WorldWideScience

Sample records for redox process utilizing

  1. Hybrid energy storage systems utilizing redox active organic compounds

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  2. Redox processes in radiation biology and cancer

    International Nuclear Information System (INIS)

    Greenstock, C.L.

    1981-01-01

    Free-radical intermediates, particularly the activated oxygen species OH, O - 2 , and 1 O 2 , are implicated in many types of radiation damage to biological systems. In addition, these same species may be formed, either directly or indirectly through biochemical redox reactions, in both essential and aberrant metabolic processes. Cell survival and adaptation to an environment containing ionizing radiation and other physical and chemical carcinogens ultimately depend upon the cell's ability to maintain optimal function in response to free-radical damage at the chemical level. Many of these feedback control mechanisms are redox controlled. Radiation chemical techniques using selective radical scavengers, such as product analysis and pulse radiolysis, enable us to generate, observe, and characterize individually the nature and reactivity of potentially damaging free radicals. From an analysis of the chemical kinetics of free-radical involvement in biological damage, redox mechanisms are proposed to describe the early processes of radiation damage, redox mechanisms are proposed to describe the early processes of radiation damage, its protection and sensitization, and the role of free radicals in radiation and chemical carcinogenesis

  3. Electrochemical redox processes involving soluble cerium species

    International Nuclear Information System (INIS)

    Arenas, L.F.; Ponce de León, C.; Walsh, F.C.

    2016-01-01

    Highlights: • The relevance of cerium in laboratory and industrial electrochemistry is considered. • The history of fundamental electrochemical studies and applications is considered. • The chemistry, redox thermodynamics and electrode kinetics of cerium are summarised. • The uses of cerium ions in synthesis, energy storage, analysis and environmental treatment are illustrated. • Research needs and development perspectives are discussed. - Abstract: Anodic oxidation of cerous ions and cathodic reduction of ceric ions, in aqueous acidic solutions, play an important role in electrochemical processes at laboratory and industrial scale. Ceric ions, which have been used for oxidation of organic wastes and off-gases in environmental treatment, are a well-established oxidant for indirect organic synthesis and specialised cleaning processes, including oxide film removal from tanks and process pipework in nuclear decontamination. They also provide a classical reagent for chemical analysis in the laboratory. The reversible oxidation of cerous ions is an important reaction in the positive compartment of various redox flow batteries during charge and discharge cycling. A knowledge of the thermodynamics and kinetics of the redox reaction is critical to an understanding of the role of cerium redox species in these applications. Suitable choices of electrode material (metal or ceramic; coated or uncoated), geometry/structure (2-or 3-dimensional) and electrolyte flow conditions (hence an acceptable mass transport rate) are critical to achieving effective electrocatalysis, a high performance and a long lifetime. This review considers the electrochemistry of soluble cerium species and their diverse uses in electrochemical technology, especially for redox flow batteries and mediated electrochemical oxidation.

  4. Are bioassays useful tools to assess redox processes and biodegradation?

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Pedersen, Philip Grinder; Ludvigsen, L.

    2002-01-01

    sensitive hydrochemical or geochemical parameters, levels of hydrogen, and redox potential. However, all these approaches have to be evaluated against TEAP-bioassays as the most direct measure. We assessed successfully ongoing microbial-mediated redox processes by TEAP-bioassays in degradation studies...... of aromatic and chlorinated aliphatic compounds in landfill leachate plumes, and of pesticides in aquifers with various redox conditions....

  5. Imaging dynamic redox processes with genetically encoded probes.

    Science.gov (United States)

    Ezeriņa, Daria; Morgan, Bruce; Dick, Tobias P

    2014-08-01

    Redox signalling plays an important role in many aspects of physiology, including that of the cardiovascular system. Perturbed redox regulation has been associated with numerous pathological conditions; nevertheless, the causal relationships between redox changes and pathology often remain unclear. Redox signalling involves the production of specific redox species at specific times in specific locations. However, until recently, the study of these processes has been impeded by a lack of appropriate tools and methodologies that afford the necessary redox species specificity and spatiotemporal resolution. Recently developed genetically encoded fluorescent redox probes now allow dynamic real-time measurements, of defined redox species, with subcellular compartment resolution, in intact living cells. Here we discuss the available genetically encoded redox probes in terms of their sensitivity and specificity and highlight where uncertainties or controversies currently exist. Furthermore, we outline major goals for future probe development and describe how progress in imaging methodologies will improve our ability to employ genetically encoded redox probes in a wide range of situations. This article is part of a special issue entitled "Redox Signalling in the Cardiovascular System." Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. An Excel Workbook for Identifying Redox Processes in Ground Water

    Science.gov (United States)

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  7. Geomicrobial and Geochemical Redox Processes in a Landfill-Polluted Aquifer

    DEFF Research Database (Denmark)

    Ludvigsen, Liselotte; Heron, Gorm; Albrechtsen, Hans-Jørgen

    1995-01-01

    The distribution of different dominant microbial-mediated redox processes in a landfill leachate-polluted aquifer (Grindsted, Denmark) was investigated. The most probable number method was utilized for detecting bacteria able to use each of the electron acceptors, and unamended incubations were u...

  8. Simultaneous anionic and cationic redox

    Science.gov (United States)

    Jung, Sung-Kyun; Kang, Kisuk

    2017-12-01

    It is challenging to unlock anionic redox activity, accompanied by full utilization of available cationic redox process, to boost capacity of battery cathodes. Now, material design by tuning the metal-oxygen interaction is shown to be a promising solution.

  9. Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Coman, Vasile; Kostesha, Natalie

    2013-01-01

    utilizing a new double mediator system to map redox metabolism and screen for genetic modifications in Saccharomyces cerevisiae cells. The function of this new double mediator system based on menadione and osmium redox polymer (PVI-Os) is demonstrated. “Wiring” of S. cerevisiae cells using PVI-Os shows...... that microfluidic bioelectrochemical assays employing the menadione–PVI-Os double mediator system provides an effective means to conduct automated microbial assays. FigureMicrofluidic platform for bioelectrochemical assays using osmium redox polymer “wired” living yeast cells...

  10. Information processing through a bio-based redox capacitor: signatures for redox-cycling.

    Science.gov (United States)

    Liu, Yi; Kim, Eunkyoung; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-08-01

    Redox-cycling compounds can significantly impact biological systems and can be responsible for activities that range from pathogen virulence and contaminant toxicities, to therapeutic drug mechanisms. Current methods to identify redox-cycling activities rely on the generation of reactive oxygen species (ROS), and employ enzymatic or chemical methods to detect ROS. Here, we couple the speed and sensitivity of electrochemistry with the molecular-electronic properties of a bio-based redox-capacitor to generate signatures of redox-cycling. The redox capacitor film is electrochemically-fabricated at the electrode surface and is composed of a polysaccharide hydrogel with grafted catechol moieties. This capacitor film is redox-active but non-conducting and can engage diffusible compounds in either oxidative or reductive redox-cycling. Using standard electrochemical mediators ferrocene dimethanol (Fc) and Ru(NH3)6Cl3 (Ru(3+)) as model redox-cyclers, we observed signal amplifications and rectifications that serve as signatures of redox-cycling. Three bio-relevant compounds were then probed for these signatures: (i) ascorbate, a redox-active compound that does not redox-cycle; (ii) pyocyanin, a virulence factor well-known for its reductive redox-cycling; and (iii) acetaminophen, an analgesic that oxidatively redox-cycles but also undergoes conjugation reactions. These studies demonstrate that the redox-capacitor can enlist the capabilities of electrochemistry to generate rapid and sensitive signatures of biologically-relevant chemical activities (i.e., redox-cycling). Published by Elsevier B.V.

  11. Utilizing a vanadium redox flow battery to avoid wind power deviation penalties in an electricity market

    International Nuclear Information System (INIS)

    Turker, Burak; Arroyo Klein, Sebastian; Komsiyska, Lidiya; Trujillo, Juan José; Bremen, Lueder von; Kühn, Martin; Busse, Matthias

    2013-01-01

    Highlights: • Vanadium redox flow battery utilized for wind power grid integration was studied. • Technical and financial analyses at single wind farm level were performed. • 2 MW/6 MW h VRFB is suitable for mitigating power deviations for a 10 MW wind farm. • Economic incentives might be required in the short-term until the VRFB prices drop. - Abstract: Utilizing a vanadium redox flow battery (VRFB) for better market integration of wind power at a single wind farm level was evaluated. A model which combines a VRFB unit and a medium sized (10 MW) wind farm was developed and the battery was utilized to compensate for the deviations resulting from the forecast errors in an electricity market bidding structure. VRFB software model which was introduced in our previous paper was integrated with real wind power data, power forecasts and market data based on the Spanish electricity market. Economy of the system was evaluated by financial assessments which were done by considering the VRFB costs and the amount of deviation penalty payments resulting from forecast inaccuracies

  12. Redox processes at a nanostructured interface under strong electric fields.

    Science.gov (United States)

    Steurer, Wolfram; Surnev, Svetlozar; Netzer, Falko P; Sementa, Luca; Negreiros, Fabio R; Barcaro, Giovanni; Durante, Nicola; Fortunelli, Alessandro

    2014-09-21

    Manipulation of chemistry and film growth via external electric fields is a longstanding goal in surface science. Numerous systems have been predicted to show such effects but experimental evidence is sparse. Here we demonstrate in a custom-designed UHV apparatus that the application of spatially extended, homogeneous, very high (>1 V nm(-1)) DC-fields not only changes the system energetics but triggers dynamic processes which become important much before static contributions appreciably modify the potential energy landscape. We take a well characterized ultrathin NiO film on a Ag(100) support as a proof-of-principle test case, and show how it gets reduced to supported Ni clusters under fields exceeding the threshold of +0.9 V nm(-1). Using an effective model, we trace the observed interfacial redox process down to a dissociative electron attachment resonant mechanism. The proposed approach can be easily implemented and generally applied to a wide range of interfacial systems, thus opening new opportunities for the manipulation of film growth and reaction processes at solid surfaces under strong external fields.

  13. Redox regulation of fertilisation and the spermatogenic process

    Institute of Scientific and Technical Information of China (English)

    Junichi Fujii; Satoshi Tsunoda

    2011-01-01

    Oxidative stress is one of the major causes of male infertility; it damages spermatogenic cells, the spermatogenic process and sperm function. Recent advances in redox biology have revealed the signalling role of reactive oxygen species (ROS) that are generated by cells. While highly reactive oxidants, such as the hydroxyl radical, exert largely deleterious effects, hydrogen peroxide can feasibly serve as a signal mediator because it is moderately reactive and membrane permeable and because it can oxidize only limited numbers of functional groups of biological molecules. The amino acid side chain most sensitive to oxidation is cysteine sulphydryl, which is commonly involved in the catalysis of some enzymes. Although the reactivity of cysteine sulphhydryl is not very high in ordinary proteins, some phosphatases possess a highly reactive sulphydryl group at their catalytic centre and are thereby oxidatively inactivated by transiently elevated hydrogen peroxide levels after extracellular stimuli and under certain environmental conditions. Peroxiredoxins, in turn, show moderate hydrogen peroxide-reducing activity, and their role in the modulation of ROS-mediated signal transduction in ordinary cells, mediated by protecting phosphatases from oxidative inactivation, has attracted much attention. Although knowledge of the signalling role of ROS in the male reproductive system is limited at present, its significance is becoming a focal issue. Here, we present a review of the emerging signalling role of hydrogen peroxide in testes.

  14. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    Science.gov (United States)

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  15. In situ characterization of nanoscale catalysts during anodic redox processes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Renu [National Institute of Standards and Technology; Crozier, Peter [Arizona State University; Adams, James [Arizona State University

    2013-09-19

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  16. Investigation of iodine liberation process in redox titration of potassium iodate with sodium thiosulfate

    Energy Technology Data Exchange (ETDEWEB)

    Asakai, Toshiaki, E-mail: t-asakai@aist.go.jp [National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 3-9, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563 (Japan); Hioki, Akiharu [National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 3-9, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563 (Japan)

    2011-03-09

    Potassium iodate is often used as a reference material to standardize a sodium thiosulfate solution which is a familiar titrant for redox titrations. In the standardization, iodine (triiodide) liberated by potassium iodate in an acidic potassium iodide solution is titrated with a sodium thiosulfate solution. The iodine liberation process is significantly affected by the amount of acid, that of potassium iodide added, the waiting time for the liberation, and light; therefore, the process plays a key role for the accuracy of the titration results. Constant-voltage biamperometry with a modified dual platinum-chip electrode was utilized to monitor the amount of liberated iodine under several liberation conditions. Coulometric titration was utilized to determine the concentration of a sodium thiosulfate solution on an absolute basis. Potassium iodate was assayed by gravimetric titration with the sodium thiosulfate solution under several iodine liberation conditions. The liberation process was discussed from the changes in the apparent assay of potassium iodate. The information of the appropriate titration procedure obtained in the present study is useful for any analysts utilizing potassium iodate to standardize a thiosulfate solution.

  17. Investigation of iodine liberation process in redox titration of potassium iodate with sodium thiosulfate

    International Nuclear Information System (INIS)

    Asakai, Toshiaki; Hioki, Akiharu

    2011-01-01

    Potassium iodate is often used as a reference material to standardize a sodium thiosulfate solution which is a familiar titrant for redox titrations. In the standardization, iodine (triiodide) liberated by potassium iodate in an acidic potassium iodide solution is titrated with a sodium thiosulfate solution. The iodine liberation process is significantly affected by the amount of acid, that of potassium iodide added, the waiting time for the liberation, and light; therefore, the process plays a key role for the accuracy of the titration results. Constant-voltage biamperometry with a modified dual platinum-chip electrode was utilized to monitor the amount of liberated iodine under several liberation conditions. Coulometric titration was utilized to determine the concentration of a sodium thiosulfate solution on an absolute basis. Potassium iodate was assayed by gravimetric titration with the sodium thiosulfate solution under several iodine liberation conditions. The liberation process was discussed from the changes in the apparent assay of potassium iodate. The information of the appropriate titration procedure obtained in the present study is useful for any analysts utilizing potassium iodate to standardize a thiosulfate solution.

  18. Subseafloor nitrogen redox processes at Loihi Seamount, Hawai

    Science.gov (United States)

    Wankel, S. D.; Sylvan, J. B.; LaRowe, D.; Huber, J. A.; Moyer, C. L.; Edwards, K. J.

    2014-12-01

    archaeal methanogens in the genera Methanococcus and Methanothermococcus. Members of the NO2- oxidizing phylum Nitrispirae are present in all four samples, and are very abundant in two of them. All this data together reveals that N redox processes are significant sources of energy in subsurface Loihi fluids, and possibly at diffuse flow hydrothermal sites elsewhere

  19. Redox Cycling Realized in Paper-Based Biochemical Sensor for Selective Detection of Reversible Redox Molecules Without Micro/Nano Fabrication Process.

    Science.gov (United States)

    Yamamoto, So; Uno, Shigeyasu

    2018-02-28

    This paper describes a paper-based biochemical sensor that realizes redox cycling with close interelectrode distance. Two electrodes, the generator and collector electrodes, can detect steady-state oxidation and reduction currents when suitable potential is held at each electrode. The sensor has two gold plates on both sides of a piece of chromatography paper and defines the interelectrode distance by the thickness of the paper (180 μm) without any micro-fabrication processes. Our proposed sensor geometry has successfully exhibited signatures of redox cycling. As a result, the concentration of ferrocyanide as reversible redox molecules was successfully quantified under the interference by ascorbic acid as a strong irreversible reducing agent. This was possible because the ascorbic acids are completely consumed by the irreversible reaction, while maintaining redox cycling of reversible ferrocyanide. This suggests that a sensor based on the redox cycling method will be suitable for detecting target molecules at low concentration.

  20. Concise Redox Deracemization of Secondary and Tertiary Amines with a Tetrahydroisoquinoline Core via a Nonenzymatic Process.

    Science.gov (United States)

    Ji, Yue; Shi, Lei; Chen, Mu-Wang; Feng, Guang-Shou; Zhou, Yong-Gui

    2015-08-26

    A concise deracemization of racemic secondary and tertiary amines with a tetrahydroisoquinoline core has been successfully realized by orchestrating a redox process consisted of N-bromosuccinimide oxidation and iridum-catalyzed asymmetric hydrogenation. This compatible redox combination enables one-pot, single-operation deracemization to generate chiral 1-substituted 1,2,3,4-tetrahydroisoquinolines with up to 98% ee in 93% yield, offering a simple and scalable synthetic technique for chiral amines directly from racemic starting materials.

  1. Feasibility of a Supporting-Salt-Free Nonaqueous Redox Flow Battery Utilizing Ionic Active Materials.

    Science.gov (United States)

    Milshtein, Jarrod D; Fisher, Sydney L; Breault, Tanya M; Thompson, Levi T; Brushett, Fikile R

    2017-05-09

    Nonaqueous redox flow batteries (NAqRFBs) are promising devices for grid-scale energy storage, but high projected prices could limit commercial prospects. One route to reduced prices is to minimize or eliminate the expensive supporting salts typically employed in NAqRFBs. Herein, the feasibility of a flow cell operating in the absence of supporting salt by utilizing ionic active species is demonstrated. These ionic species have high conductivities in acetonitrile (12-19 mS cm -1 ) and cycle at 20 mA cm -2 with energy efficiencies (>75 %) comparable to those of state-of-the-art NAqRFBs employing high concentrations of supporting salt. A chemistry-agnostic techno-economic analysis highlights the possible cost savings of minimizing salt content in a NAqRFB. This work offers the first demonstration of a NAqRFB operating without supporting salt. The associated design principles can guide the development of future active species and could make NAqRFBs competitive with their aqueous counterparts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Redox front formation in an uplifting sedimentary rock sequence: An analogue for redox-controlling processes in the geosphere around deep geological repositories for radioactive waste

    International Nuclear Information System (INIS)

    Yoshida, H.; Metcalfe, R.; Yamamoto, K.; Murakami, Y.; Hoshii, D.; Kanekiyo, A.; Naganuma, T.; Hayashi, T.

    2008-01-01

    Subsurface redox fronts control the mobilization and fixation of many trace elements, including potential pollutants such as certain radionuclides. Any safety assessment for a deep geological repository for radioactive wastes needs to take into account adequately the long-term redox processes in the geosphere surrounding the repository. To build confidence in understanding these processes, a redox front in a reduced siliceous sedimentary rock distributed in an uplifting area in Japan has been studied in detail. Geochemical analyses show increased concentrations of Fe and trace elements, including rare earth elements (REEs), at the redox front, even though concentrations of reduced rock matrix constituents show little change. Detailed SEM observations revealed that fossilized microorganisms composed of amorphous granules made exclusively of Fe and Si occur in the rock's pore space. Microbial 16S rDNA analysis suggests that there is presently a zonation of different bacterial groups within the redox band, and bacterial zonation played an important role in the concentration of Fe-oxyhydroxides at the redox front. These water-rock-microbe interactions can be considered analogous to the processes occurring in the redox fronts that would develop around geological repositories for radioactive waste. Once formed, the Fe-oxyhydroxides within such a front would be preserved even after reducing conditions resume following repository closure

  3. Redox front formation in an uplifting sedimentary rock sequence: An analogue for redox-controlling processes in the geosphere around deep geological repositories for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, H. [Nagoya University Museum, Material Research Section, Furocho, Nagoya 464-8602 (Japan)], E-mail: dora@num.nagoya-u.ac.jp; Metcalfe, R. [Quintessa Japan, Queen' s Tower A7-707, Minatomirai, Yokohama 220-6007 (Japan); Yamamoto, K. [Nagoya University Museum, Material Research Section, Furocho, Nagoya 464-8602 (Japan); Murakami, Y. [Japan Atomic Energy Agency (JAEA), Tono Geoscience Centre (Japan); Hoshii, D.; Kanekiyo, A.; Naganuma, T. [Hiroshima University, Higashi Hiroshima, Kagamiyama 1-4-4 (Japan); Hayashi, T. [Asahi University, Department of Dental Pharmacology, Hozumi, Gifu (Japan)

    2008-08-15

    Subsurface redox fronts control the mobilization and fixation of many trace elements, including potential pollutants such as certain radionuclides. Any safety assessment for a deep geological repository for radioactive wastes needs to take into account adequately the long-term redox processes in the geosphere surrounding the repository. To build confidence in understanding these processes, a redox front in a reduced siliceous sedimentary rock distributed in an uplifting area in Japan has been studied in detail. Geochemical analyses show increased concentrations of Fe and trace elements, including rare earth elements (REEs), at the redox front, even though concentrations of reduced rock matrix constituents show little change. Detailed SEM observations revealed that fossilized microorganisms composed of amorphous granules made exclusively of Fe and Si occur in the rock's pore space. Microbial 16S rDNA analysis suggests that there is presently a zonation of different bacterial groups within the redox band, and bacterial zonation played an important role in the concentration of Fe-oxyhydroxides at the redox front. These water-rock-microbe interactions can be considered analogous to the processes occurring in the redox fronts that would develop around geological repositories for radioactive waste. Once formed, the Fe-oxyhydroxides within such a front would be preserved even after reducing conditions resume following repository closure.

  4. Anaerobic microbial redox processes in a landfill leachate contaminated aquifer (Grindsted, Denmark)

    Science.gov (United States)

    Ludvigsen, L.; Albrechtsen, H.-J.; Heron, G.; Bjerg, P. L.; Christensen, T. H.

    1998-10-01

    The distribution of anaerobic microbial redox processes was investigated along a 305 m long transect of a shallow landfill-leachate polluted aquifer. By unamended bioassays containing sediment and groundwater, 37 samples were investigated with respect to methane production, sulfate, iron, and manganese reduction, and denitrification. Methane production was restricted to the most reduced part of the plume with rates of 0.003-0.055 nmol CH 4/g dry weight/day. Sulfate reduction was observed at rates of maximum 1.8 nmol SO 42-/g dry weight/day along with methane production in the plume, but sulfate reduction was also observed further downgradient of the landfill. Iron reduction at rates of 5-19 nmol Fe(II)/g dry weight/day was observed in only a few samples, but this may be related to a high detection limit for the iron reducing bioassay. Manganese reduction at rates of maximum 2.4 nmol Mn(II)/g dry weight/day and denitrification at rates of 0.2-37 nmol N 2O-N/g dry weight/day were observed in the less reduced part of the plume. All the redox processes were microbial processes. In many cases, several redox processes took place simultaneously, but in all samples one process dominated accounting for more than 70% of the equivalent carbon conversion. The bioassays showed that the redox zones in the plume identified from the groundwater composition (e.g. as methanogenic and sulfate reducing) locally hosted also other redox processes (e.g. iron reduction). This may have implications for the potential of the redox zone to degrade trace amounts of organic chemicals and suggests that unamended bioassays may be an important supplement to other approaches in characterizing the redox processes in an anaerobic plume.

  5. The Electrochemical Properties of Biochars and How They Affect Soil Redox Properties and Processes

    Directory of Open Access Journals (Sweden)

    Stephen Joseph

    2015-07-01

    Full Text Available Biochars are complex heterogeneous materials that consist of mineral phases, amorphous C, graphitic C, and labile organic molecules, many of which can be either electron donors or acceptors when placed in soil. Biochar is a reductant, but its electrical and electrochemical properties are a function of both the temperature of production and the concentration and composition of the various redox active mineral and organic phases present. When biochars are added to soils, they interact with plant roots and root hairs, micro-organisms, soil organic matter, proteins and the nutrient-rich water to form complex organo-mineral-biochar complexes Redox reactions can play an important role in the development of these complexes, and can also result in significant changes in the original C matrix. This paper reviews the redox processes that take place in soil and how they may be affected by the addition of biochar. It reviews the available literature on the redox properties of different biochars. It also reviews how biochar redox properties have been measured and presents new methods and data for determining redox properties of fresh biochars and for biochar/soil systems.

  6. Improving Fructose Utilization and Butanol Production by Clostridium acetobutylicum via Extracellular Redox Potential Regulation and Intracellular Metabolite Analysis.

    Science.gov (United States)

    Chen, Li-Jie; Wu, You-Duo; Xue, Chuang; Bai, Feng-Wu

    2017-10-01

    Jerusalem artichoke (JA) can grow well in marginal lands with high biomass yield, and thus is a potential energy crop for biorefinery. The major biomass of JA is from tubers, which contain inulin that can be easily hydrolyzed into a mixture of fructose and glucose, but fructose utilization for producing butanol as an advanced biofuel is poor compared to glucose-based ABE fermentation by Clostridium acetobutylicum. In this article, the impact of extracellular redox potential (ORP) on the process is studied using a mixture of fructose and glucose to simulate the hydrolysate of JA tubers. When the extracellular ORP is controlled above -460 mV, 13.2 g L -1 butanol is produced from 51.0 g L -1 total sugars (40.1 g L -1 fructose and 10.9 g L -1 glucose), leading to dramatically increased butanol yield and butanol/ABE ratio of 0.26 g g -1 and 0.67, respectively. Intracellular metabolite and q-PCR analysis further indicate that intracellular ATP and NADH availabilities are significantly improved together with the fructose-specific PTS expression at the lag phase, which consequently facilitate fructose transport, metabolic shift toward solventogenesis and carbon flux redistribution for butanol biosynthesis. Therefore, the extracellular ORP control can be an effective strategy to improve butanol production from fructose-based feedstock. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. More efficient redox biocatalysis by utilizing 1,4-butanediol as a ‘smart cosubstrate'

    NARCIS (Netherlands)

    Kara, S.; Spickermann, D.; Schrittwieser, J.H.; Leggewie, C.; Berkel, van W.J.H.; Arends, I.W.C.E.; Hollmann, F.

    2013-01-01

    1,4-Butanediol is shown to be an efficient cosubstrate to promote NAD(P)H-dependent redox biocatalysis. The thermodynamically and kinetically inert lactone coproduct makes the regeneration reaction irreversible. Thereby not only the molar surplus of cosubstrate is dramatically reduced but also

  8. Certain aspects of the reactivity of carotenoids. Redox processes and complexation

    International Nuclear Information System (INIS)

    Polyakov, Nikolay E; Leshina, Tatyana V

    2006-01-01

    The published data on the redox reactions of carotenoids, their supramolecular inclusion complexes and the composition, properties and practical application of these complexes are generalised. Special attention is given to the effect of complexation on radical processes involving carotenoids and on the antioxidant activity of carotenoids.

  9. Interactions between magnetite and humic substances: redox reactions and dissolution processes.

    Science.gov (United States)

    Sundman, Anneli; Byrne, James M; Bauer, Iris; Menguy, Nicolas; Kappler, Andreas

    2017-10-19

    Humic substances (HS) are redox-active compounds that are ubiquitous in the environment and can serve as electron shuttles during microbial Fe(III) reduction thus reducing a variety of Fe(III) minerals. However, not much is known about redox reactions between HS and the mixed-valent mineral magnetite (Fe 3 O 4 ) that can potentially lead to changes in Fe(II)/Fe(III) stoichiometry and even dissolve the magnetite. To address this knowledge gap, we incubated non-reduced (native) and reduced HS with four types of magnetite that varied in particle size and solid-phase Fe(II)/Fe(III) stoichiometry. We followed dissolved and solid-phase Fe(II) and Fe(III) concentrations over time to quantify redox reactions between HS and magnetite. Magnetite redox reactions and dissolution processes with HS varied depending on the initial magnetite and HS properties. The interaction between biogenic magnetite and reduced HS resulted in dissolution of the solid magnetite mineral, as well as an overall reduction of the magnetite. In contrast, a slight oxidation and no dissolution was observed when native and reduced HS interacted with 500 nm magnetite. This variability in the solubility and electron accepting and donating capacity of the different types of magnetite is likely an effect of differences in their reduction potential that is correlated to the magnetite Fe(II)/Fe(III) stoichiometry, particle size, and crystallinity. Our study suggests that redox-active HS play an important role for Fe redox speciation within minerals such as magnetite and thereby influence the reactivity of these Fe minerals and their role in biogeochemical Fe cycling. Furthermore, such processes are also likely to have an effect on the fate of other elements bound to the surface of Fe minerals.

  10. Effects of non-dissolved redox mediators on a hexavalent chromium bioreduction process

    Directory of Open Access Journals (Sweden)

    Jing Lian

    2016-03-01

    Full Text Available The effects of six non-dissolved redox mediators (RM immobilized in cellulose acetate beads on enhancing Cr(VI reduction by Mangrovibacter plantisponsor CR1 were investigated. In addition, the voltammetric behaviours and electron transfer capacities of the redox mediators were examined using electrochemical methods. Compared to the control beads, the Cr(VI bioreduction rate with 1-chloroanthraquinone cellulose acetate beads (1-CAQ/CA beads was increased up to 4.5-fold, which was mainly attributed to enhanced electron transfer by 1-CAQ. The redox mediators also improved the oxidation–reduction potential values of the Cr(VI bioreduction processes, which might assist in Cr(VI bioreduction. The role of the redox mediators was discussed based on the cyclic voltammetric characteristics (E0' of the redox mediators and the electrochemical impedance spectroscopy characteristics (Rct of the RM/CA beads. A linear correlation was found for the reaction constant k and the 1-CAQ concentration (C1-CAQ, which was k = 1.5674 C1-CAQ + 4.8506 (R2 = 0.9683. The Cr(VI bioreduction was affected by temperature, and the optimum pH for the Cr(VI bioreduction was 6.5. The results of repeated-batch operations showed that 1-CAQ/CA beads exhibited good stability and persistence. This study contributes to a better understanding of the effects of the redox mediator on Cr(VI bioreduction process and demonstrates its promising potential for environmental bioremediation applications.

  11. Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes

    Science.gov (United States)

    Yamazaki, Shigeaki; Ito, Tatsuya; Murakumo, Yuka; Naitou, Masashi; Shimooka, Toshiharu; Yamagata, Masaki; Ishikawa, Masashi

    2016-09-01

    We propose novel hybrid capacitors (HCs) with electrolyte-involved redox reactions of bromide or iodide species by pretreatment of an activated carbon positive electrode. The treatment is simple; impregnation of pores at an activated carbon fiber cloth (ACFC) as a positive electrode with bromine- or iodine-containing water before cell assembly. The treated positive electrode is applied to a HC cell with a non-treated negative electrode of ACFC and its electrochemical performance is investigated by galvanostatic cycling and leakage current tests. Few studies on such "electrolytic" charge storage systems have provided acceptable capacitor performance because of inevitable self-discharge caused by diffusion of charged species form an electrode to the other one through an electrolyte. Nevertheless, our electrolyte-redox-based HCs show excellent performance without undesirable diffusion of charged species. Moreover, the present HC utilizing a bromide redox system fulfills a practical cell voltage of 1.8 V in spite of an aqueous electrolyte system. This high voltage provides excellent energy density, which is 5 times higher than that in a conventional aqueous electric double-layer capacitor (EDLC), and 1.2 times higher even than that in a 2.7 V-class non-aqueous EDLC, while keeping high charge-discharge rate capability.

  12. Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Noël, Vincent; Boye, Kristin; Kukkadapu, Ravi K.; Bone, Sharon; Lezama Pacheco, Juan S.; Cardarelli, Emily; Janot, Noémie; Fendorf, Scott; Williams, Kenneth H.; Bargar, John R.

    2017-12-15

    River floodplains, heavily used for water supplies, housing, agriculture, mining, and industry, may have water quality jeopardized by native or exogenous metals. Redox processes mediate the accumulation and release of these species in groundwater. Understanding the physicochemical, hydrological, and biogeochemical controls on the distribution and variability and variability of redox conditions is therefore critical to developing conceptual and numerical models of contaminants transport within floodplains. The distribution and intensity of redox activity at the Rifle, CO, site within the Upper Colorado River Basin (UCRB), are believed to be controlled by textural and compositional heterogeneities. Regionally, the UCRB is impacted by former uranium and vanadium ore processing, resulting in contaminations by U, Mo, V, As, Se, and Mn. Floodplains throughout the UCRB share sediment and groundwater characteristics, making redox activity regionally important to metal and radionuclide mobility. In this study, Fe and S speciation were used to track the distribution and stability of redox processes in sediment cores from three floodplain sites covering a 250 km range in the central portion of the UCRB. The results of the present study support the hypothesis that Fe(III) and sulfate reducing sediments are regionally important in the UCRB. The presence of organic carbon together with pore saturation were the key requirements for reducing conditions, dominated by sulfate-reduction. Sediment texture moderated the response of the system to external forcing, such as oxidant infusion, making fine-grain sediments resistant to change in comparison to coarser-grained sediments. Exposure to O2 and NO3- mediates the reactivity and longevity of freshly precipitated sulfides creating the potential for release of sequestered radionuclides and metals. The physical and chemical parameters of reducing zones evidenced in this study are thus thought to be key parameters on the dynamic exchange

  13. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Paulenova, Alena [Principal Investigator; Vandegrift, III, George F. [Collaborator

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  14. Insights into the redox components of dissolved organic matters during stabilization process.

    Science.gov (United States)

    Yuan, Ying; Xi, Bei-Dou; He, Xiao-Song; Ma, Yan; Zhang, Hui; Li, Dan; Zhao, Xin-Yu

    2018-05-01

    The changes of dissolved organic matter (DOM) components during stabilization process play significant effects on its redox properties but are little reported. Composting is a stabilization process of DOM, during which both the components and electron transfer capacities (ETCs) of DOM change. The redox components within compost-derived DOM during the stabilization process are investigated in this study. The results show that compost-derived DOM contained protein-like, fulvic-like, and humic-like components. The protein-like component decreases during composting, whereas the fulvic- and humic-like components increase during the process. The electron-donating capacity (EDC), electron-accepting capacity (EAC), and ETC of compost-derived DOM all increase during composting but their correlations with the components presented significant difference. The humic-like components were the main functional component responsible for both EDC and ETC, whereas the protein- and fluvic-like components show negative effects with the EAC, EDC, and ETC, suggesting that the components within DOM have specific redox properties during the stabilization process. These findings are very meaningful for better understanding the geochemical behaviors of DOM in the environment.

  15. Analyzing redox balance in a synthetic yeast platform to improve utilization of brown macroalgae as feedstock

    Directory of Open Access Journals (Sweden)

    C.A. Contador

    2015-12-01

    Full Text Available Macroalgae have high potential to be an efficient, and sustainable feedstock for the production of biofuels and other more valuable chemicals. Attempts have been made to enable the co-fermentation of alginate and mannitol by Saccharomyces cerevisiae to unlock the full potential of this marine biomass. However, the efficient use of the sugars derived from macroalgae depends on the equilibrium of cofactors derived from the alginate and mannitol catabolic pathways. There are a number of strong metabolic limitations that have to be tackled before this bioconversion can be carried out efficiently by engineered yeast cells.An analysis of the redox balance during ethanol fermentation from alginate and mannitol by Saccharomyces cerevisiae using metabolic engineering tools was carried out. To represent the strain designed for conversion of macroalgae carbohydrates to ethanol, a context-specific model was derived from the available yeast genome-scale metabolic reconstructions. Flux balance analysis and dynamic simulations were used to determine the flux distributions. The model indicates that ethanol production is determined by the activity of 4-deoxy-l-erythro-5-hexoseulose uronate (DEHU reductase (DehR and its preferences for NADH or NADPH which influences strongly the flow of cellular resources. Different scenarios were explored to determine the equilibrium between NAD(H and NADP(H that will lead to increased ethanol yields on mannitol and DEHU under anaerobic conditions. When rates of mannitol dehydrogenase and DehRNADH tend to be close to a ratio in the range 1–1.6, high growth rates and ethanol yields were predicted. The analysis shows a number of metabolic limitations that are not easily identified through experimental procedures such as quantifying the impact of the cofactor preference by DEHU reductase in the system, the low flux into the alginate catabolic pathway, and a detailed analysis of the redox balance. These results show that

  16. Utilization of Smartphone Literacy In Learning Process

    Directory of Open Access Journals (Sweden)

    Yenni Yuniati

    2017-01-01

    Full Text Available The utilization of smartphones is increasingly developing among the students. It causes various modifications of attitude and behavior, that media literacy nowadays becomes highly important. Therefore, media literacy shall become the priority for related parties specifically parents and teachers. In addition to helping to find information and to conduct fast communication, smartphone is also functions in formal learning process among the students.The aim of this research is to acknowledge the utilization of smartphones in formal learning process. This study uses qualitative descriptive method which makes serious efforts in describing and depicting utilization of smartphones in learning process among Junior High School students in Bandung. The research result shows that smartphones may function as a device to channel messages and to stimulate the mind, feeling and desire of the students which may encourage learning process in them and to give positive values and to bridge media literacy among the students.

  17. Numerical modelling of a bromide-polysulphide redox flow battery. Part 2: Evaluation of a utility-scale system

    International Nuclear Information System (INIS)

    Scamman, Daniel P.; Roberts, Edward P.L.; Reade, Gavin W.

    2009-01-01

    Numerical modelling of redox flow battery (RFB) systems allows the technical and commercial performance of different designs to be predicted without costly lab, pilot and full-scale testing. A numerical model of a redox flow battery was used in conjunction with a simple cost model incorporating capital and operating costs to predict the technical and commercial performance of a 120 MWh/15 MW utility-scale polysulphide-bromine (PSB) storage plant for arbitrage applications. Based on 2006 prices, the system was predicted to make a net loss of 0.45 p kWh -1 at an optimum current density of 500 A m -2 and an energy efficiency of 64%. The system was predicted to become economic for arbitrage (assuming no further costs were incurred) if the rate constants of both electrolytes could be increased to 10 -5 m s -1 , for example by using a suitable (low cost) electrocatalyst. The economic viability was found to be strongly sensitive to the costs of the electrochemical cells and the electrical energy price differential. (author)

  18. Composition and redox control of waste glasses: Recommendation for process control limit

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Plodinec, M.J.

    1986-01-01

    An electrochemical series of redox couples, originally developed for Savannah River Laboratory glass frit 131 (SRL-131) as a reference composition, has been extended to two other alkali borosilicate compositions that are candidate glasses for nuclear waste immobilization. Since no dramatic differences were ascertained in the redox chemistry of selected multivalent elements in SRL-131 versus that in Savannah River Laboratory glass frit 165 (SRL-165) and in West Valley glass number-sign 205 (WV-205), the comprehensive electrochemical series can readily be applied to a range of nuclear waste glass compositions. In order to alleviate potential problems with foaming and precipitation of insolubles during the processing of the nuclear waste in these glass melts, the [Fe 2+ ]/[Fe 3+ ] ratio of the melt should be between 0.1 and 0.5. 27 refs., 4 figs., 2 tabs

  19. Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods

    International Nuclear Information System (INIS)

    Lin, Meng; Haussener, Sophia

    2015-01-01

    Solar-driven non-stoichiometric thermochemical redox cycling of ceria for the conversion of solar energy into fuels shows promise in achieving high solar-to-fuel efficiency. This efficiency is significantly affected by the operating conditions, e.g. redox temperatures, reduction and oxidation pressures, solar irradiation concentration, or heat recovery effectiveness. We present a thermodynamic analysis of five redox cycle designs to investigate the effects of working conditions on the fuel production. We focused on the influence of approaches to reduce the partial pressure of oxygen in the reduction step, namely by mechanical approaches (sweep gassing or vacuum pumping), chemical approaches (chemical scavenger), and combinations thereof. The results indicated that the sweep gas schemes work more efficient at non-isothermal than isothermal conditions, and efficient gas phase heat recovery and sweep gas recycling was important to ensure efficient fuel processing. The vacuum pump scheme achieved best efficiencies at isothermal conditions, and at non-isothermal conditions heat recovery was less essential. The use of oxygen scavengers combined with sweep gas and vacuum pump schemes further increased the system efficiency. The present work can be used to predict the performance of solar-driven non-stoichiometric redox cycles and further offers quantifiable guidelines for system design and operation. - Highlights: • A thermodynamic analysis was conducted for ceria-based thermochemical cycles. • Five novel cycle designs and various operating conditions were proposed and investigated. • Pressure reduction method affects optimal operating conditions for maximized efficiency. • Chemical oxygen scavenger proves to be promising in further increasing efficiency. • Formulation of quantifiable design guidelines for economical competitive solar fuel processing

  20. A Mechanistic Study of the Influence of Proton Transfer Processes on the Behavior of Thiol/Disulfide Redox Couples

    National Research Council Canada - National Science Library

    Shouji, Eiichi

    1998-01-01

    .... In order to elucidate the influence of proton transfers on these redox processes, special attention has been paid to the influence of various bases, including triethylamine, pyridine, 3-chloro...

  1. Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Michael M. Bobek

    2012-10-01

    Full Text Available A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM and electron dispersive X-ray spectroscopy (EDS, the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.

  2. Morphology evolution and nanostructure of chemical looping transition metal oxide materials upon redox processes

    International Nuclear Information System (INIS)

    Qin, Lang; Cheng, Zhuo; Guo, Mengqing; Fan, Jonathan A.; Fan, Liang-Shih

    2017-01-01

    Transition metal are heavily used in chemical looping technologies because of their high oxygen carrying capacity and high thermal reactivity. These oxygen activities result in the oxide formation and oxygen vacancy formation that affect the nanoscale crystal phase and morphology within these materials and their subsequent bulk chemical behavior. In this study, two selected earlier transition metals manganese and cobalt as well as two selected later transition metals copper and nickel that are important to chemical looping reactions are investigated when they undergo cyclic redox reactions. We found Co microparticles exhibited increased CoO impurity presence when oxidized to Co_3O_4 upon cyclic oxidation; CuO redox cycles prefer to be limited to a reduced form of Cu_2O and an oxidized form of CuO; Mn microparticles were oxidized to a mixed phases of MnO and Mn_3O_4, which causes delamination during oxidation. For Ni microparticles, a dense surface were observed during the redox reaction. The atomistic thermodynamics methods and density functional theory (DFT) calculations are carried out to elucidate the effect of oxygen dissociation and migration on the morphological evolution of nanostructures during the redox processes. Our results indicate that the earlier transition metals (Mn and Co) tend to have stronger interaction with O_2 than the later transition metals (Ni and Cu). Also, our modified Brønsted−Evans−Polanyi (BEP) relationship for reaction energies and total reaction barriers reveals that reactions of earlier transition metals are more exergonic and have lower oxygen dissociation barriers than those of later transition metals. In addition, it was found that for these transition metal oxides the oxygen vacancy formation energies increase with the depth. The oxide in the higher oxidation state of transition metal has lower vacancy formation energy, which can facilitate forming the defective nanostructures. The fundamental understanding of these metal

  3. Decontamination of alpha contaminated metallic waste by cerium IV redox process

    International Nuclear Information System (INIS)

    Shah, J.G.; Dhami, P.S.; Gandhi, P.M.; Wattal, P.K.

    2012-01-01

    Decontamination of alpha contaminated metallic waste is an important aspect in the management of waste generated during dismantling and decommissioning of nuclear facilities. Present work on cerium redox process targets decontamination of alpha contaminated metallic waste till it qualifies for the non alpha waste category for disposal in near surface disposal facility. Recovery of the alpha radio nuclides and cerium from aqueous secondary waste streams was also studied deploying solvent extraction process and established. The alpha-lean secondary waste stream has been immobilised in cement based matrix for final disposal. (author)

  4. Redox processes in the safety case of deep geological repositories of radioactive wastes. Contribution of the European RECOSY Collaborative Project

    International Nuclear Information System (INIS)

    Duro, L.; Bruno, J.; Grivé, M.; Montoya, V.; Kienzler, B.; Altmaier, M.; Buckau, G.

    2014-01-01

    Highlights: • The RECOSY project produced results relevant for the Safety Case of nuclear disposal. • We classify the safety related features where RECOSY has contributed. • Redox processes effect the retention of radionuclides in all repository subsystems. - Abstract: Redox processes influence key geochemical characteristics controlling radionuclide behaviour in the near and far field of a nuclear waste repository. A sound understanding of redox related processes is therefore of high importance for developing a Safety Case, the collection of scientific, technical, administrative and managerial arguments and evidence in support of the safety of a disposal facility. This manuscript presents the contribution of the specific research on redox processes achieved within the EURATOM Collaborative Project RECOSY (REdox phenomena COntrolling SYstems) to the Safety Case of nuclear waste disposal facilities. Main objectives of RECOSY were related to the improved understanding of redox phenomena controlling the long-term release or retention of radionuclides in nuclear waste disposal and providing tools to apply the results to Performance Assessment and the Safety Case. The research developed during the project covered aspects of the near-field and the far-field aspects of the repository, including studies relevant for the rock formations considered in Europe as suitable for hosting an underground repository for radioactive wastes. It is the intention of this paper to highlight in which way the results obtained from RECOSY can feed the scientific process understanding needed for the stepwise development of the Safety Case associated with deep geological disposal of radioactive wastes

  5. Co-regulation of redox processes in freshwater wetlands as a function of organic matter availability?

    International Nuclear Information System (INIS)

    Alewell, C.; Paul, S.; Lischeid, G.; Storck, F.R.

    2008-01-01

    Wetlands have important filter functions in landscapes but are considered to be the biggest unknowns regarding their element dynamics under global climate change. Information on sink and source function of sulphur, nitrogen, organic matter and acidity in wetlands is crucial for freshwater regeneration. Recent results indicate that redox processes are not completely controlled by the sequential reduction chain (that is electron acceptor availability) but that electron donor availability may be an important regulator. Our hypothesis was that only sites which are limited in their electron donor availability (low concentrations of dissolved organic carbon (DOC)) follow the concept of the sequential reduction chain. We compared the results of two freshwater wetland systems: 1) three forested fens within a boreal spruce catchment in a low mountain range in southern Germany (high DOC regime) and 2) three floodplain soils within a groundwater enrichment area in the Rhein valley in northwest Switzerland (low DOC regime). Micro scale investigations (a few cm 3 ) with dialyse chambers as well as soil solution and groundwater concentrations at the forested fens (high DOC regime) indicated simultaneous consumption of nitrate and sulphate with release of iron, manganese and methane (CH 4 ) as well as an enrichment in stable sulphur isotopes indicating a co-existence of processes attributed to different redox gradients. Soil and aquifer gas measurements down to 4.6 m at the groundwater enrichment site (low DOC regime and carbon limitation) showed extreme high rates of metabolism with carbon dioxide (CO 2 ) , dinitrous oxide (N 2 O) and CH 4 concentrations reaching fifty, thirty and three times atmospheric concentrations, respectively. Simultaneously, groundwater oxygen (O 2 ) saturation was between 50 and 95%. We concluded that independent of DOC regime the sequential reduction chain was not a suitable concept in our systems. Instead of electron acceptor or donor availability

  6. Utilizing redox-mediated Bergman cyclization toward the development of dual-action metalloenediyne therapeutics.

    Science.gov (United States)

    Lindahl, Sarah E; Park, Hyunsoo; Pink, Maren; Zaleski, Jeffrey M

    2013-03-13

    Reaction of 2 equiv of 1,2-bis((diphenylphosphino)ethynyl)benzene (dppeb, 1) with Pt(cod)Cl2 followed by treatment with N2H4 yields the reduced Pt(0) metalloenediyne, Pt(dppeb)2, 2. This complex is stable to both air oxidation and metal-mediated Bergman cyclization under ambient conditions due to the nearly idealized tetrahedral geometry. Reaction of 2 with 1 equiv of I2 in the presence of excess 1,4-cyclohexadiene (1,4-CHD) radical trap rapidly and near-quantitatively generates the cis-Bergman-cyclized, diiodo product 3 ((31)P: δ = 41 ppm, J(Pt-P) = 3346 Hz) with concomitant loss of 1 equiv of uncyclized phosphine chelate ((31)P: δ = -33 ppm). In contrast, addition of 2 equiv of I2 in the absence of additional radical trap instantaneously forms a metastable Pt(dppeb)2(2+) intermediate species, 4, that is characterized by δ = 51 ppm in the (31)P NMR (J(Pt-P) = 3171 Hz) and ν(C≡C) = 2169 cm(-1) in the Raman profile, indicating that it is an uncyclized, bis-ligated complex. Over 24 h, 4 undergoes ligand exchange to form a neutral, square planar complex that spontaneously Bergman cyclizes at ambient temperature to give the crystalline product Pt(dppnap-I2)I2 (dppnap-I2 = (1,4-diiodonaphthalene-2,3-diyl)bis(diphenylphosphine)), 5, in 52% isolated yield. Computational analysis of the oxidation reaction proposes two plausible flattened tetrahedral structures for intermediate 4: one where the phosphine core has migrated to a trans-spanning chelate geometry, and a second, higher energy structure (3.3 kcal/mol) with two cis-chelating phosphine ligands (41° dihedral angle) via a restricted alkyne-terminal starting point. While the energies are disparate, the common theme in both structures is the elongated Pt-P bond lengths (>2.4 Å), indicating that nucleophilic ligand substitution by I(-) is on the reaction trajectory to the cyclized product 5. The efficiency of the redox-mediated Bergman cyclization reaction of this stable Pt(0) metalloenediyne prodrug and

  7. Methanation process utilizing split cold gas recycle

    Science.gov (United States)

    Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.

    1976-07-06

    In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

  8. Processing and utilization of metallurgical slag

    Directory of Open Access Journals (Sweden)

    Alena Pribulová

    2016-06-01

    Full Text Available Metallurgy and foundry industry create a huge amount of slags that are by-products in production of pig iron, steel and cast iron. Slag is produced in a very large amount in pyrometallurgical processes, and is a huge source of waste if not properly recycled and utilized. With rapid growth of industrialization, land available for land-filling of large quantity of metallurgical slag is being reduced all over the world and disposal cost is becoming increasingly higher. Metallurgical slag from different metallurgical processes treated and utilized in different ways based on different slag characteristics. The most economic and efficient option for reducing metallurgical waste is through recycling, which is a significant contribution to saving natural resources and reducing CO2 emissions. Characteristic of slags as well as its treatment and utilization are given in the paper. Slag from pig iron and steel production is used most frequently in building industry. From experiments using blast furnace slag and granulated blast furnace slag as gravel, and water glass as binder it can be concluded that that the best results – the best values of compression strength and tensile strength were reached by using of 18% of water glass as a solidification activating agent. According to cubic compression strength, mixture from 50% blast furnace gravel, 50% granulated blast furnace slag and 18% water glass falls into C35/45 class of concrete. Such concrete also fulfils strength requirements for road concrete, moreover, it even exceeds them considerably and, therefore, it can find an application in construction of road communications or in production of concrete slabs.

  9. Characterization of the surface redox process of adsorbed morin at glassy carbon electrodes

    International Nuclear Information System (INIS)

    Tesio, Alvaro Yamil; Granero, Adrian Marcelo; Fernandez, Hector; Zon, Maria Alicia

    2011-01-01

    The thermodynamic and kinetics of the adsorption of morin (MOR) on glassy carbon (GC) electrodes in 0.2 mol dm -3 phosphate buffer solutions (PBS, pH 7.00) was studied by both cyclic (CV) and square wave (SWV) voltammetries. The Frumkin adsorption isotherm was the best to describe the specific interaction of MOR with GC electrodes. The SWV allowed to characterize the thermodynamic and kinetics of surface quasi-reversible redox couple of MOR, using the combination of the 'quasi-reversible maximum' and the 'splitting of SW net peaks' methods. Average values obtained for the formal potential and the anodic transfer coefficient were (0.27 ± 0.02) V and (0.59 ± 0.09), respectively. Moreover, a value of formal rate constant (k s ) of 87 s -1 for the overall two-electron redox process was calculated. The SWV was also employed to generate calibration curves, which were linear in the range MOR bulk concentration (c MOR *) from 1.27 x 10 -7 to 2.50 x 10 -5 mol dm -3 . The lowest concentration experimentally measured for a signal to noise ratio of 3:1 was 1.25 x 10 -8 mol dm -3 (3 ppb).

  10. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-08

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc4+ state, 104Ru in the melt as reduced Ru+4 state as insoluble RuO2, and hazardous volatile Cr6+ in the less soluble and less volatile Cr+3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.

  11. NapA Mediates a Redox Regulation of the Antioxidant Response, Carbon Utilization and Development in Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Ariann E. Mendoza-Martínez

    2017-03-01

    Full Text Available The redox-regulated transcription factors (TFs of the bZIP AP1 family, such as yeast Yap1 and fission yeast Pap1, are activated by peroxiredoxin proteins (Prxs to regulate the antioxidant response. Previously, Aspergillus nidulans mutants lacking the Yap1 ortholog NapA have been characterized as sensitive to H2O2 and menadione. Here we study NapA roles in relation to TFs SrrA and AtfA, also involved in oxidant detoxification, showing that these TFs play different roles in oxidative stress resistance, catalase gene regulation and development, during A. nidulans life cycle. We also uncover novel NapA roles in repression of sexual development, normal conidiation, conidial mRNA accumulation, and carbon utilization. The phenotypic characterization of ΔgpxA, ΔtpxA, and ΔtpxB single, double and triple peroxiredoxin mutants in wild type or ΔnapA backgrounds shows that none of these Prxs is required for NapA function in H2O2 and menadione resistance. However, these Prxs participate in a minor NapA-independent H2O2 resistance pathway and NapA and TpxA appear to regulate conidiation along the same route. Using transcriptomic analysis we show that during conidial development NapA-dependent gene expression pattern is different from canonical oxidative stress patterns. In the course of conidiation, NapA is required for regulation of at least 214 genes, including ethanol utilization genes alcR, alcA and aldA, and large sets of genes encoding proteins involved in transcriptional regulation, drug detoxification, carbohydrate utilization and secondary metabolism, comprising multiple oxidoreductases, membrane transporters and hydrolases. In agreement with this, ΔnapA mutants fail to grow or grow very poorly in ethanol, arabinose or fructose as sole carbon sources. Moreover, we show that NapA nuclear localization is induced not only by oxidative stress but also by growth in ethanol and by carbon starvation. Together with our previous work, these results show

  12. Time resolved XANES illustrates a substrate-mediated redox process in Prussian blue cultural heritage materials

    International Nuclear Information System (INIS)

    Gervais, Claire; Moretti, Giulia; Lanquille, Marie-Angélique; Réguer, Solenn

    2016-01-01

    The pigment Prussian blue is studied in heritage science because of its capricious fading behavior under light exposure. We show here that XANES can be used to study the photosensitivity of Prussian blue heritage materials despite X-ray radiation damage. We used an original approach based on X-ray photochemistry to investigate in depth the redox process of Prussian blue when it is associated with a cellulosic substrate, as in cyanotypes and watercolors. By modifying cation and proton contents of the paper substrate, we could tune both rate and extent of Prussian blue reduction. These results demonstrate that the photoreduction and fading of Prussian blue is principally mediated by the substrate and its interaction with the oxygen of the environment. (paper)

  13. Nitric-glycolic flowsheet reduction/oxidation (redox) model for the defense waste processing facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Trivelpiece, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ramsey, W. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-14

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, retains radionuclides in the melt and thus the final glass. Specifically, long-lived radioactive 99Tc species are less volatile in the reduced Tc4+ state as TcO2 than as NaTcO4 or Tc2O7, and ruthenium radionuclides in the reduced Ru4+ state are insoluble RuO2 in the melt which are not as volatile as NaRuO4 where the Ru is in the +7 oxidation state. Similarly, hazardous volatile Cr6+ occurs in oxidized melt pools as Na2CrO4 or Na2Cr2O7, while the Cr+3 state is less volatile and remains in the melt as NaCrO2 or precipitates as chrome rich spinels. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam.

  14. Biomass utilization for the process of gasification

    Directory of Open Access Journals (Sweden)

    Josef Spěvák

    2008-01-01

    Full Text Available Biomass as one of the renewable resources of energy has bright future in utilization, especially in obtaining various forms of energy (heat, electrical energy, gas.According to the conception of energy policy of the Czech Republic and according to the fulfillment of the indicators of renewable resources using until the year 2010, the research of thermophysical characteristics of biofuels was realized.There were acquired considerable amount of results by combustion and gasification process on the basis of three-year project „Biomass energy parameters.” By means of combustion and gasification tests of various (biomass fuels were acquired the results which were not published so far.Acquired results are published in the fuel sheets, which are divided into four parts. They consist of information on fuel composition, ash composition, testing conditions and measurand overview. Measurements were realized for the process of combustion, fluidized-bed gasification and fixed-bed gasification. Following fuels were tested: Acacia, Pine, Birch, Beech, Spruce, Poplar, Willow, Rape, Amaranth, Corn, Flax, Wheat, Safflower, Mallow, and Sorrel.

  15. Utilization of whey with microbiological processing

    Energy Technology Data Exchange (ETDEWEB)

    Teuber, M

    1981-08-01

    Besides biogas production, the following processes and technologies are available in practice for microbiological processing: 1) Lactic acid Using thermophilic lactic acid bacteria, such as Lactobacillus bulgaricus, the procedure is economically performed at 45-50/sup 0/C. Since the bacteria are sensitive to high lactate concentrations, buffering with CaCO/sub 3/ or lime-milk is necessary. 2) Ethanol Using lactose-fermenting yeasts, such as Kluyvermyces fragilis, alcohol production is easily performed at 25/sup 0/C and at pH-values between 4 and 6, the dry matter contents varying between 5 and 15% (concentrated whey or permeate). Addition of ammonium sulphate is necessary. 3) Single Cell Protein One-stage production of single cell protein (SCP) is possible using lactose-fermenting aerobic yeasts (K. fragilis, Candida utilis etc.). The yeast procuced and utilized in animal feeding (as Milke replacement in calf rearing) is currently offered in the Federal Republic of Germany at a price of approximately DM 1.40/kg. Two-stage fermentation of Saccharomyces cerevisiae following lactic acid fermentation and addition of enzymatically hydrolyzed starch can be performed effluent-free.

  16. Investigation of potential analytical methods for redox control of the vitrification process

    International Nuclear Information System (INIS)

    Goldman, D.S.

    1985-11-01

    An investigation was conducted to evaluate several analytical techniques to measure ferrous/ferric ratios in simulated and radioactive nuclear waste glasses for eventual redox control of the vitrification process. Redox control will minimize the melt foaming that occurs under highly oxidizing conditions and the metal precipitation that occurs under highly reducing conditions. The analytical method selected must have a rapid response for production problems with minimal complexity and analyst involvement. The wet-chemistry, Moessbauer spectroscopy, glass color analysis, and ion chromatography techniques were explored, with particular emphasis being placed on the Moessbauer technique. In general, all of these methods can be used for nonradioactive samples. The Moessbauer method can readily analyze glasses containing uranium and thorium. A shielded container was designed and built to analyze fully radioactive glasses with the Moessbauer spectrometer in a hot cell environment. However, analyses conducted with radioactive waste glasses containing 90 Sr and 137 Cs were unsuccessful, presumably due to background radiation problems caused by the samples. The color of glass powder can be used to analyze the ferrous/ferric ratio for low chromium glasses, but this method may not be as precise as the others. Ion chromatography was only tested on nonradioactive glasses, but this technique appears to have the required precision due to its analysis of both Fe +2 and Fe +3 and its anticipated adaptability for radioactivity samples. This development would be similar to procedures already in use for shielded inductively coupled plasma emission (ICP) spectrometry. Development of the ion chromatography method is therefore recommended; conventional wet-chemistry is recommended as a backup procedure

  17. The complex reaction kinetics of neptunium including redox and extraction process in 30% TBP-nitric acid system

    International Nuclear Information System (INIS)

    Hu Zhang; Zhan-yuan Liu; Xian-ming Zhou; Li Li

    2017-01-01

    In order to understand the complex and dynamic neptunium process chemistry in the TBP-HNO_3 system, the kinetics involved reversible redox reaction and extraction mass transfer was investigated. The results indicates that the mass transfer rate of Np(VI) is much faster than the redox reaction in aqueous solution. The concentrations of nitric acid and nitrous acid not only can change the Np(V) oxidation reaction and Np(VI) reduction reaction rate, but also can ultimately determine the distribution of neptunium extraction equilibrium. The variety of temperature can only influence the extraction equilibrium time, but cannot alter the equilibrium state of neptunium. (author)

  18. Enhancing Capacity Performance by Utilizing the Redox Chemistry of the Electrolyte in a Dual-Electrolyte Sodium-Ion Battery.

    Science.gov (United States)

    Senthilkumar, Sirugaloor Thangavel; Bae, Hyuntae; Han, Jinhyup; Kim, Youngsik

    2018-05-04

    A strategy is described to increase charge storage in a dual electrolyte Na-ion battery (DESIB) by combining the redox chemistry of the electrolyte with a Na + ion de-insertion/insertion cathode. Conventional electrolytes do not contribute to charge storage in battery systems, but redox-active electrolytes augment this property via charge transfer reactions at the electrode-electrolyte interface. The capacity of the cathode combined with that provided by the electrolyte redox reaction thus increases overall charge storage. An aqueous sodium hexacyanoferrate (Na 4 Fe(CN) 6 ) solution is employed as the redox-active electrolyte (Na-FC) and sodium nickel Prussian blue (Na x -NiBP) as the Na + ion insertion/de-insertion cathode. The capacity of DESIB with Na-FC electrolyte is twice that of a battery using a conventional (Na 2 SO 4 ) electrolyte. The use of redox-active electrolytes in batteries of any kind is an efficient and scalable approach to develop advanced high-energy-density storage systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Applying the Nernst equation to simulate redox potential variations for biological nitrification and denitrification processes.

    Science.gov (United States)

    Chang, Cheng-Nan; Cheng, Hong-Bang; Chao, Allen C

    2004-03-15

    In this paper, various forms of Nernst equations have been developed based on the real stoichiometric relationship of biological nitrification and denitrification reactions. Instead of using the Nernst equation based on a one-to-one stoichiometric relation for the oxidizing and the reducing species, the basic Nernst equation is modified into slightly different forms. Each is suitable for simulating the redox potential (ORP) variation of a specific biological nitrification or denitrification process. Using the data published in the literature, the validity of these developed Nernst equations has been verified by close fits of the measured ORP data with the calculated ORP curve. The simulation results also indicate that if the biological process is simulated using an incorrect form of Nernst equation, the calculated ORP curve will not fit the measured data. Using these Nernst equations, the ORP value that corresponds to a predetermined degree of completion for the biochemical reaction can be calculated. Thus, these Nernst equations will enable a more efficient on-line control of the biological process.

  20. Plant redox proteomics

    DEFF Research Database (Denmark)

    Navrot, Nicolas; Finnie, Christine; Svensson, Birte

    2011-01-01

    PTMs in regulating enzymatic activities and controlling biological processes in plants. Notably, proteins controlling the cellular redox state, e.g. thioredoxin and glutaredoxin, appear to play dual roles to maintain oxidative stress resistance and regulate signal transduction pathways via redox PTMs......In common with other aerobic organisms, plants are exposed to reactive oxygen species resulting in formation of post-translational modifications related to protein oxidoreduction (redox PTMs) that may inflict oxidative protein damage. Accumulating evidence also underscores the importance of redox....... To get a comprehensive overview of these types of redox-regulated pathways there is therefore an emerging interest to monitor changes in redox PTMs on a proteome scale. Compared to some other PTMs, e.g. protein phosphorylation, redox PTMs have received less attention in plant proteome analysis, possibly...

  1. Impacts of shallow geothermal energy production on redox processes and microbial communities.

    Science.gov (United States)

    Bonte, Matthijs; Röling, Wilfred F M; Zaura, Egija; van der Wielen, Paul W J J; Stuyfzand, Pieter J; van Breukelen, Boris M

    2013-12-17

    Shallow geothermal systems are increasingly being used to store or harvest thermal energy for heating or cooling purposes. This technology causes temperature perturbations exceeding the natural variations in aquifers, which may impact groundwater quality. Here, we report the results of laboratory experiments on the effect of temperature variations (5-80 °C) on redox processes and associated microbial communities in anoxic unconsolidated subsurface sediments. Both hydrochemical and microbiological data showed that a temperature increase from 11 °C (in situ) to 25 °C caused a shift from iron-reducing to sulfate-reducing and methanogenic conditions. Bioenergetic calculations could explain this shift. A further temperature increase (>45 °C) resulted in the emergence of a thermophilic microbial community specialized in fermentation and sulfate reduction. Two distinct maxima in sulfate reduction rates, of similar orders of magnitude (5 × 10(-10) M s(-1)), were observed at 40 and 70 °C. Thermophilic sulfate reduction, however, had a higher activation energy (100-160 kJ mol(-1)) than mesophilic sulfate reduction (30-60 kJ mol(-1)), which might be due to a trade-off between enzyme stability and activity with thermostable enzymes being less efficient catalysts that require higher activation energies. These results reveal that while sulfate-reducing functionality can withstand a substantial temperature rise, other key biochemical processes appear more temperature sensitive.

  2. Microbial redox processes in deep subsurface environments and the potential application of (perchlorate in oil reservoirs

    Directory of Open Access Journals (Sweden)

    Martin G Liebensteiner

    2014-09-01

    Full Text Available The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese- and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (perchlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (perchlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (perchlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (metagenome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (perchlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (perchlorate for bioremediation, souring control and microbial enhanced oil recovery are addressed.

  3. The behaviour of long-lived redox sensitive radionuclides in soil-plant system during the process of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Semioshkina, N.; Staudt, C.; Kaiser, C. [Helmhotz Zetrum Muenchen (Germany); Proehl, G. [International Atomic Energy Agency - IAEA (International Atomic Energy Agency (IAEA)); Noseck, U.; Fahrenholz, C. [Gesellschaft fuer Anlagen- und Reaktorsicherheit - GRS (Germany)

    2014-07-01

    One important aspect of climate changes for the long-term safety assessment of radioactive waste repositories is its impact on exposure pathways for humans in the future, which are dependent on the environmental characteristics mentioned. It is conceivable that effects or processes occurring during climate changes lead to an increased accumulation and/or release of radionuclides in the biosphere resulting in higher doses compared to that calculated for discrete climate states. In order to shed light on this question key processes are identified which might lead to such an increased accumulation and/or release of radionuclides. The transition from one climate to another can cause changes in the physicochemical composition of radionuclides: some of them may become more available for plant uptake and due to this, their activity concentration in the plants increases. Other radionuclides maybe stronger bound to soil and their activity concentration in plants decreases. Such changes might also cause remobilization of radionuclides from localised areas with contaminated sediments, their re-suspension and transfer to the surrounding areas. A suitable illustration of the processes related to the changes of the redox potential is the examination of a dry lake or fen bed for agricultural purposes as pasture or ameliorated pasture. In these cases the accumulation of radionuclides in the lake or fen sediment is followed by their release and increasing mobility after agricultural processing of the dry bed of lake or fen. Ploughing of the soil leads to increased supply of oxygen to previous anoxic soil layers causing an increase in redox potential. The presented model describes a scenario, where the land is initially very humid and very low Eh-values cause high sorption and accumulation of radionuclides in soil particles. Then this land is dried out, the redox potential increases and redox sensitive radionuclides change their speciation and their behaviour. Such processes might

  4. Zirconolite glass-ceramics for plutonium immobilization: The effects of processing redox conditions on charge compensation and durability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au; Gregg, Daniel J.; Kong, Linggen; Jovanovich, Miodrag; Triani, Gerry

    2017-07-15

    Zirconolite glass-ceramic samples doped with plutonium have been prepared via hot isostatic pressing. The effects of processing redox and plutonium loadings on plutonium valences, the presence of cation vacancies, zirconolite phase compositions, microstructures and durability have been investigated. Either tetravalent or trivalent plutonium ions may be incorporated on the Ca-site of CaZrTi{sub 2}O{sub 7} zirconolite with the Ca-site cation vacancies and the incorporation of Al{sup 3+} ions on the Ti-site for charge compensation. Plutonium and gadolinium (as a neutron absorber) are predominantly partitioned in zirconolite phases leading to the formation of chemically durable glass-ceramics suitable for the immobilization of impure plutonium wastes arising from the nuclear fuel cycle. - Highlights: •Plutonium validations of zirconolite glass-ceramics. •Effects of processing redox and plutonium loading. •Zirconolite phase compositions and plutonium valences. •Cation vacancies and chemical durability.

  5. Utilization of carbohydrates by radiation processing

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Yoshii, F.

    2002-01-01

    Upgrading and utilization of carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated for recycling these bio-resources and reducing the environmental pollution. These carbohydrates were easily degraded by irradiation and various kinds of biological activities such as anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction, etc. were induced. On the other hand, some carbohydrate derivatives, carboxymethylcellulose and carboxymethylstarch, could be crosslinked under certain radiation condition and produce the biodegradable hydrogel for medical and agricultural use

  6. Utility decay rates of T1-weighted magnetic resonance imaging contrast based on redox-sensitive paramagnetic nitroxyl contrast agents

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichiro

    2009-01-01

    The availability and applicability of the combination of paramagnetic nitroxyl contrast agent and T 1 -weighted gradient echo (GE)-based dynamic magnetic resonance imaging (MRI) measurement for redox imaging are described. The time courses of T 1 -weighted GE MRI signal intensities according to first-order paramagnetic loss of a nitroxyl contrast agent were simulated for several experimental conditions. The apparent decay rate calculated based on decreasing T 1 -weighted MRI contrast (k MRI ) can show an approximate value of the original decay rate (k true ) discretionarily given for simulation with suitable experimental parameters. The difference between k MRI and k true can be sufficiently small under T 1 -weighted spoiled gradient echo (SPGR) scan conditions (repetition time=75 ms, echo time=3 ms, and flip angle=45deg), with a conventional redox-sensitive nitroxyl contrast agent, such as 4-hydroxy-2,2,6,6,-tetramethylpiperidine-N-oxyl (TEMPOL) and/or 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl (carbamoyl-PROXYL), and with intravenous (i.v.) doses of below 1.5 γmol/g body weight (b.w.) for mice. The results of this simulation suggest that the k MRI of nitroxyl contrast agents can be the primary index of redox status under biological conditions. (author)

  7. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Catherine R. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Hernández-Burgos, Kenneth [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Silberstein, Katharine E. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Rodríguez-Calero, Gabriel G. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Bisbey, Ryan P. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Abruña, Héctor D. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Dichtel, William R. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States

    2015-02-17

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

  8. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Catherine R.; Hernández-Burgos, Kenneth; Silberstein, Katharine E.; Rodríguez-Calero, Gabriel G.; Bisbey, Ryan P.; Abruña, Héctor D.; Dichtel, William R.

    2015-03-24

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

  9. Process heat utilization from HTGR type reactors

    International Nuclear Information System (INIS)

    1985-01-01

    Work performed by the Special Research Unit 163 to supplement industrial development projects in the subject field was devoted to specific problems. The major goal was to analyse available industrial developments for potential improvements in terms of process design and engineering in line with the latest know-how, in order to enhance the economic efficiency of available techniques and methods. So research into coal gasification by nuclear processes concentrated on the potentials of a method allowing significantly higher gasification temperatures due to the use of a so-called high-temperature heat pump operating on the basis of the gas turbine principle. Exergetic analyses were made for the processes using nuclear heat in order to optimise their energy consumption. Major steps in these processes are gas purification and gas separation. Especially for the latter step, novel techniques were studied and tested on lab scale, results being used for development towards technical scale application. One novel technique is a method for separating hydrogen from methane and carbon monoxide by means of a gas turbine process step, another research task resulted in a novel absorption technique in the liquid phase. Further, alternative solutions were studied which, other than the conventional gasification processes, comprise electrochemical and other chemical process steps. The important research topic concerned with the kinetics of coal gasification was made part of a special research program on the level of fundamental research. (orig./GL) [de

  10. CO2 utilization: Developments in conversion processes

    Directory of Open Access Journals (Sweden)

    Erdogan Alper

    2017-03-01

    The potential utilization of CO2, captured at power plants, should also been taken into consideration for sustainability. This CO2 source, which is potentially a raw material for the chemical industry, will be available at sufficient quality and at gigantic quantity upon realization of on-going tangible capture projects. Products resulting from carboxylation reactions are obvious conversions. In addition, provided that enough supply of energy from non-fossil resources, such as solar [1], is ensured, CO2 reduction reactions can produce several valuable commodity chemicals including multi-carbon compounds, such as ethylene and acrylic acid, in addition to C1 chemicals and polymers. Presently, there are only few developing technologies which can find industrial applications. Therefore, there is a need for concerted research in order to assess the viability of these promising exploratory technologies rationally.

  11. PROCESSING AND UTILIZATION OF AFRICAN LOCUST BEAN ...

    African Journals Online (AJOL)

    User

    (2012) P. biglobosa has important socio-economic and cultural values .... It is a common knowledge that Parkia bean processing is a chain activity which is ... that P. biglobosa trees are not productive even when found in the study area.

  12. Improving engineering performance by utilizing process indicators

    International Nuclear Information System (INIS)

    Roberts, T.E.

    1992-01-01

    The purpose of the work discussed in this paper was to develop engineering performance indicators used to facilitate improvement to the technical quality, cost-effectiveness, and delivery of engineering products and service. This work was specifically tailored for engineering support products and service associated with operating Florida Power and Light Company (FP and L) nuclear plants. The engineering process for the development of plant change packages was reviewed to identify critical in-process activities. Because each engineering project usually deals with a specific component or plant system, the different tasks are usually technically unique and of varying magnitudes. Although each engineering product may employ different analytical techniques or industry code requirements, several activities in documenting the engineering design process are generic. The quality of performance in these activities can be monitored analogously to the steps in a manufacturing process. This concept builds quality concepts into the package in lieu of inspecting package quality at the end of the process. The work has resulted in a valuable self-assessment tool that serves as a basis for engineering process improvements. The indicators are published in a semi-yearly performance report for FP and L contractors as well as FP and L in-house engineering work. Contracts have been set up to base fees on meeting targets established for the performance report. The ability to meet performance targets continues to improve

  13. Fluorescence correlation spectroscopy on electron transfer reactions : probing inter- and intramolecular redox processes

    NARCIS (Netherlands)

    Sen, S.

    2016-01-01

    We developed a new FRET-based technique, “Fluredox”, which allows fluorescence readout of the redox state of oxido-reductases at single molecule level. Commercially available red-absorbing fluorophore ATTO655 was selected for labeling Azurin, a small blue mononuclear copper protein. Single molecule

  14. Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams

    Science.gov (United States)

    Briggs, Martin A.; Lautz, Laura; Hare, Danielle K.

    2013-01-01

    Abstract. Small dams enhance the development of patchy microenvironments along stream corridors by trapping sediment and creating complex streambed morphologies. This patchiness drives intricate hyporheic flux patterns that govern the exchange of O2 and redox-sensitive solutes between the water column and the stream bed. We used multiple tracer techniques, naturally occurring and injected, to evaluate hyporheic flow dynamics and associated biogeochemical cycling and microbial reactivity around 2 beaver dams in Wyoming (USA). High-resolution fiber-optic distributed temperature sensing was used to collect temperature data over 9 vertical streambed profiles and to generate comprehensive vertical flux maps using 1-dimensional (1-D) heat-transport modeling. Coincident with these locations, vertical profiles of hyporheic water were collected every week and analyzed for dissolved O2, pH, dissolved organic C, and several conservative and redox-sensitive solutes. In addition, hyporheic and net stream aerobic microbial reactivity were analyzed with a constant-rate injection of the biologically sensitive resazurin (Raz) smart tracer. The combined results revealed a heterogeneous system with rates of downwelling hyporheic flow organized by morphologic unit and tightly coupled to the redox conditions of the subsurface. Principal component analysis was used to summarize the variability of all redox-sensitive species, and results indicated that hyporheic water varied from oxic-stream-like to anoxic-reduced in direct response to the hydrodynamic conditions and associated residence times. The anaerobic transition threshold predicted by the mean O2 Damko

  15. Nicotinamide-NAD sequence: redox process and related behavior, behavior and properties of intermediate and final products

    International Nuclear Information System (INIS)

    Elving, P.J.; Schmakel, C.O.; Santhanam, K.S.V.

    1976-01-01

    Illustrations of the application of analytical chemical techniques to the study of chemical phenomena are given. In particular, electrochemical techniques and methodology and, to a lesser extent, spectrophotometry were used to investigate the solution behavior, adsorption, redox processes including coupled chemical reactions, and allied aspects of biologically significant compounds and of their intermediate and final redox products, e.g., the behavior of the free radicals produced by initial one-electron processes. This approach is illustrated by the consideration of the behavior in aqueous and nonaqueous media of a sequence of compounds ranging from nicotinamide (3-carbamoylpyridine) to NAD + and NADP + ; the latter compounds function as coenzymes for the pyridinoproteins which are principal components in the Krebs citric acid cycle and in the electron transport chain in biological redox reactions. The discussion is presented under the following section headings: interpretation of electrochemical behavior; mechanistic patterns; kinetic aspects of charge-transfer and chemical reactions; correlation with theoretically calculated parameters; and, mechanisms of biological oxidation-reduction reactions. The use of pulse radiolysis, chronopotentiometric, and cyclic voltammetric methods in studies on free radical dimerization rates is reviewed in the discussion of the kinetic aspects of charge-transfer and chemical reactions. (188 references)

  16. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    Energy Technology Data Exchange (ETDEWEB)

    D.O. Hitzman; A.K. Stepp; D.M. Dennis; L.R. Graumann

    2003-09-01

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.

  17. Impact of pH on hydrogen oxidizing redox processes in aquifers due to gas intrusions

    Science.gov (United States)

    Metzgen, Adrian; Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2017-04-01

    (first order rate constants between 0.029 and 0.036 1/h). Between pH 7 and 8, acetogenesis showed a linear trend (zeroth order rates between 3 and 5 µM/h) whereas formate production became the main process (zeroth order rates between 38 to 197 µM/h) together with methanogenesis as a minor process. The results indicated a strong dependency of the biogeochemical hydrogenotrophic redox reactions on the pH milieu. Thus, pH buffers such as dissolved or solid phase carbonates should be taken into account when predicting effects a hydrogen leakage may have on shallow aquifers. Additionally, parameters derived from the observed processes and their rates allow the design of a process based numerical model simulating a hydrogen intrusion into a shallow aquifer. Consequently the presented outcomes allow an exemplary quantification of the resulting geochemical effects. This study was carried out within the ANGUS+ project and was funded by the German Federal Ministry of Education and Research (BMBF) energy storage funding initiative.

  18. Do social utility judgments influence attentional processing?

    Science.gov (United States)

    Shore, Danielle M; Heerey, Erin A

    2013-10-01

    Research shows that social judgments influence decision-making in social environments. For example, judgments about an interaction partners' trustworthiness affect a variety of social behaviors and decisions. One mechanism by which social judgments may influence social decisions is by biasing the automatic allocation of attention toward certain social partners, thereby shaping the information people acquire. Using an attentional blink paradigm, we investigate how trustworthiness judgments alter the allocation of attention to social stimuli in a set of two experiments. The first experiment investigates trustworthiness judgments based solely on a social partner's facial appearance. The second experiment examines the effect of trustworthiness judgments based on experienced behavior. In the first, strong appearance-based judgments (positive and negative) enhanced stimulus recognizability but did not alter the size of the attentional blink, suggesting that appearance-based social judgments enhance face memory but do not affect pre-attentive processing. However, in the second experiment, in which judgments were based on behavioral experience rather than appearance, positive judgments enhanced pre-attentive processing of trustworthy faces. This suggests that a stimulus's potential benefits, rather than its disadvantages, shape the automatic distribution of attentional resources. These results have implications for understanding how appearance- and behavior-based social cues shape attention distribution in social environments. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  20. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  1. Utility-based early modulation of processing distracting stimulus information.

    Science.gov (United States)

    Wendt, Mike; Luna-Rodriguez, Aquiles; Jacobsen, Thomas

    2014-12-10

    Humans are selective information processors who efficiently prevent goal-inappropriate stimulus information to gain control over their actions. Nonetheless, stimuli, which are both unnecessary for solving a current task and liable to cue an incorrect response (i.e., "distractors"), frequently modulate task performance, even when consistently paired with a physical feature that makes them easily discernible from target stimuli. Current models of cognitive control assume adjustment of the processing of distractor information based on the overall distractor utility (e.g., predictive value regarding the appropriate response, likelihood to elicit conflict with target processing). Although studies on distractor interference have supported the notion of utility-based processing adjustment, previous evidence is inconclusive regarding the specificity of this adjustment for distractor information and the stage(s) of processing affected. To assess the processing of distractors during sensory-perceptual phases we applied EEG recording in a stimulus identification task, involving successive distractor-target presentation, and manipulated the overall distractor utility. Behavioral measures replicated previously found utility modulations of distractor interference. Crucially, distractor-evoked visual potentials (i.e., posterior N1) were more pronounced in high-utility than low-utility conditions. This effect generalized to distractors unrelated to the utility manipulation, providing evidence for item-unspecific adjustment of early distractor processing to the experienced utility of distractor information. Copyright © 2014 the authors 0270-6474/14/3416720-06$15.00/0.

  2. Redox Regulation of Mitochondrial Function

    Science.gov (United States)

    Handy, Diane E.

    2012-01-01

    Abstract Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function. Antioxid. Redox Signal. 16, 1323–1367. PMID:22146081

  3. Redox fronts

    International Nuclear Information System (INIS)

    Chapman, N.; McKinley, I.; Shea, M.; Smellie, J.

    1993-01-01

    This article describes the investigations of redox fronts performed at the Osamu Utsumi mine. Results obtained by modelling groups on the rate of movement of the redox fronts and on the chemical reactions involved are discussed. Some of the most important rockwater interactions which occur at redox fronts can be modelled reasonably well but the complex redox chemistry of elements like sulphur is poorly simulated. The observed enrichment of many trace elements close to the redox fronts could be of significance for high-level waste repositories, but cannot be quantified by existing models. (author) 6 figs., 1 tab

  4. Redox Flow Batteries, a Review

    Energy Technology Data Exchange (ETDEWEB)

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  5. Examination and Mitigation of Electron Interception Processes in Dye-sensitized Solar Cells through Redox Shuttle and Photoelectrode Modification

    Science.gov (United States)

    Hoffeditz, William Lawrence

    With the dual challenges of meeting global energy demand and mitigating anthropogenic climate change, significant effort is being applied to generating power from renewable sources. The dye-sensitized solar cell (DSC) is a photovoltaic technology capable of generating electricity from sunlight, but suffers losses in efficiency due to deleterious electron transfer processes. Controlling these processes is essential if DSCs are to continue to advance, and this dissertation focuses on isolation, interrogation, and mitigation of these processes via controllable inorganic redox/coordination chemistry and atomic layer deposition (ALD). The redox shuttle is often the subject of innovation in DSCs, the goal being to increase obtainable photovoltage without sacrificing photocurrent. A copper redox shuttle with a favorable (II/I) redox potential for DSC use and intriguing inner-sphere reorganization energy was investigated. The shuttle completely replaces its tetradentate coordinating ligand upon oxidation with multiple pyridine molecules. This new species displays markedly slower electron interception, necessitating fabrication of a new counter electrode in order for the shuttle to function. Upon reduction, the tetradentate ligand re-coordinates, creating a dual-species shuttle that outperforms either species as a Cu(II/I) shuttle in isolation. Photoelectrode modification is also the subject of innovation in DSCs. ALD is ideally suited for this type of innovation as it can coat high aspect surfaces with metal-oxide films of uniform thickness. The ALD post-treatment technique is described and used to deposit Al2O3 around a TiO2 adsorbed zinc-porphyrin dye. This technique is shown to prevent dye degradation from ambient air and/or light. Additionally, the architecture allows the study of dye-influenced electron interception processes. It was found that the presence of dye increased interception, which was attributed to dye-mediated electron hopping and/or superexchange

  6. Highly catalytic carbon nanotube counter electrode on plastic for dye solar cells utilizing cobalt-based redox mediator

    International Nuclear Information System (INIS)

    Aitola, Kerttu; Halme, Janne; Feldt, Sandra; Lohse, Peter; Borghei, Maryam; Kaskela, Antti; Nasibulin, Albert G.; Kauppinen, Esko I.; Lund, Peter D.; Boschloo, Gerrit; Hagfeldt, Anders

    2013-01-01

    A flexible, slightly transparent and metal-free random network of single-walled carbon nanotubes (SWCNTs) on plain polyethylene terephthalate (PET) plastic substrate outperformed platinum on conductive glass and on plastic as the counter electrode (CE) of a dye solar cell employing a Co(II/III)tris(2,2′-bipyridyl) complex redox mediator in 3-methoxypropionitrile solvent. The CE charge-transfer resistance of the SWCNT film was 0.60 Ω cm 2 , 4.0 Ω cm 2 for sputtered platinum on indium tin oxide-PET substrate and 1.7 Ω cm 2 for thermally deposited Pt on fluorine-doped tin oxide glass, respectively. The solar cell efficiencies were in the same range, thus proving that an entirely carbon-based SWCNT film on plastic is as good CE candidate for the Co electrolyte

  7. Modelling long-term redox processes and oxygen scavenging in fractured crystalline rocks

    International Nuclear Information System (INIS)

    Sidborn, Magnus

    2007-10-01

    Advanced plans for the construction of a deep geological repository for highly radioactive wastes from nuclear power plants have evolved during the past decades in many countries including Sweden. As part of the Swedish concept, the waste is to be encapsulated in canisters surrounded by low permeability backfill material. The copper canisters will be deposited at around 500 metres depth in granitic rock, which acts as a natural barrier for the transport of radionuclides to the ground surface. These natural and engineered barriers are chosen and designed to ensure the safety of the repository over hundred of thousands of years. One issue of interest for the safety assessment of such a repository is the redox evolution over long times. An oxidising environment would enhance the corrosion of the copper canisters, and increases the mobility of any released radionuclides. In the first part of the present thesis, the ability of the host rock to ensure a reducing environment at repository depth over long times was studied. A model framework was developed with the aim to capture all processes that are deemed to be important for the scavenging of intruding oxygen from the ground surface over long times. Simplifications allowing for analytical solutions were introduced for transparency reasons so that evaluation of results is straight-forward, and so that uncertain parameter values easily can be adjusted. More complex systems were solved numerically for cases when the analytical simplifications are not applicable, and to validate the simplifications underlying the analytical solutions. Results were presented for prevailing present day conditions as well as for conditions deemed to be likely during the melting phase of a period of glaciation. It was shown that the hydraulic properties have a great influence on the oxygen intrusion length downstream along flow-paths in the rock. An important parameter that determines the extent of interaction between the dissolved oxygen and

  8. Processing and utilization of soyabean in Toro local government ...

    African Journals Online (AJOL)

    Processing and utilization of soyabean in Toro local government area of Bauchi state, Nigeria. ... Open Access DOWNLOAD FULL TEXT ... from the farmers on their socio-economic characteristics, information sources and adoption of soybean ...

  9. The roles of anion and solvent transport during the redox switching process at a poly(butyl viologen) film studied by an EQCM

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chih-Yu.; Liao, Chun-Hao [Department of Chemical Engineering, National Taiwan University, Taipei 10617 (China); Ho, Kuo-Chuan [Department of Chemical Engineering, National Taiwan University, Taipei 10617 (China); Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617 (China)

    2008-02-15

    In this study, three electrolytes (KCl, LiCl, and KNO{sub 3}, each at 0.5 M in aqueous solution) were chosen to study the ion and solvent effect on the redox performance of poly(butyl viologen) (PBV) thin-films between its di-cation and radical-cation state, which is referred as its first redox couple. Before considering the role of ionic transport on the redox process, the exchange between ferrocyanide and anion should be completed. Since the deposition solution of PBV contains potassium ferrocyanide, the residual ferrocyanides inside the films would be exchanged by smaller anions from the bulk solution during the redox reaction of PBV. From cyclic voltammetry (CV) and electrochemical quartz crystal microbalance (EQCM) results, the exchange was almost complete around 50 cycles when scanning the potential within its first redox range. After completion of the exchange process, the transfer would reach a steady state. At 50 cycles, the EQCM results suggested that the transport involves anions and water only for both being extracted upon reduction and being inserted upon oxidation. Therefore, we could obtain the molar fluxes of Cl{sup -}, NO{sub 3}{sup -}, and water. Besides, the average numbers of accompanying water were calculated to be about 24.8 per Cl{sup -} and 14.2 per NO{sub 3}{sup -} upon redox switching process. The instantaneous water to anion molar ratios at any potential were also obtained for Cl{sup -} and NO{sub 3}{sup -}. (author)

  10. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    Energy Technology Data Exchange (ETDEWEB)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang [Univ. Da Coruna (Spain)

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  11. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    International Nuclear Information System (INIS)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  12. Photolytic and radiolytic studies of redox processes in aqueous solutions of acridine yellow

    International Nuclear Information System (INIS)

    Micic, O.I.; Nenadovic, M.T.

    1981-01-01

    Irradiation by visible light of an aqueous solution containing acridine yellow as a sensitizer and EDTA or cysteine as an electron donor leads to the formation of reduced species which can later reduce several different electron acceptors. Methyl viologen, europium(III) salicylate, europium(III) EDTA complex or vanadium(III) salicylate were used as electron acceptors. In the presence of a catalyst reduction of water is accompanied by the evolution of hydrogen. The kinetics and mechanism of redox reactions occurring in such a system have been explored by pulse radiolysis. Optimum conditions for water reduction under continuous illumination are analysed and implications for an energy conversion system discussed. (author)

  13. The Use of Redox Mediators for Enhancing Utilization of Li2S Cathodes for Advanced Li-S Battery Systems.

    Science.gov (United States)

    Meini, Stefano; Elazari, Ran; Rosenman, Ariel; Garsuch, Arnd; Aurbach, Doron

    2014-03-06

    The development of Li2S electrodes is a crucial step toward industrial manufacturing of Li-S batteries, a promising alternative to Li-ion batteries due to their projected two times higher specific capacity. However, the high voltages needed to activate Li2S electrodes, and the consequent electrolyte solution degradation, represent the main challenge. We present a novel concept that could make feasible the widespread application of Li2S electrodes for Li-S cell assembly. In this concept, the addition of redox mediators as additives to the standard electrolyte solution allows us to recover most of Li2S theoretical capacity in the activation cycle at potentials as low as 2.9 VLi, substantially lower than the typical potentials >4 VLi needed with standard electrolyte solution. Those novel additives permit us to preserve the electrolyte solution from being degraded, allowing us to achieve capacity as high as 500 mAhg(-1)Li2S after 150 cycles with no major structural optimization of the electrodes.

  14. Performance enhancement in vanadium redox flow battery using platinum-based electrocatalyst synthesized by polyol process

    International Nuclear Information System (INIS)

    Jeong, Sanghyun; Kim, Sunhoe; Kwon, Yongchai

    2013-01-01

    Sluggish reaction rate of [VO] 2+ /[VO 2 ] + redox couple is an obstacle to be addressed in vanadium redox flow battery (VRFB). To improve the slow reaction rate, Pt/C catalyst synthesized by polyol method is suggested. Its catalytic activity, reaction reversibility and charge–discharge performance are evaluated by half cell and single cell tests, while its crystal structure, particle size and particle distribution are measured by XRD and TEM. The XRD and TEM measurements show the polyol Pt/C catalyst has larger electrochemically active surface (EAS) area and smaller particle size than commercial Pt/C catalyst. When catalytic activities of all the catalysts are estimated, the Pt-included catalysts demonstrate high peak current ratio, small peak potential difference and high electron transfer rate constant, confirming that their catalytic activity and reaction reversibility are excellent. In charge–discharge performance tests, the catalysts indicate high efficiencies as well as low overpotential and internal resistance. Excellent performances of the Pt-included catalysts are attributed to positively charged Pts that serve as active sites for activating [VO] 2+ /[VO 2 ] + reaction. Indeed, adoption of the Pt-included catalysts, especially, use of the polyol Pt/C consisting of uniform and small particles helps improve performance of VRFB

  15. Benthic flux of dissolved organic matter from lake sediment at different redox conditions and the possible effects of biogeochemical processes.

    Science.gov (United States)

    Yang, Liyang; Choi, Jung Hyun; Hur, Jin

    2014-09-15

    The benthic fluxes of dissolved organic carbon (DOC), chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) were studied for the sediment from an artificial lake, based on laboratory benthic chamber experiments. Conservative estimates for the benthic flux of DOC were 71 ± 142 and 51 ± 101 mg m(-2) day(-1) at hypoxic and oxic conditions, respectively. Two humic-like (C1 and C2), one tryptophan-like (C3), and one microbial humic-like (C4) components were identified from the samples using fluorescence excitation emission matrices and parallel factor analysis (EEM-PARAFAC). During the incubation period, C3 was removed while C4 was accumulated in the overlying water with no significant difference in the trends between the redox conditions. The humification index (HIX) increased with time. The combined results for C3, C4 and HIX suggested that microbial transformation may be an important process affecting the flux behaviors of DOM. In contrast, the overall accumulations of CDOM, C1, and C2 in the overlying water occurred only for the hypoxic condition, which was possibly explained by their enhanced photo-degradation and sorption to redox-sensitive minerals under the oxic condition. Our study demonstrated significant benthic flux of DOM in lake sediment and also the possible involvement of biogeochemical transformation in the processes, providing insight into carbon cycling in inland waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Processes Utilized by High School Students Reading Scientific Text

    Science.gov (United States)

    Clinger, Alicia Farr

    2014-01-01

    In response to an increased emphasis on disciplinary literacy in the secondary science classroom, an investigation of the literacy processes utilized by high school students while reading scientific text was undertaken. A think-aloud protocol was implemented to collect data on the processes students used when not prompted while reading a magazine…

  17. PNRA Process for Utilizing Experience Feedback for Enhancing Nuclear Safety

    International Nuclear Information System (INIS)

    Shah, Z.H.

    2016-01-01

    One of the elements essential for any organization to become a learning organization is to learn from its own and others experience. The importance of utilizing experience feedback for enhancing operational safety is highlighted in nuclear industry again and again and this has resulted in establishment of several national and international forums. In addition, IAEA action plan on nuclear safety issued after Fukushima accident further highlighted the importance of experience sharing among nuclear community to enhance global nuclear safety regime. PNRA utilizes operating experience feedback gathered through different sources in order to improve its regulatory processes. During the review of licensing submissions, special emphasis is given to utilize the lessons learnt from experience feedback relating to nuclear industry within and outside the country. This emphasis has gradually resulted in various safety improvements in the facilities and processes. Accordingly, PNRA has developed a systematic process of evaluation of international operating experience feedback with the aim to create safety conscious approach. This process includes collecting information from different international forums such as IAEA, regulatory bodies of other countries and useful feedback of past accidents followed by its screening, evaluation and suggesting recommendations both for PNRA and its licensees. As a result of this process, several improvements concerning regulatory inspection plans of PNRA as well as in regulatory decision making and operational practices of licensees have been highlighted. This paper will present PNRA approach for utilizing experience feedback in its regulatory processes for enhancing / improving nuclear safety. (author)

  18. Utilization of protein-rich residues in biotechnological processes.

    Science.gov (United States)

    Pleissner, Daniel; Venus, Joachim

    2016-03-01

    A drawback of biotechnological processes, where microorganisms convert biomass constituents, such as starch, cellulose, hemicelluloses, lipids, and proteins, into wanted products, is the economic feasibility. Particularly the cost of nitrogen sources in biotechnological processes can make up a large fraction of total process expenses. To further develop the bioeconomy, it is of considerable interest to substitute cost-intensive by inexpensive nitrogen sources. The aim of this mini-review was to provide a comprehensive insight of utilization methods of protein-rich residues, such as fish waste, green biomass, hairs, and food waste. The methods described include (i) production of enzymes, (ii) recovery of bioactive compounds, and/or (iii) usage as nitrogen source for microorganisms in biotechnological processes. In this aspect, the utilization of protein-rich residues, which are conventionally considered as waste, allows the development of value-adding processes for the production of bioactive compounds, biomolecules, chemicals, and materials.

  19. Redox-capacitor to connect electrochemistry to redox-biology.

    Science.gov (United States)

    Kim, Eunkyoung; Leverage, W Taylor; Liu, Yi; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-01-07

    It is well-established that redox-reactions are integral to biology for energy harvesting (oxidative phosphorylation), immune defense (oxidative burst) and drug metabolism (phase I reactions), yet there is emerging evidence that redox may play broader roles in biology (e.g., redox signaling). A critical challenge is the need for tools that can probe biologically-relevant redox interactions simply, rapidly and without the need for a comprehensive suite of analytical methods. We propose that electrochemistry may provide such a tool. In this tutorial review, we describe recent studies with a redox-capacitor film that can serve as a bio-electrode interface that can accept, store and donate electrons from mediators commonly used in electrochemistry and also in biology. Specifically, we (i) describe the fabrication of this redox-capacitor from catechols and the polysaccharide chitosan, (ii) discuss the mechanistic basis for electron exchange, (iii) illustrate the properties of this redox-capacitor and its capabilities for promoting redox-communication between biology and electrodes, and (iv) suggest the potential for enlisting signal processing strategies to "extract" redox information. We believe these initial studies indicate broad possibilities for enlisting electrochemistry and signal processing to acquire "systems level" redox information from biology.

  20. Redox Interactions between Iron and Carbon in Planetary Mantles: Implications for Degassing and Melting Processes

    Science.gov (United States)

    Martin, A.; Righter, K.

    2009-01-01

    Carbon stability in planetary mantles has been studied by numerous authors because it is thought to be the source of C-bearing atmospheres and of C-rich lavas observed at the planetary surface. In the Earth, carbonaceous peridotites and eclogites compositions have been experimentally studied at mantle conditions [1] [2] [3]. [4] showed that the fO2 variations observed in martian meteorites can be explained by polybaric graphite-CO-CO2 equilibria in the Martian mantle. Based on thermodynamic calculations [4] and [5] inferred that the stable form of carbon in the source regions of the Martian basalts should be graphite (and/or diamond), and equilibrium with melts would be a source of CO2 for the martian atmosphere. Considering the high content of iron in the Martian mantle (approx.18.0 wt% FeO; [6]), compared to Earth s mantle (8.0 wt% FeO; [7]) Fe/C redox interactions should be studied in more detail.

  1. The effect of picosecond laser pulses on redox-dependent processes in mice red blood cells studied in vivo

    Science.gov (United States)

    Voronova, Olga; Gening, Tatyana; Abakumova, Tatyana; Sysolyatin, Aleksey; Zolotovskiy, Igor; Antoneeva, Inna; Ostatochnikov, Vladimir; Gening, Snezhanna

    2014-02-01

    The study highlights the effect of different modes of in vivo laser irradiation of mice using a PFL8LA laser with λ = 1560 nm, pulse duration of 1,4•10-12 s, peak power of 3,72•103 W and average output power of 20•10-3 W on the lipid peroxidation parameters: conjugated dienes, ketodienes and conjugated trienes, malondialdehyde, Schiff bases and the activity of antioxidant enzymes - catalase, glutathione -S-transferase and superoxide dismutase in erythrocytes and plasma of mice. Two groups of mice received a total dose of 3.8 J/cm2 per group, but the 1st group was irradiated only once, while the 2nd - four times. Significant differences in the parameters of the 1st and 2nd groups indicate different effects of the irradiation modes on redox-dependent processes in red blood cells of mice.

  2. Redox process at solid-liquid interfaces: studies with thin layers of green rusts electrodeposited on inert substrates

    International Nuclear Information System (INIS)

    Peulon, S.; Taghdai, Y.; Mercier, F.; Barre, N.; Legrand, L.; Chauss, A.

    2005-01-01

    Full text of publication follows: The redox reactions which can occur between radioelements and natural phases in the environment are taken still little into account although their importance is established on natural sites; the consequences are significant since they can modify radically the behaviour of the species by increasing or decreasing their migration. The iron compounds are very implicated in these redox processes because iron is one of the most abundant element on earth; moreover, it is also present in the containers used for the storage of the nuclear waste. We exhibited in previous works that electrochemistry is a convenient way to generate the main iron oxidation compounds as thin layers on different inert substrates. The electrochemical behaviour of these deposits that are adherent, homogeneous and well crystallized [1-3], was investigated with the principle advantage that iron metal and its reactivity is eliminate. Moreover, they could be analysed directly by techniques like IRRAS, XRD, SEM, EDS and XPS without any preparation. In the present study, we develop an original way to investigate redox processes at solid-liquid interfaces based on the utilisation of these thin layers; the samples are more commonly powders and/or pieces of corroded steel in the literature. Results obtained with two different systems, chromate and uranyl ions, in interaction with thin layers of sulfated green rusts are presented. Green rusts is chosen because it is a mixed Fe(II-III) compound which could be formed in anoxic conditions like in the case of the storage of the nuclear waste. After various contact times with the solutions containing the reactive species, the thin layers are characterised by different ex-situ methods. The results show clearly the oxidation of the green rust into a Fe(III) compound and the formation of a new solid phase on the electrode due to the reduction and the precipitation of the reactive species present initially in solution. Because thin

  3. Deep groundwater redox reactions in the Palmottu uranium deposit: The role of uranium and iron in these processes

    International Nuclear Information System (INIS)

    Bruno, J.; Cera, E.; Duro, L.; Ahonen, L.

    1996-12-01

    The reduction oxidation properties of the deep bedrock and groundwater are important geochemical factors with respect to the chemical stability of the multibarrier system, which isolates the disposed nuclear fuel from biosphere. In the report are described the results of the redox experiments carried out in the field using the natural groundwaters of Palmottu, in Nummi-Pusula, Finland. The experiments include (1) measurements of natural water redox potential values during four to eight hours continuous pumping; (2) monitoring of the redox-potential response to an artificial change of pH of the groundwater. Separate tests were made in iron and uranium-rich groundwaters, respectively. The data of the field experiments were used in the redox-modelling of the iron and uranium systems. In accordance with earlier knowledge, it was showed that dissolved iron is an important redox electrolyte in natural waters, at least at concentration levels of milligrams per liter. However, a striking observation was that in the absence of dissolved iron dissolved uranium (in concentrations of about 200 nM or more) seems to be able to give nernstian response on platinum electrode in acid/base titrations. The effective redox properties of the bedrock-groundwater system depend on the availability and reactivity of solid phases able to exchange electrons with dissolved redox electrolytes. The present results indicate that, in the bedrock/groundwater system of the Palmottu uranium mineralization, uranium minerals are important redox buffers. (orig.) (refs.)

  4. Monitoring the chemical nature of the carbon pool of Louisiana wetland soils undergoing erosion: carbon speciation and redox processes

    Science.gov (United States)

    Haywood, B.; Cook, R. L.; Hayes, M. P.; White, J. R.

    2017-12-01

    Wetlands account for approximately one third of all the soil carbon on the planet; however, due to erosion caused by a range of factors, including sea level rising, they are also some of the most vulnerable carbon pools. Small changes within this sequestered carbon pool can have a large impact on atmospheric CO2 levels. Thus, it is essential to understand how this sequestered carbon reacts to wetland loss in order to gain deeper insight into the global carbon cycle. In the study to be presented, Barataria Bay, Louisiana, USA is used as a model system for wetland loss. A sampling site and sampling grid has been established, and consists of three transects on and from an individual island. Each transect has five different distances ranging from 2 m inland to 8 m outland (into the water). At each of these different distances, depth profiles from 0 to 100 cm for inland samples, and 0-70 cm for submerged samples, were collected in order to identify spatial trends not only from inland to submerged, but also through the depth of the soil profile. Three types of samples were collected, namely water, pore water, and soil samples, with the latter being obtained from the combined collection of water and core samples. Samples have undergone spectroscopic characterizing including UV/Vis, fluorescence (excitation emission matrices, EEMs, and parallel factor, PARAFAC, analysis of the EEMs), nuclear magnetic resonance (NMR, solid state 13C), and electron pair resonance (EPR) spectroscopy in concert with inductively coupled plasma atomic emission spectroscopy to monitor the initial state of carbon speciation as well as redox processes. The data are used to establish a starting point on which to monitor changes within the carbon pool as the sampling site experience erosion over the next few years. The discussion will focus on the lability of different carbon pools and the potential lability-inducing mechanisms as well as the initial carbon speciation and redox state of the sampling

  5. Utilization of process TEG for fabrication of HTS circuits

    International Nuclear Information System (INIS)

    Hato, T.; Okada, Y.; Maruyama, M.; Suzuki, H.; Wakana, H.; Adachi, S.; Kawabe, U.; Tanabe, K.

    2006-01-01

    We improved the fabrication process of high-temperature superconducting (HTS) sampler circuits with multilayer structures by utilizing a test elements group (TEG). Among a lot of difficulties in the HTS circuit fabrication process, loss of oxygen is one of the most significant problems. Since the film transition temperature (T c ) has a strong relationship with the resistance at room temperature, we fabricated a test pattern on the same wafer of the circuits and measured the resistance at room temperature by using a prober to estimate the T c of each layer. By introducing the measurement of the normal resistance after each process, we found better process conditions without a T c drop. Moreover, we constructed a low-temperature probing system, in which we can measure the junction TEG. The system enabled feedback of the fabrication condition soon after the junction process. The utilization of the process TEG contributed to reproducible fabrication of HTS circuits and that is a promising advance of the HTS circuit technology

  6. Successful process management for public utilities; Erfolgreiches Prozessmanagement fuer Stadtwerke

    Energy Technology Data Exchange (ETDEWEB)

    Knipprath, Daniel [projekt:unternehmensberatungsgesellschaft mbH, Muenchen (Germany); Schaefer, Anke [Dr. Schaefer PR- und Strategieberatung, Rostock (Germany)

    2011-06-15

    As a result of regulatory cuts in their revenue structure, public utilities are increasingly compelled to improve their cost efficiency. Furthermore, they have to deal with altered framework conditions of energy procurement as well as the necessity of sustainable customer loyalty management. The example of a regional supplier is used here to show how goal-oriented process management can contribute to securing a sustainable, promising position in the market.

  7. National need for utilizing nuclear energy for process heat generation

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1984-01-01

    Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280 0 C, LMRs up to 540 0 C, and GCRs up to 950 0 C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized

  8. Impact of HMO ownership on management processes and utilization outcomes.

    Science.gov (United States)

    Ahern, M; Molinari, C

    2001-05-01

    To examine the effects of health maintenance organization (HMO) ownership characteristics on selected utilization outcomes and management processes affecting utilization. We used 1995 HMO data from the American Association of Health Plans. Using regression analysis, we examined the relation between HMO utilization (hospital discharges, days, and average length of stay; cardiac catheterization procedures; and average cost of outpatient prescriptions) and the structural characteristics of HMOs: ownership type (insurance company, hospital, physician, independent, and national managed care company), HMO size, for-profit status, model type, geographic region, and payer mix. HMO ownership type is significantly associated with medical management processes, including risk sharing by providers, risk sharing by consumers, and other management strategies. Relative to hospital-owned HMOs, insurance company-owned HMOs have fewer hospital discharges, fewer hospital days, and longer lengths of stay. National managed care organization-owned HMOs have fewer cardiac catheterizations and lower average outpatient prescription costs. Independently owned HMOs have more cardiac catheterizations. For-profit HMOs have lower prescription costs. Relative to hospital-owned HMOs, insurance company-owned HMOs are more likely to use hospital risk sharing and provider capitation and less likely to use out-of-pocket payments for hospital use and a closed formulary. National managed care organization-owned HMOs are less likely to use provider capitation, out-of-pocket payments for hospital use, catastrophic case management, and hospital risk sharing. Physician-hospital-owned HMOs are less likely to use catastrophic case management. For-profit HMOs are more likely to use hospital risk sharing and catastrophic case management. HMO ownership type affects utilization outcomes and management strategies.

  9. Theoretical and experimental study of redox processes combined with adsorption phenomena under conditions of square-wave voltammetry

    OpenAIRE

    Gulaboski, Rubin

    2001-01-01

    Theoretical models of four electrode reactions coupled with adsorption phenomena under conditions of square-wave voltammetry are developed: simple surface redox reaction, surface catalytic reaction, cathodic stripping reaction of I order, and cathodic stripping reaction of II order.

  10. New emissions targeting strategy for site utility of process industries

    International Nuclear Information System (INIS)

    Manesh, Mohamamd Hasan Khoshgoftar; Amidpour, Majid; Hamedi, Mohammad Hosein; Abadi, Sajad Khamis; Ghalami, Hooman

    2013-01-01

    A new procedure for environmental targeting of co-generation system is presented. The proposed method is based on the concepts of pinch technology for total site targeting of fuel, power, steam, environmental impacts and total annualized cost with considering emissions taxes. This approach provides a consistent, general procedure for determining mass flow rates and efficiencies of the applied turbines. This algorithm utilizes the relationship of entropy with enthalpy and isentropic efficiency. Also, the life cycle assessment (LCA) as a well-known tool for analyzing environmental impacts on a wide perspective with reference to a product system and the related environmental and economic impacts have been applied. In this regard, a damage-oriented impact analysis method based on Eco-indicator 99 and footprints analysis was considered. In addition, the present work demonstrates the effect of including both sensible and latent heating of steam in the extended Site Utility Grand Composite Curve (ESUGCC). It is shown that including sensible heating allows for better thermal matching between the processes. Furthermore, the other representation YSUGCC as the other form of Site Utility Grand Composite has been proposed. Two case studies were used to illustrate the usefulness of the new environmental targeting method

  11. The impact of urea-induced unfolding on the redox process of immobilised cytochrome c

    NARCIS (Netherlands)

    Monari, S.; Millo, D.; Ranieri, A.; di Rocco, G.; van der Zwan, G.; Gooijer, C.; Peressini, S.; Tavagnacco, C.; Hildebrandt, P.; Borsari, M.

    2010-01-01

    We have studied the effect of urea-induced unfolding on the electron transfer process of yeast iso-1-cytochrome c and its mutant K72AK73AK79A adsorbed on electrodes coated by mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol self-assembled monolayers. Electrochemical measurements,

  12. Hydroxylamine derivative in Purex process. Part 8. The kinetics and mechanism of the redox reaction of N-methylhydroxylamine and vanadium(V)

    International Nuclear Information System (INIS)

    Anyun Zhang; Shaanxi Normal Univ., Xi'an; Kai Li; Jingxin Hu

    2004-01-01

    The kinetic properties of the oxidation-reduction reaction between N-methylhydroxylamine (NMHAN) and vanadium(V) in nitric acid medium has been studied by spectrophotometry at 23.1 deg C. The rate equation of the redox reaction was determined as -d[V(V)]/dt = k[V(V)] [NMHAN] by investigating the influence of concentration of NMHAN, acidity, ionic strength and the ratio of initial concentration of V(V) to NMHAN on the reaction. The rate constant of the reaction k = 0.818 ± 0.051 (mol/l) -1 x s -1 at the ionic strength of 1.00 mol/l. The activation energy of the redox reaction was calculated to be 39.6 kJ/mol. A possibly radical mechanism of the redox reaction between NMHAN and V(V) has been suggested on the basis of electron spin resonance (ESR) spectra of nitroxyl radical, i.e., CH 3 NHO. It is helpful to understand and make the redox mechanism of NMHAN and Np(VI) clear in the reprocessing process of nuclear spent fuel. (author)

  13. Dynamics of biochemical processes and redox conditions in geochemically linked landscapes of oligotrophic bogs

    Science.gov (United States)

    Inisheva, L. I.; Szajdak, L.; Sergeeva, M. A.

    2016-04-01

    The biological activity in oligotrophic peatlands at the margins of the Vasyugan Mire has been studied. It is shown found that differently directed biochemical processes manifest themselves in the entire peat profile down to the underlying mineral substrate. Their activity is highly variable. It is argued that the notion about active and inert layers in peat soils is only applicable for the description of their water regime. The degree of the biochemical activity is specified by the physical soil properties. As a result of the biochemical processes, a micromosaic aerobic-anaerobic medium is developed under the surface waterlogged layer of peat deposits. This layer contains the gas phase, including oxygen. It is concluded that the organic and mineral parts of peat bogs represent a single functional system of a genetic peat profile with a clear record of the history of its development.

  14. Catalytic Processes for Utilizing Carbohydrates Derived from Algal Biomass

    Directory of Open Access Journals (Sweden)

    Sho Yamaguchi

    2017-05-01

    Full Text Available The high productivity of oil biosynthesized by microalgae has attracted increasing attention in recent years. Due to the application of such oils in jet fuels, the algal biosynthetic pathway toward oil components has been extensively researched. However, the utilization of the residue from algal cells after oil extraction has been overlooked. This residue is mainly composed of carbohydrates (starch, and so we herein describe the novel processes available for the production of useful chemicals from algal biomass-derived sugars. In particular, this review highlights our latest research in generating lactic acid and levulinic acid derivatives from polysaccharides and monosaccharides using homogeneous catalysts. Furthermore, based on previous reports, we discuss the potential of heterogeneous catalysts for application in such processes.

  15. The Digital Microscope and Its Image Processing Utility

    Directory of Open Access Journals (Sweden)

    Tri Wahyu Supardi

    2011-12-01

    Full Text Available Many institutions, including high schools, own a large number of analog or ordinary microscopes. These microscopes are used to observe small objects. Unfortunately, object observations on the ordinary microscope require precision and visual acuity of the user. This paper discusses the development of a high-resolution digital microscope from an analog microscope, including the image processing utility, which allows the digital microscope users to capture, store and process the digital images of the object being observed. The proposed microscope is constructed from hardware components that can be easily found in Indonesia. The image processing software is capable of performing brightness adjustment, contrast enhancement, histogram equalization, scaling and cropping. The proposed digital microscope has a maximum magnification of 1600x, and image resolution can be varied from 320x240 pixels up to 2592x1944 pixels. The microscope was tested with various objects with a variety of magnification, and image processing was carried out on the image of the object. The results showed that the digital microscope and its image processing system were capable of enhancing the observed object and other operations in accordance with the user need. The digital microscope has eliminated the need for direct observation by human eye as with the traditional microscope.

  16. Production of stable isotopes utilizing the plasma separation process

    Science.gov (United States)

    Bigelow, T. S.; Tarallo, F. J.; Stevenson, N. R.

    2005-12-01

    A plasma separation process (PSP) is being operated at Theragenics Corporation's®, Oak Ridge, TN, facility for the enrichment of stable isotopes. The PSP utilizes ion cyclotron mass discrimination to separate isotopes on a relatively large scale. With a few exceptions, nearly any metallic element could be processed with PSP. Output isotope enrichment factor depends on natural abundance and mass separation and can be fairly high in some cases. The Theragenics™ PSP facility is believed to be the only such process currently in operation. This system was developed and formerly operated under the US Department of Energy Advanced Isotope Separation program. Theragenics™ also has a laboratory at the PSP site capable of harvesting the isotopes from the process and a mass spectrometer system for analyzing enrichment and product purity. Since becoming operational in 2002, Theragenics™ has utilized the PSP to separate isotopes of several elements including: dysprosium, erbium, gadolinium, molybdenum and nickel. Currently, Theragenics™ is using the PSP for the separation of 102Pd, which is used as precursor for the production of 103Pd. The 103Pd radioisotope is the active ingredient in TheraSeed®, which is used in the treatment of early stage prostate cancer and being investigated for other medical applications. New industrial, medical and research applications are being investigated for isotopes that can be enriched on the PSP. Pre-enrichment of accelerator or reactor targets offers improved radioisotope production. Theragenics operates 14 cyclotrons for proton activation and has access to HFIR at ORNL for neutron activation of radioisotopes.

  17. Destruction of commercial pesticides by cerium redox couple mediated electrochemical oxidation process in continuous feed mode

    International Nuclear Information System (INIS)

    Balaji, Subramanian; Chung, Sang Joon; Ryu, Jae-Yong; Moon, Il Shik

    2009-01-01

    Mediated electrochemical oxidation was carried out for the destruction of commercial pesticide formulations using cerium(IV) in nitric acid as the mediator electrolyte solution in a bench scale set up. The mediator oxidant was regenerated in situ using an electrochemical cell. The real application of this sustainable process for toxic organic pollutant destruction lies in its ability for long term continuous operation with continuous organic feeding and oxidant regeneration with feed water removal. In this report we present the results of fully integrated MEO system. The task of operating the continuous feed MEO system for a long time was made possible by continuously removing the feed water using an evaporator set up. The rate of Ce(IV) regeneration in the electrochemical cell and the consumption for the pesticide destruction was matched based on carbon content of the pesticides. It was found that under the optimized experimental conditions for Ce(III) oxidation, organic addition and water removal destruction efficiency of ca. 99% was obtained for all pesticides studied. It was observed that the Ce(IV) concentration was maintained nearly the same throughout the experiment. The stable operation for 6 h proved that the process can be used for real applications and for possible scale up for the destruction of larger volumes of toxic organic wastes.

  18. Geochemistry of Natural Redox Fronts

    International Nuclear Information System (INIS)

    Hofmann, B.A.

    1999-05-01

    U, V, Cu, Ni, Au and Ag. The mineralogy of redox fronts is extremely complex, with redox fronts formed at elevated temperature showing more complex assemblages than lower temperature redox fronts. The redox behaviour of individual elements is discussed based on results from natural redox fronts and, to a more limited extent, on experimental evidence. Other aspects of redox fronts such as organic geochemistry, mineral phases, microbial activity, radiolysis and geochemical self-organisation are briefly reviewed. A short overview of active and fossil redox fronts in Northern Switzerland and Southwest Germany is given. The review also includes information on commercially available analytical methods suitable for redox front geochemistry. The general conclusion of this report is that there is widespread evidence that the elements U, Se, Pd and many others are systematically and efficiently immobilised at variable types of redox fronts. Co-precipitation is widely observed for the rare earth elements and perhaps for Th. While these general observations conform to the known geochemical properties of these elements, unexplained differences exist between the behaviour of some elements in different types of redox fronts, e.g. the strongly contrasting behaviour of the otherwise geochemically similar elements Ni and Co in the fossil meteorite Brunflo. Th is another element for which evidence of unusual geochemical behaviour exists at certain localities. A strong influence of local parameters that may be hard to identify appears to be one of the main obstacles in the interpretation of data from natural systems. The systematic overview of natural and human-induced redox fronts in this report allows types of redox fronts suitable for natural analogue studies to be identified. Particularly promising in this respect are weathering phenomena in homogeneous dumps of ore processing products (type IVb) and redox fronts formed by injection of seawater into deep oil reservoirs. (author)

  19. Material Processing Opportunites Utilizing a Free Electron Laser

    Science.gov (United States)

    Todd, Alan

    1996-11-01

    Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise

  20. Atmospheric Processing of Volcanic Glass: Effects on Iron Solubility and Redox Speciation.

    Science.gov (United States)

    Maters, Elena C; Delmelle, Pierre; Bonneville, Steeve

    2016-05-17

    Volcanic ash from explosive eruptions can provide iron (Fe) to oceanic regions where this micronutrient limits primary production. Controls on the soluble Fe fraction in ash remain poorly understood but Fe solubility is likely influenced during atmospheric transport by condensation-evaporation cycles which induce large pH fluctuations. Using glass powder as surrogate for ash, we experimentally simulate its atmospheric processing via cycles of pH 2 and 5 exposure. Glass fractional Fe solubility (maximum 0.4%) is governed by the pH 2 exposure duration rather than by the pH fluctuations, however; pH 5 exposure induces precipitation of Fe-bearing nanoparticles which (re)dissolve at pH 2. Glass leaching/dissolution release Fe(II) and Fe(III) which are differentially affected by changes in pH; the average dissolved Fe(II)/Fetot ratio is ∼0.09 at pH 2 versus ∼0.18 at pH 5. Iron release at pH 2 from glass with a relatively high bulk Fe(II)/Fetot ratio (0.5), limited aqueous Fe(II) oxidation at pH 5, and possibly glass-mediated aqueous Fe(III) reduction may render atmospherically processed ash a significant source of Fe(II) for phytoplankton. By providing new insight into the form(s) of Fe associated with ash as wet aerosol versus cloud droplet, we improve knowledge of atmospheric controls on volcanogenic Fe delivery to the ocean.

  1. Space Situational Awareness Data Processing Scalability Utilizing Google Cloud Services

    Science.gov (United States)

    Greenly, D.; Duncan, M.; Wysack, J.; Flores, F.

    Space Situational Awareness (SSA) is a fundamental and critical component of current space operations. The term SSA encompasses the awareness, understanding and predictability of all objects in space. As the population of orbital space objects and debris increases, the number of collision avoidance maneuvers grows and prompts the need for accurate and timely process measures. The SSA mission continually evolves to near real-time assessment and analysis demanding the need for higher processing capabilities. By conventional methods, meeting these demands requires the integration of new hardware to keep pace with the growing complexity of maneuver planning algorithms. SpaceNav has implemented a highly scalable architecture that will track satellites and debris by utilizing powerful virtual machines on the Google Cloud Platform. SpaceNav algorithms for processing CDMs outpace conventional means. A robust processing environment for tracking data, collision avoidance maneuvers and various other aspects of SSA can be created and deleted on demand. Migrating SpaceNav tools and algorithms into the Google Cloud Platform will be discussed and the trials and tribulations involved. Information will be shared on how and why certain cloud products were used as well as integration techniques that were implemented. Key items to be presented are: 1.Scientific algorithms and SpaceNav tools integrated into a scalable architecture a) Maneuver Planning b) Parallel Processing c) Monte Carlo Simulations d) Optimization Algorithms e) SW Application Development/Integration into the Google Cloud Platform 2. Compute Engine Processing a) Application Engine Automated Processing b) Performance testing and Performance Scalability c) Cloud MySQL databases and Database Scalability d) Cloud Data Storage e) Redundancy and Availability

  2. The impact of urea-induced unfolding on the redox process of immobilised cytochrome c.

    Science.gov (United States)

    Monari, Stefano; Millo, Diego; Ranieri, Antonio; Di Rocco, Giulia; van der Zwan, Gert; Gooijer, Cees; Peressini, Silvia; Tavagnacco, Claudio; Hildebrandt, Peter; Borsari, Marco

    2010-11-01

    We have studied the effect of urea-induced unfolding on the electron transfer process of yeast iso-1-cytochrome c and its mutant K72AK73AK79A adsorbed on electrodes coated by mixed 11-mercapto-1-undecanoic acid/11-mercapto-1-undecanol self-assembled monolayers. Electrochemical measurements, complemented by surface enhanced resonance Raman studies, indicate two distinct states of the adsorbed proteins that mainly differ with respect to the ligation pattern of the haem. The native state, in which the haem is axially coordinated by Met80 and His18, displays a reduction potential that slightly shifts to negative values with increasing urea concentration. At urea concentrations higher than 6 M, a second state prevails in which the Met80 ligand is replaced by an additional histidine residue. This structural change in the haem pocket is associated with an approximately 0.4 V shift of the reduction potential to negative values. These two states were found for both the wild-type protein and the mutant in which lysine residues 72, 73 and 79 had been substituted by alanines. The analysis of the reduction potentials, the reaction enthalpies and entropies as well as the rate constants indicates that these three lysine residues have an important effect on stabilising the protein structure in the adsorbed state and facilitating the electron transfer dynamics.

  3. Modeling of ultrasonic processes utilizing a generic software framework

    Science.gov (United States)

    Bruns, P.; Twiefel, J.; Wallaschek, J.

    2017-06-01

    Modeling of ultrasonic processes is typically characterized by a high degree of complexity. Different domains and size scales must be regarded, so that it is rather difficult to build up a single detailed overall model. Developing partial models is a common approach to overcome this difficulty. In this paper a generic but simple software framework is presented which allows to coupe arbitrary partial models by slave modules with well-defined interfaces and a master module for coordination. Two examples are given to present the developed framework. The first one is the parameterization of a load model for ultrasonically-induced cavitation. The piezoelectric oscillator, its mounting, and the process load are described individually by partial models. These partial models then are coupled using the framework. The load model is composed of spring-damper-elements which are parameterized by experimental results. In the second example, the ideal mounting position for an oscillator utilized in ultrasonic assisted machining of stone is determined. Partial models for the ultrasonic oscillator, its mounting, the simplified contact process, and the workpiece’s material characteristics are presented. For both applications input and output variables are defined to meet the requirements of the framework’s interface.

  4. Process technology of luwak coffee through bioreactor utilization

    Science.gov (United States)

    Hadipernata, M.; Nugraha, S.

    2018-01-01

    Indonesia has an advantage in producing exotic coffee that is Luwak coffee. Luwak coffee is produced from the fermentation process in digestion of civet. Luwak coffee production is still limited due to the difficulty level in the use of civet animals as the only medium of Luwak coffee making. The research was conducted by developing technology of luwak coffee production through bioreactor utilization and addition the bacteria isolate from gastric of civet. The process conditions in the bioreactor which include temperature, pH, and bacteria isolate of civet are adjusted to the process that occurs in civet digestion, including peristaltic movement on the stomach and small intestine of the civet will be replaced by the use of propellers that rotate on the bioreactor. The result of research showed that proximat analysis data of artificial/bioreactor luwak coffee did not significant different with original luwak coffee. However, the original luwak coffee has higher content of caffeine compared to bioreactor luwak coffee. Based on the cuping test the bioreactor luwak coffee has a value of 84.375, while the original luwak coffee is 84.875. As the result, bioreactor luwak coffee has excellent taste that similiar with original luwak coffee taste.

  5. Utilization of geothermal heat in tropical fruit-drying process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B.H.; Lopez, L.P.; King, R.; Fujii, J.; Tanaka, M.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits produced on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.

  6. Redox flow batteries having multiple electroactive elements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Liyu; Yang, Zhenguo; Nie, Zimin

    2018-05-01

    Introducing multiple redox reactions with a suitable voltage range can improve the energy density of redox flow battery (RFB) systems. One example includes RFB systems utilizing multiple redox pairs in the positive half cell, the negative half cell, or in both. Such RFB systems can have a negative electrolyte, a positive electrolyte, and a membrane between the negative electrolyte and the positive electrolyte, in which at least two electrochemically active elements exist in the negative electrolyte, the positive electrolyte, or both.

  7. Aqueous liquid redox desulfurisation

    Energy Technology Data Exchange (ETDEWEB)

    Reicher, M.; Niemiec, B.; Katona, T.

    1999-12-01

    The LO-CAT II process is an aqueous liquid redox process which uses ferric and ferrous iron catalysts to oxidise hydrogen sulfide (from sour gas) to elemental sulfur: the relevant chemical equations are given. Chelating agents keep the iron in solution. The system is described under the headings of (i) LO-CAT chemistry, (ii) design parameters, (iii) startup challenges, (iv) present situation and (v) anticipated future conditions. Further improvements to the system are anticipated.

  8. 25 CFR 175.62 - Utility actions pending the appeal process.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Utility actions pending the appeal process. 175.62 Section 175.62 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN ELECTRIC POWER UTILITIES Appeals § 175.62 Utility actions pending the appeal process. Pending an appeal, utility...

  9. Nisin Production Utilizing Skimmed Milk Aiming to Reduce Process Cost

    Science.gov (United States)

    Jozala, Angela Faustino; de Andrade, Maura Sayuri; de Arauz, Luciana Juncioni; Pessoa, Adalberto; Penna, Thereza Christina Vessoni

    Nisin is a natural additive for conservation of food, pharmaceutical, and dental products and can be used as a therapeutic agent. Nisin inhibits the outgrowth of spores, the growth of a variety of Gram-positive and Gram-negative bacteria. This study was performed to optimize large-scale nisin production in skimmed milk and subproducts aiming at low-costs process and stimulating its utilization. Lactococcus lactis American Type Culture Collection (ATCC) 11454 was developed in a rotary shaker (30°C/36 h/100 rpm) in diluted skimmed milk and nisin activity, growth parameters, and media components were also studied. Nisin activity in growth media was expressed in arbitrary units (AU/mL) and converted to standard nisin concentration (Nisaplin®, 25 mg of pure nisin is 1.0×106 AU/mL). Nisin activity in skimmed milk 2.27 gtotal solids was up to threefold higher than transfers in skimmed milk 4.54 gtotal solids and was up to 85-fold higher than transfers in skimmed milk 1.14 gtotal solids. L. lactis was assayed in a New Brunswick fermentor with 1.5 L of diluted skimmed milk (2.27 gtotal solids) and airflow of 1.5 mL/min (30°C/36/200 rpm), without pH control. In this condition nisin activity was observed after 4 h (45.07 AU/mL) and in the end of 36 h process (3312.07 AU/mL). This work shows the utilization of a low-cost growth medium (diluted skimmed milk) to nisin production with wide applications. Furthermore, milk subproducts (milk whey) can be exploited in nisin production, because in Brazil 50% of milk whey is disposed with no treatment in rivers and because of high organic matter concentrations it is considered an important pollutant. In this particular case an optimized production of an antimicrobial would be lined up with industrial disposal recycling.

  10. Studies on the process aspects related to chemical decontamination of chromium-containing alloys with redox processes

    International Nuclear Information System (INIS)

    Kumar, P.S.; Suresh, S.; Chandran, S.; Velmurugan, S.; Narasimhan, S.V.; Rajesh, P.

    2004-01-01

    Presence of chromium in the oxide layer makes oxidative pre-treatment with oxidizing agents such as potassium permanganate (KMnO 4 ) a must for the decontamination of stainless steels and other chromium containing alloys. The effectiveness of pre-treatment with oxidizing reagent varies with the conditions of treatment such as temperature, concentration and whether the medium is acidic or alkaline. A comparative study of the two acidic oxidizing agents, i.e., nitric acid-permanganate and permanganic acid was made. The dissolution behavior of copper and its oxide in permanganic acid was found to be comparable to that of chromium oxide. Citric acid and ascorbic acid were investigated as alternatives to oxalic acid for the reduction/decomposition of permanganate left over after the oxidizing pre-treatment step. It has been established that the reduction of chromate by citric acid is instantaneous only in presence of Mn 2+ ions. It has also been established that reduction of residual permanganate can be achieved with ascorbic acid and with minimum chemical requirement. The capabilities of nitrilotriacetic acid (NTA)-ascorbic acid mixture for the dissolution of hematite have been explored. This study would help to choose the suitable oxidizing agent, the reducing agent used for decomposition of permanganate and to optimize the concentration of reducing formulation so that the process of decontamination is achieved with a minimum requirement of chemicals. The generation of radioactive ion exchange resin as waste is therefore held at a minimum. Ion exchange studies with metal ion complexes of relevance to decontamination were carried out with a view to choose a suitable type of ion exchanger. It has been established that treatment of the ion exchange resin with brine solution can solve the problem of leaching out of non-ionic organics from the resin. (orig.)

  11. Estimating Bird / Aircraft Collision Probabilities and Risk Utilizing Spatial Poisson Processes

    Science.gov (United States)

    2012-06-10

    ESTIMATING BIRD/AIRCRAFT COLLISION PROBABILITIES AND RISK UTILIZING SPATIAL POISSON PROCESSES GRADUATE...AND RISK UTILIZING SPATIAL POISSON PROCESSES GRADUATE RESEARCH PAPER Presented to the Faculty Department of Operational Sciences...COLLISION PROBABILITIES AND RISK UTILIZING SPATIAL POISSON PROCESSES Brady J. Vaira, BS, MS Major, USAF Approved

  12. Modeling a Packed Bed Reactor Utilizing the Sabatier Process

    Science.gov (United States)

    Shah, Malay G.; Meier, Anne J.; Hintze, Paul E.

    2017-01-01

    A numerical model is being developed using Python which characterizes the conversion and temperature profiles of a packed bed reactor (PBR) that utilizes the Sabatier process; the reaction produces methane and water from carbon dioxide and hydrogen. While the specific kinetics of the Sabatier reaction on the RuAl2O3 catalyst pellets are unknown, an empirical reaction rate equation1 is used for the overall reaction. As this reaction is highly exothermic, proper thermal control is of the utmost importance to ensure maximum conversion and to avoid reactor runaway. It is therefore necessary to determine what wall temperature profile will ensure safe and efficient operation of the reactor. This wall temperature will be maintained by active thermal controls on the outer surface of the reactor. Two cylindrical PBRs are currently being tested experimentally and will be used for validation of the Python model. They are similar in design except one of them is larger and incorporates a preheat loop by feeding the reactant gas through a pipe along the center of the catalyst bed. The further complexity of adding a preheat pipe to the model to mimic the larger reactor is yet to be implemented and validated; preliminary validation is done using the smaller PBR with no reactant preheating. When mapping experimental values of the wall temperature from the smaller PBR into the Python model, a good approximation of the total conversion and temperature profile has been achieved. A separate CFD model incorporates more complex three-dimensional effects by including the solid catalyst pellets within the domain. The goal is to improve the Python model to the point where the results of other reactor geometry can be reasonably predicted relatively quickly when compared to the much more computationally expensive CFD approach. Once a reactor size is narrowed down using the Python approach, CFD will be used to generate a more thorough prediction of the reactors performance.

  13. Development and Utilization of Technology on Indian Mango Fruit Processing

    Directory of Open Access Journals (Sweden)

    Rosenda A. Bronce

    2015-11-01

    Full Text Available This project aimed to develop and utilize technology on Indian mango fruit processing. Chemical properties of matured unripe and ripe Indian mangoes were determined in terms of total sugar, reducing sugar, starch, titratable acidity and pH. Fermentation parameters investigated in the study were amount of sugar added (20 and 25% fermentation medium, acidity of fermentation medium (addition of 1.33 and 1.66 grams of citric acid for ripe and dilution of water for unripe, degree of ripening of Indian mango fruits (ripe and unripe and ageing period (3 and 4 months. Sixteen treatments were done in triplicates and a composite sample was taken from each treatment for sensory evaluation. Results of the preference test were subjected to statistical analysis. The physicochemical properties of Indian mango wine produced using best fermentation parameters were determined. Appropriate packaging material was selected and packaging design was developed for Indian mango wine. Project cooperators were selected and the technology was transferred through training and production runs. Results of preference test showed that the wine with best sensory properties was prepared using matured unripe Indian mango diluted with water and added with 25% sugar. According to the panel of sensory experts, the taste of Indian mango wine was strong with proper blending of sweetness and sourness, its mouth feel was smooth and good balance, aroma was hot pungent and its color and appearance was clear and light yellow. Its titratable acidity was 0.622%, pH was 5, alcohol content was 11% and brix was 5°.

  14. Reduction of Tc(VII) and Np(V) in solution by ferrous iron. A laboratory study of homogeneous and heterogeneous redox processes

    International Nuclear Information System (INIS)

    Cui, D.; Eriksen, T.E.

    1996-03-01

    The redox chemistry of Technetium and Neptunium in deep groundwater systems has been studied under well controlled conditions in laboratory experiments. The measured redox potentials in anoxic deep groundwater systems are consistent with redox reactions between Fe(II) in solution and hydrous Fe(III)-oxide phases. The fracture filling material and groundwater in transmissive fractures in bedrock constitute two different compartments in the groundwater system and experiments were therefore carried out in homogeneous Fe(II) containing solutions and in heterogeneous mixtures of solution with Fe(II) containing solid mineral phases. Reduction of the strongly sorbing neptunyl cation (NpO 2 + ) and the slightly sorbing pertechnetate anion (TcO 4 - ) by Fe(II) in solution was found to proceed very slowly, if at all, in reaction vessels with hydrophobic inner surfaces. However, in the heterogeneous systems we observed surface mediated reduction to the slightly soluble ( -8 mol*dm -3 ) tetravalent (hydr)oxides TcO 2 *nH 2 O (=Tc(OH) 4 ) and NpO 2 *nH 2 O (=Np(OH) 4 ) by Fe(II) sorbed on quartz,precipitated Fe(OH) 2 (s), Fe(II)CO 3 (s) and Fe(II) bearing minerals such as magnetite, hornblende and Fe(II)-chlorite. It is concluded that surface mediated redox-reactions will be the most effective pathway for the reduction of Tc(VII) and Np(V) in deep groundwater systems. On exposure of the surface-precipitated tetravalent (hydr)oxides to air saturated groundwater solutions the oxidative dissolution was found to be a very slow process and high concentration of hydrogen peroxide was required for oxidative dissolution. The slow rate of oxidative dissolution is most probably due to kinetic suppression of the reactions between dissolved oxygen and the precipitated (hydr)oxides. The kinetic suppression is caused by competing redox reactions at the surface of the Fe(II)-bearing minerals which consumes the dissolved oxygen. 30 refs, 22 figs

  15. Reduction of Tc(VII) and Np(V) in solution by ferrous iron. A laboratory study of homogeneous and heterogeneous redox processes

    Energy Technology Data Exchange (ETDEWEB)

    Cui, D.; Eriksen, T.E. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemistry

    1996-03-01

    The redox chemistry of Technetium and Neptunium in deep groundwater systems has been studied under well controlled conditions in laboratory experiments. The measured redox potentials in anoxic deep groundwater systems are consistent with redox reactions between Fe(II) in solution and hydrous Fe(III)-oxide phases. The fracture filling material and groundwater in transmissive fractures in bedrock constitute two different compartments in the groundwater system and experiments were therefore carried out in homogeneous Fe(II) containing solutions and in heterogeneous mixtures of solution with Fe(II) containing solid mineral phases. Reduction of the strongly sorbing neptunyl cation (NpO{sub 2}{sup +}) and the slightly sorbing pertechnetate anion (TcO{sub 4}{sup -}) by Fe(II) in solution was found to proceed very slowly, if at all, in reaction vessels with hydrophobic inner surfaces. However, in the heterogeneous systems we observed surface mediated reduction to the slightly soluble (<10{sub -8} mol*dm{sup -3}) tetravalent (hydr)oxides TcO{sub 2}*nH{sub 2}O (=Tc(OH){sub 4}) and NpO{sub 2}*nH{sub 2}O (=Np(OH){sub 4}) by Fe(II) sorbed on quartz,precipitated Fe(OH){sub 2}(s), Fe(II)CO{sub 3}(s) and Fe(II) bearing minerals such as magnetite, hornblende and Fe(II)-chlorite. It is concluded that surface mediated redox-reactions will be the most effective pathway for the reduction of Tc(VII) and Np(V) in deep groundwater systems. On exposure of the surface-precipitated tetravalent (hydr)oxides to air saturated groundwater solutions the oxidative dissolution was found to be a very slow process and high concentration of hydrogen peroxide was required for oxidative dissolution. The slow rate of oxidative dissolution is most probably due to kinetic suppression of the reactions between dissolved oxygen and the precipitated (hydr)oxides. The kinetic suppression is caused by competing redox reactions at the surface of the Fe(II)-bearing minerals which consumes the dissolved oxygen.

  16. The redox-Mannich reaction.

    Science.gov (United States)

    Chen, Weijie; Seidel, Daniel

    2014-06-06

    A complement to the classic three-component Mannich reaction, the redox-Mannich reaction, utilizes the same starting materials but incorporates an isomerization step that enables the facile preparation of ring-substituted β-amino ketones. Reactions occur under relatively mild conditions and are facilitated by benzoic acid.

  17. The fairytale of the GSSG/GSH redox potential.

    Science.gov (United States)

    Flohé, Leopold

    2013-05-01

    The term GSSG/GSH redox potential is frequently used to explain redox regulation and other biological processes. The relevance of the GSSG/GSH redox potential as driving force of biological processes is critically discussed. It is recalled that the concentration ratio of GSSG and GSH reflects little else than a steady state, which overwhelmingly results from fast enzymatic processes utilizing, degrading or regenerating GSH. A biological GSSG/GSH redox potential, as calculated by the Nernst equation, is a deduced electrochemical parameter based on direct measurements of GSH and GSSG that are often complicated by poorly substantiated assumptions. It is considered irrelevant to the steering of any biological process. GSH-utilizing enzymes depend on the concentration of GSH, not on [GSH](2), as is predicted by the Nernst equation, and are typically not affected by GSSG. Regulatory processes involving oxidants and GSH are considered to make use of mechanistic principles known for thiol peroxidases which catalyze the oxidation of hydroperoxides by GSH by means of an enzyme substitution mechanism involving only bimolecular reaction steps. The negligibly small rate constants of related spontaneous reactions as compared with enzyme-catalyzed ones underscore the superiority of kinetic parameters over electrochemical or thermodynamic ones for an in-depth understanding of GSH-dependent biological phenomena. At best, the GSSG/GSH potential might be useful as an analytical tool to disclose disturbances in redox metabolism. This article is part of a Special Issue entitled Cellular Functions of Glutathione. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. TEMPOL increases NAD+ and improves redox imbalance in obese mice

    Directory of Open Access Journals (Sweden)

    Mayumi Yamato

    2016-08-01

    Full Text Available Continuous energy conversion is controlled by reduction–oxidation (redox processes. NAD+ and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD+ production in the ascorbic acid–glutathione redox cycle. We utilized the chemical properties of TEMPOL to investigate the effects of antioxidants and NAD+/NADH modulators on the metabolic imbalance in obese mice. Increases in the NAD+/NADH ratio by TEMPOL ameliorated the metabolic imbalance when combined with a dietary intervention, changing from a high-fat diet to a normal diet. Plasma levels of the superoxide marker dihydroethidium were higher in mice receiving the dietary intervention compared with a control diet, but were normalized with TEMPOL consumption. These findings provide novel insights into redox regulation in obesity.

  19. Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery

    International Nuclear Information System (INIS)

    Xue Fangqin; Wang Yongliang; Wang Wenhong; Wang Xindong

    2008-01-01

    The Mn(II)/Mn(III) couple has been recognized as a potential anode for redox flow batteries to take the place of the V(IV)/V(V) in all-vanadium redox battery (VRB) and the Br 2 /Br - in sodium polysulfide/bromine (PSB) because it has higher standard electrode potential. In this study, the electrochemical behavior of the Mn(II)/Mn(III) couple on carbon felt and spectral pure graphite were investigated by cyclic voltammetry, steady polarization curve, electrochemical impedance spectroscopy, transient potential-step experiment, X-ray diffraction and charge-discharge experiments. Results show that the Mn(III) disproportionation reaction phenomena is obvious on the carbon felt electrode while it is weak on the graphite electrode owing to its fewer active sites. The reaction mechanism on carbon felt was discussed in detail. The reversibility of Mn(II)/Mn(III) is best when the sulfuric acid concentration is 5 M on the graphite electrode. Performance of a RFB employing Mn(II)/Mn(III) couple as anolyte active species and V(III)/V(II) as catholyte ones was evaluated with constant-current charge-discharge tests. The average columbic efficiency is 69.4% and the voltage efficiency is 90.4% at a current density of 20 mA cm -2 . The whole energy efficiency is 62.7% close to that of the all-vanadium battery and the average discharge voltage is about 14% higher than that of an all-vanadium battery. The preliminary exploration shows that the Mn(II)/Mn(III) couple is electrochemically promising for redox flow battery

  20. Utility and infrastructure needs for private tank waste processing

    International Nuclear Information System (INIS)

    Reynolds, B.A.

    1996-05-01

    This document supports the development of the Draft TWRS Privatization RFP. The document provides summaries of a wide variety of utility infrastructure and support services that are available at the Hanford Site. The needs of the privatization contractors are estimated and compared to the existing infrastructure. Recommendations are presented on the preferred and alternate routes of supplying the identifies requirements

  1. The Selection of Bridge Materials Utilizing the Analytical Hierarchy Process

    Science.gov (United States)

    Robert L. Smith; Robert J. Bush; Daniel L. Schmoldt

    1997-01-01

    Effective decisions on the use of natural resources often require the input of many individuals. Determining how specific criteria affect the selection of materials can lead to better utilization of raw materials. Concrete, steel, and timber represent over 98% of the materials used for bridge construction in the United States. Highway officials must often consider...

  2. Utilization of data processing as a tool in mineral extraction

    International Nuclear Information System (INIS)

    Stuart, F.W.

    1982-01-01

    The development of a system for the reduction and utilization of gamma log data for uranium ore bodies is described. This system, available from Western Nuclear, Inc., on a source license basis, has proved to be extremely effective for the reduction of gamma log data. Highlights of a new system which is being developed by Phelps Dodge's corporate regional data center are also discussed. This new system designed to more heavily utilize geostatistical concepts and hexagonal prisms for block modeling, will also provide the necessary interface to the mine haulage equipment dispatching systems developed by Phelps Dodge. This will allow for load by load analyses of material profitability, which will significantly enhance the economic benefits of the dispatching systems

  3. Substrate utilization and VSS relations in activated sludge processes

    Energy Technology Data Exchange (ETDEWEB)

    Droste, R.L.; Fernandes, L.; Sun, X. [Ottawa Univ., ON (Canada). Dept. of Civil Engineering

    1993-12-31

    A new empirical substrate removal model for activated sludge in continuous flow stirred tank reactor (CFSTR) and sequencing batch reactor (SBR) was developed in this study. This model includes an exponential function of volatile suspended solids to express the active biomass which is actually involved in substrate utilization. Results indicate that the proposed exponential models predict more accurately effluent COD in CFSTR and SBR systems than the first or zero order models. (author). 7 refs., 1 fig., 4 tabs.

  4. Utilizing today's technology to improve the procedure development process

    International Nuclear Information System (INIS)

    Morgan, R.A.; White, P.A.

    1995-01-01

    The purpose of this paper is to describe the systematic approach being utilized by the Civilian Radioactive Waste Management System, Managing and Operating (M ampersand O) Contractor to electronically connect geographically-separated organizational work units for the common goal of developing, reviewing, and approving Quality Administrative Procedures. The Board members were equipped with a common electronic network access. The results of establishing a GRB and an electronic network have proven to be very cost effective

  5. Substrate utilization and VSS relations in activated sludge processes

    Energy Technology Data Exchange (ETDEWEB)

    Droste, R L; Fernandes, L; Sun, X [Ottawa Univ., ON (Canada). Dept. of Civil Engineering

    1994-12-31

    A new empirical substrate removal model for activated sludge in continuous flow stirred tank reactor (CFSTR) and sequencing batch reactor (SBR) was developed in this study. This model includes an exponential function of volatile suspended solids to express the active biomass which is actually involved in substrate utilization. Results indicate that the proposed exponential models predict more accurately effluent COD in CFSTR and SBR systems than the first or zero order models. (author). 7 refs., 1 fig., 4 tabs.

  6. Methods utilized in evaluating the profitability of commercial space processing

    Science.gov (United States)

    Bloom, H. L.; Schmitt, P. T.

    1976-01-01

    Profitability analysis is applied to commercial space processing on the basis of business concept definition and assessment and the relationship between ground and space functions. Throughput analysis is demonstrated by analysis of the space manufacturing of surface acoustic wave devices. The paper describes a financial analysis model for space processing and provides key profitability measures for space processed isoenzymes.

  7. Liquid radwaste processing, operational experience utilizing Duratek Mobile Process System (MPS)

    International Nuclear Information System (INIS)

    Hunkele, W.; Jensen, C.E.; Duratek Corp., Beltsville, MD)

    1985-01-01

    The use of Duratek's Mobile Process System (MPS) employing sluiceable pressure vessels and improved operational techniques generates operational efficiencies including volume reduction (VR), reduced personnel labor and exposure and higher flowrates for cleanup of liquid radwaste streams in an operating nuclear power plant (Salem Generating Station). Significant additional VR is achievable based on laboratory and on-site experience utilizing Durasil 70. Under high conductivity, actual waste stream conditions, this proprietary media has demonstrated through-puts of a magnitude 15 times higher than organic cation resin. A long-term problem, cobalt species removal, is mitigated by this media

  8. Redox reaction studies by nanosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Moorthy, P.N.

    1979-01-01

    Free radicals are formed as intermediates in many chemical and biochemical reactions. An important type of reaction which they can undergo is a one electron or redox process. The direction and rate of such electron transfer reactions is governed by the relative redox potentials of the participating species. Because of the generally short lived nature of free radicals, evaluation of their redox potentials poses a number of problems. Two techniques are described for the experimental determination of the redox potentials of short lived species generated by either a nanosecond electron pulse or laser flash. In the first method, redox titration of the short lived species with stable molecules of known redox potential is carried out, employing the technique of fast kinetic spectrophotometry. Conversely, by the same method it is also possible to evaluate the one electron redox potentials of stable molecules by redox titration with free radicals of known redox potential produced as above. In the second method, electrochemical reduction or oxidation of the short lived species at an appropriate electrode (generally a mercury drop) is carried out at different fixed potentials, and the redox potential evaluated from the current-potential curves (polarograms). Full description of the experimental set up and theoretical considerations for interpretation of the raw data are given. The relative merits of the two methods and their practical applicability are discussed. (auth.)

  9. Dissecting Redox Biology Using Fluorescent Protein Sensors.

    Science.gov (United States)

    Schwarzländer, Markus; Dick, Tobias P; Meyer, Andreas J; Morgan, Bruce

    2016-05-01

    Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.

  10. Isoprenoid quinones resolve the stratification of microbial redox processes in a biogeochemical continuum from the photic zone to deep anoxic sediments of the Black Sea.

    Science.gov (United States)

    Becker, Kevin W; Elling, Felix J; Schröder, Jan M; Lipp, Julius S; Goldhammer, Tobias; Zabel, Matthias; Elvert, Marcus; Overmann, Jörg; Hinrichs, Kai-Uwe

    2018-03-09

    The stratified water column of the Black Sea serves as a model ecosystem for studying the interactions of microorganisms with major biogeochemical cycles. Here we provide detailed analysis of isoprenoid quinones to study microbial redox processes in the ocean. In a continuum from the photic zone through the chemocline into deep anoxic sediments of the southern Black Sea, diagnostic quinones and inorganic geochemical parameters indicate niche segregation between redox processes and corresponding shifts in microbial community composition. Quinones specific for oxygenic photosynthesis and aerobic respiration dominate oxic waters, while quinones associated with thaumarchaeal ammonia-oxidation and bacterial methanotrophy, respectively, dominate a narrow interval in suboxic waters. Quinone distributions indicate highest metabolic diversity within the anoxic zone, with anoxygenic photosynthesis being a major process in its photic layer. In the dark anoxic layer, quinone profiles indicate occurrence of bacterial sulfur and nitrogen cycling, archaeal methanogenesis, and archaeal methanotrophy. Multiple novel ubiquinone isomers, possibly originating from unidentified intra-aerobic anaerobes, occur in this zone. The respiration modes found in the anoxic zone continue into shallow subsurface sediments, but quinone abundances rapidly decrease within the upper 50 cm below sea floor, reflecting the transition to lower energy availability. In the deep subseafloor sediments, quinone distributions and geochemical profiles indicate archaeal methanogenesis/methanotrophy and potentially bacterial fermentative metabolisms. We observed that sedimentary quinone distributions track lithology, which supports prior hypotheses that deep biosphere community composition and metabolisms are determined by environmental conditions during sediment deposition. Importance Microorganisms play crucial roles in global biogeochemical cycles. Yet, we have only a fragmentary understanding of the diversity

  11. Paper spray mass spectrometry applied in the monitoring of a chemical system in dynamic chemical equilibrium: the redox process of methylene blue.

    Science.gov (United States)

    de Paula, Camila Cristina Almeida; Valadares, Alberto; Jurisch, Marina; Piccin, Evandro; Augusti, Rodinei

    2016-05-15

    The monitoring of chemical systems in dynamic equilibrium is not an easy task. This is due to the high rate at which the system returns to equilibrium after being perturbed, which hampers the possibility of following the aftereffects of the disturbance. In this context, it is necessary to use a fast analytical technique that requires no (or minimal) sample preparation, and which is capable of monitoring the species constituting the system in equilibrium. Paper spray ionization mass spectrometry (PS-MS), a recently introduced ambient ionization technique, has such characteristics and hence was chosen for monitoring a model system: the redox process of methylene blue. The model system evaluated herein was composed of three cationic species of methylene blue (MB), which coexist in a dynamic redox system: (1) [MB](+) of m/z 284 (cationic MB); (2) [MB + H + e](+•) of m/z 285 (the protonated form of a transient species resulting from the reduction of [MB](+) ); (3) [MB + 2H + 2e](+) or [leuco-MB + H](+) of m/z 286 (the protonated leuco form of MB). Aliquots of a MB solution were collected before and after the addition of a reducing agent (metallic zinc) and directly analyzed by PS-MS for identification of the predominant cationic species at different conditions. The mass spectra revealed that before the addition of the reducing agent the ion of m/z 284 (cationic MB) is the unique species. Upon the addition of the reducing agent and acid, however, the solution continuously undergo discoloration while reduced species derived directly from cationic MB (m/z 285 and 286) are detected in the mass spectra with increasing intensities. Fragmentation patterns obtained for each ionic species, i.e. [MB](+) , [MB + H + e](+•) and [leuco-MB + H](+) , shown to be consistent with the proposed structures. The PS-MS technique proved to be suitable for an in situ and 'near' real-time analysis of the dynamic equilibrium involving the redox of MB in aqueous medium. The data clearly

  12. Focusing on the Interfaces, Estuaries and Redox Transition Zones, for Understanding the Microbial Processes and Biogeochemical Cycling of Carbon under the Looming Influence of Global Warming and Anthropogenic Perturbations

    Science.gov (United States)

    Dang, H.; Jiao, N.

    2013-12-01

    Estuaries are the natural interface between terrestrial and marine ecosystems. These are also the zones where human activities exert the strongest impact on the earth and ocean environments. Due to high pressure from the effects of global warming and anthropogenic activities, many estuaries are deteriorating and experiencing significant change of the ecological processes and environmental functions. Certain fundamental microbial processes, including carbon fixation and respiration, have been changing as responses to and consequences of the altered estuarine environment and geochemistry. Increased inputs of terrigenous and anthropogenic organic materials and nutrients and elevated temperature make estuaries easy to be subjected to harmful algal blooms and hypoxic and even anoxic events. The change of the redox status of the estuarine and coastal waters and the increased nutrient loads such as that from terrestrial nitrate stimulate anaerobic respiration processes, such as nitrate reduction and denitrification. This may have strong negative impact on the marine environment, ecosystem and even climate, such as those caused by greenhouse gas production (N2O, CH4) by anaerobic microbial processes. In addition, some nutrients may be consumed by anaerobically respiring heterotrophic microorganisms, instead of being utilized by phytoplankton for carbon fixation. In this regard, the ecological function of the estuarine ecosystem may be altered and the ecological efficiency may be lowered, as less energy is produced by the microbial respiration process and less carbon is fixed by phytoplankton. However, on the other side, in hypoxic and anoxic waters, inorganic carbon fixation by anaerobic microorganisms may happen, such as those via the chemolithoautotrophic denitrifying sulfur oxidizing process and the anaerobic ammonium oxidation (anammox) process. Global warming and anthropogenic perturbations may have lowered the diversity, complexity, stability and sustainability of

  13. A comprehensive review on utilization of wastewater from coffee processing.

    Science.gov (United States)

    Rattan, Supriya; Parande, A K; Nagaraju, V D; Ghiwari, Girish K

    2015-05-01

    The coffee processing industry is one of the major agro-based industries contributing significantly in international and national growth. Coffee fruits are processed by two methods, wet and dry process. In wet processing, coffee fruits generate enormous quantities of high strength wastewater requiring systematic treatment prior to disposal. Different method approach is used to treat the wastewater. Many researchers have attempted to assess the efficiency of batch aeration as posttreatment of coffee processing wastewater from an upflow anaerobic hybrid reactor (UAHR)-continuous and intermittent aeration system. However, wet coffee processing requires a high degree of processing know-how and produces large amounts of effluents which have the potential to damage the environment. Characteristics of wastewater from coffee processing has a biological oxygen demand (BOD) of up to 20,000 mg/l and a chemical oxygen demand (COD) of up to 50,000 mg/l as well as the acidity of pH below 4. In this review paper, various methods are discussed to treat coffee processing wastewaters; the constitution of wastewater is presented and the technical solutions for wastewater treatment are discussed.

  14. RESEARCH UTILIZATION IN THE DESIGN DECISION MAKING PROCESS

    Directory of Open Access Journals (Sweden)

    Amy Huber

    2016-04-01

    Full Text Available This article summarizes findings from a national survey of interior design practitioners in the United States (N=366.  The study explored interior design practitioners' current preferences for conducting project research including: activities conducted and sources used, attraction to and recall from sources, and ideas for communicating research findings. Responses suggest that interior designers do value research, yet have little time to utilize research. While cross-tabulation analyses indicate no major differences in research activities between the study’s demographic groups, collectively, only 12% of the sample indicated they utilized academic journals and, at times, even incorrectly identified those sources. Open-ended responses allowed designers to offer ideas for communicating research and four key themes emerged, including: topic selection and relevancy, ideas for new dissemination methods, ideas for presentation style, and perceptions of the written language used.  It is hoped that this study’s findings may help design researchers better communicate their own findings to design practitioners.

  15. Redox behaviors of iron by absorption spectroscopy and redox potential measurement

    International Nuclear Information System (INIS)

    Oh, Jae Yong

    2010-02-01

    This work is performed to study the redox (reduction/oxidation) behaviors of iron in aqueous system by a combination of absorption spectroscopy and redox potential measurements. There are many doubts on redox potential measurements generally showing low accuracies and high uncertainties. In the present study, redox potentials are measured by utilizing various redox electrodes such as Pt, Au, Ag, and glassy carbon (GC) electrodes. Measured redox potentials are compared with calculated redox potentials based on the chemical oxidation speciation of iron and thermodynamic data by absorption spectroscopy, which provides one of the sensitive and selective spectroscopic methods for the chemical speciation of Fe(II/III). From the comparison analyses, redox potential values measured by the Ag redox electrode are fairly consistent with those calculated by the chemical aqueous speciation of iron in the whole system. In summary, the uncertainties of measured redox potentials are closely related with the total Fe concentration and affected by the formation of mixed potentials due to Fe(III) precipitates in the pH range of 6 ∼ 9 beyond the solubility of Fe(III), whilst being independent of the initially prepared concentration ratios between Fe(II) and Fe(III)

  16. Sustainable process design with process intensification - Development and implementation of a framework for sustainable carbon dioxide capture and utilization processes

    DEFF Research Database (Denmark)

    Frauzem, Rebecca

    . The developed framework adopts a 3-stage approach for sustainable design, which is comprised of: (1) synthesis, (2) design, and (3) innovation. In the first stage, the optimal processing route is obtained from a network via a superstructure-based approach. This stage incorporates a structured database...... and are designed and simulated in detail: 1. Dimethyl ether from methanol via combined reforming 2. Dimethyl ether from methanol via direct hydrogenation 3. Dimethyl carbonate via ethylene carbonate and methanol from combined reforming 4. Dimethyl carbonate via ethylene carbonate and methanol from direct...... hydrogenation. Through the analysis of the processes, it can be seen that the methanol distillation and the dimethyl carbonate downstream separation contribute to largeamounts of the utility consumption and therefore costs. Therefore, the reductionof the utility consumption of the methanol distillation...

  17. Modified Smith-predictor multirate control utilizing secondary process measurements

    Directory of Open Access Journals (Sweden)

    Rolf Ergon

    2007-01-01

    Full Text Available The Smith-predictor is a well-known control structure for industrial time delay systems, where the basic idea is to estimate the non-delayed process output by use of a process model, and to use this estimate in an inner feedback control loop combined with an outer feedback loop based on the delayed estimation error. The model used may be either mechanistic or identified from input-output data. The paper discusses improvements of the Smith-predictor for systems where also secondary process measurements without time delay are available as a basis for the primary output estimation. The estimator may then be identified also in the common case with primary outputs sampled at a lower rate than the secondary outputs. A simulation example demonstrates the feasibility and advantages of the suggested control structure.

  18. Utilization of electron beam accelerators for polymer processing

    International Nuclear Information System (INIS)

    Sarma, K.S.S.

    2013-01-01

    During the last decade, electron beam processing has been amply demonstrated to the Indian cable industry by BARC using 2 MeV/20 kW electron beam (EB) accelerator (ILU-6 EBA facility) located at BARC-BRIT complex, Vashi. The electron beam accelerator is a machine producing high energy electrons which are made to impinge on the materials for inducing physical, chemical and biological modifications. The process is carried out at room temperature and in ambient atmospheric conditions. Lately, quite a few numbers of accelerators have been installed by the private cable industry and carrying out cross-linking of cable insulations for high performance viz. high temperature stability, good flame retardancy, lesser solvent-swelling, thinner insulations etc. The indigenously made accelerators at EB centre, particularly the 3 MeV/30 kW accelerator will be of much help for Indian industry for polymer processing as the market is poised to grow by adapting the technology

  19. Process of optimization of district heat production by utilizing waste energy from metallurgical processes

    Science.gov (United States)

    Konovšek, Damjan; Fužir, Miran; Slatinek, Matic; Šepul, Tanja; Plesnik, Kristijan; Lečnik, Samo

    2017-07-01

    In a consortium with SIJ (Slovenian Steel Group), Metal Ravne, the local community of Ravne na Koro\\vskem and the public research Institut Jožef Stefan, with its registered office in Slovenia, Petrol Energetika, d.o.o. set up a technical and technological platform of an innovative energy case for a transition of steel industry into circular economy with a complete energy solution called »Utilization of Waste Heat from Metallurgical Processes for District Heating of Ravne na Koro\\vskem. This is the first such project designed for a useful utilization of waste heat in steel industry which uses modern technology and innovative system solutions for an integration of a smart, efficient and sustainable heating and cooling system and which shows a growth potential. This will allow the industry and cities to make energy savings, to improve the quality of air and to increase the benefits for the society we live in. On the basis of circular economy, we designed a target-oriented co-operation of economy, local community and public research institute to produce new business models where end consumers are put into the centre. This innovation opens the door for steel industry and local community to a joint aim that is a transition into efficient low-carbon energy systems which are based on involvement of natural local conditions, renewable energy sources, the use of waste heat and with respect for the principles of sustainable development.

  20. Use of indigenous technology in processing and utilization of non ...

    African Journals Online (AJOL)

    Information used for this paper came from both primary and secondary sources. Ten (10) respondents were interviewed from each secondary source of information. The use of indigenous technology to process these forest products to forest foods is currently limited by use of crude methods, inability to expand production ...

  1. UTILITY OF ANNUAL FINANCIAL STATEMENTS IN THE MANAGEMENT PROCESS

    Directory of Open Access Journals (Sweden)

    PUICAN LILIANA

    2015-07-01

    Full Text Available Process knowledge of the financial situation of the economic entity presupposes the use of analysis and synthesis, as indispensable tools of investigation. Financial management of the economic entity have to belong to the basic role in strategic financial decisions that would solve the problem of effective management of the process optimal growth, balanced and proportionate entity. That is why it becomes necessary and imperative objective analysis of the implications of the current financial management in economic entities familiarize managers with the basic tools with which they operate, acquiring knowledge about planning and financial control, evaluation techniques of investment projects, about how to conduct financial and economic diagnosis and management control of the entity, the key issues in its orientation towards performance.

  2. Utilizing Domain Knowledge in End-to-End Audio Processing

    DEFF Research Database (Denmark)

    Tax, Tycho; Antich, Jose Luis Diez; Purwins, Hendrik

    2017-01-01

    to learn the commonly-used log-scaled mel-spectrogram transformation. Secondly, we demonstrate that upon initializing the first layers of an end-to-end CNN classifier with the learned transformation, convergence and performance on the ESC-50 environmental sound classification dataset are similar to a CNN......-based model trained on the highly pre-processed log-scaled mel-spectrogram features....

  3. Computerized simulation of sintering process through single geometric arrangements utilization

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Lameiras, Fernando Soares; Vasconcelos, Wander L.

    1995-01-01

    In materials science and engineering, microstructure is of crucial importance in determining the properties and therefore the performance of the designed products. However, the parameters and processes which control microstructural evolution in multi-phase polycrystalline systems have not been systematically examined yet. This is specially true in the case of powder processing of ceramics, where the final microstructure is related not only to the densification process, but also to the characteristics of the green compact, such as particle size distribution and packing density. One way to carry out the study of this problem with the of a computer is to consider the green compact as a periodic arrangement of mono-sized hard spheres, e.g., the simple cubic, the body-centered cubic (b.c.) and the face-centered cubic (f.c.c.) arrays. That simplification allows to foresee the resultant morphology when the array is sintered to full density through a simulation algorithm that allows the spheres to penetrate one another and conserve their mass. Typical powder compacts have a random, rather than regular, structures. An element of randomness is introduced and various parameters for this case (e.g. density, coordination number, morphology) are compared with the simple ones. Thermodynamic features of the simulated microstructures which may reveal which one resembles a more realistic equilibrium configuration are also included. (author). 8 refs., 2 figs

  4. The SALP process - What does it mean to utilities?

    International Nuclear Information System (INIS)

    Roe, J.W.

    1992-01-01

    The systematic assessment of licensee performance (SALP) program is an integrated agency effort to periodically evaluate licensee performance based on a review of the results of licensee/U.S. Nuclear Regulatory Commission (NRC) interfaces in a 12- to 18-month period. The program is supplemental to the normal regulatory processes used to ensure compliance with NRC rules and regulations. The SALP process is used by NRC to synthesize its observations of and insights into a licensee's performance and to identify common themes or symptoms. As such, the NRC attempts to recognize and understand the reasons for a licensee's strengths and weaknesses. The SALP process is a means of expressing NRC management's conclusions and judgments on licensee performance. Emphasis is placed on considering the reasons for a licensee's performance in identified functional areas and on sharing this information with the licensee and the public. Licensee activities are broken down into functional areas, each of which is evaluated separately. The seven functional areas of operating reactors are plant operations, maintenance/surveillance, engineering technical support, safety assessment/quality verification, radiological controls, emergency preparedness, and security

  5. The Redox Code.

    Science.gov (United States)

    Jones, Dean P; Sies, Helmut

    2015-09-20

    The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems. The code is richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving O₂ and H₂O₂ contribute to spatiotemporal organization for differentiation, development, and adaptation to the environment. Disruption of this organizational structure during oxidative stress represents a fundamental mechanism in system failure and disease. Methodology in assessing components of the redox code under physiological conditions has progressed, permitting insight into spatiotemporal organization and allowing for identification of redox partners in redox proteomics and redox metabolomics. Complexity of redox networks and redox regulation is being revealed step by step, yet much still needs to be learned. Detailed knowledge of the molecular patterns generated from the principles of the redox code under defined physiological or pathological conditions in cells and organs will contribute to understanding the redox component in health and disease. Ultimately, there will be a scientific basis to a modern redox medicine.

  6. Redox regulation of plant development.

    Science.gov (United States)

    Considine, Michael J; Foyer, Christine H

    2014-09-20

    We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context.

  7. Options and processes for spent catalyst handling and utilization.

    Science.gov (United States)

    Marafi, M; Stanislaus, A

    2003-07-18

    The quantity of spent hydroprocessing catalysts discarded as solid wastes in the petroleum refining industries has increased remarkably in recent years due to a rapid growth in the hydroprocessing capacity to meet the rising demand for low-sulfur fuels. Due to their toxic nature, spent hydroprocessing catalysts have been branded as hazardous wastes, and the refiners are experiencing pressure from environmental authorities to handle them safely. Several alternative methods such as reclamation of metals, rejuvenation and reuse, disposal in landfills and preparation of useful materials using spent catalysts as raw materials are available to deal with the spent catalyst problem. The technical feasibility as well as the environmental and economic aspects of these options are reviewed. In addition, details of two bench-scale processes, one for rejuvenation of spent hydroprocessing catalysts, and the other for producing non-leachable synthetic aggregate materials that were developed in this laboratory, are presented in this paper.

  8. Process for hydroprocessing heavy oils utilizing sepiolite-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Auden, C.A.; Yan, T.-Y.

    1986-04-15

    A process is described for demetallizing and desulfurizing a hydrocarbon oil comprising contacting the hydrocarbon oil in the presence of hydrogen and a sepiolite-based catalyst composition under conditions of pressure and temperature sufficient to effect demetallization and desulfurization. The sepiolite-based catalyst composition has been prepared by first contacting the sepiolite with an aqueous solution of a first metal salt, then contacting the resultant metal ion-exchanged sepiolite with an aqueous solution of a compound of a second metal selected from the group consisting of molybdenum, tungsten and vanadium, and finally contacting the resultant metal-exchanged sepiolite product with an aqueous solution of a magnesium compound, thereby effecting a magnesium ion-exchange with the metal-exchanged sepiolite product and neutralizing acid sites on the sepiolite product.

  9. Good manufacturing practices (GMP utilized on human blood irradiation process

    Directory of Open Access Journals (Sweden)

    Cláudio Boghi

    2008-01-01

    Full Text Available Irradiation of human blood is used to avoid the TA-GVHD (transfusion-associated graft-versus-host-disease, a rare but devastating adverse effect of leukocytes present in blood components for immunocompetent transfusion recipients. Usually this irradiation practice is performed to a physical elimination of lymphocytes. The implementation of the GMP will assure that the properly dose in a range of 25Gy to 50Gy will be delivered to the blood in the bag collected in a blood tissue bank. The studies to establish the GMP were developed under the guidelines of the standard ISO 11137 - Sterilization of health care products - Requirements for validation and routine control - Radiation sterilization. In this work, two dosimetric systems were used for dose mapping during the studies of irradiator qualification, loading pattern, irradiation process validation and auditing. The CaSO4: Dy dosimeter presented difficulties concerning to uncertainty on dose measurement, stability, trace ability and calibration system. The PMMA and gafchromic dosimetric systems have shown a better performance and were adopted on establishment of GMP procedures. The irradiation tests have been done using a Gammacell 220 Irradiator. The developed GMP can be adapted for different types of gamma irradiators, allowing to set up a quality assurance program for blood irradiation.

  10. Development of processes for the utilization of Brazilian coal using nuclear process heat and/or nuclear process steam

    International Nuclear Information System (INIS)

    Bamert, H.; Niessen, H.F.; Walbeck, M.; Wasrzik, U.; Mueller, R.; Schiffers, U.; Strauss, W.

    1980-01-01

    Status of the project: End of the project definition phase and preparation of the planned conceptual phase. Objective of the project: Development of processes for the utilization of nuclear process heat and/or nuclear process steam for the gasification of coal with high ash content, in particular coal from Brazil. Results: With the data of Brazilian coal of high ash content (mine Leao/ 43% ash in the mine-mouth quality, 20% ash after preparation) there have been worked out proposals for the mine planning and for a number of processes. On the basis of these proposals and under consideration of the main data specified by the Brazilian working group there have been choosen two processes and worked out in a conceptual design: 1) pressurized water reactor + LURGI-pressure gasifier/hydrogasification for the production of SNG and 2) high temperature reactor steam gasification for the production of town gas. The economic evaluation showed that the two processes are not substantially different in their cost efficiency and they are economical on a long-term basis. For more specific design work there has been planned the implementation of an experimental programme using the semi-technical plants 'hydrogasification' in Wesseling and 'steam gasification' in Essen as the conceptual phase. (orig.) [de

  11. Thiol/disulfide redox states in signaling and sensing

    Science.gov (United States)

    Go, Young-Mi; Jones, Dean P.

    2015-01-01

    Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol-disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady-states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling, and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol-disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities. PMID:23356510

  12. Preliminary Evaluation of an Aviation Safety Thesaurus' Utility for Enhancing Automated Processing of Incident Reports

    Science.gov (United States)

    Barrientos, Francesca; Castle, Joseph; McIntosh, Dawn; Srivastava, Ashok

    2007-01-01

    This document presents a preliminary evaluation the utility of the FAA Safety Analytics Thesaurus (SAT) utility in enhancing automated document processing applications under development at NASA Ames Research Center (ARC). Current development efforts at ARC are described, including overviews of the statistical machine learning techniques that have been investigated. An analysis of opportunities for applying thesaurus knowledge to improving algorithm performance is then presented.

  13. Metabolic Control of Redox and Redox Control of Metabolism in Plants

    Science.gov (United States)

    Fernie, Alisdair R.

    2014-01-01

    Abstract Significance: Reduction-oxidation (Redox) status operates as a major integrator of subcellular and extracellular metabolism and is simultaneously itself regulated by metabolic processes. Redox status not only dominates cellular metabolism due to the prominence of NAD(H) and NADP(H) couples in myriad metabolic reactions but also acts as an effective signal that informs the cell of the prevailing environmental conditions. After relay of this information, the cell is able to appropriately respond via a range of mechanisms, including directly affecting cellular functioning and reprogramming nuclear gene expression. Recent Advances: The facile accession of Arabidopsis knockout mutants alongside the adoption of broad-scale post-genomic approaches, which are able to provide transcriptomic-, proteomic-, and metabolomic-level information alongside traditional biochemical and emerging cell biological techniques, has dramatically advanced our understanding of redox status control. This review summarizes redox status control of metabolism and the metabolic control of redox status at both cellular and subcellular levels. Critical Issues: It is becoming apparent that plastid, mitochondria, and peroxisome functions influence a wide range of processes outside of the organelles themselves. While knowledge of the network of metabolic pathways and their intraorganellar redox status regulation has increased in the last years, little is known about the interorganellar redox signals coordinating these networks. A current challenge is, therefore, synthesizing our knowledge and planning experiments that tackle redox status regulation at both inter- and intracellular levels. Future Directions: Emerging tools are enabling ever-increasing spatiotemporal resolution of metabolism and imaging of redox status components. Broader application of these tools will likely greatly enhance our understanding of the interplay of redox status and metabolism as well as elucidating and

  14. A generic methodology for the design of sustainable carbon dioxide utilization processes using superstructure optimization

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Gani, Rafiqul

    , including as an extractive agent or raw material. Chemical conversion, an important element of utilization, involves the use of carbon dioxide as a reactant in the production of chemical compounds [2]. However, for feasible implementation, a systematic methodology is needed for the design of the utilization......, especially chemical conversion, processes. To achieve this, a generic methodology has been developed, which adopts a three-stage approach consisting in (i) process synthesis, (ii) process design, and (iii) innovative and sustainable design [3]. This methodology, with the individual steps and associated...... methods and tools, has been developed and applied to carbon dioxide utilization networks. This work will focus on the first stage, process synthesis, of this three-stage methodology; process synthesis is important in determining the appropriate processing route to produce products from a selection...

  15. Effects of low-pressure igneous processes and subduction on Fe3+/ΣFe and redox state of mantle eclogites from Lace (Kaapvaal craton)

    Science.gov (United States)

    Aulbach, S.; Woodland, A. B.; Vasilyev, P.; Galvez, M. E.; Viljoen, K. S.

    2017-09-01

    Reconstructing the redox state of the mantle is critical in discussing the evolution of atmospheric composition through time. Kimberlite-borne mantle eclogite xenoliths, commonly interpreted as representing former oceanic crust, may record the chemical and physical state of Archaean and Proterozoic convecting mantle sources that generated their magmatic protoliths. However, their message is generally obscured by a range of primary (igneous differentiation) and secondary processes (seawater alteration, metamorphism, metasomatism). Here, we report the Fe3+/ΣFe ratio and δ18 O in garnet from in a suite of well-characterised mantle eclogite and pyroxenite xenoliths hosted in the Lace kimberlite (Kaapvaal craton), which originated as ca. 3 Ga-old ocean floor. Fe3+/ΣFe in garnet (0.01 to 0.063, median 0.02; n = 16) shows a negative correlation with jadeite content in clinopyroxene, suggesting increased partitioning of Fe3+ into clinopyroxene in the presence of monovalent cations with which it can form coupled substitutions. Jadeite-corrected Fe3+/ΣFe in garnet shows a broad negative trend with Eu*, consistent with incompatible behaviour of Fe3+ during olivine-plagioclase accumulation in the protoliths. This trend is partially obscured by increasing Fe3+ partitioning into garnet along a conductive cratonic geotherm. In contrast, NMORB-normalised Nd/Yb - a proxy of partial melt loss from subducting oceanic crust (1) - shows no obvious correlation with Fe3+/ΣFe, nor does garnet δ18OVSMOW (5.14 to 6.21‰) point to significant seawater alteration. Median bulk-rock Fe3+/ΣFe is roughly estimated at 0.025. This observation agrees with V/Sc systematics, which collectively point to a reduced Archaean convecting mantle source to the igneous protoliths of these eclogites compared to the modern MORB source. Oxygen fugacites (fO2) relative to the fayalite-magnetite-quartz buffer (FMQ) range from Δlog ⁡ fO2 = FMQ-1.3 to FMQ-4.6. At those reducing conditions, the solubility

  16. The Redox Proteome*

    Science.gov (United States)

    Go, Young-Mi; Jones, Dean P.

    2013-01-01

    The redox proteome consists of reversible and irreversible covalent modifications that link redox metabolism to biologic structure and function. These modifications, especially of Cys, function at the molecular level in protein folding and maturation, catalytic activity, signaling, and macromolecular interactions and at the macroscopic level in control of secretion and cell shape. Interaction of the redox proteome with redox-active chemicals is central to macromolecular structure, regulation, and signaling during the life cycle and has a central role in the tolerance and adaptability to diet and environmental challenges. PMID:23861437

  17. Engineered Proteins: Redox Properties and Their Applications

    Science.gov (United States)

    Prabhulkar, Shradha; Tian, Hui; Wang, Xiaotang; Zhu, Jun-Jie

    2012-01-01

    Abstract Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796–1822. PMID:22435347

  18. Generalized kinetic model of reduction of molecular oxidant by metal containing redox

    International Nuclear Information System (INIS)

    Kravchenko, T.A.

    1986-01-01

    Present work is devoted to kinetics of reduction of molecular oxidant by metal containing redox. Constructed generalized kinetic model of redox process in the system solid redox - reagent solution allows to perform the general theoretical approach to research and to obtain new results on kinetics and mechanism of interaction of redox with oxidants.

  19. Application of a systematic methodology for sustainable carbon dioxide utilization process design

    DEFF Research Database (Denmark)

    Plaza, Cristina Calvera; Frauzem, Rebecca; Gani, Rafiqul

    than carbon capture and storage. To achieve this a methodology is developed to design sustainable carbon dioxide utilization processes. First, the information on the possible utilization alternatives is collected, including the economic potential of the process and the carbon dioxide emissions...... emission are desired in order to reduce the carbon dioxide emissions. Using this estimated preliminary evaluation, the top processes, with the most negative carbon dioxide emission are investigated by rigorous detailed simulation to evaluate the net carbon dioxide emissions. Once the base case design...

  20. Expected Power-Utility Maximization Under Incomplete Information and with Cox-Process Observations

    International Nuclear Information System (INIS)

    Fujimoto, Kazufumi; Nagai, Hideo; Runggaldier, Wolfgang J.

    2013-01-01

    We consider the problem of maximization of expected terminal power utility (risk sensitive criterion). The underlying market model is a regime-switching diffusion model where the regime is determined by an unobservable factor process forming a finite state Markov process. The main novelty is due to the fact that prices are observed and the portfolio is rebalanced only at random times corresponding to a Cox process where the intensity is driven by the unobserved Markovian factor process as well. This leads to a more realistic modeling for many practical situations, like in markets with liquidity restrictions; on the other hand it considerably complicates the problem to the point that traditional methodologies cannot be directly applied. The approach presented here is specific to the power-utility. For log-utilities a different approach is presented in Fujimoto et al. (Preprint, 2012).

  1. Expected Power-Utility Maximization Under Incomplete Information and with Cox-Process Observations

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Kazufumi, E-mail: m_fuji@kvj.biglobe.ne.jp [Bank of Tokyo-Mitsubishi UFJ, Ltd., Corporate Risk Management Division (Japan); Nagai, Hideo, E-mail: nagai@sigmath.es.osaka-u.ac.jp [Osaka University, Division of Mathematical Science for Social Systems, Graduate School of Engineering Science (Japan); Runggaldier, Wolfgang J., E-mail: runggal@math.unipd.it [Universita di Padova, Dipartimento di Matematica Pura ed Applicata (Italy)

    2013-02-15

    We consider the problem of maximization of expected terminal power utility (risk sensitive criterion). The underlying market model is a regime-switching diffusion model where the regime is determined by an unobservable factor process forming a finite state Markov process. The main novelty is due to the fact that prices are observed and the portfolio is rebalanced only at random times corresponding to a Cox process where the intensity is driven by the unobserved Markovian factor process as well. This leads to a more realistic modeling for many practical situations, like in markets with liquidity restrictions; on the other hand it considerably complicates the problem to the point that traditional methodologies cannot be directly applied. The approach presented here is specific to the power-utility. For log-utilities a different approach is presented in Fujimoto et al. (Preprint, 2012).

  2. The Combination of Vitamin K3 and Vitamin C Has Synergic Activity against Forms of Trypanosoma cruzi through a Redox Imbalance Process.

    Science.gov (United States)

    Cristina Desoti, Vânia; Lazarin-Bidóia, Danielle; Martins Ribeiro, Fabianne; Cardoso Martins, Solange; da Silva Rodrigues, Jean Henrique; Ueda-Nakamura, Tania; Vataru Nakamura, Celso; Farias Ximenes, Valdecir; de Oliveira Silva, Sueli

    2015-01-01

    Chagas' disease is an infection that is caused by the protozoan Trypanosoma cruzi, affecting millions of people worldwide. Because of severe side effects and variable efficacy, the current treatments for Chagas' disease are unsatisfactory, making the search for new chemotherapeutic agents essential. Previous studies have reported various biological activities of naphthoquinones, such as the trypanocidal and antitumor activity of vitamin K3. The combination of this vitamin with vitamin C exerted better effects against various cancer cells than when used alone. These effects have been attributed to an increase in reactive oxygen species generation. In the present study, we evaluated the activity of vitamin K3 and vitamin C, alone and in combination, against T. cruzi. The vitamin K3 + vitamin C combination exerted synergistic effects against three forms of T. cruzi, leading to morphological, ultrastructural, and functional changes by producing reactive species, decreasing reduced thiol groups, altering the cell cycle, causing lipid peroxidation, and forming autophagic vacuoles. Our hypothesis is that the vitamin K3 + vitamin C combination induces oxidative imbalance in T. cruzi, probably started by a redox cycling process that leads to parasite cell death.

  3. The Combination of Vitamin K3 and Vitamin C Has Synergic Activity against Forms of Trypanosoma cruzi through a Redox Imbalance Process.

    Directory of Open Access Journals (Sweden)

    Vânia Cristina Desoti

    Full Text Available Chagas' disease is an infection that is caused by the protozoan Trypanosoma cruzi, affecting millions of people worldwide. Because of severe side effects and variable efficacy, the current treatments for Chagas' disease are unsatisfactory, making the search for new chemotherapeutic agents essential. Previous studies have reported various biological activities of naphthoquinones, such as the trypanocidal and antitumor activity of vitamin K3. The combination of this vitamin with vitamin C exerted better effects against various cancer cells than when used alone. These effects have been attributed to an increase in reactive oxygen species generation. In the present study, we evaluated the activity of vitamin K3 and vitamin C, alone and in combination, against T. cruzi. The vitamin K3 + vitamin C combination exerted synergistic effects against three forms of T. cruzi, leading to morphological, ultrastructural, and functional changes by producing reactive species, decreasing reduced thiol groups, altering the cell cycle, causing lipid peroxidation, and forming autophagic vacuoles. Our hypothesis is that the vitamin K3 + vitamin C combination induces oxidative imbalance in T. cruzi, probably started by a redox cycling process that leads to parasite cell death.

  4. Monitoring local redox processes in LiNi0.5Mn1.5O4 battery cathode material by in operando EPR spectroscopy

    Science.gov (United States)

    Niemöller, Arvid; Jakes, Peter; Eurich, Svitlana; Paulus, Anja; Kungl, Hans; Eichel, Rüdiger-A.; Granwehr, Josef

    2018-01-01

    Despite the multitude of analytical methods available to characterize battery cathode materials, identifying the factors responsible for material aging is still challenging. We present the first investigation of transient redox processes in a spinel cathode during electrochemical cycling of a lithium ion battery by in operando electron paramagnetic resonance (EPR). The battery contains a LiNi0.5Mn1.5O4 (LNMO) spinel cathode, which is a material whose magnetic interactions are well understood. The evolution of the EPR signal in combination with electrochemical measurements shows the impact of Mn3+ on the Li+ motion inside the spinel. Moreover, state of charge dependent linewidth variations confirm the formation of a solid solution for slow cycling, which is taken over by mixed models of solid solution and two-phase formation for fast cycling due to kinetic restrictions and overpotentials. Long-term measurements for 480 h showed the stability of the investigated LNMO, but also small amounts of cathode degradation products became visible. The results point out how local, exchange mediated magnetic interactions in cathode materials are linked with battery performance and can be used for material characterization.

  5. Redox signaling in plants.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2013-06-01

    Our aim is to deliver an authoritative and challenging perspective of current concepts in plant redox signaling, focusing particularly on the complex interface between the redox and hormone-signaling pathways that allow precise control of plant growth and defense in response to metabolic triggers and environmental constraints and cues. Plants produce significant amounts of singlet oxygen and other reactive oxygen species (ROS) as a result of photosynthetic electron transport and metabolism. Such pathways contribute to the compartment-specific redox-regulated signaling systems in plant cells that convey information to the nucleus to regulate gene expression. Like the chloroplasts and mitochondria, the apoplast-cell wall compartment makes a significant contribution to the redox signaling network, but unlike these organelles, the apoplast has a low antioxidant-buffering capacity. The respective roles of ROS, low-molecular antioxidants, redox-active proteins, and antioxidant enzymes are considered in relation to the functions of plant hormones such as salicylic acid, jasmonic acid, and auxin, in the composite control of plant growth and defense. Regulation of redox gradients between key compartments in plant cells such as those across the plasma membrane facilitates flexible and multiple faceted opportunities for redox signaling that spans the intracellular and extracellular environments. In conclusion, plants are recognized as masters of the art of redox regulation that use oxidants and antioxidants as flexible integrators of signals from metabolism and the environment.

  6. Chloroplast Redox Poise

    DEFF Research Database (Denmark)

    Steccanella, Verdiana

    the redox status of the plastoquinone pool and chlorophyll biosynthesis. Furthermore, in the plant cell, the equilibrium between redox reactions and ROS signals is also maintained by various balancing mechanisms among which the thioredoxin reductase-thioredoxin system (TR-Trx) stands out as a mediator......The redox state of the chloroplast is maintained by a delicate balance between energy production and consumption and is affected by the need to avoid increased production of reactive oxygen species (ROS). Redox power and ROS generated in the chloroplast are essential for maintaining physiological...... metabolic pathways and for optimizing chloroplast functions. The redox poise of photosynthetic electron transport components like plastoquinone is crucial to initiate signaling cascades and might also be involved in key biosynthetic pathways such as chlorophyll biosynthesis. We, therefore, explored...

  7. Characterization of redox conditions in groundwater contaminant plumes

    Science.gov (United States)

    Christensen, Thomas H.; Bjerg, Poul L.; Banwart, Steven A.; Jakobsen, Rasmus; Heron, Gorm; Albrechtsen, Hans-Jørgen

    2000-10-01

    Evaluation of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behaviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few cases have been reported. No standardised or generally accepted approach exists. Slow electrode kinetics and the common lack of internal equilibrium of redox processes in pollution plumes make, with a few exceptions, direct electrochemical measurement and rigorous interpretation of redox potentials dubious, if not erroneous. Several other approaches have been used in addressing redox conditions in pollution plumes: redox-sensitive compounds in groundwater samples, hydrogen concentrations in groundwater, concentrations of volatile fatty acids in groundwater, sediment characteristics and microbial tools, such as MPN counts, PLFA biomarkers and redox bioassays. This paper reviews the principles behind the different approaches, summarizes methods used and evaluates the approaches based on the experience from the reported applications.

  8. Redox phenomena controlling systems - a 7. framework programme collaborative project (2008-2012)

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of this EURATOM collaborative project is to understand Redox phenomena controlling the long-term release/retention of radionuclides (ReCosy programme) in nuclear waste disposal and to provide tools to apply the results to safety assessment. The project has been organized into 6 task forces: 1) implications of Redox for safety, 2) development of Redox determination methods, 3) Redox response of defined and near-natural systems, 4) Redox reactions of radionuclides, 5) Redox processes in radionuclide transport, and 6) Redox reactions affecting the spent fuel source-term

  9. Processing of high level waste: Spectroscopic characterization of redox reactions in supercritical water. 1998 annual progress report

    International Nuclear Information System (INIS)

    Arrington, C.A. Jr.

    1998-01-01

    'The author is engaged in a collaborative research effort with Los Alamos staff scientists Steven Buelow, Jeanne Robinson, and Bernie Foy all staff members in group CST-6. The work proposed by these LANL staff scientists is directed towards the destruction of complexants and oxidation of chromium and technetium by hydrothermal processing in near critical or supercritical aqueous solutions. The work addresses two areas of investigation related to ongoing efforts at LANL: (1) kinetic studies of oxidation-reduction reactions in supercritical water; (2) measurement of physical properties of ionic solutes in supercritical water. All of the work during this first year was carried out at Los Alamos National Lab. During the Summer program at LANL all equipment and supplies were provided through Dr. Buelow''s program at LANL. The author has now set up a Raman spectroscopy lab at Furman. Using departmental funds he purchased an optical bench, a laser, and a CCD detector, and a grant from the Dreyfus Foundation assisted in the purchase of a Raman spectrometer. He is now able to carry out experiments using the Raman system at Furman. The plan is to continue the Summer collaboration at LANL and carry out experiments at Furman during the academic year.'

  10. Redox Biology in Neurological Function, Dysfunction, and Aging.

    Science.gov (United States)

    Franco, Rodrigo; Vargas, Marcelo R

    2018-04-23

    Reduction oxidation (redox) reactions are central to life and when altered, they can promote disease progression. In the brain, redox homeostasis is recognized to be involved in all aspects of central nervous system (CNS) development, function, aging, and disease. Recent studies have uncovered the diverse nature by which redox reactions and homeostasis contribute to brain physiology, and when dysregulated to pathological consequences. Redox reactions go beyond what is commonly described as oxidative stress and involve redox mechanisms linked to signaling and metabolism. In contrast to the nonspecific nature of oxidative damage, redox signaling involves specific oxidation/reduction reactions that regulate a myriad of neurological processes such as neurotransmission, homeostasis, and degeneration. This Forum is focused on the role of redox metabolism and signaling in the brain. Six review articles from leading scientists in the field that appraise the role of redox metabolism and signaling in different aspects of brain biology including neurodevelopment, neurotransmission, aging, neuroinflammation, neurodegeneration, and neurotoxicity are included. An original research article exemplifying these concepts uncovers a novel link between oxidative modifications, redox signaling, and neurodegeneration. This Forum highlights the recent advances in the field and we hope it encourages future research aimed to understand the mechanisms by which redox metabolism and signaling regulate CNS physiology and pathophysiology. Antioxid. Redox Signal. 00, 000-000.

  11. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions.

    Science.gov (United States)

    Mailloux, Ryan J; Jin, Xiaolei; Willmore, William G

    2014-01-01

    Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling.

  12. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions☆

    Science.gov (United States)

    Mailloux, Ryan J.; Jin, Xiaolei; Willmore, William G.

    2013-01-01

    Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling. PMID:24455476

  13. Response of humic-reducing microorganisms to the redox properties of humic substance during composting.

    Science.gov (United States)

    Zhao, Xinyu; He, Xiaosong; Xi, Beidou; Gao, Rutai; Tan, Wenbing; Zhang, Hui; Huang, Caihong; Li, Dan; Li, Meng

    2017-12-01

    Humic substance (HS) could be utilized by humus-reducing microorganisms (HRMs) as the terminal acceptors. Meanwhile, the reduction of HS can support the microbial growth. This process would greatly affect the redox conversion of inorganic and organic pollutants. However, whether the redox properties of HS lined with HRMs community during composting still remain unclear. This study aimed to assess the relationships between the redox capability of HS [i.e. humic acids (HA) and fulvic acids (FA)] and HRMs during composting. The results showed that the changing patterns of electron accepting capacity and electron donating capacity of HS were diverse during seven composting. Electron transfer capacities (ETC) of HA was significantly correlated with the functional groups (i.e. alkyl C, O-alkyl C, aryl C, carboxylic C, aromatic C), aromaticity and molecular weight of HA. Aromatic C, phenols, aryl C, carboxylic C, aromaticity and molecular weight of HS were the main structuralfeatures associated with the ETC of FA. Ten key genera of HRMs were found significantly determine these redox-active functional groups of HS during composting, thus influencing the ETC of HS in composts. In addition, a regulating method was suggested to enhance the ETC of HS during composting based on the relationships between the key HRMs and redox-active functional groups as well as environmental variables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Hydroxylamine derivatives in the Purex Process Part VII. The redox reactive kinetics and mechanism of dimethylhydroxylamine and vanadium(V) in nitric medium

    International Nuclear Information System (INIS)

    Anyun Zhang; Institute of Research and Innovation, Chiba; Guoping Xiao; Chinese Inst. of Atomic Energy, Beijing; Jingxin Hu; Hui He

    2003-01-01

    The kinetics of the redox reaction between dimethylhydroxylamine (DMH) and vanadium(V) in nitric acid has been studied by spectrophotometry at 23.1 deg C. The rate equation of the reaction is determined as -d[V(V)]/dt=k[V(V)][DMH] by investigating the influence of the concentrations of V(V) and DMH, acidity, ionic strength and the ratio of the initial concentrations of reactants on the redox reaction. The rate constant of the reaction k = 9.95 ± 0.52 (mol/l) -1 x s -1 when the ionic strength is 1.00 mol/l. The activation energy of the reaction is 22.1 kJ/mol. A possible mechanism of the redox reaction has been suggested on the basis of an electron spin resonance(ESR) spectrum of dimethyl nitroxyl radical, (CH 3 ) 2 NO. (author)

  15. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review.

    Science.gov (United States)

    Jayathilakan, K; Sultana, Khudsia; Radhakrishna, K; Bawa, A S

    2012-06-01

    India is bestowed with vast livestock wealth and it is growing at the rate of 6% per annum. The contribution of livestock industry including poultry and fish is increasing substantially in GDP of country which accounts for >40% of total agricultural sector and >12% of GDP. This contribution would have been much greater had the animal by-products been also efficiently utilized. Efficient utilization of by-products has direct impact on the economy and environmental pollution of the country. Non-utilization or under utilization of by-products not only lead to loss of potential revenues but also lead to the added and increasing cost of disposal of these products. Non-utilization of animal by-products in a proper way may create major aesthetic and catastrophic health problems. Besides pollution and hazard aspects, in many cases meat, poultry and fish processing wastes have a potential for recycling raw materials or for conversion into useful products of higher value. Traditions, culture and religion are often important when a meat by-product is being utilized for food. Regulatory requirements are also important because many countries restrict the use of meat by-products for reasons of food safety and quality. By-products such as blood, liver, lung, kidney, brains, spleen and tripe has good nutritive value. Medicinal and pharmaceutical uses of by-product are also highlighted in this review. Waste products from the poultry processing and egg production industries must be efficiently dealt with as the growth of these industries depends largely on waste management. Treated fish waste has found many applications among with which the most important are animal feed, biodiesel/biogas, dietectic products (chitosan), natural pigments (after extraction) and cosmetics (collagen). Available information pertaining to the utilization of by-products and waste materials from meat, poultry and fish and their processing industries has been reviewed here.

  16. Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-04

    Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

  17. Progress and safety aspects in process heat utilization from nuclear systems

    International Nuclear Information System (INIS)

    Barnert, H.

    1995-01-01

    Report about the Status and the Progress in the Various Programs and Projects in the Federal Republic of Germany in Process Heat Utilization from the High Temperature Reactor and on Recent Changes of the Atomic Law in the Federal Republic of Germany with Big Influence on the Safety of Nuclear Energy Technology. (author)

  18. Benefits from remote sensing data utilization in urban planning processes and system recommendations

    Science.gov (United States)

    Mallon, H. J.; Howard, J. Y.

    1972-01-01

    The benefits of utilizing remote sensor data in the urban planning process of the Metropolitan Washington Council of Governments are investigated. An evaluation of sensor requirements, a description/ comparison of costs, benefits, levels of accuracy, ease of attainment, and frequency of update possible using sensor versus traditional data acquisition techniques are discussed.

  19. In situ heat treatment process utilizing a closed loop heating system

    Science.gov (United States)

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  20. Studies on the utilization of PETROSIX process pyrolysed oil shale for pozzolans production

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, M C; Souza Santos, P de; Schmal, M

    1984-08-01

    It was studied the possibility of utilization the PETROSIX Process pyrolised oil-shale as a raw material in the production of cementing materials emphasizing its use as pozzolan. Analysis of X-ray diffraction and spectrophotometry were used to determine the pozzolanic characteristics of the pyrolysed oil-shale. (Author).

  1. Utilizing High Pressure Processing to Induce Structural Changes in Dairy and Meat Products

    DEFF Research Database (Denmark)

    Orlien, Vibeke

    2017-01-01

    High pressure (HP) is capable of modifying the functional properties of milk and meat proteins by pressure-induced changes of the molecular structure. Therefore, HP treatment of milk and meat has been extensively investigated to understand, clarify, and utilize HP processing in the food industry....

  2. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  3. Redox processes in the rhizosphere of restored peatlands - The impact of vascular plant species on electrochemical properties of dissolved organic matter

    Science.gov (United States)

    Agethen, Svenja; Wolff, Franziska; Knorr, Klaus-Holger

    2016-04-01

    Restoration of cut over peatlands in Central Europe is challenging in a landscape overused for agriculture. Excess nutrient availability by excess fertilization triggers uncharacteristic vegetation that is one key driver for carbon cycling. Those nutrient rich systems are often dominated by graminoids, and were often found to emit substantial amounts of methane. Plants grown under nutrient rich conditions provide more labile carbon in rhizodeposition and litter that fuels methanogenesis. Such species often have aerenchyma that facilitates direct CH4 emissions to the atmosphere and therefore impair the climate cooling function of bogs. On the other hand, aerenchymatic tissue supplies oxygen to the rhizosphere, which may reduce methanogenesis or stimulate methane oxidation, as methanogenesis is a strictly anaerobic process. Which of the effects prevail is often unclear. Therefore, the aim of this study was to test the impact of different vegetation on rhizospheric redox conditions and methanogenesis, including aerenchymatic vascular plants that are dominant in restored cut over peatlands. As ombrotrophic peat is poor in inorganic electron acceptors (EAs) to suppress methanogenesis, we analyzed the electron acceptor (EACs) and electron donor capacities (EDCs) of dissolved organic matter (DOM) in the rhizosphere to understand the impact of vegetation on anaerobic organic matter degradation. We planted Juncus effusus, Eriophorum vaginatum, Eriophorum angustifolium, Sphagnum (mixture of S. magellanicum, S. papillosum, S. sec. acutifolia, 1/3 each) plus non-vegetated controls; six replicates per batch; in containers with untreated homogenized peat. The plants grow under constant conditions (20° C, 12h diurnal light cycles and 80% RH). Anoxic conditions were achieved by keeping the water table at +10 cm. For monitoring, the rhizosphere is equipped with suction and gas samplers. We measure dissolved CO2 and CH4 concentrations, inorganic EAs (NO3-, Fe(III), and SO42-) and

  4. Development of the spent fuel disassembling process by utilizing the 3D graphic design technology

    International Nuclear Information System (INIS)

    Song, T. K.; Lee, J. Y.; Kim, S. H.; Yun, J. S.

    2001-01-01

    For developing the spent fuel disassembling process, the 3D graphic simulation has been established by utilizing the 3D graphic design technology which is widely used in the industry. The spent fuel disassembling process consists of a downender, a rod extraction device, a rod cutting device, a pellet extracting device and a skeleton compaction device. In this study, the 3D graphical design model of these devices is implemented by conceptual design and established the virtual workcell within kinematics to motion of each device. By implementing this graphic simulation, all the unit process involved in the spent fuel disassembling processes are analyzed and optimized. The 3D graphical model and the 3D graphic simulation can be effectively used for designing the process equipment, as well as the optimized process and maintenance process

  5. New tools for redox biology: From imaging to manipulation.

    Science.gov (United States)

    Bilan, Dmitry S; Belousov, Vsevolod V

    2017-08-01

    Redox reactions play a key role in maintaining essential biological processes. Deviations in redox pathways result in the development of various pathologies at cellular and organismal levels. Until recently, studies on transformations in the intracellular redox state have been significantly hampered in living systems. The genetically encoded indicators, based on fluorescent proteins, have provided new opportunities in biomedical research. The existing indicators already enable monitoring of cellular redox parameters in different processes including embryogenesis, aging, inflammation, tissue regeneration, and pathogenesis of various diseases. In this review, we summarize information about all genetically encoded redox indicators developed to date. We provide the description of each indicator and discuss its advantages and limitations, as well as points that need to be considered when choosing an indicator for a particular experiment. One chapter is devoted to the important discoveries that have been made by using genetically encoded redox indicators. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Utility regulation and the legislative process in Oregon: a case study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    This case study discusses the strategies employed by the Public Utility Commissioner and the Oregon Department of Energy in the design, passage and implementation of a set of energy conservation bills. Information is included on the development of new legislation for energy conservation and management, on developing public acceptance of such legislation, and the cooperation received from utility companies to affect implementation. The lessons in strategy and tactics and the skillful use of the legislative process to get the package of bills enacted should have immediate value for those about to undertake a similar effort in their state. (LCL)

  7. Utilization of geothermal energy in the mining and processing of tungsten ore. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, C.K.; Erickson, M.V.; Lowe, G.D.

    1980-02-01

    The status of the engineering and economic feasibility study of utilizing geothermal energy for the mining and processing of tungsten ore at the Union Carbide-Metals Division Pine Creek tungsten complex near Bishop, Calfironia is reviewed. Results of geophysical data analysis including determination of assumed resource parameters are presented. The energy utilization evaluation identifies potential locations for substituting geothermal energy for fossil fuel energy using current technology. Preliminary analyses for local environmental and institutional barriers to development of a geothermal system are also provided.

  8. Status of Utilizing Social Media Networks in the Teaching-Learning Process at Public Jordanian Universities

    Directory of Open Access Journals (Sweden)

    Muneera Abdalkareem Alshdefait

    2018-03-01

    Full Text Available This study aimed at finding out the status of utilizing social media networks in the teaching-learning process at public Jordanian Universities. To achieve the goal of the study, the descriptive developmental method was used and a questionnaire was developed, consisting of (35 statements. The questionnaire was checked for its validity and reliability. Then it was distributed to a sample of (382 male and female students from the undergraduate and graduate levels. The study results showed that the participants gave a low score to the status of utilizing social media networks in the teaching-learning process at public Jordanian universities. The results also showed that there were statistically significant differences between the participants of the study according to the academic rank attributed to the graduate students, and according to gender attributed to male students at the instrument macro level and on all dimensions of the two variables. In light of these results, the study recommended that public universities should utilize modern technology in the educational process, urge and encourage the teaching staff members to use the social media networks in the teaching-learning process and raise the students' awareness about the benefits of using social media networks. Keywords: Social media networks, Teaching-learning process, Public Jordanian Universities

  9. Redox active polymers and colloidal particles for flow batteries

    Science.gov (United States)

    Gavvalapalli, Nagarjuna; Moore, Jeffrey S.; Rodriguez-Lopez, Joaquin; Cheng, Kevin; Shen, Mei; Lichtenstein, Timothy

    2018-05-29

    The invention provides a redox flow battery comprising a microporous or nanoporous size-exclusion membrane, wherein one cell of the battery contains a redox-active polymer dissolved in the non-aqueous solvent or a redox-active colloidal particle dispersed in the non-aqueous solvent. The redox flow battery provides enhanced ionic conductivity across the electrolyte separator and reduced redox-active species crossover, thereby improving the performance and enabling widespread utilization. Redox active poly(vinylbenzyl ethylviologen) (RAPs) and redox active colloidal particles (RACs) were prepared and were found to be highly effective redox species. Controlled potential bulk electrolysis indicates that 94-99% of the nominal charge on different RAPs is accessible and the electrolysis products are stable upon cycling. The high concentration attainable (>2.0 M) for RAPs in common non-aqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for non-aqueous redox flow batteries based on size-selectivity.

  10. Redox signaling in acute pancreatitis

    Science.gov (United States)

    Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan

    2015-01-01

    Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF–VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis. PMID:25778551

  11. Redox signaling in acute pancreatitis

    Directory of Open Access Journals (Sweden)

    Salvador Pérez

    2015-08-01

    Full Text Available Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF–VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis.

  12. Redox Species of Redox Flow Batteries: A Review.

    Science.gov (United States)

    Pan, Feng; Wang, Qing

    2015-11-18

    Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  13. Redox Species of Redox Flow Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2015-11-01

    Full Text Available Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  14. Possibilities of Utilizing the Method of Analytical Hierarchy Process Within the Strategy of Corporate Social Business

    Science.gov (United States)

    Drieniková, Katarína; Hrdinová, Gabriela; Naňo, Tomáš; Sakál, Peter

    2010-01-01

    The paper deals with the analysis of the theory of corporate social responsibility, risk management and the exact method of analytic hierarchic process that is used in the decision-making processes. The Chapters 2 and 3 focus on presentation of the experience with the application of the method in formulating the stakeholders' strategic goals within the Corporate Social Responsibility (CSR) and simultaneously its utilization in minimizing the environmental risks. The major benefit of this paper is the application of Analytical Hierarchy Process (AHP).

  15. Supply chain process collaboration and Internet utilization: an international perspective of business to business relationships

    Directory of Open Access Journals (Sweden)

    Marcos Paulo Valadares de Oliveira

    2015-01-01

    Full Text Available This paper compiles the findings of an international study which primary objective was to investigate the relationships between Internet utilization in business-to-business relationships, collaborative efforts and their impact over supplier and customer-oriented processes performance. It highlights the Internet as an important enhancer of collaboration in supply chains and addresses the effects of such efforts on companies’ overall performance. As a conclusive-descriptive and quantitative study, data from a survey of 788 companies from the USA, China, Canada, United Kingdom, and Brazil were analyzed with the use of descriptive statistics, reliability evaluation of the research model’s internal scales, path analysis and structural equation modeling to evaluate supply chain processes collaboration, both up- and down-stream. Internet utilization in supplier and customer-oriented processes was found positively related to collaborative practices in business-to-business relationships. Collaborative practices in supplier and customer-oriented processes, in turn, showed potential effects on performance. Also, supplier-oriented processes performance was found positively associated with customer-oriented process performance. Both internet use and collaborative practices are even more important in a high-context country like Brazil. The paper helps clarify the impact of internet use on business-to-business collaborative relationships. In this sense, practitioners can take this impact to redraw the organizational landscape and business processes amongst supply chain participants.

  16. Redox interplay between mitochondria and peroxisomes

    Directory of Open Access Journals (Sweden)

    Celien eLismont

    2015-05-01

    Full Text Available Reduction-oxidation or ‘redox’ reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from ‘omics’ technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of

  17. Apparatus and method for materials processing utilizing a rotating magnetic field

    Science.gov (United States)

    Muralidharan, Govindarajan; Angelini, Joseph A.; Murphy, Bart L.; Wilgen, John B.

    2017-04-11

    An apparatus for materials processing utilizing a rotating magnetic field comprises a platform for supporting a specimen, and a plurality of magnets underlying the platform. The plurality of magnets are configured for rotation about an axis of rotation intersecting the platform. A heat source is disposed above the platform for heating the specimen during the rotation of the plurality of magnets. A method for materials processing utilizing a rotating magnetic field comprises providing a specimen on a platform overlying a plurality of magnets; rotating the plurality of magnets about an axis of rotation intersecting the platform, thereby applying a rotating magnetic field to the specimen; and, while rotating the plurality of magnets, heating the specimen to a desired temperature.

  18. Redox process catalysed by growing crystal-strengite, FePO4,2H2O, crystallizing from solution with iron(II) and hydroxylamine

    Science.gov (United States)

    Lundager Madsen, Hans Erik

    2014-09-01

    In an attempt to grow pure crystals of the iron(II) phosphate vivianite, Fe3(PO4)2,8H2O, from a solution of Mohr's salt, Fe(NH4)2(SO4)2,6H2O, added to a solution of ammonium phosphate, hydroxylammonium chloride, NH3OHCl, was added to the iron(II) stock solution to eliminate oxidation of iron(II) by oxygen from the air. However, the effect turned out to be the opposite of the expected: whereas hydroxylamine reduces iron(III) in bulk solution, it acted as a strong oxidant in the presence of growing iron phosphate crystals, causing the crystallization of the iron(III) phosphate strengite, FePO4,2H2O, as the only solid phase. Evidently the crystal surface catalyses oxidation of iron(II) by hydroxylamine. The usual composite kinetics of spiral growth and surface nucleation was found. The surface-nucleation part yielded edge free energy λ in the range 12-45 pJ/m, virtually independent of temperature and in the range typical for phosphates of divalent metals. The scatter of values for λ presumably arises from contributions from different crystal forms to the overall growth rate. The low mean value points to strong adsorption of iron(II), which is subsequently oxidized at the crystal surface, forming strengite. The state of the system did not tend to thermodynamic equilibrium, but to a metastable state, presumably controlled by the iron(II) rich surface layer of the crystal. In addition to crystal growth, it was possible to measure nucleation kinetics by light scattering (turbidimetry). A point of transition from heterogeneous to homogeneous nucleation was found, and from the results for the homogeneous domain a rather precise value of crystal surface free energy γ=55 mJ/m2 was found. This is a relatively low value as well, indicating that the redox process plays a role already at the nucleation stage.

  19. A high sensitivity process variation sensor utilizing sub-threshold operation

    OpenAIRE

    Meterelliyoz, Mesut; Song, Peilin; Stellari, Franco; Kulkarni, Jaydeep P.; Roy, Kaushik

    2008-01-01

    In this paper, we propose a novel low-power, bias-free, high-sensitivity process variation sensor for monitoring random variations in the threshold voltage. The proposed sensor design utilizes the exponential current-voltage relationship of sub-threshold operation thereby improving the sensitivity by 2.3X compared to the above-threshold operation. A test-chip containing 128 PMOS and 128 NMOS devices has been fabri...

  20. Status of Utilizing Social Media Networks in the Teaching-Learning Process at Public Jordanian Universities

    OpenAIRE

    Muneera Abdalkareem Alshdefait; Mohammad . S. Alzboon

    2018-01-01

    This study aimed at finding out the status of utilizing social media networks in the teaching-learning process at public Jordanian Universities. To achieve the goal of the study, the descriptive developmental method was used and a questionnaire was developed, consisting of (35) statements. The questionnaire was checked for its validity and reliability. Then it was distributed to a sample of (382) male and female students from the undergraduate and graduate levels. The study results showed tha...

  1. Characterization of the Redox reaction of V(V) in Ammonia Buffers with Square-Wave Voltammetry

    OpenAIRE

    Mirceski, Valentin; Gulaboski, Rubin; Petrovska-Jovanovic, Simka; Stojanova, Kornelija

    2001-01-01

    The redox reaction of V(V) in ammonia buffers solution with pH = 8.60 was studied by means of square-wave and cyclic voltammetry. The redox reaction studied exhibits properties of a surface redox process in which both the reactant and the product of the redox reaction are immobilized on the electrode surface.

  2. Redox dependent behaviour of molybdenum during magmatic processes in the terrestrial and lunar mantle: Implications for the Mo/W of the bulk silicate Moon

    Science.gov (United States)

    Leitzke, F. P.; Fonseca, R. O. C.; Sprung, P.; Mallmann, G.; Lagos, M.; Michely, L. T.; Münker, C.

    2017-09-01

    We present results of high-temperature olivine-melt, pyroxene-melt and plagioclase-melt partitioning experiments aimed at investigating the redox transition of Mo in silicate systems. Data for a series of other minor and trace elements (Sc, Ba, Sr, Cr, REE, Y, HFSE, U, Th and W) were also acquired to constrain the incorporation of Mo in silicate minerals. All experiments were carried out in vertical tube furnaces at 1 bar and temperatures ranging from ca. 1220 to 1300 °C. Oxygen fugacity was controlled via CO-CO2 gas mixtures and varied systematically from 5.5 log units below to 1.9 log units above the fayalite-magnetite-quartz (FMQ) redox buffer thereby covering the range in oxygen fugacities of terrestrial and lunar basalt genesis. Molybdenum is shown to be volatile at oxygen fugacities above FMQ and that its compatibility in pyroxene and olivine increases three orders of magnitude towards the more reducing conditions covered in this study. The partitioning results show that Mo is dominantly tetravalent at redox conditions below FMQ-4 and dominantly hexavalent at redox conditions above FMQ. Given the differences in oxidation states of the terrestrial (oxidized) and lunar (reduced) mantles, molybdenum will behave significantly differently during basalt genesis in the Earth (i.e. highly incompatible; average DMoperidotite/melt ∼ 0.008) and Moon (i.e. moderately incompatible/compatible; average DMoperidotite/melt ∼ 0.6). Thus, it is expected that Mo will strongly fractionate from W during partial melting in the lunar mantle, given that W is broadly incompatible at FMQ-5. Moreover, the depletion of Mo and the Mo/W range in lunar samples can be reproduced by simply assuming a primitive Earth-like Mo/W for the bulk silicate Moon. Such a lunar composition is in striking agreement with the Moon being derived from the primitive terrestrial mantle after core formation on Earth.

  3. Development of redox stable, multifunctional substrates for anode supported SOFCS

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Foghmoes, Søren Preben Vagn; Ramos, Tania

    2017-01-01

    Redox stable solid oxide fuel cells are beneficial in many aspects such as tolerance against system failures e.g fuel cut off and emergency shut down, but also allow for higher fuel utilization, which increases efficiency. State-ofthe-art Ni-cermet based anodes suffer from microstructural changes...... with a multifunctional anode support, the development of a two layer fuel electrode based on a redox stable strontium titanate layer for the electrochemically active layer and a redox stable Ni-YSZ support was pursued. Half-cells with well adhearing strontium titante anode layers on stateof-the-art Ni-YSZ cermet...... supports have been achieved. Redox tolerance of the half-cell depends could be increased by optimizing the redox stability of the cermet support....

  4. A methodology for the sustainable design and implementation strategy of CO2 utilization processes

    DEFF Research Database (Denmark)

    Roh, Kosan; Frauzem, Rebecca; Nguyen, Tuan B. H.

    2016-01-01

    design and analysis is discussed as only limited amounts of process data is available for determining the optimal processing path and in the third stage the issue of implementation strategy is considered. As examples, two CO2 utilization methods for methanol production, combined reforming and direct...... synthesis are considered. Methanol plants employing such methods are developed using synthesis-design and simulation tools and their evaluation indicators are calculated under various implementation strategies. It is demonstrated that integrating or replacing an existing conventional methanol plant...

  5. Systematic methods and tools for design of sustainable chemical processes for CO2 utilization

    DEFF Research Database (Denmark)

    Kongpanna, Pichayapan; Babi, Deenesh K.; Pavarajarn, Varong

    2016-01-01

    A systematic computer-aided framework for sustainable process design is presented together with its application to the synthesis and generation of processing networks for dimethyl carbonate (DMC) production with CO2 utilization. The framework integrated with various methods, tools, algorithms......-stage involves selection and analysis of the identified networks as a base case design in terms of operational feasibility, economics, life cycle assessment factors and sustainability measures, which are employed to establish targets for improvement in the next-stage. The innovation-stage involves generation...

  6. Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized

    International Nuclear Information System (INIS)

    Gao Ting; Lin Wensheng; Gu Anzhong

    2011-01-01

    Research highlights: → We propose two new light hydrocarbon separation processes utilizing LNG cold energy. → Both processes produce liquefied ethane and LPG with high ethane recovery rate. → CH 4 -riched gas from the high pressure process is compressed to final pressure. → Re-liquefied CH 4 -riched gas from the low pressure one is pumped to final pressure. → Both processes have good performance; the low pressure one is economically better. -- Abstract: Liquefied natural gas (LNG) often consists of some kinds of light hydrocarbons other than methane, such as ethane, propane and butane, which are of high additional value. By efficiently utilization of LNG cryogenic energy, these light hydrocarbons (C 2 + ) can be separated from LNG with low power consumption and LNG is gasified meanwhile. Two novel light hydrocarbon separation processes are proposed in this paper. The first process uses a demethanizer working at higher pressure (about 4.5 MPa). The methane-riched natural gas from the demethanizer can be compressed to pipeline pressure with low power consumption. The other one uses a demethanizer working at lower pressure (about 2.4 MPa). By cascade utilization of LNG cryogenic energy, the methane-riched natural gas from the demethanizer is entirely re-liquefied. Then the liquid product is pressurized to pipeline pressure by pumps instead of compressors, reducing the power consumption greatly. By both of the two processes, liquefied ethane and LPG (liquefied petroleum gas, i.e. C 3 + ) at atmosphere pressure can be obtained directly, and high ethane recovery rate can be gained. On the basis of one typical feed gas composition, the effects of the ethane content and the ethane price to the economics of the light hydrocarbon separation plants are studied, and the economics are compared for these two processes. The results show that recovering light hydrocarbons from LNG can gain great profits by both of the two processes, and from the view of economics, the

  7. Redox Buffer Strength

    Science.gov (United States)

    de Levie, Robert

    1999-04-01

    The proper functioning of enzymes in bodily fluids requires that the pH be maintained within rather narrow limits. The first line of defense against large pH fluctuations in such fluids is the passive control provided by the presence of pH buffers. The ability of pH buffers to stabilize the pH is indicated by the buffer value b introduced in 1922 by van Slyke. It is equally important for many enzymes that the redox potential is kept within a narrow range. In that case, stability of the potential is most readily achieved with a redox buffer. In this communication we define the redox buffer strength by analogy with acid-base buffer strength.

  8. Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process

    International Nuclear Information System (INIS)

    Sorgüven, Esra; Özilgen, Mustafa

    2012-01-01

    This paper investigates the impact of food production processes on the environment in terms of energy and exergy utilization and carbon dioxide emission. There are three different energy utilization mechanisms in food production: Utilization of solar energy by plants to produce agricultural goods; feed consumption by herbivores to produce meat and milk; fossil fuel consumption by industrial processes to perform mixing, cooling, heating, etc. Production of strawberry-flavored yogurt, which involves these three mechanisms, is investigated here thermodynamically. Analysis starts with the cultivation of the ingredients and ends with the transfer of the final product to the market. The results show that 53% of the total exergy loss occurs during the milk production and 80% of the total work input is consumed during the plain yogurt making. The cumulative degree of perfection is 3.6% for the strawberry-flavored yogurt. This value can rise up to 4.6%, if renewable energy resources like hydropower and algal biodiesel are employed instead of fossil fuels. This paper points the direction for the development of new technology in food processing to decrease waste of energy and carbon dioxide accumulation in the atmosphere. -- Highlights: ► Energy and exergy utilization and carbon dioxide emission during strawberry-flavored yogurt production. ► Cumulative degree of perfection of strawberry-flavored yogurt is 3.6%. ► 53% of the total exergy loss occurs during the milk production. ► 80% of the total work input is consumed during the plain yogurt making.

  9. Utilization of the Nursing Process to Foster Clinical Reasoning During a Simulation Experience

    Directory of Open Access Journals (Sweden)

    Amanda Lambie

    2015-11-01

    Full Text Available Nursing practice includes complex reasoning and multifaceted decision making with minimal standardized guidance in how to evaluate this phenomenon among nursing students. Learning outcomes related to the clinical reasoning process among novice baccalaureate nursing students during a simulation experience were evaluated. Nursing process records were utilized to evaluate and foster the development of clinical reasoning in a high-fidelity medical-surgical simulation experience. Students were unable to describe and process pertinent patient information appropriately prior to the simulation experience. Students’ ability to identify pertinent patient cues and plan appropriate patient care improved following the simulation. The learning activity afforded a structured opportunity to identify cues, prioritize the proper course of nursing interventions, and engage in collaboration among peers. The simulation experience provides faculty insight into the students’ clinical reasoning processes, while providing students with a clear framework for successfully accomplishing learning outcomes.

  10. Expanding the printable design space for lithography processes utilizing a cut mask

    Science.gov (United States)

    Wandell, Jerome; Salama, Mohamed; Wilkinson, William; Curtice, Mark; Feng, Jui-Hsuan; Gao, Shao Wen; Asthana, Abhishek

    2016-03-01

    The utilization of a cut-mask in semiconductor patterning processes has been in practice for logic devices since the inception of 32nm-node devices, notably with unidirectional gate level printing. However, the microprocessor applications where cut-mask patterning methods are used are expanding as Self-Aligned Double Patterning (SADP) processes become mainstream for 22/14nm fin diffusion, and sub-14nm metal levels. One common weakness for these types of lithography processes is that the initial pattern requiring the follow-up cut-mask typically uses an extreme off-axis imaging source such as dipole to enhance the resolution and line-width roughness (LWR) for critical dense patterns. This source condition suffers from poor process margin in the semi-dense (forbidden pitch) realm and wrong-way directional design spaces. Common pattern failures in these limited design regions include bridging and extra-printing defects that are difficult to resolve with traditional mask improvement means. This forces the device maker to limit the allowable geometries that a designer may use on a device layer. This paper will demonstrate methods to expand the usable design space on dipole-like processes such as unidirectional gate and SADP processes by utilizing the follow-up cut mask to improve the process window. Traditional mask enhancement means for improving the process window in this design realm will be compared to this new cut-mask approach. The unique advantages and disadvantages of the cut-mask solution will be discussed in contrast to those customary methods.

  11. Redox-assisted Li+-storage in lithium-ion batteries

    International Nuclear Information System (INIS)

    Huang Qizhao; Wang Qing

    2016-01-01

    Interfacial charge transfer is the key kinetic process dictating the operation of lithium-ion battery. Redox-mediated charge propagations of the electronic (e − and h + ) and ionic species (Li + ) at the electrode–electrolyte interface have recently gained increasing attention for better exploitation of battery materials. This article briefly summarises the energetic and kinetic aspects of lithium-ion batteries, and reviews the recent progress on various redox-assisted Li + storage approaches. From molecular wiring to polymer wiring and from redox targeting to redox flow lithium battery, the role of redox mediators and the way of the redox species functioning in lithium-ion batteries are discussed. (topical review)

  12. Emergy Evaluation of a Production and Utilization Process of Irrigation Water in China

    Directory of Open Access Journals (Sweden)

    Dan Chen

    2013-01-01

    Full Text Available Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp. and that the transformities of irrigation water and rice as the systems’ products (1.72E+05 sej/J and 1.42E+05 sej/J, resp.; sej/J = solar emjoules per joule represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R, emergy yield ratio (EYR, emergy investment ratio (EIR, environmental load ratio (ELR, and environmental sustainability index (ESI. The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  13. Emergy evaluation of a production and utilization process of irrigation water in China.

    Science.gov (United States)

    Chen, Dan; Luo, Zhao-Hui; Chen, Jing; Kong, Jun; She, Dong-Li

    2013-01-01

    Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp.) and that the transformities of irrigation water and rice as the systems' products (1.72E + 05 sej/J and 1.42E + 05 sej/J, resp.; sej/J = solar emjoules per joule) represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R), emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR), and environmental sustainability index (ESI). The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  14. Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water

    International Nuclear Information System (INIS)

    Wang Huajun; Zhao Jun; Chen Zhihao

    2008-01-01

    Road ice and snow melting based on low temperature geothermal tail water is of significance to realize energy cascading utilization. A small scale ice and snow melting system is built in this work. Experiments of dynamic melting processes of crushed ice, solid ice, artificial snow and natural snow are conducted on concrete pavement. The results show that the melting process of ice and snow includes three phases: a starting period, a linear period and an accelerated period. The critical value of the snow free area ratio between the linear period and the accelerated period is about 0.6. The physical properties of ice and snow, linked with ambient conditions, have an obvious effect on the melting process. The difference of melting velocity and melting time between ice and snow is compared. To reduce energy consumption, the formation of ice on roads should be avoided if possible. The idling process is an effective pathway to improve the performance of melting systems. It is feasible to utilize geothermal tail water of about 40 deg. C for melting ice and snow on winter roads, and it is unnecessary to keep too high fluid temperatures during the practical design and applications. Besides, with the exception of solid ice, the density and porosity of snow and ice tend to be decreasing and increasing, respectively, as the ambient temperature decreases

  15. Fenton Redox Chemistry : Arsenite Oxidation by Metallic Surfaces

    NARCIS (Netherlands)

    Borges Freitas, S.C.; Van Halem, D.; Badruzzaman, A.B.M.; Van der Meer, W.G.J.

    2014-01-01

    Pre-oxidation of As(III) is necessary in arsenic removal processes in order to increase its efficiency. Therefore, the Fenton Redox Chemistry is defined by catalytic activation of H2O2 and currently common used for its redox oxidative properties. In this study the effect of H2O2 production catalysed

  16. The effects of ergonomic stressors on process tool maintenance and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.

    1998-03-31

    This study examines ergonomic stressors associated with front-end process tool maintenance, relates them to decreased machine utilization, and proposes solution strategies to reduce their negative impact on productivity. Member company ergonomists observed technicians performing field maintenance tasks on seven different bottleneck tools and recorded ergonomic stressors using SEMaCheck, a graphics-based, integrated checklist developed by Sandia National Laboratories. The top ten stressors were prioritized according to a cost formula that accounted for difficulty, time, and potential errors. Estimates of additional time on a task caused by ergonomic stressors demonstrated that machine utilization could be increased from 6% to 25%. Optimal solution strategies were formulated based on redesign budget, stressor cost, and estimates of solution costs and benefits

  17. Accurate Identification of Fatty Liver Disease in Data Warehouse Utilizing Natural Language Processing.

    Science.gov (United States)

    Redman, Joseph S; Natarajan, Yamini; Hou, Jason K; Wang, Jingqi; Hanif, Muzammil; Feng, Hua; Kramer, Jennifer R; Desiderio, Roxanne; Xu, Hua; El-Serag, Hashem B; Kanwal, Fasiha

    2017-10-01

    Natural language processing is a powerful technique of machine learning capable of maximizing data extraction from complex electronic medical records. We utilized this technique to develop algorithms capable of "reading" full-text radiology reports to accurately identify the presence of fatty liver disease. Abdominal ultrasound, computerized tomography, and magnetic resonance imaging reports were retrieved from the Veterans Affairs Corporate Data Warehouse from a random national sample of 652 patients. Radiographic fatty liver disease was determined by manual review by two physicians and verified with an expert radiologist. A split validation method was utilized for algorithm development. For all three imaging modalities, the algorithms could identify fatty liver disease with >90% recall and precision, with F-measures >90%. These algorithms could be used to rapidly screen patient records to establish a large cohort to facilitate epidemiological and clinical studies and examine the clinic course and outcomes of patients with radiographic hepatic steatosis.

  18. Biowaste utilization in the process of co-gasification with bituminous coal and lignite

    International Nuclear Information System (INIS)

    Howaniec, Natalia; Smoliński, Adam

    2017-01-01

    Biowaste utilization in co-gasification with bituminous coal and lignite gives the benefits of stable supplies of a primary energy source – coal and utilization of a zero-emission, waste material (i.e. agriculture waste, sewage sludge, etc.) with higher process efficiency and lower negative environmental impact than biomass or coal gasification, respectively. The main focus of the study presented is co-gasification of bituminous coal or lignite with biowaste to hydrogen-rich gas. The experiments were performed in the laboratory scale fixed-bed reactor installation at 700 and 900 °C. The Hierarchical Clustering Analysis complemented with a color map of studied data were applied in the selection of the optimal operating parameters for biowaste utilization in the co-gasification process based on the experimental data of gasification/co-gasification process as well as physical and chemical properties of fuels tested. The experimental results showed that the carbon conversion rate in co-gasification increased with increasing biomass content in a fuel. The total gas volume and hydrogen volume in co-gasification were higher than the values expected based on the results of the gasification process of the fuels analyzed. - Highlights: • Biowaste co-gasification with bituminous coal/lignite to hydrogen-rich gas. • Steam co-gasification in laboratory scale fixed-bed reactor at 700 and 900 °C. • Hierarchical Clustering Analysis complemented with color map of experimental data. • Carbon conversion increase with increasing biomass content. • The highest total gas and hydrogen volume in co-gasification of C-B20 blend at 900C.

  19. Redox homeostasis: The Golden Mean of healthy living.

    Science.gov (United States)

    Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay

    2016-08-01

    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve "reactive oxygen species" rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary

  20. Redox homeostasis: The Golden Mean of healthy living

    Directory of Open Access Journals (Sweden)

    Fulvio Ursini

    2016-08-01

    Full Text Available The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles

  1. Redox proteomics of tomato in response to Pseudomonas syringae infection

    Science.gov (United States)

    Balmant, Kelly Mayrink; Parker, Jennifer; Yoo, Mi-Jeong; Zhu, Ning; Dufresne, Craig; Chen, Sixue

    2015-01-01

    Unlike mammals with adaptive immunity, plants rely on their innate immunity based on pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) for pathogen defense. Reactive oxygen species, known to play crucial roles in PTI and ETI, can perturb cellular redox homeostasis and lead to changes of redox-sensitive proteins through modification of cysteine sulfhydryl groups. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, little is known about redox proteins and how they function in PTI and ETI. In this study, cysTMT proteomics technology was used to identify similarities and differences of protein redox modifications in tomato resistant (PtoR) and susceptible (prf3) genotypes in response to Pseudomonas syringae pv tomato (Pst) infection. In addition, the results of the redox changes were compared and corrected with the protein level changes. A total of 90 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, biosynthesis of cysteine, sucrose and brassinosteroid, cell wall biogenesis, polysaccharide/starch biosynthesis, cuticle development, lipid metabolism, proteolysis, tricarboxylic acid cycle, protein targeting to vacuole, and oxidation–reduction. This inventory of previously unknown protein redox switches in tomato pathogen defense lays a foundation for future research toward understanding the biological significance of protein redox modifications in plant defense responses. PMID:26504582

  2. The Utilization of Urine Processing for the Advancement of Life Support Technologies

    Science.gov (United States)

    Grossi-Soyster, Elysse; Hogan, John; Flynn, Michael

    2014-01-01

    The success of long-duration missions will depend on resource recovery and the self-sustainability of life support technologies. Current technologies used on the International Space Station (ISS) utilize chemical and mechanical processes, such as filtration, to recover potable water from urine produced by crewmembers. Such technologies have significantly reduced the need for water resupply through closed-loop resource recovery and recycling. Harvesting the important components of urine requires selectivity, whether through the use of membranes or other physical barriers, or by chemical or biological processes. Given the chemical composition of urine, the downstream benefits of urine processing for resource recovery will be critical for many aspects of life support, such as food production and the synthesis of biofuels. This paper discusses the beneficial components of urine and their potential applications, and the challenges associated with using urine for nutrient recycling for space application.

  3. Integrated design and optimization of technologies for utilizing low grade heat in process industries

    International Nuclear Information System (INIS)

    Kwak, Dong-Hun; Binns, Michael; Kim, Jin-Kuk

    2014-01-01

    Highlights: • Implementation of a modeling and design framework for the utilization of low grade heat. • Application of process simulator and optimization techniques for the design of technologies for heat recovery. • Systematic and holistic exploitation for the recovery of industrial low grade heat. • Demonstration of the applicability and benefit of integrated design and optimization framework through a case study. - Abstract: The utilization of low grade heat in process industries has significant potential for improving site-wide energy efficiency. This paper focuses on the techno-economic analysis of key technologies for energy recovery and re-use, namely: Organic Rankine Cycles (ORC), boiler feed water heating, heat pumping and absorption refrigeration in the context of process integration. Process modeling and optimization in a holistic manner identifies the optimal integrated configuration of these technologies, with rigorous assessment of costs and technical feasibility of these technologies. For the systematic screening and evaluation of design options, detailed process simulator models are evaluated and optimization proceeds subject to design constraints for the particular economic scenarios where technology using low grade heat is introduced into the process site. Case studies are presented to illustrate how the proposed modeling and optimization framework can be useful and effective in practice, in terms of providing design guidelines and conceptual insights for the application of technologies using low grade heat. From the case study, the best options during winter are the ORC giving a 6.4% cost reduction for the ideal case with low grade heat available at a fixed temperature and boiler feed water heating giving a 2.5% cost reduction for the realistic case with low grade heat available at a range of temperatures. Similarly during summer boiler feed water heating was found to be the best option giving a 3.1% reduction of costs considering a

  4. Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco.

    Science.gov (United States)

    Pignocchi, Cristina; Kiddle, Guy; Hernández, Iker; Foster, Simon J; Asensi, Amparo; Taybi, Tahar; Barnes, Jeremy; Foyer, Christine H

    2006-06-01

    The role of the redox state of the apoplast in hormone responses, signaling cascades, and gene expression was studied in transgenic tobacco (Nicotiana tabacum) plants with modified cell wall-localized ascorbate oxidase (AO). High AO activity specifically decreased the ascorbic acid (AA) content of the apoplast and altered plant growth responses triggered by hormones. Auxin stimulated shoot growth only when the apoplastic AA pool was reduced in wild-type or AO antisense lines. Oxidation of apoplastic AA in AO sense lines was associated with loss of the auxin response, higher mitogen-activated protein kinase activities, and susceptibility to a virulent strain of the pathogen Pseudomonas syringae. The total leaf glutathione pool, the ratio of reduced glutathione to glutathione disulfide, and glutathione reductase activities were similar in the leaves of all lines. However, AO sense leaves exhibited significantly lower dehydroascorbate reductase and ascorbate peroxidase activities than wild-type and antisense leaves. The abundance of mRNAs encoding antioxidant enzymes was similar in all lines. However, the day/night rhythms in the abundance of transcripts encoding the three catalase isoforms were changed in response to the AA content of the apoplast. Other transcripts influenced by AO included photorespiratory genes and a plasma membrane Ca(2+) channel-associated gene. We conclude that the redox state of the apoplast modulates plant growth and defense responses by regulating signal transduction cascades and gene expression patterns. Hence, AO activity, which modulates the redox state of the apoplastic AA pool, strongly influences the responses of plant cells to external and internal stimuli.

  5. Utilization of the cyanobacteria Anabaena sp CH1 in biological carbon dioxide mitigation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, C.L.; Lee, C.M.; Chen, P.C. [Hungkuang University, Taichung (Taiwan)

    2011-05-15

    Before switching totally to alternative fuel stage, CO{sub 2} mitigation process has considered a transitional strategy for combustion of fossil fuels inevitably. In comparison to other CO{sub 2} mitigation options, such as oceanic or geologic injection, the biological photosynthetic process would present a far superior and sustainable solution under both environmental and social considerations. The utilization of the cyanobacteria Anabaena sp. CH1 in carbon dioxide mitigation processes is analyzed in our research. It was found that an original developed photobioreactor with internal light source exhibits high light utilization. Anabaena sp. CH1 demonstrates excellent CO{sub 2} tolerance even at 15% CO{sub 2} level. This enables flue gas from power plant to be directly introduced to Anabaena sp. CH1 culture. Double light intensity and increased 47% CO{sub 2} bubble retention time could enhance CO{sub 2} removal efficiencies by 79% and 67%, respectively. A maximum CO{sub 2} fixation rate of 1.01 g CO{sub 2} L{sup -1} day{sup -1} was measured experimentally.

  6. Integrating utilization-focused evaluation with business process modeling for clinical research improvement.

    Science.gov (United States)

    Kagan, Jonathan M; Rosas, Scott; Trochim, William M K

    2010-10-01

    New discoveries in basic science are creating extraordinary opportunities to design novel biomedical preventions and therapeutics for human disease. But the clinical evaluation of these new interventions is, in many instances, being hindered by a variety of legal, regulatory, policy and operational factors, few of which enhance research quality, the safety of study participants or research ethics. With the goal of helping increase the efficiency and effectiveness of clinical research, we have examined how the integration of utilization-focused evaluation with elements of business process modeling can reveal opportunities for systematic improvements in clinical research. Using data from the NIH global HIV/AIDS clinical trials networks, we analyzed the absolute and relative times required to traverse defined phases associated with specific activities within the clinical protocol lifecycle. Using simple median duration and Kaplan-Meyer survival analysis, we show how such time-based analyses can provide a rationale for the prioritization of research process analysis and re-engineering, as well as a means for statistically assessing the impact of policy modifications, resource utilization, re-engineered processes and best practices. Successfully applied, this approach can help researchers be more efficient in capitalizing on new science to speed the development of improved interventions for human disease.

  7. Compartmentation of redox metabolism in malaria parasites.

    Directory of Open Access Journals (Sweden)

    Sebastian Kehr

    Full Text Available Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito - a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes--glutathione reductase and thioredoxin reductase--Plasmodium makes use of alternative-translation-initiation (ATI to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention.

  8. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.

    Science.gov (United States)

    Kishida, Naohiro; Kim, Juhyun; Tsuneda, Satoshi; Sudo, Ryuichi

    2006-07-01

    In a biological nutrient removal (BNR) process, the utilization of denitrifying polyphosphate-accumulating organisms (DNPAOs) has many advantages such as effective use of organic carbon substrates and low sludge production. As a suitable process for the utilization of DNPAOs in BNR, an anaerobic/oxic/anoxic granular sludge (AOAGS) process was proposed in this study. In spite of performing aeration for nitrifying bacteria, the AOAGS process can create anaerobic/anoxic conditions suitable for the cultivation of DNPAOs because anoxic zones exist inside the granular sludge in the oxic phase. Thus, DNPAOs can coexist with nitrifying bacteria in a single reactor. In addition, the usability of DNPAOs in the reactor can be improved by adding the anoxic phase after the oxic phase. These characteristics enable the AOAGS process to attain effective removal of both nitrogen and phosphorus. When acetate-based synthetic wastewater (COD: 600 mg/L, NH4-N: 60 mg/L, PO(4)-P: 10 mg/L) was supplied to a laboratory-scale sequencing batch reactor under the operation of anaerobic/oxic/anoxic cycles, granular sludge with a diameter of 500 microm was successfully formed within 1 month. Although the removal of both nitrogen and phosphorus was almost complete at the end of the oxic phase, a short anoxic period subsequent to the oxic phase was necessary for further removal of nitrogen and phosphorus. As a result, effluent concentrations of NH(4)-N, NO(x)-N and PO(4)-P were always lower than 1 mg/L. It was found that penetration depth of oxygen inside the granular sludge was approximately 100 microm by microsensor measurements. In addition, from the microbiological analysis by fluorescence in situ hybridization, existence depth of polyphosphate-accumulating organisms was further than the maximum oxygen penetration depth. The water quality data, oxygen profiles and microbial community structure demonstrated that DNPAOs inside the granular sludge may be responsible for denitrification in the

  9. Redox regulation in cancer stem cells

    Science.gov (United States)

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processe...

  10. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin

    International Nuclear Information System (INIS)

    Cho, Arthur K.; Sioutas, Constantinos; Miguel, Antonio H.; Kumagai, Yoshito; Schmitz, Debra A.; Singh, Manisha; Eiguren-Fernandez, Arantza; Froines, John R.

    2005-01-01

    Epidemiologic studies have shown associations between ambient particulate matter (PM) and adverse health outcomes including increased mortality, emergency room visits, and time lost from school and work. The mechanisms of PM-related health effects are still incompletely understood, but a hypothesis under investigation is that many of the adverse health effects may derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. While the adverse effects from PM have historically been associated with the airborne concentration of PM and more recently fine-particle PM, we considered it relevant to develop an assay to quantitatively measure the ability of PM to catalyze ROS generation as the initial step in the induction of oxidative stress. This ability of PM could then be related to different sources, chemical composition, and physical and spatial/temporal characteristics in the ambient environment. The measurement of ROS-forming ability in relation to sources and other factors will have potential relevance to control of redox-active PM. If oxidative stress represents a relevant mechanism of toxicity from PM, the measurement of redox activity represents a first step in the elucidation of the subsequent downstream processes. We have developed an assay for PM redox activity, utilizing the reduction of oxygen by dithiothreitol which serves as an electron source. We have found that PM will catalyze the reduction of oxygen and have examined the distribution and chemical characteristics of the redox activity of PM fractions collected in different sites in the Los Angeles Basin. Samples of concentrated coarse, fine, and ultrafine PM, obtained with aerosol concentrators, were studied with regard to their chemical properties and redox activity. Redox activity was highest in the ultrafine fraction, in agreement with results indicating ultrafines were the most potent toward inducing that heme oxygenase expression and depleting

  11. Systematic framework for carbon dioxide capture and utilization processes to reduce the global carbon dioxide emissions

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Plaza, Cristina Calvera; Gani, Rafiqul

    information-data on various carbon dioxide emission sources and available capture-utilization technologies; the model and solution libraries [2]; and the generic 3-stage approach for determining more sustainable solutions [3] through superstructure (processing networks) based optimization – adopted for global...... need to provide, amongst other options: useful data from in-house databases on carbon dioxide emission sources; mathematical models from a library of process-property models; numerical solvers from library of implemented solvers; and, work-flows and data-flows for different benefit scenarios...... to be investigated. It is useful to start by developing a prototype framework and then augmenting its application range by increasing the contents of its databases, libraries and work-flows and data-flows. The objective is to present such a prototype framework with its implemented database containing collected...

  12. Utilization of Integrated Process Control, Data Capture, and Data Analysis in Construction of Accelerator Systems

    International Nuclear Information System (INIS)

    Bonnie Madre; Charles Reece; Joseph Ozelis; Valerie Bookwalter

    2003-01-01

    Jefferson Lab has developed a web-based system that integrates commercial database, data analysis, document archiving and retrieval, and user interface software, into a coherent knowledge management product (Pansophy). This product provides important tools for the successful pursuit of major projects such as accelerator system development and construction, by offering elements of process and procedure control, data capture and review, and data mining and analysis. After a period of initial development, Pansophy is now being used in Jefferson Lab's SNS superconducting linac construction effort, as a means for structuring and implementing the QA program, for process control and tracking, and for cryomodule test data capture and presentation/analysis. Development of Pansophy is continuing, in particular data queries and analysis functions that are the cornerstone of its utility

  13. Ethanol from Cellulosic Biomass with Emphasis of Wheat Straw Utilization. Analysis of Strategies for Process Development

    Directory of Open Access Journals (Sweden)

    Alexander Dimitrov Kroumov

    2015-12-01

    Full Text Available The "Green and Blue Technologies Strategies in HORIZON 2020" has increased the attention of scientific society on global utilization of renewable energy sources. Agricultural residues can be a valuable source of energy because of drastically growing human needs for food. The goal of this review is to show the current state of art on utilization of wheat straw as a substrate for ethanol production. The specifics of wheat straw composition and the chemical and thermodynamic properties of its components pre-determined the application of unit operations and engineering strategies for hydrolysis of the substrate and further its fermentation. Modeling of this two processes is crucially important for optimal overall process development and scale up. The authors gave much attention on main hydrolisis products as a glucose and xylose (C6 and C5 sugars, respectivelly and on the specifics of their metabolization by ethanol producing microorganisms. The microbial physiology reacting on C6 and C5 sugars and mathematical aproaches describing these phenomena are discussing, as well.

  14. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    Directory of Open Access Journals (Sweden)

    Belošević Srđan V.

    2016-01-01

    Full Text Available Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by combustion modifications in the 350 MWe Kostolac B boiler furnace, tangentially fired by pulverized Serbian lignite, is investigated in the paper. Numerical experiments were done by an in-house developed three-dimensional differential comprehensive combustion code, with fuel- and thermal-NO formation/destruction reactions model. The code was developed to be easily used by engineering staff for process analysis in boiler units. A broad range of operating conditions was examined, such as fuel and preheated air distribution over the burners and tiers, operation mode of the burners, grinding fineness and quality of coal, boiler loads, cold air ingress, recirculation of flue gases, water-walls ash deposition and combined effect of different parameters. The predictions show that the NOx emission reduction of up to 30% can be achieved by a proper combustion organization in the case-study furnace, with the flame position control. Impact of combustion modifications on the boiler operation was evaluated by the boiler thermal calculations suggesting that the facility was to be controlled within narrow limits of operation parameters. Such a complex approach to pollutants control enables evaluating alternative solutions to achieve efficient and low emission operation of utility boiler units. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in

  15. Study of the Utilization BWR Type Nuclear Power Reactor for Desalination Process

    International Nuclear Information System (INIS)

    Itjeu Karliana; Sumijanto; Dhandhang Purwadi, M.

    2008-01-01

    The needs of fresh water increased by rapid population growth and industrials expansion, but these demands can not be prepared naturally. Following this case, seawater desalination becomes the primer option which can fulfill the need through the nuclear desalination technology. The coupled nuclear power reactor enables to supply thermal energy for auxiliary equipment and pumps operation. The utilization study of power reactor type BWR coupled with desalination process has been performed. The goal of study is to obtain characteristic data of desalted water specification which desalination system coupling with nuclear power plant produced energy for desalination process. The study is carried out by browsing data and information, and comprehensive review of thermal energy correlation between NPP with desalination process installation. According to reviewing are found that the thermal energy and electric power utilization from the nuclear power reactor are enable to remove the seawater to produce desalted water and also to operate auxiliary equipments. The assessment results is VK-300 reactor prototype, BWR type 250 MW(e) power are cogeneration unit can supplied hot steam temperature 285 °C to the extraction turbine to empower 150 MW electric power, and a part of hot steam 130 °C is use to operate desalination process and remind heat is distribute to the municipal and offices at that region. The coupled of VK-300 reactor power type BWR with desalination installation of MED type enable to produce desalted water with high quality distillate. Based on the economic calculation that the VK-300 reactor power of BWR type produced water distillate capacity is 300.000 m 3 /hour with cost US$ 0.58/m 3 . The coupling VK-300 reactor power type BWR with MED desalination plant is competitive economically. (author)

  16. Electron beam processing of materials-R and D and industrial utilization

    International Nuclear Information System (INIS)

    Sarma, K.S.S.

    2005-01-01

    The early sixties witnessed the beginning of Electron Beam (EB) processing of materials using high-energy electrons and has emerged as a well established technology, presently being adapted by the industry. The process and the processed materials showed definite and distinct advantages/characteristics over the available conventional methods. Even though the commercial exploitation started initially in polymer modifications for better (and suitable) performance through polymerization, cross-linking, degradation and grafting, the processing fields are now diverged to sterilization of health care, food irradiation, controlled defects in semiconductor devices and semi and/or precious stones, waste water/flue gas treatment etc. The availability of electron accelerators that operate as per the requirement of the industrial needs, easy maintenance, expertise availability etc brought the EB processing industry into a multi dollar business world wide. In USA and Japan there are more than 1200 accelerators currently operative in automobile tire, wire and cable and heat shrinkable industry. Output beam powers exceeding 400 kW with electron energy ranging from few hundred keV up to 10 MeV are made available to the industry. In BARC EB processing started with the 2MeV/20 kW electron accelerator and suitable processing techniques have been developed for applications like polymer cross linking (heat resistant LDPE O-rings, wire and cable insulation), color enhancement in precious stones (diamonds) on industrial scale and polymer curing, grafting, degradation on R and D/pilot scale. The commercial success of the process enabled the private cable industry to set up accelerators at their factories. On research and development front, the accelerator is being utilized to develop new polymer blends for high temperature applications, for solid and liquid waste treatment, polypropylene grafting experiments for uranium extraction from sea water, surface curing etc. This paper gives

  17. A genome-wide screen in yeast identifies specific oxidative stress genes required for the maintenance of sub-cellular redox homeostasis

    NARCIS (Netherlands)

    Ayer, A.; Fellermeier, S.; Fife, C.; Li, S.S.; Smits, G.; Meyer, A.J.; Dawes, I.W.; Perrone, G.G.

    2012-01-01

    Maintenance of an optimal redox environment is critical for appropriate functioning of cellular processes and cell survival. Despite the importance of maintaining redox homeostasis, it is not clear how the optimal redox potential is sensed and set, and the processes that impact redox on a

  18. Mitochondrial Energy and Redox Signaling in Plants

    Science.gov (United States)

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  19. Microfluidic redox battery.

    Science.gov (United States)

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-07

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  20. Practical utilization of modeling and simulation in laboratory process waste assessments

    International Nuclear Information System (INIS)

    Lyttle, T.W.; Smith, D.M.; Weinrach, J.B.; Burns, M.L.

    1993-01-01

    At Los Alamos National Laboratory (LANL), facility waste streams tend to be small but highly diverse. Initial characterization of such waste streams is difficult in part due to a lack of tools to assist the waste generators in completing such assessments. A methodology has been developed at LANL to allow process knowledgeable field personnel to develop baseline waste generation assessments and to evaluate potential waste minimization technology. This process waste assessment (PWA) system is an application constructed within the process modeling system. The Process Modeling System (PMS) is an object-oriented, mass balance-based, discrete-event simulation using the common LISP object system (CLOS). Analytical capabilities supported within the PWA system include: complete mass balance specifications, historical characterization of selected waste streams and generation of facility profiles for materials consumption, resource utilization and worker exposure. Anticipated development activities include provisions for a best available technologies (BAT) database and integration with the LANL facilities management Geographic Information System (GIS). The environments used to develop these assessment tools will be discussed in addition to a review of initial implementation results

  1. Ediacaran Redox Fluctuations

    Science.gov (United States)

    Sahoo, S. K.; Jiang, G.; Planavsky, N. J.; Kendall, B.; Owens, J. D.; Anbar, A. D.; Lyons, T. W.

    2013-12-01

    Evidence for pervasive oxic conditions, and likely even deep ocean oxygenation has been documented at three intervals in the lower (ca. 632 Ma), middle (ca. 580 Ma) and upper (ca. 551 Ma) Ediacaran. The Doushantuo Formation in South China hosts large enrichments of redox-sensitive trace element (e.g., molybdenum, vanadium and uranium) in anoxic shales, which are indicative of a globally oxic ocean-atmosphere system. However, ocean redox conditions between these periods continue to be a topic of debate and remain elusive. We have found evidence for widespread anoxic conditions through much of the Ediacaran in the deep-water Wuhe section in South China. During most of the Ediacaran-early Cambrian in basinal sections is characterized by Fe speciation data and pyrite morphologies that indicate deposition under euxinic conditions with near-crustal enrichments of redox-sensitive element and positive pyrite-sulfur isotope values, which suggest low levels of marine sulfate and widespread euxinia. Our work reinforces an emerging view that the early Earth, including the Ediacaran, underwent numerous rises and falls in surface oxidation state, rather than a unidirectional rise as originally imagined. The Ediacaran ocean thus experienced repetitive expansion and contraction of marine chalcophilic trace-metal levels that may have had fundamental impact on the slow evolution of early animals and ecosystems. Further, this framework forces us to re-examine the relationship between Neoproterozoic oxygenation and metazoan diversification. Varying redox conditions through the Cryogenian and Ediacaran may help explain molecular clock and biomarker evidence for an early appearance and initial diversification of metazoans but with a delay in the appearance of most major metazoan crown groups until close to Ediacaran-Cambrian boundary.

  2. The utility of an online diagnostic decision support system (Isabel) in general practice: a process evaluation.

    Science.gov (United States)

    Henderson, Emily J; Rubin, Greg P

    2013-05-01

    To evaluate the utility of Isabel, an online diagnostic decision support system developed by Isabel Healthcare primarily for secondary medical care, in the general practice setting. Focus groups were conducted with clinicians to understand why and how they used the system. A modified online post-use survey asked practitioners about its impact on their decision-making. Normalization process theory (NPT) was used as a theoretical framework to determine whether the system could be incorporated into routine clinical practice. The system was introduced by NHS County Durham and Darlington in the UK in selected general practices as a three-month pilot. General practitioners and nurse practitioners who had access to Isabel as part of the Primary Care Trust's pilot. General practitioners' views, experiences and usage of the system. Seven general practices agreed to pilot Isabel. Two practices did not subsequently use it. The remaining five practices conducted searches on 16 patients. Post-use surveys (n = 10) indicated that Isabel had little impact on diagnostic decision-making. Focus group participants stated that, although the diagnoses produced by Isabel in general did not have an impact on their decision-making, they would find the tool useful if it were better tailored to the primary care setting. Our analysis concluded that normalization was not likely to occur in its current form. Isabel was of limited utility in this short pilot study and may need further modification for use in general practice.

  3. Utilization of Liquid Smoke from Oil Palm Empty Fruit Bunches on Raw Rubber Processing

    Directory of Open Access Journals (Sweden)

    Hidayati Hidayati

    2011-06-01

    Full Text Available Research utilization of liquid smoke from oil palm empty fruit bunches of raw rubber has been made to utilize solid waste from industrial processing of oil palm empty fruit bunches of oil palm so that it becomes economically valuable products. This research has been done by pyrolysis of oil palm empty fruit bunches at a temperature of 400oC for 5, 6, 7 and 8 hours. The results show that the pyrolysis liquid smoke oil palm empty fruit bunches for 8 hours give a high concentration of phenol and acetic acid, respectively 5% and 0.454%. Liquid smoke that has been obtained is used as a coagulant in raw rubber plantation crops of the people residing in the village of Ambawang, Kubu Raya District, West Kalimantan. Results of treatment of liquid smoke on raw rubber  show that the rubber products that have been frozen and dried are superior in terms of color, smell and drying time compared with the treatment of formic acid and water battery which has been added so far on raw rubber by the local rubber farmers.

  4. A novel iron-lead redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Ren, Y. X.

    2017-04-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm-2. Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications.

  5. MARS-ORNL, Processing Program Collection for AMPX, CCCC, ANISN, DOT, MORSE Format Library. LINX, MINX Library Utility, Data Merge. BINX, MINX Utility and SPHINX Utility, BCD to BIN Library Conversion. CINX, MINX Utility and SPHINX Utility, Library Data Collapsing

    International Nuclear Information System (INIS)

    2001-01-01

    Description of problem or function: MARS-ORNL is a selection of computer codes for the generation of problem-dependent multigroup cross section libraries. They are selected modules from the AMPX-2 system for AMPX interface format libraries, LASL codes for CCCC interfaces, and processing codes for libraries to be used by ANISN, DOT, or MORSE codes. The codes in the collection are used in connection with the following DLC data libraries: ZZ-LIB-IV (DLC-0040), ZZ-VITAMIN-C (DLC-0041), VITAMIN-4C (DLC-0053), ZZ-CLEAR/42B (DLC-0042), ZZ-CSRL/43B (DLC-0043), and EPRMASTER (DLC-0052). The functions of these processing codes are briefly described: A. AMPX Modules: AIM: Converts AMPX Master Interface Files from EBCDIC to binary form and back. AJAX: Merges, collects, assembles, re-orders, joins, and copies selected nuclides from AMPX Master Interfaces. BONAMI: Accesses Bondarenko factors from an AMPX Master Library and performs resonance self-shielding calculations. CHOX: Produces a coupled interface library in AMPX format by combining neutron libraries (generated by module XLACS), gamma libraries (generated by module SMUG), and photon production libraries (generated by module LAPHNGAS). CHOXM: Combines self-shielding factors as generated by the code SPHINX (PSR-0129) and an infinite dilution neutron master interface (generated by XLACS) to generate a self-shielded neutron AMPX Interface File. The interface produced by CHOXM is an input to the NITAWL module of AMPX. CHOXM is a modified version of CHOX. COMAND: Collapses ANISN cross section libraries. DIAL: Produces edits from AMPX Master Interfaces. ICE-II: Accepts cross sections from an AMPX working library and produces mixed cross sections in four formats: (1) AMPX working library format; (2) ANISN format; (3) group-independent ANISN format; (4) Monte Carlo processed cross section library format. NITAWL: Produces self-shielded and working cross section libraries in the formats required by the ANISN, DOT, or MORSE codes

  6. Comprehensive Utilization of Filter Residue from the Preparation Process of Zeolite-Based Catalysts

    Directory of Open Access Journals (Sweden)

    Shu-Qin Zheng

    2016-05-01

    Full Text Available A novel utilization method of filter residue from the preparation process of zeolite-based catalysts was investigated. Y zeolite and a fluid catalytic cracking (FCC catalyst were synthesized from filter residue. Compared to the Y zeolite synthesized by the conventional method, the Y zeolite synthesized from filter residue exhibited better thermal stability. The catalyst possessed wide-pore distribution. In addition, the pore volume, specific surface area, attrition resistance were superior to those of the reference catalyst. The yields of gasoline and light oil increased by 1.93 and 1.48 %, respectively. At the same time, the coke yield decreased by 0.41 %. The catalyst exhibited better gasoline and coke selectivity. The quality of the cracked gasoline had been improved.

  7. Study to establish cost projections for production of Redox chemicals

    Science.gov (United States)

    Walther, J. F.; Greco, C. C.; Rusinko, R. N.; Wadsworth, A. L., III

    1982-01-01

    A cost study of four proposed manufacturing processes for redox chemicals for the NASA REDOX Energy Storage System yielded favorable selling prices in the range $0.99 to $1.91/kg of chromic chloride, anhydrous basis, including ferrous chloride. The prices corresponded to specific energy storage costs from under $9 to $17/kWh. A refined and expanded cost analysis of the most favored process yielded a price estimate corresponding to a storage cost of $11/kWh. The findings supported the potential economic viability of the NASA REDOX system.

  8. Progress of data processing system in JT-60 utilizing the UNIX-based workstations

    International Nuclear Information System (INIS)

    Sakata, Shinya; Kiyono, Kimihiro; Oshima, Takayuki; Sato, Minoru; Ozeki, Takahisa

    2007-07-01

    JT-60 data processing system (DPS) possesses three-level hierarchy. At the top level of hierarchy is JT-60 inter-shot processor (MSP-ISP), which is a mainframe computer, provides communication with the JT-60 supervisory control system and supervises the internal communication inside the DPS. The middle level of hierarchy has minicomputers and the bottom level of hierarchy has individual diagnostic subsystems, which consist of the CAMAC and VME modules. To meet the demand for advanced diagnostics, the DPS has been progressed in stages from a three-level hierarchy system, which was dependent on the processing power of the MSP-ISP, to a two-level hierarchy system, which is decentralized data processing system (New-DPS) by utilizing the UNIX-based workstations and network technology. This replacement had been accomplished, and the New-DPS has been started to operate in October 2005. In this report, we describe the development and improvement of the New-DPS, whose functions were decentralized from the MSP-ISP to the UNIX-based workstations. (author)

  9. Cross-border shipment route selection utilizing analytic hierarchy process (AHP method

    Directory of Open Access Journals (Sweden)

    Veeris Ammarapala

    2018-02-01

    Full Text Available Becoming a member of ASEAN Economic Community (AEC, Thailand expects a growth of cross-border trade with neighboring countries, especially the agricultural products shipment. To facilitate this, a number of strategies are set, such as the utilization of single check point, the Asian Highway (AH route development, and the truck lane initiation. However, majority of agricultural products traded through the borders are transported using the rural roads, from growing area to the factory, before continuing to the borders using different highways. It is, therefore, necessary for the Department of Rural Roads (DRR to plan for rural road improvement to accommodate the growth of the cross-border trades in the near future. This research, thus, aims to select potential rural roads to support cross-border shipment utilizing the analytic hierarchy process (AHP method. Seven key factors affecting rural roads selection, with references from transport and other related literatures, are extracted. They include:1 cross-border trade value, 2 distance from border to rural road, 3 agriculture and processed agriculture goods transported across the border, 4 compatibility with national strategies, 5 area characteristics around the rural road, 6 truck volume, and 7 number of rural roads in the radius of 50 kilometers from the border. Interviews are conducted with the experts based on seven key factors to collect data for the AHP analysis. The results identify the weight of each factor with an acceptable consistency ratio. It shows that the cross-border trade value is the most important factor as it achieves the highest weight. The distance from border to rural road and the compatibility with national strategies are also found crucial when making rural road selection decision. The Department of Rural Roads could use the results to select suitable roads, and plan for road improvement to support the crossborder shipment when the AEC is fully implemented.

  10. Utilization of electromigration in civil and environmental engineering--processes, transport rates and matrix changes.

    Science.gov (United States)

    Ottosen, Lisbeth M; Christensen, Iben V; Rorig-Dalgård, Inge; Jensen, Pernille E; Hansen, Henrik K

    2008-07-01

    Electromigration (movement of ions in an applied electric field) is utilized for supply or extraction of ions from various porous materials within both civil and environmental engineering. In civil engineering, most research has been conducted on the removal of chlorides from concrete to hinder reinforcement corrosion while in environmental engineering remediation of heavy metal polluted soil is the issue most studied. Never the less, experiments have been conducted with utilization for several other materials and purposes within both engineering fields. Even though there are many topics of common interest in the use of electromigration for the two fields, there is no tradition for collaboration. The present paper is a review with the aim of pointing out areas of shared interest. Focus is laid on the purposes of the different processes, transport rates of various ions in different materials and on changes in the matrix itself. Desorption and dissolution of the target elements into ionic form is a key issue to most of the processes, and can be the limiting step. The removal rate is generally below 1 cm day(- 1), but it can be much less than 1 mm day(- 1) when desorption is slow and insufficient. Matrix changes occurs under the action of the applied electric field and it includes both physico-chemical and hydrological changes. Some of the solid phases is weathered and new can be formed. Increased fundamental understanding of the effects and side effects, when applying the electric field to a porous material, can lead to improvement of the known technologies and possibly to new applications.

  11. An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm

    Directory of Open Access Journals (Sweden)

    Chinmaya P. Mohanty

    2017-04-01

    Full Text Available Although significant research has gone into the field of electrical discharge machining (EDM, analysis related to the machining efficiency of the process with different electrodes has not been adequately made. Copper and brass are frequently used as electrode materials but graphite can be used as a potential electrode material due to its high melting point temperature and good electrical conductivity. In view of this, the present work attempts to compare the machinability of copper, graphite and brass electrodes while machining Inconel 718 super alloy. Taguchi’s L27 orthogonal array has been employed to collect data for the study and analyze effect of machining parameters on performance measures. The important performance measures selected for this study are material removal rate, tool wear rate, surface roughness and radial overcut. Machining parameters considered for analysis are open circuit voltage, discharge current, pulse-on-time, duty factor, flushing pressure and electrode material. From the experimental analysis, it is observed that electrode material, discharge current and pulse-on-time are the important parameters for all the performance measures. Utility concept has been implemented to transform a multiple performance characteristics into an equivalent performance characteristic. Non-linear regression analysis is carried out to develop a model relating process parameters and overall utility index. Finally, the quantum behaved particle swarm optimization (QPSO and particle swarm optimization (PSO algorithms have been used to compare the optimal level of cutting parameters. Results demonstrate the elegance of QPSO in terms of convergence and computational effort. The optimal parametric setting obtained through both the approaches is validated by conducting confirmation experiments.

  12. Redox Control of Skeletal Muscle Regeneration.

    Science.gov (United States)

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  13. Creation of a simple natural language processing tool to support an imaging utilization quality dashboard.

    Science.gov (United States)

    Swartz, Jordan; Koziatek, Christian; Theobald, Jason; Smith, Silas; Iturrate, Eduardo

    2017-05-01

    Testing for venous thromboembolism (VTE) is associated with cost and risk to patients (e.g. radiation). To assess the appropriateness of imaging utilization at the provider level, it is important to know that provider's diagnostic yield (percentage of tests positive for the diagnostic entity of interest). However, determining diagnostic yield typically requires either time-consuming, manual review of radiology reports or the use of complex and/or proprietary natural language processing software. The objectives of this study were twofold: 1) to develop and implement a simple, user-configurable, and open-source natural language processing tool to classify radiology reports with high accuracy and 2) to use the results of the tool to design a provider-specific VTE imaging dashboard, consisting of both utilization rate and diagnostic yield. Two physicians reviewed a training set of 400 lower extremity ultrasound (UTZ) and computed tomography pulmonary angiogram (CTPA) reports to understand the language used in VTE-positive and VTE-negative reports. The insights from this review informed the arguments to the five modifiable parameters of the NLP tool. A validation set of 2,000 studies was then independently classified by the reviewers and by the tool; the classifications were compared and the performance of the tool was calculated. The tool was highly accurate in classifying the presence and absence of VTE for both the UTZ (sensitivity 95.7%; 95% CI 91.5-99.8, specificity 100%; 95% CI 100-100) and CTPA reports (sensitivity 97.1%; 95% CI 94.3-99.9, specificity 98.6%; 95% CI 97.8-99.4). The diagnostic yield was then calculated at the individual provider level and the imaging dashboard was created. We have created a novel NLP tool designed for users without a background in computer programming, which has been used to classify venous thromboembolism reports with a high degree of accuracy. The tool is open-source and available for download at http

  14. An application of actinide elements for a redox flow battery

    International Nuclear Information System (INIS)

    Shiokawa, Yoshinobu; Yamana, Hajimu; Moriyama, Hirotake

    2000-01-01

    The electrochemical properties of U, Np, Pu and Am were discussed from the viewpoint of cell active materials. From the thermodynamic properties and the kinetics of electrode reactions, it is found that neptunium in the aqueous system can be utilized as an active material of the redox flow battery for the electric power storage. A new neptunium redox battery is proposed in the present article: the galvanic cell is expressed by (-)|Np 3+ , Np 4+ |NpO 2 + , NpO 2 2+ |(+). The neptunium battery is expected to have more excellent charge and discharge performance than the current vanadium battery, whereas the thermodynamic one of the former is comparable to the latter. For the development of a uranium redox battery, the application of the redox reactions in the non-aqueous solvents is essential. (author)

  15. Identification of redox-sensitive cysteines in the arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method

    KAUST Repository

    Liu, Pei

    2014-01-28

    Cellular redox status plays a key role in mediating various physiological and developmental processes often through modulating activities of redox-sensitive proteins. Various stresses trigger over-production of reactive oxygen/nitrogen species which lead to oxidative modifications of redox-sensitive proteins. Identification and characterization of redox-sensitive proteins are important steps toward understanding molecular mechanisms of stress responses. Here, we report a high-throughput quantitative proteomic approach termed OxiTRAQ for identifying proteins whose thiols undergo reversible oxidative modifications in Arabidopsis cells subjected to oxidative stress. In this approach, a biotinylated thiol-reactive reagent is used for differential labeling of reduced and oxidized thiols. The biotin-tagged peptides are affinity purified, labeled with iTRAQ reagents, and analyzed using a paralleled HCD-CID fragmentation mode in an LTQ-Orbitrap. With this approach, we identified 195 cysteine-containing peptides from 179 proteins whose thiols underwent oxidative modifications in Arabidopsis cells following the treatment with hydrogen peroxide. A majority of those redox-sensitive proteins, including several transcription factors, were not identified by previous redox proteomics studies. This approach allows identification of the specific redox-regulated cysteine residues, and offers an effective tool for elucidation of redox proteomes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Kynurenine pathway metabolites and enzymes involved in redox reactions.

    Science.gov (United States)

    González Esquivel, D; Ramírez-Ortega, D; Pineda, B; Castro, N; Ríos, C; Pérez de la Cruz, V

    2017-01-01

    Oxido-reduction reactions are a fundamental part of the life due to support many vital biological processes as cellular respiration and glucose oxidation. In the redox reactions, one substance transfers one or more electrons to another substance. An important electron carrier is the coenzyme NAD + , which is involved in many metabolic pathways. De novo biosynthesis of NAD + is through the kynurenine pathway, the major route of tryptophan catabolism, which is sensitive to redox environment and produces metabolites with redox capacity, able to alter biological functions that are controlled by redox-responsive signaling pathways. Kynurenine pathway metabolites have been implicated in the physiology process and in the physiopathology of many diseases; processes that also share others factors as dysregulation of calcium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation and cell death, which impact the redox environment. This review examines in detail the available evidence in which kynurenine pathway metabolites participate in redox reactions and their effect on cellular redox homeostasis, since the knowledge of the main factors and mechanisms that lead to cell death in many neurodegenative disorders and other pathologies, such as mitochondrial dysfunction, oxidative stress and kynurenines imbalance, will allow to develop therapies using them as targets. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Redox electrode materials for supercapatteries

    OpenAIRE

    Yu, Linpo; Chen, George Z.

    2016-01-01

    Redox electrode materials, including transition metal oxides and electronically conducting polymers, are capable of faradaic charge transfer reactions, and play important roles in most electrochemical energy storage devices, such as supercapacitor, battery and supercapattery. Batteries are often based on redox materials with low power capability and safety concerns in some cases. Supercapacitors, particularly those based on redox inactive materials, e.g. activated carbon, can offer high power...

  18. Energy Utilization and Environmental Aspects of Rice Processing Industries in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammed Ahiduzzaman

    2009-03-01

    Full Text Available In this study, the energy utilization and environmental aspects of the rice processing industries in Bangladesh was analyzed. Rice husk, a milling by-product of rice, is used as a source of thermal energy to produce steam for parboiling of raw rice. The rice is mostly dried on a concrete floor under the sunshine. In mechanical drying, rice husks are used as a source of primary energy. In Bangladesh, the annual estimated energy used in 2000 for the drying of rice by sunshine was 10.7 million GJ and for drying and parboiling by rice husks it was 48.2 million GJ. These amounts will increase to 20.5 and 92.5 million GJ in 2030, respectively. Electrical energy consumption for mechanical drying and milling of rice was calculated as 1.83 million GJe and 3.51 million GJe in 2000 and in 2030, respectively. Biogenic carbon dioxide emission from burning of rice husk is renewed every year by the rice plant. Both the biogenic and non-biogenic carbon dioxide emissions in 2000 were calculated as 5.7 and 0.4 million tonnes, respectively, which will increase to 10.9 and 0.7 million tonnes in 2030. The demand of energy for rice processing increases every year, therefore, energy conservation in rice processing industries would be a viable option to reduce the intensity of energy by increasing the efficiency of rice processing systems which leads to a reduction in emissions and an increased supply of rice husk energy to other sectors as well.

  19. Energy utilization and environmental aspects of rice processing industries in Bangladesh

    International Nuclear Information System (INIS)

    Ahiduzzaman, M.; Sadrul Islam, A. K. L.

    2009-01-01

    In this study, the energy utilization and environmental aspects of the rice processing industries in Bangladesh was analyzed. Rice husk, a milling by-product of rice, is used as a source of thermal energy to produce steam for parboiling of raw rice. The rice is mostly dried on a concrete floor under the sunshine. In mechanical drying, rice husks are used as a source of primary energy. In Bangladesh, the annual estimated energy used in 2000 for the drying of rice by sunshine was 10.7 million GJ and for drying and parboiling by rice husks it was 48.2 million GJ. These amounts will increase to 20.5 and 92.5 million GJ in 2030, respectively. Electrical energy consumption for mechanical drying and milling of rice was calculated as 1.83 million GJ e and 3.51 million GJ e in 2000 and in 2030, respectively... Biogenic carbon dioxide emission from burning of rice husk is renewed every year by the rice plant. Both the biogenic and non-biogenic carbon dioxide emissions in 2000 were calculated as 5.7 and 0.4 million tonnes, respectively, which will increase to 10.9 and 0.7 million tonnes in 2030. The demand of energy for rice processing increases every year, therefore, energy conservation in rice processing industries would be a viable option to reduce the intensity of energy by increasing the efficiency of rice processing systems which leads to a reduction in emissions and an increased supply of rice husk energy to other sectors as well. (author)

  20. Energy utilization and environmental aspects of rice processing industries in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Ahiduzzaman, M. [Farm Machinery and Postharvest Technology Division, Bangladesh Rice Research Institute, Gazipur-1701 (Bangladesh); Sadrul Islam, A. K. L. [Department of Mechanical and Chemical Engineering, Islamic University of Technology, Organization of the Islamic Conference (OIC), Board Bazar, Gazipur-1704 (Bangladesh)

    2009-07-01

    In this study, the energy utilization and environmental aspects of the rice processing industries in Bangladesh was analyzed. Rice husk, a milling by-product of rice, is used as a source of thermal energy to produce steam for parboiling of raw rice. The rice is mostly dried on a concrete floor under the sunshine. In mechanical drying, rice husks are used as a source of primary energy. In Bangladesh, the annual estimated energy used in 2000 for the drying of rice by sunshine was 10.7 million GJ and for drying and parboiling by rice husks it was 48.2 million GJ. These amounts will increase to 20.5 and 92.5 million GJ in 2030, respectively. Electrical energy consumption for mechanical drying and milling of rice was calculated as 1.83 million GJ{sub e} and 3.51 million GJ{sub e} in 2000 and in 2030, respectively... Biogenic carbon dioxide emission from burning of rice husk is renewed every year by the rice plant. Both the biogenic and non-biogenic carbon dioxide emissions in 2000 were calculated as 5.7 and 0.4 million tonnes, respectively, which will increase to 10.9 and 0.7 million tonnes in 2030. The demand of energy for rice processing increases every year, therefore, energy conservation in rice processing industries would be a viable option to reduce the intensity of energy by increasing the efficiency of rice processing systems which leads to a reduction in emissions and an increased supply of rice husk energy to other sectors as well. (author)

  1. Utilization and application of wet potato processing coproducts for finishing cattle.

    Science.gov (United States)

    Nelson, M L

    2010-04-01

    Wet coproducts fed to beef cattle include processing coproducts of the fruit, vegetable, juice, and brewing industries. Considerations for their utilization in beef cattle diets include quantity available, feeding value, quality of animal products produced, economics (e.g., transportation of water), storage and preservation, consumer perception, nuisance concerns, contaminants, and interactions with other diet ingredients. Potato (Solanum tuberosum) coproducts from processing for frozen food products may be quantitatively most important because the 11.3 million t of potatoes (fresh weight) processed in the United States and Canada in 2008 resulted in an estimated 4.3 million t (as-is basis) of coproduct. Chemical composition and feeding value of potato coproducts depends on the coproduct type. The names of coproducts vary among potato processors and some processors combine the different coproducts into one product commonly called slurry. The 4 main potato coproducts are 1) potato peels; 2) screen solids (small potatoes and pieces); 3) fried product (fries, hash browns, batter, crumbles); and 4) material from the water recovery systems (oxidation ditch, belt solids, filter cake). The coproducts, except the fried products, ensile rapidly, reaching pH 5 in 7 d or less. Dry matter content varies from 10 to 30% and on a DM basis varies in CP (5 to 27%), starch (3 to 56%), NDF (4 to 41%), and ether extract (3 to 37%) content among potato coproducts. Type of coproduct and frying greatly affect the energy value (0.6 to 1.6 Mcal of NE(g)/kg of DM). Composition, quality, and shelf life of beef was not affected by potato coproduct feeding in contrast to perceptions of some purveyors and chefs. Potato coproducts are quantitatively important energy sources in beef cattle diets, which, in turn, solve a potentially massive disposal problem for the food processing industry.

  2. Compromised redox homeostasis, altered nitroso-redox balance, and therapeutic possibilities in atrial fibrillation.

    Science.gov (United States)

    Simon, Jillian N; Ziberna, Klemen; Casadei, Barbara

    2016-04-01

    Although the initiation, development, and maintenance of atrial fibrillation (AF) have been linked to alterations in myocyte redox state, the field lacks a complete understanding of the impact these changes may have on cellular signalling, atrial electrophysiology, and disease progression. Recent studies demonstrate spatiotemporal changes in reactive oxygen species production shortly after the induction of AF in animal models with an uncoupling of nitric oxide synthase activity ensuing in the presence of long-standing persistent AF, ultimately leading to a major shift in nitroso-redox balance. However, it remains unclear which radical or non-radical species are primarily involved in the underlying mechanisms of AF or which proteins are targeted for redox modification. In most instances, only free radical oxygen species have been assessed; yet evidence from the redox signalling field suggests that non-radical species are more likely to regulate cellular processes. A wider appreciation for the distinction of these species and how both species may be involved in the development and maintenance of AF could impact treatment strategies. In this review, we summarize how redox second-messenger systems are regulated and discuss the recent evidence for alterations in redox regulation in the atrial myocardium in the presence of AF, while identifying some critical missing links. We also examine studies looking at antioxidants for the prevention and treatment of AF and propose alternative redox targets that may serve as superior therapeutic options for the treatment of AF. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  3. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max).

    Science.gov (United States)

    Marquez-Garcia, Belén; Shaw, Daniel; Cooper, James William; Karpinska, Barbara; Quain, Marian Dorcas; Makgopa, Eugene Matome; Kunert, Karl; Foyer, Christine Helen

    2015-09-01

    Water is an increasingly scarce resource that limits crop productivity in many parts of the world, and the frequency and severity of drought are predicted to increase as a result of climate change. Improving tolerance to drought stress is therefore important for maximizing future crop yields. The aim of this study was to compare the effects of drought on soybean (Glycine max) leaves and nodules in order to define phenotypic markers and changes in cellular redox state that characterize the stress response in different organs, and to characterize the relationships between leaf and nodule senescence during drought. Leaf and crown nodule metabolite pools were measured together with leaf and soil water contents, and leaf chlorophyll, total protein contents and chlorophyll a fluorescence quenching parameters in nodulated soybeans that were grown under either well-watered conditions or deprived of water for up to 21 d. Ureides, ascorbate, protein, chlorophyll and the ratios of variable chlorophyll a fluorescence (Fv') to maximal chlorophyll a fluorescence (Fm') fell to levels below detection in the oldest leaves after 21 d of drought. While these drought-induced responses were not observed in the youngest leaf ranks, the Fv'/Fm' ratios, pyridine nucleotide levels and the reduction state of the ascorbate pool were lower in all leaf ranks after 21 d of drought. In contrast to leaves, total nodule protein, pyridine nucleotides, ureides, ascorbate and glutathione contents increased as a result of the drought treatment. However, the nodule ascorbate pool was significantly less reduced as a result of drought. Higher levels of transcripts encoding two peroxiredoxins were detected in nodules exposed to drought stress but senescence-associated transcripts and other mRNAs encoding redox-related proteins were similar under both conditions. While the physiological impact of the drought was perceived throughout the shoot, stress-induced senescence occurred only in the oldest

  4. Cesium removal demonstration utilizing crystalline silicotitanate sorbent for processing Melton Valley Storage Tank supernate: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.F. Jr.; Taylor, P.A.; Cummins, R.L. [and others

    1998-03-01

    This report provides details of the Cesium Removal Demonstration (CsRD), which was conducted at Oak Ridge National Laboratory (ORNL) on radioactive waste from the Melton Valley Storage Tanks. The CsRD was the first large-scale use of state-of-the-art sorbents being developed by private industry for the selective removal of cesium and other radionuclides from liquid wastes stored across the DOE complex. The crystalline silicotitanate sorbent used in the demonstration was chosen because of its effectiveness in laboratory tests using bench-scale columns. The demonstration showed that the cesium could be removed from the supernate and concentrated on a small-volume, solid waste form that would meet the waste acceptance criteria for the Nevada Test Site. During this project, the CsRD system processed > 115,000 L (30,000 gal) of radioactive supernate with minimal operational problems. Sluicing, drying, and remote transportation of the sorbent, which could not be done on a bench scale, were successfully demonstrated. The system was then decontaminated to the extent that it could be contact maintained with the use of localized shielding only. By utilizing a modular, transportable design and placement within existing facilities, the system can be transferred to different sites for reuse. The initial unit has now been removed from the process building and is presently being reinstalled for use in baseline operations at ORNL.

  5. Design and process integration of organic Rankine cycle utilizing biomass for power generation

    Science.gov (United States)

    Ependi, S.; Nur, T. B.

    2018-02-01

    Indonesia has high potential biomass energy sources from palm oil mill industry activities. The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used for generating electricity from rejected waste heat to the environment in industrial processes. In this study, the potential of the palm oil empty fruit bunch, and wood chip have been used as fuel for biomass to generate electricity based ORC with combustion processes. The heat from combustion burner was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC unit. Appropriate designs integration from biomass combustion unit to ORC unit have been analyzed and proposed to generate expander shaft-work. Moreover, the effect of recuperator on the total system efficiency has also been investigated. It was observed that the fuel consumption was increased when the ORC unit equipped recuperator operated until certain pressure and decreased when operated at high pressure.

  6. Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process.

    Science.gov (United States)

    Tôrres Filho, Artur; Lange, Liséte Celina; de Melo, Gilberto Caldeira Bandeira; Praes, Gustavo Eduardo

    2016-02-01

    Pyrolysis is the thermal degradation of organic material in oxygen-free or very lean oxygen atmosphere. This study evaluates the use of pyrolysis for conversion of leather wastes from chromium tanning processes into Carbonized Leather Residues (CLR), and the utilization of CLR in metallurgical processes through the production of iron ore pellets. CLR was used to replace mineral coal in proportions of 10% and 25% on fixed carbon basis content in the mixtures for pellets preparation. Experimental conversions were performed on a pilot scale pyrolysis plant and a pelletizing reactor of the "pot grate" type. The results demonstrated the technical feasibility of using the charcoal product from animal origin as an energy source, with recovery of up to 76.47% of chromium contained in CLR in the final produced of iron ore pellets. Pellets with 25% replacement of fixed carbon in the coal showed an enhanced compressive strength, with an average value of 344kgfpellet(-1), compared to 300kgfpellet(-1) for standard produced pellets. Copyright © 2015. Published by Elsevier Ltd.

  7. Inactivation of viruses in bubbling processes utilized for personal bioaerosol monitoring.

    Science.gov (United States)

    Agranovski, I E; Safatov, A S; Borodulin, A I; Pyankov, O V; Petrishchenko, V A; Sergeev, A N; Agafonov, A P; Ignatiev, G M; Sergeev, A A; Agranovski, V

    2004-12-01

    A new personal bioaerosol sampler has recently been developed and evaluated for sampling of viable airborne bacteria and fungi under controlled laboratory conditions and in the field. The operational principle of the device is based on the passage of air through porous medium immersed in liquid. This process leads to the formation of bubbles within the filter as the carrier gas passes through and thus provides effective mechanisms for aerosol removal. As demonstrated in previous studies, the culturability of sampled bacterium and fungi remained high for the entire 8-h sampling period. The present study is the first step of the evaluation of the new sampler for monitoring of viable airborne viruses. It focuses on the investigation of the inactivation rate of viruses in the bubbling process during 4 h of continuous operation. Four microbes were used in this study, influenza, measles, mumps, and vaccinia viruses. It was found that the use of distilled water as the collection fluid was associated with a relatively high decay rate. A significant improvement was achieved by utilizing virus maintenance fluid prepared by using Hank's solution with appropriate additives. The survival rates of the influenza, measles, and mumps viruses were increased by 1.4 log, 0.83 log, and 0.82 log, respectively, after the first hour of operation compared to bubbling through the sterile water. The same trend was observed throughout the entire 4-h experiment. There was no significant difference observed only for the robust vaccinia virus.

  8. Utilizing clad piping to improve process plant piping integrity, reliability, and operations

    International Nuclear Information System (INIS)

    Chakravarti, B.

    1996-01-01

    During the past four years carbon steel piping clad with type 304L (UNS S30403) stainless steel has been used to solve the flow accelerated corrosion (FAC) problem in nuclear power plants with exceptional success. The product is designed to allow ''like for like'' replacement of damaged carbon steel components where the carbon steel remains the pressure boundary and type 304L (UNS S30403) stainless steel the corrosion allowance. More than 3000 feet of piping and 500 fittings in sizes from 6 to 36-in. NPS have been installed in the extraction steam and other lines of these power plants to improve reliability, eliminate inspection program, reduce O and M costs and provide operational benefits. This concept of utilizing clad piping in solving various corrosion problems in industrial and process plants by conservatively selecting a high alloy material as cladding can provide similar, significant benefits in controlling corrosion problems, minimizing maintenance cost, improving operation and reliability to control performance and risks in a highly cost effective manner. This paper will present various material combinations and applications that appear ideally suited for use of the clad piping components in process plants

  9. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction

    International Nuclear Information System (INIS)

    Liang, Yicheng; Peng, Hao

    2015-01-01

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity. (paper)

  10. Cesium removal demonstration utilizing crystalline silicotitanate sorbent for processing Melton Valley Storage Tank supernate: Final report

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Taylor, P.A.; Cummins, R.L.

    1998-03-01

    This report provides details of the Cesium Removal Demonstration (CsRD), which was conducted at Oak Ridge National Laboratory (ORNL) on radioactive waste from the Melton Valley Storage Tanks. The CsRD was the first large-scale use of state-of-the-art sorbents being developed by private industry for the selective removal of cesium and other radionuclides from liquid wastes stored across the DOE complex. The crystalline silicotitanate sorbent used in the demonstration was chosen because of its effectiveness in laboratory tests using bench-scale columns. The demonstration showed that the cesium could be removed from the supernate and concentrated on a small-volume, solid waste form that would meet the waste acceptance criteria for the Nevada Test Site. During this project, the CsRD system processed > 115,000 L (30,000 gal) of radioactive supernate with minimal operational problems. Sluicing, drying, and remote transportation of the sorbent, which could not be done on a bench scale, were successfully demonstrated. The system was then decontaminated to the extent that it could be contact maintained with the use of localized shielding only. By utilizing a modular, transportable design and placement within existing facilities, the system can be transferred to different sites for reuse. The initial unit has now been removed from the process building and is presently being reinstalled for use in baseline operations at ORNL

  11. Utilization of Black Tiger Shrimp Flesh Waste for Pop Shrimp Processing

    Directory of Open Access Journals (Sweden)

    Hari Eko Irianto

    2017-05-01

    Full Text Available A study on the utilization of black  tiger shrimp (Penaeus monodon flesh waste in the processing of pop shrimp has been carried out.  So far, shrimp flesh waste is used for the production of shrimp paste, and shrimp cracker.   The objective of this study was to develop a fomula for pop shrimp production using shrimp flesh waste. Experimental design applied in this study was three-variables mixture design, in which variables observed were shrimp flesh waste, surimi and tapioca flour. Pop shrimp obtained was evaluated for sensory properties. The best product processed using a selected formula was analysed chemically and microbiologically, particularly for proxymate composition and total plate count respectively. Selected formula of pop shrimp consisted of 50.91% shrimp flesh waste, 18.18% surimi, 3.64% tapioca flour, 10.91% onion, 2.18% garlic, 0.73% pepper powder, 1.45% sugar, 0.36% monosodium glutamate, 0.73% ginger, 1.45% salt, 4.44% butter mix, 1.38% corn flour (maizena and 3.64% bread crumb. Proxymate composition of the best pop shrimp was 70.52% moisture, 0.73% ash, 0.39% fat, and 7.44% protein, while microbiological load in terms of total plate count was 3.3x103 colonies/g.

  12. Energy and Resource Saving of Steelmaking Process: Utilization of Innovative Multi-phase Flux During Dephosphorization Process

    Science.gov (United States)

    Matsuura, Hiroyuki; Hamano, Tasuku; Zhong, Ming; Gao, Xu; Yang, Xiao; Tsukihashi, Fumitaka

    2014-09-01

    An increase in the utilization efficiency of CaO, one of the major fluxing agents used in various steelmaking processes, is required to reduce the amount of discharged slag and energy consumption of the process. The authors have intensively focused on the development of innovative dephosphorization process by using so called "multi-phase flux" composed of solid and liquid phases. This article summarizes the research on the above topic done by the authors, in which the formation mechanisms of P2O5-containing phase during CaO or 2CaO·SiO2 dissolution into molten slag, the phase relationship between solid and liquid phases at equilibrium, and thermodynamic properties of P2O5-containing phase have been clarified. The reactions between solid CaO or 2CaO·SiO2 and molten CaO-FeO x -SiO2-P2O5 slag were observed by dipping solid specimen in the synthesized slag at 1573 K or 1673 K. The formation of the CaO-FeO layer and dual-phase layer of solid 2CaO·SiO2 and FeO x -rich liquid phase was observed around the interface from the solid CaO side toward the bulk slag phase side. Condensation of P2O5 into 2CaO·SiO2 phase as 2CaO·SiO2-3CaO·P2O5 solid solution was observed in both cases of CaO and 2CaO·SiO2 as solid specimens. Measurement of the phase relationship for the CaO-FeO x -SiO2-P2O5 system confirmed the condensation of P2O5 in solid phase at low oxygen partial pressure. The thermodynamics of 2CaO·SiO2-3CaO·P2O5 solid solution are to be clarified to quantitatively simulate the dephosphorization process, and the current results are also introduced. Based on the above results, the reduction of CaO consumption, the discharged slag curtailment, and energy-saving effects have been discussed.

  13. Prediction of Adequate Prenatal Care Utilization Based on the Extended Parallel Process Model.

    Science.gov (United States)

    Hajian, Sepideh; Imani, Fatemeh; Riazi, Hedyeh; Salmani, Fatemeh

    2017-10-01

    Pregnancy complications are one of the major public health concerns. One of the main causes of preventable complications is the absence of or inadequate provision of prenatal care. The present study was conducted to investigate whether Extended Parallel Process Model's constructs can predict the utilization of prenatal care services. The present longitudinal prospective study was conducted on 192 pregnant women selected through the multi-stage sampling of health facilities in Qeshm, Hormozgan province, from April to June 2015. Participants were followed up from the first half of pregnancy until their childbirth to assess adequate or inadequate/non-utilization of prenatal care services. Data were collected using the structured Risk Behavior Diagnosis Scale. The analysis of the data was carried out in SPSS-22 using one-way ANOVA, linear regression and logistic regression analysis. The level of significance was set at 0.05. Totally, 178 pregnant women with a mean age of 25.31±5.42 completed the study. Perceived self-efficacy (OR=25.23; Pprenatal care. Husband's occupation in the labor market (OR=0.43; P=0.02), unwanted pregnancy (OR=0.352; Pcare for the minors or elderly at home (OR=0.35; P=0.045) were associated with lower odds of receiving prenatal care. The model showed that when perceived efficacy of the prenatal care services overcame the perceived threat, the likelihood of prenatal care usage will increase. This study identified some modifiable factors associated with prenatal care usage by women, providing key targets for appropriate clinical interventions.

  14. Managing the cellular redox hub in photosynthetic organisms.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2012-02-01

    Light-driven redox chemistry is a powerful source of redox signals that has a decisive input into transcriptional control within the cell nucleus. Like photosynthetic electron transport pathways, the respiratory electron transport chain exerts a profound control over gene function, in order to balance energy (reductant and ATP) supply with demand, while preventing excessive over-reduction or over-oxidation that would be adversely affect metabolism. Photosynthetic and respiratory redox chemistries are not merely housekeeping processes but they exert a controlling influence over every aspect of plant biology, participating in the control of gene transcription and translation, post-translational modifications and the regulation of assimilatory reactions, assimilate partitioning and export. The number of processes influenced by redox controls and signals continues to increase as do the components that are recognized participants in the associated signalling pathways. A step change in our understanding of the overall importance of the cellular redox hub to plant cells has occurred in recent years as the complexity of the management of the cellular redox hub in relation to metabolic triggers and environmental cues has been elucidated. This special issue describes aspects of redox regulation and signalling at the cutting edge of current research in this dynamic and rapidly expanding field. © 2011 Blackwell Publishing Ltd.

  15. Pyridine nucleotides in regulation of cell death and survival by redox and non-redox reactions.

    Science.gov (United States)

    Novak Kujundžić, Renata; Žarković, Neven; Gall Trošelj, Koraljka

    2014-01-01

    Changes of the level and ratios of pyridine nucleotides determine metabolism- dependent cellular redox status and the activity of poly(ADP-ribose) polymerases (PARPs) and sirtuins, thereby influencing several processes closely related to cell survival and death. Pyridine nucleotides participate in numerous metabolic reactions whereby their net cellular level remains constant, but the ratios of NAD+/NADP+ and NADH/NADPH oscillate according to metabolic changes in response to diverse stress signals. In non-redox reactions, NAD+ is degraded and quickly, afterward, resynthesized in the NAD+ salvage pathway, unless overwhelming activation of PARP-1 consumes NAD+ to the point of no return, when the cell can no longer generate enough ATP to accommodate NAD+ resynthesis. The activity of PARP-1 is mandatory for the onset of cytoprotective autophagy on sublethal stress signals. It has become increasingly clear that redox status, largely influenced by the metabolism-dependent composition of the pyridine nucleotides pool, plays an important role in the synthesis of pro-apoptotic and anti-apoptotic sphingolipids. Awareness of the involvement of the prosurvival sphingolipid, sphingosine-1-phosphate, in transition from inflammation to malignant transformation has recently emerged. Here, the participation of pyridine nucleotides in redox and non-redox reactions, sphingolipid metabolism, and their role in cell fate decisions is reviewed.

  16. Utilizing Co2+/Co3+ Redox Couple in P2-Layered Na0.66Co0.22Mn0.44Ti0.34O2 Cathode for Sodium-Ion Batteries.

    Science.gov (United States)

    Wang, Qin-Chao; Hu, Enyuan; Pan, Yang; Xiao, Na; Hong, Fan; Fu, Zheng-Wen; Wu, Xiao-Jing; Bak, Seong-Min; Yang, Xiao-Qing; Zhou, Yong-Ning

    2017-11-01

    Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na + and vacancy ordering. An interesting structure change of Na 0.66 Co x Mn 0.66- x Ti 0.34 O 2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 with a P2-type layered structure delivers a reversible capacity of 120 mAh g -1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g -1 can still be obtained, indicating a promising rate capability. The low valence Co 2+ substitution results in the formation of average Mn 3.7+ valence state in Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 , effectively suppressing the Mn 3+ -induced Jahn-Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na 0.66 Co 0.22 Mn 0.44 Ti 0.34 O 2 during charge/discharge is contributed by Co 2.2+ /Co 3+ and Mn 3.3+ /Mn 4+ redox couples. This is the first time that the highly reversible Co 2+ /Co 3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.

  17. NASA Supportability Engineering Implementation Utilizing DoD Practices and Processes

    Science.gov (United States)

    Smith, David A.; Smith, John V.

    2010-01-01

    The Ares I design and development program made the determination early in the System Design Review Phase to utilize DoD ILS and LSA approach for supportability engineering as an integral part of the system engineering process. This paper is to provide a review of the overall approach to design Ares-I with an emphasis on a more affordable, supportable, and sustainable launch vehicle. Discussions will include the requirements development, design influence, support concept alternatives, ILS and LSA planning, Logistics support analyses/trades performed, LSA tailoring for NASA Ares Program, support system infrastructure identification, ILS Design Review documentation, Working Group coordination, and overall ILS implementation. At the outset, the Ares I Project initiated the development of the Integrated Logistics Support Plan (ILSP) and a Logistics Support Analysis process to provide a path forward for the management of the Ares-I ILS program and supportability analysis activities. The ILSP provide the initial planning and coordination between the Ares-I Project Elements and Ground Operation Project. The LSA process provided a system engineering approach in the development of the Ares-I supportability requirements; influence the design for supportability and development of alternative support concepts that satisfies the program operability requirements. The LSA planning and analysis results are documented in the Logistics Support Analysis Report. This document was required during the Ares-I System Design Review (SDR) and Preliminary Design Review (PDR) review cycles. To help coordinate the LSA process across the Ares-I project and between programs, the LSA Report is updated and released quarterly. A System Requirement Analysis was performed to determine the supportability requirements and technical performance measurements (TPMs). Two working groups were established to provide support in the management and implement the Ares-I ILS program, the Integrated Logistics

  18. Redox chemistry of americium in nitric acid media

    Energy Technology Data Exchange (ETDEWEB)

    Picart, S.; Jobelin, I.; Armengol, G.; Adnet, JM

    2004-07-01

    The redox properties of the actinides are very important parameters for speciation studies and spent nuclear fuel reprocessing based on liquid-liquid extraction of actinides at different oxidation states (as in the Purex or Sesame process). They are also very useful for developing analytical tools including coulometry and redox titration. This study addressed the americium(IV)/americium(III) and americium(VI)/americium(V) redox couples, focusing on exhaustive acquisition of the thermodynamic and kinetic parameters of americium oxidation at an electrode in a complexing nitric acid medium. (authors)

  19. Redox chemistry of americium in nitric acid media

    International Nuclear Information System (INIS)

    Picart, S.; Jobelin, I.; Armengol, G.; Adnet, JM.

    2004-01-01

    The redox properties of the actinides are very important parameters for speciation studies and spent nuclear fuel reprocessing based on liquid-liquid extraction of actinides at different oxidation states (as in the Purex or Sesame process). They are also very useful for developing analytical tools including coulometry and redox titration. This study addressed the americium(IV)/americium(III) and americium(VI)/americium(V) redox couples, focusing on exhaustive acquisition of the thermodynamic and kinetic parameters of americium oxidation at an electrode in a complexing nitric acid medium. (authors)

  20. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state

    Science.gov (United States)

    Kojer, Kerstin; Bien, Melanie; Gangel, Heike; Morgan, Bruce; Dick, Tobias P; Riemer, Jan

    2012-01-01

    Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (EGSH) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with EGSH-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of EGSH in the IMS, thus explaining a steady-state EGSH in the IMS which is similar to the cytosol. Moreover, we show that the local EGSH contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells. PMID:22705944

  1. Predicting Health Care Utilization After Behavioral Health Referral Using Natural Language Processing and Machine Learning

    OpenAIRE

    Roysden, Nathaniel; Wright, Adam

    2015-01-01

    Mental health problems are an independent predictor of increased healthcare utilization. We created random forest classifiers for predicting two outcomes following a patient’s first behavioral health encounter: decreased utilization by any amount (AUROC 0.74) and ultra-high absolute utilization (AUROC 0.88). These models may be used for clinical decision support by referring providers, to automatically detect patients who may benefit from referral, for cost management, or for risk/protection ...

  2. Predicting Health Care Utilization After Behavioral Health Referral Using Natural Language Processing and Machine Learning.

    Science.gov (United States)

    Roysden, Nathaniel; Wright, Adam

    2015-01-01

    Mental health problems are an independent predictor of increased healthcare utilization. We created random forest classifiers for predicting two outcomes following a patient's first behavioral health encounter: decreased utilization by any amount (AUROC 0.74) and ultra-high absolute utilization (AUROC 0.88). These models may be used for clinical decision support by referring providers, to automatically detect patients who may benefit from referral, for cost management, or for risk/protection factor analysis.

  3. Prospects for utilization of Electron Beam Accelerators (EBAs) for processing of food products

    International Nuclear Information System (INIS)

    Sarma, K.S.

    2014-01-01

    Radiation processing using gamma radiation and high energy electron beams has been in practice for more than three decades in the industry. Since gamma radiation has the ability of higher penetration in the material, large scale irradiators (mainly based on mega curies of 60 Co radioactive source) are successfully employed for treating bulk products in sterilization and food preservation applications. Electron beam, due to its low penetration, has been exploited exclusively for applications involving polymer modifications to irradiate thin finished end products like electrical cable insulations, heat shrinkable sheets, tubes, automobile tyres etc using high power EBAs (energies 0.5 MeV-4 MeV and powers around ∼100 kW). Out of around 2500 industrial EB units currently employed worldwide (with total installed power above 150 MWL 90% are in the low to medium energy range (0.5 MeV to 4 MeV) being used for polymer modifications. However, recent technological advances in the manufacturing sector of industrial high energy EBAs and product handling systems resulted in widening utilization of EB technology for applications involving bulk product irradiation

  4. Semi Automated Land Cover Layer Updating Process Utilizing Spectral Analysis and GIS Data Fusion

    Science.gov (United States)

    Cohen, L.; Keinan, E.; Yaniv, M.; Tal, Y.; Felus, A.; Regev, R.

    2018-04-01

    Technological improvements made in recent years of mass data gathering and analyzing, influenced the traditional methods of updating and forming of the national topographic database. It has brought a significant increase in the number of use cases and detailed geo information demands. Processes which its purpose is to alternate traditional data collection methods developed in many National Mapping and Cadaster Agencies. There has been significant progress in semi-automated methodologies aiming to facilitate updating of a topographic national geodatabase. Implementation of those is expected to allow a considerable reduction of updating costs and operation times. Our previous activity has focused on building automatic extraction (Keinan, Zilberstein et al, 2015). Before semiautomatic updating method, it was common that interpreter identification has to be as detailed as possible to hold most reliable database eventually. When using semi-automatic updating methodologies, the ability to insert human insights based knowledge is limited. Therefore, our motivations were to reduce the created gap by allowing end-users to add their data inputs to the basic geometric database. In this article, we will present a simple Land cover database updating method which combines insights extracted from the analyzed image, and a given spatial data of vector layers. The main stages of the advanced practice are multispectral image segmentation and supervised classification together with given vector data geometric fusion while maintaining the principle of low shape editorial work to be done. All coding was done utilizing open source software components.

  5. Development of functional extruded snacks by utilizing paste shrimp (Acetes spp.): process optimization and quality evaluation.

    Science.gov (United States)

    Kumar, Raushan; Xavier, Ka Martin; Lekshmi, Manjusha; Dhanabalan, Vignaesh; Thachil, Madonna T; Balange, Amjad K; Gudipati, Venkateshwarlu

    2018-04-01

    Functional extruded snacks were prepared using paste shrimp powder (Acetes spp.), which is rich in protein. The process variables required for the preparation of extruded snacks was optimized using response surface methodology. Extrusion temperature (130-144 °C), level of Acetes powder (100-200 g kg -1 ) and feed moisture (140-200 g kg -1 ) were selected as design variables, and expansion ratio, porosity, hardness, crispness and thiobarbituric acid reactive substance value were taken as the response variables. Extrusion temperature significantly influenced all the response variables, while Acetes inclusion influenced all variables except porosity. Feed moisture content showed a significant quadratic effect on all responses and an interactive effect on expansion ratio and hardness. Shrimp powder incorporation increased the protein and mineral content of the final product. The extruded snack made with the combination of extrusion temperature 144.59 °C, feed moisture 178.5 g kg -1 and Acetes inclusion level 146.7 g kg -1 was found to be the best one based on sensory evaluation. The study suggests that use of Acetes species for the development of extruded snacks will serve as a means of utilization of Acetes as well as being a rich source of proteins for human consumption, which would otherwise remain unexploited as a by-catch. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Stimulating utilities to promote energy efficiency: Process evaluation of Madison Gas and Electric's Competition Pilot Program

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E.; De Buen, O.; Goldfman, C.

    1990-12-01

    This report describes the process evaluation of the design and implementation of the Energy Conservation Competition Pilot (hereafter referred to as the Competition), ordered by the Public Service Commission of Wisconsin (PSCW) with a conceptual framework defined by PSCW staff for the Madison Gas and Electric (MGE) Company. This process evaluation documents the history of the Competition, describing the marketing strategies adopted by MGE and its competitors, customer service and satisfaction, administrative issues, the distribution of installed measures, free riders, and the impact of the Competition on MGE, its competitors, and other Wisconsin utilities. We also suggest recommendations for a future Competition, compare the Competition with other approaches that public utility commissions (PUCs) have used to motivate utilities to promote energy efficiency, and discuss its transferability to other utilities. 48 refs., 8 figs., 40 tabs.

  7. Thermal performance evaluation of a four pan jaggery processing furnace for improvement in energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Sardeshpande, Vishal R.; Shendage, D.J.; Pillai, Indu R. [Department of Energy Science and Engineering, Indian Institute of Technology, Bombay (India)

    2010-12-15

    The jaggery making from sugarcane is one of the traditional process industries contributing to the local employment and entrepreneurship opportunities to the rural population. Jaggery is a condensed form of sugarcane juice produced by evaporation of moisture. Bagasse which is internally generated during juice extraction from sugarcane is used as the fuel for evaporation in a jaggery furnace. Any efficiency improvement in the thermal performance of a jaggery furnace leads to bagasse saving which provides additional revenue for the jaggery manufacturer. A procedure for thermal evaluation using mass and energy balance for a jaggery furnace is proposed to establish furnace performance and loss stream analysis. The proposed method is used to investigate a four pan traditional jaggery furnace in India. The loss stream analysis indicates that the theoretical energy required for jaggery processing is only 29% of total energy supplied by bagasse combustion. The major loss is associated with heat carried in flue gas and wall losses. The air available for combustion depends upon the draft created by chimney in natural draft furnaces. The oxygen content in the flue gas is a measure of degree of combustion. A controlled fuel feeding based on the oxygen percentage in the flue gases is proposed and demonstrated. The traditional practice of fuel feeding rate is changed to control feeding rate leading to reduction in specific fuel consumption from 2.39 kg bagasse/kg jaggery to 1.73 kg bagasse/kg jaggery. This procedure can be used for evaluation of jaggery furnaces for identification and quantification of losses, which will help in improving thermal energy utilization. (author)

  8. Streamlining and integrating right-of-way and utility processes with planning, environmental, and design processes in Australia and Canada.

    Science.gov (United States)

    2009-06-01

    Many transportation projects require acquisition of land and accommodation of utility facilities in the : right-of-way. The Federal Highway Administration, American Association of State Highway and : Transportation Officials, and National Cooperative...

  9. Organic cofactors participated more frequently than transition metals in redox reactions of primitive proteins.

    Science.gov (United States)

    Ji, Hong-Fang; Chen, Lei; Zhang, Hong-Yu

    2008-08-01

    Protein redox reactions are one of the most basic and important biochemical actions. As amino acids are weak redox mediators, most protein redox functions are undertaken by protein cofactors, which include organic ligands and transition metal ions. Since both kinds of redox cofactors were available in the pre-protein RNA world, it is challenging to explore which one was more involved in redox processes of primitive proteins? In this paper, using an examination of the redox cofactor usage of putative ancient proteins, we infer that organic ligands participated more frequently than transition metals in redox reactions of primitive proteins, at least as protein cofactors. This is further supported by the relative abundance of amino acids in the primordial world. Supplementary material for this article can be found on the BioEssays website. (c) 2008 Wiley Periodicals, Inc.

  10. Engineering and economic analysis for the utilization of geothermal fluids in a cane sugar processing plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Humme, J.T.; Tanaka, M.T.; Yokota, M.H.; Furumoto, A.S.

    1979-07-01

    The purpose of this study was to determine the feasibility of geothermal resource utilization at the Puna Sugar Company cane sugar processing plant, located in Keaau, Hawaii. A proposed well site area was selected based on data from surface exploratory surveys. The liquid dominated well flow enters a binary thermal arrangement, which results in an acceptable quality steam for process use. Hydrogen sulfide in the well gases is incinerated, leaving sulfur dioxide in the waste gases. The sulfur dioxide in turn is recovered and used in the cane juice processing at the sugar factory. The clean geothermal steam from the binary system can be used directly for process requirements. It replaces steam generated by the firing of the waste fibrous product from cane sugar processing. The waste product, called bagasse, has a number of alternative uses, but an evaluation clearly indicated it should continue to be employed for steam generation. This steam, no longer required for process demands, can be directed to increased electric power generation. Revenues gained by the sale of this power to the utility, in addition to other savings developed through the utilization of geothermal energy, can offset the costs associated with hydrothermal utilization.

  11. Redox Regulation in Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Parakh, Sonam; Spencer, Damian M.; Halloran, Mark A.; Soo, Kai Y.; Atkin, Julie D.

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results from the death of upper and lower motor neurons. Due to a lack of effective treatment, it is imperative to understand the underlying mechanisms and processes involved in disease progression. Regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in disease. Here we discuss the possible involvement of redox dysregulation in the pathophysiology of ALS, either as a cause of cellular abnormalities or a consequence. We focus on its possible role in oxidative stress, protein misfolding, glutamate excitotoxicity, lipid peroxidation and cholesterol esterification, mitochondrial dysfunction, impaired axonal transport and neurofilament aggregation, autophagic stress, and endoplasmic reticulum (ER) stress. We also speculate that an ER chaperone protein disulphide isomerase (PDI) could play a key role in this dysregulation. PDI is essential for normal protein folding by oxidation and reduction of disulphide bonds, and hence any disruption to this process may have consequences for motor neurons. Addressing the mechanism underlying redox regulation and dysregulation may therefore help to unravel the molecular mechanism involved in ALS. PMID:23533690

  12. Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes

    International Nuclear Information System (INIS)

    Karakaya, Ahmet; Ozilgen, Mustafa

    2011-01-01

    Energy utilization and carbon dioxide emission during the production of fresh, peeled, diced, and juiced tomatoes are calculated. The energy utilization for production of raw and packaging materials, transportation, and waste management are also considered. The energy utilization to produce one-ton retail packaged fresh tomatoes is calculated to be 2412.8 MJ, whereas when the tomatoes are converted into paste, the energy utilization increases almost twofold; processing the same amount into the peeled or diced-tomatoes increases the energy utilization seven times. In case of juice production, the increase is five times. The carbon dioxide emission is determined by the source of energy used and is 189.4 kg/t of fresh tomatoes in the case of retail packaging, and did not change considerably when made into paste. The carbon dioxide emission increased twofold with peeled or diced-tomatoes, and increased threefold when juiced. Chemical fertilizers and transportation made the highest contribution to energy utilization and CO 2 emission. The difference in energy utilization is determined mainly by water to dry solids ratio of the food and increases with the water content of the final product. Environmentally conscious consumers may prefer eating fresh tomatoes or alternatively tomato paste, to minimize carbon dioxide emission. -- Highlights: → Energy utilization for producing one-ton retail packaged fresh tomatoes was 2412.8 MJ → Energy utilization was 2 folds with paste, 7 times with peeled or diced-tomatoes, 5 times with juice. → Energy utilization increases with water content of the final product. → Transportation, packaging, evaporation and chemicals are the major energy consumers. → Carbon dioxide emission is determined by the source of energy.

  13. The application of utility analysis processes to estimate the impact of training for nuclear maintenance personnel

    International Nuclear Information System (INIS)

    Groppel, C.F.

    1991-01-01

    The primary objectives of this study were to test two utility analysis models, the Cascio-Ramos Estimate of Performance in Dollars (CREPID) model and Godkewitsch financial utility analysis model and to determine their appropriateness as tools for evaluating training. This study was conducted in conjunction with Philadelphia Electric Company's Nuclear Training Group. Job performance of nuclear maintenance workers was assessed to document the impact of the training program. Assessment of job performance covered six job performance themes. Additionally, front-line nuclear maintenance supervisors were interviewed to determine their perceptions of the nuclear maintenance training. A comparison of supervisor's perceptions and outcomes of the utility analysis models was made to determine the appropriateness of utility analysis as quantitative tools for evaluating the nuclear maintenance training program. Application of the CREPID utility analysis model indicated the dollar value of the benefits of training through utility analysis was $5,843,750 which represented only four of the job performance themes. Application of the Godkewitsch utility analysis model indicated the dollar value of the benefits of training was $3,083,845 which represented all six performance themes. A comparison of the outcomes indicated a sizeable difference between the dollar values produced by the models. Supervisors indicated training resulted in improved productivity, i.e., improved efficiency and effectiveness. Additionally, supervisors believed training was valuable because it provided nonmonetary benefits, e.g., improved self-esteem and confidence. The application of utility analysis addressed only monetary benefits of training. The variation evidenced by the difference in the outcome of the two models suggests that utility analysis open-quotes estimatesclose quotes may not accurately reflect the impact of training

  14. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Robl; John Groppo

    2009-06-30

    The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i

  15. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  16. Unleashing the Power and Energy of LiFePO4-Based Redox Flow Lithium Battery with a Bifunctional Redox Mediator.

    Science.gov (United States)

    Zhu, Yun Guang; Du, Yonghua; Jia, Chuankun; Zhou, Mingyue; Fan, Li; Wang, Xingzhu; Wang, Qing

    2017-05-10

    Redox flow batteries, despite great operation flexibility and scalability for large-scale energy storage, suffer from low energy density and relatively high cost as compared to the state-of-the-art Li-ion batteries. Here we report a redox flow lithium battery, which operates via the redox targeting reactions of LiFePO 4 with a bifunctional redox mediator, 2,3,5,6-tetramethyl-p-phenylenediamine, and presents superb energy density as the Li-ion battery and system flexibility as the redox flow battery. The battery has achieved a tank energy density as high as 1023 Wh/L, power density of 61 mW/cm 2 , and voltage efficiency of 91%. Operando X-ray absorption near-edge structure measurements were conducted to monitor the evolution of LiFePO 4 , which provides insightful information on the redox targeting process, critical to the device operation and optimization.

  17. Endoplasmic reticulum-dependent redox reactions control endoplasmic reticulum-associated degradation and pathogen entry.

    Science.gov (United States)

    Walczak, Christopher P; Bernardi, Kaleena M; Tsai, Billy

    2012-04-15

    Protein misfolding within the endoplasmic reticulum (ER) is managed by an ER quality control system that retro-translocates aberrant proteins into the cytosol for proteasomal destruction. This process, known as ER-associated degradation, utilizes the action of ER redox enzymes to accommodate the disulfide-bonded nature of misfolded proteins. Strikingly, various pathogenic viruses and toxins co-opt these redox components to reach the cytosol during entry. These redox factors thus regulate critical cellular homeostasis and host-pathogen interactions. Recent studies identify specific members of the protein disulfide isomerase (PDI) family, which use their chaperone and catalytic activities, in engaging both misfolded ER proteins and pathogens. The precise molecular mechanism by which a dedicated PDI family member disrupts the disulfide bonds in the misfolded ER proteins and pathogens, as well as how they act to unfold these substrates to promote their ER-to-cytosol membrane transport, remain poorly characterized. How PDI family members distinguish folded versus misfolded ER substrates remains enigmatic. What physical characteristics surrounding a substrate's disulfide bond instruct PDI that it is mispaired or native? For the pathogens, as their disulfide bonds normally serve a critical role in providing physical support, what conformational changes experienced in the host enable their disulfide bonds to be disrupted? A combination of more rigorous biochemical and high-resolution structural studies should begin to address these questions.

  18. Cyanobacteria to Link Closed Ecological Systems and In-Situ Resources Utilization Processes

    Science.gov (United States)

    Brown, Igor

    Introduction: A major goal for the Vision of Space Exploration is to extend human presence across the solar sys-tem. With current technology, however, all required consumables for these missions (propellant, air, food, water) as well as habitable volume and shielding to support human explorers will need to be brought from Earth. In-situ pro-duction of consumables (In-Situ Resource Utilization-ISRU) will significantly facilitate current plans for human ex-ploration and colonization of the solar system, especially by reducing the logistical overhead such as recurring launch mass. The production of oxygen from lunar materials is generally recognized as the highest priority process for lunar ISRU, for both human metabolic and fuel oxidation needs. The most challenging technology developments for future lunar settlements may lie in the extraction of elements (O, Fe, Mn, Ti, Si, etc) from local rocks and soils for life support, industrial feedstock and the production of propellants. With few exceptions (e.g., Johannson, 1992), nearly all technology development to date has employed an ap-proach based on inorganic chemistry (e.g. Allen et al., 1996). None of these technologies include concepts for inte-grating the ISRU system with a bioregenerative life support system and a food production systems. Bioregenerative life support efforts have recently been added to the Constellation ISRU development program (Sanders et al, 2007). Methods and Concerns: The European Micro-Ecological Life Support System Alternative (MELiSSA) is an ad-vanced concept for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). However the MELiSSA system is a net consumer of ISRU products without a net return to in-situ technologies, e.g.. to extract elements as a result of complete closure of MELiSSA. On the other hand, the physical-chemical processes for ISRU are typically massive (relative to the rate of oxygen

  19. ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Robert Jewell; Thomas Robl; John Groppo

    2005-03-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

  20. High-energy-density, aqueous, metal-polyiodide redox flow batteries

    Science.gov (United States)

    Li, Bin; Nie, Zimin; Wang, Wei; Liu, Jun; Sprenkle, Vincent L.

    2017-08-29

    Improved metal-based redox flow batteries (RFBs) can utilize a metal and a divalent cation of the metal (M.sup.2+) as an active redox couple for a first electrode and electrolyte, respectively, in a first half-cell. For example, the metal can be Zn. The RFBs can also utilize a second electrolyte having I.sup.-, anions of I.sub.x (for x.gtoreq.3), or both in an aqueous solution, wherein the I.sup.- and the anions of I.sub.x (for x.gtoreq.3) compose an active redox couple in a second half-cell.

  1. Power Generation Utilizing Process Gases to Avoid Flaring; Elkraftproduktion ur processgas som idag facklas

    Energy Technology Data Exchange (ETDEWEB)

    Naesvall, Henrik; Larfeldt, Jenny

    2011-01-15

    There is an increasing awareness that process gases, such as associated gases in oil extraction and byproduct gases in liquidizing of natural gas, can be utilized for energy production. Efficient energy production through the use of a gas turbine is profitable both from economical and environmental point of view compared to simply getting rid of the process gas in flares. Gases with an elevated amount of heavier hydrocarbons generally speaking burns faster and more intense compared to standard natural gas. In gas turbines with so called premixed, low emitting combustor systems this might induce changes in flame stability and the combustion stability connected with this. This might in turn affect the emissions from the gas turbine, the operation life and ability to operate. This work aimed at proving the potential of running Siemens standard SGT-600 and SGT-700 engines on gas with elevated amount of heavy hydrocarbons. Pentane (C{sub 5}H{sub 12}) was used as a model substance for heavy hydrocarbons and a facility for feeding and mixing pentane with natural gas was designed and built at Siemens delivery test bed in Finspaang. The two engines were demonstrated to be able to operate on the mixed fuel at various loads. The results show that both engines are able to stable operation on fuels with up to 10% by volume pentane content. Stable in the sense that no change in combustion dynamics was noted and the control system worked as normal. There were no impact on the temperature distribution through the turbine that could be seen and a boroscope inspection after the test did not reveal anything unusual. A slight increase in emissions of nitrogen oxides (NO{sub x}) was detected explained by a slightly more intense flame which also explains the simultaneous lowering of carbon monoxide (CO) emissions. Unexpected difficulties were faced by the external laboratories when the sampled gas samples should be analysed. If the difficulties in analysing the samples could have been

  2. Utilization of electromigration in civil and environmental engineering - Processes, transport rates and matrix changes

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Christensen, Iben Vernegren; Rörig-Dalgaard, Inge

    2008-01-01

    Electromigration (movement of ions in an applied electric field) is utilized for supply or extraction of ions from various porous materials within both civil and environmental engineering. In civil engineering, most research has been conducted on the removal of chlorides from concrete to hinder...... reinforcement corrosion while in environmental engineering remediation of heavy metal polluted soil is the issue most studied. Never the less, experiments have been conducted with utilization for several other materials and purposes within both engineering fields. Even though there are many topics of common...

  3. Bifunctional redox flow battery

    International Nuclear Information System (INIS)

    Wen, Y.H.; Cheng, J.; Xun, Y.; Ma, P.H.; Yang, Y.S.

    2008-01-01

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II)-L-cystine(O 2 ), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm -2 . Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes

  4. Performance Feedback Utility in a Small Organization: Effects on Organizational Outcomes and Managerial Decision Processes.

    Science.gov (United States)

    Florin-Thuma, Beth C.; Boudreau, John W.

    1987-01-01

    Investigated the frequent but previously untested assertion that utility analysis can improve communication and decision making about human resource management programs by examining a performance feedback intervention in a small fast-food store. Results suggest substantial payoffs from performance feedback, though the store's owner-managers had…

  5. Different methods to define utility functions yield similar results but engage different neural processes

    Directory of Open Access Journals (Sweden)

    Marcus Heldmann

    2009-10-01

    Full Text Available Although the concept of utility is fundamental to many economic theories, up to now a generally accepted method determining a subject’s utility function is not available. We investigated two methods that are used in economic sciences for describing utility functions by using response-locked event-related potentials in order to assess their neural underpinnings. For defining the certainty equivalent (CE, we used a lottery game with probabilities to win p=0.5, for identifying the subjects’ utility functions directly a standard bisection task was applied. Although the lottery tasks’ payoffs were only hypothetical, a pronounced negativity was observed resembling the error related negativity (ERN previously described in action monitoring research, but this occurred only for choices far away from the indifference point between money and lottery. By contrast, the bisection task failed to evoke an ERN irrespective of the responses’ correctness. Based on these findings we are reasoning that only decisions made in the lottery task achieved a level of subjective relevance that activates cognitive-emotional monitoring. In terms of economic sciences, our findings support the view that the bisection method is unaffected by any kind of probability valuation or other parameters related to risk and in combination with the lottery task can, therefore, be used to differentiate between payoff and probability valuation.

  6. Beyond Warmth and Conflict: The Developmental Utility of a Boundary Conceptualization of Sibling Relationship Processes

    Science.gov (United States)

    Bascoe, Sonnette M.; Davies, Patrick T.; Cummings, E. Mark

    2012-01-01

    Translating relationship boundaries conceptualizations to the study of sibling relationships, this study examined the utility of sibling enmeshment and disengagement in predicting child adjustment difficulties in a sample of 282 mothers and adolescents (mean age = 12.7 years). Mothers completed a semistructured interview at the first measurement…

  7. Effects of heat stress on dynamic absorption process, tissue distribution and utilization efficiency of vitamin C in broilers

    International Nuclear Information System (INIS)

    Liu Guohua; Chen Guosheng; Cai Huiyi

    1998-01-01

    The experiment was conducted to determine the effects of heat stress on ascorbic acid nutritional physiology of broilers with radioisotope technology. 3 H-Vc was fed to broilers and then the blood, liver, kidney, breast muscle, and excreta were sampled to determine the dynamic absorption process, the tissue distribution and the utilization efficiency of vitamin C. The results indicated that the absorption, metabolism and mobilization of supplemented vitamin C in broilers with heat stress was faster than that in broilers without heat stress. However, the utilization efficiency of supplemented vitamin C in broilers with heat stress was not higher than that of broilers without heat stress

  8. Solution of environmental protection problems and complex utilization of raw materials during mining and processing of uranium ores

    International Nuclear Information System (INIS)

    Litvinenko, V.G.; Savva, P.P.

    1993-01-01

    Consideration is given to the complex of measures taken in Priargunsky industrial mine-chemical association and directed to environment protection, complex utilization of raw materials during mining and processing of uranium ores. These measures include: 1) reduction of toxic chemical agent effluents into atmosphere due to introduction of new methods and gas cleaning systems; 2) rational use of water resources owing to application of circulating water supply systems, waste waters treatment and effective control of the state of water consumption by industrial enterprises; 3) utilization of gangue and industrial solid wastes

  9. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    Science.gov (United States)

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2018-01-20

    The nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) and NADP + /reduced NADP + (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD + -consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD + precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.

  10. An Investigation into the Possibilities of BIM and GIS Cooperation and Utilization of GIS in the BIM Process

    Directory of Open Access Journals (Sweden)

    Pavel Tobiáš

    2015-06-01

    Full Text Available In the coming years we will most probably watch a significant increase of the BIM (building information model utilization in the AEC (Architecture/Engineering/Construction sector even in the Czech Republic. Therefore, it would be reasonable to consider possible utilization of the well-established geographic information systems within the building information modelling process. This paper is based on the currently existing literature and is focused on the interrelationship between BIM and GIS. The main goal is to reveal potential fields of cooperation and to find possible utilization of GIS in BIM. To provide a theoretical framework, this article briefly introduces and defines the term of BIM and deals with the most important semantic models in AEC and 3D GIS IFC and CityGML. The paper also contains examples of specific efforts recently dealing with the BIM and GIS collaboration.

  11. Metabolic and redox barriers in the skin exposed to drugs and xenobiotics.

    Science.gov (United States)

    Korkina, Liudmila

    2016-01-01

    Growing exposure of human skin to environmental and occupational hazards, to numerous skin care/beauty products, and to topical drugs led to a biomedical concern regarding sustainability of cutaneous chemical defence that is essential for protection against intoxication. Since skin is the largest extra-hepatic drug/xenobiotic metabolising organ where redox-dependent metabolic pathways prevail, in this review, publications on metabolic processes leading to redox imbalance (oxidative stress) and its autocrine/endocrine impact to cutaneous drug/xenobiotic metabolism were scrutinised. Chemical and photo-chemical skin barriers contain metabolic and redox compartments: their protective and homeostatic functions. The review will examine the striking similarity of adaptive responses to exogenous chemical/photo-chemical stressors and endogenous toxins in cutaneous metabolic and redox system; the role(s) of xenobiotics/drugs and phase II enzymes in the endogenous antioxidant defence and maintenance of redox balance; redox regulation of interactions between metabolic and inflammatory responses in skin cells; skin diseases sharing metabolic and redox problems (contact dermatitis, lupus erythematosus, and vitiligo) Due to exceptional the redox dependence of cutaneous metabolic pathways and interaction of redox active metabolites/exogenous antioxidants with drug/xenobiotic metabolism, metabolic tests of topical xenobiotics/drugs should be combined with appropriate redox analyses and performed on 3D human skin models.

  12. Optical imaging the redox status change during cell apoptosis

    Science.gov (United States)

    Su, Ting; Zhang, Zhihong; Lin, Juqiang; Luo, Qingming

    2007-02-01

    Many cellular events involve the alteration in redox equilibrium, globally or locally. In many cases, excessive reactive oxygen species (ROS) production is the underlying cause. Several green fluoresecence protein based indicators are constructed to measure redox status in cells, e.g, rxYFP and roGFPs, which allow real time detection. reduction and oxidization-sensitive GFP (RoGFPs) are more useful due to ratiometric variation by excitation, making the measurement more accurate. Utilizing one of those roGFPs called roGFP1, we establish a mitochondrial redox state probing platform in HeLa cells with laser scan confocal microscopy (LSCM) as detection system. Control experiments confirmed that our platform could produce stable ratiometric values, which made the data more accurately reflect the real environmental changes of redox status that roGFP1 probed. Using exogenous H IIO II and DTT, we evaluated the reactivity and reversibility of roGFP1. The minimal hydrogen peroxide concentration that roGFP1 could show detectable ratiometric changes in our system was about 200μM. Preliminarily applying our platform to exploring the redox status during apoptosis, we observed an increase in ratiometric, suggesting an excessive ROS production.

  13. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2009-04-01

    Reactive oxygen species (ROS) have multifaceted roles in the orchestration of plant gene expression and gene-product regulation. Cellular redox homeostasis is considered to be an "integrator" of information from metabolism and the environment controlling plant growth and acclimation responses, as well as cell suicide events. The different ROS forms influence gene expression in specific and sometimes antagonistic ways. Low molecular antioxidants (e.g., ascorbate, glutathione) serve not only to limit the lifetime of the ROS signals but also to participate in an extensive range of other redox signaling and regulatory functions. In contrast to the low molecular weight antioxidants, the "redox" states of components involved in photosynthesis such as plastoquinone show rapid and often transient shifts in response to changes in light and other environmental signals. Whereas both types of "redox regulation" are intimately linked through the thioredoxin, peroxiredoxin, and pyridine nucleotide pools, they also act independently of each other to achieve overall energy balance between energy-producing and energy-utilizing pathways. This review focuses on current knowledge of the pathways of redox regulation, with discussion of the somewhat juxtaposed hypotheses of "oxidative damage" versus "oxidative signaling," within the wider context of physiological function, from plant cell biology to potential applications.

  14. Beyond Warmth and Conflict: The Developmental Utility of a Boundary Conceptualization of Sibling Relationship Processes

    Science.gov (United States)

    Bascoe, Sonnette M.; Davies, Patrick T.; Cummings, E. Mark

    2012-01-01

    Translating relationship boundaries conceptualizations to the study of sibling relationships, this study examined the utility of sibling enmeshment and disengagement in predicting child adjustment difficulties in a sample of 282 mothers and adolescents (Mean age = 12.7 years). Mothers completed a semi-structured interview at the first measurement occasion to assess sibling interaction patterns. Adolescents, mothers, and teachers reported on children’s adjustment problems across two annual waves of assessment. Supporting the incremental utility of a boundary conceptualization of sibling relationships, results of latent difference score analyses indicated that coder ratings of sibling enmeshment and disengagement uniquely predicted greater adolescent adjustment difficulties even after taking into account standard indices of sibling relationship quality (i.e., warmth, conflict) and sibling structural characteristics (e.g., sex). PMID:22862542

  15. Beyond Warmth and Conflict: The Developmental Utility of a Boundary Conceptualization of Sibling Relationship Processes

    OpenAIRE

    Bascoe, Sonnette M.; Davies, Patrick T.; Cummings, E. Mark

    2012-01-01

    Translating relationship boundaries conceptualizations to the study of sibling relationships, this study examined the utility of sibling enmeshment and disengagement in predicting child adjustment difficulties in a sample of 282 mothers and adolescents (Mean age = 12.7 years). Mothers completed a semi-structured interview at the first measurement occasion to assess sibling interaction patterns. Adolescents, mothers, and teachers reported on children’s adjustment problems across two annual wav...

  16. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    OpenAIRE

    Kristina Wedege; Emil Dražević; Denes Konya; Anders Bentien

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined ...

  17. On Representing, Purging, and Utilizing Change Logs in Process Management Systems

    NARCIS (Netherlands)

    Rinderle, S.B.; Reichert, M.U.; Jurisch, M.; Kreher, U

    In recent years adaptive process management technolgy has emerged in order to increase the flexibility of business process implementations and to support process changes at different levels. Usually, respective systems log comprehensive information about changes, which can then be used for different

  18. Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone).

    Science.gov (United States)

    Chen, Aihua; Kamata, Kaori; Nakagawa, Masaru; Iyoda, Tomokazu; Haiqiao Wang, Haiqiao; Li, Xiaoyu

    2005-10-06

    We have recently demonstrated a one-step process to fabricate silver-polypyrrole (PPy) coaxial nanocables (Chen, A.; Wang, H.; Li, X. Chem. Commun. 2005, 14, 1863). The formation process of silver-PPy coaxial nanocables is discussed in this article. It was found from the results of TEM and SEM images that large numbers of silver atoms were formed when AgNO3 was added to a pyrrole solution. Then silver atoms transform to silver-PPy nanosheets with regular morphology, which will connect together to be more stable. Silver-PPy nanocables will be able to grow at the expense of the silver-PPy nanosheets. Poly(vinylpyrrolidone) (PVP) plays crucial roles in this process: as a capping agent to form silver nanowires, and as a dispersant of pyrrole monomers, which can influence the site at which pyrrole monomer exists. On the basis of experimental analysis, the possible mechanism was proposed. Because of the effect of PVP, silver ions and pyrrole monomers are apt to be adsorbed at the [111] and [100] facets of silver nanosheets, respectively. Obvious polymerization will take place on the boundary of the [111] and [100] facets. The PPy layer stays stable on the [100] facets. Meanwhile, newly formed silver atoms and silver nanosheets will further ripen and grow on the [111] facets. In a word, the morphology of final products and the formation process are determined by the reaction site between AgNO3 and the pyrrole monomer, which is influenced by PVP.

  19. INVESTIGATION ON UTILITY OF PLASTIC WASTE AS AN ADDITIVE FOR BITUMINOUS CONCRETE USING WET PROCESS OF MIXING

    Directory of Open Access Journals (Sweden)

    Anurag Virendra Tiwari

    2017-12-01

    Full Text Available Purpose. Plastic waste has become a major environmental issue of concern due to its exponential growth due to rapid urbanization. The paper investigates utility of plastic waste as an additive for bituminous concrete using wet process of mixing. Methodology. The methodology for the present paper has been designed with complex research consisting of Marshall mix design of the bituminous mix added with plastic waste for modifying bitumen using wet process of mixing, performing the tests on the samples and analyzing the results in the form of table and figures. In the present paper LDPE and HDPE type of plastic waste are used to modify the bitumen. Finding. The results show that addition of 6 percent of bitumen improves the Marshall properties of the mix. Use of plastic to modify the bitumen not only makes the road surface more durable but also it is an eco-friendly way of proper disposal of plastic waste. Originality. The processes used for mixing the plastic waste to the bitumen are dry process and wet process. Dry process of mixing the plastic waste to the bituminous mix is most common and lot of study is carried out on its application. In the present paper wet process of mixing has not yet been studied much. Practical Value. The practical application of utilizing the plastic waste to modify bitumen in the bituminous mix improves the stability values resulting in the more durable road surface. Also the method ensures the proper disposal of plastic waste in eco-friendly way.

  20. Does convenience matter in health care delivery? A systematic review of convenience-based aspects of process utility.

    Science.gov (United States)

    Higgins, A; Barnett, J; Meads, C; Singh, J; Longworth, L

    2014-12-01

    To systematically review the existing literature on the value associated with convenience in health care delivery, independent of health outcomes, and to try to estimate the likely magnitude of any value found. A systematic search was conducted for previously published studies that reported preferences for convenience-related aspects of health care delivery in a manner that was consistent with either cost-utility analysis or cost-benefit analysis. Data were analyzed in terms of the methodologies used, the aspects of convenience considered, and the values reported. Literature searches generated 4715 records. Following a review of abstracts or full-text articles, 27 were selected for inclusion. Twenty-six studies reported some evidence of convenience-related process utility, in the form of either a positive utility or a positive willingness to pay. The aspects of convenience valued most often were mode of administration (n = 11) and location of treatment (n = 6). The most common valuation methodology was a discrete-choice experiment containing a cost component (n = 15). A preference for convenience-related process utility exists, independent of health outcomes. Given the diverse methodologies used to calculate it, and the range of aspects being valued, however, it is difficult to assess how large such a preference might be, or how it may be effectively incorporated into an economic evaluation. Increased consistency in reporting these preferences is required to assess these issues more accurately. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  1. Breast Cancer Redox Heterogeneity Detectable with Chemical Exchange Satruation Transfer (CEST) MRI

    Science.gov (United States)

    Cai, Kejia; Xu, He N.; Singh, Anup; Moon, Lily; Haris, Mohammad; Reddy, Ravinder; Li, Lin

    2014-01-01

    Purpose Tissue redox state is an important mediator of various biological processes in health and diseases such as cancer. Previously, we discovered that the mitochondrial redox state of ex vivo tissues detected by redox scanning (an optical imaging method) revealed interesting tumor redox state heterogeneity that could differentiate tumor aggressiveness. Because the noninvasive chemical exchange saturation transfer (CEST) MRI can probe the proton transfer and generate contrasts from endogenous metabolites, we aim to investigate if the in vivo CEST contrast is sensitive to proton transfer of the redox reactions so as to reveal the tissue redox states in breast cancer animal models. Procedures CEST MRI has been employed to characterize tumor metabolic heterogeneity and correlated with the redox states measured by the redox scanning in two human breast cancer mouse xenograft models, MDA-MB-231 and MCF-7. The possible biological mechanism on the correlation between the two imaging modalities was further investigated by phantom studies where the reductants and the oxidants of the representative redox reactions were measured. Results The CEST contrast is found linearly correlated with NADH concentration and the NADH redox ratio with high statistical significance, where NADH is the reduced form of nicotinamide adenine dinucleotide. The phantom studies showed that the reductants of the redox reactions have more CEST contrast than the corresponding oxidants, indicating that higher CEST effect corresponds to the more reduced redox state. Conclusions This preliminary study suggests that CEST MRI, once calibrated, might provide a novel noninvasive imaging surrogate for the tissue redox state and a possible diagnostic biomarker for breast cancer in the clinic. PMID:24811957

  2. Redox Conditions in Selected Principal Aquifers of the United States

    Science.gov (United States)

    McMahon, P.B.; Cowdery, T.K.; Chapelle, F.H.; Jurgens, B.C.

    2009-01-01

    Reduction/oxidation (redox) processes affect the quality of groundwater in all aquifer systems. Redox processes can alternately mobilize or immobilize potentially toxic metals associated with naturally occurring aquifer materials, contribute to the degradation or preservation of anthropogenic contami-nants, and generate undesirable byproducts, such as dissolved manganese (Mn2+), ferrous iron (Fe2+), hydrogen sulfide (H2S), and methane (CH4). Determining the kinds of redox processes that occur in an aquifer system, documenting their spatial distribution, and understanding how they affect concentrations of natural or anthropogenic contaminants are central to assessing and predicting the chemical quality of groundwater. This Fact Sheet extends the analysis of U.S. Geological Survey authors to additional principal aquifer systems by applying a framework developed by the USGS to a larger set of water-quality data from the USGS national water databases. For a detailed explanation, see the 'Introduction' in the Fact Sheet.

  3. Eco-friendly copper recovery process from waste printed circuit boards using Fe{sup 3+}/Fe{sup 2+} redox system

    Energy Technology Data Exchange (ETDEWEB)

    Fogarasi, Szabolcs [Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania); Imre-Lucaci, Florica [Babeş-Bolyai University, Interdisciplinary Research Institute on Bio-Nano-Sciences, 42 Treboniu Laurian Street, Cluj-Napoca RO-400271 (Romania); Egedy, Attila [University of Pannonia, Department of Process Engineering, Egyetem Str. 10, H-8200 Veszprém (Hungary); Imre-Lucaci, Árpád, E-mail: aimre@chem.ubbcluj.ro [Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania); Ilea, Petru [Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania)

    2015-06-15

    Highlights: • We developed an ecofriendly mediated electrochemical process for copper recovery. • The recovery of copper was achieved without mechanical pretreatment of the samples. • We identified the optimal flow rate for the leaching and electrowinning of copper. • The copper content of the obtained cathodic deposits was over 99.9%. - Abstract: The present study aimed at developing an original and environmentally friendly process for the recovery of copper from waste printed circuit boards (WPCBs) by chemical dissolution with Fe{sup 3+} combined with the simultaneous electrowinning of copper and oxidant regeneration. The recovery of copper was achieved in an original set-up consisting of a three chamber electrochemical reactor (ER) connected in series with a chemical reactor (CR) equipped with a perforated rotating drum. Several experiments were performed in order to identify the optimal flow rate for the dissolution of copper in the CR and to ensure the lowest energy consumption for copper electrodeposition in the ER. The optimal hydrodynamic conditions were provided at 400 mL/min, leading to the 75% dissolution of metals and to a low specific energy consumption of 1.59 kW h/kg Cu for the electrodeposition process. In most experiments, the copper content of the obtained cathodic deposits was over 99.9%.

  4. Application of a computer-aided framework for the design of CO2 capture and utilization processes

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Woodley, John; Gani, Rafiqul

    2017-01-01

    Carbon dioxide capture and utilization is a vital element of carbon dioxide emission reduction to address global warming. An integrated, computer-aided framework has been developed to achieve this. This framework adopts a three-stage approach to sustainable process synthesis-design: (i) process...... synthesis, (ii) process design and (iii) innovative design. In the first stage, reaction path synthesis is used to determine the reactions and products that are considered in processing route selection and/or generation. Various scenarios are then considered for the superstructure optimization. The selected...... steps. Then, the superstructure optimization is performed on a network containing 13 likely products giving 30 feasible processing routes, considering different scenarios and objectives. Stages 2 and 3 have been applied to the optimal solution of the first scenario, which selects the production...

  5. Utilization of process heat from the HTRM in the chemical and related industries

    International Nuclear Information System (INIS)

    Schad, M.; Barnert, H.; Candeli, R.

    1990-01-01

    Lurgi investigated the feasibility of supplying industrial processes with heat and energy from a Module High Temperature Reactor in an extensive study. This study shows that there are several processes suitable for coupling with the HTRM almost immediately and only require that the layouts are tested. The most interesting process in this respect with high market potential are aluminium oxide production and crude oil refining. (author)

  6. Continuous plutonium(IV) oxalate precipitation, filtration, and calcination process. [From product streams from Redox, Purex, or Recuplex solvent extraction plants

    Energy Technology Data Exchange (ETDEWEB)

    Beede, R L

    1956-09-27

    A continuous plutonium (IV) oxalate precipitation, filtration, and calcination process has been developed. Continuous and batch decomposition of the oxalate in the filtrates has been demonstrated. The processes have been demonstrated in prototype equipment. Plutonium (IV) oxalate was precipitated continuously at room temperature by the concurrent addition of plutonium (IV) nitrate feed and oxalic acid into the pan of a modified rotary drum filter. The plutonium (IV) oxalate was calcined to plutonium dioxide, which could be readily hydrofluorinated. Continuous decomposition of the oxalate in synthetic plutonium (IV) oxalate filtrates containing plutonium (IV) oxalate solids was demonstrated using co-current flow in a U-shaped reactor. Feeds containing from 10 to 100 g/1 Pu, as plutonium (IV) nitrate, and 1.0 to 6.5 M HNO/sub 3/, respectively, can be processed. One molar oxalic acid is used as the precipitant. Temperatures of 20 to 35/sup 0/C for the precipitation and filtration are satisfactory. Plutonium (IV) oxalate can be calcined at 300 to 400/sup 0/C in a screw-type drier-calciner to plutonium dioxide and hydrofluorinated at 450 to 550/sup 0/C. Plutonium dioxide exceeding purity requirements has been produced in the prototype equipment. Advantages of continuous precipitation and filtration are: uniform plutonium (IV) oxalate, improved filtration characteristics, elimination of heating and cooling facilities, and higher capacities through a single unit. Advantages of the screw-type drier-calciner are the continuous production of an oxide satisfactory for feed for the proposed plant vibrating tube hydrofluorinator, and ease of coupling continuous precipitation and filtration to this proposed hydrofluorinator. Continuous decomposition of oxalate in filtrates offers advantages in decreasing filtrate storage requirements when coupled to a filtrate concentrator. (JGB)

  7. High-energy redox-flow batteries with hybrid metal foam electrodes.

    Science.gov (United States)

    Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun

    2014-07-09

    A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.

  8. Eco-friendly copper recovery process from waste printed circuit boards using Fe³⁺/Fe²⁺ redox system.

    Science.gov (United States)

    Fogarasi, Szabolcs; Imre-Lucaci, Florica; Egedy, Attila; Imre-Lucaci, Árpád; Ilea, Petru

    2015-06-01

    The present study aimed at developing an original and environmentally friendly process for the recovery of copper from waste printed circuit boards (WPCBs) by chemical dissolution with Fe(3+) combined with the simultaneous electrowinning of copper and oxidant regeneration. The recovery of copper was achieved in an original set-up consisting of a three chamber electrochemical reactor (ER) connected in series with a chemical reactor (CR) equipped with a perforated rotating drum. Several experiments were performed in order to identify the optimal flow rate for the dissolution of copper in the CR and to ensure the lowest energy consumption for copper electrodeposition in the ER. The optimal hydrodynamic conditions were provided at 400 mL/min, leading to the 75% dissolution of metals and to a low specific energy consumption of 1.59 kW h/kg Cu for the electrodeposition process. In most experiments, the copper content of the obtained cathodic deposits was over 99.9%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The process and utility of classification and regression tree methodology in nursing research.

    Science.gov (United States)

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2014-06-01

    This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Discussion paper. English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984-2013. Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. © 2013 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  10. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Jicheng; Gaffrey, Matthew J.; Qian, Wei-Jun

    2017-01-01

    Protein cysteine thiols play a crucial role in redox signaling, regulation of enzymatic activity and protein function, and maintaining redox homeostasis in living systems. The unique chemical reactivity of thiol groups makes cysteine susceptible to oxidative modifications by reactive oxygen and nitrogen species to form a broad array of reversible and irreversible protein post-translational modifications (PTMs). The reversible modifications in particular are one of the major components of redox signaling and are involved in regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in health and diseases has been increasingly recognized. Herein, we review the recent advances of quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including the general considerations of sample processing, various chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for addressing specific biological questions. Although some technological limitations remain, redox proteomics is paving the way towards a better understanding of redox signaling and regulation in human health and diseases.

  11. Prediction method of unburnt carbon for coal fired utility boiler using image processing technique of combustion flame

    International Nuclear Information System (INIS)

    Shimoda, M.; Sugano, A.; Kimura, T.; Watanabe, Y.; Ishiyama, K.

    1990-01-01

    This paper reports on a method predicting unburnt carbon in a coal fired utility boiler developed using an image processing technique. The method consists of an image processing unit and a furnace model unit. temperature distribution of combustion flames can be obtained through the former unit. The later calculates dynamics of the carbon reduction from the burner stages to the furnace outlet using coal feed rate, air flow rate, chemical and ash content of coal. An experimental study shows that the prediction error of the unburnt carbon can be reduced to 10%

  12. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution x-ray Compton scattering

    OpenAIRE

    Hafiz, Hasnain; Suzuki, Kosuke; Barbiellini, Bernardo; Orikasa, Yuki; Callewaert, Vincent; Kaprzyk, Staszek; Itou, Masayoshi; Yamamoto, Kentaro; Yamada, Ryota; Uchimoto, Yoshiharu; Sakurai, Yoshiharu; Sakurai, Hiroshi; Bansil, Arun

    2017-01-01

    Abstract: Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visualize or image the redox orbitals and how these orbitals evolve under lithiation and delit...

  13. Sedimentary cobalt concentrations track marine redox evolution

    Science.gov (United States)

    Swanner, Elizabeth; Planavsky, Noah; Lalonde, Stefan; Robbins, Jamie; Bekker, Andrey; Rouxel, Olivier; Konhauser, Kurt O.; Mojzsis, Stephen J.

    2013-04-01

    Oxygen production by photosynthesis drove the redox evolution of the atmosphere and ocean. Primary productivity by oxygenic photosynthesizers in the modern surface ocean is limited by trace nutrients such as iron, but previous studies have also observed high Co uptake associated with natural cyanobacterial populations. Constraining the size and variation of the oceanic reservoir of Co through time will help to understand the regulation of primary productivity and hence oxygenation through time. In this study, Co concentrations from iron formations (IF), shales and marine pyrites deposited over nearly 4 billion years of Earth's history are utilized to reconstruct secular changes in the mechanisms of Co removal from the oceanic reservoir. The Co reservoir prior to ~2 Ga was dominated by hydrothermal inputs and Fe(III)oxyhydroxides were likely involved in the removal of Co from the water column. Fe(II) oxidation in the water column resulted in the deposition of IF in the Archean and Paleoproterozoic, and the Co inventory of IF records a large oceanic reservoir of Co during this time. Lower Co concentrations in sediments during the Middle Proterozoic signify a decrease in the oceanic reservoir due to the expansion euxinic environments, corresponding to the results of previous studies. A transition to an oxidized deep ocean in the Phanerozoic is evidenced by correlation between Co and manganese (Mn) concentrations in hydrothermal and exhalative deposits, and in marine pyrites. This relationship between Co and Mn, signifying deposition of Co in association with Mn(IV)oxides, does not occur in the Precambrian. Mn(II) oxidation occurs at higher redox potentials than that required for Fe(II) oxidation, and the extent of Mn redox cycling prior to full ventilation of the oceans at the end of the Neoproterozoic was likely limited to spatially restricted oxic surface waters. In this regard, Co is another valuable redox proxy for tracking the growth and decline in oxygenated

  14. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM Process

    Directory of Open Access Journals (Sweden)

    Kwangho Shin

    2013-12-01

    Full Text Available In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE simulation. PE (high density polyethylene (HDPE and low density polyethylene (LDPE and polypropylene (PP resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.

  15. Fuel licensing process for an industrial use. ATF licensing process for an industrial use - Utility's perspective

    International Nuclear Information System (INIS)

    Waeckel, Nicolas

    2013-01-01

    To develop and license a breakthrough nuclear fuel technology for commercial use is becoming challenging. All the former safety analysis design limits (SAFDLs) defined in the 1970's for the standard UO 2 -Zr fuels, might no longer be applicable. Identification of the appropriate safety analysis design limits For each type of innovative fuel, the developers will have to identify and investigate all the possible failure/ruins scenarios (not only those related to severe accidents but also those related to normal operation). In order to save time and to focus on the best options, those failure scenarios (which could be 'killers' for the ATF concept) have to be determined early enough in the development process. Based on the above failure scenarios, the developers will have to propose the licensing limits (and the experimental protocol to determine and to justify them). As mentioned earlier, the licensing limits should not be defined against the accidental conditions only. For the operators, the (good) in-reactor fuel behaviour is crucial. As an example, in the case of the new fuel concepts coming with an outer coating, it is important to include the analysis of the consequences of the loss of this protective outer layer in the licensing process due to a manufacturing defect or an inevitable in-reactor fretting wear. Obviously, the new/specific SAFDLs will have to be endorsed by the regulators (which could be a long process by itself). Identification of a commercial reactor to irradiate the first ATF A commercial NPP is not a material test reactor (MTR); irradiating lead test fuel rods (LTFRs) or lead test assemblies (LTAs) implies strict requirements regarding the manufacturing processes [which should not include chemicals (additives or solvents) potentially incompatible with the nuclear technical specifications], the compatibility with the hosting fuel core (in terms of geometry, enrichment, thermal hydraulic performances, etc.) and the robustness and

  16. Preparation of SrCoOx thin films on LaAlO3 substrate and their reversible redox process at moderate temperatures

    Science.gov (United States)

    Hao, L.; Zhang, Z. F.; Xie, X. N.; Wang, H. R.; Yu, Q. X.; Zhu, H.

    2015-10-01

    Using magnetron sputtering and annealing techniques, we have prepared SrCoOx films on LaAlO3 and SrTiO3 substrates. Distinctly different structures of the films have been found on the two substrates. It is suggested that positive lattice mismatch between film and substrate promotes SrCoO2.5 films with an orthorhombic structure grown on SrTiO3 substrate, whereas negative lattice mismatch from LaAlO3 substrate is in favor of increasing the valence state of Co and thus the growth of oxygen-rich SrCoOx with a tetragonal structure. In addition to the structural characterization, magnetic and electrical measurements confirm that the oxygen content x is between 2.75 and 2.88 for the latter. Reversibility of the topotactic phase transformation between SrCoO2.5 and the oxygen-rich SrCoOx films has also been studied by changing the oxygen pressure during annealing process. Even in the presence of a negative lattice mismatch, the results reveal that the tetragonal SrCoOx films on LaAlO3 substrate retain high oxygen mobility identified before in cubic SrCoOx films.

  17. Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former uranium mining area.

    Science.gov (United States)

    Burkhardt, Eva-Maria; Akob, Denise M; Bischoff, Sebastian; Sitte, Jana; Kostka, Joel E; Banerjee, Dipanjan; Scheinost, Andreas C; Küsel, Kirsten

    2010-01-01

    Understanding the dynamics of metals and radionuclides in soil environments is necessary for evaluating risks to pristine sites. An iron-rich creek soil of a former uranium-mining district (Ronneburg, Germany) showed high porewater concentrations of heavy metals and radionuclides. Thus, this study aims to (i) evaluate metal dynamics during terminal electron accepting processes (TEAPs) and (ii) characterize active microbial populations in biostimulated soil microcosms using a stable isotope probing (SIP) approach. In biostimulated soil slurries, concentrations of soluble Co, Ni, Zn, As, and unexpectedly U increased during Fe(III)-reduction. This suggests that there was a release of sorbed metals and As during reductive dissolution of Fe(III)-oxides. Subsequent sulfate-reduction was concurrent with a decrease of U, Co, Ni, and Zn concentrations. The relative contribution of U(IV) in the solid phase changed from 18.5 to 88.7% after incubation. The active Fe(III)-reducing population was dominated by delta-Proteobacteria (Geobacter) in (13)C-ethanol amended microcosms. A more diverse community was present in (13)C-lactate amended microcosms including taxa related to Acidobacteria, Firmicutes, delta-Proteobacteria, and beta-Proteobacteria. Our results suggested that biostimulated Fe(III)-reducing communities facilitated the release of metals including U to groundwater which is in contrast to other studies.

  18. Redox Couples with Unequal Diffusion Coefficients: Effect on Redox Cycling

    NARCIS (Netherlands)

    Mampallil Augustine, Dileep; Mathwig, Klaus; Kang, Shuo; Lemay, Serge Joseph Guy

    2013-01-01

    Redox cycling between two electrodes separated by a narrow gap allows dramatic amplification of the faradaic current. Unlike conventional electrochemistry at a single electrode, however, the mass-transport-limited current is controlled by the diffusion coefficient of both the reduced and oxidized

  19. Navigating neurites utilize cellular topography of Schwann cell somas and processes for optimal guidance

    Science.gov (United States)

    Lopez-Fagundo, Cristina; Mitchel, Jennifer A.; Ramchal, Talisha D.; Dingle, Yu-Ting L.; Hoffman-Kim, Diane

    2013-01-01

    The path created by aligned Schwann cells (SCs) after nerve injury underlies peripheral nerve regeneration. We developed geometric bioinspired substrates to extract key information needed for axon guidance by deconstructing the topographical cues presented by SCs. We have previously reported materials that directly replicate SC topography with micro- and nanoscale resolution, but a detailed explanation of the means of directed axon extension on SC topography has not yet been described. Here, using neurite tracing and time-lapse microscopy, we analyzed the SC features that influence axon guidance. Novel poly(dimethylsiloxane) materials, fabricated via photolithography, incorporated bioinspired topographical components with the shapes and sizes of aligned SCs, namely somas and processes, where the length of the processes were varied but the soma geometry and dimensions were kept constant. Rat dorsal root ganglia neurites aligned to all materials presenting bioinspired topography after a 5 days in culture and to bioinspired materials presenting soma and process features after only 17 hours in culture. Key findings of this study were: Neurite response to underlying bioinspired topographical features was time dependent, where at 5 days, neurites aligned most strongly to materials presenting combinations of soma and process features, with higher than average density of either process or soma features; but at 17 hours they aligned more strongly to materials presenting average densities of soma and process features and to materials presenting process features only. These studies elucidate the influence of SC topography on axon guidance in a time-dependent setting and have implications for the optimization of nerve regeneration strategies. PMID:23557939

  20. Method and apparatus for surface characterization and process control utilizing radiation from desorbed particles

    International Nuclear Information System (INIS)

    Feldman, L.C.; Kraus, J.S.; Tolk, N.H.; Traum, M.M.; Tully, J.C.

    1983-01-01

    Emission of characteristic electromagnetic radiation in the infrared, visible, or UV from excited particles, typically ions, molecules, or neutral atoms, desorbed from solid surfaces by an incident beam of low-momentum probe radiation has been observed. Disclosed is a method for characterizing solid surfaces based on the observed effect, with low-momentum probe radiation consisting of electrons or photons. Further disclosed is a method for controlling manufacturing processes that is also based on the observed effect. The latter method can, for instance, be advantageously applied in integrated circuit-, integrated optics-, and magnetic bubble device manufacture. Specific examples of applications of the method are registering of masks, control of a direct-writing processing beam, end-point detection in etching, and control of a processing beam for laser- or electron-beam annealing or ion implantation

  1. Process improvement methods increase the efficiency, accuracy, and utility of a neurocritical care research repository.

    Science.gov (United States)

    O'Connor, Sydney; Ayres, Alison; Cortellini, Lynelle; Rosand, Jonathan; Rosenthal, Eric; Kimberly, W Taylor

    2012-08-01

    Reliable and efficient data repositories are essential for the advancement of research in Neurocritical care. Various factors, such as the large volume of patients treated within the neuro ICU, their differing length and complexity of hospital stay, and the substantial amount of desired information can complicate the process of data collection. We adapted the tools of process improvement to the data collection and database design of a research repository for a Neuroscience intensive care unit. By the Shewhart-Deming method, we implemented an iterative approach to improve the process of data collection for each element. After an initial design phase, we re-evaluated all data fields that were challenging or time-consuming to collect. We then applied root-cause analysis to optimize the accuracy and ease of collection, and to determine the most efficient manner of collecting the maximal amount of data. During a 6-month period, we iteratively analyzed the process of data collection for various data elements. For example, the pre-admission medications were found to contain numerous inaccuracies after comparison with a gold standard (sensitivity 71% and specificity 94%). Also, our first method of tracking patient admissions and discharges contained higher than expected errors (sensitivity 94% and specificity 93%). In addition to increasing accuracy, we focused on improving efficiency. Through repeated incremental improvements, we reduced the number of subject records that required daily monitoring from 40 to 6 per day, and decreased daily effort from 4.5 to 1.5 h/day. By applying process improvement methods to the design of a Neuroscience ICU data repository, we achieved a threefold improvement in efficiency and increased accuracy. Although individual barriers to data collection will vary from institution to institution, a focus on process improvement is critical to overcoming these barriers.

  2. Utilization of process heat from the HTR in the chemical and related industries

    International Nuclear Information System (INIS)

    Schad, M.; Didas, U.; Ebeling, F.; Kreutzkamp, G.; Renner, H.

    1988-12-01

    The wide introduction of the HTRI as heat and energy sources would be beneficial when the HTRI operating parameters were more suitable for flexible adaptation to the wide possible field of applications and requirements of the potential customer. Here of importance are: Guaranteed reliable, easily adaptable as well as effective process heat provision; a small HTRI size, under 100 MW if possible, for economic process plant operation never negatively influenced by the operational behaviour of the individual HTRI; avoidance of a secondary heat transfer circulation system for economic reasons by an extremely clean primary helium at all times and under all circumstances; greater flexibility in the HTRI helium inlet and outlet temperatures. Initially at least a helium inlet temperature of 300deg C or better 350deg C. At 250deg C too much heat is often offered in the low-temperature range which can in the main be used for domestic heating and power export only. The processes technically and economically interesting which could be provided with heat from the HTRI cover the field of mineral oil technology. Their process temperatures are below 600deg C, a temperature range demanding conventional technology. Thus, for this purpose it is only necessary to: Test the heat exchangers to be designed new; find the most effective combined plant concept in each case; carry out the necessary safety examinations into the combined operation of the two plant sections - HTRI and process plant. In addition, the market for the process heat supply in mineral oil technology has a considerable potential. (orig./GL)

  3. Redox Fluctuations Increase the Contribution of Lignin to Soil Respiration

    Science.gov (United States)

    Hall, S. J.; Silver, W. L.; Timokhin, V.; Hammel, K.

    2014-12-01

    Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia has long been thought to suppress lignin decomposition, yet variation in oxygen (O2) availability in surface soils accompanying moisture fluctuations could potentially stimulate this process by generating reactive oxygen species via coupled biotic and abiotic iron (Fe) redox cycling. Here, we tested the impact of redox fluctuations on lignin breakdown in humid tropical forest soils during ten-week laboratory incubations. We used synthetic lignins labeled with 13C in either of two positions (aromatic methoxyl and propyl Cβ) to provide highly sensitive and specific measures of lignin mineralization not previously employed in soils. Four-day redox fluctuations increased the percent contribution of methoxyl C to soil respiration, and cumulative methoxyl C mineralization was equivalent under static aerobic and fluctuating redox conditions despite lower total C mineralization in the latter treatment. Contributions of the highly stable Cβ to mineralization were also equivalent in static aerobic and fluctuating redox treatments during periods of O2 exposure, and nearly doubled in the fluctuating treatment after normalizing to cumulative O2 exposure. Oxygen fluctuations drove substantial net Fe reduction and oxidation, implying that reactive oxygen species generated during abiotic Fe oxidation likely contributed to the elevated contribution of lignin to C mineralization. Iron redox cycling provides a mechanism for lignin breakdown in soils that experience conditions unfavorable for canonical lignin-degrading organisms, and provides a potential mechanism for lignin depletion in soil organic matter during late-stage decomposition. Thus, close couplings between soil moisture, redox fluctuations, and lignin breakdown provide potential a link between climate variability and

  4. Utilization of cellulosic materials through enzymic hydrolysis. 11. Preliminary assessment of an integrated processing scheme

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C R; Cysewski, G R; Yang, R D

    1976-01-01

    An integrated processing scheme is described for the conversion of a cellulose waste (newsprint) to sugars by enzymic hydrolysis and then to ethanol and yeast by fermentation. The unconverted solids are burned to produce process energy requirements and surplus electric power. With the preliminary design at an estimate total capital investment of $33.4 x 10/sup 6/, 95% ethanol may be produced FOB (free on board) the plant for approx.61 cents/gal, assuming zero cost for cellulosic feed; taking into account interest rates and taxes and a cellulose feed cost of $20/ton the figure becomes $1.67/gal.

  5. Atmospheric pressure plasma processing of polymeric materials utilizing close proximity indirect exposure

    Science.gov (United States)

    Paulauskas, Felix L.; Bonds, Truman

    2016-09-20

    A plasma treatment method that includes providing treatment chamber including an intermediate heating volume and an interior treatment volume. The interior treatment volume contains an electrode assembly for generating a plasma and the intermediate heating volume heats the interior treatment volume. A work piece is traversed through the treatment chamber. A process gas is introduced to the interior treatment volume of the treatment chamber. A plasma is formed with the electrode assembly from the process gas, wherein a reactive species of the plasma is accelerated towards the fiber tow by flow vortices produced in the interior treatment volume by the electrode assembly.

  6. Electron beam accelerator at BARC-BRIT complex - electron beam processing of materials and industrial utilization

    International Nuclear Information System (INIS)

    Khader, S.A.; Patkari, R.K.; Sharma, K.S.S.

    2013-01-01

    During the last decade, the 2MeV/20kW electron beam (EB) accelerator located at BARC-BRIT complex, Vashi has been successfully utilised for non-thermal applications to develop speciality products useful for the industry. Polymer materials are exposed to high energy electrons to induce crosslinking and degradation reactions in a number of industrial products without the use of external chemicals and additives. Various EB crosslinked products viz. PE O-rings, automotive components, automobile tyres, electrical insulations, etc have been found to be much superior in quality compared to those produced conventionally. A process has been developed to enhance colours in the polished diamonds and gem stones using EB irradiation at the facility which has attracted much attention in the Indian diamond industry as a value-addition process. Recycling of polymer waste processed under EB to produce microfine PTFE powder, to reuse in automobile industry etc. has shown good potential for the industrial use. The process feasibility both in terms of economics and technology have been amply demonstrated on a technological scale by installing special conveyors at our facility for irradiating various industrial products. Around 100 km cable insulations, 1.5 million PE O-rings and more than 40000 carats of polished diamonds have been processed in our facility over a period of time on commercial scale. Encouraged with the results, Indian private entrepreneurs have set up dedicated EB machines in some of the most significant industries producing wire and cables, electrical gadgets based on polymer composites, automobile tyres and diamonds. The products are unique in properties and are in some cases, became import substitutes. The industry is now fully geared up to adapt the technology by realising the advantages viz ease in adaptability, convenient, safe and environmental-friendly nature. Encouraged by the process demonstrations, while five EB accelerators were setup and are in operation

  7. Redox regulation of photosynthetic gene expression.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine H

    2012-12-19

    Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability.

  8. The study on the role of very high temperature reactor and nuclear process heat utilization in future energy systems

    International Nuclear Information System (INIS)

    Yasukawa, Sigeru; Mankin, Shuichi; Tadokoro, Yoshihiro; Sato, Osamu; Yamaguchi, Kazuo; Ueno, Seiichi

    1986-11-01

    This report describes the analytical results being made in the study on the role of Very High Temperature Reactor and nuclear process heat utilization in future energy system, which is aimed at zero emission. In the former part of the report, the modeling of the reference energy system, main characteristics of energy technologies, and scenario indicators as well as system behavioral objectives for optimization are explained. In the latter part, analytical results such as the time-period variation of overall energy utilization efficiency, energy supply/demand structure in long-terms, energy contribution and economic competition of new energy technologies, environmental effluents released through verious energy activities, impacts to and from national economy, and some sensitivity analyses, are reviewed. (author)

  9. Scalar utility theory and proportional processing: What does it actually imply?

    Science.gov (United States)

    Rosenström, Tom; Wiesner, Karoline; Houston, Alasdair I

    2016-09-07

    Scalar Utility Theory (SUT) is a model used to predict animal and human choice behaviour in the context of reward amount, delay to reward, and variability in these quantities (risk preferences). This article reviews and extends SUT, deriving novel predictions. We show that, contrary to what has been implied in the literature, (1) SUT can predict both risk averse and risk prone behaviour for both reward amounts and delays to reward depending on experimental parameters, (2) SUT implies violations of several concepts of rational behaviour (e.g. it violates strong stochastic transitivity and its equivalents, and leads to probability matching) and (3) SUT can predict, but does not always predict, a linear relationship between risk sensitivity in choices and coefficient of variation in the decision-making experiment. SUT derives from Scalar Expectancy Theory which models uncertainty in behavioural timing using a normal distribution. We show that the above conclusions also hold for other distributions, such as the inverse Gaussian distribution derived from drift-diffusion models. A straightforward way to test the key assumptions of SUT is suggested and possible extensions, future prospects and mechanistic underpinnings are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Fixation and utilization of CO2 by biological and/or chemical processes

    International Nuclear Information System (INIS)

    Hiromichi, N.

    1994-01-01

    This paper presents the carbon dioxide fixation and utilisation by biological and/or chemical processes. It presents research objectives and program contents for the effective fixation of carbon dioxide by micro-organism and its hydrogenation. (TEC). 5 figs., 2 tabs

  11. Integrating Process and Factor Understanding of Environmental Innovation by Water Utilities

    NARCIS (Netherlands)

    Spiller, Marc; McIntosh, Brian S.; Seaton, Roger A.F.; Jeffrey, Paul J.

    2015-01-01

    Innovations in technology and organisations are central to enabling the water sector to adapt to major environmental changes such as climate change, land degradation or drinking water pollution. While there are literatures on innovation as a process and on the factors that influence it, there is

  12. Development of Portable Venturi Kiln for Agricultural Waste Utilization by Carbonization Process

    Science.gov (United States)

    Agustina, S. E.; Chasanah, N.; Eris, A. P.

    2018-05-01

    Many types of kiln or carbonization equipment have been developed, but most of them were designed for big capacity and some also having low performance. This research aims to develop kiln, especially portable metal kiln, which has higher performance, more environmental- friendly, and can be used for several kinds of biomass or agricultural waste (not exclusive for one kind of biomass) as feeding material. To improve the kiln performance, a venturi drum type of portable kiln has been designed with an optimum capacity of 12.45 kg coconut shells. Basic idea of those design is heat flow improvement causing by venturi effect. The performance test for coconut shell carbonization shows that the carbonization process takes about 60-90 minutes to produce average yields of 23.8%., and the highest temperature of the process was 441 °C. The optimum performance has been achieved in the 4th test, which was producing 24% yield of highest charcoal quality (represented by LHV) in 65 minutes process at average temperature level 485 °C. For pecan shell and palm shell, design modification has been done by adding 6 air inlet holes and 3 ignition column to get better performance. While operation procedure should be modified on loading and air supply, depending on each biomass characteristic. The result of performance test showed that carbonization process of pecan shell produce 17 % yield, and palm shell produce 15% yield. Based on Indonesian Standard (SNI), all charcoal produced in those carbonization has good quality level.

  13. Implementation of a VLSI Level Zero Processing system utilizing the functional component approach

    Science.gov (United States)

    Shi, Jianfei; Horner, Ward P.; Grebowsky, Gerald J.; Chesney, James R.

    1991-01-01

    A high rate Level Zero Processing system is currently being prototyped at NASA/Goddard Space Flight Center (GSFC). Based on state-of-the-art VLSI technology and the functional component approach, the new system promises capabilities of handling multiple Virtual Channels and Applications with a combined data rate of up to 20 Megabits per second (Mbps) at low cost.

  14. Utilization of respiratory energy in higher plants : requirements for 'maintenance' and transport processes

    NARCIS (Netherlands)

    Bouma, T.J.

    1995-01-01

    Quantitative knowledge of both photosynthesis and respiration is required to understand plant growth and resulting crop yield. However, especially the nature of the energy demanding processes that are dependent on dark respiration in full-grown tissues is largely unknown. The main objective

  15. Utilization of geothermal energy in the mining and processing of tungsten ore. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, M.V.; Lacy, S.B.; Lowe, G.D.; Nussbaum, A.M.; Walter, K.M.; Willens, C.A.

    1981-01-01

    The engineering, economic, and environmental feasibility of the use of low and moderate temperature geothermal heat in the mining and processing of tungsten ore is explored. The following are covered: general engineering evaluation, design of a geothermal energy system, economics, the geothermal resource, the institutional barriers assessment, environmental factors, an alternate geothermal energy source, and alternates to geothermal development. (MHR)

  16. Expanding the utility of the Agricultural Research Service (ARS) process bleaching

    Science.gov (United States)

    The ARS Process for bleaching, biopolishing, and shrinkproofing wool is a novel alternative to chlorination and conventional bleaching. Consumer acceptance of domestic machine-washable, comfortable wool which can be worn next to the skin will lead to niche-market- potential and competitive, increas...

  17. Reverse pattern duplication utilizing a two-step metal lift-off process via nanoimprint lithography

    International Nuclear Information System (INIS)

    Song, Sun-Sik; Kim, Eun-Uk; Jung, Hee-Soo; Kim, Ki-Seok; Jung, Gun-Young

    2009-01-01

    A two-step metal lift-off process using a selective etching recipe was demonstrated as a new technique for the reverse pattern fabrication of the features of a master stamp via a UV-based nanoimprint lithography technique. A transparent master stamp with repeated pillars (150 nm diameter at 300 nm pitch) was fabricated by using laser interference lithography and the subsequent dry-etching process. After nanoimprint lithography and the following gold (Au) lift-off process, the corresponding gold dots (20 nm height) were generated. A thin chromium layer (Cr, 5 nm) was then deposited and subjected to the aqua regia solution, which dissolved only Au dots. By using a selective wet etching recipe between gold (Au) and chromium (Cr) materials, a Cr layer with holes was reliably generated, which was used as an etching mask to transfer holes into the silicon substrate in the subsequent dry-etching process. Hole patterns with a diameter of 146 nm were inversely replicated faithfully from the master stamp with the corresponding pillars without a notable feature size distortion

  18. Utilizing the Theoretical Framework of Collective Identity to Understand Processes in Youth Programs

    Science.gov (United States)

    Futch, Valerie A.

    2016-01-01

    This article explores collective identity as a useful theoretical framework for understanding social and developmental processes that occur in youth programs. Through narrative analysis of past participant interviews (n = 21) from an after-school theater program, known as "The SOURCE", it was found that participants very clearly describe…

  19. Iron-sulfide redox flow batteries

    Science.gov (United States)

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  20. Effects of the conditions imposed by the environment and by utilities on the design of process engineering plant

    Energy Technology Data Exchange (ETDEWEB)

    Bernecker, G

    1976-09-01

    Conditions of environment and utilities have a great influence on the investment and operation costs of process engineering plants. If these conditions are taken into consideration in preliminary process engineering, the considerable amount of time spent in planning subsequent modifications could be saved. This publication from the seminar held with the topic 'planning and construction of process engineering systems' by the VDI-Bildungswerk shows how to facilitate problems of waste products already 'in statu nascendi'. The second part which will be published in the next edition will summarize the possibilities and the determining restrictions in the use of the available media for heating and cooling. Both essays are extended presentations of a chapter from a book in preparation by the VDI with the same title as the seminar.

  1. Characterization, treatment and utilization of rice husk ash in production processes of the industrial branch

    International Nuclear Information System (INIS)

    Stracke, Marcelo Paulo; Schmidt, Julia Isabel; Steffen, Ana Cristina; Sokolovicz, Boris; Kieckow, Flavio

    2016-01-01

    The rice husk ash (CCA) is a black powder rich in silica (contents above 90%) with many industrial applications. The ash was obtained from a rice processing industry in the state of Rio Grande do Sul. In this work the purpose is to characterize the rice husk ash and eliminate the residual carbon by methods such as acid leaching. The white ash is obtained by a chemical process followed by heating between 600 and 800 °C. The results were analyzed in DR-X, TGA and DSC. The DR-X analysis showed that the samples present high levels of silica in the crystalline form of quartz, cristobalite and tridymite. The white ash was obtained with high purity and presented a good result in the manufacture of paints. (author)

  2. Efficient utilization of renewable feedstocks: the role of catalysis and process design

    Science.gov (United States)

    Palkovits, Regina; Delidovich, Irina

    2017-11-01

    Renewable carbon feedstocks such as biomass and CO2 present an important element of future circular economy. Especially biomass as highly functionalized feedstock provides manifold opportunities for the transformation into attractive platform chemicals. However, this change of the resources requires a paradigm shift in refinery design. Fossil feedstocks are processed in gas phase at elevated temperature. In contrast, biorefineries are based on processes in polar solvents at moderate conditions to selectively deoxygenate the polar, often thermally instable and high-boiling molecules. Here, challenges of catalytic deoxygenation, novel strategies for separation and opportunities provided at the interface to biotechnology are discussed in form of showcases. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  3. Utilization of Paper Sludge Wastes for Treatment of Wastewater from Food Processing Industries

    Directory of Open Access Journals (Sweden)

    Tohru Suzuki

    2012-12-01

    Full Text Available The food processing industries usually produced large amount of wastewater containing fine and small particles. It takes long time for complete settlement of the fine and small particles in the wastewater. The coagulation method appears to become one of the useful treatments. New inorganic coagulant named “Agoclean‒P” has been developed from paper sludge ash. The treatment by coagulation and flocculation were carried out for the wastewater from three different food processing industries namely soup, tofu, and natto. “Hi‒Biah‒System”, which is an in‒situ solidification system, was used for the continuous treatment of wastewater. The parameters for the water quality were pH, five‒day biochemical oxygen demand (BOD5, chemical oxygen demand (COD, total suspended solids (TSS, total nitrogen (TN and total phosphorus (TP. These parameters after the treatment became much lower values relative to those obtained before the treatment.

  4. Utilization of Food Processing By-products as Dietary, Functional, and Novel Fiber: A Review.

    Science.gov (United States)

    Sharma, Satish Kumar; Bansal, Sangita; Mangal, Manisha; Dixit, Anil Kumar; Gupta, Ram K; Mangal, A K

    2016-07-26

    Fast growing food processing industry in most countries across the world, generates huge quantity of by-products, including pomace, hull, husk, pods, peel, shells, seeds, stems, stalks, bran, washings, pulp refuse, press cakes, etc., which have less use and create considerable environmental pollution. With growing interest in health promoting functional foods, the demand of natural bioactives has increased and exploration for new sources is on the way. Many of the food processing industrial by-products are rich sources of dietary, functional, and novel fibers. These by-products can be directly (or after certain modifications for isolation or purification of fiber) used for the manufacture of various foods, i.e. bread, buns, cake, pasta, noodles, biscuit, ice creams, yogurts, cheese, beverages, milk shakes, instant breakfasts, ice tea, juices, sports drinks, wine, powdered drink, fermented milk products, meat products and meat analogues, synthetic meat, etc. A comprehensive literature survey has been carried on this topic to give an overview in the field dietary fiber from food by-products. In this article, the developments in the definition of fiber, fiber classification, potential sources of dietary fibers in food processing by-products, their uses, functional properties, caloric content, energy values and the labelling regulations have been discussed.

  5. Complex processing and utilization of waste as the basis for sustainable economic development district

    Directory of Open Access Journals (Sweden)

    V.М. Ilchenko

    2015-06-01

    Full Text Available The article describes the main environmental problems of Ukraine. The problems that are connected with complex processing and recycling, the example Dnieper economic paradise-one, which allows more detailed present environmental situation of the country at this stage. The article is used and analyzed recent environmental performance and the basic problems of on-disposal and recycling. Basic research methods: observation, analysis and comparison. The aim was to find ways to overcome the ecological crisis in Ukraine. As a result of the research, it was determined that most types of waste-tion prevail in Ukraine and found the best solutions to problems related to waste and their processing. It was possible to find the main problem that has caused serious environmental situation, and the main task for the country at this stage. The main problems and tasks Dnieper economic region. Also indicate how to save, due to complex processing waste. The article is very relevant and important because it is here that the basic problems and tasks of Ukraine concerning the ecological situation. It also focuses on eco-logical problems, which the government does not pay enough attention.

  6. Beyond the Pharmacists’ Patient Care Process: Cultivating Patient Care Practitioners by Utilizing the Pharmaceutical Care Framework

    Directory of Open Access Journals (Sweden)

    Claire Kolar

    2017-08-01

    Full Text Available The adoption of a standard pharmacists’ patient care process (PPCP for the profession, and inclusion of the PPCP in the ACPE Standards 2016, are positive steps for pharmacy education and creates consistency among pharmacy practitioners, regardless of practice setting. The PPCP, and its implications for practice, needs to continue to be embraced by educators and emphasized with students. The PPCP should be the patient care process taught to students and integrated throughout didactic courses and experiential experiences. However, teaching the PPCP or a particular service, such as Medication Therapy Management (MTM or Comprehensive Medication Management (CMM, is not enough. The patient care process must be taught as one component of pharmaceutical care. Without also learning the philosophy of practice and practice management systems, student pharmacists will not be prepared for the realities of practice. Pharmacists are taking on new roles, getting paid in new ways, and in positions to take responsibility for a patient’s medication-related needs. Student pharmacists need to be in a position to take advantage of these opportunities as they progress throughout their careers. Conflict of Interest We declare no conflicts of interest or financial interests that the authors or members of their immediate families have in any product or service discussed in the manuscript, including grants (pending or received, employment, gifts, stock holdings or options, honoraria, consultancies, expert testimony, patents and royalties.   Type: Idea Paper

  7. Utilizing Lean Six Sigma Methodology to Improve the Authored Works Command Approval Process at Naval Medical Center San Diego.

    Science.gov (United States)

    Valdez, Michelle M; Liwanag, Maureen; Mount, Charles; Rodriguez, Rechell; Avalos-Reyes, Elisea; Smith, Andrew; Collette, David; Starsiak, Michael; Green, Richard

    2018-03-14

    Inefficiencies in the command approval process for publications and/or presentations negatively impact DoD Graduate Medical Education (GME) residency programs' ability to meet ACGME scholarly activity requirements. A preliminary review of the authored works approval process at Naval Medical Center San Diego (NMCSD) disclosed significant inefficiency, variation in process, and a low level of customer satisfaction. In order to facilitate and encourage scholarly activity at NMCSD, and meet ACGME requirements, the Executive Steering Council (ESC) chartered an interprofessional team to lead a Lean Six Sigma (LSS) Rapid Improvement Event (RIE) project. Two major outcome metrics were identified: (1) the number of authored works submissions containing all required signatures and (2) customer satisfaction with the authored works process. Primary metric baseline data were gathered utilizing a Clinical Investigations database tracking publications and presentations. Secondary metric baseline data were collected via a customer satisfaction survey to GME faculty and residents. The project team analyzed pre-survey data and utilized LSS tools and methodology including a "gemba" (environment) walk, cause and effect diagram, critical to quality tree, voice of the customer, "muda" (waste) chart, and a pre- and post-event value stream map. The team selected an electronic submission system as the intervention most likely to positively impact the RIE project outcome measures. The number of authored works compliant with all required signatures improved from 52% to 100%. Customer satisfaction rated as "completely or mostly satisfied" improved from 24% to 97%. For both outcomes, signature compliance and customer satisfaction, statistical significance was achieved with a p methodology and tools to improve signature compliance and increase customer satisfaction with the authored works approval process, leading to 100% signature compliance, a comprehensive longitudinal repository of all

  8. Economic and environmental impacts of the energy source for the utility production system in the HDA process

    International Nuclear Information System (INIS)

    Ouattara, A.; Pibouleau, L.; Azzaro-Pantel, C.; Domenech, S.

    2013-01-01

    Highlights: • Two energy sources – fuel oil, natural gas – for the utility production system of the HDA process are studied. • In each case the best solution is identified. • The choice is performed according to cost and environmental considerations. - Abstract: The well-known benchmark process for hydrodealkylation of toluene (HDA) to produce benzene is revisited in a multi-objective approach for identifying environmentally friendly and cost-effective operation solutions. The paper begins with the presentation of the numerical tools used in this work, i.e., a multi-objective genetic algorithm and a Multiple Choice Decision Making procedure. Then, two studies related to the energy source involved in the utility production system (UPS), either fuel oil or natural gas, of the HDA process are carried out. In each case, a multi-objective optimization problem based on the minimization of the total annual cost of the process and of five environmental burdens, that are Global Warming Potential, Acidification Potential, Photochemical Ozone Creation Potential, Human Toxicity Potential and Eutrophication Potential, is solved and the best solution is identified by use of Multiple Choice Decision Making procedures. An assessment of the respective contribution of the HDA process and the UPS towards environmental impacts on the one hand, and of the environmental impacts generated by the main equipment items of the HDA process on the other hand is then performed to compare both solutions. This “gate-to-gate” environmental study is then enlarged by implementing a “cradle-to-gate” Life Cycle Assessment (LCA), for accounting of emission inventory and extraction. The use of a natural gas turbine, less economically efficient, turns out to be a more attractive alternative to meet the societal expectations concerning environment preservation and sustainable development

  9. Determining Li+-Coupled Redox Targeting Reaction Kinetics of Battery Materials with Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Yan, Ruiting; Ghilane, Jalal; Phuah, Kia Chai; Pham Truong, Thuan Nguyen; Adams, Stefan; Randriamahazaka, Hyacinthe; Wang, Qing

    2018-02-01

    The redox targeting reaction of Li + -storage materials with redox mediators is the key process in redox flow lithium batteries, a promising technology for next-generation large-scale energy storage. The kinetics of the Li + -coupled heterogeneous charge transfer between the energy storage material and redox mediator dictates the performance of the device, while as a new type of charge transfer process it has been rarely studied. Here, scanning electrochemical microscopy (SECM) was employed for the first time to determine the interfacial charge transfer kinetics of LiFePO 4 /FePO 4 upon delithiation and lithiation by a pair of redox shuttle molecules FcBr 2 + and Fc. The effective rate constant k eff was determined to be around 3.70-6.57 × 10 -3 cm/s for the two-way pseudo-first-order reactions, which feature a linear dependence on the composition of LiFePO 4 , validating the kinetic process of interfacial charge transfer rather than bulk solid diffusion. In addition, in conjunction with chronoamperometry measurement, the SECM study disproves the conventional "shrinking-core" model for the delithiation of LiFePO 4 and presents an intriguing way of probing the phase boundary propagations induced by interfacial redox reactions. This study demonstrates a reliable method for the kinetics of redox targeting reactions, and the results provide useful guidance for the optimization of redox targeting systems for large-scale energy storage.

  10. Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries.

    Science.gov (United States)

    Grayfer, Ekaterina D; Pazhetnov, Egor M; Kozlova, Mariia N; Artemkina, Sofya B; Fedorov, Vladimir E

    2017-12-22

    Classical Li-ion battery technology is based on the insertion of lithium ions into cathode materials involving metal (cationic) redox reactions. However, this vision is now being reconsidered, as many new-generation electrode materials with enhanced reversible capacities operate through combined cationic and anionic (non-metal) reversible redox processes or even exclusively through anionic redox transformations. Anionic participation in the redox reactions is observed in materials with more pronounced covalency, which is less typical for oxides, but quite common for phosphides or chalcogenides. In this Concept, we would like to draw the reader's attention to this new idea, especially, as it applies to transition-metal polychalcogenides, such as FeS 2 , VS 4 , TiS 3 , NbS 3 , TiS 4 , MoS 3 , etc., in which the key role is played by the (S-S) 2- /2 S 2- redox reaction. The exploration and better understanding of the anion-driven chemistry is important for designing advanced materials for battery and other energy-related applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Molecular Orbital Principles of Oxygen-Redox Battery Electrodes.

    Science.gov (United States)

    Okubo, Masashi; Yamada, Atsuo

    2017-10-25

    Lithium-ion batteries are key energy-storage devices for a sustainable society. The most widely used positive electrode materials are LiMO 2 (M: transition metal), in which a redox reaction of M occurs in association with Li + (de)intercalation. Recent developments of Li-excess transition-metal oxides, which deliver a large capacity of more than 200 mAh/g using an extra redox reaction of oxygen, introduce new possibilities for designing higher energy density lithium-ion batteries. For better engineering using this fascinating new chemistry, it is necessary to achieve a full understanding of the reaction mechanism by gaining knowledge on the chemical state of oxygen. In this review, a summary of the recent advances in oxygen-redox battery electrodes is provided, followed by a systematic demonstration of the overall electronic structures based on molecular orbitals with a focus on the local coordination environment around oxygen. We show that a π-type molecular orbital plays an important role in stabilizing the oxidized oxygen that emerges upon the charging process. Molecular orbital principles are convenient for an atomic-level understanding of how reversible oxygen-redox reactions occur in bulk, providing a solid foundation toward improved oxygen-redox positive electrode materials for high energy-density batteries.

  12. Molecular Controls of the Oxygenation and Redox Reactions of Hemoglobin

    Science.gov (United States)

    Henkens, Robert; Alayash, Abdu I.; Banerjee, Sambuddha; Crumbliss, Alvin L.

    2013-01-01

    Abstract Significance: The broad classes of O2-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O2-binding functions. Recent Advances: The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. Critical Issues: An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. Future Directions: This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes. Antioxid. Redox Signal. 18, 2298–2313. PMID:23198874

  13. ETL 1 kW redox flow cell

    International Nuclear Information System (INIS)

    Nozaki, K.; Ozawa, T.

    1984-01-01

    A 1 kW scale redox flow cell system was set up in the laboratory (ETL), while three different types of batteries were also assembled by private companies in early 1983. In this article, this cell system is described. The concept of a modern type redox flow cell is based on a couple of fully soluble redox ions and a highly selective ion-exchange membrane. In the cell, the redox ion stored in a tank is flowed to and reduced on the electrode, while the other ion is also flowed to and oxidized on the other electrode. This electrochemical reaction produces electronic current in the external circuit and ionic current through the membrane sandwiched as a separator between the two electrodes. The reverse reaction proceeds in the charging process. In ETL, the concept was preliminarily tested, and conceptual design and cost estimation of the redox flow cells were carried out to confirm the feasibility; the R and D started on these bases in 1975

  14. Optimizing hippocampal segmentation in infants utilizing MRI post-acquisition processing.

    Science.gov (United States)

    Thompson, Deanne K; Ahmadzai, Zohra M; Wood, Stephen J; Inder, Terrie E; Warfield, Simon K; Doyle, Lex W; Egan, Gary F

    2012-04-01

    This study aims to determine the most reliable method for infant hippocampal segmentation by comparing magnetic resonance (MR) imaging post-acquisition processing techniques: contrast to noise ratio (CNR) enhancement, or reformatting to standard orientation. MR scans were performed with a 1.5 T GE scanner to obtain dual echo T2 and proton density (PD) images at term equivalent (38-42 weeks' gestational age). 15 hippocampi were manually traced four times on ten infant images by 2 independent raters on the original T2 image, as well as images processed by: a) combining T2 and PD images (T2-PD) to enhance CNR; then b) reformatting T2-PD images perpendicular to the long axis of the left hippocampus. CNRs and intraclass correlation coefficients (ICC) were calculated. T2-PD images had 17% higher CNR (15.2) than T2 images (12.6). Original T2 volumes' ICC was 0.87 for rater 1 and 0.84 for rater 2, whereas T2-PD images' ICC was 0.95 for rater 1 and 0.87 for rater 2. Reliability of hippocampal segmentation on T2-PD images was not improved by reformatting images (rater 1 ICC = 0.88, rater 2 ICC = 0.66). Post-acquisition processing can improve CNR and hence reliability of hippocampal segmentation in neonate MR scans when tissue contrast is poor. These findings may be applied to enhance boundary definition in infant segmentation for various brain structures or in any volumetric study where image contrast is sub-optimal, enabling hippocampal structure-function relationships to be explored.

  15. Utilizing product configuration systems for supporting the critical parts of the engineering processes

    DEFF Research Database (Denmark)

    Kristjansdottir, Katrin; Shafiee, Sara; Hvam, Lars

    2016-01-01

    Engineering-To-Order (ETO) companies have to respond to increasing demands to provide highly customized and complex products with high quality at competitive prices. In order to respond to those challenges ETO companies have started to implement product configuration systems (PCS) to increase...... to be supported with the PCSs is not described in the current literature. This paper aims to pursue that research opportunity by presenting a framework, which aims to identifying the critical parts of the engineering processes in order to identify where it most beneficial to implement a PCSs and how to prioritize...

  16. Utilization of citrus crops processing by-products in the preparation of tarhana

    Directory of Open Access Journals (Sweden)

    Michal Magala

    2015-05-01

    Full Text Available After processing of citrus fruits (e.g. lemon, orange, grapefruit, mandarin for juice and essential oils production, approximately 50% of the original fruit mass is left as waste material. Citrus crops processing by-products are valuable components as they contain nutrients such as pectins, saccharides, carotenoids, some vitamins, minerals, polyphenols and substances with antioxidant activity. Utilisation of these kind of side products in the recipe of various cereal product led to enhancement of final product nutritional value and better sensory attributes as well as improvement of product functional properties. In this work was studied the effect of orange and mandarin dietary fibre application at level 5 and 10% (w/w in tarhana preparation and the influence on tarhana fermentation process. Chemical analysis showed, that dietary fibre preparations reached higher concentration of ash, fat and total dietary fibre compared to wheat flour. Wheat flour exhibited higher moisture content and protein concentration than citrus dietary fibre preparations. Orange and mandarin dietary fibre preparations showed higher values of water and oil absorption capacity, swelling capacity and least gellation concentration compared to wheat flour. Application of fruit dietary fibre preparations to tarhana recipe caused a rapid decrease in pH from 4.70 - 5.02 to values 4.31 - 4.51 during fermentation process. Reducing saccharides served as an available source of energy for fermenting microbiota and their concentration decreased from 24.5 - 32.8 to 2.2 - 0.2 g/kg after 144 h incubation. Fermentation also led to lactic acid (1.67 - 2.09 g/kg and acetic acid (1.91 - 2.53 g/kg production as a consequence of present microorganisms metabolic activity. Sensory evaluation of samples showed, that higher proportion of citrus dietary fibre preparations (10% negatively affected taste, odour, consistency and sourness. Among all prepared tarhana samples with proportion of citrus

  17. A Method for Sustainable Carbon Dioxide Utilization Process Synthesis and Design

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Fjellerup, Kasper; Roh, Kosan

    As a result of increasing regulations and concern about the impact of greenhouse gases on the environment, carbon dioxide (CO2) emissions are a primary focus for reducing emissions and improving global sustainability. One method to achieve reduced emissions, is the conversion of CO2 to useful...... compounds via chemical reactions. However, conversion is still in its infancy and requires work for implementation at an industrial level. One aspect of this is the development of a methodology for the formulation and optimization of sustainable conversion processes. This methodology follows three stages...

  18. Method of preparing and utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream

    Science.gov (United States)

    Berry, David A; Shekhawat, Dushyant; Smith, Mark; Haynes, Daniel

    2013-07-16

    The disclosure relates to a method of utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream with a mitigation of carbon accumulation. The system is comprised of a catalytically active phase deposited onto an oxygen conducting phase, with or without supplemental support. The catalytically active phase has a specified crystal structure where at least one catalytically active metal is a cation within the crystal structure and coordinated with oxygen atoms within the crystal structure. The catalyst system employs an optimum coverage ratio for a given set of oxidation conditions, based on a specified hydrocarbon conversion and a carbon deposition limit. Specific embodiments of the catalyst system are disclosed.

  19. Application of a computer-aided framework for the design of CO2 capture and utilization processes

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Gani, Rafiqul

    , and (3) innovation, has been developed. In order to facilitate the implementation and ensure sustainability, this framework integrates a number of computer-aided methods and tools, that are important for carbon dioxide capture and utilization. Applying this framework helps to address the questions about...... opportunities and products are explored. Second, the selected processing route is designed and analyzed by using simulation software and sustainability (economic, environmental and LCA) analysis tools. From this stage, hot spotsand areas for improvement are also generated. Third, the targets for improvement...

  20. Redox properties of iron in porous ferrisilicates

    International Nuclear Information System (INIS)

    Lazar, K.; Pal-Borbely, G.; Szegedi, A.; Fejes, P.; Martinez, F.

    2006-01-01

    Insertion of iron into porous ferrisilicates may result in changes of the original structures. For example, this insertion enables the structure to take part in reversible Fe 2+ ↔ Fe 3+ redox process. This process may play an important role e.g. in catalytic procedures. The structure of the host may provide different locations for the iron. In microporous systems (analogous with zeolites, with characteristic pore sizes of 0.5 nm) the framework vs. extra-framework distinction is obvious, since these structures are strictly crystalline (in three dimensions). In contrast, mesoporous structures of 3 - 5 nm characteristic pore dimension, exhibit crystallinity uppermost in two dimensions, since their pore walls are partly amorphous. The appearance of the Fe 2+ ↔ Fe 3+ redox behaviour of iron in micro- and mesoporous systems, its correlation with coordination changes strongly depend on the structure. In general, crystallinity stabilizes the Fe 3+ state, and the Fe 3+ ↔ Fe 2+ change may be correlated with change of the position occupied in the structure. For demonstration, some examples are to be presented by comparing the behaviour of iron located in in microporous (MFI, FER, MCM-22) and mesoporous (MCM-41 and SBA-15) structures. (authors)

  1. The Analysis of Electronic Journal Utilization In Learning Process: Technology Acceptance Model And Information System Success

    Directory of Open Access Journals (Sweden)

    Achmad Zaky

    2017-12-01

    Full Text Available This study aims to observe the behavior of electronic journal (e-journal among bachelor students of the Universitas Brawijaya by Technology Acceptance Model (TAM and Information System Success (ISS as theoretical framework. The research samples are all bachelor students who have used e-journal in their learning process. The respondents are selected by convenience sampling method. The data are collected through survey and analyzed by Partial Least Square (PLS with SmartPLS 3. The result of the study reveals that user satisfaction and intention to use have significant effect on actual use of e-journal among bachelor students at the Universitas Brawijaya. Those variables affect the actual use because they have been formed by other variables such as information quality, perceived easiness, perceived usefulness, and attitude towards behavior. Furthermore, information quality has significant influence on user satisfaction, while perceived usefulness and perceived usefulness do not have direct effect on the intention to use. The implication of this study is relevant for educators to recognize the reason factors to use e-journal in the learning process.

  2. Utilizing Stable Isotopes and Isotopic Anomalies to Study Early Solar System Formation Processes

    Science.gov (United States)

    Simon, Justin

    2017-01-01

    Chondritic meteorites contain a diversity of particle components, i.e., chondrules and calcium-, aluminum-rich refractory inclusions (CAIs), that have survived since the formation of the Solar System. The chemical and isotopic compositions of these materials provide a record of the conditions present in the protoplanetary disk where they formed and can aid our understanding of the processes and reservoirs in which solids formed in the solar nebula, an important step leading to the accretion of planetesimals. Isotopic anomalies associated with nucleosynthetic processes are observed in these discrete materials, and can be compared to astronomical observations and astrophysical formation models of stars and more recently proplyds. The existence and size of these isotopic anomalies are typically thought to reflect a significant state of isotopic heterogeneity in the earliest Solar System, likely left over from molecular cloud heterogeneities on the grain scale, but some could also be due to late stellar injection. The homogenization of these isotopic anomalies towards planetary values can be used to track the efficiency and timescales of disk wide mixing,

  3. Utilizing Virtual Reality to Understand Athletic Performance and Underlying Sensorimotor Processing

    Directory of Open Access Journals (Sweden)

    Toshitaka Kimura

    2018-02-01

    Full Text Available In behavioral sports sciences, knowledge of athletic performance and underlying sensorimotor processing remains limited, because most data is obtained in the laboratory. In laboratory experiments we can strictly control the measurement conditions, but the action we can target may be limited and differ from actual sporting action. Thus, the obtained data is potentially unrealistic. We propose using virtual reality (VR technology to compensate for the lack of actual reality. We have developed a head mounted display (HMD-based VR system for application to baseball batting where the user can experience hitting a pitch in a virtual baseball stadium. The batter and the bat movements are measured using nine-axis inertial sensors attached to various parts of the body and bat, and they are represented by a virtual avatar in real time. The pitched balls are depicted by computer graphics based on previously recorded ball trajectories and are thrown in time with the motion of a pitcher avatar based on simultaneously recorded motion capture data. The ball bounces depending on its interaction with the bat. In a preliminary measurement where the VR system was combined with measurement equipment we found some differences between the behavioral and physiological data (i.e., the body movements and respiration of experts and beginners and between the types of pitches during virtual batting. This VR system with a sufficiently real visual experience will provide novel findings as regards athletic performance that were formerly hard to obtain and allow us to elucidate their sensorimotor processing in detail.

  4. Uniform lateral etching of tungsten in deep trenches utilizing reaction-limited NF3 plasma process

    Science.gov (United States)

    Kofuji, Naoyuki; Mori, Masahito; Nishida, Toshiaki

    2017-06-01

    The reaction-limited etching of tungsten (W) with NF3 plasma was performed in an attempt to achieve the uniform lateral etching of W in a deep trench, a capability required by manufacturing processes for three-dimensional NAND flash memory. Reaction-limited etching was found to be possible at high pressures without ion irradiation. An almost constant etching rate that showed no dependence on NF3 pressure was obtained. The effect of varying the wafer temperature was also examined. A higher wafer temperature reduced the threshold pressure for reaction-limited etching and also increased the etching rate in the reaction-limited region. Therefore, the control of the wafer temperature is crucial to controlling the etching amount by this method. We found that the uniform lateral etching of W was possible even in a deep trench where the F radical concentration was low.

  5. Molten salt hazardous waste disposal process utilizing gas/liquid contact for salt recovery

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.

    1984-01-01

    The products of a molten salt combustion of hazardous wastes are converted into a cooled gas, which can be filtered to remove hazardous particulate material, and a dry flowable mixture of salts, which can be recycled for use in the molten salt combustion, by means of gas/liquid contact between the gaseous products of combustion of the hazardous waste and a solution produced by quenching the spent melt from such molten salt combustion. The process results in maximizing the proportion of useful materials recovered from the molten salt combustion and minimizing the volume of material which must be discarded. In a preferred embodiment a spray dryer treatment is used to achieve the desired gas/liquid contact

  6. Elucidating potential utilization of Portuguese common bean varieties in rice based processed foods.

    Science.gov (United States)

    Carbas, Bruna; Pathania, Shivani; Castanho, Ana; Lourenço, Diana; Veiga, Isabel Mota; Patto, Maria Carlota Vaz; Brites, Carla

    2018-03-01

    The present study was aimed at studying the physico-chemical and functional properties of 31 Portuguese common bean varieties. In addition, the whole bean flours (WBF) and starch isolates (SI) of three representative bean varieties and their rice: bean blends (70:30; 50:50) were assessed for amylose content, thermal and pasting properties in view of supplementation in rice based processed foods. Bean varieties showed significant differences in protein content (20.78-27.10%), fat content (1.16-2.18%), hydration capacity (95.90-149.30%), unhydrated seeds (4.00-40.00%), γ tocopherol (3.20-98.05 mg/100 g fat), δ tocopherol (0.06-4.72 mg/100 g fat) and pasting behavior. Amylose content of WBF (11.4-20.2%) was significantly lower than rice flour (23.51%) whereas SI of beans (40.00-47.26%) had significantly higher amylose content than SI of rice (28.13%). DSC results showed that WBF (11.4-20.2 °C) had significantly broader and lower gelatinization temperature range (∆Tr) than corresponding SI (20.9-23.1 °C). WBF had significantly lower pasting viscosity due to low starch content and compositional matrix effect as compared to SI. Setback viscosities of WBF and rice: bean blends was lower than rice flour. Low setback viscosities of rice:bean blends may be used to prevent syneresis and stabilizing the quality of frozen foods in rice based processed foods.

  7. Electron Transfer in Flavodoxin-based Redox Maquettes

    NARCIS (Netherlands)

    Alagaratnam, S.

    2005-01-01

    Small redox proteins play the role of electron taxis in the cell, picking electrons up at one location and delivering them at another. While it is known that these reactions are the basis for the processes of energy generation by respiration and photosynthesis, the means by which these 'taxis'

  8. Utilization of residue from cassava starch processing for production of fermentable sugar by enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Luciana Reis Fontinelle SOUTO

    Full Text Available Abstract The aim of this study was to characterize and perform enzymatic hydrolysis of cassava peeling residue (peel and inner peel, mainly composed of peels and small pieces. Residue was sanitized, dried at 55 °C for 24 hours and ground. The obtained flour showed pH of 4.85; 72.53 g 100 g–1 moisture; 5.18 mL 1M NaOH 100 g–1 acidity; 60.68 g 100 g–1 starch; 1.08 g 100 g–1 reducing sugar; 1.63 g 100g–1 ash; 0.86 g 100 g–1 lipid and 3.97 g 100 g–1 protein. Enzymatic hydrolysis was carried out by means of rotational central composite design, analyzing the effects of concentrations of α-amylase enzyme (10 to 50 U g starch–1, and the amyloglucosidase enzyme (80 to 400 U g starch–1 on variable responses: percent conversion of starch into reducing sugars (RSC and soluble solid content (SS. Highest values of RSC (110% and SS (12 °Brix were observed when using the maximum concentration of amyloglucosidase and throughout the concentration range of α-amylase. Enzymatic hydrolysis of cassava peel is feasible and allows the use of hydrolysate in fermentation processes for the production of various products, such as alcoholic drinks, vinegar, among others.

  9. Utilization of residue from cassava starch processing for production of fermentable sugar by enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Luciana Reis Fontinelle SOUTO

    2016-01-01

    Full Text Available Abstract The aim of this study was to characterize and perform enzymatic hydrolysis of cassava peeling residue (peel and inner peel, mainly composed of peels and small pieces. Residue was sanitized, dried at 55 °C for 24 hours and ground. The obtained flour showed pH of 4.85; 72.53 g 100 g–1 moisture; 5.18 mL 1M NaOH 100 g–1 acidity; 60.68 g 100 g–1 starch; 1.08 g 100 g–1 reducing sugar; 1.63 g 100g–1 ash; 0.86 g 100 g–1 lipid and 3.97 g 100 g–1 protein. Enzymatic hydrolysis was carried out by means of rotational central composite design, analyzing the effects of concentrations of α-amylase enzyme (10 to 50 U g starch–1, and the amyloglucosidase enzyme (80 to 400 U g starch–1 on variable responses: percent conversion of starch into reducing sugars (RSC and soluble solid content (SS. Highest values of RSC (110% and SS (12 °Brix were observed when using the maximum concentration of amyloglucosidase and throughout the concentration range of α-amylase. Enzymatic hydrolysis of cassava peel is feasible and allows the use of hydrolysate in fermentation processes for the production of various products, such as alcoholic drinks, vinegar, among others.

  10. Clean recycle and utilization of hazardous iron-bearing waste in iron ore sintering process.

    Science.gov (United States)

    Gan, Min; Ji, Zhiyun; Fan, Xiaohui; Chen, Xuling; Zhou, Yang; Wang, Guojing; Tian, Ye; Jiang, Tao

    2018-04-18

    Applying recycled iron-bearing waste materials (RIM) into iron ore sintering process is the general disposal approach worldwide, while its use is still a thorny problem. Results showed that adding RIM increased contents of hazardous elements (K, Na, Pb, Zn, and Cl) in sinter product, and also enhanced emission concentration of PM 2.5 in flue gas; increasing reaction temperature, and contents of CaO & coke breeze in raw mixtures improved hazardous elements removal. Based on these features, a novel method through granulating natural iron ores and RIM separately and distributing granulated RIM in bottom sintering layers was proposed for clean RIM cycle. When recycling 5% RIM, granulating RIM separately with higher contents of CaO and coke breeze removed hazardous elements effectively, the contents of which in sinter were reduced to comparable level of the case without RIM. Moreover, distributing RIM in bottom sintering layer reached intensive release of hazardous elements and PM 2.5 during sintering, which reduced the flue gas volume needing purification by about 2/3. Through activated carbon purification, about 60% of PM 2.5 comprised high contents of hazardous elements was removed. Novel technique eliminated the negative impact of RIM and has the prospect to reach clean recycle in sinter-making plants. Copyright © 2018. Published by Elsevier B.V.

  11. Utilization of mixed adsorbents to extend frying oil life cycle in poultry processing.

    Science.gov (United States)

    Udomkun, Patchimaporn; Innawong, Bhundit; Siasakul, Chatchalai; Okafor, Christopher

    2018-05-15

    The effects were studied of two different adsorbent combinations (com I; bentonite: activated carbon: celite = 3:4:1 and com II; bentonite: activated clay: celite = 3:4:1 + 1% citric acid) on the physico-chemical changes of oil used continuously for deep-fat frying of chicken drumsticks. The results showed that the % FFA was reduced by 44.3, PV by 50.2, and FOS reading by 40.1% in com I whereas reductions of 41.6, 44.9, and 32.8%, respectively, were found in com II. The oil treated with com II exhibited a lighter color than with com I. The changes of oil color in com I were L ∗ 30.7, a ∗ 1.7, and b ∗ 31.9%; in com II they were 53.2, 19.1, and 39.5% respectively. The higher the L ∗ observed, the better the oil quality obtained because of the bleaching ability of adsorbents. Therefore, the use of such adsorbents is recommended for poultry processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 3-Dimensional Microorifice Fabricated Utilizing Single Undercut Etching Process for Producing Ultrasmall Water and Chitosan Droplets

    Directory of Open Access Journals (Sweden)

    Che-Hsin Lin

    2013-01-01

    Full Text Available This research reports a microfluidic device for producing small droplets via a microorifice and a T-junction structure. The orifice is fabricated using an isotropic undercut etching process of amorphous glass materials. Since the equivalent hydraulic diameter of the produced microorifice can be as small as 1.1 μm, the microdevice can easily produce droplets of the size smaller than 10 μm in diameter. In addition, a permanent hydrophobic coating technique is also applied to modify the main channel to be hydrophobic to enhance the formation of water-based droplets. Experimental results show that the developed microfluidic chip with the ultrasmall orifice can steadily produce water-in-oil droplets with different sizes. Uniform water-in-oil droplets with the size from 60 μm to 6.5 μm in diameter can be formed by adjusting the flow rate ratio of the continuous phase and the disperse phases from 1 to 7. Moreover, curable linear polymer of chitosan droplets with the size smaller than 100 μm can also be successfully produced using the developed microchip device. The microfluidic T-junction with a micro-orifice developed in the present study provides a simple yet efficient way to produce various droplets of different sizes.

  13. Utilization of Facebook by School Children in the Apprenticeship Seeking Process

    Directory of Open Access Journals (Sweden)

    Tom Sander

    2016-12-01

    Full Text Available The search for a practical apprenticeship place can be the first step in the business world for German students. The students have to apply for this placement, as Companies require applicants. Facebook is one of the most often used social networks among the younger generation in Germany, which can provide a direct communication channel between businesses and candidates. The research evaluates the reasons to use Facebook to identify a solid apprenticeship training platform for German students. Research methods applied: scientific publication analysis, survey (by paper-based questionnaire of German students of the ninth and tenth grade. Analysis of survey data by main indicators of descriptive statistics: arithmetic mean, mode, median, and standard deviations to get an impression of evaluations on analysed aspects by survey respondents. Analysis of variance – ANOVA – is applied to study the difference of the assessments between female and male school children and the differences between the ninth and tenth classes. The existence of correlations between the intensity of use of social network sites (SNS and the apprenticeship seeking process have been investigated. The results of the research have shown that there are differences in evaluations, on analysed aspects, between female and male school children in the analysed classes on the occasion career entry by the apprenticeship.

  14. Transmission Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC)

    Energy Technology Data Exchange (ETDEWEB)

    Hein, J.; Hurlbut, D.; Milligan, M.; Coles, L.; Green, B.

    2011-11-01

    This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. Market barriers unrelated to technology often limit the expansion of utility-scale solar power, even in areas with exceptional resource potential. Many of these non-technical barriers have to do with policy, regulation, and planning, and hardly ever do they resolve themselves in a timely fashion. In most cases, pre-emptive intervention by interested stakeholders is the easiest way to remove/address such barriers, but it requires knowing how to navigate the institutional waters of the relevant agencies and boards. This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. It focuses on the Western Interconnection (WI), primarily because the quality of solar resources in the Southwest makes utility-scale concentrating solar power (CSP) and photovoltaics (PV) economically feasible, and because the relevant institutions have evolved in a way that has opened up opportunities for removing non-technical market barriers. Developers will find in this report a high-level field manual to identify the venues for mitigating and possibly eliminating systemic market obstacles and ensuring that the economic playing field is reasonably level. Project-specific issues such as siting for transmission and generation resources are beyond the scope of this report. Instead, the aim is to examine issues that pervasively affect all utility-scale PV and CSP in the region regardless of where the project may be. While the focus is on the WI, many of the institutions described here also have their counterparts in the Eastern and the Texas interconnections. Specifically, this report suggests a number of critical engagement points relating to generation and transmission planning.

  15. Utility of optical heterodyne displacement sensing and laser ultrasonics as in situ process control diagnostic for additive manufacturing

    Science.gov (United States)

    Manzo, Anthony J.; Helvajian, Henry

    2018-04-01

    An in situ process control monitor is presented by way of experimental results and simulations, which utilizes a pulsed laser ultrasonic source as a probe and an optical heterodyne displacement meter as a sensor. The intent is for a process control system that operates in near real time, is nonintrusive, and in situ: A necessary requirement for a serial manufacturing technology such as additive manufacturing (AM). We show that the diagnostic approach has utility in characterizing the local temperature, the area of the heat-affected zone, and the surface roughness (Ra ˜ 0.4 μm). We further demonstrate that it can be used to identify solitary defects (i.e., holes) on the order of 10 to 20 μm in diameter. Moreover, the technique shows promise in measuring properties of materials with features that have a small radius of curvature. We present results for a thin wire of ˜650 μm in diameter. By applying multiple pairs of probe-sensor systems, the diagnostic could also measure the local cooling rate on the scale of 1 μs. Finally, while an obvious application is used in AM technology, then all optical diagnostics could be applied to other manufacturing technologies.

  16. A Selection Approach for Optimized Problem-Solving Process by Grey Relational Utility Model and Multicriteria Decision Analysis

    Directory of Open Access Journals (Sweden)

    Chih-Kun Ke

    2012-01-01

    Full Text Available In business enterprises, especially the manufacturing industry, various problem situations may occur during the production process. A situation denotes an evaluation point to determine the status of a production process. A problem may occur if there is a discrepancy between the actual situation and the desired one. Thus, a problem-solving process is often initiated to achieve the desired situation. In the process, how to determine an action need to be taken to resolve the situation becomes an important issue. Therefore, this work uses a selection approach for optimized problem-solving process to assist workers in taking a reasonable action. A grey relational utility model and a multicriteria decision analysis are used to determine the optimal selection order of candidate actions. The selection order is presented to the worker as an adaptive recommended solution. The worker chooses a reasonable problem-solving action based on the selection order. This work uses a high-tech company’s knowledge base log as the analysis data. Experimental results demonstrate that the proposed selection approach is effective.

  17. The Azomethine Ylide Route to Amine C–H Functionalization: Redox-Versions of Classic Reactions and a Pathway to New Transformations

    Science.gov (United States)

    2016-01-01

    Conspectus Redox-neutral methods for the functionalization of amine α-C–H bonds are inherently efficient because they avoid external oxidants and reductants and often do not generate unwanted byproducts. However, most of the current methods for amine α-C–H bond functionalization are oxidative in nature. While the most efficient variants utilize atmospheric oxygen as the terminal oxidant, many such transformations require the use of expensive or toxic oxidants, often coupled with the need for transition metal catalysts. Redox-neutral amine α-functionalizations that involve intramolecular hydride transfer steps provide viable alternatives to certain oxidative reactions. These processes have been known for some time and are particularly well suited for tertiary amine substrates. A mechanistically distinct strategy for secondary amines has emerged only recently, despite sharing common features with a range of classic organic transformations. Among those are such widely used reactions as the Strecker, Mannich, Pictet–Spengler, and Kabachnik–Fields reactions, Friedel–Crafts alkylations, and iminium alkynylations. In these classic processes, condensation of a secondary amine with an aldehyde (or a ketone) typically leads to the formation of an intermediate iminium ion, which is subsequently attacked by a nucleophile. The corresponding redox-versions of these transformations utilize identical starting materials but incorporate an isomerization step that enables α-C–H bond functionalization. Intramolecular versions of these reactions include redox-neutral amine α-amination, α-oxygenation, and α-sulfenylation. In all cases, a reductive N-alkylation is effectively combined with an oxidative α-functionalization, generating water as the only byproduct. Reactions are promoted by simple carboxylic acids and in some cases require no additives. Azomethine ylides, dipolar species whose usage is predominantly in [3 + 2] cycloadditions and other pericyclic

  18. The azomethine ylide route to amine C-H functionalization: redox-versions of classic reactions and a pathway to new transformations.

    Science.gov (United States)

    Seidel, Daniel

    2015-02-17

    Conspectus Redox-neutral methods for the functionalization of amine α-C-H bonds are inherently efficient because they avoid external oxidants and reductants and often do not generate unwanted byproducts. However, most of the current methods for amine α-C-H bond functionalization are oxidative in nature. While the most efficient variants utilize atmospheric oxygen as the terminal oxidant, many such transformations require the use of expensive or toxic oxidants, often coupled with the need for transition metal catalysts. Redox-neutral amine α-functionalizations that involve intramolecular hydride transfer steps provide viable alternatives to certain oxidative reactions. These processes have been known for some time and are particularly well suited for tertiary amine substrates. A mechanistically distinct strategy for secondary amines has emerged only recently, despite sharing common features with a range of classic organic transformations. Among those are such widely used reactions as the Strecker, Mannich, Pictet-Spengler, and Kabachnik-Fields reactions, Friedel-Crafts alkylations, and iminium alkynylations. In these classic processes, condensation of a secondary amine with an aldehyde (or a ketone) typically leads to the formation of an intermediate iminium ion, which is subsequently attacked by a nucleophile. The corresponding redox-versions of these transformations utilize identical starting materials but incorporate an isomerization step that enables α-C-H bond functionalization. Intramolecular versions of these reactions include redox-neutral amine α-amination, α-oxygenation, and α-sulfenylation. In all cases, a reductive N-alkylation is effectively combined with an oxidative α-functionalization, generating water as the only byproduct. Reactions are promoted by simple carboxylic acids and in some cases require no additives. Azomethine ylides, dipolar species whose usage is predominantly in [3 + 2] cycloadditions and other pericyclic processes, have been

  19. Utilizing General Purpose Graphics Processing Units to Improve Performance of Computer Modelling and Visualization

    Science.gov (United States)

    Monk, J.; Zhu, Y.; Koons, P. O.; Segee, B. E.

    2009-12-01

    With the introduction of the G8X series of cards by nVidia an architecture called CUDA was released, virtually all subsequent video cards have had CUDA support. With this new architecture nVidia provided extensions for C/C++ that create an Application Programming Interface (API) allowing code to be executed on the GPU. Since then the concept of GPGPU (general purpose graphics processing unit) has been growing, this is the concept that the GPU is very good a algebra and running things in parallel so we should take use of that power for other applications. This is highly appealing in the area of geodynamic modeling, as multiple parallel solutions of the same differential equations at different points in space leads to a large speedup in simulation speed. Another benefit of CUDA is a programmatic method of transferring large amounts of data between the computer's main memory and the dedicated GPU memory located on the video card. In addition to being able to compute and render on the video card, the CUDA framework allows for a large speedup in the situation, such as with a tiled display wall, where the rendered pixels are to be displayed in a different location than where they are rendered. A CUDA extension for VirtualGL was developed allowing for faster read back at high resolutions. This paper examines several aspects of rendering OpenGL graphics on large displays using VirtualGL and VNC. It demonstrates how performance can be significantly improved in rendering on a tiled monitor wall. We present a CUDA enhanced version of VirtualGL as well as the advantages to having multiple VNC servers. It will discuss restrictions caused by read back and blitting rates and how they are affected by different sizes of virtual displays being rendered.

  20. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    Energy Technology Data Exchange (ETDEWEB)

    Milton Wu; Paul Yuran

    2006-12-31

    Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Using 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is continuing to work to improve plant

  1. Extracellular redox state: refining the definition of oxidative stress in aging.

    Science.gov (United States)

    Jones, Dean P

    2006-01-01

    Oxidative stress in aging can result from an imbalance of prooxidants and antioxidants with excessive, destructive free radical chemistry. Thiol systems are important in the control of these processes, both by protecting against damage and serving in redox signaling mechanisms to sense danger and repair the damage. Studies by a number of research groups in collaboration with the Emory Clinical Biomarkers Laboratory show that the redox state of the central tissue antioxidant, glutathione (GSH), can be measured in human plasma and provides a quantitative systemic indicator of oxidative stress. Plasma GSH/GSSG redox in humans becomes oxidized with age, in response to chemotherapy, as a consequence of cigarette smoking, and in association with common age-related diseases (e.g., type 2 diabetes, cardiovascular disease). However, the GSH/GSSG redox is not equilibrated with the larger plasma cysteine/cystine (Cys/CySS) pool, and the Cys/CySS redox varies with age in a pattern that is distinct from that of GSH/GSSG redox. Furthermore, in vitro studies show that variation in Cys/CySS redox over the range found in vivo affects signaling pathways, which control cell proliferation and oxidant-induced apoptosis. The results point to the conclusion that free radical scavenging antioxidants are of increased importance when thiol/disulfide redox states are oxidized. Because thiol/disulfide redox states, per se, function in redox signaling and control as well as antioxidant protection, GSH/GSSG and Cys/CySS redox states may provide central parameters to link environmental influences and progression of changes associated with aging.

  2. Cascade redox flow battery systems

    Science.gov (United States)

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  3. All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Friedl, Jochen; Lebedeva, Maria A; Porfyrakis, Kyriakos; Stimming, Ulrich; Chamberlain, Thomas W

    2018-01-10

    Redox flow batteries have the potential to revolutionize our use of intermittent sustainable energy sources such as solar and wind power by storing the energy in liquid electrolytes. Our concept study utilizes a novel electrolyte system, exploiting derivatized fullerenes as both anolyte and catholyte species in a series of battery cells, including a symmetric, single species system which alleviates the common problem of membrane crossover. The prototype multielectron system, utilizing molecular based charge carriers, made from inexpensive, abundant, and sustainable materials, principally, C and Fe, demonstrates remarkable current and energy densities and promising long-term cycling stability.

  4. Process modeling of a reversible solid oxide cell (r-SOC) energy storage system utilizing commercially available SOC reactor

    International Nuclear Information System (INIS)

    Mottaghizadeh, Pegah; Santhanam, Srikanth; Heddrich, Marc P.; Friedrich, K. Andreas; Rinaldi, Fabio

    2017-01-01

    Highlights: • An electric energy storage system was developed based on a commercially available SOC reactor. • Heat generated in SOFC mode of r-SOC is utilized in SOEC operation of r-SOC using latent heat storage. • A round trip efficiency of 54.3% was reached for the reference system at atmospheric pressure. • An improved process system design achieved a round-trip efficiency of 60.4% at 25 bar. - Abstract: The increase of intermittent renewable energy contribution in power grids has urged us to seek means for temporal decoupling of electricity production and consumption. A reversible solid oxide cell (r-SOC) enables storage of surplus electricity through electrochemical reactions when it is in electrolysis mode. The reserved energy in form of chemical compounds is then converted to electricity when the cell operates as a fuel cell. A process system model was implemented using Aspen Plus® V8.8 based on a commercially available r-SOC reactor experimentally characterized at DLR. In this study a complete self-sustaining system configuration is designed by optimal thermal integration and balance of plant. Under reference conditions a round trip efficiency of 54.3% was achieved. Generated heat in fuel cell mode is exploited by latent heat storage tanks to enable endothermic operation of reactor in its electrolysis mode. In total, out of 100 units of thermal energy stored in heat storage tanks during fuel cell mode, 90% was utilized to offset heat demand of system in its electrolysis mode. Parametric analysis revealed the significance of heat storage tanks in thermal management even when reactor entered its exothermic mode of electrolysis. An improved process system design demonstrates a system round-trip efficiency of 60.4% at 25 bar.

  5. Effects of Secondary Task Modality and Processing Code on Automation Trust and Utilization During Simulated Airline Luggage Screening

    Science.gov (United States)

    Phillips, Rachel; Madhavan, Poornima

    2010-01-01

    The purpose of this research was to examine the impact of environmental distractions on human trust and utilization of automation during the process of visual search. Participants performed a computer-simulated airline luggage screening task with the assistance of a 70% reliable automated decision aid (called DETECTOR) both with and without environmental distractions. The distraction was implemented as a secondary task in either a competing modality (visual) or non-competing modality (auditory). The secondary task processing code either competed with the luggage screening task (spatial code) or with the automation's textual directives (verbal code). We measured participants' system trust, perceived reliability of the system (when a target weapon was present and absent), compliance, reliance, and confidence when agreeing and disagreeing with the system under both distracted and undistracted conditions. Results revealed that system trust was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Perceived reliability of the system (when the target was present) was significantly higher when the secondary task was visual rather than auditory. Compliance with the aid increased in all conditions except for the auditory-verbal condition, where it decreased. Similar to the pattern for trust, reliance on the automation was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Confidence when agreeing with the system decreased with the addition of any kind of distraction; however, confidence when disagreeing increased with the addition of an auditory secondary task but decreased with the addition of a visual task. A model was developed to represent the research findings and demonstrate the relationship between secondary task modality, processing code, and automation use. Results suggest that the nature of environmental distractions influence

  6. Prevention of redox shuttle using electropolymerized polypyrrole film in a lithium–oxygen battery

    Directory of Open Access Journals (Sweden)

    Norihiro Togasaki

    2018-04-01

    Full Text Available Among the recent advancements in lithium–oxygen (Li–O2 chemistries, redox mediators (RMs have been revealed to play a significant role in decreasing overpotential on charging and in improving cycling performance. However, an intrinsic problem is redox shuttle of RMs, which leads to degraded RM utilization and induces the accumulation of discharge products on the cathode surface; this remains a significant issue in the current battery cell configuration (Li anode/separator/cathode. To address this detrimental problem, herein we propose a novel Li–O2 cell incorporating a freestanding electropolymerized polypyrrole (PPy film for the restriction of the redox-shuttle phenomenon of lithium iodide (Li anode/separator/PPy film/cathode. In this study, a PPy film, which is prepared through oxidative electropolymerization using an ionic liquid of 1-methyl-1-butylpyrrolidinium mixed with pyrrole and lithium bis(trifluoromethanesulfonylimide, is introduced between the cathode and the separator. From the charge–discharge voltage profile, it is confirmed that the PPy film suppresses the diffusion of the oxidized I3− to the Li anode, while allowing Li ion transport. Secondary scanning electron microscope measurements confirm that the chemical reactions between I3− and Li2O2 are facilitated by the presence of the PPy film because I3− remains near the cathode surface during the charging process. As a result, the cycling performance in the Li–O2 cells with PPy film exhibits a cycling life four times as long as that of the Li–O2 cells without PPy film.

  7. Prevention of redox shuttle using electropolymerized polypyrrole film in a lithium-oxygen battery

    Science.gov (United States)

    Togasaki, Norihiro; Shibamura, Ryuji; Naruse, Takuya; Momma, Toshiyuki; Osaka, Tetsuya

    2018-04-01

    Among the recent advancements in lithium-oxygen (Li-O2) chemistries, redox mediators (RMs) have been revealed to play a significant role in decreasing overpotential on charging and in improving cycling performance. However, an intrinsic problem is redox shuttle of RMs, which leads to degraded RM utilization and induces the accumulation of discharge products on the cathode surface; this remains a significant issue in the current battery cell configuration (Li anode/separator/cathode). To address this detrimental problem, herein we propose a novel Li-O2 cell incorporating a freestanding electropolymerized polypyrrole (PPy) film for the restriction of the redox-shuttle phenomenon of lithium iodide (Li anode/separator/PPy film/cathode). In this study, a PPy film, which is prepared through oxidative electropolymerization using an ionic liquid of 1-methyl-1-butylpyrrolidinium mixed with pyrrole and lithium bis(trifluoromethanesulfonyl)imide, is introduced between the cathode and the separator. From the charge-discharge voltage profile, it is confirmed that the PPy film suppresses the diffusion of the oxidized I3- to the Li anode, while allowing Li ion transport. Secondary scanning electron microscope measurements confirm that the chemical reactions between I3- and Li2O2 are facilitated by the presence of the PPy film because I3- remains near the cathode surface during the charging process. As a result, the cycling performance in the Li-O2 cells with PPy film exhibits a cycling life four times as long as that of the Li-O2 cells without PPy film.

  8. Differentiating cancerous from normal breast tissue by redox imaging

    Science.gov (United States)

    Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.

    2015-02-01

    Abnormal metabolism can be a hallmark of cancer occurring early before detectable histological changes and may serve as an early detection biomarker. The current gold standard to establish breast cancer (BC) diagnosis is histological examination of biopsy. Previously we have found that pre-cancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. Our technique of quantitatively measuring the mitochondrial redox state has the potential to be implemented as an early detection tool for cancer and may provide prognostic value. We therefore in this present study, investigated the feasibility of quantifying the redox state of tumor samples from 16 BC patients. Tumor tissue aliquots were collected from both normal and cancerous tissue from the affected cancer-bearing breasts of 16 female patients (5 TNBC, 9 ER+, 2 ER+/Her2+) shortly after surgical resection. All specimens were snap-frozen with liquid nitrogen on site and scanned later with the Chance redox scanner, i.e., the 3D cryogenic NADH/oxidized flavoprotein (Fp) fluorescence imager. Our preliminary results showed that both NADH and Fp (including FAD, i.e., flavin adenine dinucleotide) signals in the cancerous tissues roughly tripled to quadrupled those in the normal tissues (pcancerous tissues than in the normal ones (pcancer and non-cancer breast tissues in human patients and this novel redox scanning procedure may assist in tissue diagnosis in freshly procured biopsy samples prior to tissue fixation. We are in the process of evaluating the prognostic value of the redox imaging indices for BC.

  9. Utilization of a Clinical Trial Management System for the Whole Clinical Trial Process as an Integrated Database: System Development.

    Science.gov (United States)

    Park, Yu Rang; Yoon, Young Jo; Koo, HaYeong; Yoo, Soyoung; Choi, Chang-Min; Beck, Sung-Ho; Kim, Tae Won

    2018-04-24

    Clinical trials pose potential risks in both communications and management due to the various stakeholders involved when performing clinical trials. The academic medical center has a responsibility and obligation to conduct and manage clinical trials while maintaining a sufficiently high level of quality, therefore it is necessary to build an information technology system to support standardized clinical trial processes and comply with relevant regulations. The objective of the study was to address the challenges identified while performing clinical trials at an academic medical center, Asan Medical Center (AMC) in Korea, by developing and utilizing a clinical trial management system (CTMS) that complies with standardized processes from multiple departments or units, controlled vocabularies, security, and privacy regulations. This study describes the methods, considerations, and recommendations for the development and utilization of the CTMS as a consolidated research database in an academic medical center. A task force was formed to define and standardize the clinical trial performance process at the site level. On the basis of the agreed standardized process, the CTMS was designed and developed as an all-in-one system complying with privacy and security regulations. In this study, the processes and standard mapped vocabularies of a clinical trial were established at the academic medical center. On the basis of these processes and vocabularies, a CTMS was built which interfaces with the existing trial systems such as the electronic institutional review board health information system, enterprise resource planning, and the barcode system. To protect patient data, the CTMS implements data governance and access rules, and excludes 21 personal health identifiers according to the Health Insurance Portability and Accountability Act (HIPAA) privacy rule and Korean privacy laws. Since December 2014, the CTMS has been successfully implemented and used by 881 internal and

  10. Practical and theoretical basis for performing redox-measurements in compacted bentonite. A literature survey

    International Nuclear Information System (INIS)

    Carlsson, T.; Muurinen, A.

    2008-12-01

    This report reviews the state-of-the-art with regard to redox measurements, especially in compacted water saturated bentonite, but also in natural systems like sediments and ground waters. Both theoretical and practical aspects of redox measurements are discussed, as well as some basic concepts like terminal electron-accepting processes (TEAPs) and oxidative capacity (OXC). The problems associated with the interpretation of measured electrode potentials are treated. Despite many practical and theoretical difficulties, redox measurements continue to be carried out by researchers all over the world. The over-all conclusion from the literature survey is that fruitful redox-measurements can be performed in compacted bentonite. Irrespective of whether the measured redox potentials are absolute or not, the use of electrodes provide a valuable tool for studying, e.g., long-term changes in the pore water of compacted bentonite and/or the diffusion of oxygen into a bentonite. (orig.)

  11. Phase equilibrium in systems with ionic liquids: An example for the downstream process of the Biphasic Acid Scavenging utilizing Ionic Liquids (BASIL) process. Part I: Experimental data

    International Nuclear Information System (INIS)

    Sahandzhieva, Katya; Maurer, Gerd

    2012-01-01

    Highlights: ► Phase equilibrium for a downstream process in sustainable chemical technology. ► Biphasic Acid Scavenging Utilizing Ionic Liquids (BASIL) Process. ► SLE, LLE, and SLLE of (NaCl + water + 1-propanol + 1-MIM) and its ternary subsystems. ► Experimental phase equilibrium data at temperatures between 298 K and 333 K. - Abstract: Experimental results are presented for the (liquid + liquid), (solid + liquid) and (solid + liquid + liquid) equilibria occurring in the downstream process of a typical example for the Biphasic Acid Scavenging Utilizing Ionic Liquids (BASIL)-processes. In a BASIL process an organic base is used to catalyze a chemical reaction and, at the same time, to scavenge an acid that is an undesired side product of that reaction. The particular example of a BASIL process treated here is the reaction of 1-butanol and acetylchloride to butylacetate and hydrochloric acid, where the acid is scavenged by the organic base 1-methyl imidazole (1-MIM) resulting in the ionic liquid 1-methyl imidazolium chloride. The reaction results in a two-phase system as butylacetate and the ionic liquid reveal a large liquid–liquid miscibility gap. The organic base has to be recovered. This is commonly achieved by treating the ionic liquid–rich liquid phase with an aqueous solution of sodium hydroxide (i.e., converting the ionic liquid to the organic base) and extracting the organic base by an appropriate organic solvent (e.g., 1-propanol). The work presented here deals in experimental work with the (liquid + liquid), (solid + liquid) and (solid + liquid + liquid) phase equilibria that are encountered in such extraction processes. Experimental results are reported for temperatures between about 298 K and 333 K: for the solubility of NaCl in several solvents (1-propanol, 1-MIM), (water + 1-MIM), (1-propanol + 1-MIM), (water + 1-propanol), and (water + 1-propanol + 1-MIM) and for the (liquid + liquid) equilibrium as well as for the (solid + liquid

  12. Preservation of organic matter in nontronite against iron redox cycling.

    Science.gov (United States)

    Zeng, Q.

    2015-12-01

    It is generally believed that clay minerals can protect organic matter from degradation in redox active environments, but both biotic and abiotic factors can influence the redox process and thus potentially change the clay-organic associations. However, the specific mechanisms involved in this process remain poorly understood. In this study, a model organic compound, 12-Aminolauric acid (ALA) was selected to intercalate into the structural interlayer of nontronite (an iron-rich smectite, NAu-2) to form an ALA-intercalated NAu-2 composite (ALA-NAu-2). Shawanella putrefaciens CN32 and sodium dithionite were used to reduce structural Fe(III) to Fe(II) in NAu-2 and ALA-NAu-2. The bioreduced ALA-NAu-2 was subsequently re-oxidized by air. The rates and extents of bioreduction and air re-oxidation were determined with wet chemistry methods. ALA release from ALA-NAu-2 via redox process was monitored. Mineralogical changes after iron redox cycle were investigated with X-ray diffraction, infrared spectroscopy, and scanning and transmission electron microscopy. At the beginning stage of bioreduction, S. putrefaciens CN32 reduced Fe(III) from the edges of nontronite and preferentially reduced and dissolved small and poorly crystalline particles, and released ALA, resulting a positive correlation between ALA release and iron reduction extent (80%). Because bacteria are the principal agent for mediating redox process in natural environments, our results demonstrated that the structural interlayer of smectite can serve as a potential shelter to protect organic matter from oxidation.

  13. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.

    Science.gov (United States)

    Kim, Eunkyoung; Gordonov, Tanya; Bentley, William E; Payne, Gregory F

    2013-02-19

    Redox cycling provides a mechanism to amplify electrochemical signals for analyte detection. Previous studies have shown that diverse mediators/shuttles can engage in redox-cycling reactions with a biobased redox capacitor that is fabricated by grafting redox-active catechols onto a chitosan film. Here, we report that redox cycling with this catechol-chitosan redox capacitor can amplify electrochemical signals for detecting a redox-active bacterial metabolite. Specifically, we studied the redox-active bacterial metabolite pyocyanin that is reported to be a virulence factor and signaling molecule for the opportunistic pathogen P. aeruginosa. We demonstrate that redox cycling can amplify outputs from various electrochemical methods (cyclic voltammetry, chronocoulometry, and differential pulse voltammetry) and can lower the detection limit of pyocyanin to 50 nM. Further, the compatibility of this biobased redox capacitor allows the in situ monitoring of the production of redox-active metabolites (e.g., pyocyanin) during the course of P. aeruginosa cultivation. We anticipate that the amplified output of redox-active virulence factors should permit an earlier detection of life-threatening infections by the opportunistic pathogen P. aeruginosa while the "bio-compatibility" of this measurement approach should facilitate in situ study of the spatiotemporal dynamics of bacterial redox signaling.

  14. Computational Redox Potential Predictions: Applications to Inorganic and Organic Aqueous Complexes, and Complexes Adsorbed to Mineral Surfaces

    Directory of Open Access Journals (Sweden)

    Krishnamoorthy Arumugam

    2014-04-01

    Full Text Available Applications of redox processes range over a number of scientific fields. This review article summarizes the theory behind the calculation of redox potentials in solution for species such as organic compounds, inorganic complexes, actinides, battery materials, and mineral surface-bound-species. Different computational approaches to predict and determine redox potentials of electron transitions are discussed along with their respective pros and cons for the prediction of redox potentials. Subsequently, recommendations are made for certain necessary computational settings required for accurate calculation of redox potentials. This article reviews the importance of computational parameters, such as basis sets, density functional theory (DFT functionals, and relativistic approaches and the role that physicochemical processes play on the shift of redox potentials, such as hydration or spin orbit coupling, and will aid in finding suitable combinations of approaches for different chemical and geochemical applications. Identifying cost-effective and credible computational approaches is essential to benchmark redox potential calculations against experiments. Once a good theoretical approach is found to model the chemistry and thermodynamics of the redox and electron transfer process, this knowledge can be incorporated into models of more complex reaction mechanisms that include diffusion in the solute, surface diffusion, and dehydration, to name a few. This knowledge is important to fully understand the nature of redox processes be it a geochemical process that dictates natural redox reactions or one that is being used for the optimization of a chemical process in industry. In addition, it will help identify materials that will be useful to design catalytic redox agents, to come up with materials to be used for batteries and photovoltaic processes, and to identify new and improved remediation strategies in environmental engineering, for example the

  15. Hemoglobin redox reactions and red blood cell aging.

    Science.gov (United States)

    Rifkind, Joseph M; Nagababu, Enika

    2013-06-10

    The physiological mechanism(s) for recognition and removal of red blood cells (RBCs) from circulation after 120 days of its lifespan is not fully understood. Many of the processes thought to be associated with the removal of RBCs involve oxidative stress. We have focused on hemoglobin (Hb) redox reactions, which is the major source of RBC oxidative stress. The importance of Hb redox reactions have been shown to originate in large parts from the continuous slow autoxidation of Hb producing superoxide and its dramatic increase under hypoxic conditions. In addition, oxidative stress has been shown to be associated with redox reactions that originate from Hb reactions with nitrite and nitric oxide (NO) and the resultant formation of highly toxic peroxynitrite when NO reacts with superoxide released during Hb autoxidation. The interaction of Hb, particularly under hypoxic conditions with band 3 of the RBC membrane is critical for the generating the RBC membrane changes that trigger the removal of cells from circulation. These changes include exposure of antigenic sites, increased calcium leakage into the RBC, and the resultant leakage of potassium out of the RBC causing cell shrinkage and impaired deformability. The need to understand the oxidative damage to specific membrane proteins that result from redox reactions occurring when Hb is bound to the membrane. Proteomic studies that can pinpoint the specific proteins damaged under different conditions will help elucidate the cellular aging processes that result in cells being removed from circulation.

  16. Connecting Biology to Electronics: Molecular Communication via Redox Modality.

    Science.gov (United States)

    Liu, Yi; Li, Jinyang; Tschirhart, Tanya; Terrell, Jessica L; Kim, Eunkyoung; Tsao, Chen-Yu; Kelly, Deanna L; Bentley, William E; Payne, Gregory F

    2017-12-01

    Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Wei, L.; Zhao, T.S.; Zeng, L.; Zhou, X.L.; Zeng, Y.K.

    2016-01-01

    Highlights: • Copper nanoparticle is proposed as electrocatalyst for VRFBs for the first time. • Propose a binder-free copper nanoparticle decorated electrode. • The energy efficiency is up to 80.1% at 300 mA cm"−"2, enhancing more than 17%. • High stability and capacity retention are achieved by battery with copper catalyst. - Abstract: A copper nanoparticle deposited graphite felt electrode for all vanadium redox flow batteries (VRFBs) is developed and tested. It is found that the copper catalyst enables a significant improvement in the electrochemical kinetics of the V"3"+/V"2"+ redox reaction. The battery’s utilization of the electrolyte and energy efficiency are found to be as high as 83.7% and 80.1%, at a current density of 300 mA cm"−"2, which are 53.1% and 17.8% higher than those of the battery without the catalyst. Moreover, the present battery shows a good stability during the cycle test. The results suggest that the inexpensive copper nanoparticle catalyst without tedious preparation process offers a great promise for VRFB application.

  18. Process and device integration for silicon tunnel FETs utilizing isoelectronic trap technology to enhance the ON current

    Science.gov (United States)

    Mori, Takahiro; Asai, Hidehiro; Fukuda, Koichi; Matsukawa, Takashi

    2018-04-01

    A tunnel FET (TFET) is a candidate replacement for conventional MOSFETs to realize low-power LSI. The most significant issue with the practical application of TFETs concerns their low tunneling current. Si is an indirect-gap material with a low band-to-band tunneling probability and is not favored for the channel. However, a new technology has recently been proposed to enhance the tunneling current in Si-TFETs by utilizing isoelectronic trap (IET) technology. IET technology provides an innovative approach to realizing low-power LSI with TFETs. In this paper, state-of-the-art research on Si-TFETs with IET technology from the viewpoint of process and device integration is reviewed.

  19. Study on transfer-free graphene synthesis process utilizing spontaneous agglomeration of catalytic Ni and Co metals

    International Nuclear Information System (INIS)

    Miyoshi, Makoto; Mizuno, Masaya; Banno, Kazuya; Kubo, Toshiharu; Egawa, Takashi; Soga, Tetsuo

    2015-01-01

    Transfer-free graphene synthesis process utilizing metal agglomeration phenomena was investigated by using carbon films deposited on Ni or Co catalyst metals on SiO 2 /Si substrates. As a result of metal agglomeration at high temperatures, multilayer graphene films appeared to be formed directly on SiO 2 films. The microscopic Raman mapping study revealed that graphene films were preferentially synthesized around areas where metal films disappeared at an early stage of agglomeration, and that they finally covered almost the whole surface. It was also found that the synthesized graphene films tended to have better structural qualities and lower layer numbers with the increase in the starting metal thicknesses regardless of the kinds of catalyst metals. Raman study also showed that they had good two-dimensional uniformity in the structural quality. (paper)

  20. Utilizing time-frequency amplitude and phase synchrony measure to assess feedback processing in a gambling task.

    Science.gov (United States)

    Watts, Adreanna T M; Tootell, Anne V; Fix, Spencer T; Aviyente, Selin; Bernat, Edward M

    2018-04-29

    The neurophysiological mechanisms involved in the evaluation of performance feedback have been widely studied in the ERP literature over the past twenty years, but understanding has been limited by the use of traditional time-domain amplitude analytic approaches. Gambling outcome valence has been identified as an important factor modulating event-related potential (ERP) components, most notably the feedback negativity (FN). Recent work employing time-frequency analysis has shown that processes indexed by the FN are confounded in the time-domain and can be better represented as separable feedback-related processes in the theta (3-7 Hz) and delta (0-3 Hz) frequency bands. In addition to time-frequency amplitude analysis, phase synchrony measures have begun to further our understanding of performance evaluation by revealing how feedback information is processed within and between various brain regions. The current study aimed to provide an integrative assessment of time-frequency amplitude, inter-trial phase synchrony, and inter-channel phase synchrony changes following monetary feedback in a gambling task. Results revealed that time-frequency amplitude activity explained separable loss and gain processes confounded in the time-domain. Furthermore, phase synchrony measures explained unique variance above and beyond amplitude measures and demonstrated enhanced functional integration between medial prefrontal and bilateral frontal, motor, and occipital regions for loss relative to gain feedback. These findings demonstrate the utility of assessing time-frequency amplitude, inter-trial phase synchrony, and inter-channel phase synchrony together to better elucidate the neurophysiology of feedback processing. Copyright © 2017. Published by Elsevier B.V.

  1. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei

    2014-12-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). As compared to conventional electrolytes, the redox-active electrolytes, prepared by simply adding a redox mediator to the conventional electrolyte, can significantly improve the energy storage capacity of pseudocapacitors with different conducting polymers. The results show that the specific capacitance of conducting polymer based pseudocapacitors can be increased by a factor of two by utilization of the redox-active electrolytes. In fact, this approach gives some of the highest reported specific capacitance values for electroactive conducting polymers. Moreover, our findings present a general and effective approach for the enhancement of energy storage performance of pseudocapacitors using a variety of polymeric electrode materials. © 2014 Elsevier B.V. All rights reserved.

  2. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) process

    International Nuclear Information System (INIS)

    Mattus, A.J.; Lee, D.D.; Dillow, T.A.; Farr, L.L.; Loghry, S.L.; Pitt, W.W.; Gibson, M.R.

    1994-12-01

    Bench-top feasibility studies with Hanford single-shell tank (SST) simulants, using a new, low-temperature (50 to 60C) process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 to 99% of the nitrate can be readily converted. In this process, aluminum powders or shot can be used to convert alkaline, nitrate-based supernate to ammonia and an aluminum oxide-sodium aluminate-based solid which might function as its own waste form. The process may actually be able to utilize already contaminated aluminum scrap metal from various DOE sites to effect the conversion. The final, nearly nitrate-free ceramic-like product can be pressed and sintered like other ceramics. Based upon the starting volumes of 6.2 and 3.1 M sodium nitrate solution, volume reductions of 50 to 55% were obtained for the waste form produced, compared to an expected 35 to 50% volume increase if the Hanford supernate were grouted. Engineering data extracted from bench-top studies indicate that the process will be very economical to operate, and data were used to cost a batch, 1,200-kg NO 3 /h plant for working off Hanford SST waste over 20 years. Their total process cost analysis presented in the appendix, indicates that between $2.01 to 2.66 per kilogram of nitrate converted will be required. Additionally, data on the fate of select radioelements present in solution are presented in this report as well as kinetic, operational, and control data for a number of experiments. Additionally, if the ceramic product functions as its own waste form, it too will offer other cost savings associated with having a smaller volume of waste form as well as eliminating other process steps such as grouting

  3. A Multistep Equilibria-Redox-Complexation Demonstration to Illustrate Le Chatelier's Principle.

    Science.gov (United States)

    Berger, Tomas G.; Mellon, Edward K.

    1996-01-01

    Describes a process that can be used to illustrate a number of chemical principles including Le Chatelier's principle, redox chemistry, equilibria versus steady state situations, and solubility of species. (JRH)

  4. Engineering redox balance through cofactor systems.

    Science.gov (United States)

    Chen, Xiulai; Li, Shubo; Liu, Liming

    2014-06-01

    Redox balance plays an important role in the production of enzymes, pharmaceuticals, and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximal carbon flux towards target metabolites with no fluctuations in redox. This requires functional cofactor systems that support dynamic homeostasis between different redox states or functional stability in a given redox state. Redox balance can be achieved by improving the self-balance of a cofactor system, regulating the substrate balance of a cofactor system, and engineering the synthetic balance of a cofactor system. This review summarizes how cofactor systems can be manipulated to improve redox balance in microbes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A High-Current, Stable Nonaqueous Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Duan, Wentao; Huang, Jinhua; Zhang, Lu; Li, Bin; Reed, David; Xu, Wu; Sprenkle, Vincent; Wang, Wei

    2016-10-14

    Nonaqueous redox flow batteries are promising in pursuit of high-energy storage systems owing to the broad voltage window, but currently are facing key challenges such as poor cycling stability and lack of suitable membranes. Here we report a new nonaqueous all-organic flow chemistry that demonstrates an outstanding cell cycling stability primarily because of high chemical persistency of the organic radical redox species and their good compatibility with the supporting electrolyte. A feasibility study shows that Daramic® and Celgard® porous separators can lead to high cell conductivity in flow cells thus producing remarkable cell efficiency and material utilization even at high current operations. This result suggests that the thickness and pore size are the key performance-determining factors for porous separators. With the greatly improved flow cell performance, this new flow system largely addresses the above mentioned challenges and the findings may greatly expedite the development of durable nonaqueous flow batteries.

  6. Fundamental studies of uranium and neptunium redox flow batteries (II)

    International Nuclear Information System (INIS)

    Shiokawa, Y.; Yamamura, T.; Watanabe, N.

    2002-01-01

    The atomic power generation entails production of so-called minor actinides and accumulation of depleted uranium. The theoretical and experimental investigations are underway to transmute minor actinides for minimizing the long-term radiotoxicity and reducing the radioactive waste. The utilization, however, would be alternative means. The actinide redox couples, An(VI)/An(V) and An(IV)/An(III), have excellent properties as battery active materials. Here j the uranium and neptunium redox flow batteries for the electric power storage are discussed from the electrochemical properties of U, Np, Pu and Am [1,2]. One of the required properties for the batteries for electric power storage is high energy efficiency, which is defined by the ratio of the discharge energy to the charge energy. These energies are dependent on the rapidness of kinetics in the electrode reactions, namely the standard rate constants and also the internal resistance of the battery

  7. Radii of Redox Components from Absolute Redox Potentials Compared with Covalent and Aqueous Ionic Radii

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2010-01-01

    Roč. 22, č. 9 (2010), s. 903-907 ISSN 1040-0397 Institutional support: RVO:68081707 Keywords : Electrochemistry * Absolute redox potentials * Radii of redox components Subject RIV: BO - Biophysics Impact factor: 2.721, year: 2010

  8. Redox Pioneer: Professor Vadim N. Gladyshev.

    Science.gov (United States)

    Hatfield, Dolph L

    2016-07-01

    Professor Vadim N. Gladyshev is recognized here as a Redox Pioneer, because he has published an article on antioxidant/redox biology that has been cited more than 1000 times and 29 articles that have been cited more than 100 times. Gladyshev is world renowned for his characterization of the human selenoproteome encoded by 25 genes, identification of the majority of known selenoprotein genes in the three domains of life, and discoveries related to thiol oxidoreductases and mechanisms of redox control. Gladyshev's first faculty position was in the Department of Biochemistry, the University of Nebraska. There, he was a Charles Bessey Professor and Director of the Redox Biology Center. He then moved to the Department of Medicine at Brigham and Women's Hospital, Harvard Medical School, where he is Professor of Medicine and Director of the Center for Redox Medicine. His discoveries in redox biology relate to selenoenzymes, such as methionine sulfoxide reductases and thioredoxin reductases, and various thiol oxidoreductases. He is responsible for the genome-wide identification of catalytic redox-active cysteines and for advancing our understanding of the general use of cysteines by proteins. In addition, Gladyshev has characterized hydrogen peroxide metabolism and signaling and regulation of protein function by methionine-R-sulfoxidation. He has also made important contributions in the areas of aging and lifespan control and pioneered applications of comparative genomics in redox biology, selenium biology, and aging. Gladyshev's discoveries have had a profound impact on redox biology and the role of redox control in health and disease. He is a true Redox Pioneer. Antioxid. Redox Signal. 25, 1-9.

  9. Characterization of redox proteins using electrochemical methods

    OpenAIRE

    Verhagen, M.

    1995-01-01

    The use of electrochemical techniques in combination with proteins started approximately a decade ago and has since then developed into a powerfull technique for the study of small redox proteins. In addition to the determination of redox potentials, electrochemistry can be used to obtain information about the kinetics of electron transfer between proteins and about the dynamic behaviour of redox cofactors in proteins. This thesis describes the results of a study, initiated to get a ...

  10. Membranes for Redox Flow Battery Applications

    OpenAIRE

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. Th...

  11. Regulatory redox state in tree seeds

    Directory of Open Access Journals (Sweden)

    Ewelina Ratajczak

    2017-12-01

    Full Text Available Peroxiredoxins (Prx are important regulators of the redox status of tree seeds during maturation and long-term storage. Thioredoxins (Trx are redox transmitters and thereby regulate Prx activity. Current research is focused on the association of Trx with Prx in tree seeds differing in the tolerance to desiccation. The results will allow for better understanding the regulation of the redox status in orthodox, recalcitrant, and intermediate seeds. The findings will also elucidate the role of the redox status during the loss of viability of sensitive seeds during drying and long-term storage.

  12. Zinc and the modulation of redox homeostasis

    Science.gov (United States)

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  13. Quantitative redox imaging biomarkers for studying tissue metabolic state and its heterogeneity

    Directory of Open Access Journals (Sweden)

    He N. Xu

    2014-03-01

    and diseased tissues. The Chance redox scanner and other redox imaging techniques may have wide-ranging potential applications in many fields, such as cancer, diabetes, developmental process, mitochondrial diseases, neurodegenerative diseases, and aging.

  14. Shortcomings in safety management: symptoms, examples and recovery processes. Omission of Operational Culture can be fatal for the power utility

    International Nuclear Information System (INIS)

    Hezoucky, F.; )

    2006-01-01

    During recent years, many utilities and their nuclear branches have undergone substantial change. The effectiveness of management in handling the change varies considerably from utility to utility. At the extreme, the way the change is managed and nuclear safety and operational performance aspects are integrated can either help lead a plant to operational excellence or destroy what was once an effective organisation. (author)

  15. Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-09-23

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  16. Redox reactions in food fermentations

    DEFF Research Database (Denmark)

    Hansen, Egon Bech

    2018-01-01

    involves oxidative steps in the early part of the pathways whereas a multitude of different reactions are used as compensating reductions. Much of the diversity seen between food fermentations arise from the different routes and the different electron acceptors used by microorganisms to counterbalance...... and this contributes to the diversity in flavor, color, texture, and shelf life. The review concludes that these reactions are still only incompletely understood and that they represent an interesting area for fundamental research and also represent a fertile field for product development through a more conscious use...... of the redox properties of strains used to compose food cultures....

  17. Method for producing redox shuttles

    Science.gov (United States)

    Pupek, Krzysztof Z.; Dzwiniel, Trevor L.; Krumdick, Gregory K.

    2015-03-03

    A single step method for producing a redox shuttle having the formula 2,5-di-tert-butyl-1,4-phenylene tetraethyl bis(phosphate) is provided, the method comprising phosphorylating tert butyl hydroquinone with a phosphate-containing reagent. Also provided is method for producing 2,5-di-tert-butyl-1,4-phenylene tetraethyl bis(phosphate), the method comprising solubilizing tert-butyl hydroquinone and tetrabutylammonium bromide with methyltetrahydrofuran to create a mixture; heating the mixture while adding base to the mixture in an amount to turn the mixture orange; and adding diethyl chlorophosphate to the orange mixture in an amount to phosphorylate the hydroquinone.

  18. S-Glutathionylation and Redox Protein Signaling in Drug Addiction.

    Science.gov (United States)

    Womersley, Jacqueline S; Uys, Joachim D

    2016-01-01

    Drug addiction is a chronic relapsing disorder that comes at a high cost to individuals and society. Therefore understanding the mechanisms by which drugs exert their effects is of prime importance. Drugs of abuse increase the production of reactive oxygen and nitrogen species resulting in oxidative stress. This change in redox homeostasis increases the conjugation of glutathione to protein cysteine residues; a process called S-glutathionylation. Although traditionally regarded as a protective mechanism against irreversible protein oxidation, accumulated evidence suggests a more nuanced role for S-glutathionylation, namely as a mediator in redox-sensitive protein signaling. The reversible modification of protein thiols leading to alteration in function under different physiologic/pathologic conditions provides a mechanism whereby change in redox status can be translated into a functional response. As such, S-glutathionylation represents an understudied means of post-translational protein modification that may be important in the mechanisms underlying drug addiction. This review will discuss the evidence for S-glutathionylation as a redox-sensing mechanism and how this may be involved in the response to drug-induced oxidative stress. The function of S-glutathionylated proteins involved in neurotransmission, dendritic spine structure, and drug-induced behavioral outputs will be reviewed with specific reference to alcohol, cocaine, and heroin. Copyright © 2016. Published by Elsevier Inc.

  19. Vanadium and Chromium Redox Behavior in borosilicate Nuclear Waste Glasses

    International Nuclear Information System (INIS)

    McKeown, D.; Muller, I.; Gan, H.; Feng, Z.; Viragh, C.; Pegg, I.

    2011-01-01

    X-ray absorption spectroscopy (XAS) was used to characterize vanadium (V) and chromium (Cr) environments in low activity nuclear waste (LAW) glasses synthesized under a variety of redox conditions. V 2 O 5 was added to the melt to improve sulfur incorporation from the waste; however, at sufficiently high concentrations, V increased melt foaming, which lowered melt processing rates. Foaming may be reduced by varying the redox conditions of the melt, while small amounts of Cr are added to reduce melter refractory corrosion. Three parent glasses were studied, where CO-CO 2 mixtures were bubbled through the corresponding melt for increasing time intervals so that a series of redox-adjusted-glasses was synthesized from each parent glass. XAS data indicated that V and Cr behaviors are significantly different in these glasses with respect to the cumulative gas bubbling times: V 4+ /V total ranges from 8 to 35%, while Cr 3+ /Cr total can range from 15 to 100% and even to population distributions including Cr 2+ . As Na-content decreased, V, and especially, Cr became more reduced, when comparing equivalent glasses within a series. The Na-poor glass series show possible redox coupling between V and Cr, where V 4+ populations increase after initial bubbling, but as bubbling time increases, V 4+ populations drop to near the level of the parent glass, while Cr becomes more reduced to the point of having increasing Cr 2+ populations.

  20. Molecular controls of the oxygenation and redox reactions of hemoglobin.

    Science.gov (United States)

    Bonaventura, Celia; Henkens, Robert; Alayash, Abdu I; Banerjee, Sambuddha; Crumbliss, Alvin L

    2013-06-10

    The broad classes of O(2)-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O(2)-binding functions. The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes.

  1. Hunting for low abundant redox proteins in plant plasma membranes.

    Science.gov (United States)

    Lüthje, Sabine; Hopff, David; Schmitt, Anna; Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana

    2009-04-13

    Nowadays electron transport (redox) systems in plasma membranes appear well established. Members of the flavocytochrome b family have been identified by their nucleotide acid sequences and characterized on the transcriptional level. For their gene products functions have been demonstrated in iron uptake and oxidative stress including biotic interactions, abiotic stress factors and plant development. In addition, NAD(P)H-dependent oxidoreductases and b-type cytochromes have been purified and characterized from plasma membranes. Several of these proteins seem to belong to the group of hypothetical or unknown proteins. Low abundance and the lack of amino acid sequence data for these proteins still hamper their functional analysis. Consequently, little is known about the physiological function and regulation of these enzymes. In recent years evidence has been presented for the existence of microdomains (so-called lipid rafts) in plasma membranes and their interaction with specific membrane proteins. The identification of redox systems in detergent insoluble membranes supports the idea that redox systems may have important functions in signal transduction, stress responses, cell wall metabolism, and transport processes. This review summarizes our present knowledge on plasma membrane redox proteins and discusses alternative strategies to investigate the function and regulation of these enzymes.

  2. Plasmonic tunnel junctions for single-molecule redox chemistry.

    Science.gov (United States)

    de Nijs, Bart; Benz, Felix; Barrow, Steven J; Sigle, Daniel O; Chikkaraddy, Rohit; Palma, Aniello; Carnegie, Cloudy; Kamp, Marlous; Sundararaman, Ravishankar; Narang, Prineha; Scherman, Oren A; Baumberg, Jeremy J

    2017-10-20

    Nanoparticles attached just above a flat metallic surface can trap optical fields in the nanoscale gap. This enables local spectroscopy of a few molecules within each coupled plasmonic hotspot, with near thousand-fold enhancement of the incident fields. As a result of non-radiative relaxation pathways, the plasmons in such sub-nanometre cavities generate hot charge carriers, which can catalyse chemical reactions or induce redox processes in molecules located within the plasmonic hotspots. Here, surface-enhanced Raman spectroscopy allows us to track these hot-electron-induced chemical reduction processes in a series of different aromatic molecules. We demonstrate that by increasing the tunnelling barrier height and the dephasing strength, a transition from coherent to hopping electron transport occurs, enabling observation of redox processes in real time at the single-molecule level.

  3. Assessment of redox conditions based on fracture mineralogy

    International Nuclear Information System (INIS)

    Tullborg, E.L.

    1999-01-01

    The frequency and distribution of fracture minerals like calcite, Fe-oxides/hydroxides, and sulphides can be used in performance assessment since their presence reflects the redox processes that are active or have been active in the fractures. The advantage in using fracture minerals is that they undoubtedly represent conditions prior to disturbances caused by drilling or tunnel excavations. In addition, they give a continuous record from the surface to great depth. On the other hand the disadvantage is that the fracture mineral distribution is a result of both past and present processes such that the mineral distribution alone can not discriminate between old and recent processes. Nevertheless it is suggested that the fracture mineral distribution provides important information about the redox capacity in the fracture system. (author)

  4. A redox-switchable Au8-cluster sensor.

    Science.gov (United States)

    Wu, Te-Haw; Hsu, Yu-Yen; Lin, Shu-Yi

    2012-07-09

    The proof of concept of a simple sensing platform based on the fluorescence of a gold cluster consisting of eight atoms, which is easily manipulated by reduction and oxidation of a specific molecule in the absence of chemical linkers, is demonstrated. Without using any coupling reagents to arrange the distance of the donor-acceptor pair, the fluorescence of the Au(8) -cluster is immediately switched off in the presence of 2-pyridinethiol (2-PyT) quencher. Through an upward-curving Stern-Volmer plot, the system shows complex fluorescence quenching with a combination of static and dynamic quenching processes. To analyze the static quenching constant (V) by a "sphere of action" model, the collisional encounter between the Au(8) -cluster and 2-PyT presents a quenching radius (r) ≈5.8 nm, which is larger than the sum of the radii of the Au(8) -cluster and 2-PyT. This implies that fluorescence quenching can occur even though the Au(8) -cluster and 2-PyT are not very close to each other. The quenching pathway may be derived from a photoinduced electron-transfer process of the encounter pair between the Au(8) -cluster (as an electron donor) and 2-PyT (as an electron acceptor) to allow efficient fluorescence quenching in the absence of coupling reagents. Interestingly, the fluorescence is restored by oxidation of 2-PyT to form the corresponding disulfide compound and then quenched again after the reduction of the disulfide. This redox-switchable fluorescent Au(8) -cluster platform is a novel discovery, and its utility as a promising sensor for detecting H(2) O(2) -generating enzymatic transformations is demonstrated. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Interview from anywhere: feasibility and utility of web-based videoconference interviews in the gastroenterology fellowship selection process.

    Science.gov (United States)

    Daram, Sumanth R; Wu, Ruonan; Tang, Shou-Jiang

    2014-02-01

    Traditional personal interviews are subject to limitations imposed by geographic, financial, and scheduling constraints. Web-based videoconferencing (WVC) has the potential to simplify the interview process. This study was intended to evaluate the feasibility and utility of WVC using standard tablets/computers with videoconferencing capability in gastroenterology (GI) fellowship interviews. At a single institution, 16 GI fellowship applicants participated in WVC with one interviewer, who was present at a remote location 750 miles away. In addition, each of the candidates underwent traditional interviews with four faculty members at the program site. All study interviewees used an iPad2 (Apple, iOS 5.1; Apple) with a videoconferencing application (Facetime). The interviewer (SRD) used Facetime on a MacBook Pro (Apple, Mac OS X 10.7.3). Each candidate completed a voluntary paper survey after completion of all assigned faculty interviews. The average age of the candidates was 30 years (range, 27-37 years). Fourteen candidates were native English speakers. Candidates expressed a high level of satisfaction, with 13 candidates (81%) stating that their WVC experience met or exceeded their expectations, and 87% of candidates stating that WVC should be an option in fellowship interviews. In addition, 25% of candidates felt that their WVC experience was equivalent to or better than their traditional interview experience on the same day. WVC can be an effective and useful tool in the fellowship interview process. It affords candidates increased flexibility, cost saving, convenience, and provides an option for participating in the selection process at more programs. For the programs and faculty, WVC has a potential to be an effective screening tool, can help minimize loss of clinical revenue and can also be an acceptable alternative to in-person interviews.

  6. Nitroxides as redox probes of melanins: dark-induced and photoinduced changes in redox equilibria

    International Nuclear Information System (INIS)

    Sarna, T.; Korytowski, W.; Sealy, R.C.

    1985-01-01

    The interaction of nitroxide free radicals and their reduced products (hydroxylamines) with synthetic and natural melanins has been studied. Electron spin resonance spectroscopy was used to measure changes in radical concentration in the dark and during irradiation with visible or uv light. Some reduction of nitroxide occurs in the dark, and is reversible: the nitroxide can be completely regenerated by the one-electron oxidant ferricyanide. The kinetics of the process depend strongly on radical charge and pH. For positively charged nitroxides the rate is much faster than for either neutral or anionic radicals. At pH 10 the rate is about 20 times faster than at pH 5. Oxidation of hydroxylamine also can occur so that a redox equilibrium is established. The equilibrium constant has been estimated for the reaction between a nitroxide and melanin from autoxidation of 3,4-dihydroxyphenylalanine. Results are also dependent upon the type of melanin used and chemical modification (oxidation or reduction) of the melanin. Redox equilibria are altered during irradiation with either visible or uv light. Rapid oxidation of hydroxylamine to nitroxide is apparent, together with a slower reduction of nitroxide. Action spectra for these processes are related to those for melanin radical production and oxygen consumption in nitroxide-free melanin systems. Reduction of nitroxide is inhibited by oxygen, suggesting a competition between nitroxide and oxygen for photoinduced reducing equivalents

  7. Control of high level radioactive waste-glass melters - Part 5: Modeling of complex redox effects

    International Nuclear Information System (INIS)

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Computerized thermodynamic computations are useful in predicting the sequence and products of redox reactions and in assessing process variations. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Continuous melter test results have been compared to this improved staged-thermodynamic model of redox behavior

  8. Intramolecular Redox-Mannich Reactions: Facile Access to the Tetrahydroprotoberberine Core.

    Science.gov (United States)

    Ma, Longle; Seidel, Daniel

    2015-09-07

    Cyclic amines such as pyrrolidine undergo redox-annulations with 2-formylaryl malonates. Concurrent oxidative amine α-CH bond functionalization and reductive N-alkylation render this transformation redox-neutral. This redox-Mannich process provides regioisomers of classic Reinhoudt reaction products as an entry to the tetrahydroprotoberberine core, enabling the synthesis of (±)-thalictricavine and its epimer. An unusually mild amine-promoted dealkoxycarbonylation was discovered in the course of these studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Titanium nitride as an electrocatalyst for V(II)/V(III) redox couples in all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Yang, Chunmei; Wang, Haining; Lu, Shanfu; Wu, Chunxiao; Liu, Yiyang; Tan, Qinglong; Liang, Dawei; Xiang, Yan

    2015-01-01

    Titanium nitride nanoparticles (TiN NPs) are proposed as a novel catalyst towards the V(II)/V(III) redox pair for the negative electrode in vanadium redox flow batteries (VRFB). Electrochemical properties of TiN NPs were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that TiN NPs demonstrate better electrochemical activity and reversibility for the processes of V(II)/V(III) redox couples as compared with the graphite NPs. TiN NPs facilitate the charge transfer in the V(II)/V(III) redox reaction. Performance of a VRFB using a TiN NPs coated carbon paper as a negative electrode is much higher than that of a VRFB with a raw carbon paper electrode. The columbic efficiency (CE), the voltage efficiency (VE) and the energy efficiency (EE) of the VRFB single cell at charge-discharge current density of 30 mA/cm 2 are 91.74%, 89.11% and 81.74%, respectively. During a 50 charge-discharge cycles test, the CE values of VRFB with TiN NPs consistently remain higher than 90%.

  10. The effects of metamorphism on iron mineralogy and the iron speciation redox proxy

    Science.gov (United States)

    Slotznick, Sarah P.; Eiler, John M.; Fischer, Woodward W.

    2018-03-01

    utilized. The presence of diagenetic iron carbonates in many samples severely affected the proxy even at low grade, engendering an interpretation of ferruginous conditions in all lithologies, but particularly in carbonate-bearing rocks. Increasing metamorphic grades transformed iron in carbonates into iron in silicate minerals, which when combined with a slight increase in the amount of pyrrhotite, drove the proxy toward more oxic and more euxinic conditions. Broad-classes of metamorphic reactions (e.g. decarbonation, silicate formation) occurred at distinct temperatures-pressures in carbonates versus siliciclastics, and could be either abrupt between metamorphic facies or more gradual in nature. Notably, these analyses highlighted the importance of trace iron in phases like calcite, which otherwise might not be included in iron-focused research i.e. ore-system petrogenesis, metamorphic evolution, or normative calculations of mineral abundance. The observations show that iron is mobile and reactive during diagenesis and metamorphism, and these post-depositional processes can readily overprint primary redox information held by iron speciation. However, in principle, additional mineralogical and petrographic approaches can be combined with iron speciation data to help untangle many of these post-depositional processes and arrive at more accurate estimates of paleoenvironmental redox conditions and processes, even for metamorphosed samples.

  11. Characterization of redox conditions in pollution plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bjerg, Poul Løgstrup; Banwart, Steven A.

    2000-01-01

    Evalution of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few...

  12. Redox properties of small semiconductor particles

    International Nuclear Information System (INIS)

    Liver, N.; Nitzan, A.

    1992-01-01

    The size dependence of electrical and thermodynamic quantities of intermediate-sized semiconductor particles in an electrolyte solution with a given redox pair are studied. The equilibrium constant for this system is then derived based on the relationship of the electrolytic redox components to the size, charges, and concentration of the semiconductor particles. 25 refs., 9 figs., 1 tab

  13. Characterization of redox proteins using electrochemical methods

    NARCIS (Netherlands)

    Verhagen, M.

    1995-01-01

    The use of electrochemical techniques in combination with proteins started approximately a decade ago and has since then developed into a powerfull technique for the study of small redox proteins. In addition to the determination of redox potentials, electrochemistry can be used to obtain

  14. Expected utility without utility

    OpenAIRE

    Castagnoli, E.; Licalzi, M.

    1996-01-01

    This paper advances an interpretation of Von Neumann–Morgenstern’s expected utility model for preferences over lotteries which does not require the notion of a cardinal utility over prizes and can be phrased entirely in the language of probability. According to it, the expected utility of a lottery can be read as the probability that this lottery outperforms another given independent lottery. The implications of this interpretation for some topics and models in decision theory are considered....

  15. Predicting Health Care Utilization After the First Behavioral Health Visit Using Natural Language Processing and Machine Learning

    OpenAIRE

    Roysden, Nathaniel

    2016-01-01

    Mental health problems are an independent predictor of increased healthcare utilization. We created random forest classifiers for predicting two outcomes following a patient’s first behavioral health encounter: decreased utilization by any amount (AUROC 0.74) and ultra-high absolute utilization (AUROC 0.88). These models may be used for clinical decision support by referring providers, to automatically detect patients who may benefit from referral, for cost management, or for risk/protection ...

  16. Thioredoxin-linked redox control of metabolism in Methanocaldococcus jannaschii, an evolutionarily deeply-rooted hyperthermophilic methanogenic archaeon

    Science.gov (United States)

    Thioredoxin (Trx), a small redox protein, controls multiple processes in eukaryotes and bacteria by changing the thiol redox status of selected proteins. We have investigated this aspect in methanarchaea. These ancient methanogens produce methane almost exclusively from H2 plus CO2 carried approxima...

  17. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.

    Science.gov (United States)

    Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong

    2017-11-15

    This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Long-Term Reliability of a Hard-Switched Boost Power Processing Unit Utilizing SiC Power MOSFETs

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Iannello, Christopher J.; Del Castillo, Linda Y.; Fitzpatrick, Fred D.; Mojarradi, Mohammad M.; hide

    2016-01-01

    Silicon carbide (SiC) power devices have demonstrated many performance advantages over their silicon (Si) counterparts. As the inherent material limitations of Si devices are being swiftly realized, wide-band-gap (WBG) materials such as SiC have become increasingly attractive for high power applications. In particular, SiC power metal oxide semiconductor field effect transistors' (MOSFETs) high breakdown field tolerance, superior thermal conductivity and low-resistivity drift regions make these devices an excellent candidate for power dense, low loss, high frequency switching applications in extreme environment conditions. In this paper, a novel power processing unit (PPU) architecture is proposed utilizing commercially available 4H-SiC power MOSFETs from CREE Inc. A multiphase straight boost converter topology is implemented to supply up to 10 kilowatts full-scale. High Temperature Gate Bias (HTGB) and High Temperature Reverse Bias (HTRB) characterization is performed to evaluate the long-term reliability of both the gate oxide and the body diode of the SiC components. Finally, susceptibility of the CREE SiC MOSFETs to damaging effects from heavy-ion radiation representative of the on-orbit galactic cosmic ray environment are explored. The results provide the baseline performance metrics of operation as well as demonstrate the feasibility of a hard-switched PPU in harsh environments.

  19. Improvements in anatomy knowledge when utilizing a novel cyclical "Observe-Reflect-Draw-Edit-Repeat" learning process.

    Science.gov (United States)

    Backhouse, Mark; Fitzpatrick, Michael; Hutchinson, Joseph; Thandi, Charankumal S; Keenan, Iain D

    2017-01-01

    Innovative educational strategies can provide variety and enhance student learning while addressing complex logistical and financial issues facing modern anatomy education. Observe-Reflect-Draw-Edit-Repeat (ORDER), a novel cyclical artistic process, has been designed based on cognitivist and constructivist learning theories, and on processes of critical observation, reflection and drawing in anatomy learning. ORDER was initially investigated in the context of a compulsory first year surface anatomy practical (ORDER-SAP) at a United Kingdom medical school in which a cross-over trial with pre-post anatomy knowledge testing was utilized and student perceptions were identified. Despite positive perceptions of ORDER-SAP, medical student (n = 154) pre-post knowledge test scores were significantly greater (P learning methods (3.26, SD = ±2.25) than with ORDER-SAP (2.17, ±2.30). Based on these findings, ORDER was modified and evaluated in the context of an optional self-directed gross anatomy online interactive tutorial (ORDER-IT) for participating first year medical students (n = 55). Student performance was significantly greater (P  0.05) to those students without these characteristics. These findings will be of value to anatomy instructors seeking to engage students from diverse learning backgrounds in a research-led, innovative, time and cost-effective learning method, in the context of contrasting learning environments. Anat Sci Educ 10: 7-22. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  20. Online monitoring of Mezcal fermentation based on redox potential measurements.

    Science.gov (United States)

    Escalante-Minakata, P; Ibarra-Junquera, V; Rosu, H C; De León-Rodríguez, A; González-García, R

    2009-01-01

    We describe an algorithm for the continuous monitoring of the biomass and ethanol concentrations as well as the growth rate in the Mezcal fermentation process. The algorithm performs its task having available only the online measurements of the redox potential. The procedure combines an artificial neural network (ANN) that relates the redox potential to the ethanol and biomass concentrations with a nonlinear observer-based algorithm that uses the ANN biomass estimations to infer the growth rate of this fermentation process. The results show that the redox potential is a valuable indicator of the metabolic activity of the microorganisms during Mezcal fermentation. In addition, the estimated growth rate can be considered as a direct evidence of the presence of mixed culture growth in the process. Usually, mixtures of microorganisms could be intuitively clear in this kind of processes; however, the total biomass data do not provide definite evidence by themselves. In this paper, the detailed design of the software sensor as well as its experimental application is presented at the laboratory level.

  1. Hourly and daily variation of sediment redox potential in tidal wetland sediments

    Science.gov (United States)

    Catallo, W. James

    1999-01-01

    Variation of electrochemical oxidation-reduction (redox) potential was examined in surface salt march sediments under conditions of flooding and tidal simulation in mesocosms and field sites. Time series were generated of redox potential measured in sediment profiles at 2-10 cm depth using combination Pt-Ag/AgCl (ORP) electrodes. Redox potential data were acquired at rapid rates (1-55 samples/h) over extended periods (3-104 days) along with similar times series of temperature (water, air, soil) and pH. It was found that redox potential vaired as a result of water level changes and was unrelated to diurnal changes in temperature or pH, the latter of which changed by 370 mV redox potential decrease in under 48 hours). Attenuatoin of microbial activity by [gamma] y-radiation and toxic chemicals elimintated this response. In tidal salt marsh mesocosms where the sediment-plant assemblages were exposed to a simulated diurnal tide, redox potenial oscillations of 40-300 mV amplitude were recoded that has the same periodicity as the flood-drain cycle. Periodic redoc potential time series were observed repeatedly in sediments receiving tidal pulsing but not in those sediments exposed to static hydrological conditions. Data collected over 12 days from a coastal marsh site experiencing diurnal tides showed similar fluctuations in redox potential. Data from the experimentents indicated that (a) redox potential can be a dynamic, nonlinear variable in coastal and estuarine wetland sediments over hourly and daily scales, and the designs of biogeochemical experiments should reflect this, (b) redox potential can change rapidly and signigicantly in coastal wetland sediments in response of flooding and draining, (c) microbial community processes are primarily determinants of the time course of redox potential in wetland sediments, and elimination of inhibition of microbial activity (e.g. by pollutants) can significantly alter that behavior, and (d) fast redox potential dynamics appear

  2. The Airborne Process{sup TM} : advancement in multi-pollutant emissions control technology by product utilization and the commercialization process

    Energy Technology Data Exchange (ETDEWEB)

    Mortson, M. [Airborne Clean Energy LLC, Terrace Park, OH (United States)

    2006-07-01

    This paper described research and development programs conducted to develop a pollution abatement technology called the Airborne process. The Airborne process is comprised of 3 stages: (1) sodium flue gas purification; (2) sodium bicarbonate regeneration; and (3) a patented granulation process in which ammonia byproducts are transformed into fertilizer. A research program conducted by CANMET developed a new technique to remove heavy metals from sodium sulfate scrubbing solutions, and tested the scrubbing of mixed flue gas in a bench-scale reaction chamber. Pilot tests were conducted to scrub the flue gas in a 0.3 MW coal-fired combustor. The removal of heavy metals and particulates prior to fertilizer production resulted in fertilizer purity that exceeds all global standards. A total of 11 combustion trials were conducted with 11 different types of coal. Results of vertical combustor tests showed that both sulphur oxides (SO{sub x}) and nitrogen oxides (NO{sub x}) decreased rapidly after injection started. The scrubber was effective in removing oxidized states of NO as well as 75 per cent of mercury (Hg) capture. The technology was adopted by the Kentucky Utilities Generating Station 6 MW regeneration plant, which developed an automated operation of a scaled down version of the CANMET system. Sulphur dioxide (SO{sub 2}) and sulfite (SO{sub 3}) reduction at the plant was almost 100 per cent. NO{sub x} reduction to date was approximately 92 per cent, while Hg reduction was 70 per cent. An advanced mercury and NO{sub x} program was developed to examine the chemical effects of oxidants as well as to examine methods of total mercury and NO{sub x} removal. A simplified process schematic of the system was provided. The 3 proven technologies were then integrated to form the Airborne system. It was concluded that full-scale systems are now in operation in power plants across North America. A case study of the Airborne process used at the Mustang generating station in New

  3. The ABA-INSENSITIVE-4 (ABI4) transcription factor links redox, hormone and sugar signaling pathways.

    Science.gov (United States)

    Foyer, Christine H; Kerchev, Pavel I; Hancock, Robert D

    2012-02-01

    The cellular reduction-oxidation (redox) hub processes information from metabolism and the environment and so regulates plant growth and defense through integration with the hormone signaling network. One key pathway of redox control involves interactions with ABSCISIC ACID (ABA). Accumulating evidence suggests that the ABA-INSENSITIVE-4 (ABI4) transcription factor plays a key role in transmitting information concerning the abundance of ascorbate and hence the ability of cells to buffer oxidative challenges. ABI4 is required for the ascorbate-dependent control of growth, a process that involves enhancement of salicylic acid (SA) signaling and inhibition of jasmonic acid (JA) signaling pathways. Low redox buffering capacity reinforces SA- JA- interactions through the mediation of ABA and ABI4 to fine-tune plant growth and defense in relation to metabolic cues and environmental challenges. Moreover, ABI4-mediated pathways of sugar sensitivity are also responsive to the abundance of ascorbate, providing evidence of overlap between redox and sugar signaling pathways.

  4. Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; Gogotsi, Y.

    2015-01-01

    This study reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Furthermore, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.

  5. Redox control of electric melters with complex feed compositions. Part I: analytical methods and models

    International Nuclear Information System (INIS)

    Bickford, D.F.; Diemer, R.B. Jr.

    1985-01-01

    The redox state of glass from electric melters with complex feed compositions is determined by balance between gases above the melt, and transition metals and organic compounds in the feed. Part I discusses experimental and computational methods of relating flowrates and other melter operating conditions to the redox state of glass, and composition of the melter offgas. Computerized thermodynamic computational methods are useful in predicting the sequence and products of redox reactions and in assessing individual process variations. Melter redox state can be predicted by combining monitoring of melter operating conditions, redox measurement of fused melter feed samples, and periodic redox measurement of product. Mossbauer spectroscopy, and other methods which measure Fe(II)/Fe(III) in glass, can be used to measure melter redox state. Part II develops preliminary operating limits for the vitrification of High-Level Radioactive Waste. Limits on reducing potential to preclude the accumulation of combustible gases, accumulation of sulfides and selenides, and degradation of melter components are the most critical. Problems associated with excessively oxidizing conditions, such as glass foaming and potential ruthenium volatility, are controlled when sufficient formic acid is added to adjust melter feed rheology

  6. Redox regulation of the Calvin-Benson cycle: something old, something new

    Directory of Open Access Journals (Sweden)

    Laure eMichelet

    2013-11-01

    Full Text Available Reversible redox post-translational modifications such as oxido-reduction of disulfide bonds, S-nitrosylation and S-glutathionylation, play a prominent role in the regulation of cell metabolism and signaling in all organisms. These modifications are mainly controlled by members of the thioredoxin and glutaredoxin families. Early studies in photosynthetic organisms have identified the Calvin-Benson cycle, the photosynthetic pathway responsible for carbon assimilation, as a redox regulated process. Indeed, 4 out of 11 enzymes of the cycle were shown to have a low activity in the dark and to be activated in the light through thioredoxin-dependent reduction of regulatory disulfide bonds. The underlying molecular mechanisms were extensively studied at the biochemical and structural level. Unexpectedly, recent biochemical and proteomic studies have suggested that all enzymes of the cycle and several associated regulatory proteins may undergo redox regulation through multiple redox post-translational modifications including glutathionylation and nitrosylation. The aim of this review is to detail the well-established mechanisms of redox regulation of Calvin-Benson cycle enzymes as well as the most recent reports indicating that this pathway is tightly controlled by multiple interconnected redox post-translational modifications. This redox control is likely allowing fine tuning of the Calvin-Benson cycle required for adaptation to varying environmental conditions, especially during responses to biotic and abiotic stresses.

  7. Direct determination of the redox status of cysteine residues in proteins in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Satoshi [Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503 (Japan); Tatenaka, Yuki; Ohuchi, Yuya [Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202 (Japan); Hisabori, Toru, E-mail: thisabor@res.titech.ac.jp [Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503 (Japan); Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan)

    2015-01-02

    Highlights: • A new DNA-maleimide which is cleaved by UV irradiation, DNA-PCMal, was developed. • DNA-PCMal can be used like DNA-Mal to analyze the redox state of cysteine residues. • It is useful for detecting the thiol redox status of a protein in vivo by Western blotting method. • Thus, DNA-PCMal can be a powerful tool for redox proteomics analysis. - Abstract: The redox states of proteins in cells are key factors in many cellular processes. To determine the redox status of cysteinyl thiol groups in proteins in vivo, we developed a new maleimide reagent, a photocleavable maleimide-conjugated single stranded DNA (DNA-PCMal). The DNA moiety of DNA-PCMal is easily removed by UV-irradiation, allowing DNA-PCMal to be used in Western blotting applications. Thereby the state of thiol groups in intracellular proteins can be directly evaluated. This new maleimide compound can provide information concerning redox proteins in vivo, which is important for our understanding of redox networks in the cell.

  8. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signalling and their interplay

    Directory of Open Access Journals (Sweden)

    James Nathan Cobley

    2015-06-01

    Full Text Available Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1 redox signalling and (2 macromolecule damage. Mechanistic knowledge of how exercise-induced redox signalling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signalling and DNA damage, using hydroxyl radical (·OH and hydrogen peroxide (H2O2 as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signalling and damage. Indeed, H2O2 can participate in two electron signalling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and ·OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signalling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signalling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.

  9. [Effect of the medium redox potential on the growth and metabolism of anaerobic bacteria].

    Science.gov (United States)

    Vasilian, A; Trchunian, A

    2008-01-01

    Based on the available literature data on a decrease in the redox potential of medium to low negative values and a decrease in pH during the growth of sugar-fermenting anaerobic bacteria, it was concluded that these processes cannot be described by the theory of redox potential. A theory was developed according to which the regulation of bacterial metabolism is accomplished through changes in the redox potential. The theory considers the redox potential as a factor determining the growth of anaerobic bacteria, which is regulated by oxidizers and reducers. The assumption is put forward that, under anaerobic conditions, bacteria are sensitive to changes in the redox potential and have a redox taxis. The effect of the redox potential on the transport of protons and other substances through membranes and the activity of membrane-bound enzymes, including the proton F1-F0-ATPase, whose mechanisms of action involve changes in the proton conductance of the membrane, the generation of proton-driving force, and dithiol-disulfide transitions in proteins was studied.

  10. Redox zonation for different groundwater flow paths during bank filtration: a case study at Liao River, Shenyang, northeastern China

    Science.gov (United States)

    Su, Xiaosi; Lu, Shuai; Yuan, Wenzhen; Woo, Nam Chil; Dai, Zhenxue; Dong, Weihong; Du, Shanghai; Zhang, Xinyue

    2018-03-01

    The spatial and temporal distribution of redox zones in an aquifer is important when designing groundwater supply systems. Redox zonation can have direct or indirect control of the biological and chemical reactions and mobility of pollutants. In this study, redox conditions are characterized by interpreting the hydrogeological conditions and water chemistry in groundwater during bank infiltration at a site in Shenyang, northeast China. The relevant redox processes and zonal differences in a shallow flow path and deeper flow path at the field scale were revealed by monitoring the redox parameters and chemistry of groundwater near the Liao River. The results show obvious horizontal and vertical components of redox zones during bank filtration. Variations in the horizontal extent of the redox zone were controlled by the different permeabilities of the riverbed sediments and aquifer with depth. Horizontally, the redox zone was situated within 17 m of the riverbank for the shallow flow path and within 200 m for the deep flow path. The vertical extent of the redox zone was affected by precipitation and seasonal river floods and extended to 10 m below the surface. During bank filtration, iron and manganese oxides or hydroxides were reductively dissolved, and arsenic that was adsorbed onto the medium surface or coprecipitated is released into the groundwater. This leads to increased arsenic content in groundwater, which poses a serious threat to water supply security.

  11. Redox Proteomics and Platelet Activation: Understanding the Redox Proteome to Improve Platelet Quality for Transfusion

    Science.gov (United States)

    Sonego, Giona; Abonnenc, Mélanie; Tissot, Jean-Daniel; Prudent, Michel; Lion, Niels

    2017-01-01

    Blood banks use pathogen inactivation (PI) technologies to increase the safety of platelet concentrates (PCs). The characteristics of PI-treated PCs slightly differ from those of untreated PCs, but the underlying reasons are not well understood. One possible cause is the generation of oxidative stress during the PI process. This is of great interest since reactive oxygen species (ROS) act as second messengers in platelet functions. Furthermore, there are links between protein oxidation and phosphorylation, another mechanism that is critical for cell regulation. Current research efforts focus on understanding the underlying mechanisms and identifying new target proteins. Proteomics technologies represent powerful tools for investigating signaling pathways involving ROS and post-translational modifications such as phosphorylation, while quantitative techniques enable the comparison of the platelet resting state versus the stimulated state. In particular, redox cysteine is a key player in platelet activation upon stimulation by different agonists. This review highlights the experiments that have provided insights into the roles of ROS in platelet function and the implications for platelet transfusion, and potentially in diseases such as inflammation and platelet hyperactivity. The review also describes the implication of redox mechanism in platelet storage considerations. PMID:28208668

  12. Ruthenium nanocatalysis on redox reactions.

    Science.gov (United States)

    Veerakumar, Pitchaimani; Ramdass, Arumugam; Rajagopal, Seenivasan

    2013-07-01

    Nanoparticles have generated intense interest over the past 20 years due to their high potential applications in different areas such as catalysis, sensors, nanoscale electronics, fuel and solar cells and optoelectronics. As the large fractions of metal atoms are exposed to the surface, the use of metal nanoparticles as nanocatalysts allows mild reaction conditions and high catalytic efficiency in a large number of chemical transformations. They have emerged as sustainable heterogeneous catalysts and catalyst supports alternative to conventional materials. This review focuses on the synthesis, characterization and catalytic role of ruthenium nanoparticles (RuNPs) on the redox reactions of heteroatom containing organic compounds with the green reagent H2O2, a field that has attracted immense interest among the chemical, materials and industrial communities. We intend to present a broad overview of Ru nanocatalysts for redox reactions with an emphasis on their performance, stability and reusability. The growth in the chemistry of organic sulfoxides and N-oxides during last decade was due to their importance as synthetic intermediates for the production of a wide range of chemically and biologically active molecules. Thus design of efficient methods for the synthesis of sulfoxides and N-oxides becomes important. This review concentrates on the catalysis of RuNPs on the H2O2 oxidation of organic sulfides to sulfoxides and amines to N-oxides. The deoxygenation reactions of sulfoxides to sulfides and reduction of nitro compounds to amines are fundamental reactions in both chemistry and biology. Here, we also highlight the catalysis of metal nanoparticles on the deoxygenation of sulfoxides and sulfones and reduction of nitro compounds with particular emphasis on the mechanistic aspects.

  13. Amino acid utilization and body composition of growing pigs fed processed soybean meal or rapeseed meal with or without amino acid supplementation.

    Science.gov (United States)

    Hulshof, T G; van der Poel, A F B; Hendriks, W H; Bikker, P

    2017-07-01

    Feed ingredients used in swine diets are often processed to improve nutritional value. However, (over-)processing may result in chemical reactions with amino acids (AAs) that decrease their ileal digestibility. This study aimed to determine effects of (over-)processing of soybean meal (SBM) and rapeseed meal (RSM) on post-absorptive utilization of ileal digestible AAs for retention and on body AA composition of growing pigs. Soybean meal and RSM were