences on electric grid investment demand, but the impact of population scale, social electricity consumption, and installed electrical capacity on electric grid investment is not remarkable. We divide different regions in China into the eastern region, central region, and western region to analyze influence factors of electric grid investment, finally obtaining key factors in the eastern, central, and western regions. In the end, according to the analysis of key factors, we make a prediction about China’s electric grid investment for 2020 in different scenarios. The results offer a certain understanding for the development trend of China’s electric grid investment and contribute to the future development of electric grid investment.

  12. Demand side management in recycling and electricity retail pricing

    Science.gov (United States)

    Kazan, Osman

    This dissertation addresses several problems from the recycling industry and electricity retail market. The first paper addresses a real-life scheduling problem faced by a national industrial recycling company. Based on their practices, a scheduling problem is defined, modeled, analyzed, and a solution is approximated efficiently. The recommended application is tested on the real-life data and randomly generated data. The scheduling improvements and the financial benefits are presented. The second problem is from electricity retail market. There are well-known patterns in daily usage in hours. These patterns change in shape and magnitude by seasons and days of the week. Generation costs are multiple times higher during the peak hours of the day. Yet most consumers purchase electricity at flat rates. This work explores analytic pricing tools to reduce peak load electricity demand for retailers. For that purpose, a nonlinear model that determines optimal hourly prices is established based on two major components: unit generation costs and consumers' utility. Both are analyzed and estimated empirically in the third paper. A pricing model is introduced to maximize the electric retailer's profit. As a result, a closed-form expression for the optimal price vector is obtained. Possible scenarios are evaluated for consumers' utility distribution. For the general case, we provide a numerical solution methodology to obtain the optimal pricing scheme. The models recommended are tested under various scenarios that consider consumer segmentation and multiple pricing policies. The recommended model reduces the peak load significantly in most cases. Several utility companies offer hourly pricing to their customers. They determine prices using historical data of unit electricity cost over time. In this dissertation we develop a nonlinear model that determines optimal hourly prices with parameter estimation. The last paper includes a regression analysis of the unit generation cost

  13. Demonstration Project. Consumer reactions to peak prices

    International Nuclear Information System (INIS)

    Lindskoug, Stefan

    2006-06-01

    The purpose and aim of the project is to look at the risk of capacity shortage in the Swedish electricity supply system during excessively cold periods of weather. A risk that has increased in recent years. A growing number of analysts emphasize the importance of high spot prices actually leading to a reduction in demand. Through increased consumer sensitivity as regards pricing, the power system can be run safely with smaller generation reserves. In addition, market price fluctuation is estimated to become more stable and predictable. The purpose of the Demonstration Project is to demonstrate methods or business concepts that lead to the demand for electricity on a national level being reduced at times of high spot prices. The need for the measures to be profitable for the parties involved is an important starting point. A general problem associated with research and development projects is that the participants feel selected and special attention is paid them, hence they will make an extra effort to improve the results. We were aware of this fact when setting up the trials, which is why we introduced the trials as an offer from the electricity supplier to take part in a commercial assessment using a new price list. For this reason we concealed the marked research aim with Elforsk as a backer. Evaluating the results of questionnaires and detailed interviews does not give cause to suppose the results are in any way affected by such conditions. The conclusion of this project is that controlling load at the customer end is an economic alternative to the investment of new production resources

  14. User Behavior Assessment of Household Electric Usage

    Directory of Open Access Journals (Sweden)

    Nur Budi Mulyono

    2014-02-01

    Full Text Available Abstract. Energy resilience is one of the famous issues among researchers and practitioners in energy sector. With enabling new technologies in power engineering for smart grid such as distributed generation, distributed storage, and intelligent information and management, each household community can establish a resilience energy production, distribution, and consumption. A household in smart grid system behaves as a customer and producer at the same time. This condition enabled them to reduce the power shortage in the peak hours, reduce CO2 pollution using renewable electricity, and minimizing electricity usage by changing life style. In developing countries, the amount of electricity supply is less than its demand. Most of the demand comes from the household that has peak load on nighttime. Keywords: User behavior, Game theory, Smart grid, Heating and cooling appliances, Energy resilientdoi:10.12695/ajtm.2013.6.2.1 How to cite this article:Mulyono, N. B. (2013. User Behavior Assessment of Household Electric Usage. The Asian Journal of Technology Management 6 (2: 65-71. Print ISSN: 1978-6956; Online ISSN: 2089-791X. doi:10.12695/ajtm.2013.6.2.1  

  15. The value of electricity storage in energy-only electricity markets

    Science.gov (United States)

    McConnell, D.; Forcey, T.; Sandiford, M.

    2015-12-01

    Price volatility and the prospect of increasing renewable energy generation have raised interest in the potential opportunities for storage technologies in energy-only electricity markets. In this paper we explore the value of a price-taking storage device in such a market, the National Electricity Market (NEM) in Australia. Our analysis suggests that under optimal operation, there is little value in having more than six hours of storage in this market. However, the inability to perfectly forecast wholesale prices, particularly extreme price spikes, may warrant some additional storage. We found that storage devices effectively provide a similar service as peak generators (such as Open Cycle Gas Turbines) and are similarly dependent on and exposed to extreme price events, with revenue for a merchant generator highly skewed to a few days of the year. In contrast to previous studies, this results in the round trip efficiency of the storage being relatively insignificant. Financing using hedging strategies similar to a peak generator effectively reduces the variability of revenue and exposure of storage to extreme prices. Our case study demonstrates that storage may have a competitive advantage over other peaking generators on the NEM, due to its ability to earn revenue outside of extreme peak events. As a consequence the outlook for storage options on the NEM is dependent on volatility, in turn dependent on capacity requirements. Further to this, increased integration of renewable energy may both depend on storage and improve the outlook for storage in technologies in electricity markets.

  16. A facile approach for reducing the working voltage of Au/TiO2/Au nanostructured memristors by enhancing the local electric field

    Science.gov (United States)

    Arab Bafrani, Hamidreza; Ebrahimi, Mahdi; Bagheri Shouraki, Saeed; Moshfegh, Alireza Z.

    2018-01-01

    Memristor devices have attracted tremendous interest due to different applications ranging from nonvolatile data storage to neuromorphic computing units. Exploring the role of surface roughness of the bottom electrode (BE)/active layer interface provides useful guidelines for the optimization of the memristor switching performance. This study focuses on the effect of surface roughness of the BE electrode on the switching characteristics of Au/TiO2/Au three-layer memristor devices. An optimized wet-etching treatment condition was found to modify the surface roughness of the Au BE where the measurement results indicate that the roughness of the Au BE is affected by both duration time and solution concentrations of the wet-etching process. Then we fabricated arrays of TiO2-based nanostructured memristors sandwiched between two sets of cross-bar Au electrode lines (junction area 900 μm2). The results revealed a reduction in the working voltages in current-voltage characteristic of the device performance when increasing the surface roughness at the Au(BE)/TiO2 active layer interface. The set voltage of the device (Vset) significantly decreased from 2.26-1.93 V when we increased the interface roughness from 4.2-13.1 nm. The present work provides information for better understanding the switching mechanism of titanium-dioxide-based devices, and it can be inferred that enhancing the roughness of the Au BE/TiO2 active layer interface leads to a localized non-uniform electric field distribution that plays a vital role in reducing the energy consumption of the device.

  17. The mechanism of reduced IgG/IgE-binding of β-lactoglobulin by pulsed electric field pretreatment combined with glycation revealed by ECD/FTICR-MS.

    Science.gov (United States)

    Yang, Wenhua; Tu, Zongcai; Wang, Hui; Zhang, Lu; Kaltashov, Igor A; Zhao, Yunlong; Niu, Chendi; Yao, Honglin; Ye, Wenfeng

    2018-01-24

    Bovine β-lactoglobulin (β-Lg) is a major allergen existing in milk and causes about 90% of IgE-mediated cow's milk allergies. Previous studies showed that pulsed electric field (PEF) treatment could partially unfold the protein, which may contribute to the improvement of protein glycation. In this study, the effect of PEF pretreatment combined with glycation on the IgG/IgE-binding ability and the structure of β-Lg was investigated. The result showed that PEF pretreatment combined with glycation significantly reduced the IgG and IgE binding abilities, which was attributed to the changes of secondary and tertiary structure and the increase in glycation sites and degree of substitution per peptide (DSP) value determined by electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry (ECD/FTICR-MS). Unexpectedly, glycation sites (K47, K91 and K135) added by two mannose molecules were identified in glycated β-Lg with PEF pretreatment. Moreover, the results indicated that PEF pretreatment at 25 kV cm -1 for 60 μs promoted the reduction of IgG/IgE-binding capacity by increasing the glycation degree of β-Lg, whereas single PEF treatment under the same conditions markedly enhanced the IgG/IgE-binding ability by partially unfolding the structure of β-Lg. The results suggested that ECD/FTICR-MS could help us to understand the mechanism of reduction in the IgG/IgE-binding of β-Lg by structural characterization at the molecular level. Therefore, PEF pretreatment combined with glycation may provide an alternative method for β-Lg desensitization.

  18. Smart regulation of rural electricity grids. Modern communications technology reduces the voltage fluctuations and regulates the storage of surplus electricity; Laendliches Stromnetz smart geregelt. Moderne Kommunikationstechnik reduziert Spannungsschwankungen und regelt die Speicherung ueberschuessigen Stroms

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Anna

    2012-07-01

    In the ''Smart Country'' model project, researchers in Bitburg- Pruem were testing out the distribution network of the future. It is designed to respond flexibly to the increasingly decentralised generation of renewable electricity in the grid. For this purpose various operating resources were further developed: an optimised biogas plant, which controls the electricity supplied by the grid, virtually stores surplus electricity with an efficiency of 98 %. In addition, voltage regulators double the usable output capacity in the grid. The Eifel project successfully passed the field test after around one year. (orig.)

  19. Air-conditioning Australian households: The impact of dynamic peak pricing

    International Nuclear Information System (INIS)

    Strengers, Yolande

    2010-01-01

    International mandates for smart metering are enabling variable and real-time pricing regimes such as dynamic peak pricing (DPP), which charges 10-40 times the off-peak rate for electricity during short periods. This regime aims to reduce peak electricity demand (predominantly due to increase in residential air-conditioning usage) and curb greenhouse gas emissions. Although trials indicate that DPP can achieve significant demand reductions, particularly in summer, little is known about how or why households change their cooling practices in response to this strategy. This paper discusses the outcomes of a small qualitative study assessing the impact of a DPP trial on household cooling practices in the Australian state of New South Wales. The study challenges common assumptions about the necessity of air-conditioning and impact of price signals. It finds that DPP engages households as co-managers of their cooling practices through a series of notification signals (SMS, phone, in-home display, email, etc.). Further, by linking the price signal to air-conditioning, some householders consider this practice discretionary for short periods of time. The paper concludes by warning that policy makers and utilities may serve to legitimise air-conditioning usage and/or negate demand reductions by failing to acknowledge the non-rational dynamics of DPP and household cooling practices. - Research highlights: →Most householders consider air-conditioning discretionary during DPP events →DPP engages householders as co-managers of their demand →Notification of an upcoming DPP event is significant to the response →Householders feel obligated to respond to DPP for a range of non-financial reasons

  20. Reducing electric sector CO{sub 2} emissions under competition: Facilitating technology development and turnover on both sides of the meter

    Energy Technology Data Exchange (ETDEWEB)

    Connors, S.R. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1997-12-31

    This paper reviews the technological and institutional factors involved in achieving long-term reductions in CO{sub 2} emissions in the electric sector. A case study of the New England electric sector is used to illustrate factors associated with energy infrastructure turnover and technology development and use. Opportunities for joint implementation of CO{sub 2} reductions are identified, as well as strategies which leverage CO{sub 2} emissions reductions to achieve reductions in other emissions, and to facilitate cost and environmental risk mitigation. Impacts of environmental performance constraints on the electric industry are also identified and analyzed. 5 figs., 1 tab.

  1. Harmonic generations in a lens-shaped GaAs quantum dot: Dresselhaus and Rashba spin-orbit couplings under electric and magnetic fields

    Science.gov (United States)

    Zamani, A.; Azargoshasb, T.; Niknam, E.; Mohammadhosseini, E.

    2017-06-01

    In this work, effects of external electric and magnetic fields in the presence of both Rashba and Dresselhaus spin-orbit couplings on the second and third harmonic generations (SHG and THG) of a lens-shaped GaAs quantum dot are studied. Energy eigenvalues and eigenvectors are calculated numerically and optical properties are obtained using the compact density matrix approach. Our results reveal that, an increase in the magnetic field, leads to both red and blue shifts in resonant peaks of both SHG and THG. On the other hand, augmentation of electric field leads to blue shift in all resonant peaks except the first peak related to lowest transition. Also the dipole moment matrix elements increase by enhancing both electric and magnetic fields. Finally the effect of dot size is studied and results illustrate that increment in size reduces the transition energies except the lowest one and thus leads to red shift in resonant peaks while the first peak remains constant.

  2. Analysis of the need for intermediate and peaking technologies in the year 2000. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barrager, S.M.; Campbell, G.L.

    1980-04-01

    This analysis was conducted to assess the impact of load management on the future need for intermediate- and peak-generating technologies (IPTs) such as combustion turbines, pumped storage, and cycling coal plants. There would be a reduced need for IPTs if load-management activities such as time-of-use pricing, together with customer-owned energy-storage devices, hot-water-heater controls, and interruptible service can economically remove most of the variation from electric power demands. The objective of this analysis is to assess the need for IPTs in an uncertain future, which will probably include load management and time-differentiated electricity prices. The analysis is exploratory in nature and broad in scope. It does not attempt to predict the future or to model precisely the technical characteristics or economic desirability of load management. Rather, its purpose is to provide research and development planners with some basic insights into the order of magnitude of possible hourly demand shifts on a regional basis and to determine the impact of load management on daily and seasonal variations in electricity demand.

  3. Two-Stage Electricity Demand Modeling Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Krzysztof Gajowniczek

    2017-10-01

    Full Text Available Forecasting of electricity demand has become one of the most important areas of research in the electric power industry, as it is a critical component of cost-efficient power system management and planning. In this context, accurate and robust load forecasting is supposed to play a key role in reducing generation costs, and deals with the reliability of the power system. However, due to demand peaks in the power system, forecasts are inaccurate and prone to high numbers of errors. In this paper, our contributions comprise a proposed data-mining scheme for demand modeling through peak detection, as well as the use of this information to feed the forecasting system. For this purpose, we have taken a different approach from that of time series forecasting, representing it as a two-stage pattern recognition problem. We have developed a peak classification model followed by a forecasting model to estimate an aggregated demand volume. We have utilized a set of machine learning algorithms to benefit from both accurate detection of the peaks and precise forecasts, as applied to the Polish power system. The key finding is that the algorithms can detect 96.3% of electricity peaks (load value equal to or above the 99th percentile of the load distribution and deliver accurate forecasts, with mean absolute percentage error (MAPE of 3.10% and resistant mean absolute percentage error (r-MAPE of 2.70% for the 24 h forecasting horizon.

  4. American video peak store gives fuel a better image

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    A new American image enhancement system using a video peak frame store aims to overcome the common problems of viewing serial numbers on irradiated fuel assemblies within the reactor core whilst reducing operator exposure at the same time. Other nuclear plant inspection applications are envisaged. (author)

  5. Knowledge, attitude and practice of physicians toward peak ...

    African Journals Online (AJOL)

    Background: Peak expiratory flow meter (PEFM) may reduce diagnostic delay and improve decision-making in asthma by providing an objective assessment of their flow and hence identify air flow variability that is essential for management of air way diseases. Objectives: This study was designed to reveal extent of ...

  6. A Study of Demand Response Effect of Thermal Storage Air-Conditioning Systems in Consideration of Electricity Market Prices

    Science.gov (United States)

    Omagari, Yuko; Sugihara, Hideharu; Tsuji, Kiichiro

    This paper evaluates the economic impact of the introduction of customer-owned Thermal Storage Air-conditioning (TSA) systems, in an electricity market, from the viewpoint of the load service entity. We perform simulations on the condition that several thousand customers install TSA systems and shift peak demand in an electricity market by one percent. Our numerical results indicate that the purchase cost of the LSE was reduced through load management of customers with TSA systems. The introduction of TSA systems also reduced the volatility of market clearing price and reduced the whole-trade cost in an electricity market.

  7. Passive radio frequency peak power multiplier

    Science.gov (United States)

    Farkas, Zoltan D.; Wilson, Perry B.

    1977-01-01

    Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.

  8. Peak energy consumption and CO2 emissions in China

    International Nuclear Information System (INIS)

    Yuan, Jiahai; Xu, Yan; Hu, Zheng; Zhao, Changhong; Xiong, Minpeng; Guo, Jingsheng

    2014-01-01

    China is in the processes of rapid industrialization and urbanization. Based on the Kaya identity, this paper proposes an analytical framework for various energy scenarios that explicitly simulates China's economic development, with a prospective consideration on the impacts of urbanization and income distribution. With the framework, China's 2050 energy consumption and associated CO 2 reduction scenarios are constructed. Main findings are: (1) energy consumption will peak at 5200–5400 million tons coal equivalent (Mtce) in 2035–2040; (2) CO 2 emissions will peak at 9200–9400 million tons (Mt) in 2030–2035, whilst it can be potentially reduced by 200–300 Mt; (3) China's per capita energy consumption and per capita CO 2 emission are projected to peak at 4 tce and 6.8 t respectively in 2020–2030, soon after China steps into the high income group. - Highlights: • A framework for modeling China's energy and CO 2 emissions is proposed. • Scenarios are constructed based on various assumptions on the driving forces. • Energy consumption will peak in 2035–2040 at 5200–5400 Mtce. • CO 2 emissions will peak in 2030–2035 at about 9300 Mt and be cut by 300 Mt in a cleaner energy path. • Energy consumption and CO 2 emissions per capita will peak soon after China steps into the high income group

  9. Non-electrical CANDU applications

    International Nuclear Information System (INIS)

    Hopwood, Jerry; Kuran, Sermet; Zhou, Xi; Ivanco, Michael; Rolfe, Brian; Mancuso, Connie; Duffey, Romney

    2005-01-01

    AECL has performed studies to utilize CANDU nuclear energy in areas other than electrical generation. The studies presented in this paper include using CANDU for applications in non-traditional areas which expand the use of zero-greenhouse gas energy source. The Oil sands industry demands significant energy input and the majority of the energy required for bitumen extraction is steam and hot water. As the primary production of a CANDU plant is steam, it can satisfy the steam and hot water requirement without a major modification to the Nuclear Steam Plant (NSP). Reverse Osmosis (RO) has been identified by the IAEA as the most promising method for nuclear desalination. Since the RO desalination efficiency increases as its feedwater temperature rises, using condenser cooling water from a CANDU plant as the feedwater for a RO plant and sharing other facilities between these two plants results in significant benefits in capital and operating costs of a desalination plant. Electrolysis powered by nuclear-generated electricity is the technology currently available to produce hydrogen without greenhouse gas emissions. By using the cheaper electricity available at off-peak periods in an open electricity market, this technology could be economically competitive, improve overall energy system efficiency and reduce overall energy system carbon intensity. The paper summarizes the background, technical approaches, feasibility considerations, along with economic comparisons between CANDU nuclear energy and the traditional energy sources for each study. The results show that the CANDU technology is a promising energy source for various industries. (author)

  10. The geomorphic structure of the runoff peak

    Directory of Open Access Journals (Sweden)

    R. Rigon

    2011-06-01

    Full Text Available This paper develops a theoretical framework to investigate the core dependence of peak flows on the geomorphic properties of river basins. Based on the theory of transport by travel times, and simple hydrodynamic characterization of floods, this new framework invokes the linearity and invariance of the hydrologic response to provide analytical and semi-analytical expressions for peak flow, time to peak, and area contributing to the peak runoff. These results are obtained for the case of constant-intensity hyetograph using the Intensity-Duration-Frequency (IDF curves to estimate extreme flow values as a function of the rainfall return period. Results show that, with constant-intensity hyetographs, the time-to-peak is greater than rainfall duration and usually shorter than the basin concentration time. Moreover, the critical storm duration is shown to be independent of rainfall return period as well as the area contributing to the flow peak. The same results are found when the effects of hydrodynamic dispersion are accounted for. Further, it is shown that, when the effects of hydrodynamic dispersion are negligible, the basin area contributing to the peak discharge does not depend on the channel velocity, but is a geomorphic propriety of the basin. As an example this framework is applied to three watersheds. In particular, the runoff peak, the critical rainfall durations and the time to peak are calculated for all links within a network to assess how they increase with basin area.

  11. Solar photochemical production of HBr for off-peak electrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H. [Solar Reactor Technologies Inc., Miami, FL (United States)

    1996-10-01

    Progress is reported on the development of a unique and innovative hydrogen production concept utilizing renewable (Solar) energy and incorporating energy storage. The concept is based on a solar-electrolytic system for production of hydrogen and oxygen. It employs water, bromine, solar energy, and supplemental electrical power. The process consumes only water, sunlight and off-peak electricity, and produces only hydrogen, oxygen, and peaking electrical power. No pollutants are emitted, and fossil fuels are not consumed. The concept is being developed by Solar Reactor Technologies, Inc., (SRT) under the auspices of a Cooperative Agreement with the U.S. Department of Energy (DOE).

  12. [A peak recognition algorithm designed for chromatographic peaks of transformer oil].

    Science.gov (United States)

    Ou, Linjun; Cao, Jian

    2014-09-01

    In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.

  13. Electric-field-control of magnetic anisotropy of Co0.6Fe0.2B0.2/oxide stacks using reduced voltage

    Science.gov (United States)

    Kita, Koji; Abraham, David W.; Gajek, Martin J.; Worledge, D. C.

    2012-08-01

    We have demonstrated purely electrical manipulation of the magnetic anisotropy of a Co0.6Fe0.2B0.2 film by applying only 8 V across the CoFeB/oxide stack. A clear transition from in-plane to perpendicular anisotropy was observed. The quantitative relationship between interface anisotropy energy and the applied electric-field was determined from the linear voltage dependence of the saturation field. By comparing the dielectric stacks of MgO/Al2O3 and MgO/HfO2/Al2O3, enhanced voltage control was also demonstrated, due to the higher dielectric constant of the HfO2. These results suggest the feasibility of purely electrical control of magnetization with small voltage bias for spintronics applications.

  14. Analysis of electric vehicle driver recharging demand profiles and subsequent impacts on the carbon content of electric vehicle trips

    International Nuclear Information System (INIS)

    Robinson, A.P.; Blythe, P.T.; Bell, M.C.; Hübner, Y.; Hill, G.A.

    2013-01-01

    This paper quantifies the recharging behaviour of a sample of electric vehicle (EV) drivers and evaluates the impact of current policy in the north east of England on EV driver recharging demand profiles. An analysis of 31,765 EV trips and 7704 EV recharging events, constituting 23,805 h of recharging, were recorded from in-vehicle loggers as part of the Switch EV trials is presented. Altogether 12 private users, 21 organisation individuals and 32 organisation pool vehicles were tracked over two successive six month trial periods. It was found that recharging profiles varied between the different user types and locations. Private users peak demand was in the evening at home recharging points. Organisation individual vehicles were recharged primarily upon arrival at work. Organisation pool users recharged at work and public recharging points throughout the working day. It is recommended that pay-as-you-go recharging be implemented at all public recharging locations, and smart meters be used to delay recharging at home and work locations until after 23:00 h to reduce peak demand on local power grids and reduce carbon emissions associated with EV recharging. - Highlights: • Study of EV driver recharging habits in the north east of England. • 7704 electric vehicle recharging events, comprising 23,805 h were collected. • There was minimal recharging during off- peak hours. • Free parking and electricity at point of use encouraged daytime recharging. • Need for financial incentives and smart solutions to better manage recharging demand peaks

  15. Development of energy storage system for DC electric rolling stock applying electric double layer capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Sekijima, Y.; Kudo, Y.; Inui, M. [Central Japan Railway Co., Aichi (Japan); Monden, Y.; Toda, S.; Aoyama, I. [Toshiba Corp., Tokyo (Japan)

    2006-07-01

    This paper provided details of an energy storage system designed for use with DC electric rolling stock through the application of an electric double layer capacitor (EDLC). The EDLC was selected due to its long life-span and its low operational costs. Testing was conducted to assess the system's basic control function, acceleration using stored energy, and behaviour during regenerative brake failure. A control circuit chip was used in the DC electric rolling stock on an inverter of the energy storage system. Tests confirmed that the control method was effective for actual rolling stocks. A full-scale energy storage system for installation on series 313 locomotives was then constructed. Braking energy was generated only from a regenerative brake. In case of brake failure, braking energy was generated from an air brake was well as an electric brake. Data from a field test conducted at the Tokaido and Chuo railway lines showed a capacity of 0.6 kWh. The EDLC was used to reduce peak air brake energy. It was concluded that storing 0.28 kW of brake energy in the EDLC can reduce peaks of air brake energy in high speed ranges. Experimental equipment was used to confirm use of the system with 0.56 kWh of EDLC, the average energy of air brake used in regenerative energy failure. 1 tab., 10 figs.

  16. National energy peak leveling program (NEPLP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This multisectioned three-Volume report is responsive to the requirements of Contract E (04-3)-1152 to provide a detailed methodology, to include management, technology, and socio-economic aspects, of a voluntary community program of computer-assisted peak load leveling and energy conservation in commercial community facilities. The demonstration project established proof-of-concept in reducing the kW-demand peak by the unofficial goal of 10%, with concurrent kWh savings. This section of volume III contains appendixes of information on load shedding determination, analysis, socio-economic study, contractual cross references, and definitions.

  17. National energy peak leveling program (NEPLP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This three-volume report is responsive to the requirements of contract E (04-3)-1152 to provide a detailed methodology, to include management, technology, and socio-economic aspects, of a voluntary community program for computer-assisted peak load leveling and energy conservation in commercial community facilities. The demonstration project established proof-of-concept in reducing the kW-demand peak by the unofficial goal of 10%, with concurrent kWh savings. The report consists of the following three volumes: Volume I: management overview; Volume II: methodology and technology; and Volume III; appendices.

  18. High-Average, High-Peak Current Injector Design

    CERN Document Server

    Biedron, S G; Virgo, M

    2005-01-01

    There is increasing interest in high-average-power (>100 kW), um-range FELs. These machines require high peak current (~1 kA), modest transverse emittance, and beam energies of ~100 MeV. High average currents (~1 A) place additional constraints on the design of the injector. We present a design for an injector intended to produce the required peak currents at the injector, eliminating the need for magnetic compression within the linac. This reduces the potential for beam quality degradation due to CSR and space charge effects within magnetic chicanes.

  19. Peak load pricing lowers generation costs

    International Nuclear Information System (INIS)

    Lande, R.H.

    1980-01-01

    Before a utility implements peak load pricing for different classes of consumers, the costs and the benefits should be compared. The methodology described enables a utility to determine whether peak load pricing should be introduced for specific users. Cost-benefit analyses for domestic consumers and commercial/industrial consumers, showing break-even points are presented. (author)

  20. The peak in neutron powder diffraction

    International Nuclear Information System (INIS)

    Laar, B. van; Yelon, W.B.

    1984-01-01

    For the application of Rietveld profile analysis to neutron powder diffraction data a precise knowledge of the peak profile, in both shape and position, is required. The method now in use employs a Gaussian shaped profile with a semi-empirical asymmetry correction for low-angle peaks. The integrated intensity is taken to be proportional to the classical Lorentz factor calculated for the X-ray case. In this paper an exact expression is given for the peak profile based upon the geometrical dimensions of the diffractometer. It is shown that the asymmetry of observed peaks is well reproduced by this expression. The angular displacement of the experimental profile with respect to the nominal Bragg angle value is larger than expected. Values for the correction to the classical Lorentz factor for the integrated intensity are given. The exact peak profile expression has been incorporated into a Rietveld profile analysis refinement program. (Auth.)

  1. A new approach for modeling the peak utility impacts from a proposed CUAC standard

    Energy Technology Data Exchange (ETDEWEB)

    LaCommare, Kristina Hamachi; Gumerman, Etan; Marnay, Chris; Chan, Peter; Coughlin, Katie

    2004-08-01

    This report describes a new Berkeley Lab approach for modeling the likely peak electricity load reductions from proposed energy efficiency programs in the National Energy Modeling System (NEMS). This method is presented in the context of the commercial unitary air conditioning (CUAC) energy efficiency standards. A previous report investigating the residential central air conditioning (RCAC) load shapes in NEMS revealed that the peak reduction results were lower than expected. This effect was believed to be due in part to the presence of the squelch, a program algorithm designed to ensure changes in the system load over time are consistent with the input historic trend. The squelch applies a system load-scaling factor that scales any differences between the end-use bottom-up and system loads to maintain consistency with historic trends. To obtain more accurate peak reduction estimates, a new approach for modeling the impact of peaky end uses in NEMS-BT has been developed. The new approach decrements the system load directly, reducing the impact of the squelch on the final results. This report also discusses a number of additional factors, in particular non-coincidence between end-use loads and system loads as represented within NEMS, and their impacts on the peak reductions calculated by NEMS. Using Berkeley Lab's new double-decrement approach reduces the conservation load factor (CLF) on an input load decrement from 25% down to 19% for a SEER 13 CUAC trial standard level, as seen in NEMS-BT output. About 4 GW more in peak capacity reduction results from this new approach as compared to Berkeley Lab's traditional end-use decrement approach, which relied solely on lowering end use energy consumption. The new method has been fully implemented and tested in the Annual Energy Outlook 2003 (AEO2003) version of NEMS and will routinely be applied to future versions. This capability is now available for use in future end-use efficiency or other policy analysis

  2. Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data.

    Science.gov (United States)

    Zhang, Peng; Li, Houqiang; Wang, Honghui; Wong, Stephen T C; Zhou, Xiaobo

    2011-01-01

    Peak detection is one of the most important steps in mass spectrometry (MS) analysis. However, the detection result is greatly affected by severe spectrum variations. Unfortunately, most current peak detection methods are neither flexible enough to revise false detection results nor robust enough to resist spectrum variations. To improve flexibility, we introduce peak tree to represent the peak information in MS spectra. Each tree node is a peak judgment on a range of scales, and each tree decomposition, as a set of nodes, is a candidate peak detection result. To improve robustness, we combine peak detection and common peak alignment into a closed-loop framework, which finds the optimal decomposition via both peak intensity and common peak information. The common peak information is derived and loopily refined from the density clustering of the latest peak detection result. Finally, we present an improved ant colony optimization biomarker selection method to build a whole MS analysis system. Experiment shows that our peak detection method can better resist spectrum variations and provide higher sensitivity and lower false detection rates than conventional methods. The benefits from our peak-tree-based system for MS disease analysis are also proved on real SELDI data.

  3. Specific gas turbines for extreme peak-load

    International Nuclear Information System (INIS)

    Bellot, C.

    1992-12-01

    As with other European countries, in France peak consumption of electricity occurs during winter. Due to the increasing use of electricity for domestic heating, outside temperature greatly influences consumption (1 200 MW for a drop of 1 deg C). To meet requirements during cold spells, EDF has sought to determine which special facilities are best suited for extreme peak load conditions (i.e. offering short lifespan and minimum capital cost) and has studied the possibility of installing generation means in transformer substations (20 kV). This solution does not require extension of networks since these means are scattered near consumption areas. An experiment conducted on 3 Diesel generators of 800 kWe each at Senlis revealed some of the disadvantages of Diesel (maintenance requirements, polluting emissions and noise). EDF then examined, for this same application, the use of gas turbines, for which these drawbacks are significantly less. A study carried out under an EDF contract by the French manufacturer TURBOMECA showed that it is possible to design a small capacity gas turbine that can compete with Diesel generators, and that capital costs could be minimized by simplifying the machine, adapting its lifespan to extreme peak load needs, and taking advantage of lower cost provided by mass production. TURBOMECA defined the machine's characteristics (2 MW, 6 000 hours lifespan) and aerodynamic flow. It also estimated the cost of packaging. In terms of overall cost (including initial investment, maintenance and fuel) the gas turbine appears cheaper than Diesel generators for annual operation times of less than one hundred hours, which corresponds closely with extreme peak load use. The lower maintenance costs and the better availability counterbalance the higher capital cost (+6%) and the greater consumption (+50%). (author). 7 figs

  4. Multiscale peak detection in wavelet space.

    Science.gov (United States)

    Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-12-07

    Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

  5. Relative Economic Merits of Storage and Combustion Turbines for Meeting Peak Capacity Requirements under Increased Penetration of Solar Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Diakov, Victor [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Batteries with several hours of capacity provide an alternative to combustion turbines for meeting peak capacity requirements. Even when compared to state-of-the-art highly flexible combustion turbines, batteries can provide a greater operational value, which is reflected in a lower system-wide production cost. By shifting load and providing operating reserves, batteries can reduce the cost of operating the power system to a traditional electric utility. This added value means that, depending on battery life, batteries can have a higher cost than a combustion turbine of equal capacity and still produce a system with equal or lower overall life-cycle cost. For a utility considering investing in new capacity, the cost premium for batteries is highly sensitive to a variety of factors, including lifetime, natural gas costs, PV penetration, and grid generation mix. In addition, as PV penetration increases, the net electricity demand profile changes, which may reduce the amount of battery energy capacity needed to reliably meet peak demand.

  6. Peak Load Regulation and Cost Optimization for Microgrids by Installing a Heat Storage Tank and a Portable Energy System

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2018-04-01

    Full Text Available With the rapid growth of electricity demands, many traditional distributed networks cannot cover their peak demands, especially in the evening. Additionally, with the interconnection of distributed electrical and thermal grids, system operational flexibility and energy efficiency can be affected as well. Therefore, by adding a portable energy system and a heat storage tank to the traditional distributed system, this paper proposes a newly defined distributed network to deal with the aforementioned problems. Simulation results show that by adding a portable energy system, fossil fuel energy consumption and daily operation cost can be reduced by 8% and 28.29%, respectively. Moreover, system peak load regulating capacity can be significantly improved. However, by introducing the portable energy system to the grid, system uncertainty can be increased to some extent. Therefore, chance constrained programming is proposed to control the system while considering system uncertainty. By applying Particle Swarm Optimization—Monte Carlo to solve the chance constrained programming, results show that power system economy and uncertainty can be compromised by selecting appropriate confidence levels α and β. It is also reported that by installing an extra heat storage tank, combined heat and power energy efficiency can be significantly improved and the installation capacity of the battery can be reduced.

  7. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic

  8. Analysis of the location for peak heating in CHP based combined district heating systems

    International Nuclear Information System (INIS)

    Wang, Haichao; Lahdelma, Risto; Wang, Xin; Jiao, Wenling; Zhu, Chuanzhi; Zou, Pinghua

    2015-01-01

    Combined heat and power (CHP) is the main technology for providing the base load of district heating in China. However, CHP is not efficient for providing the peak load; instead, a peak boiler with high efficiency could be used to compensate the peak load. This paper studies how the location of the peak boiler can affect the energy efficiency and economic performance of such CHP based combined district heating system. Firstly, the connection mode and the control strategy for different peak heating locations are analyzed. Then the effect of the peak boiler's location on the initial investment of the network and the cost for distributing heat is studied. The objective is to place the peak boiler in a location where the overall costs are the smallest. Following this rule, the results indicate that the peak boiler should be located at the CHP plant if that allows using cheaper ‘self-use electricity’ in CHP for distributing the heat. However, if the market electricity price is used everywhere, or if energy efficiency is more emphasized, the location of the peak boiler should be closer to the users with dense heat loads. - Highlights: • Location for peak heating in the CHP based combined DH system is studied. • Regulation or control strategies for combined DH are summarized. • The heat load duration curve for combined DH is demonstrated. • Network design for combined DH with peak boiler outside of the CHP is analyzed

  9. Distribution network planning method considering distributed generation for peak cutting

    International Nuclear Information System (INIS)

    Ouyang Wu; Cheng Haozhong; Zhang Xiubin; Yao Liangzhong

    2010-01-01

    Conventional distribution planning method based on peak load brings about large investment, high risk and low utilization efficiency. A distribution network planning method considering distributed generation (DG) for peak cutting is proposed in this paper. The new integrated distribution network planning method with DG implementation aims to minimize the sum of feeder investments, DG investments, energy loss cost and the additional cost of DG for peak cutting. Using the solution techniques combining genetic algorithm (GA) with the heuristic approach, the proposed model determines the optimal planning scheme including the feeder network and the siting and sizing of DG. The strategy for the site and size of DG, which is based on the radial structure characteristics of distribution network, reduces the complexity degree of solving the optimization model and eases the computational burden substantially. Furthermore, the operation schedule of DG at the different load level is also provided.

  10. On dealing with multiple correlation peaks in PIV

    Science.gov (United States)

    Masullo, A.; Theunissen, R.

    2018-05-01

    A novel algorithm to analyse PIV images in the presence of strong in-plane displacement gradients and reduce sub-grid filtering is proposed in this paper. Interrogation windows subjected to strong in-plane displacement gradients often produce correlation maps presenting multiple peaks. Standard multi-grid procedures discard such ambiguous correlation windows using a signal to noise (SNR) filter. The proposed algorithm improves the standard multi-grid algorithm allowing the detection of splintered peaks in a correlation map through an automatic threshold, producing multiple displacement vectors for each correlation area. Vector locations are chosen by translating images according to the peak displacements and by selecting the areas with the strongest match. The method is assessed on synthetic images of a boundary layer of varying intensity and a sinusoidal displacement field of changing wavelength. An experimental case of a flow exhibiting strong velocity gradients is also provided to show the improvements brought by this technique.

  11. Driving with electrical power

    International Nuclear Information System (INIS)

    Ursin, M.; Hoeckel, M.

    2008-01-01

    This article takes a look at the chances offered to the electricity supply industry by the increasing use of battery-driven vehicles - and the advantages thus offered to the environment. The use of the vehicles' batteries to form a distributed electricity storage scheme is discussed. The authors comment that, although electrically-driven vehicles consume more power, the total primary energy consumption and pollutant emissions will be reduced. The actual electricity consumption of electric vehicles and the source of this power are examined. Power saved by the reduced use of electrical heating systems and boilers could, according to the authors, be used to charge the batteries of electric vehicles. The use of these batteries as a storage system to help regulate electricity supplies is discussed and the steps to be taken for the implementation of such a system are listed

  12. Isotope resolution of the iron peak

    International Nuclear Information System (INIS)

    Henke, R.P.; Benton, E.V.

    1977-01-01

    A stack of Lexan detectors from the Apollo 17 mission has been analyzed to obtain Z measurements of sufficient accuracy to resolve the iron peak into its isotopic components. Within this distribution several peaks are present. With the centrally located, most populated peak assumed to be 56 Fe, the measurements imply that the abundances of 54 Fe and 58 Fe are appreciable fractions of the 56 Fe abundance. This result is in agreement with those of Webber et al. and Siegman et al. but in disagreement with the predictions of Tsao et al. (Auth.)

  13. Impacts of plug-in electric vehicles in a balancing area

    International Nuclear Information System (INIS)

    Razeghi, Ghazal; Samuelsen, Scott

    2016-01-01

    Highlights: • Unit commitment methodology is used to determine BEV impact on electricity market. • Roles of charging profile, dispatch strategy and interconnecting area are assessed. • Results show that impact of BEV on cost of electricity generation is small. • Controlled BEV charging can lower emissions intensity of the grid and MCP. • BEV deployment helps reduce overall criteria pollutant emissions. - Abstract: High contributions of the electricity generation and transportation sectors to criteria pollutant and greenhouse gas emissions have resulted in an increased interest and shift towards low to non-carbon generation options such as renewable wind and solar, and alternative transportation options including plug-in electric vehicles. Since plug-in electric vehicles transfer the tailpipe emissions to the electric grid, it is important to study the interaction between the two sectors. In this paper, a previously developed spatially and temporally resolved unit commitment model is used to determine the dispatch schedule of resources with and without battery electric vehicles for 2050 in a fictitious balancing area located within the South Coast Air Basin of California. Cases studied include various charging profiles, penetration in light-duty fleet, imports mix, and grid dispatch strategies. Results of the analysis include average cost of electricity production, market clearing price, temporal production of individual generators, and emissions from electricity generation and the transportation sectors. The results show that deploying battery electric vehicles (1) has little impact on the average cost of electricity generation-maximum of $2.5 per MW h for the cases studied with 40% penetration in the light-duty fleet, (2) reduces the overall criteria pollutant emissions except for one case, and (3) results in a smoother load profile, reduces the use of peaking units, and reduces the average emission intensity of the grid through controlled off-peak

  14. Automated Peak Picking and Peak Integration in Macromolecular NMR Spectra Using AUTOPSY

    Science.gov (United States)

    Koradi, Reto; Billeter, Martin; Engeli, Max; Güntert, Peter; Wüthrich, Kurt

    1998-12-01

    A new approach for automated peak picking of multidimensional protein NMR spectra with strong overlap is introduced, which makes use of the program AUTOPSY (automatedpeak picking for NMRspectroscopy). The main elements of this program are a novel function for local noise level calculation, the use of symmetry considerations, and the use of lineshapes extracted from well-separated peaks for resolving groups of strongly overlapping peaks. The algorithm generates peak lists with precise chemical shift and integral intensities, and a reliability measure for the recognition of each peak. The results of automated peak picking of NOESY spectra with AUTOPSY were tested in combination with the combined automated NOESY cross peak assignment and structure calculation routine NOAH implemented in the program DYANA. The quality of the resulting structures was found to be comparable with those from corresponding data obtained with manual peak picking.

  15. A 800 kV compact peaking capacitor for nanosecond generator.

    Science.gov (United States)

    Jia, Wei; Chen, Zhiqiang; Tang, Junping; Chen, Weiqing; Guo, Fan; Sun, Fengrong; Li, Junna; Qiu, Aici

    2014-09-01

    An extremely compact high voltage peaking capacitor is developed. The capacitor has a pancake structure with a diameter of 315 mm, a thickness of 59 mm, and a mass of 6.1 kg. The novel structural design endows the capacitor with a better mechanical stability and reliability under hundreds of kilovolts pulse voltage and an inner gas pressure of more than 1.5 MPa. The theoretical value of the capacitor self-inductance is near to 17 nH. Proved by series of electrical experiments, the capacitor can endure a high-voltage pulse with a rise time of about 20 ns, a half-width duration of around 25 ns, and an amplitude of up to 800 kV in a single shot model. When the capacitor was used in an electromagnetic pulse simulator as a peaking capacitor, the rise time of the voltage pulse can be reduced from 20 ns to less than 3 ns. The practical value of the capacitor's inductance deduced from the experimental date is no more than 25 nH.

  16. The Role of Nuclear Power in Reducing Risk of the Fossil Fuel Prices and Diversity of Electricity Generation in Tunisia: A Portfolio Approach

    Science.gov (United States)

    Abdelhamid, Mohamed Ben; Aloui, Chaker; Chaton, Corinne; Souissi, Jomâa

    2010-04-01

    This paper applies real options and mean-variance portfolio theories to analyze the electricity generation planning into presence of nuclear power plant for the Tunisian case. First, we analyze the choice between fossil fuel and nuclear production. A dynamic model is presented to illustrate the impact of fossil fuel cost uncertainty on the optimal timing to switch from gas to nuclear. Next, we use the portfolio theory to manage risk of the electricity generation portfolio and to determine the optimal fuel mix with the nuclear alternative. Based on portfolio theory, the results show that there is other optimal mix than the mix fixed for the Tunisian mix for the horizon 2010-2020, with lower cost for the same risk degree. In the presence of nuclear technology, we found that the optimal generating portfolio must include 13% of nuclear power technology share.

  17. Scheduling Non-Preemptible Jobs to Minimize Peak Demand

    Directory of Open Access Journals (Sweden)

    Sean Yaw

    2017-10-01

    Full Text Available This paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown to be NP-hard. Our results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.

  18. Bayesian Peak Picking for NMR Spectra

    KAUST Repository

    Cheng, Yichen

    2014-02-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method.

  19. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shapiro, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-11

    With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for four charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.

  20. Instream flow needs below peaking hydroelectric projects

    International Nuclear Information System (INIS)

    Milhous, R.T.

    1991-01-01

    This paper reports on a method developed to assist in the determination of instream flow needs below hydroelectric projects operated in a peaking mode. Peaking hydroelectric projects significantly change streamflow over a short period of time; consequently, any instream flow methodology must consider the dual flows associated with peaking projects. The dual flows are the lowest flow and the maximum generation flow of a peaking cycle. The methodology is based on elements of the Physical Habitat Simulation System of the U.S. Fish and Wildlife Service and uses habitat, rather than fish numbers or biomas, as at basic response variable. All aquatic animals are subject to the rapid changes in streamflow which cause rapid swings in habitat quality. Some aquatic organisms are relatively fixed in location in the stream while others can move when flows change. The habitat available from a project operated in peaking mode is considered to be the minimum habitat occurring during a cycle of habitat change. The methodology takes in to consideration that some aquatic animals can move and others cannot move during a peaking cycle

  1. Participation through Automation: Fully Automated Critical PeakPricing in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Kiliccote,Sila; Linkugel, Eric

    2006-06-20

    California electric utilities have been exploring the use of dynamic critical peak prices (CPP) and other demand response programs to help reduce peaks in customer electric loads. CPP is a tariff design to promote demand response. Levels of automation in DR can be defined as follows: Manual Demand Response involves a potentially labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. They refer to this as Auto-DR. This paper describes the development, testing, and results from automated CPP (Auto-CPP) as part of a utility project in California. The paper presents the project description and test methodology. This is followed by a discussion of Auto-DR strategies used in the field test buildings. They present a sample Auto-CPP load shape case study, and a selection of the Auto-CPP response data from September 29, 2005. If all twelve sites reached their maximum saving simultaneously, a total of approximately 2 MW of DR is available from these twelve sites that represent about two million ft{sup 2}. The average DR was about half that value, at about 1 MW. These savings translate to about 0.5 to 1.0 W/ft{sup 2} of demand reduction. They are continuing field demonstrations and economic evaluations to pursue increasing penetrations of automated DR that has demonstrated ability to provide a valuable DR resource for California.

  2. Important variables in explaining real-time peak price in the independent power market of Ontario

    International Nuclear Information System (INIS)

    Rueda, I.E.A.; Marathe, A.

    2005-01-01

    This paper uses support vector machines (SVM) based learning algorithm to select important variables that help explain the real-time peak electricity price in the Ontario market. The Ontario market was opened to competition only in May 2002. Due to the limited number of observations available, finding a set of variables that can explain the independent power market of Ontario (IMO) real-time peak price is a significant challenge for the traders and analysts. The kernel regressions of the explanatory variables on the IMO real-time average peak price show that non-linear dependencies exist between the explanatory variables and the IMO price. This non-linear relationship combined with the low variable-observation ratio rule out conventional statistical analysis. Hence, we use an alternative machine learning technique to find the important explanatory variables for the IMO real-time average peak price. SVM sensitivity analysis based results find that the IMO's predispatch average peak price, the actual import peak volume, the peak load of the Ontario market and the net available supply after accounting for load (energy excess) are some of the most important variables in explaining the real-time average peak price in the Ontario electricity market. (author)

  3. Demand for electrical energy

    International Nuclear Information System (INIS)

    Bergougnoux, J.; Fouquet, D.

    1983-01-01

    The different utilizations of electric energy are reviewed in the residential and tertiary sectors, in the industry. The competitive position of electricity in regard to other fuels has been strengthned by the sudden rise in the price of oil in 1973-1974 and 1979-1980. The evolution of electricity prices depended on the steps taken to adjust the electricity generation system. The substitution of electricity applications for hydro-carbons is an essential point of energy policy. The adjustment at all times, at least cost and most reliability, of the supply of electricity to the demand for it is a major problem in the design and operation of electric systems. National demand for power at a given moment is extremely diversified. Electricity consumption presents daily and seasonal variations, and variations according to the different sectors. Forecasting power requirements is for any decision on operation or investment relating to an electrical system. Load management is desirable (prices according to the customers, optional tariffs for ''peak-day withdrawal''). To conclude, prospects for increased electricity consumption are discussed [fr

  4. The performance of residential micro-cogeneration coupled with thermal and electrical storage

    Science.gov (United States)

    Kopf, John

    Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the

  5. Time-of-use based electricity demand response for sustainable manufacturing systems

    International Nuclear Information System (INIS)

    Wang, Yong; Li, Lin

    2013-01-01

    As required by the Energy Policy Act of 2005, utility companies across the U.S. are offering TOU (time-of-use) based electricity demand response programs. The TOU rate gives consumers opportunities to manage their electricity bill by shifting use from on-peak periods to mid-peak and off-peak periods. Reducing the amount of electricity needed during the peak load times makes it possible for the power grid to meet consumers' needs without building more costly backup infrastructures and help reduce GHG (greenhouse gas) emissions. Previous research on the applications of TOU and other electricity demand response programs has been mainly focused on residential and commercial buildings while largely neglected industrial manufacturing systems. This paper proposes a systems approach for TOU based electricity demand response for sustainable manufacturing systems under the production target constraint. Key features of this approach include: (i) the electricity related costs including both consumption and demand are integrated into production system modeling; (ii) energy-efficient and demand-responsive production scheduling problems are formulated and the solution technique is provided; and (iii) the effects of various factors on the near-optimal scheduling solutions are examined. The research outcome is expected to enhance the energy efficiency, electricity demand responsiveness, and cost effectiveness of modern manufacturing systems. - Highlights: • We propose a TOU based demand response approach for manufacturing systems. • Both electricity consumption and demand are integrated into the system modeling. • Energy-efficient and demand-responsive production scheduling problems are formulated. • The meta-heuristic solution technique is provided. • The effects of various factors on the scheduling solutions are examined

  6. Effects of an electric field on the electronic and optical properties of zigzag boron nitride nanotubes

    Science.gov (United States)

    Chegel, Raad; Behzad, Somayeh

    2011-02-01

    We have investigated the electro-optical properties of zigzag BNNTs, under an external electric field, using the tight binding approximation. It is found that an electric field modifies the band structure and splits the band degeneracy. Also the large electric strength leads to coupling the neighbor subbands which these effects reflect in the DOS and JDOS spectrum. It has been shown that, unlike CNTs, the band gap of BNNTs can be reduced linearly by applying a transverse external electric field. Also we show that the larger diameter tubes are more sensitive than small ones. The semiconducting metallic transition can be achieved through increasing the applied fields. The number and position of peaks in the JDOS spectrum are dependent on electric field strength. It is found that at a high electric field, the two lowest subbands are oscillatory with multiple nodes at the Fermi level.

  7. Electrical and optical properties of poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) and AuCl3-doped reduced graphene oxide/single-walled carbon nanotube films for ultraviolet light-emitting diodes.

    Science.gov (United States)

    Lee, Byeong Ryong; Lee, Jae Hoon; Kim, Kyeong Heon; Kim, Hee-Dong; Kim, Tae Geun

    2014-12-01

    We report the effects of poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) ( PSS) and gold chloride (AuCl) co-doping on the electrical and optical properties of reduced graphene oxide (RGO)/single-walled carbon nanotube (SWNT) films fabricated by dipcoating methods. The RGO/SWNT films were doped with both AuCl3 dissolved in nitromethane and PSS hole injection layers by spin coating to improve their electrical properties by increasing the work function of the RGO/SWNT films, thereby reducing the Schottky barrier height between the RGO/SWNT and p-GaN films. As a result, we obtained a reduced sheet resistance of 851.9 Ω/Ω and a contact resistance of 1.97 x 10(-1) Ω x cm2, together with a high transmittance of 84.1% at 380 nm. The contact resistance of these films should be further reduced to fully utilize the feature of the electrode scheme proposed in this work, but the current result suggests its potential use as a transparent conductive electrode for ultraviolet light-emitting diodes.

  8. Pricing electricity for sustainability : climate change and Canada's electricity sector

    International Nuclear Information System (INIS)

    2010-01-01

    The electricity sector is Canada's largest single source of greenhouse gas (GHG) emissions. This paper discussed electricity and carbon pricing approaches to reducing GHG emissions in the electricity sector. An overview of the links between electricity pricing and climate change was presented, and current and emerging trends in electricity pricing related to encouraging energy conservation were reviewed. Market prices and failures were discussed. Approaches to pricing electricity included an increase in block prices; time-of-use prices; demand-side management and energy efficiency; and carbon pricing in Canada and electricity pricing signals. The study showed that several provincial utilities in Canada are experimenting with market-based pricing approaches for electricity and carbon that may help to reduce GHG emissions over time. Concerns over electricity supply and the negative environmental impacts of electricity production may lead to the full social pricing of electricity in some regions of Canada. 46 refs., 3 tabs., 5 figs.

  9. Alternatives to electrical cogeneration: The direct application of steam engines

    International Nuclear Information System (INIS)

    Phillips, W.C.

    1993-01-01

    Although small to medium sized industrial facilities are aware of electrical cogeneration, often they are too small for it to be economically justifiable. The direct application of steam turbine power to equipment formerly powered by electric motors, can allow them to use steam capacity to reduce electrical demand and consumption, bypassing cogeneration. Cogeneration converts the heat energy of steam into circular mechanical motion and then converts the circular mechanical motion into electricity. Each conversion entails a loss of energy due to friction and other conversion losses. A substantial amount of the generated electricity is then converted back into circular motion with electric motors, again incurring energy losses. Directly applying the mechanical motion of turbines eliminates both the motion-to-electricity (generator) and the electricity-to-motion (motor) conversion losses. Excess steam capacity during the summer is not unusual for facilities that use steam to provide winter heating. Similarly, most of these facilities experience a large electrical demand peak during the cooling season due to the electricity needed to operate centrifugal chillers. Steam capacity via a turbine to power the chillers can allow the boilers to operate at a higher loading while reducing electrical consumption and demand precisely those periods when demand reduction is most needed. In facilities where the steam generating capacity is sufficient, air compressors provide an appropriate year-round application for turbine power. This paper is the result of an on-going project by the Energy Division, State of North Carolina, Department of Economic and Community Development, in conjunction with the University of North Carolina at Charlotte. The objective of this project is to educate the operating engineers and managers of small to medium sized manufacturing facilities on the technical application and economic justification of steam turbine power

  10. Slovenian and Spanish electricity markets

    International Nuclear Information System (INIS)

    Bregar, Z.

    2004-01-01

    Spanish electricity market has served as a basic model in the construction of the electricity market in Slovenia. However, in the final phase of its development additional solutions were adopted from other European and worldwide electricity markets. The electricity market thus obtained is in some aspects more complex and in others simpler with regard to the original model. This article describes two of the new solutions on the Slovenian electricity market: the introduction of numerous standardized electric energy products (Band, Peak, Off-peak, Hourly power etc.) to be traded on completely separate markets, and the introduction of continuous, real-time type trading on all of them but the hourly market.(author)

  11. Market integration among electricity markets and their major fuel source markets

    International Nuclear Information System (INIS)

    Mjelde, James W.; Bessler, David A.

    2009-01-01

    Dynamic price information flows among U.S. electricity wholesale spot prices and the prices of the major electricity generation fuel sources, natural gas, uranium, coal, and crude oil, are studied. Multivariate time series methods applied to weekly price data show that in contemporaneous time peak electricity prices move natural gas prices, which in turn influence crude oil. In the long run, price is discovered in the fuel sources market (except uranium), as these prices are weakly exogenous in a reduced rank regression representation of these energy prices.

  12. Economic feasibility of hydrogen enrichment for reducing NOx emissions from landfill gas power generation alternatives: A comparison of the levelized cost of electricity with present strategies

    International Nuclear Information System (INIS)

    Kornbluth, Kurt; Greenwood, Jason; Jordan, Eddie; McCaffrey, Zach; Erickson, Paul A.

    2012-01-01

    Based on recent research showing that hydrogen enrichment can lower NO x emissions from landfill gas combustion below future NO x emission control standards imposed by both federal and California state regulations, an investigation was performed to compare the levelized cost of electricity of this technology with other options. In this cost study, a lean-burn reciprocating engine with no after-treatment was the baseline case to compare six other landfill gas-to-energy projects. These cases include a lean burn engine with selective catalytic reduction after treatment, a lean-burn microturbine, and four variations on an ultra-lean-burn engine utilizing hydrogen enrichment with each case using a different method of hydrogen production. Only hydrogen enrichment with an in-stream autothermal fuel reformer was shown to be potentially cost-competitive with current strategies for reaching the NO x reduction target in IC engines. - Highlights: ► Levelized cost of electricity for hydrogen enriched combustion was compared. ► Various ultra-lean-burn engines and microturbines with hydrogen were analyzed. ► Combustion with an autothermal fuel reformer was potentially cost-competitive.

  13. Statistics of peaks of Gaussian random fields

    International Nuclear Information System (INIS)

    Bardeen, J.M.; Bond, J.R.; Kaiser, N.; Szalay, A.S.; Stanford Univ., CA; California Univ., Berkeley; Cambridge Univ., England; Fermi National Accelerator Lab., Batavia, IL)

    1986-01-01

    A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of upcrossing points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima. 67 references

  14. Peak Oil, threat or energy worlds' phantasm?

    International Nuclear Information System (INIS)

    Favennec, Jean-Pierre

    2011-01-01

    The concept of Peak Oil is based on the work of King Hubbert, a petroleum geologist who worked for Shell in the USA in the 1960's. Based on the fact that discoveries in America reached a maximum in the 1930's, he announced that American production would reach a maximum in 1969, which did actually occur. Geologists members of the Association for the Study of Peak Oil have extrapolated this result to a worldwide scale and, since oil discoveries reached a peak in the 1960's, argued that production will peak in the very near future. It is clear that hydrocarbon reserves are finite and therefore exhaustible. But little is known regarding the level of ultimate (i.e. total existing) reserves. There are probably very large reserves of non conventional oil in addition to the reserves of conventional oil. An increasing number of specialists put maximum production at less than 100 Mb/d more for geopolitical than physical reasons. Attainable peak production will probably vary from year to year and will depend on how crude oil prices develop

  15. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  16. Considering supply and demand of electric energy in life cycle assessments - a review of current methodologies

    International Nuclear Information System (INIS)

    Rehberger, M.; Hiete, M.

    2015-01-01

    A stable power grid requires a balance between electricity supply and demand. To compensate for changes in the demand the network operator puts on or takes off power plants from the net. Peak load plants operate only at times of high electricity demand. As levels for air pollutants emissions are typically lower for peak load plants for reasons of cost-effectiveness, one could argue that a unit of electric energy consumed during peak load has always been associated with a higher environmental impact than at other times. Furthermore, renewable energy technologies, smart approaches for improving the matching between electricity consumption and supply and new products such as electric vehicles or net zero emission buildings gain in importance. In life cycle assessment (LCA) environmental impacts associated with the production and possibly transmission of electricity are most often assessed based on temporally averaged national electricity mixes as electricity flows cannot be traced back to their origin. Neither fluctuations in the supply structure nor the composition of energy supply at a certain moment or regional differences are accounted for. A literature review of approaches for handling electricity in LCA is carried out to compare strengths and weaknesses of the approaches. A better understanding and knowledge about the source of electricity at a given time and place might be valuable information for further reducing environmental impacts, e.g. by shifting electricity consumption to times with ample supply of renewables. Integrating such information into LCA will allow a fairer assessment of a variety of new products which accept a lower energy efficiency to achieve a better integration of renewables into the grid. (authors)

  17. SPANISH PEAKS WILDERNESS STUDY AREA, COLORADO.

    Science.gov (United States)

    Budding, Karin E.; Kluender, Steven E.

    1984-01-01

    A geologic and geochemical investigation and a survey of mines and prospects were conducted to evaluate the mineral-resource potential of the Spanish Peaks Wilderness Study Area, Huerfano and Las Animas Counties, in south-central Colorado. Anomalous gold, silver, copper, lead, and zinc concentrations in rocks and in stream sediments from drainage basins in the vicinity of the old mines and prospects on West Spanish Peak indicate a substantiated mineral-resource potential for base and precious metals in the area surrounding this peak; however, the mineralized veins are sparse, small in size, and generally low in grade. There is a possibility that coal may underlie the study area, but it would be at great depth and it is unlikely that it would have survived the intense igneous activity in the area. There is little likelihood for the occurrence of oil and gas because of the lack of structural traps and the igneous activity.

  18. Analysis of fuel end-temperature peaking

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Jiang, Q.; Lai, L.; Shams, M. [CANDU Energy Inc., Fuel Engineering Dept., Mississauga, Ontario (Canada)

    2013-07-01

    During normal operation and refuelling of CANDU® fuel, fuel temperatures near bundle ends will increase due to a phenomenon called end flux peaking. Similar phenomenon would also be expected to occur during a postulated large break LOCA event. The end flux peaking in a CANDU fuel element is due to the fact that neutron flux is higher near a bundle end, in contact with a neighbouring bundle or close to heavy water coolant, than in the bundle mid-plane, because of less absorption of thermal neutrons by Zircaloy or heavy water than by the UO{sub 2} material. This paper describes Candu Energy experience in analysing behaviour of bundle due to end flux peaking using fuel codes FEAT, ELESTRES and ELOCA. (author)

  19. Electricity usage scheduling in smart building environments using smart devices.

    Science.gov (United States)

    Lee, Eunji; Bahn, Hyokyung

    2013-01-01

    With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%.

  20. Peak power and heavy water production from electrolytic H2 and O2 using CANDU reactors

    International Nuclear Information System (INIS)

    Hammerli, M.; Stevens, W.H.; Bradley, W.J.; Butler, J.P.

    1976-04-01

    A combined energy storage - heavy water production system is presented. Off-peak nuclear energy is stored in the form of electrolytic H 2 (and O 2 ) from which a large fraction of the deuterium has been transferred to water in an H 2 /H 2 O deuterium exchange catalytic column. The main features and advantages of the combined electrolysis -catalytic exchange D 2 O process are discussed. Significant quantities of D 2 O could be produced economically at reasonable peak to base power cost ratios. Thirty to forty percent of the primary electric energy should be available for peak energy via either gas-steam turbines or fuel cells. (author)

  1. Materials and electricity

    International Nuclear Information System (INIS)

    Jaffee, R.I.

    1986-01-01

    Despite an increase in the intensity of electricity usage, electricity has been reversing its historical trend of reduced cost since 1970 to the point where costs are increasing faster than inflation. Designers and operators on both sides of the meter and the developers of materials from which the electric system is constructed must contribute to the lowering of costs and an increase in reliability for the generation, transmission and distribution, and utilization of electricity. Four specific cases illustrate the role of materials/process improvements to this end. The examples highlight the use of forged or welded integral rotors, improvements in the heat rate of coal-fired plants through higher steam conditions and reduced heat losses, reduced losses through amorphous steel cores for transformers, and reduced ac electric motor losses through silicon variable speed drives. 37 references, 27 figures, 9 tables

  2. Plant data comparisons for Comanche Peak 1/2 main feedwater pump trip transient

    Energy Technology Data Exchange (ETDEWEB)

    Boatwright, W.J.; Choe, W.G; Hiltbrand, D.W. [TU Electric, Dallas, TX (United States)] [and others

    1995-09-01

    A RETRAN-02 MOD5 model of Comanche Peak Steam Electric Station was developed by TU Electric for the purpose of performing core reload safety analyses. In order to qualify this model, comparisons against plant transient data from a partial loss of main feedwater flow were performed. These comparisons demonstrated that good representations of the plant response could be obtained with RETRAN-02 and the user-developed models of the primary-to-secondary heat transfer and plant control systems.

  3. Experimental evaluation of IGBT junction temperature measurement via peak gate current

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Iannuzzo, Francesco

    2015-01-01

    Temperature sensitive electrical parameters allow junction temperature measurements on power semiconductors without modification to module packaging. The peak gate current has recently been proposed for IGBT junction temperature measurement and relies on the temperature dependent resistance...... of the gate pad. Consequently, a consideration of chip geometry and location of the gate pad is required before interpreting temperature data from this method. Results are also compared with a traditional electrical temperature measurement method: the voltage drop under low current....

  4. Potential impacts assessment of plug-in electric vehicles on the Portuguese energy market

    International Nuclear Information System (INIS)

    Camus, C.; Farias, T.; Esteves, J.

    2011-01-01

    Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs), which obtain their fuel from the grid by charging a battery, are set to be introduced into the mass market and expected to contribute to oil consumption reduction. In this research, scenarios for 2020 EVs penetration and charging profiles are studied integrated with different hypotheses for electricity production mix. The impacts in load profiles, spot electricity prices and emissions are obtained for the Portuguese case study. Simulations for year 2020, in a scenario of low hydro production and high prices, resulted in energy costs for EVs recharge of 20 cents/kWh, with 2 million EVs charging mainly at evening peak hours. On the other hand, in an off-peak recharge, a high hydro production and low wholesale prices' scenario, recharge costs could be reduced to 5.6 cents/kWh. In these extreme cases, EV's energy prices were between 0.9 Euro to 3.2 Euro per 100 km. Reductions in primary energy consumption, fossil fuels use and CO 2 emissions of up to 3%, 14% and 10%, respectively, were verified (for a 2 million EVs' penetration and a dry year's off-peak recharge scenario) from the transportation and electricity sectors together when compared with a BAU scenario without EVs. - Highlights: → EVs and PHEVs impacts in energy, power profiles and spot electricity prices. → Reductions in primary energy consumption, fossil fuels use and CO 2 emissions. → Electricity production with more % of fossil fuels technologies and renewable ones. → Comparison between extreme charging profiles, peak and off-peak, in charging cost.

  5. Osteoporosis: Peak Bone Mass in Women

    Science.gov (United States)

    ... bone density are seen even during childhood and adolescence. Hormonal factors. The hormone estrogen has an effect on peak bone mass. For example, women who had their first menstrual cycle at an early age and those who use oral contraceptives, which contain estrogen, often have high bone mineral ...

  6. Facility Location with Double-peaked Preferences

    DEFF Research Database (Denmark)

    Filos-Ratsikas, Aris; Li, Minming; Zhang, Jie

    2015-01-01

    ; this makes the problem essentially more challenging. As our main contribution, we present a simple truthful-in-expectation mechanism that achieves an approximation ratio of 1+b=c for both the social and the maximum, cost, where b is the distance of the agent from the peak and c is the minimum cost...

  7. Robust Peak Recognition in Intracranial Pressure Signals

    Directory of Open Access Journals (Sweden)

    Bergsneider Marvin

    2010-10-01

    Full Text Available Abstract Background The waveform morphology of intracranial pressure pulses (ICP is an essential indicator for monitoring, and forecasting critical intracranial and cerebrovascular pathophysiological variations. While current ICP pulse analysis frameworks offer satisfying results on most of the pulses, we observed that the performance of several of them deteriorates significantly on abnormal, or simply more challenging pulses. Methods This paper provides two contributions to this problem. First, it introduces MOCAIP++, a generic ICP pulse processing framework that generalizes MOCAIP (Morphological Clustering and Analysis of ICP Pulse. Its strength is to integrate several peak recognition methods to describe ICP morphology, and to exploit different ICP features to improve peak recognition. Second, it investigates the effect of incorporating, automatically identified, challenging pulses into the training set of peak recognition models. Results Experiments on a large dataset of ICP signals, as well as on a representative collection of sampled challenging ICP pulses, demonstrate that both contributions are complementary and significantly improve peak recognition performance in clinical conditions. Conclusion The proposed framework allows to extract more reliable statistics about the ICP waveform morphology on challenging pulses to investigate the predictive power of these pulses on the condition of the patient.

  8. Avoiding the False Peaks in Correlation Discrimination

    International Nuclear Information System (INIS)

    Awwal, A.S.

    2009-01-01

    Fiducials imprinted on laser beams are used to perform video image based alignment of the 192 laser beams in the National Ignition Facility (NIF) of Lawrence Livermore National Laboratory. In many video images, matched filtering is used to detect the location of these fiducials. Generally, the highest correlation peak is used to determine the position of the fiducials. However, when the signal to-be-detected is very weak compared to the noise, this approach totally breaks down. The highest peaks act as traps for false detection. The active target images used for automatic alignment in the National Ignition Facility are examples of such images. In these images, the fiducials of interest exhibit extremely low intensity and contrast, surrounded by high intensity reflection from metallic objects. Consequently, the highest correlation peaks are caused by these bright objects. In this work, we show how the shape of the correlation is exploited to isolate the valid matches from hundreds of invalid correlation peaks, and therefore identify extremely faint fiducials under very challenging imaging conditions

  9. Hubbert's Peak: the Impending World oil Shortage

    Science.gov (United States)

    Deffeyes, K. S.

    2004-12-01

    Global oil production will probably reach a peak sometime during this decade. After the peak, the world's production of crude oil will fall, never to rise again. The world will not run out of energy, but developing alternative energy sources on a large scale will take at least 10 years. The slowdown in oil production may already be beginning; the current price fluctuations for crude oil and natural gas may be the preamble to a major crisis. In 1956, the geologist M. King Hubbert predicted that U.S. oil production would peak in the early 1970s.1 Almost everyone, inside and outside the oil industry, rejected Hubbert's analysis. The controversy raged until 1970, when the U.S. production of crude oil started to fall. Hubbert was right. Around 1995, several analysts began applying Hubbert's method to world oil production, and most of them estimate that the peak year for world oil will be between 2004 and 2008. These analyses were reported in some of the most widely circulated sources: Nature, Science, and Scientific American.2 None of our political leaders seem to be paying attention. If the predictions are correct, there will be enormous effects on the world economy. Even the poorest nations need fuel to run irrigation pumps. The industrialized nations will be bidding against one another for the dwindling oil supply. The good news is that we will put less carbon dioxide into the atmosphere. The bad news is that my pickup truck has a 25-gallon tank.

  10. Towards Efficient Energy Management of Smart Buildings Exploiting Heuristic Optimization with Real Time and Critical Peak Pricing Schemes

    Directory of Open Access Journals (Sweden)

    Sheraz Aslam

    2017-12-01

    Full Text Available The smart grid plays a vital role in decreasing electricity cost through Demand Side Management (DSM. Smart homes, a part of the smart grid, contribute greatly to minimizing electricity consumption cost via scheduling home appliances. However, user waiting time increases due to the scheduling of home appliances. This scheduling problem is the motivation to find an optimal solution that could minimize the electricity cost and Peak to Average Ratio (PAR with minimum user waiting time. There are many studies on Home Energy Management (HEM for cost minimization and peak load reduction. However, none of the systems gave sufficient attention to tackle multiple parameters (i.e., electricity cost and peak load reduction at the same time as user waiting time was minimum for residential consumers with multiple homes. Hence, in this work, we propose an efficient HEM scheme using the well-known meta-heuristic Genetic Algorithm (GA, the recently developed Cuckoo Search Optimization Algorithm (CSOA and the Crow Search Algorithm (CSA, which can be used for electricity cost and peak load alleviation with minimum user waiting time. The integration of a smart Electricity Storage System (ESS is also taken into account for more efficient operation of the Home Energy Management System (HEMS. Furthermore, we took the real-time electricity consumption pattern for every residence, i.e., every home has its own living pattern. The proposed scheme is implemented in a smart building; comprised of thirty smart homes (apartments, Real-Time Pricing (RTP and Critical Peak Pricing (CPP signals are examined in terms of electricity cost estimation for both a single smart home and a smart building. In addition, feasible regions are presented for single and multiple smart homes, which show the relationship among the electricity cost, electricity consumption and user waiting time. Experimental results demonstrate the effectiveness of our proposed scheme for single and multiple smart

  11. Prediction of peak overlap in NMR spectra

    International Nuclear Information System (INIS)

    Hefke, Frederik; Schmucki, Roland; Güntert, Peter

    2013-01-01

    Peak overlap is one of the major factors complicating the analysis of biomolecular NMR spectra. We present a general method for predicting the extent of peak overlap in multidimensional NMR spectra and its validation using both, experimental data sets and Monte Carlo simulation. The method is based on knowledge of the magnetization transfer pathways of the NMR experiments and chemical shift statistics from the Biological Magnetic Resonance Data Bank. Assuming a normal distribution with characteristic mean value and standard deviation for the chemical shift of each observable atom, an analytic expression was derived for the expected overlap probability of the cross peaks. The analytical approach was verified to agree with the average peak overlap in a large number of individual peak lists simulated using the same chemical shift statistics. The method was applied to eight proteins, including an intrinsically disordered one, for which the prediction results could be compared with the actual overlap based on the experimentally measured chemical shifts. The extent of overlap predicted using only statistical chemical shift information was in good agreement with the overlap that was observed when the measured shifts were used in the virtual spectrum, except for the intrinsically disordered protein. Since the spectral complexity of a protein NMR spectrum is a crucial factor for protein structure determination, analytical overlap prediction can be used to identify potentially difficult proteins before conducting NMR experiments. Overlap predictions can be tailored to particular classes of proteins by preparing statistics from corresponding protein databases. The method is also suitable for optimizing recording parameters and labeling schemes for NMR experiments and improving the reliability of automated spectra analysis and protein structure determination.

  12. The peak in anomalous magnetic viscosity

    International Nuclear Information System (INIS)

    Collocott, S.J.; Watterson, P.A.; Tan, X.H.; Xu, H.

    2014-01-01

    Anomalous magnetic viscosity, where the magnetization as a function of time exhibits non-monotonic behaviour, being seen to increase, reach a peak, and then decrease, is observed on recoil lines in bulk amorphous ferromagnets, for certain magnetic prehistories. A simple geometrical approach based on the motion of the state line on the Preisach plane gives a theoretical framework for interpreting non-monotonic behaviour and explains the origin of the peak. This approach gives an expression for the time taken to reach the peak as a function of the applied (or holding) field. The theory is applied to experimental data for bulk amorphous ferromagnet alloys of composition Nd 60−x Fe 30 Al 10 Dy x , x = 0, 1, 2, 3 and 4, and it gives a reasonable description of the observed behaviour. The role played by other key magnetic parameters, such as the intrinsic coercivity and fluctuation field, is also discussed. When the non-monotonic behaviour of the magnetization of a number of alloys is viewed in the context of the model, features of universal behaviour emerge, that are independent of alloy composition. - Highlights: • Development of a simple geometrical model based on the Preisach model which gives a complete explanation of the peak in the magnetic viscosity. • Geometrical approach is extended by considering equations that govern the motion of the state line. • The model is used to deduce the relationship between the holding field and the time it takes to reach the peak. • The model is tested with experimental results for a range of Nd–Fe–Al–Dy bulk amorphous ferromagnets. • There is good agreement between the model and the experimental data

  13. Strategic Sustainable Electric Power Energy for Ethiopia:- Electric ...

    African Journals Online (AJOL)

    Mengesha

    Present trend in electrical engineering education; ... (EERS) USA plans to reduce its electric energy ... at the distribution center, step-down to low voltage. (400 V .... Ethiopian market and in use [13]. .... involved in the teaching EEPCo students.

  14. Fast Metabolite Identification in Nuclear Magnetic Resonance Metabolomic Studies: Statistical Peak Sorting and Peak Overlap Detection for More Reliable Database Queries.

    Science.gov (United States)

    Hoijemberg, Pablo A; Pelczer, István

    2018-01-05

    A lot of time is spent by researchers in the identification of metabolites in NMR-based metabolomic studies. The usual metabolite identification starts employing public or commercial databases to match chemical shifts thought to belong to a given compound. Statistical total correlation spectroscopy (STOCSY), in use for more than a decade, speeds the process by finding statistical correlations among peaks, being able to create a better peak list as input for the database query. However, the (normally not automated) analysis becomes challenging due to the intrinsic issue of peak overlap, where correlations of more than one compound appear in the STOCSY trace. Here we present a fully automated methodology that analyzes all STOCSY traces at once (every peak is chosen as driver peak) and overcomes the peak overlap obstacle. Peak overlap detection by clustering analysis and sorting of traces (POD-CAST) first creates an overlap matrix from the STOCSY traces, then clusters the overlap traces based on their similarity and finally calculates a cumulative overlap index (COI) to account for both strong and intermediate correlations. This information is gathered in one plot to help the user identify the groups of peaks that would belong to a single molecule and perform a more reliable database query. The simultaneous examination of all traces reduces the time of analysis, compared to viewing STOCSY traces by pairs or small groups, and condenses the redundant information in the 2D STOCSY matrix into bands containing similar traces. The COI helps in the detection of overlapping peaks, which can be added to the peak list from another cross-correlated band. POD-CAST overcomes the generally overlooked and underestimated presence of overlapping peaks and it detects them to include them in the search of all compounds contributing to the peak overlap, enabling the user to accelerate the metabolite identification process with more successful database queries and searching all tentative

  15. Peak-locking reduction for particle image velocimetry

    International Nuclear Information System (INIS)

    Michaelis, Dirk; Wieneke, Bernhard; Neal, Douglas R

    2016-01-01

    A parametric study of the factors contributing to peak-locking, a known bias error source in particle image velocimetry (PIV), is conducted using synthetic data that are processed with a state-of-the-art PIV algorithm. The investigated parameters include: particle image diameter, image interpolation techniques, the effect of asymmetric versus symmetric window deformation, number of passes and the interrogation window size. Some of these parameters are found to have a profound effect on the magnitude of the peak-locking error. The effects for specific PIV cameras are also studied experimentally using a precision turntable to generate a known rotating velocity field. Image time series recorded using this experiment show a linear range of pixel and sub-pixel shifts ranging from 0 to  ±4 pixels. Deviations in the constant vorticity field (ω z ) reveal how peak-locking can be affected systematically both by varying parameters of the detection system such as the focal distance and f -number, and also by varying the settings of the PIV analysis. A new a priori technique for reducing the bias errors associated with peak-locking in PIV is introduced using an optical diffuser to avoid undersampled particle images during the recording of the raw images. This technique is evaluated against other a priori approaches using experimental data and is shown to perform favorably. Finally, a new a posteriori anti peak-locking filter (APLF) is developed and investigated, which shows promising results for both synthetic data and real measurements for very small particle image sizes. (paper)

  16. Transcutaneous electrical nerve stimulation on Yongquan acupoint reduces CFA-induced thermal hyperalgesia of rats via down-regulation of ERK2 phosphorylation and c-Fos expression.

    Science.gov (United States)

    Yang, Lin; Yang, Lianxue; Gao, Xiulai

    2010-07-01

    Activation of extracellular signal-regulated kinase-1/2 (ERK1/2) and its involvement in regulating gene expression in spinal dorsal horn, cortical and subcortical neurons by peripheral noxious stimulation contribute to pain hypersensitivity. Transcutaneous electrical nerve stimulation (TENS) is a treatment used in physiotherapy practice to promote analgesia in acute and chronic inflammatory conditions. In this study, a total number of 114 rats were used for three experiments. Effects of complete Freund's adjuvant (CFA)-induced inflammatory pain hypersensitivity and TENS analgesia on ERK1/2 phosphorylation and c-Fos protein expression were examined by using behavioral test, Western blot, and immunostaining methods. We found that CFA injection caused an area of localized swelling, erythema, hypersensitivity to thermal stimuli, the decreased response time of hind paw licking (HPL), as well as upregulation of c-Fos protein expression and ERK2 phosphorylation in the ipsilateral spinal dorsal horn and the contralateral primary somatosensory area of cortex and the amygdala of rats. TENS on Yongquan acupoint for 20 min produced obvious analgesic effects as demonstrated with increased HPL to thermal stimuli of CFA-treated rats. In addition, TENS application suppressed the CFA-induced ERK2 activation and c-Fos protein expression. These results suggest that down-regulation of ERK2 phosphorylation and c-Fos expression were involved in TENS inhibition on CFA-induced thermal hyperalgesia of rats.

  17. Electricity demand and storage dispatch modeling for buildings and implications for the smartgrid

    Science.gov (United States)

    Zheng, Menglian; Meinrenken, Christoph

    2013-04-01

    As an enabler for demand response (DR), electricity storage in buildings has the potential to lower costs and carbon footprint of grid electricity while simultaneously mitigating grid strain and increasing its flexibility to integrate renewables (central or distributed). We present a stochastic model to simulate minute-by-minute electricity demand of buildings and analyze the resulting electricity costs under actual, currently available DR-enabling tariffs in New York State, namely a peak/offpeak tariff charging by consumed energy (monthly total kWh) and a time of use tariff charging by power demand (monthly peak kW). We then introduce a variety of electrical storage options (from flow batteries to flywheels) and determine how DR via temporary storage may increase the overall net present value (NPV) for consumers (comparing the reduced cost of electricity to capital and maintenance costs of the storage). We find that, under the total-energy tariff, only medium-term storage options such as batteries offer positive NPV, and only at the low end of storage costs (optimistic scenario). Under the peak-demand tariff, however, even short-term storage such as flywheels and superconducting magnetic energy offer positive NPV. Therefore, these offer significant economic incentive to enable DR without affecting the consumption habits of buildings' residents. We discuss implications for smartgrid communication and our future work on real-time price tariffs.

  18. Measuring the financial impact of demand response for electricity retailers

    International Nuclear Information System (INIS)

    Feuerriegel, Stefan; Neumann, Dirk

    2014-01-01

    Due to the integration of intermittent resources of power generation such as wind and solar, the amount of supplied electricity will exhibit unprecedented fluctuations. Electricity retailers can partially meet the challenge of matching demand and volatile supply by shifting power demand according to the fluctuating supply side. The necessary technology infrastructure such as Advanced Metering Infrastructures for this so-called Demand Response (DR) has advanced. However, little is known about the economic dimension and further effort is strongly needed to realistically quantify the financial impact. To succeed in this goal, we derive an optimization problem that minimizes procurement costs of an electricity retailer in order to control Demand Response usage. The evaluation with historic data shows that cost volatility can be reduced by 7.74%; peak costs drop by 14.35%; and expenditures of retailers can be significantly decreased by 3.52%. - Highlights: • Ex post simulation to quantify financial impacts of demand response. • Effects of Demand Response are simulated based on real-world data. • Procurement costs of an average electricity retailer decrease by 3.4%. • Retailers can cut hourly peak expenditures by 12.1%. • Cost volatility is reduced by 12.2%

  19. Mixture of industrial waste oxidized titanium and reduced slag from electric furnace used as hydraulic material. Denkiro kangen slug to sanka titan kogyo haikibutsu no kongobutsu no suinan zairyo to shiteno riyo

    Energy Technology Data Exchange (ETDEWEB)

    Honda, A [Osaka City University, Osaka (Japan). Faculty of Engineering; Kuwayama, T [Daido Institute of Technology, Nagoya (Japan); Yamada, M; Ikezaki, H [Osaka City University, Osaka (Japan). Faculty of Engineering

    1990-10-29

    Slag released from an electric furnace consists mainly of waste steel. There are two types of slag, namely, oxidized slag and reduced slag. Reduced slag, which is generally in the form of powder, is difficult to recycle as compared with oxidized slag. However, with a hydraulicity, some reduced slag is expected to be useful as hydraulic material. Test results obtained here show that the hydraulic properties of reduced slag powder can be improved by mixing it with gypsum and that the resultant mixture can serve to improve the prooperties of soft clay. Another study is made to determine the potential, as hydraulic material, of mixtures of reduced slag powder and waste gypsum material with a high gypsum content released from an oxidized titanium production process. The hydraulicity is found to develop as a result of the formation of a hydrate of calcium aluminate which is contained in the slag. Addition of water to the hydrate and gypsum cause the formation of ettringite, leading to an increased uniaxial compressive strength. These findings indicate that the above-mentioned mixture can be useful to improve the hydraulic properties of coal ash to be disposed of at landfill sites. 5 refs., 5 figs., 1 tab.

  20. Electric field measurements in a nanosecond pulse discharge in atmospheric air

    International Nuclear Information System (INIS)

    Simeni Simeni, Marien; Frederickson, Kraig; Lempert, Walter R; Adamovich, Igor V; Goldberg, Benjamin M; Zhang, Cheng

    2017-01-01

    The paper presents the results of temporally and spatially resolved electric field measurements in a nanosecond pulse discharge in atmospheric air, sustained between a razor edge high-voltage electrode and a plane grounded electrode covered by a thin dielectric plate. The electric field is measured by picosecond four-wave mixing in a collinear phase-matching geometry, with time resolution of approximately 2 ns, using an absolute calibration provided by measurements of a known electrostatic electric field. The results demonstrate electric field offset on the discharge center plane before the discharge pulse due to surface charge accumulation on the dielectric from the weaker, opposite polarity pre-pulse. During the discharge pulse, the electric field follows the applied voltage until ‘forward’ breakdown occurs, after which the field in the plasma is significantly reduced due to charge separation. When the applied voltage is reduced, the field in the plasma reverses direction and increases again, until the weak ‘reverse’ breakdown occurs, producing a secondary transient reduction in the electric field. After the pulse, the field is gradually reduced on a microsecond time scale, likely due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Spatially resolved electric field measurements show that the discharge develops as a surface ionization wave. Significant surface charge accumulation on the dielectric surface is detected near the end of the discharge pulse. Spatially resolved measurements of electric field vector components demonstrate that the vertical electric field in the surface ionization wave peaks ahead of the horizontal electric field. Behind the wave, the vertical field remains low, near the detection limit, while the horizontal field is gradually reduced to near the detection limit at the discharge center plane. These results are consistent with time-resolved measurements of electric field

  1. A Cost-Effective Electric Vehicle Charging Method Designed For Residential Homes with Renewable Energy

    Science.gov (United States)

    Lie, T. T.; Liang, Xiuli; Haque, M. H.

    2015-03-01

    Most of the electrical infrastructure in use around the world today is decades old, and may be illsuited to widespread proliferation of personal Electric Vehicles (EVs) whose charging requirements will place increasing strain on grid demand. In order to reduce the pressure on the grid and taking benefits of off peak charging, this paper presents a smart and cost effective EV charging methodology for residential homes equipped with renewable energy resources such as Photovoltaic (PV) panels and battery. The proposed method ensures slower battery degradation and prevents overcharging. The performance of the proposed algorithm is verified by conducting simulation studies utilizing running data of Nissan Altra. From the simulation study results, the algorithm is shown to be effective and feasible which minimizes not only the charging cost but also can shift the charging time from peak value to off-peak time.

  2. Electricity spot price dynamics: Beyond financial models

    International Nuclear Information System (INIS)

    Guthrie, Graeme; Videbeck, Steen

    2007-01-01

    We reveal properties of electricity spot prices that cannot be captured by the statistical models, commonly used to model financial asset prices, that are increasingly used to model electricity prices. Using more than eight years of half-hourly spot price data from the New Zealand Electricity Market, we find that the half-hourly trading periods fall naturally into five groups corresponding to the overnight off-peak, the morning peak, daytime off-peak, evening peak, and evening off-peak. The prices in different trading periods within each group are highly correlated with each other, yet the correlations between prices in different groups are lower. Models, adopted from the modeling of security prices, that are currently applied to electricity spot prices are incapable of capturing this behavior. We use a periodic autoregression to model prices instead, showing that shocks in the peak periods are larger and less persistent than those in off-peak periods, and that they often reappear in the following peak period. In contrast, shocks in the off-peak periods are smaller, more persistent, and die out (perhaps temporarily) during the peak periods. Current approaches to modeling spot prices cannot capture this behavior either. (author)

  3. Stereotactic Bragg peak proton radiosurgery method

    International Nuclear Information System (INIS)

    Kjellberg, R.N.

    1979-01-01

    A brief description of the technical aspects of a stereotactic Bragg peak proton radiosurgical method for the head is presented. The preparatory radiographic studies are outlined and the stereotactic instrument and positioning of the patient are described. The instrument is so calibrated that after corrections for soft tissue and bone thickness, the Bragg peak superimposes upon the intracranial target. The head is rotated at specific intervals to allow predetermined portals of access for the beam path, all of which converge on the intracranial target. Normally, portals are arranged to oppose and overlap from both sides of the head. Using a number of beams (in sequence) on both sides of the head, the target dose is far greater than the path dose. The procedure normally takes 3/2-2 hours, following which the patient can walk away. (Auth./C.F.)

  4. Peak Oil, Food Systems, and Public Health

    Science.gov (United States)

    Parker, Cindy L.; Kirschenmann, Frederick L.; Tinch, Jennifer; Lawrence, Robert S.

    2011-01-01

    Peak oil is the phenomenon whereby global oil supplies will peak, then decline, with extraction growing increasingly costly. Today's globalized industrial food system depends on oil for fueling farm machinery, producing pesticides, and transporting goods. Biofuels production links oil prices to food prices. We examined food system vulnerability to rising oil prices and the public health consequences. In the short term, high food prices harm food security and equity. Over time, high prices will force the entire food system to adapt. Strong preparation and advance investment may mitigate the extent of dislocation and hunger. Certain social and policy changes could smooth adaptation; public health has an essential role in promoting a proactive, smart, and equitable transition that increases resilience and enables adequate food for all. PMID:21778492

  5. Electric radiant heating or, why are plumbers getting our work?

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, G. [Britech, Toronto, ON (Canada)

    2009-02-15

    Electric radiant heating (ERH) technologies are now being installed in floors as a means of reducing heating costs. The radiant installations have seen a large increase in sales over the last decade, and are now being used in commercial applications. Sales of hydronic ERH systems have increased by 24 per cent over the last year. ERH systems are energy efficient and do not cause drafts. The systems consist of resistant heating cables installed within the floors of a room. The cables are supplied as loose cables and tracks with predetermined spacings or rugged, heavier cable that can be stapled onto wooden subfloors. Program temperature setbacks can be applied on a room-by-room basis. Electric thermal storage systems allow building owners to store heat in the floors and are ideal for use in combination with time-of-use electric metering. Some electric utilities are now promoting the use of electric thermal storage in order to reduce demand during peak times. Thermostats used with the systems should have floor sensors and ambient air sensors to control space heating in conjunction with the floor sensor. It was concluded that electrical contractors who gain knowledge in the application and installation of the systems will tap into a growing revenue stream. 5 figs.

  6. Electric radiant heating or, why are plumbers getting our work?

    International Nuclear Information System (INIS)

    Lemieux, G.

    2009-01-01

    Electric radiant heating (ERH) technologies are now being installed in floors as a means of reducing heating costs. The radiant installations have seen a large increase in sales over the last decade, and are now being used in commercial applications. Sales of hydronic ERH systems have increased by 24 per cent over the last year. ERH systems are energy efficient and do not cause drafts. The systems consist of resistant heating cables installed within the floors of a room. The cables are supplied as loose cables and tracks with predetermined spacings or rugged, heavier cable that can be stapled onto wooden subfloors. Program temperature setbacks can be applied on a room-by-room basis. Electric thermal storage systems allow building owners to store heat in the floors and are ideal for use in combination with time-of-use electric metering. Some electric utilities are now promoting the use of electric thermal storage in order to reduce demand during peak times. Thermostats used with the systems should have floor sensors and ambient air sensors to control space heating in conjunction with the floor sensor. It was concluded that electrical contractors who gain knowledge in the application and installation of the systems will tap into a growing revenue stream. 5 figs

  7. Integrating wind power using intelligent electric water heating

    International Nuclear Information System (INIS)

    Fitzgerald, Niall; Foley, Aoife M.; McKeogh, Eamon

    2012-01-01

    Dwindling fossil fuel resources and pressures to reduce greenhouse gas emissions will result in a more diverse range of generation portfolios for future electricity systems. Irrespective of the portfolio mix the overarching requirement for all electricity suppliers and system operators is to instantaneously meet demand, to operate to standards and reduce greenhouse gas emissions. Therefore all electricity market participants will ultimately need to use a variety of tools to balance the power system. Thus the role of demand side management with energy storage will be paramount to integrate future diverse generation portfolios. Electric water heating has been studied previously, particularly at the domestic level to provide load control, peak shave and to benefit end-users financially with lower bills, particularly in vertically integrated monopolies. In this paper a number of continuous direct load control demand response based electric water heating algorithms are modelled to test the effectiveness of wholesale electricity market signals to study the system benefits. The results are compared and contrasted to determine which control algorithm showed the best potential for energy savings, system marginal price savings and wind integration.

  8. Hanford Site peak gust wind speeds

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1998-01-01

    Peak gust wind data collected at the Hanford Site since 1945 are analyzed to estimate maximum wind speeds for use in structural design. The results are compared with design wind speeds proposed for the Hanford Site. These comparisons indicate that design wind speeds contained in a January 1998 advisory changing DOE-STD-1020-94 are excessive for the Hanford Site and that the design wind speeds in effect prior to the changes are still appropriate for the Hanford Site

  9. Some practical aspects of peak kilovoltage measurements

    International Nuclear Information System (INIS)

    Irfan, A.Y.; Pugh, V.I.; Jeffery, C.D.

    1985-01-01

    The peak kilovoltage (kVsub(p)) across the X-ray tube electrodes in diagnostic X-ray machines is a most important parameter, affecting both radiation output and beam quality. Four commercially available non-invasive devices used for kVsub(p) measurement were tested using a selection of generator waveforms. The majority of the devices provided satisfactory measurements of the kVsub(p) to within approximately +- kV provided certain operating conditions are observed. (U.K.)

  10. METing SUSY on the Z peak

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, G.; Bernabeu, J.; Vives, O. [Universitat de Valencia, Departament de Fisica Teorica, Burjassot (Spain); Universitat de Valencia-CSIC, Parc Cientific U.V., IFIC, Paterna (Spain); Mitsou, V.A.; Romero, E. [Universitat de Valencia-CSIC, Parc Cientific U.V., IFIC, Paterna (Spain)

    2016-02-15

    Recently the ATLAS experiment announced a 3 σ excess at the Z-peak consisting of 29 pairs of leptons together with two or more jets, E{sub T}{sup miss} > 225 GeV and HT > 600 GeV, to be compared with 10.6 ± 3.2 expected lepton pairs in the Standard Model. No excess outside the Z-peak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, m{sub g} or similar 400 GeV decaying predominantly to Z-boson plus a light gravitino, such that nearly every gluino produces at least one Z-boson in its decay chain, could reproduce the excess. We construct an explicit general gauge mediation model able to reproduce the observed signal overcoming all the experimental limits. Needless to say, more sophisticated models could also reproduce the signal, however, any model would have to exhibit the following features: light gluinos, or heavy particles with a strong production cross section, producing at least one Z-boson in its decay chain. The implications of our findings for the Run II at LHC with the scaling on the Z peak, as well as for the direct search of gluinos and other SUSY particles, are pointed out. (orig.)

  11. Acquisition of peak responding: what is learned?

    Science.gov (United States)

    Balci, Fuat; Gallistel, Charles R; Allen, Brian D; Frank, Krystal M; Gibson, Jacqueline M; Brunner, Daniela

    2009-01-01

    We investigated how the common measures of timing performance behaved in the course of training on the peak procedure in C3H mice. Following fixed interval (FI) pre-training, mice received 16 days of training in the peak procedure. The peak time and spread were derived from the average response rates while the start and stop times and their relative variability were derived from a single-trial analysis. Temporal precision (response spread) appeared to improve in the course of training. This apparent improvement in precision was, however, an averaging artifact; it was mediated by the staggered appearance of timed stops, rather than by the delayed occurrence of start times. Trial-by-trial analysis of the stop times for individual subjects revealed that stops appeared abruptly after three to five sessions and their timing did not change as training was prolonged. Start times and the precision of start and stop times were generally stable throughout training. Our results show that subjects do not gradually learn to time their start or stop of responding. Instead, they learn the duration of the FI, with robust temporal control over the start of the response; the control over the stop of response appears abruptly later.