WorldWideScience

Sample records for red-emitting electroluminescent devices

  1. Synthesis, photophysical, electrochemical and electroluminescence studies of red emitting phosphorescent Ir(III) heteroleptic complexes

    Indian Academy of Sciences (India)

    FARMAN ALI; PABITRA K NAYAK; N PERIASAMY; NEERAJ AGARWAL

    2017-09-01

    Five heteroleptic, cyclometalated (C∧N) Iridium(III) complexes of acetylacetone (acac) and 1-phenyl-isoquinoline (piq) derivatives, Ir(acac)(piq) ₂, Ir(acac)(2,4-difluoro-piq) ₂, Ir(acac)(4-trifluoromethylpiq) ₂, Ir(acac)(4-N,N-dimethyl-piq) ₂, Ir(acac)(4-acetyl-piq) ₂, were synthesized and characterized. The ((C∧N) ₂ Ir(acac) complexes in toluene showed phosphorescence (λmax = 598 nm to 658 nm) with quantum yields (0.1 to 0.32) and microsecond lifetimes (0.43 to 1.9 μs). The complexes were non-luminescent in thin films due to self-quenching but luminescent when lightly doped (5%) in a host organic material, 4,4' -Bis(Ncarbazolyl)- 1,1' -biphenyl (CBP). The HOMO levels determined using cyclic voltammetric oxidation potentials were in the range−5.48 to−5.80 eV. Electroluminescence properties and performance of the Ir complexes dopedin CBP (active layer) were studied in a multilayer (ITO/F4TCNQ/TPD/doped CBP/BCP/LiF/Al) organic light emitting device (OLED). The electroluminescense (EL) spectra of the device matched with the phosphorescent spectra of the Ir complexes. The turn-on voltage at ∼4.5 V, maximum brightness of 7600 cd/m² and current efficiency of ∼7.0 cd/A at a brightness of ∼100 cd/m² indicate that these are promising OLED materials.

  2. Hybrid electroluminescent devices

    Science.gov (United States)

    Shiang, Joseph John; Duggal, Anil Raj; Michael, Joseph Darryl

    2010-08-03

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  3. Fabrication of Green Electroluminescent Devices

    Institute of Scientific and Technical Information of China (English)

    高德青; 黄春辉; 奎热西; 刘凤琴

    2002-01-01

    A gadolinium ternary complex, tris(1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone) (2, 2′-dipyridyl) gadolinium Gd(PMIP)3(Bipy) was synthesized and used as a light emitting material in the organic electroluminescent devices. The devices exhibited the green electroluminescent (EL) emission peaking at 513 nm, originating from the Gd(PMIP)3(Bipy). By improving the configuration, the device with a structure of ITO/poly(N-vinylcarbazole) (PVK) (40 nm)/Gd(PMIP)3(Bipy) (40 nm)/tris (8-hydroxyquinoline) aluminum (ALQ) (40 nm)/Mg∶Ag(200 nm)/Ag(100 nm) showed higher performance and a maximum luminance of 340 cd*m-2 at 18 V.

  4. Red Emitting VCSEL

    Science.gov (United States)

    Jetter, Michael; Roßbach, Robert; Michler, Peter

    This chapter describes the progress in development of vertical-cavity surface-emitting lasers (VCSEL) emitting in the red spectral region around 650 nm for data transmission over polymer optical fibers (POF). First, growth issues of red VCSEL using two different material systems, namely AlGaAs and AlGaInP, are introduced. In particular, the optical and electrical state-of-the-art characteristics as low threshold currents ({≤} 1 mA) and high output powers (several mW) are presented with a special focus on emission wavelength. Also the thermal budget and heat removal in the devices are pointed out with regard to the geometry of the VCSEL. Small-signal modulation response in terms of maximum resonance frequency in dependance on temperature behavior are discussed. Applications of these devices in optical interconnects are described and digital data transmission at data rates up to 2.1 Gbit/s over step-index POF is reported. These properties make red emitting VCSEL perfectly suited for high-speed low power consuming light sources for optical data communication via POF. By introducing InP quantum dots as gain material in red emitting VCSEL nearly temperature independent record low threshold current densities of around 10 A/cm2 could be observed.

  5. Organic electroluminescent devices having improved light extraction

    Science.gov (United States)

    Shiang, Joseph John

    2007-07-17

    Organic electroluminescent devices having improved light extraction include a light-scattering medium disposed adjacent thereto. The light-scattering medium has a light scattering anisotropy parameter g in the range from greater than zero to about 0.99, and a scatterance parameter S less than about 0.22 or greater than about 3.

  6. Progress and Prospects in Stretchable Electroluminescent Devices

    Science.gov (United States)

    Wang, Jiangxin; Lee, Pooi See

    2017-03-01

    Stretchable electroluminescent (EL) devices are a new form of mechanically deformable electronics that are gaining increasing interests and believed to be one of the essential technologies for next generation lighting and display applications. Apart from the simple bending capability in flexible EL devices, the stretchable EL devices are required to withstand larger mechanical deformations and accommodate stretching strain beyond 10%. The excellent mechanical conformability in these devices enables their applications in rigorous mechanical conditions such as flexing, twisting, stretching, and folding.The stretchable EL devices can be conformably wrapped onto arbitrary curvilinear surface and respond seamlessly to the external or internal forces, leading to unprecedented applications that cannot be addressed with conventional technologies. For example, they are in demand for wide applications in biomedical-related devices or sensors and soft interactive display systems, including activating devices for photosensitive drug, imaging apparatus for internal tissues, electronic skins, interactive input and output devices, robotics, and volumetric displays. With increasingly stringent demand on the mechanical requirements, the fabrication of stretchable EL device is encountering many challenges that are difficult to resolve. In this review, recent progresses in the stretchable EL devices are covered with a focus on the approaches that are adopted to tackle materials and process challenges in stretchable EL devices and delineate the strategies in stretchable electronics. We first introduce the emission mechanisms that have been successfully demonstrated on stretchable EL devices. Limitations and advantages of the different mechanisms for stretchable EL devices are also discussed. Representative reports are reviewed based on different structural and material strategies. Unprecedented applications that have been enabled by the stretchable EL devices are reviewed. Finally, we

  7. Progress and Prospects in Stretchable Electroluminescent Devices

    Directory of Open Access Journals (Sweden)

    Wang Jiangxin

    2017-03-01

    Full Text Available Stretchable electroluminescent (EL devices are a new form of mechanically deformable electronics that are gaining increasing interests and believed to be one of the essential technologies for next generation lighting and display applications. Apart from the simple bending capability in flexible EL devices, the stretchable EL devices are required to withstand larger mechanical deformations and accommodate stretching strain beyond 10%. The excellent mechanical conformability in these devices enables their applications in rigorous mechanical conditions such as flexing, twisting, stretching, and folding.The stretchable EL devices can be conformably wrapped onto arbitrary curvilinear surface and respond seamlessly to the external or internal forces, leading to unprecedented applications that cannot be addressed with conventional technologies. For example, they are in demand for wide applications in biomedical-related devices or sensors and soft interactive display systems, including activating devices for photosensitive drug, imaging apparatus for internal tissues, electronic skins, interactive input and output devices, robotics, and volumetric displays. With increasingly stringent demand on the mechanical requirements, the fabrication of stretchable EL device is encountering many challenges that are difficult to resolve. In this review, recent progresses in the stretchable EL devices are covered with a focus on the approaches that are adopted to tackle materials and process challenges in stretchable EL devices and delineate the strategies in stretchable electronics. We first introduce the emission mechanisms that have been successfully demonstrated on stretchable EL devices. Limitations and advantages of the different mechanisms for stretchable EL devices are also discussed. Representative reports are reviewed based on different structural and material strategies. Unprecedented applications that have been enabled by the stretchable EL devices are

  8. Enhancement of the Color Rendering Index of White Organic Light-Emitting Devices Based on a Blue and Red Emitting Layer with a Y3Al5O12:Ce3+ Green Phosphor Color-Conversion Layer.

    Science.gov (United States)

    Jang, J S; Lee, K S; Lee, E J; Kwon, M S; Kim, T W

    2015-01-01

    White organic light-emitting devices (WOLEDs) were fabricated utilizing blue and red emitting organic light-emitting devices and a color conversion layer (CCL) made of yttrium aluminum garnet (YAG:Ce3+) phosphors embedded into polymethylmethacrylate. The good color balance for the color conversion of the WOLEDs was achieved utilizing 20-nm blue and 10-nm red OLEDs. The electroluminescence spectrum for the fabricated device showed a white color consisting of the blue color from the 4,4-bis(2,2-diphenylethen-1-yl)bipheny layer, the red color from the tris-(8-hydroxyquinolinato) aluminum: 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran layer, and the green color from the YAG:Ce3+ phosphor. The Commission Internationale de l'Eclairage coordinates of the WOLEDs slightly shifted from (0.25, 0.23) of the blue and red emission OLEDs without phosphors to (0.34, 0.35) of the OLEDs with green phosphors, indicative of the pure white color. WOLEDs with a CCL exhibited three wavelength white emissions with a color rendering index of 86.

  9. Electroluminescence

    CERN Document Server

    Henisch, H K

    1962-01-01

    Electroluminescence deals with the multiplicity of forms related to electroluminescence phenomena. The book reviews some basic observations of electroluminescence, the Gudden-Pohl and Dechene effects, the electroluminescence phenomena in zinc sulfide phosphors, in silicon carbide, and in compounds composed of elements in groups III and V of the Periodic Table (such as gallium phosphide). The text also explains polarization of free charge carriers, the outline of junction breakdown theory, carrier recombination, and phosphor suspensions. The book describes the growth of zinc sulfide crystals (f

  10. A multilayer organic electroluminescent device using an organic dye salt

    Science.gov (United States)

    Feng, Xueyuan; Gu, Yongdi; Zhang, Jiayu; Cui, Yiping

    2005-01-01

    Organic electroluminescent devices have received considerable attention due to their application in flat-panel displays. To achieve full-color displays, it is necessary to obtain organic layers emitting red, green, and blue light, but it is still a challenge to obtain efficient and stable organic layer emitting red light so far. Recently, we found that an organic salt, trans-4-[p-[N-ethyl-N-(hydroxyethyl)amino]styryl]-N-methylphridinium tetraphenylborate (ASPT), exhibits efficient red-light emission. In this paper, we report a multilayer electrolumicescent device incorporating a hole-transport layer, an ASPT layer, and an electron-transport layer. The dependence of the carrier transport and the luminescence on the device structure is investigated in detail. Compared to the monolayer device, the balance between hole and electron injections is significantly improved for the multilayer device, and thus the electroluminescent efficiency and intensity are enhanced.

  11. A New Kind of Blue Hybrid Electroluminescent Device.

    Science.gov (United States)

    Wang, Junling; Li, Zhuan; Liu, Chunmei

    2016-04-01

    Bright blue Electroluminescence come from a ITO/BBOT doped silica (6 x 10(-3) M) made by a sol-gel method/Al driven by AC with 500 Hz at different voltages and Gaussian analysis under 55 V showed that blue emission coincidenced with typical triple emission from BBOT. This kind of device take advantage of organics (BBOT) and inorganics (silica). Electroluminescence from a single-layered sandwiched device consisting of blue fluorescent dye 2,5-bis (5-tert-butyl-2-benzoxazolyl) thiophene (BBOT) doped silica made by sol-gel method was investigated. A number of concentrations of hybrid devices were prepared and the maxium concentration was 6 x 10(-3) M. Blue electroluminescent (EL) always occurred above a threshold field 8.57 x 10(5) V/cm (30 V) at alternating voltage at 500 HZ. The luminance of the devices increased with the concentration of doped BBOT, but electroluminescence characteristics were different from a single molecule's photoluminescence properties of triple peaks. When analyzing in detail direct-current electroluminescence devices of pure BBOT, a single peak centered at 2.82 eV appeared with the driven voltage increase, which is similar to the hybrid devices. Comparing Gaussian decomposition date between two kinds of devices, the triple peak characteristic of BBOT was consistent. It is inferred that BBOT contributed EL of the hybrid devices mainly and silica may account for a very small part. Meanwhile the thermal stability of matrix silica was measured by Thermal Gravity-Mass Spectroscopy (TG-MS). There is 12 percent weight loss from room temperature to 1000 °C and silica has about 95% transmittance. So the matric silica played an important role in thermal stability and optical stability for BBOT. In addition, this kind of blue electroluminescence device can take advantages of organic materials BBOT and inorganic materials silica. This is a promising way to enrich EL devices, especially enriching inorganic EL color at a low cost.

  12. Topographic analysis of silicon nanoparticles-based electroluminescent devices

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Sanchez, A., E-mail: amorales@inaoep.mx [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico); Barreto, J.; Dominguez, C. [Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Barcelona (Spain); Aceves, M.; Leyva, K.M. [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico); Luna-Lopez, J.A.; Carrillo, J. [CIDS-BUAP, Apdo. 1651, Puebla 72000 (Mexico); Pedraza, J. [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico)

    2010-10-25

    Electroluminescent properties of silicon nanoparticles embedded in MOS devices have been studied. Silicon rich oxide (SRO) films with 4 at.% of silicon excess were used as active layers. Intense and stable light emission is observed with the naked eye as shining spots at the surface of devices. AFM measurements on these devices exhibit a remarkably granular surface where the EL spots are observed. The EL measurements show a broad visible spectrum with various peaks between 420 and 870 nm. These EL spots are related with charge injection through conductive paths created by adjacent Si-nps within the SRO.

  13. Electroluminescent device having improved light output

    Energy Technology Data Exchange (ETDEWEB)

    Tyan; Yuan-Sheng (Webster, NY); Preuss, Donald R. (Rochester, NY); Farruggia, Giuseppe (Webster, NY); Kesel, Raymond A. (Avon, NY); Cushman, Thomas R. (Rochester, NY)

    2011-03-22

    An OLED device including a transparent substrate having a first surface and a second surface, a transparent electrode layer disposed over the first surface of the substrate, a short reduction layer disposed over the transparent electrode layer, an organic light-emitting element disposed over the short reduction layer and including at least one light-emitting layer and a charge injection layer disposed over the light emitting layer, a reflective electrode layer disposed over the charge injection layer and a light extraction enhancement structure disposed over the first or second surface of the substrate; wherein the short reduction layer is a transparent film having a through-thickness resistivity of 10.sup.-9 to 10.sup.2 ohm-cm.sup.2; wherein the reflective electrode layer includes Ag or Ag alloy containing more than 80% of Ag; and the total device size is larger than 10 times the substrate thickness.

  14. High Contrast Electroluminescent Numeric Readout Device.

    Science.gov (United States)

    1980-08-01

    approach was available only in separate chips one having npn and the other pnp devices. The first phase of the DMOS transistor development should be...proposed by the vendor. Further samples also failed to meet requirements and, therefore, a discrete transistor driver array was used in prototype...completed by September, high-voltage transistor arrays will be available by December, 1979. 3.2.1 Test Chip Layout Figure 5 shows the layout of the test

  15. Solid state carbon nanotube device for controllable trion electroluminescence emission

    Science.gov (United States)

    Liang, Shuang; Ma, Ze; Wei, Nan; Liu, Huaping; Wang, Sheng; Peng, Lian-Mao

    2016-03-01

    Semiconducting carbon nanotubes (CNTs) have a direct chirality-dependent bandgap and reduced dimensionality-related quantum confinement effects, which are closely related to the performance of optoelectronic devices. Here, taking advantage of the large energy separations between neutral singlet excitons and charged excitons, i.e. trions in CNTs, we have achieved for the first time all trion electroluminescence (EL) emission from chirality-sorted (8,3) and (8,4) CNT-based solid state devices. We showed that strong trion emission can be obtained as a result of localized impact excitation and electrically injected holes, with an estimated efficiency of ~5 × 10-4 photons per injected hole. The importance of contact-controlled carrier injection (including symmetric and asymmetric contact configurations) and EL spectral stability for gradually increasing bias were also investigated. The realization of electrically induced pure trion emission opens up a new opportunity for CNT film-based optoelectronic devices, providing a new degree of freedom in controlling the devices to extend potential applications in spin or magnetic optoelectronics fields.Semiconducting carbon nanotubes (CNTs) have a direct chirality-dependent bandgap and reduced dimensionality-related quantum confinement effects, which are closely related to the performance of optoelectronic devices. Here, taking advantage of the large energy separations between neutral singlet excitons and charged excitons, i.e. trions in CNTs, we have achieved for the first time all trion electroluminescence (EL) emission from chirality-sorted (8,3) and (8,4) CNT-based solid state devices. We showed that strong trion emission can be obtained as a result of localized impact excitation and electrically injected holes, with an estimated efficiency of ~5 × 10-4 photons per injected hole. The importance of contact-controlled carrier injection (including symmetric and asymmetric contact configurations) and EL spectral stability for

  16. A New Conducting Polymer Electrode for Organic Electroluminescence Devices

    Institute of Scientific and Technical Information of China (English)

    QU Shu; PENG Jing-Cui

    2008-01-01

    @@ Conducting polymer polydimethylsiloxane (PDMS) is studied for the high performance electrode of organic electroluminescence devices. A method to prepare the electrode consisting of a SiC thin film and PDMS is investigated. By using ultra thin SiC films with different thicknesses, the organic electroluminescenee devices are obtained in an ultra vacuum system with the model device PDMS/SiC/PPV/Alq3, where PPV is poly para-phenylene vinylene and Alq3 is tris(8-hydroxyquinoline) aluminium. The capacitance-voltage (C-V), capacitance-frequency (C-F), current-voltage (I- V), radiation intensity-voltage (R- V) and luminance efficiency-voltage (E-V) measurements are systematically studied to investigate the conductivity, Fermi align-ment and devices properties in organic semiconductors. Scanning Kelvin probe measurement shows that the work function of PDMS/SiC anode with a 2.5-nm SiC over layer can be increased by as much as 0.28eV, compared to the conventional ITO anode. The result is attributed to the charge transfer effect and ohmic contacts at the interface.

  17. Solid state carbon nanotube device for controllable trion electroluminescence emission.

    Science.gov (United States)

    Liang, Shuang; Ma, Ze; Wei, Nan; Liu, Huaping; Wang, Sheng; Peng, Lian-Mao

    2016-03-28

    Semiconducting carbon nanotubes (CNTs) have a direct chirality-dependent bandgap and reduced dimensionality-related quantum confinement effects, which are closely related to the performance of optoelectronic devices. Here, taking advantage of the large energy separations between neutral singlet excitons and charged excitons, i.e. trions in CNTs, we have achieved for the first time all trion electroluminescence (EL) emission from chirality-sorted (8,3) and (8,4) CNT-based solid state devices. We showed that strong trion emission can be obtained as a result of localized impact excitation and electrically injected holes, with an estimated efficiency of ∼5 × 10(-4) photons per injected hole. The importance of contact-controlled carrier injection (including symmetric and asymmetric contact configurations) and EL spectral stability for gradually increasing bias were also investigated. The realization of electrically induced pure trion emission opens up a new opportunity for CNT film-based optoelectronic devices, providing a new degree of freedom in controlling the devices to extend potential applications in spin or magnetic optoelectronics fields.

  18. Hybrid electroluminescent device based on MEH-PPV and ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Hewidy, Dina; Gadallah, A.-S.; Fattah, G. Abdel

    2017-02-15

    Hybrid organic/inorganic electroluminescent device based on the structure of glass/ITO/PEDOT:PSS/MEH-PPV/ZnO/ZnO submicrorods/Al has been manufactured. Spin coating has been used to deposit both PEDOT:PSS and MEH-PPV. Two-step process has been used to synthesis ZnO submicrorods, namely, spin coating and chemical bath deposition. Changing the dimensions of the ZnO submicrorods in this layer structure has been investigated to improve the performance of the organic/inorganic electroluminescence device. Such layer structure provides electroluminescence with narrow emission bands due to a high gain with this structure. X-ray diffraction patterns and scanning electron microscope images show that ZnO submicrorods have hexagon structure. Current-voltage curve for the structure has been reported. Electroluminescence curves (electroluminescence intensity versus wavelength) at different bias voltages have been presented and these results show narrowing in full width at half maximum in the spectra at high current density compared to photoluminescence excitation. The narrowing in the spectrum has been explained. - Highlights: • Manufacturing of MEH-PPV and ZnO electroluminescent device has been reported. • Spin coating and chemical bath deposition have been used for preparation of ZnO. • SEM images and X-ray diffraction of ZnO have been presented. • Current-voltage curves and electroluminescent measurements have been reported.

  19. Synthesis and Opto-electronic Properties of a Red-Emitting Heteroleptic Platinum Complex Using Pyrazol-based Diketone Derivative as Ancillary Ligand%Synthesis and Opto-electronic Properties of a Red-Emitting Heteroleptic Platinum Complex Using Pyrazol-based Diketone Derivative as Ancillary Ligand

    Institute of Scientific and Technical Information of China (English)

    邓继勇; 王亚飞; 李小双; 倪美君; 刘明; 刘煜; 雷钢铁; 朱美香; 朱卫国

    2011-01-01

    A red-emitting heteroleptic cyclometalated platinum(II) complex containing an ancillary ligand of pyra- zol-based diketone derivative was synthesized. Its optophysical and electroluminescent properties were studied. Compared to the reported (piq)Pt(acac) complex, this platinum(II) complex exhibited a blue-shifted UV absorption band at 300--450 nm, a low LUMO energy level and improved electroluminescent property. Using this platinum(II) complex as a single doping emitter and a blend of ploy(9,9-dioctylfluorene) and 2-tert-butylphenyl-5-phenyl- 1,3,4-oxadiazole as a host matrix, the fabricated polymer light-emitting devices displayed saturated red emission with a peak at 648 um and a shoulder at 601 nm. Furthermore, the emission quenching of the platinum(II) complex was significantly suppressed in these devices at high current density due to an introduction of the non-planar pyra- zol group into the ancillary ligand.

  20. Synthesis and characterization of thin film electroluminescent devices all-prepared by ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, E.B. [Universidad Autónoma de la Ciudad de México, Calle Prolongación San Isidro Núm. 151, Col. San Lorenzo Tezonco, Iztapalapa 09790, D. F., México (Mexico); Bizarro, M. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán 04510, Distrito Federal, México (Mexico); Alonso, J.C., E-mail: alonso@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán 04510, Distrito Federal, México (Mexico)

    2013-12-02

    Alternating current thin film electroluminescent devices have been fabricated using aluminum-doped zinc oxide (ZnO:Al) as transparent conducting layer, aluminum oxide (Al{sub 2}O{sub 3}) as insulating layers, and manganese-doped zinc sulfide (ZnS:Mn) as electroluminescent layer. All these films were deposited by the ultrasonic spray pyrolysis technique at the same temperature (450°) on glass substrates, forming a standard MISIM (metal–insulator–semiconductor–insulator–metal) configuration. The electroluminescence of MISIM devices with a total thickness of ∼ 1330 nm was investigated by applying a sinusoidal voltage with a frequency of 10 kHz. The devices showed orange-emission spectra centered at approximately 570 nm, characteristic of {sup 4}T{sub 1} → {sup 6}A{sub 1} radiative transitions of Mn{sup 2+} ions in the ZnS host, with a sharp intensity increase upon increasing the root mean square voltage above a threshold of 25 V and a rapid saturation for voltages higher than 38 V. The electroluminescent emission of these MISIM structures can be observed with the naked eye under ambient illumination. - Highlights: • Thin film electroluminescent devices were fabricated by ultrasonic spray pyrolysis at 450 °C. • The electroluminescent devices were fabricated on glass substrates. • ZnO:Al was used as transparent conductive layer. • ZnS:Mn and Al{sub 2}O{sub 3} were used as phosphor and insulating layers, respectively. • The electroluminescent devices have a low threshold operation voltage.

  1. Preparation of CdSe nanocrystals in organic system and electroluminescence characteristics of the devices

    Institute of Scientific and Technical Information of China (English)

    TANG Ai-wei; TENG Feng; GAO Yin-hao; LI Dan; LIANG Chun-jun; WANG Yong-sheng

    2006-01-01

    CdSe nanocrystals were prepared by a colloidal chemical approach using CdO and Se powder as precursors in an organic system of TOPO/TOP,and a multilayered electroluminescence device was fabricated with CdSe as emitting layer.The results show that the photoluminescence spectra of the CdSe nanocrystals almost cover the whole visible region and the full width at half maximum (FWHM) is appropriately 200 nm.The electroluminescence spectrum of the multilayered device at different voltages was investigated.The electroluminescence intensity is enhanced with increasing operating voltage,and the CIE coordinates of the device change from (0.34,0.37) at 6 V to (0.44,0.46)at 20 V as the operating voltage increases,which indicates that the colors of the device could be tuned by the operating voltage.

  2. Energy and Charge Transfer from Guest to Host in Doped Organic Electroluminescent Devices

    Institute of Scientific and Technical Information of China (English)

    李宏建; 彭景翠; 许雪梅; 瞿述; 罗小华; 赵楚军

    2002-01-01

    The luminescence properties of doped organic electroluminescent devices are explained by means off Hamiltonian model. The results show that there is a corresponding relation between the amount of transferred charge and the change of the energy originating from charge transfer, and the relation can be influenced by dopant concentration.As the amount of transferred charge increases, the total energy decreases and the luminescence intensity increases.Therefore, we deduce that the energy transfer from guest to host may be derived from the charge transfer. For a given organic electroluminescent device, the maximum value of the conductivity can be observed in a specific dopant concentration. The calculated results show that the greater the transferred charges, the higher the conductivities in doped organic electroluminescent devices. The results agree basically with experimental results.

  3. Organic electroluminescence

    CERN Document Server

    Kafafi, Zakya H

    2005-01-01

    Organic light-emitting diode(OLED) technology has achieved significant penetration in the commercial market for small, low-voltage and inexpensive displays. Present and future novel technologies based on OLEDs involve rigid and flexible flat panel displays, solid-state lighting, and lasers. Display applications may range from hand-held devices to large flat panel screens that can be rolled up or hung flat on a wall or a ceiling. Organic Electroluminescence gives an overview of the on-going research in the field of organic light-emitting materials and devices, covering the principles of electroluminescence in organic thin films, as well as recent trends, current applications, and future potential uses. The book begins by giving a background of organic electroluminescence in terms of history and basic principles. It offers details on the mechanism(s) of electroluminescence in thin organic films. It presentsin-depth discussions of the parameters that control the external electroluminescence quantum efficien...

  4. Hybrid electroluminescent device based on MEH-PPV and ZnO

    Science.gov (United States)

    Hewidy, Dina.; Gadallah, A.-S.; Fattah, G. Abdel

    2017-02-01

    Hybird organic/inorganic electroluminescent device based on the structure of glass/ITO/PEDOT:PSS/MEH-PPV/ZnO/ZnO submicrorods/Al has been manufactured. Spin coating has been used to deposit both PEDOT:PSS and MEH-PPV. Two-step process has been used to synthesis ZnO submicrorods, namely, spin coating and chemical bath deposition. Changing the dimensions of the ZnO submicrorods in this layer structure has been investigated to improve the performance of the organic/inorganic electroluminescence device. Such layer structure provides electroluminescence with narrow emission bands due to a high gain with this structure. X-ray diffraction patterns and scanning electron microscope images show that ZnO submicrorods have hexagon structure. Current-voltage curve for the structure has been reported. Electroluminescence curves (electroluminescence intensity versus wavelength) at different bias voltages have been presented and these results show narrowing in full width at half maximum in the spectra at high current density compared to photoluminescence excitation. The narrowing in the spectrum has been explained.

  5. Device Optimization and Transient Electroluminescence Studies of Organic light Emitting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Lijuan Zou

    2003-08-05

    Organic light emitting devices (OLEDs) are among the most promising for flat panel display technologies. They are light, bright, flexible, and cost effective. And while they are emerging in commercial product, their low power efficiency and long-term degradation are still challenging. The aim of this work was to investigate their device physics and improve their performance. Violet and blue OLEDs were studied. The devices were prepared by thermal vapor deposition in high vacuum. The combinatorial method was employed in device preparation. Both continuous wave and transient electroluminescence (EL) were studied. A new efficient and intense UV-violet light emitting device was developed. At a current density of 10 mA/cm{sup 2}, the optimal radiance R could reach 0.38 mW/cm{sup 2}, and the quantum efficiency was 1.25%. using the delayed EL technique, electron mobilities in DPVBi and CBP were determined to be {approx} 10{sup -5} cm{sup 2}/Vs and {approx} 10{sup -4} cm{sup 2}/Vs, respectively. Overshoot effects in the transient El of blue light emitting devices were also observed and studied. This effect was attributed to the charge accumulation at the organic/organic and organic/cathode interfaces.

  6. A Novel Buffer Layer of Alq3 in Organic Electroluminescent Devices

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Feng; DENG Zhen-Bo; LIANG Chun-Jun; LIN Peng; ZHANG Meng-Xin; XU Deng-Hui

    2004-01-01

    @@ Inserting the Alq3 layer in the ITO/NPB interface as the buffer layer can improve the organic electroluminescent devices. The current density efficiency and power efficiency of the device with the Alq3 buffer layer rises to 6.5 cd/A and 1.21 m/W at the current density of 120 mA/cm2, respectively. The improvement is mostly attributed to the balance of the hole and the electron injections.

  7. Device Optimization and Transient Electroluminescence Studies of Organic light Emitting Devices

    CERN Document Server

    Li Juan Zo

    2003-01-01

    Organic light emitting devices (OLEDs) are among the most promising for flat panel display technologies. They are light, bright, flexible, and cost effective. And while they are emerging in commercial product, their low power efficiency and long-term degradation are still challenging. The aim of this work was to investigate their device physics and improve their performance. Violet and blue OLEDs were studied. The devices were prepared by thermal vapor deposition in high vacuum. The combinatorial method was employed in device preparation. Both continuous wave and transient electroluminescence (EL) were studied. A new efficient and intense UV-violet light emitting device was developed. At a current density of 10 mA/cm sup 2 , the optimal radiance R could reach 0.38 mW/cm sup 2 , and the quantum efficiency was 1.25%. using the delayed EL technique, electron mobilities in DPVBi and CBP were determined to be approx 10 sup - sup 5 cm sup 2 /Vs and approx 10 sup - sup 4 cm sup 2 /Vs, respectively. Overshoot effects...

  8. Hybrid silicon nanocrystal-organic light-emitting devices for infrared electroluminescence.

    Science.gov (United States)

    Cheng, Kai-Yuan; Anthony, Rebecca; Kortshagen, Uwe R; Holmes, Russell J

    2010-04-14

    We demonstrate hybrid inorganic-organic light-emitting devices with peak electroluminescence (EL) at a wavelength of 868 nm using silicon nanocrystals (SiNCs). An external quantum efficiency of 0.6% is realized in the forward-emitted direction, with emission originating primarily from the SiNCs. Microscopic characterization indicates that complete coverage of the SiNCs on the conjugated polymer hole-transporting layer is required to observe efficient EL.

  9. Solution-Processable Silicon Phthalocyanines in Electroluminescent and Photovoltaic Devices.

    Science.gov (United States)

    Zysman-Colman, Eli; Ghosh, Sanjay S; Xie, Guohua; Varghese, Shinto; Chowdhury, Mithun; Sharma, Nidhi; Cordes, David B; Slawin, Alexandra M Z; Samuel, Ifor D W

    2016-04-13

    Phthalocyanines and their main group and metal complexes are important classes of organic semiconductor materials but are usually highly insoluble and so frequently need to be processed by vacuum deposition in devices. We report two highly soluble silicon phthalocyanine (SiPc) diester compounds and demonstrate their potential as organic semiconductor materials. Near-infrared (λ(EL) = 698-709 nm) solution-processed organic light-emitting diodes (OLEDs) were fabricated and exhibited external quantum efficiencies (EQEs) of up to 1.4%. Binary bulk heterojunction solar cells employing P3HT or PTB7 as the donor and the SiPc as the acceptor provided power conversion efficiencies (PCE) of up to 2.7% under simulated solar illumination. Our results show that soluble SiPcs are promising materials for organic electronics.

  10. Novel Alternating Current Electroluminescent Devices with an Asymmetric Structure Based on a Polymer Heterojunction

    Institute of Scientific and Technical Information of China (English)

    谭海曙; 姚建铨; 王昕; 王鹏; 谢洪泉

    2002-01-01

    Novel alternating current electroluminescent devices with an asymmetric structure are successfully fabricated by using a hole-type polymer, poly(2,5-bis (dodecyloxy)-phenylenevinylene) (PDDOPV), and an electron-type polymer, poly(phenyl quinoxaline) (PPQ). The performance of the polymer devices with heteto junctions under ac operation is insensitive to the thickness of the two polymer layers, compared to that under dc operation. This new advantage means easy and cheap production facility on a large scale in the near future. Different emission spectra are obtained when our ac devices are operated in an ac mode, forward or reverse bias. The emission spectrum at reverse bias includes two parts: one from PDDOPV and the other from PPQ.

  11. Light emitting devices based on Si nanoclusters: the integration with a photonic crystal and electroluminescence properties

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We present the properties and potentialities of light emitting devices based on amorphous Si nanoclusters. Amorphous nanostructures may constitute an interesting alternative to Si nanocrystals for the monolithic integration of optical and electrical functions in Si technology. In fact, they exhibit an intense room temperature electroluminescence (EL). The EL properties of these devices have been studied as a function of current and of temperature. Moreover, to improve the extraction efficiency of the light, we have integrated the emitting system with a 2D photonic crystal structure opportunely fabricated by using conventional optical lithography to reduce the total internal reflection of the emitted light. The extraction efficiency in such devices increases by a factor of 4 at a resonance wavelength.

  12. Visible and near-infrared electroluminescence from TiO2/p+-Si heterostructured device

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2014-04-01

    Full Text Available We report on visible and near-infrared (NIR electroluminescence (EL from the device based on the TiO2/p+-Si heterostructure, in which the TiO2 film is composed of anatase and rutile phases. As the device is applied with sufficiently high forward bias with the positive voltage connecting to p+-Si, the visible EL peaking at ∼600 nm along with the NIR EL centered at ∼810 nm occur simultaneously. It is proposed that the oxygen vacancies in the anatase TiO2 and Ti3+ defect states in the rutile TiO2 are the responsible centers for the visible and NIR EL, respectively.

  13. Emission of white light from 2-(2'-hydroxyphenyl) benzothiazole in polymer electroluminescent devices

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.M. [Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan (China)]. E-mail: f10914@ntut.edu.tw; Tzeng, Y.J. [Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan (China); Wu, S.Y. [Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan (China); Li, K.Y. [Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan (China); Hsueh, K.L. [Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan (China)

    2005-04-22

    Single-layer polymer devices that emit bright light from dye dispersed in the polymer matrix are fabricated. The active layer consists only of one polymer layer sandwiched between two electrodes-indium tin oxide and Mg:Ag. 2-(2-hydroxyphenyl) benzothiazole (HBT), a UV absorbent, is synthesized and exhibits bright blue-green fluorescence. Bright white emission is observed when the concentration of the dye in poly(N-vinylcarbazole) (PVK) polymer matrix is adjusted appropriately. The single-layered polymer blended electroluminescent (EL) device (ITO/polymer/Mg/Ag) has a relatively low driving voltage of 8 V. The EL spectrum includes three emission peaks at 420, 530 and 600 nm, representing deep blue, green and red light, respectively. The chromaticity coordinates, as specified by the Commission Internationale de l'Eclairage are (0.34, 0.36)

  14. Photoluminescence and Electroluminescence Studies on Tb-Doped Silicon Rich Oxide Materials and Devices

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Photoluminescence (PL) characteristics of Tb-doped silicon rich oxide (SRO) films prepared by DC-sputtering and post-annealing processes were studied. The silicon richness of the SRO film could be controlled by varying the sputtering power and oxygen concentration in the sputtering chamber. PL emission from the as-deposited sample was found to be composed of Tb3+ intra 4f transition-related emission and the silicon nano particle-related broad bandwidth emission. Thermal annealing could significantly improve the material properties as well as the PL signals. PL properties depended strongly upon the annealing scheme and silicon richness. Annealing at high temperatures (900~1050 ℃) enhanced Tb-related emission and suppressed the silicon nano particle-related emission. For samples with different silicon richness, annealing at 950 ℃ was found to produce higher PL signals than at other temperatures. It was attributed more to lifetime quenching than to concentration quenching. Electroluminescent (EL) devices with a capacitor structure were fabricated, the optimized process condition for the EL device was found to be different from that of PL emission. Among the annealing schemes that were used, wet oxidation was found to improve device performance the most, whereas, dry oxidation was found to improve material property the most. Wet oxidation allowed the breakdown electrical field to increase significantly and to reach above 10 mV·cm-1. The EL spectra showed a typical Tb3+ emission, agreeing well with the PL spectra. The I-V measurements indicated that for 100 nm thick film, the Fowler-Nordheim tunneling started at an electrical field of around 6 mV·cm-1 and the light emission became detectable at a current density of around 10-4 A·cm-2 and higher. Strong electroluminescence light emission was detected when the electrical field was close to 10 mV·cm-1.

  15. Microstructure and electroluminescent performance of chemical vapor deposited zinc sulfide doped with manganese films for integration in thin film electroluminescent devices

    Science.gov (United States)

    Topol, Anna Wanda

    Zinc sulfide (ZnS) doped with manganese (Mn), ZnS:Mn, is widely recognized as the brightest and most effective electroluminescent (EL) phosphor used in current thin film electroluminescent (TFEL) devices. ZnS acts as a host lattice for the luminescent activator, Mn, leading to a highly efficient yellow-orange EL emission, and resulting in a wide array of applications in monochrome, multi-color and full color displays. Although this wide band dap (3.7 eV) material can be prepared by several deposition techniques, the chemical vapor deposition (CVD) is the most promising for TFEL applications in terms of viable deposition rates, high thickness and composition uniformity, and excellent yield over large area panels. This study describes the development and optimization of a CVD ZnS:Mn process using diethylzinc [(C2H5)2Zn, DEZ], di-pi-cyclopentadienylmanganese [(C5H5)2Mn, CPMn], and hydrogen sulfide [H2S] as the chemical sources for, respectively, Zn, Mn, and S. The effects of key deposition parameters on resulting Film microstructure and performance are discussed, primarily in the context of identifying an optimized process window for best electroluminescence behavior. In particular, substrate temperature was observed to play a key role in the formation of high quality crystalline ZnS:Mn films leading to improved brightness and EL efficiency. Further investigations of the influence of temperature treatment on the structural characteristics and EL performance of the CVD ZnS:Mn film were carried out. In this study, the influence of post-deposition annealing both in-situ and ex-situ annealing processes, on chemical, structural, and electroluminescent characteristics of the phosphor layer are described. The material properties of the employed dielectric are among the key factors determining the performance, stability and reliability of the TFEL display and therefore, the choice of dielectric material for use in ACTFEL displays is crucial. In addition, the luminous

  16. Properties of ZnS:Cu,Cl Thick Film Electroluminescent Devices by Screen Printing Method

    Energy Technology Data Exchange (ETDEWEB)

    Rho, J. S.; Yoo, S. H.; Chang, H. J. [Dankook University, Chonan (Korea)

    2001-06-01

    The ZnS:Cu,Cl thick film electroluminescent devices with the stacking type(separated with phosphors and insulator layers) and the composite type (mixed with phosphor and insulator materials) emission layers were fabricated on ITO/glass substrates by the screen printing methods. The optical and electrical properties were investigated as functions of applied voltages and frequencies. In the stacking type, the luminance was about 58 cd/m{sup 2} at the applied voltage of 400Hz, 200V and increased to 420 cd/m{sup 2} with increasing the frequency to 30Hz. For the composite type devices, the threshold voltage was 45V and the maximum luminance was 670 cd/m{sup 2} at the driving condition of 200V, 30Hz. The value of luminance of the composite type device showed 1.5 times higher than that of stacking type device. The main emission peak was 512 nm of bluish-green color at 1 Hz frequency below and shifted to 452 nm in the driving frequency over 5Hz showing the blue emission color. There were no distinct differences of the main emission peaks and color coordinate for both samples. (author). 13 refs., 8 figs.

  17. Spray deposition of organic electroluminescent coatings for application in flexible light emitting devices

    Directory of Open Access Journals (Sweden)

    Mariya Aleksandrova

    2015-12-01

    Full Text Available Organic electroluminescent (EL films of tris(8-hydroxyquinolinatoaluminum (Alq3 mixed with polystyrene (PS binder were produced by spray deposition. The influence of the substrate temperature on the layer’s morphology and uniformity was investigated. The deposition conditions were optimized and simple flexible light-emitting devices consisting of indium-tin oxide/Alq3:PS/aluminum were fabricated on polyethylene terephthalate (PET foil to demonstrate the advantages of the sprayed organic coatings. Same structure was produced by thermal evaporation of Alq3 film as a reference. The influence of the deposition method on the film roughness and contact resistance at the electrode interfaces for both types of structures was estimated. The results were related to the devices’ efficiency. It was found that the samples with sprayed films turn on at 4 V, which is 2 V lower in comparison to the device with thermal evaporated Alq3. The current through the sprayed device is six times higher as well (17 mA vs. 2.8 mA at 6.5 V, which can be ascribed to the lower contact resistance at the EL film/electrode interfaces. This is due to the lower surface roughness of the pulverized layers.

  18. Porous Silicon and Indium Doped Zinc Oxide Junctions: Synthesis, Characterization, and Application to Electroluminescent Devices

    Directory of Open Access Journals (Sweden)

    F. Severiano

    2017-01-01

    Full Text Available We report the obtaining of electroluminescent devices (ELD from porous silicon (PS and indium doped zinc oxide (ZnO:In junctions. PS presented photoluminescence (PL in the visible region of the electromagnetic spectrum. ZnO:In thin film was obtained by dip coating technique. SEM images and IR measurements showed the incorporation of the ZnO:In in the PS structure. Once obtained, the device was optically and electrically characterized. The ELD showed emission in the visible (450–850 nm and infrared region (900–1200 nm where it was electrically polarized. The visible emission was detected as luminescent spots on the surface. Electrical characterization was carried out by current-voltage (I-V curves. The I-V curves showed rectifying behavior. It was related to the quenching of the EL with the process that takes place in the PS when it was immersed in the precursor solution of the ZnO:In.

  19. The dependences of electroluminescent characteristics of ZnS:Mn thin films upon their device parameters

    Science.gov (United States)

    Sasakura, Hiroshi; Kobayashi, Hiroshi; Tanaka, Shosaku; Mita, Juro; Tanaka, Toshihiko; Nakayama, Hirofumi

    1981-11-01

    The dependences of brightness, emission efficiency η, average electric field EA, conduction current JA, and emission lifetime τ upon the device parameters such as film thickness, substrate temperature during evaporation, and Mn concentration have been systematically investigated in ZnS:Mn thin-film electroluminescent devices. The value of η increases rapidly with film thicknesses below 3000 Å but EA decreases slowly. These results can be explained by the increase of the crystallinity of the ZnS:Mn films. The value of η increases with the Mn concentration and reaches its maximum at about 0.45 wt %. At above this Mn concentration, η and τ decrease rapidly, EA increases, and JA decreases slowly. These results may be attributed to a decrease of hot electron energy and/or an increase of the nonradiative transition probability of the excited Mn centers. The brightness-voltage (B-V) hysteresis characteristic is observed in this Mn concentration region. This memory effect is also discussed.

  20. Solution-processable deep red-emitting supramolecular phosphorescent polymer with novel iridium complex for organic light-emitting diodes

    Science.gov (United States)

    Liang, Aihui; Huang, Gui; Wang, Zhiping; Wu, Wenjin; Zhong, Yu; Zhao, Shan

    2016-09-01

    A novel bis(dibenzo-24-crown-8)-functionalized iridium complex with an emission peak at 665 nm was synthesized. Several deep red-emitting supramolecualr phosphorescent polymers (SPPs) as a class of solutionprocessable electroluminescent (EL) emitters were formed by utilizing the efficient non-bonding self-assembly between the resulting iridium complex and bis(dibenzylammonium)-tethered monomers. These SPPs show an intrinsic glass transition with a T g of ca. 90 °C. The photophysical and electroluminescent properties are strongly dependent on the hosts' structures of the supramolecular phosphorescent polymers. The polymer light-emitting diode based on SPP3 displayed a maximal external quantum efficiency (EQE) of 2.14% ph·el-1 and the Commission Internationale de L'Eclairage (CIE) coordinates of (0.70, 0.29).

  1. Photovoltaic and Electroluminescence Bifunctional Devices with Starburst Amine and Rare-Earth-Complexes

    Institute of Scientific and Technical Information of China (English)

    WEN Fu-Shan; LI Wen-Lian; WEI Han-Zhi; LIU Yun-Qi; KIM Jin-Hyeok

    2007-01-01

    We fabricate the organic photovoltaic (P V) devices, in which 4,4',4"-tris-(2-methylphenylphenylamino)triphenylamine (m-MTDATA) and rare earth (RE) (dibenzoylmethanato)3(bathohenanthroline) (RE(DBM)3bath) (RE = Nd or Pr) are used as electron donor and acceptor, and investigate their PV properties. The PV diode fabricated in the ptimum processing conditions shows the open-circuit voltage of 1.91 V, short-circuit current of 0.1mA/cm2, fill factor of 0.38, and the overall power conversion efficiency of 1.9% when it is irradiated under UV light (4mW/cm2). The photocurrent density exhibits an increase of 20% at least when a very thin LiF layer is inserted between the RE-complexes and the Al cathode. A strong electroluminescence from the interface is also observed and the maximum luminance of a yellow emission resulted from the exciplex is 580 cd/m2 at 17V bias.

  2. Organic electroluminescent materials and devices emitting in UV and NIR regions

    Science.gov (United States)

    Pushkarev, A. P.; Bochkarev, M. N.

    2016-12-01

    Literature data on organic materials capable of generating electroluminescence in the UV (200–400 nm) and near-IR (700–2000 nm) spectral ranges are summarized and systematized. Organic, organometallic and coordination compounds are considered. Comparative analysis of materials is performed, and the composition and operating characteristics of light-emitting diodes based on them and possible mechanisms of electroluminescence generation are discussed. The bibliography includes 173 references.

  3. Blue electroluminescence of ZnSe thin film in an organic-inorganic heterostructures device

    Energy Technology Data Exchange (ETDEWEB)

    Yu Wenge [Institute of Optoelectronics, Beijing Jiaotong University, Beijing 100044 (China) and Changchun Institute of Optics and Fine Mechanics and Physics, CAS, Changchun 130021 (China) and Shenyang Institute of Aeronautical Engineering, Shenyang 110034 (China)]. E-mail: yu_wenge@hotmail.com; Xu Zheng [Institute of Optoelectronics, Beijing Jiaotong University, Beijing 100044 (China); Teng, Feng [Institute of Optoelectronics, Beijing Jiaotong University, Beijing 100044 (China); Yang Shengyi [Institute of Optoelectronics, Beijing Jiaotong University, Beijing 100044 (China); Hou Yanbing [Institute of Optoelectronics, Beijing Jiaotong University, Beijing 100044 (China); Qian Lei [Institute of Optoelectronics, Beijing Jiaotong University, Beijing 100044 (China); Qu Chong [Institute of Optoelectronics, Beijing Jiaotong University, Beijing 100044 (China); Quan Sanyu [Institute of Optoelectronics, Beijing Jiaotong University, Beijing 100044 (China); Xu Xurong [Institute of Optoelectronics, Beijing Jiaotong University, Beijing 100044 (China); Changchun Institute of Optics and Fine Mechanics and Physics, CAS, Changchun 130021 (China)

    2005-05-02

    Blue light emission of ZnSe thin film from the ZnSe/poly-(N-vinyl-carbazole) (PVK) heterostructures was obtained. The threshold voltage is about 10 V and the brightness of 12 cd/m{sup 2} was obtained at 17 V. From the electroluminescence (EL), the photoluminescence (PL), the transient electroluminescence and the dependence of EL intensity on the applied voltage and current, we attribute the EL of ZnSe to carrier injection and recombination. This new phenomenon not only opens a new mechanism of II-IV compounds in low voltage injection EL but also provides a new way of obtaining blue emission.

  4. Organic Electroluminescent Device Based on TPP%基于TPP的有机电致发光器件

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A kind of pyrazoline derivative 1,3-bis(phenyl)-5-(2-phenanthrene)-2-pyrazoline(TPp) was synthesized in order to obtain stable film and applied to organic electroluminecsent diode as hole transporting material. Two devices with structures as indium-tin-oxide(ITO) TPP (50 nm)/tris-(8-hydroxyquinoline) aluminum(Alq3) (50 nm)/Al (150 nm) and ITO /TPP (50 nm)/lithium tera-(8-hydroxy-uinolinato)boron(LiBq4 (50 nm)/Alq3 (5 nm)/Al (150 nm) were fabricated, they showed good electroluminescent(EL) performance and TPP was proved to be a good hole transporting material.

  5. Organic Electroluminescent Device Based on TPP%基于TPP的有机电致发光器件

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A kind of pyrazoline derivative 1,3-bis(phenyl)-5-(2-phenanthrene)-2-pyrazoline(TPp) was synthesized in order to obtain stable film and applied to organic electroluminecsent diode as hole transporting material. Two devices with structures as indium-tin-oxide(ITO) TPP (50 nm)/tris-(8-hydroxyquinoline) aluminum(Alq3) (50 nm)/Al (150 nm) and ITO /TPP (50 nm)/lithium tera-(8-hydroxy-uinolinato)boron(LiBq4 (50 nm)/Alq3 (5 nm)/Al (150 nm) were fabricated, they showed good electroluminescent(EL) performance and TPP was proved to be a good hole transporting material.

  6. Thermo-optical properties of 1H[3,4-b] quinoline films used in electroluminescent devices

    Science.gov (United States)

    Jaglarz, Janusz; Kępińska, Mirosława; Sanetra, Jerzy

    2014-06-01

    Electroluminescence cells with H[3,4-b] quinoline layers are promising devices for a blue light emitting EL diode. This work measured the optical reflectance as a function of temperature in copolymers PAQ layers deposited on Si crystalline substrate. Using the extended Cauchy dispersion model of the film refractive index we determined the thermo-optical coefficients for quinoline layers in the temperature range of 76-333 K from combined ellipsometric and spectrofotometric studies. The obtained values of thermo-optical coefficients of thin PAQ film, were negative and ranged in 5-10 × 10-4 [1/K].

  7. Effect of Electric Field and Polarity on Light Emission in Metal-Insulator-Semiconductor Structure Thin-Film Electroluminescent Devices

    Science.gov (United States)

    Ohwaki, Jun-ichi; Kozawaguchi, Haruki; Tsujiyama, Bunjiro

    1983-01-01

    Changes in the emission intensities and spectra with applied electric fields in Metal-Insulator-Semiconductor (MIS) structure thin-film electroluminescent (TFEL) devices have been investigated using devices with stacked emitting layer structures, such as ITO/ZnS: Mn/ZnS: Tb/Sm2O3/Al. In MIS-TFEL devices, the emission distribution in the direction of the ZnS film thickness is nonhomogeneous. In particular, the emission intensity in the region near the ZnS-insulator interface increases with increasing applied voltage more than in the other region in the ZnS layer, when electrons exciting emission centers are accelerated from the insulator side. On the other hand, the emission is homogeneous at the opposite polarity. It is found that the emission color for stacked emitting layer MIS-TFEL devices can be modulated by changing the applied voltage.

  8. A New Distyrylarylene Derivative Used as Blue Light Emitter in Organic Electroluminescent Device

    Institute of Scientific and Technical Information of China (English)

    郑新友; 朱文清; 等

    2002-01-01

    A new blue electroluminescent material,distyrylarylene(DSA)derivative,4,4'-bis[2,2-(1-naphthyl,phenyl)vinyl]-1,1-biphenyl(NPVBi)is designed and synthesized.The DSA derivative shows better thermal stability because of its high glass transition temperature.A blue organic light emitting diode(OLED0with the structure ITO/TPD/NPVBi/Alq/LiF/Al is studied.The electroluminescent(EL0spectrum of the OLED exhibits that light emission originates from NPVBi with a peak at 460nm,its Commission Internationale de l'Eclairage(CIE)color coordinates are x=0.16,y=0.15,and showing independence of CIE color coordinates on current density.The new DSA derivative is expectable as a new candidate for blue light emitter in OLEDs.

  9. Electroluminescence from a diamond device with ion-beam-micromachined buried graphitic electrodes

    Science.gov (United States)

    Forneris, J.; Battiato, A.; Gatto Monticone, D.; Picollo, F.; Amato, G.; Boarino, L.; Brida, G.; Degiovanni, I. P.; Enrico, E.; Genovese, M.; Moreva, E.; Traina, P.; Verona, C.; Verona Rinati, G.; Olivero, P.

    2015-04-01

    Focused MeV ion microbeams are suitable tools for the direct writing of conductive graphitic channels buried in an insulating diamond bulk, as demonstrated in previous works with the fabrication of multi-electrode ionizing radiation detectors and cellular biosensors. In this work we investigate the suitability of the fabrication method for the electrical excitation of color centers in diamond. Differently from photoluminescence, electroluminescence requires an electrical current flowing through the diamond sub-gap states for the excitation of the color centers. With this purpose, buried graphitic electrodes with a spacing of 10 μm were fabricated in the bulk of a detector-grade CVD single-crystal diamond sample using a scanning 1.8 MeV He+ micro-beam. The current flowing in the gap region between the electrodes upon the application of a 450 V bias voltage was exploited as the excitation pump for the electroluminescence of different types of color centers localized in the above-mentioned gap. The bright light emission was spatially mapped using a confocal optical microscopy setup. The spectral analysis of electroluminescence revealed the emission from neutrally-charged nitrogen-vacancy centers (NV0, λZPL = 575 nm), as well as from cluster crystal dislocations (A-band, λ = 400-500 nm). Moreover, an electroluminescence signal with appealing spectral features (sharp emission at room temperature, low phonon sidebands) from He-related defects was detected (λZPL = 536.3 nm, λZPL = 560.5 nm); a low and broad peak around λ = 740 nm was also observed and tentatively ascribed to Si-V or GR1 centers. These results pose interesting future perspectives for the fabrication of electrically-stimulated single-photon emitters in diamond for applications in quantum optics and quantum cryptography.

  10. Electroluminescence from a diamond device with ion-beam-micromachined buried graphitic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Forneris, J., E-mail: jacopo.forneris@unito.it [Physics Department and NIS Interdepartmental Centre, University of Torino, Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. Torino, Torino (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Sez. Torino, Torino (Italy); Battiato, A.; Gatto Monticone, D. [Physics Department and NIS Interdepartmental Centre, University of Torino, Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. Torino, Torino (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Sez. Torino, Torino (Italy); Picollo, F. [Istituto Nazionale di Fisica Nucleare (INFN), Sez. Torino, Torino (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Sez. Torino, Torino (Italy); Physics Department and NIS Interdepartmental Centre, University of Torino, Torino (Italy); Amato, G.; Boarino, L.; Brida, G.; Degiovanni, I.P.; Enrico, E.; Genovese, M.; Moreva, E.; Traina, P. [Istituto Nazionale di Ricerca Metrologica (INRiM), Torino (Italy); Verona, C.; Verona Rinati, G. [Department of Industrial Engineering, University of Roma “Tor Vergata”, Roma (Italy); Olivero, P. [Physics Department and NIS Interdepartmental Centre, University of Torino, Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. Torino, Torino (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Sez. Torino, Torino (Italy)

    2015-04-01

    Focused MeV ion microbeams are suitable tools for the direct writing of conductive graphitic channels buried in an insulating diamond bulk, as demonstrated in previous works with the fabrication of multi-electrode ionizing radiation detectors and cellular biosensors. In this work we investigate the suitability of the fabrication method for the electrical excitation of color centers in diamond. Differently from photoluminescence, electroluminescence requires an electrical current flowing through the diamond sub-gap states for the excitation of the color centers. With this purpose, buried graphitic electrodes with a spacing of 10 μm were fabricated in the bulk of a detector-grade CVD single-crystal diamond sample using a scanning 1.8 MeV He{sup +} micro-beam. The current flowing in the gap region between the electrodes upon the application of a 450 V bias voltage was exploited as the excitation pump for the electroluminescence of different types of color centers localized in the above-mentioned gap. The bright light emission was spatially mapped using a confocal optical microscopy setup. The spectral analysis of electroluminescence revealed the emission from neutrally-charged nitrogen-vacancy centers (NV{sup 0}, λ{sub ZPL} = 575 nm), as well as from cluster crystal dislocations (A-band, λ = 400–500 nm). Moreover, an electroluminescence signal with appealing spectral features (sharp emission at room temperature, low phonon sidebands) from He-related defects was detected (λ{sub ZPL} = 536.3 nm, λ{sub ZPL} = 560.5 nm); a low and broad peak around λ = 740 nm was also observed and tentatively ascribed to Si-V or GR1 centers. These results pose interesting future perspectives for the fabrication of electrically-stimulated single-photon emitters in diamond for applications in quantum optics and quantum cryptography.

  11. Electroluminescent properties of three ternary europium complexes with different phenanthroline derivatives

    Institute of Scientific and Technical Information of China (English)

    BIAN; Zuqiang; GAO; Deqing; GUAN; Min; XIN; Hao; LI; Fuyou

    2004-01-01

    [1]Sun, P. P., Duan, J. P., Shih, H. T. et al., Europium complex as a highly efficient red emitter in electroluminescent devices, Appl.Phys. Lett., 2002, 81: 792-793.[2]Heil, H., Steiger, J., Schmechel, R. et al., Tri(dibenzolymethane)(monophenanthroline) europium(Ⅲ) based red emitting organic light emitting diodes, J. Appl. Phys., 2001, 90: 5357-5362.[3]Liang, C. L., Zhao, D., Hong, Z. R. et al., Improved performance of electroluminescent devices based on an europium complex,Appl. Phys. Lett., 2000, 76: 67-69.[4]Kido, J., Hayase, H., Honggawa, K. et al., Bright red light-emitting organic electroluminescent devices having a europium complex as an emitter, Appl. Phys. Lett., 1994, 65: 2124-2126.[5]Mitsuharu, N., Kazutaka, I., Masanao, E., Efficient red electroluminescence from new europium complex, Chem. Lett., 2001:320-321.[6]Kido, J., Nagai, K., Okamoto, Y., Organic electroluminescem devices using lanthanide complexes, J. Alloys. Compd., 1993, 192:30-33.[7]Wang, J., Wang, R., Yang, J. et al., First oxadiazole-functionalized terbium(Ⅲ) β-diketonate for organic electroluminescence, J. Am.Chem. Soc., 2001, 123: 6179-6180.[8]Capecchi, S., Renault, O., Moon, D. G., High-efficiency organic electroluminescent devices using an organoterbium emitter, Adv.Mater., 2000, 12: 1591-1594.[9]Huang, L., Wang, K. Z., Huang, C. H. et al., Synthetic and electroluminescent properties of two novel europium complexes with benzimidazole derivatives as second ligands, Synth. Met., 2002,128: 241-245.[10]Huang, L., Wang, K. Z., Huang, C. H. et al., Bright red electroluminescent devices using novel second-ligand-contained europium complexes as emitting layers, J. Mater. Chem., 2001, 11: 790-793.[11]Hu, W. P., Matsumura, M., Wang, M. Z. et al., Efficient red electroluminescence from devices having multilayers of an europium complex, Appl. Phys. Lett., Appl. Phys. Lett., 2000, 77: 4271-4273.[12]Yu, G., Liu, Y. Q., Wu, X. et al., Soluble

  12. Highly stable red-emitting polymer dots for cellular imaging

    Science.gov (United States)

    Chelora, Jipsa; Zhang, Jinfeng; Chen, Rui; Thachoth Chandran, Hrisheekesh; Lee, Chun-Sing

    2017-07-01

    Polymer dots (Pdots) have emerged as a new type of fluorescent probe material for biomedical applications and have attracted great interest due to their excellent optical properties and biocompatability. In this work, we report on a red-emitting P3HT Pdot fluorescent probe for intracellular bioimaging. The as-prepared Pdot fluorescent probe exhibits good stability and has a large Stokes shift (121 nm) compared to molecules in tetrahydrofuran (THF). Furthermore, the probe shows low cytotoxicity, broad absorption spectrum, resistance against photodegradation, and good water dispersibility. These advantageous characteristics make P3HT Pdots a promising fluorescent probe material for bioimaging.

  13. Ultraviolet electroluminescence properties from devices based on n-ZnO/i-NiO/p-Si light-emitting diode

    Science.gov (United States)

    Wang, Hui; Zhao, Yang; Wu, Chao; Wu, Guoguang; Ma, Yan; Dong, Xin; Zhang, Baolin; Du, Guotong

    2017-07-01

    We fabricated the Ultraviolet light-emitting diode (LED) based on n-ZnO/i-NiO/p-Si heterostructure by metal-organic chemical vapor deposition (MOCVD). The device exhibited diode-like rectifying characteristics with a turn-on voltage of 3.2 V. The NiO film with high resistance state and [200] preferred orientation acted as an electron blocking layer, which produced a larger ZnO/NiO conduction band offset of 2.93 eV than that of ZnO/Si (0.30 eV). Under forward bias, prominent ultraviolet emissions peaked around 375 nm accompanying with rather weak blue-white emissions peaked around 480 nm were observed at room temperature. Furthermore, the mechanism of the electroluminescence was tentatively discussed in terms of the band diagram of the diode.

  14. Performance enhancement of ZnS:Mn thin film electroluminescent devices by combination of laser and thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Koutsogeorgis, Demosthenes C., E-mail: demosthenes.koutsogeorgis@ntu.ac.u [School of Science and Technology, Displays Research Group, Nottingham Trent University, Nottingham NG11 8NS (United Kingdom); Cranton, Wayne M.; Ranson, Robert M.; Thomas, Clive B. [School of Science and Technology, Displays Research Group, Nottingham Trent University, Nottingham NG11 8NS (United Kingdom)

    2009-08-26

    The combination of laser and thermal annealing was investigated as a post-deposition process for enhancing the luminescent properties of RF-magnetron sputtered ZnS:Mn thin film electroluminescent devices (TFEL). Laser annealing of the uncoated phosphor layer was performed using KrF excimer 248 nm laser pulses of 20 ns under an argon overpressure of 10 bar to limit laser ablation. Single, double and triple irradiation was applied at 1.4 J/cm{sup 2}. Thermal annealing was performed in vacuum at 500 deg. C and 550 deg. C for 1 h. In this paper we are reporting the brightness-voltage characteristics of devices that have been subjected to all combinations of the two annealing techniques (i.e. laser, thermal, laser + thermal, thermal + laser and finally non-annealed devices). Also, a simple lifetime comparison is made between the best performing device (laser + thermal) and the industrial standard (thermal). The lifetime (time to half brightness) and brightness of the best performing device is found to be more than double compared to the industrial standard.

  15. Thin-Film Photoluminescent Properties and the Atomistic Model of Mg2TiO4 as a Non-rare Earth Matrix Material for Red-Emitting Phosphor

    Science.gov (United States)

    Huang, Chieh-Szu; Chang, Ming-Chuan; Huang, Cheng-Liang; Lin, Shih-kang

    2016-12-01

    Thin-film electroluminescent devices are promising solid-state lighting devices. Red light-emitting phosphor is the key component to be integrated with the well-established blue light-emitting diode chips for stimulating natural sunlight. However, environmentally hazardous rare-earth (RE) dopants, e.g. Eu2+ and Ce2+, are commonly used for red-emitting phosphors. Mg2TiO4 inverse spinel has been reported as a promising matrix material for "RE-free" red light luminescent material. In this paper, Mg2TiO4 inverse spinel is investigated using both experimental and theoretical approaches. The Mg2TiO4 thin films were deposited on Si (100) substrates using either spin-coating with the sol-gel process, or radio frequency sputtering, and annealed at various temperatures ranging from 600°C to 900°C. The crystallinity, microstructures, and photoluminescent properties of the Mg2TiO4 thin films were characterized. In addition, the atomistic model of the Mg2TiO4 inverse spinel was constructed, and the electronic band structure of Mg2TiO4 was calculated based on density functional theory. Essential physical and optoelectronic properties of the Mg2TiO4 luminance material as well as its optimal thin-film processing conditions were comprehensively reported.

  16. Thin-Film Photoluminescent Properties and the Atomistic Model of Mg2TiO4 as a Non-rare Earth Matrix Material for Red-Emitting Phosphor

    Science.gov (United States)

    Huang, Chieh-Szu; Chang, Ming-Chuan; Huang, Cheng-Liang; Lin, Shih-kang

    2016-08-01

    Thin-film electroluminescent devices are promising solid-state lighting devices. Red light-emitting phosphor is the key component to be integrated with the well-established blue light-emitting diode chips for stimulating natural sunlight. However, environmentally hazardous rare-earth (RE) dopants, e.g. Eu2+ and Ce2+, are commonly used for red-emitting phosphors. Mg2TiO4 inverse spinel has been reported as a promising matrix material for "RE-free" red light luminescent material. In this paper, Mg2TiO4 inverse spinel is investigated using both experimental and theoretical approaches. The Mg2TiO4 thin films were deposited on Si (100) substrates using either spin-coating with the sol-gel process, or radio frequency sputtering, and annealed at various temperatures ranging from 600°C to 900°C. The crystallinity, microstructures, and photoluminescent properties of the Mg2TiO4 thin films were characterized. In addition, the atomistic model of the Mg2TiO4 inverse spinel was constructed, and the electronic band structure of Mg2TiO4 was calculated based on density functional theory. Essential physical and optoelectronic properties of the Mg2TiO4 luminance material as well as its optimal thin-film processing conditions were comprehensively reported.

  17. Syntheses, structures and luminescent properties of Sm (III) and Eu (III) chelates for organic electroluminescent device applications

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Y.J.; Wong, T.K.S.; Yan, Y.K.; Hu, X

    2003-08-25

    Samarium(III) and europium(III) complexes of the {beta}-diketone ligand (2-thienyl)trifluoroacetylacetone (HTTA) and triphenylphosphine oxide (TPPO) were prepared. The complexes, Sm(TTA){sub 2}(TPPO){sub 2}NO{sub 3} (1), Eu(TTA){sub 2}(TPPO){sub 2}NO{sub 3}H{sub 2}O (2), and Eu(TTA){sub 3}(TPPO){sub 2} (3) were characterized. Single crystal X-ray diffraction molecular structures of complexes 1 and 3 are presented and some of the crystal parameters for complex 1 are: space group, P1; a=11.019(4) A, b=11.791(6) A, c=12.535(5) A; {alpha}=102.68(3) deg., {beta}=102.06(3) deg., {gamma}=117.75(3) deg. ; for complex 3: space group, P-1, a=11.1946(9) A, b=12.117(2) A, c=23.535(2) A, {alpha}=80.047(13) deg., {beta}=76.498(7) deg., {gamma}=70.450(9) deg. . Electroluminescent devices were fabricated by vacuum evaporation. Apart from single layer devices, double and triple layer devices with the following structures: ITO/TPD/Complex 2/Al; ITO/TPD/Complex 3/Al; ITO/TPD/Complex 2/Alq/Al were studied, where N,N-bis(3-methylphenyl)-N,N'-diphenyl-benzidine (TPD) was used as a hole transporting layer and tris(8-hydroxyquinolinate)aluminum (Alq) as an electron transporting layer. The results indicate that single layer devices show very low quantum efficiency, while the double layer devices with a hole transporting layer exhibit enhanced efficiency and a well defined EL spectrum. No significant improvement was observed in the triple layer devices with an additional electron transporting layer.

  18. Single-layer electroluminescent devices based on fluorene-1H-pyrazolo[3,4-b]quinoxaline co-polymers

    Science.gov (United States)

    Pokladko-Kowar, Monika; Danel, Andrzej; Chacaga, Łukasz

    2013-11-01

    A fluorene based copolymer was synthesized for electroluminescent application. To the main chain of polymer the nitrogen heterocyclic, 1H-pyrazolo[3,4-b]quinoxaline, unit was introduced. The incorporation of this derivative tuned the emission from the blue to yellow-green one. A simple, single layered device was fabricated with the configuration ITO/PEDOT/co-poly-FLU-PQX/Ca/Mg.

  19. Electroluminescent Characteristics of DBPPV–ZnO Nanocomposite Polymer Light Emitting Devices

    OpenAIRE

    2009-01-01

    Abstract We have demonstrated that fabrication and characterization of nanocomposite polymer light emitting devices with metal Zinc Oxide (ZnO) nanoparticles and 2,3-dibutoxy-1,4-poly(phenylenevinylene) (DBPPV). The current and luminance characteristics of devices with ZnO nanoparticles are much better than those of device with pure DBPPV. Optimized maximum luminance efficiencies of DBPPV–ZnO (3:1 wt%) before annealing (1.78 cd/A) and after annealing (2.45 cd/A) having a brightness 643 ...

  20. Electroluminescent Characteristics of DBPPV–ZnO Nanocomposite Polymer Light Emitting Devices

    Directory of Open Access Journals (Sweden)

    Madhava Rao MV

    2009-01-01

    Full Text Available Abstract We have demonstrated that fabrication and characterization of nanocomposite polymer light emitting devices with metal Zinc Oxide (ZnO nanoparticles and 2,3-dibutoxy-1,4-poly(phenylenevinylene (DBPPV. The current and luminance characteristics of devices with ZnO nanoparticles are much better than those of device with pure DBPPV. Optimized maximum luminance efficiencies of DBPPV–ZnO (3:1 wt% before annealing (1.78 cd/A and after annealing (2.45 cd/A having a brightness 643 and 776 cd/m2at a current density of 36.16 and 31.67 mA/cm2are observed, respectively. Current density–voltage and brightness–voltage characteristics indicate that addition of ZnO nanoparticles can facilitate electrical injection and charge transport. The thermal annealing is thought to result in the formation of an interfacial layer between emissive polymer film and cathode.

  1. Multi-colour direct STORM with red emitting carbocyanines.

    Science.gov (United States)

    Lampe, André; Haucke, Volker; Sigrist, Stephan J; Heilemann, Mike; Schmoranzer, Jan

    2012-04-01

    Single molecule-based super-resolution methods have become important tools to study nanoscale structures in cell biology. However, the complexity of multi-colour applications has prevented them from being widely used amongst biologists. Direct stochastic optical reconstruction microscopy (dSTORM) offers a simple way to perform single molecule super-resolution imaging without the need for an activator fluorophore and compatible with many conventionally used fluorophores. The search for the ideal dye pairs suitable for dual-colour dSTORM has been compromised by the fact that fluorophores spectrally apt for dual-colour imaging differ with respect to the optimal buffer conditions required for photoswitching and the generation of prolonged non-fluorescent (OFF) states. We present a novel variant of dSTORM that combines advantages of spectral demixing with the buffer compatible blinking properties of red emitting carbocyanine dyes, spectral demixing dSTORM (SD-dSTORM). In contrast to previously published work, SD-dSTORM requires reduced laser power and fewer imaging frames for the faithful reconstruction of super-resolved biological nanostructures. In addition, SD-dSTORM allows the use of commercially available rather than custom-made probes and does not rely on potentially error-prone cross-talk correction, thus allowing reliable co-localisation. SD-dSTORM presents a significant advance towards user-friendly single molecule localisation-based super-resolution microscopy combining advantages of state-of-the-art methodologies to perform fast, reliable and efficient multi-colour dSTORM. Copyright © 2012 Soçiété Francaise des Microscopies and Société de Biologie Cellulaire de France.

  2. Red-emitting manganese-doped aluminum nitride phosphor

    Science.gov (United States)

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.; Åberg, Daniel; Seeley, Zachary M.; Holliday, Kiel S.; Tran, Ich C.; Zhou, Fei; Martinez, H. Paul; Demeyer, Jessica M.; Drobshoff, Alexander D.; Srivastava, Alok M.; Camardello, Samuel J.; Comanzo, Holly A.; Schlagel, Deborah L.; Lograsso, Thomas A.

    2016-04-01

    We report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter to improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.

  3. Synthesis,characterization and applications of vinylsilafluorene copolymers:New host materials for electroluminescent devices

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Vinylsilafluorene(VSiF) was successfully synthesized and copolymerized with vinylcarbazole and methyl methacrylate via free radical copolymerization for the first time.The synthesis,photophysical properties,computational modeling studies,and organic light-emitting devices of the VSiF copolymers were presented.The good coordinated photoluminescent(PL) spectra with the absorption of blue light-emitting materials and the high energy band-gap of the VSiF copolymers were observed.Higher triplet band gap(3Eg) to host the blue phosphorescent emitters and better HOMO and LUMO than PVK for electron and hole injection and transportation of the VSiF model compounds were revealed by density functional theory(DFT) calculations.The preliminary device results in applications of these copolymers as host materials for green phosphorescent emitters demonstrate the copolymers of VSiF and vinylcarbazole have comparable device performance of polyvinylcarazole(PVK),suggesting a bright future of VSiF as building blocks for host materials.

  4. Synthesis and application of the novel azomethine metal complexes for the organic electroluminescent devices

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Min; Kim, Jin Soon; Shin, Dong Myung; Kim, Young Kwan; Ha, Yun Kyoung [Hongik Univ., Seoul (Korea, Republic of)

    2001-07-01

    New azomethine metal complexes were synthesized systematically and characterized. Beryllium, magnesium, or zinc ions were used as a central metal cation and aromatic azomethines (L1-L4) were employed as a chelating anionic ligand. Emission peaks of the complexes in both solution and solid states were observed mostly at the region of 400-500 nm in the luminescence spectra, where blue light was emitted. Three of them (BeL1 (I), ZnL2 (II), and ZnL3(III)) were sublimable and thus were applied to the organic light-emitting devices (OLED) as an emitting layer, respectively. The device including the emitting layer of I exhibited white emission with the broad luminescence spectral range. The device with the emitting layer of II showed blue luminescence with the maximum emission peak at 460 nm. Their ionization potentials, electron affinities, and electrochemical band gaps were investigated with cyclic voltammetry. The electrochemical gaps of 2.98 for I, 2.70 for II, and 2.63 eV for III were found to be consistent with their respective optical band gaps of 3.01, 2.95 and 2.61 eV within an experimental error. The structure of OLED manufactured in this study reveals that these complexes can work as electron transporting materials as well.

  5. Thickness effects of SiO xN y interlayer inserted between BaTiO 3 insulating layer and ZnS:Mn phosphor layer in thin film electroluminescent devices

    Science.gov (United States)

    Song, M. H.; Lee, Y. H.; Hahn, T. S.; Oh, M. H.; Yoon, K. H.

    1996-09-01

    We investigated the effects of a SiO xN y interlayer on a thin film electroluminescent device, inserted between an amorphous BaTiO 3 thin film and a ZnS:Mn phosphor layer. The effects on the thin film electroluminescent device was studied as a function of the thickness of the interlayer. We found that the introduction of the interlayer affected the growth behavior of the phosphor layer. With increasing thickness of the interlayer, the average grain size and the crystallinity of the phosphor layer was improved. The turn-on voltage of the electroluminescent device increased, and the saturation brightness slightly decreased with increasing interlayer thickness. In the case of the TFELD without the interlayer, Poole-Frenkel conduction was observed in the low dc field region, the devices with the interlayer exhibited effective electron tunneling from interface traps. The efficiency of the devices increased with increasing interlayer thickness.

  6. Numerical Analysis on Current Transport Characteristics in Single Layer Organic Electroluminescent Devices

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new model to describe I-V characteristics of organic light-emitting devices (OLEDs) is developed based on experimental results. The dependence of I-V characteristics on energy barrier, trap density and carrier mobility is analyzed. The result shows that this model combines the Fowler-Nordheim tunnel theory and the trap charge limited current theory with exponential trap distribution (TCL), and it describes the current transport characteristics of OLEDs more comprehensively. The I-V characteristics follow Fowler-Nordheim theory when the energy barrier is high, the trap density is small and the carrier mobility is large.In other cases they follow the TCL theory.

  7. Controlling charge carrier injection in organic electroluminescent devices via ITO substrate modification

    CERN Document Server

    Day, S

    2001-01-01

    and the ITO substrate was found to shift the work function of the electrode, and so modify the barrier to hole injection. Scanning Kelvin probe measurements show that the ITO work function is increased by 0.25 eV with a film of TNAP, while a C sub 6 sub 0 film is found to reduce the work function by a comparable amount. The former has been attributed to a charge-transfer effect resulting in Fermi level alignment between the ITO and the TNAP layer, however the latter is believed to result from both charge transfer and a covalent interaction between C sub 6 sub 0 and ITO. The performance of devices incorporating these modified ITO electrode are rationalised in terms of the work function modification, film thicknesses and the hole transport properties of the two films. Competition between the induced work function change and the increasingly significant tunnelling barrier with thickness means that device performance is not as good as that provided by the SAMs. Direct processing of the ITO substrate has also been...

  8. Non-Doped Deep Blue and Doped White Electroluminescence Devices Based on Phenanthroimidazole Derivative.

    Science.gov (United States)

    Chen, Shuo; Wu, Yukun; Hu, Shoucheng; Zhao, Yi; Fang, Daining

    2017-03-01

    A novel deep-blue emitter PhImPOTD based on phenathroimidazole was synthesized, which is incorporated by an electron-donating dibenzothiophene unit and electron-withdrawing phenanthroimidazole and diphenylphosphine oxide moieties. Furthermore, the weak π-π stacking and intermolecular aggregation render the photoluminescence quantum yield is as high as 0.34 in the solid state. Non-doped organic light emitting diodes (OLEDs) based on PhImPOTD emitter exhibits a low turn-on voltage of 3.6 V, a favorable efficiency of 1.13 cd A(-1) and a deep blue emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.15, 0.08). The CIE is very close to the NTSC (National Television Standards Committe) blue standard (CIE: 0.14, 0.08). PhImPOTD is also utilized as blue emitter and the host for a yellow emitter (PO-01) to fabricate white organic light-emitting diodes (WOLEDs). This gives a forward-viewing maximum CE of 4.83 cd A(-1) and CIE coordinates of (0.32, 0.32) at the luminance of 1000 cd m(-2). Moreover, the single-carrier devices unambiguously demonstrate that typical bipolar-dominant characteristics of PhImPOTD. This work demonstrates not only that the phenanthroimidazole unit is an excellent building block to construct deep blue emission materials, but also the introduction of a diphenylphosphine oxide deprotonation substituent is an efficient tactic for harvesting deep-blue emitting devices.

  9. High-performance alternating current field-induced chromatic-stable white polymer electroluminescent devices employing a down-conversion layer

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yingdong; Chen, Yonghua; Smith, Gregory M. [Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, NC 27105 (United States); Sun, Hengda; Yang, Dezhi [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Nie, Wanyi; Li, Yuan; Huang, Wenxiao [Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, NC 27105 (United States); Ma, Dongge [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Carroll, David L., E-mail: carroldl@wfu.edu [Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, NC 27105 (United States)

    2015-05-15

    In this work, a high-performance alternating current (AC) filed-induced chromatic-stable white polymer electroluminescence (WFIPEL) device was fabricated by combining a fluorophor Poly(9,9-dioctylfluorene) (PFO)-based blue device with a yellow down-conversion layer (YAG:Ce). A maximum luminance of this down-conversion FIPEL device achieves 3230 cd m{sup −2}, which is 1.41 times higher than the device without the down-conversion layer. A maximum current efficiency and power efficiency of the down-conversion WFIPEL device reach 19.7 cd A{sup −1} at 3050 cd m{sup −2} and 5.37 lm W{sup −1} at 2310 cd m{sup −2} respectively. To the best of our knowledge, the power efficiency is one of the highest reports for the WFIPEL up to now. Moreover, Commison Internationale de L’Eclairage (CIE) coordinates of (0.28, 0.30) is obtained by adjusting the thickness of the down-conversion layer to 30 μm and it is kept stable over the entire AC-driven voltage range. We believe that this AC-driven, down-conversion, WFIPEL device may offer an easy way towards future flat and flexible lighting sources. - Highlights: • A high-performance AC filed-induced chromatic-stable white polymer electroluminescence (WFIPEL) device was fabricated. • A maximum luminance, current efficiency, and power efficiency achieves 3230 cd m{sup −2}, 19.7 cd A{sup −1}, and 5.37 lm W{sup −1}, respectively. • The power efficiency is one of the highest reports for the WFIPEL up to now. • The EL spectrum kept very stable over the entire AC-driven voltage range.

  10. Effect of solution combusted TiO2 nanopowder within commercial BaTiO3 dielectric layer on the photoelectric properties for AC powder electroluminescence devices.

    Science.gov (United States)

    Park, Sung; Choi, Gil Rak; Kim, Youn Cheol; Lee, Jae Chun; Lee, Ju Hyeon

    2013-05-01

    A unique synthesis method was developed, which is called solution combustion method (SCM). TiO2 nanopowder was synthesized by this method. This SCM TiO2 nanopowder (-35 nm) was added to the dielectric layer of AC powder electroluminescence (EL) device. The dielectric layer was made of commercial BaTiO3 powder (-1.2 microm) and binding polymer. 0, 5, 10 and 15 wt% of SCM TiO2 nanopowder was added to the dielectric layer during fabrication of AC powder EL device respectively. Dielectric constant of these four kinds of dielectric layers was measured. The brightness and current density of AC powder EL device were also measured. When 10 wt% of SCM TiO2 nanopowder was added, dielectric constant and brightness were increased by 30% and 101% respectively. Furthermore, the current density was decreased by 71%. This means that the brightness was double and the power consumption was one third.

  11. Green Synthesis of Red-Emitting Carbon Nanodots as a Novel "Turn-on" Nanothermometer in Living Cells.

    Science.gov (United States)

    Wang, Chuanxi; Jiang, Kaili; Wu, Qian; Wu, Jiapeng; Zhang, Chi

    2016-10-01

    Temperature measurements in biology and medical diagnostics, along with sensitive temperature probing of living cells, is of great importance; however, it still faces significant challenges. Herein, a novel "turn-on" carbon-dot-based fluorescent nanothermometry device for spatially resolved temperature measurements in living cells is presented. The carbon nanodots (CNDs) are prepared by a green microwave-assisted method and exhibit red fluorescence (λem =615 nm) with high quantum yields (15 %). Then, an on-off fluorescent probe is prepared for detecting glutathione (GSH) based on aggregation-induced fluorescence quenching. Interestingly, the quenched fluorescence could be recovered by increasing temperature and the CNDs-GSH mixture could behave as an off-on fluorescent probe for temperature. Thus, red-emitting CNDs can be utilized for "turn-on" fluorescent nanothermometry through the fluorescence quenching and recovery processes, respectively. We employ MC3T3-E1 cells as an example model to demonstrate the red-emitting CNDs can function as "non-contact" tools for the accurate measurement of temperature and its gradient inside a living cell.

  12. Efficient electroluminescence from a perylenediimide fluorophore obtained from a simple solution processed OLED

    Energy Technology Data Exchange (ETDEWEB)

    Cespedes-Guirao, F J; Fernandez-Lazaro, F; Sastre-Santos, A [Division de Quimica Organica, Instituto de Bioingenieria, Universidad Miguel Hernandez, Avda. de la Universidad, s/n, Elche 03202 (Spain); Garcia-Santamaria, S; Bolink, H J [Instituto de Ciencia Molecular, Universidad de Valencia, PO Box 22085, ES-46071 Valencia (Spain)], E-mail: henk.bolink@uv.es, E-mail: asastre@umh.es, E-mail: fdofdez@umh.es

    2009-05-21

    Simple solution processed organic light emitting diodes are used to screen the performance of two types of highly efficient, narrow band red emitting fluorescent perylenediimides (PDIs). PDIs substituted at the diimide positions seem to form aggregates in the thin film architecture as evidenced by the shifted electroluminescent spectrum. When substituted on the bay position and when used both as the emitting and the electron transporting specie, bright electroluminescence with a narrow width around 610 nm reaching 500 cd m{sup -2} at moderate voltages was observed, demonstrating the usefulness of these fluorophores for OLED applications.

  13. Electroluminescence of Copolyfluorenes in the Visible Range of the Spectrum

    Science.gov (United States)

    Kopylova, T. N.; Nikonova, E. N.; Nikonov, S. Yu.; Gadirov, R. M.; Telminov, E. N.; Degtyarenko, K. M.; Odod, A. V.; Yakimanskii, A. V.; Il'gach, D. M.

    2016-04-01

    Results of spectral-luminescent and electroluminescent investigations of organic semiconductor polyfluorenebased copolymers in diode devices emitting dark blue, green, red, and white light are presented.

  14. Synthesis and Electroluminescent Properties of Julolidine-π-Juloidine Type Materials with the Bulky Adamantane Groups

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kum Hee; Yoon, Seung Soo [Sungkyunkwan Univ., Suwon (Korea, Republic of); Lee, Seok Jae; Kim, Young Kwan [Hongik Univ., Seoul (Korea, Republic of)

    2012-11-15

    A main problem of red emitting material, which contributes to their low EL performances, is the concentration quenching due to the effective self aggregation and the consequent formation of excimers. To avoid this drawback and thus improve the EL properties of red fluorescent OLED devices, many synthetic efforts have been conducted to develop new emitting materials with the structural motifs to suppress self-aggregation by the weakening intermolecular attractive interactions. Particularly, the introduction of bulky moieties in the emitters would provide the steric hindrance between emitting materials in solid state devices and thus reduce the self-aggregation. Nevertheless, EL performances of red materials still need to be improved for the practical applications. In conclusion, we designed and synthesized three julolidine-π-juloidine type emitting materials (1-3) with the bulky adamantane groups. To study their electroluminescent properties, the multilayered OLED devices with the structure of ITO/NPB (40 nm)/ADN : 1-3 (x%) (20 nm)/Alq{sub 3} (40 nm)/Liq (2 nm)/Al were fabricated. All devices using emitters 1-3 showed the efficient emissions, in which their EL performances depend on the structure of emitters sensitively. Particularly, a device using emitter 3 exhibited the efficient orange-red emission with the luminous and power efficiencies of 4.79 cd/A and 1.76 lm/W at 20 mA/cm{sup 2}, respectively. The CIE coordinates of this device was (0.57, 0.42) at 7.0 V.

  15. Ultraviolet-Visible Electroluminescence of a p-ZnO:As/n-Si Device Formed by the GaAs Interlayer Doping Method

    Institute of Scientific and Technical Information of China (English)

    XIA Xiao-Chuan; DU Guo-Tong; WANG Hui; ZHAO Yang; WANG Jin; ZHAO Jian-Ze; SHI Zhi-Feng; LI Xiang-Ping; LIANG Hong-Wei; ZHANG Bao-Lin

    2011-01-01

    Arsenic doped p-type ZnO films were grown on n-type silicon substrates using the GaAs interlayer doping method.Under our growth conditions the main doping element is arsenic,which was confirmed by x-ray photoelectroscopy.X-ray diffraction measurements revealed that the p-ZnO:As film was still in the (002) preferred orientation.The Hall test showed that the hole concentration of the p-ZnO:As film was 2.6 × 1017 cm-3.The acceptor level was located at 135 meV above the valance band maximum,according to the low-temperature photoluminescence results.We then fabricated a p-ZnO:As/n-Si hetero junction light-emitting device.Its current-voltage curve showed the typical rectifying behavior of a p-n diode.At forward current injections,the electroluminescence peaks,which cover the ultraviolet-to-visible region,could be clearly detected.ZnO is a Ⅱ-Ⅵ compound semiconductor with a wide direct gap (3.37eV) and a high exciton binding energy (60meV).It has been studied as the candidate material for ultraviolet (UV) light emitting devices (LEDs).Many methods have been used to prepare ZnO films.[1,2] Among them,the metal organic chemical vapor deposition (MOCVD) method has its own excellent advantages in industrial applications.Today,the preparation of p-ZnO is still a challenge.%Arsenic doped p-type ZnO films were grown on n-type silicon substrates using the GaAs interlayer doping method. Under our growth conditions the main doping element is arsenic, which was confirmed by x-ray photoelectroscopy. X-ray diffraction measurements revealed that the p-ZnO:As Him was still in the (002) preferred orientation. The Hall test showed that the hole concentration of the p-ZnO:As film was 2.6 × 1017 cm-3. The acceptor level was located at 135 meV above the valance band maximum, according to the low-temperature photoluminescence results. We then fabricated a p-ZnO:As/n-Si heterojunction light-emitting device. Its current-voltage curve showed the typical rectifying behavior of a p-n diode

  16. Color-tunable electroluminescence from Eu-doped TiO(2)/p(+)-Si heterostructured devices: engineering of energy transfer.

    Science.gov (United States)

    Zhu, Chen; Lv, Chunyan; Wang, Canxing; Sha, Yiping; Li, Dongsheng; Ma, Xiangyang; Yang, Deren

    2015-02-09

    We report on color-tunable electroluminescence (EL) from TiO(2):Eu/p(+)-Si heterostructured devices using different TiO(2):Eu films in terms of Eu content and annealing temperature. It is found that the Eu-related emissions are activated by the energy transferred from TiO(2) host via oxygen vacancies, at the price of weakened oxygen-vacancy-related emissions. Both the higher Eu content and the higher annealing temperature for TiO(2):Eu films facilitate the aforementioned energy transfer. In this context, the dominant EL from the TiO(2):Eu/p(+)-Si heterostructured devices can be transformed from oxygen-vacancy-related emissions into Eu-related emissions with increasing Eu-content and annealing temperature for TiO(2):Eu films, exhibiting different colors of emanated light. We believe that this work sheds light on developing silicon-based red emitters using the Eu-doped oxide semiconductor films.

  17. Synthesis and characterization of novel red-emitting copolymers containing fluorene,diketopyrrolopyrrole,and phenothiazine units

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A novel three-component copolymer (PFDP),derived from 9,9-dihexylfluorene,diketopyrrolopyrrole(DPP),and 10-octylphenothiazine,was synthesized through palladium-catalyzed Suzuki polycondensation in good yields. PFDP possessed moderate molecular weight and polydispersity,well-defined structure,and excellent thermal properties with an onset decomposition temperature at 357℃. PFDP in thin film exhibited red photoluminescence from DPP chromophore exclusively,with a peak at 602 nm. Electron-rich phenothiazine units sighificantly improved the injection and transport of holes by incorporating into polymer backbone. Light-emitting device was fabricated in the ITO/PEDOT:PSS/PVK/ polymer/Ba/Al configuration using PFDP as the emitting layer. The device based on PFDP showed red emission [CIE coordinate value (0.62,0.38)] that was close to the standard red (0.66,0.34). The results on electroluminescent performance revealed that PFDP may be a promising candidate for the red emitter with a maximum brightness of 259 cd/m2 and a maximum external quantum efficiency of 0.25%.

  18. Report of the results of the fiscal 1997 regional consortium R and D project. Regional consortium field/ R and D on the technology to create new organic electroluminescence devices (first fiscal year); 1997 nendo chiiki consortium kenkyu kaihatsu jigyo. Chiiki consortium bun`ya / shin`yuki electroluminescence device no sosei gijutsu ni kansuru kenkyu kaihatsu (daiichi nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper develops the R and D having as core creative technical seeds on the design principle of organic electroluminescence (EL) devices, aims at producing as products a polychrome display and a new energy saving type light source, develops new high efficient luminescent materials which support the production of products with high liability, and develops protective coats universally applicable to optical and electronic devices and sealing technology. In fiscal 1997, the following are commenced: 1) development of luminescent devices, 2) development of new luminescent agents, and 3) development of the mounting technology. In 1), the following are conducted: R and D for improvement of durability of EL devices, development of the process technology for polychroism, multi-coloring, and development of the large picture thin film formation technology. For the development of energy saving type high efficiency light source devices, a method is established for producing organic layers by a new wet coating method. In 3), the R and D are carried out of a method to form inorganic protective coats at low temperature and a method to highly evaluate structural defects in the protective coat. For the sealing of devices, low melting point glass and the forming technology are developed. 41 refs., 112 figs., 19 tabs.

  19. Enhanced Brightness of Eu3+ Complex in Organic Electroluminescent Devices by Using Another Rare-Earth Ion

    Institute of Scientific and Technical Information of China (English)

    白峰; 邓振波; 高新; 李勇; 徐怡庄; 吴瑾光

    2002-01-01

    Rare-earth ions Tb3+ and La3+ were used as a bridge to improve the energy transfer from the polymer to an Eu complex. The material Tb(La)0.5Eu0.5 (BSA)3phen was synthesized and used as the emission layer in the device:ITO/PVK:Tb(La)0.5Eu0.5 (BSA)3phen/Alq/Al. The two device were compared in detail and it was found that the device using La0.5Eu0.5 (BSA)3phen as the emission material had better monochromatic characteristics with the maximal brightness of 102cd/m2 and the colour coordinates x = 0.55 and y = 0.36.

  20. A Stable Blue Organic Electroluminescent Material

    Institute of Scientific and Technical Information of China (English)

    郑新友; 吴有智; 等

    2002-01-01

    In order to compare two kinds of blue electroluminescent materials,we have investigated two kinds of blue OLEDs with the similar structure ITO/CuPc/NPB/JBEM:perylene/Alq/Mg:Ag[device(J)] and ITO/CuPc/NPB/DPVBi:perylene/Alq/Mg:Ag[device(D)].The difference of luminance and efficiency was not obvious for the two devices,However,there was remarkable difference for their lifetime.The device(J) achieved longer half lifetime of 1035h at initial luminance of 100 cd/m2,and that of device(D) was only255h,According to their energy level diagrams,the differentce of their stability may originate from different host materials in the two devices.It may be attributed to the better thermal stability of JBEM molecues than that of DPVBi.It is shown that JBEM may be a promising blue organic electroluminescent material with great stability.

  1. Radioluminescence of red-emitting Eu-doped phosphors for fiberoptic dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Molina, P.; Santiago, M.; Marcazzo, J.; Caselli, E. [Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Fisica Arroyo Seco, Pinto 399, 7000 Tandil (Argentina); Spano, F. [Autoridad Regulatoria Nuclear, Av. del Libertador 8250, 1429 Buenos Aires (Argentina); Henniger, J. [Institut fur Kern-und Teilchenphysik, Zellescher Weg 19, 01069 Dresden (Germany); Cravero, W., E-mail: pmolina@exa.unicen.edu.ar [Universidad Nacional del Sur, Departamento de Fisica, Av. Colon 80, 8000FTN Bahia Blanca, Buenos Aires (Argentina)

    2011-10-15

    The fiberoptic dosimetry technique (FOD) has become an attractive method for in-vivo real-time dosimetry in radiotherapy. It is based on the use of a tiny piece of scintillator coupled to the end of an optical fiber, which collects the light emitted by the scintillator during irradiation (radioluminescence). Carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) is one of the most radioluminescence materials for FOD due to its high efficiency but it presents the drawback of emitting in the spectral region, where spurious luminescence is also important. Spurious luminescence from optical fiber, termed stem effect, is the main problem afflicting FOD. Several techniques have been applied to remove the stem effect. Optical filtering, which consists in using long-pass filters, is the simplest one. This technique is useful when red-emitting scintillators are employed. In this work, the feasibility of using red-emitting Eu-doped phosphors as FOD scintillators has been investigated. (Author)

  2. Enhanced red-emitting railroad worm luciferase for bioassays and bioimaging.

    Science.gov (United States)

    Li, Xueyan; Nakajima, Yoshihiro; Niwa, Kazuki; Viviani, Vadim R; Ohmiya, Yoshihiro

    2010-01-01

    A luciferase from the railroad worm (Phrixothrix hirtus) is the only red-emitting bioluminescent enzyme in nature that is advantageous in multicolor luciferase assays and in bioluminescence imaging (BLI). However, it is not used widely in scientific or industrial applications because of its low activity and stability. By using site-directed mutagenesis, we produced red-emitting mutants with higher activity and better stability. Compared with the wild-type (WT), the luminescent activities from extracts of cultured mammalian cells expressing mutant luciferase were 9.8-fold in I212L/N351K, 8.4-fold in I212L, and 7.8-fold in I212L/S463R; and the cell-based activities were 3.6-fold in I212L/N351K and 3.4-fold in N351K. The remaining activities after incubation at 37 degrees C for 10 min were 50.0% for I212L/S463R, 31.8% for I212L, and 23.0% for I212L/N351K, but only 5.2% for WT. To demonstrate an application of I212L/N351K, cell-based BLI was performed, and the luminescence signal was 3.6-fold higher than in WT. These results indicate that the mutants might improve the practicability of this signaling in bioassays and BLI.

  3. Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices

    Directory of Open Access Journals (Sweden)

    Hui-Ying Li

    2015-02-01

    Full Text Available Preparation of dense alumina (Al2O3 thin film through atomic layer deposition (ALD provides a pathway to achieve the encapsulation of organic light emitting devices (OLED. Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10−4 g/(m2·day under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED.

  4. Red-emitting alkaline-earth rare-earth pentaoxometallates powders prepared by metal carboxylates solution

    Indian Academy of Sciences (India)

    Kyu-Seog Hwang; Sung-Dae Kim; Seung Hwangbo; Jin-Tae Kim

    2013-06-01

    Moisture-insensitive metal carboxylates that are mostly liquids at room temperature have been first applied to the preparation of strontium europium aluminate (Sr2EuAlO5) powders for red-emitting phosphor under near ultraviolet radiation. Strontium naphthenate, aluminium-2-ethylhexanoate and europium-2-ethylhexanoate were dissolved with toluene to prepare starting solution. Precursor pyrolyzed at 500 °C for 240 min was finally annealed at 900–1200 °C for 240 min in Ar. X-ray diffraction analysis, field emission–scanning electron microscope and fluorescent spectrophotometer were used to evaluate structural and optical properties. For the 1000 °C-annealed powders with regular shape and narrow size distribution confirmed by FE–SEM observation, strong red emission at 615nm under the excitation of 395nm maximum was reached, then the higher annealed samples at above 1100 °C gave the lower emission intensities.

  5. Watt-level red-emitting diode lasers and modules for display applications

    Science.gov (United States)

    Paschke, Katrin; Blume, Gunnar; Feise, David; Pohl, Johannes; Sumpf, Bernd

    2016-02-01

    Red-emitting lasers for display applications require high output powers and a high visibility. We demonstrate diode lasers and modules in the red spectral range based on AlGaInP with optical output powers up to 1 W and a nearly diffraction limited beam. These high-luminance light sources based on tapered lasers are well suited for laser TVs and projectors for virtual reality simulators based on the flying spot technology. Additionally, we developed diode lasers with internal distributed Bragg reflector (DBR) surface gratings. These DBR tapered lasers and master-oscillator power-amplifiers based on DBR ridge-waveguide lasers and tapered amplifiers feature high power, single mode emission with coherence lengths up to several meters, which are suitable for the next-generation 3D displays based on holography.

  6. Synthesis and photoluminescence of red emitting phosphors of europium complex intercalated layered double hydroxide

    Science.gov (United States)

    Gao, Xiaorui; Gao, Zhen; Yin, Xiaoru; Xie, Juan

    2015-12-01

    An inorganic-organic red emitting phosphor, europium ethylenediaminetetraacetate complex ([Eu(EDTA)]-) anions intercalated Mg/Al and Zn/Al layered double hydroxides (LDHs) were synthesized through an ion exchange method. X-ray powder diffraction (XRD) results exhibit that a nearly vertical arrangement of [Eu(EDTA)]- anions with the maximal dimension in the gallery is adopted. Measurement of the excitation and emission spectra show that the two materials display high red luminescence from Eu3+ ions. Furthermore, Mg/Al LDH containing europium complex has higher luminescence intensity than Zn/Al LDH, which probably was related with more inversion asymmetry sites of Eu3+ occurring in the Mg/Al LDH.

  7. Microwave-Assisted Polyol Synthesis of Water Dispersible Red-Emitting Eu3+-Modified Carbon Dots

    Directory of Open Access Journals (Sweden)

    Hailong Dong

    2016-12-01

    Full Text Available Eu3+-modified carbon dots (C-dots, 3–5 nm in diameter, were prepared, functionalized, and stabilized via a one-pot polyol synthesis. The role of Eu2+/Eu3+, the influence of O2 (oxidation and H2O (hydrolysis, as well as the impact of the heating procedure (conventional resistance heating and microwave (MW heating were explored. With the reducing conditions of the polyol at the elevated temperature of synthesis (200–230 °C, first of all, Eu2+ was obtained resulting in the blue emission of the C-dots. Subsequent to O2-driven oxidation, Eu3+-modified, red-emitting C-dots were realized. However, the Eu3+ emission is rapidly quenched by water for C-dots prepared via conventional resistance heating. In contrast to the hydroxyl functionalization of conventionally-heated C-dots, MW-heating results in a carboxylate functionalization of the C-dots. Carboxylate-coordinated Eu3+, however, turned out as highly stable even in water. Based on this fundamental understanding of synthesis and material, in sum, a one-pot polyol approach is established that results in H2O-dispersable C-dots with intense red Eu3+-line-type emission.

  8. High performance red-emitting multiple layer InGaN/GaN quantum dot lasers

    Science.gov (United States)

    Frost, Thomas; Hazari, Arnab; Aiello, Anthony; Zunaid Baten, Md; Yan, Lifan; Mirecki-Millunchick, Joanna; Bhattacharya, Pallab

    2016-03-01

    InGaN/GaN self-organized quantum dots can provide useful advantages over quantum wells for the realization of long-wavelength visible light sources because the dots are formed by strain relaxation. A III-nitride based laser emitting in the red (λ ˜ 630 nm), which has not been demonstrated with quantum wells, would be useful for a host of applications. We have investigated the epitaxy and characteristics of self-organized InGaN/GaN multiple layer quantum dots grown by plasma-assisted molecular beam epitaxy and have optimized their properties by tuning the growth parameters. Red-emitting (λ ˜ 630 nm) quantum dots have radiative lifetime ˜2.5 ns and internal quantum efficiency greater than 50%. Edge-emitting red-lasers with multi-dot layers in the active region exhibit an extremely low threshold current density of 1.6 kA/cm2, a high temperature coefficient T0 = 240 K, and a large differential gain dg/dn = 9 × 10-17 cm2.

  9. Spectroscopic investigation of the interfaces in new poly(9,9-dihexyl–9H-fluorene-2,7- diyl based electroluminescent devices

    Directory of Open Access Journals (Sweden)

    C. Donitsi

    2014-01-01

    Full Text Available The highest occupied and lowest unoccupied states of the new electroluminescent material poly(9,9-dihexyl–9H- fluorene-2,7-diyl (PPV-D and polyvinylcarbazole (PVK are investigated using ultraviolet photoelectron and inverse photoemission spectroscopies. Hole injection barriers are determined for interfaces between indium-tin oxide covered substrates with work function ranging from 4.4 to 4.7 eV and these two polymers. Vacuum level alignment with flat bands away from the interface is found when the interface hole barrier is 0.6 eV or larger. Band bending away from the Fermi level occurs when the hole barrier is smaller than 0.6 eV. This is due to the accumulation charges at the interface with the polymer when the injection barrier is small. The resulting field bends the polymer levels to limit charge incoming in the bulk of the film. The efficiency of the electroluminescent structures is strongly influenced by the different energy levels alignment at the layer interfaces.

  10. Organic Electroluminescent Sensor for Pressure Measurement

    Directory of Open Access Journals (Sweden)

    Tomohide Niimi

    2012-10-01

    Full Text Available We have proposed a novel concept of a pressure sensor called electroluminescent pressure sensor (ELPS based on oxygen quenching of electroluminescence. The sensor was fabricated as an organic light-emitting device (OLED with phosphorescent dyes whose phosphorescence can be quenched by oxygenmolecules, and with a polymer electrode which permeates oxygen molecules. The sensor was a single-layer OLED with Platinum (II octaethylporphine (PtOEP doped into poly(vinylcarbazole (PVK as an oxygen sensitive emissive layer and poly(3,4-ethylenedioxythiophene mixed with poly(styrenesulfonate (PEDOT:PSS as an oxygen permeating polymer anode. The pressure sensitivity of the fabricated ELPS sample was equivalent to that of the sensor excited by an illumination light source. Moreover, the pressure sensitivity of the sensor is equivalent to that of conventional pressure-sensitive paint (PSP, which is an optical pressure sensor based on photoluminescence.

  11. Analysis of power supply circuits for electroluminescent panels

    Science.gov (United States)

    Drumea, Andrei; Dobre, Robert Alexandru

    2016-12-01

    The electroluminescent panel is a light emitting device that requires for normal operations alternative voltages with peak to peak amplitudes in 100V… 300V range and frequencies in 100Hz … 2 kHz range. Its advantages, when compared with standard light sources like incandescent lamps, gas-discharge lamps or light emitting diodes (LEDs), are lower power consumption, flexible substrate and uniform light without observable luminous points. One disadvantage of electroluminescent panels is the complex power supply required to drive them, but the continuous improvement in passive and active integrated devices for switched mode power supplies will eventually solve this issue. The present paper studies different topologies for these power supplies and the effect of the electric parameters like the amplitude, frequency, waveform of the supplying voltage on the light emission and on power consumption for electroluminescent panels with different size and colors.

  12. Electron Injection Enhancement by Diamond-Like Carbon Film in Polymer Electroluminescence Devices%聚合物电致发光器件中用类金刚石碳膜增强电子注入

    Institute of Scientific and Technical Information of China (English)

    李宏建; 闫玲玲; 黄伯云; 易丹青; 胡锦; 何英旋; 彭景翠

    2006-01-01

    A diamond-like carbon (DLC) film is deposited as an electron injection layer between the polymer light-emitting layer (MEH-PPV) and aluminum (Al) cathode electrode in polymer electroluminescence devices (PLEDs) using a radio frequency plasma deposition system. The source material of the DLC is n-butylamine. The devices consist of indium tin oxide (ITO)/MEH-PPV/DLC/Al. Electron injection properties are investigated through I-V characteristics, and the mechanism of electron injection enhancement due to a thin DLC layer has been studied. It is found that: (1) a DLC layer thinner than 1. 0nm leads to a higher turn-on voltage and decreased electroluminescent (EL) efficiency; (2) a 5.0nm DLC layer significantly enhances the electron injection and re sults in the lowest turn-on voltage and the highest EL efficiency; (3) DLC layer that exceeds 5.0nm results in poor device performance; and(4) EL emission can hardly be detected when the layer exceeds 10.0nm. The properties ofITO/MEH-PPV/DLC/Al and ITO/MEH-PPV/LiF/Al are investigated comparatively.%用正丁胺作碳源,采用射频辉光等离子系统制备类金刚石碳膜(DLC),沉积在聚合物发光器件中的发光层(MEH-PPV)和铝(Al)阴极间作电子注入层.制备了结构为ITO/MEH-PPV/DLC/Al的不同DLC厚度的器件,测量了器件的I-V特性、亮度及效率,研究了DLC层对器件电子注入性能影响的机制.结果表明:当DLC厚度小于1.0nm时,其器件有较ITO/MEH-PPV/Al高的启动电压和低的发光效率;当DLC厚度在1.0~5.0nm之间时,器件的性能随着DLC厚度增加而变好;当DLC厚度为5.0nm时,器件具有最低的启动电压与最高的发光效率;当DLC厚度继续增加时,器件的性能随着DLC厚度增加而变差.并对ITO/MEH-PPV/DLC/Al和ITO/MEH-PPV/LiF/Al的器件性能进行了比较研究.

  13. Blue/pink/purple electroluminescence from metal-oxide-semiconductor devices fabricated by spin-coating of [tantalum:(gadolinium/praseodymium)] and (praseodymium:cerium) organic compounds on silicon

    Science.gov (United States)

    Ohzone, Takashi; Matsuda, Toshihiro; Fukuoka, Ryouhei; Hattori, Fumihiro; Iwata, Hideyuki

    2016-08-01

    Blue/pink/purple electroluminescence (EL) from metal-oxide-semiconductor (MOS) devices with an indium tin oxide (ITO)/[Gd/(Ta + Gd/Pr)/(Pr + Ce)-Si-O] insulator layer/n+-Si substrate surface is reported. The insulator layers were fabricated from organic liquid sources of Gd or (Ta + Gd/Pr)/(Pr + Ce) mixtures, which were spin-coated on the n+-Si substrate and annealed at 950 °C for 30 min in air. The EL emission could be observed by the naked eye in the dark in the Fowler-Nordheim (FN) tunnel current regions. Peak wavelengths in the measured EL spectra were independent of the positive current. The EL intensity ratio of ultraviolet (UV) to the visible range varied with the composition ratio of the (Ta + Gd) liquids, and an optimum Ta to Gd ratio existed for the strongest blue emission, which could be attributed to the Ta-related oxide/silicate. The pink EL of the device fabricated with the (\\text{Ta}:\\text{Pr} = 6:4) mixture ratio can be explained by EL emission peaks related to the Pr3+ ions. The purple EL observed from the (\\text{Pr}:\\text{Ce} = 6:4) device corresponds to the strong and broad emission profile near the 357 nm peak, which cannot be assigned to Ce3+ ions. The results suggest that the EL can be attributed to the double-layer oxides with different compositions in the MOS devices. The upper layer consists of various Ta-, Gd-, Pr-, and Ce-related oxides and their silicates, while the lower SiO x -rich layer contributes to the FN current due to the high electric field, and thus the various EL colors.

  14. Luminescence, Energy Transfer and Concentration Quenching of Red Emitting Phosphor Ba3Eu(PO4)3:Tb3+

    Institute of Scientific and Technical Information of China (English)

    LI Yamin; YANG Zhiping; LI Xiang; SHI Xian; ZHANG Huan; TIAN Zhi; QI Shuai; YUAN Xiaoxian; LI Panlai; WANG Zhijun

    2016-01-01

    A red emitting phosphor of Ba3Eu(PO4)3:Tb3+ was synthesized by a solid state method. The energy transfer from Tb3+ to Eu3+ in Ba3Eu(PO4)3:Tb3+ was proved by the spectral properties and decay curves. The emission intensity of Ba3Eu(PO4)3 is enhanced by doping Tb3+ as a sensitizer. For Ba3Eu(PO4)3:Tb3+, the5D3→7FJ transition of Tb3+occurs, and the corresponding emission intensities can be tuned when Tb3+ content increases, and the concentration quenching effect appears. However, for the5D4→7FJ transition of Tb3+, its intensity straight increases with increasing Tb3+ content. For Ba3Eu(PO4)3:Tb3+, the values of CIE chromaticity coordinates are similar to those of commercial red phosphors of Sr2Si5N8:Eu2+ and Y2O2S:Eu3+. The results indicate that this red emitting phosphor has a potential application for white LEDs.

  15. Magneto-electroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements

    OpenAIRE

    Liu,Feilong; Kelley, Megan R.; Crooker, Scott A.; Nie, Wanyi; Mohite, Aditya D.; Ruden, P. Paul; Smith, Darryl L.

    2014-01-01

    The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magneto-electroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from th...

  16. Synthesis and Electroluminescence Characterization of Cadmium Complex

    Directory of Open Access Journals (Sweden)

    Rahulkumar

    2011-01-01

    Full Text Available We have synthesized and characterized a new electroluminescence material,Cadmium [(2-(2-hydroxyphenylbenzoxazole(8-hydoxyquinoline] Cd(HPBq. The absorption spectra of this material show maxima at 378 nm. It may be attributed due to π° – π* transition. The photoluminescence showed peak at 520 nm. TGA data of the material shows stability up to 370 °C .Organic light emitting diode have been fabricated with this material and the fundamental structures of the device is ITO/α-NPD/ Cd(HPBq/BCP/Alq3/LiF/Al exhibited a luminescence peak at 550 nm. The maximum luminescence of the device was 295 cd/m2 with current density of 6687 A/m2 at 20 V. The maximum current efficiency of OLED was 1.01 cd/A at 17 V and power efficiency was 1.01 lm/w at 17 V.

  17. FIrpic: archetypal blue phosphorescent emitter for electroluminescence.

    Science.gov (United States)

    Baranoff, Etienne; Curchod, Basile F E

    2015-05-14

    FIrpic is the most investigated bis-cyclometallated iridium complex in particular in the context of organic light emitting diodes (OLEDs) because of its attractive sky-blue emission, high emission efficiency, and suitable energy levels. In this Perspective we review the synthesis, structural characterisations, and key properties of this emitter. We also survey the theoretical studies and summarise a series of selected monochromatic electroluminescent devices using FIrpic as the emitting dopant. Finally we highlight important shortcomings of FIrpic as an emitter for OLEDs. Despite the large body of work dedicated to this material, it is manifest that the understanding of photophysical and electrochemical processes are only broadly understood mainly because of the different environment in which these properties are measured, i.e., isolated molecules in solvent vs. device.

  18. Synthesis and electroluminescence properties of benzothiazole derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Fu Huiying [Department of Materials Science, Fudan University, Shanghai 200433 (China); Gao Xindong [State Key Laboratory of Applied Surface Physics, Fudan University, Shanghai 200433 (China); Zhong Gaoyu; Zhong Zhiyang [Department of Materials Science, Fudan University, Shanghai 200433 (China); Xiao Fei, E-mail: feixiao@fudan.edu.c [Department of Materials Science, Fudan University, Shanghai 200433 (China); Shao Bingxian [Department of Materials Science, Fudan University, Shanghai 200433 (China)

    2009-10-15

    Benzothiazole-based blue fluorescent materials N-(4-(benzo[d]thiazol-2-yl)phenyl)-N-phenylbenzenamine (BPPA) and N-(4-(benzo[d]thiazol-2-yl)phenyl)-N-phenylnaphthalen-1-amine (BPNA) were synthesized for use in organic light-emitting diodes (OLEDs). Electroluminescent device with a configuration of ITO/NPB/BPPA/BCP/Alq{sub 3}/LiF/Al showed a maximum brightness of 3760 cd/m{sup 2} at 14.4 V with the CIE coordinates of (0.16, 0.16). A current efficiency of 3.01 cd/A and an external quantum efficiency of 2.37% at 20 mA/cm{sup 2} were obtained from this device. Molecules derived from BPPA and BPNA with incorporated dicyanomethylidene, which is a functional group for most red fluorescent molecules, were designed, synthesized and characterized to study the red fluorescence properties of the benzothiazole derivatives.

  19. Discovery of a Red-Emitting Li3RbGe8O18:Mn(4+) Phosphor in the Alkali-Germanate System: Structural Determination and Electronic Calculations.

    Science.gov (United States)

    Singh, Satendra Pal; Kim, Minseuk; Park, Woon Bae; Lee, Jin-Woong; Sohn, Kee-Sun

    2016-10-17

    A solid-state combinatorial chemistry approach, which used the A-Ge-O (A = Li, K, Rb) system doped with a small amount of Mn(4+) as an activator, was adopted in a search for novel red-emitting phosphors. The A site may have been composed of either a single alkali metal ion or of a combination of them. This approach led to the discovery of a novel phosphor in the above system with the chemical formula Li3RbGe8O18:Mn(4+). The crystal structure of this novel phosphor was solved via direct methods, and subsequent Rietveld refinement revealed a trigonal structure in the P3̅1m space group. The discovered phosphor is believed to be novel in the sense that neither the crystal structure nor the chemical formula matches any of the prototype structures available in the crystallographic information database (ICDD or ICSD). The measured photoluminescence intensity that peaked at a wavelength of 667 nm was found to be much higher than the best intensity obtained among all the existing A2Ge4O9 (A = Li, K, Rb) compounds in the alkali-germanate system. An ab initio calculation based on density function theory (DFT) was conducted to verify the crystal structure model and compare the calculated value of the optical band gap with the experimental results. The optical band gap obtained from diffuse reflectance measurement (5.26 eV) and DFT calculation (4.64 eV) results were in very good agreement. The emission wavelength of this phosphor that exists in the deep red region of the electromagnetic spectrum may be very useful for increasing the color gamut of LED-based display devices such as ultrahigh-definition television (UHDTV) as per the ITU-R BT.2020-2 recommendations and also for down-converter phosphors that are used in solar-cell applications.

  20. Lowering the Operational Voltage of Single-Layer Polymer Electroluminescent Devices by Using CuOx Modifying Indium-Tin Oxide Electrode

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xin-ran; ZHAO Xin-wen; HU Wen-ping

    2007-01-01

    In this study it is demonstrated that oxygen-plasma-generated CuOx can enhance the holes injection from ITO anode into polymer layer in single-layer polymer EL devices. The possible reason for this enhancement is because the ITO anode modified with CuOx possesses much higher work function than pure ITO anode, which reduces the barrier for hole-injection and further lowers the operational voltage of the polymer EL devices. The work function shift is probable due to the oxygen-plasma-generated CuOx can store more releasable oxygen, and the releasable oxygen in turn changes the oxygen concentration just near ITO surface, which will shift the work function of ITO anode.

  1. Yellow-green electroluminescence of samarium complexes of 8-hydroxyquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Behzad, Sara Karimi; Najafi, Ezzatollah [Department of Chemistry Shahid Beheshti University G.C., Tehran 1983963113 (Iran, Islamic Republic of); Amini, Mostafa M., E-mail: m-pouramini@sbu.ac.ir [Department of Chemistry Shahid Beheshti University G.C., Tehran 1983963113 (Iran, Islamic Republic of); Janghouri, Mohammad; Mohajerani, Ezeddin [Laser Research Institute Shahid Beheshti University G.C., Tehran 1983963113 (Iran, Islamic Republic of); Ng, Seik Weng [Department of Chemistry, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-12-15

    Four novel samarium complexes were prepared by reacting samarium(III) nitrate with 8-hydroxyquinoline, 2-methyl-8-hydroxyquinoline, and 1,10-phenanthroline and utilized as emitting materials in the electroluminescence device. All complexes were characterized by elemental analysis, infrared, UV–vis and {sup 1}H NMR spectroscopes and the molecular structure of a representative complex, [Sm{sub 2}(Me-HQ){sub 4}(NO{sub 3}){sub 6}] (1), was determined by single-crystal X-ray diffraction. Utilization of a π-conjugated (phenanthroline) ligand as a second ligand in the structure of the samarium complexes resulted in red shifts in both absorption and fluorescence spectra of complexes and moderately enhanced the photoluminescence intensity and the fluorescence quantum yield. The maximum emission peaks showed that a good correlation exists between the nature of the substituent group on the 8-hydroxyquinoline and the addition of the π-conjugated ligand in the structure of samarium complexes and emission wavelength. Devices with samarium(III) complexes with structure of ITO/PEDOT:PSS (90 nm)/PVK:PBD:Sm(III) complexes (75 nm)/Al (180 nm) were fabricated. In the electroluminescence (EL) spectra of the devices, a strong ligand-centered emission and narrow bands arising from the {sup 4}G{sub 5/2}→{sup 6}H{sub J} transitions (J=7/2, 9/2, and 11/2) of the samarium ion were observed for the complexes. The electroluminescent spectra of the samarium complexes were red-shifted as compared with the PVK:PBD blend. We believe that the electroluminescence performance of OLED devices based on samarium complexes relies on overlaps between the absorption of the samarium compounds and the emission of PVK:PBD. This revealed that it is possible to evaluate the electroluminescence performance of the samarium compounds-doped OLED devices based on the emission of PVK:PBD and the absorption of the dopants. - Highlights: • Four novel photoluminescence samarium complexes have been synthesized.

  2. Red emitting monolithic dual wavelength DBR diode lasers for shifted excitation Raman difference spectroscopy

    Science.gov (United States)

    Sumpf, B.; Maiwald, M.; Müller, A.; Bugge, F.; Fricke, J.; Ressel, P.; Pohl, J.; Erbert, G.; Tränkle, G.

    2014-02-01

    Raman lines are often obscured by background light or fluorescence especially when investigating biological samples or samples containing impurities. Shifted excitation Raman difference spectroscopy (SERDS) is a technique to overcome this. By exciting the sample with two slightly shifted wavelengths, it is possible to separate the Raman lines and distortions. In this paper, monolithic dual wavelength DBR diode lasers meeting the demands of Raman spectroscopy and SERDS will be presented. The wavelengths are stabilized and selected by using deeply-etched 10th order surface gratings with different periods manufactured using i-line wafer stepper lithography. Two possible resonator concepts, i.e. a mini-array of two parallel DBR RW-lasers and a Y-branch DBR laser, will be compared. Established excitation wavelengths for Raman spectroscopy at 671 nm and 785 nm are chosen. The total laser length is 3 mm; the ridge width is 2.2 μm for the 785 nm devices and 5 μm for the 671 nm lasers. The length of the DBR gratings is 500 μm. The devices at 671 nm reach output powers up to 100 mW having an emission width smaller than 12 pm (FWHM). The 785 nm lasers show output powers up to 200 mW and a narrow emission below 22 pm. For the dual wavelength lasers the spectral distance between the two excitation lines is about 0.5 nm as targeted. The power consumption at both wavelengths is below 1 W. These data proof that the devices are well suited for their application in portable Raman measurement systems such as handheld devices using SERDS.

  3. [Application of Cationic Aluminum Phthalocyanine, a Red-Emitting Fluorescent Probe, for Sensitive Quantitative Analysis of RNA at Nanogram Level].

    Science.gov (United States)

    Guo, Meng-lin; Yang, Hui-qing; Huang, Ping; Chen, Lin; Li, Dong-hui

    2016-03-01

    Tetrasubstituted trimethyl ammonium iodide aluminum phthalocyanine (TTMAAlPc), a positively charged phthalocyanine compound, is an emerging and potentially useful red-emitting fluorescence probe. The study showed that the fluorescence of TTMAAlPc could be quenched by RNA with high efficiency in weak alkaline media, and the degree of quenching has a linear relationship with RNA in a wide concentration range. The mechanism of quenching behavior of RNA on TTMAAlPc was discussed. It was attributed by the static interaction between RNA and TTMAAlPc, and the assembly of TTMAAlPc induced by RNA. Based on this new discovery, a novel method for quantitative determination of RNA at nanogram level has been established. The factors, including the pH of medium, buffer system, reaction time, reaction temperature, the usage of TTMAAlPc as well as the interferences, which affected the determination, were investigated and discussed. Under optimum conditions, the linear range of the calibration curve was 7.71-1 705.57 ng x mL(-1). The detection limit for RNA was 1.55 ng x mL(-1). This method has been applied to the analysis of practical samples with satisfied results. The constructed method is of high sensitivity and has a wide linear range, it also showed strong ability in the tolerance of foreign substances from anions, cations, surfactants and vitamins, all of which are common interferences encountered in the determination of RNA. Besides, it is the first report that the fluorescence quantum yield of TTMAAlPc has been measured at different pH by reference method in this work. The achieved data indicated that the fluorescence quantum yield of TTMAAlPc is larger than 20% and it keeps constant in a wide range of acidity, implying that TTMAAlPc is a high-quality red-emitting fluorescence probe, it has great potential for practical applications, thus is worthy of further study. This work expands the application of phthalocyanine compound in analytical sciences.

  4. DC and AC electroluminescence in silicon nanoparticles embedded in silicon-rich oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Sanchez, A; Aceves-Mijares, M [INAOE, Electronics Department, Apartado 51, Puebla, 72000 (Mexico); Barreto, J; DomInguez, C [Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Barcelona (Spain); Peralvarez, M; Garrido, B [EME, Departament d' Electronica, Universitat de Barcelona, MartI i Franques 1, 08028 Barcelona (Spain); Luna-Lopez, J A, E-mail: amorales@inaoep.mx [CIDS-BUAP, Apartado 1651, Puebla, Pue, 72000 (Mexico)

    2010-02-26

    Electroluminescent properties of silicon-rich oxide (SRO) films were studied using metal oxide semiconductor-(MOS)-like devices. Thin SRO films with 4 at.% of silicon excess were deposited by low pressure chemical vapour deposition followed by a thermal annealing at 1100 deg. C. Intense continuous visible and infrared luminescence has been observed when devices are reversely and forwardly bias, respectively. After an electrical stress, the continuous electroluminescence (EL) is quenched but devices show strong field-effect EL with pulsed polarization. A model based on conductive paths-across the SRO film- has been proposed to explain the EL behaviour in these devices.

  5. Liquid crystalline networks for electroluminescent displays

    CERN Document Server

    Contoret, A E A

    2001-01-01

    This work presents the first low molar mass organic electroluminescent (EL) material to form a nematic glass and then emit plane-polarised light from the vitrified state on application of an electric field. Photocrosslinkable molecules are also discussed which form insoluble films on illumination with ultra-violet light. This approach combines the ease of deposition of small molecules with the robustness and stability of polymers, allowing simple fabrication of multi-layer EL devices and photo-patterning. A range of conjugated low molar-mass molecules are considered, containing the anthracene, perylene and fluorene cores, with the aims of producing a general recipe for efficient EL, based on ordered, stable nematics at room temperature. Many physical properties are compared and molecular mechanics modeling is used to represent molecular geometries. An acrylate and several diene photo-polymerisable derivatives of the fluorenes undergo photo-crosslinking. Infrared and photoluminescence spectroscopy is used to e...

  6. Surfactants induced release of a red emitting dye from the nanocavity of a molecular container: A spectroscopic and calorimetric study.

    Science.gov (United States)

    Ahmed, Sayeed Ashique; Chatterjee, Aninda; Maity, Banibrata; Seth, Debabrata

    2016-08-01

    Supramolecular interaction of a red emitting dye Nile blue A (NBA) with Cucurbit[7]uril (CB7) in aqueous solution was studied and the release of the dye from the hydrophobic cavity of CB7 was reported. To investigate the supramolecular host-guest complex formation and release of dye, we have used the steady state absorption, fluorescence and time resolved fluorescence emission spectroscopy, (1)H NMR spectroscopy and isothermal titration calorimetry (ITC). The spectral properties of NBA were changed in the presence of CB7. The change in spectral features of NBA in presence of CB7 indicates the formation of supramolecular host-guest complexes. By using the SED equation the diameter of the complex was estimated. The complex formation further affirmed by the (1)H NMR study. Upfield and downfield shifts of the protons of NBA was observed in both the aliphatic and aromatic region. From the ITC measurement, we have drawn up the forces involved for the complexation of NBA with CB7. We have studied the release of NBA from the hydrophobic cavity of CB7 by using ionic, neutral surfactants and ionic liquid with the help of spectroscopic and calorimetric techniques. It is observed that on addition of SDS and ionic liquid (

  7. ZnB2O4:Bi3+,Eu3+:a highly efficient, red-emitting phosphor.

    Science.gov (United States)

    Liu, Wei-Ren; Lin, Chun Che; Chiu, Yi-Chen; Yeh, Yao-Tsung; Jang, Shyue-Ming; Liu, Ru-Shi

    2010-02-01

    The novel red phosphor of Eu(3+)-Bi(3+) co-activated ZnB(2)O(4) was prepared by a solid-state reaction. The composition-optimized (Zn(0.9)Eu(0.1))B(2)O(4) phosphor exhibits a dominant emission peak at 610 nm ((5)D(0)-(7)F(2)) with CIE coordinates of (0.63, 0.36) under the excitation at 393 nm. By co-doping Bi(3+) ions in ZnB(2)O(4):Eu(3+), the emission intensity and quantum efficiency can be efficiently enhanced by an increment of 14% and 6%, respectively. The luminescence performance and thermal stability of (Zn(0.8)Bi(0.1)Eu(0.1))B(2)O(4) phosphor were found to be superior to that of the commodity phosphor, La(2)O(2)S:Eu(3+). The red-emitting borate phosphor may be potentially useful in the fabrication of white light-emitting diodes (LEDs).

  8. Luminescence properties of a novel red-emitting phosphor LaBMO6: Pr3+ (M = W, Mo)

    Science.gov (United States)

    Xiong, F. B.; Lin, H. F.; Ma, Z.; Wang, Y. P.; Lin, H. Y.; Meng, X. G.; Shen, H. X.; Zhu, W. Z.

    2017-04-01

    A novel blue InGaN-chip-based red-emitting phosphor Pr3+: LaBMO6 (M = W, Mo) in pure phase were synthesized via conventional solid-state reaction in air and the photoluminescence properties of the phosphor were investigated for the application in white LEDs. The as-synthesized phosphors were characterized by the X-ray diffraction; diffuse reflection spectra, photoluminescence excitation and emission spectra, the Commission International de L'Eclairage (CIE) chromaticity coordinates and temperature-dependent emission spectra. Orangish red emission band around 575-625 nm was observed in Pr3+-doped LaBMO6 (M = W, Mo) upon 445 nm excitation. Fluorescence concentration quenching in Pr3+-doped LaBMoO6 were observed and the critical distance between Pr3+ ions for energy transfer was calculated to be 8.369 nm. The CIE chromaticity coordinates of Pr3+-doped LaBMoO6 were located in the red spectral region and the temperature-dependent luminescence spectra indicated that Pr3+-doped LaBMoO6 show good thermal stability. All results demonstrated the developed Pr3+-doped LaBMO6 (M = W, Mo) was a novel red phosphor.

  9. β-Zn3BPO7:Mn2+: A novel rare-earth-free possible deep-red emitting phosphor

    Science.gov (United States)

    Han, Bing; Li, Pengju; Zhang, Jie; Jin, Lin; Luo, Wen; Shi, Hengzhen

    2015-04-01

    Novel rare-earth-free deep-red emitting phosphors, β-Zn3(1-x)Mn3xBPO7, were prepared successfully by high temperature solid-state reaction and their photoluminescence properties were investigated. The excitation spectrum consists of a broad excitation band peaking at 255 nm and a group of line-shaped excitation peaks around 350 nm and 500 nm, which can be attributed to the charge transfer transition in Mn2+-O2- bonds and the inner d-d electron transitions of Mn2+ ion, respectively. The emission bands are due to 4T1(4G) → 6A1(6S) transition of the Mn2+ ion and there exists efficient energy transfer from charge transfer state of Mn2+-O2- bonds to Mn2+ ions. The dependence of emission wavelength on Mn2+ concentration is studied. The decay curve of Mn2+ ions luminescence in β-Zn3BPO7:Mn2+ is also measured.

  10. Dual-color bioluminescence imaging assay using green- and red-emitting beetle luciferases at subcellular resolution.

    Science.gov (United States)

    Yasunaga, Mayu; Nakajima, Yoshihiro; Ohmiya, Yoshihiro

    2014-09-01

    Bioluminescence imaging is widely used to monitor cellular events, including gene expression in vivo and in vitro. Moreover, recent advances in luciferase technology have made possible imaging at the single-cell level. To improve the bioluminescence imaging system, we have developed a dual-color imaging system in which the green-emitting luciferase from a Brazilian click beetle (Emerald Luc, ELuc) and the red-emitting luciferase from a railroad worm (Stable Luciferase Red, SLR) were used as reporters, which were localized to the peroxisome and the nucleus, respectively. We clearly captured simultaneously the subcellular localization of ELuc in the peroxisome and SLR in the nucleus of a single cell using a high-magnification objective lens with 3-min exposure time without binning using a combination of optical filters. Furthermore, to apply this system to quantitative time-lapse imaging, the activation of nuclear factor triggered by tumor necrosis factor α was measured using nuclear-targeted SLR and peroxisome-targeted ELuc as the test and internal control reporters, respectively. We successfully quantified the kinetics of activation of nuclear factor κB using nuclear-targeted SLR and the transcriptional change of the internal control promoter using peroxisome-targeted ELuc simultaneously in a single cell, and showed that the activation kinetics, including activation rate and amplitude, differed among cells. The results demonstrated that this imaging system can visualize the subcellular localization of reporters and track the expressions of two genes simultaneously at subcellular resolution.

  11. High color rendering white light-emitting-diode illuminator using the red-emitting Eu(2+)-activated CaZnOS phosphors excited by blue LED.

    Science.gov (United States)

    Kuo, Te-Wen; Liu, Wei-Ren; Chen, Teng-Ming

    2010-04-12

    A red phosphor CaZnOS:Eu(2+) was synthesized by solid state reaction and has been evaluated as a candidate for white LEDs. For this material, the XRD, PL, PL excitation (PLE) and diffuse reflection spectra have also been investigated. CaZnOS:Eu(2+) reveals a broad absorption band and good color purity. By utilizing a mixture of red-emitting CaZnOS:Eu(2+), green-emitting (Ba,Sr)(2)SiO(4):Eu(2+) and yellow-emitting Y(3)Al(5)O(12):Ce(3+) as light converters, an intense white InGaN-based blue-LED (~460 nm) was fabricated to exhibit a high color-rendering index Ra of 85 at a correlated color temperature of 4870 K. Based on the results, we are currently evaluating the potential application of CaZnOS:Eu(2+) as a red-emitting blue-chip convertible phosphor.

  12. A New Distyrylarylene Derivative Used as Blue Light Emitter in Organic Electroluminescent Device%一种新型联苯乙烯衍生物--蓝色有机电致发光材料

    Institute of Scientific and Technical Information of China (English)

    郑新友; 朱文清; 吴有智; 张步新; 蒋雪茵; 张志林; 许少鸿

    2002-01-01

    A new blue electroluminescent material, distyrylarylene(DSA) derivative, 4,4'-bis[2,2-(1-naphthyl,phenyl)vinyl]-l,l'-biphenyl(NPVBi) is designed and synthesized. The DSA derivative shows better thermal stability because of its high glass transition temperature. A blue organic light emitting diode(OLED) with the structure ITO/TPD/NPVBi/Alq/LiF/A1 is studied. The electroluminescent(EL) spectrum of the OLED exhibits that light emission originates from NPVBi with a peak at 460 nm, its Commission Internationale de l' Eclairage(CIE) color coordinates are x = 0.16, y = 0.15, and showing independence of CIE color coordinates on current density. The new DSA derivative is expectable as a new candidate for blue light emitter in OLEDs.

  13. Synthesis and photoluminescence properties of novel red-emitting Ca14Mg2(SiO4)8:Eu3+/Sm3+ phosphors

    Institute of Scientific and Technical Information of China (English)

    孙文芝; 庞然; 李海锋; 贾永雷; 张粟; 姜丽宏; 李成宇

    2015-01-01

    Novel red-emitting Eu3+, Sm3+ singly doped and co-doped Ca14Mg2(SiO4)8 phosphors were prepared by conventional solid- state reaction. Powder X-ray diffraction patterns were employed to confirm phase purity. Ca14Mg2(SiO4)8:Eu3+ phosphors exhibited intense red emission under 394 nm excitation and Ca14Mg2(SiO4)8:Sm3+ phosphors, excited at 405 nm, also showed strong red emit-ting at 602 nm. The concentration quenching mechanism of Ca14Mg2(SiO4)8:Eu3+ was dipole-dipole interaction, while that of Ca14Mg2(SiO4)8:Sm3+ was energy migration among nearest neighbor ions. The results indicated that Ca14Mg2(SiO4)8:Eu3+ and Ca14Mg2(SiO4)8:Sm3+ were promising red-emitting phosphors for WLEDs. Meanwhile, the effect of co-doping Sm3+ ions on photo-luminescence properties of Ca14Mg2(SiO4)8:Eu3+ was studied and energy transfer from Sm3+ to Eu3+ was discovered in Eu3+, Sm3+ co-doped phosphors.

  14. Europium doped di-calcium magnesium di-silicate orange–red emitting phosphor by solid state reaction method

    Directory of Open Access Journals (Sweden)

    Ishwar Prasad Sahu

    2015-07-01

    Full Text Available A new orange–red europium doped di-calcium magnesium di-silicate (Ca2MgSi2O7:Eu3+ phosphor was prepared by the traditional high temperature solid state reaction method. The prepared Ca2MgSi2O7:Eu3+ phosphor was characterized by X-ray diffractometer (XRD, transmission electron microscopy (TEM, field emission scanning electron microscopy (FESEM with energy dispersive x-ray spectroscopy (EDX, fourier transform infrared spectra (FTIR, photoluminescence (PL and decay characteristics. The phase structure of sintered phosphor was akermanite type structure which belongs to the tetragonal crystallography with space group P4¯21m, this structure is a member of the melilite group and forms a layered compound. The chemical composition of the sintered Ca2MgSi2O7:Eu3+ phosphor was confirmed by EDX spectra. The PL spectra indicate that Ca2MgSi2O7:Eu3+ can be excited effectively by near ultraviolet (NUV light and exhibit bright orange–red emission with excellent color stability. The fluorescence lifetime of Ca2MgSi2O7:Eu3+ phosphor was found to be 28.47 ms. CIE color coordinates of Ca2MgSi2O7:Eu3+ phosphor is suitable as orange-red light emitting phosphor with a CIE value of (X = 0.5554, Y = 0.4397. Therefore, it is considered to be a new promising orange–red emitting phosphor for white light emitting diode (LED application.

  15. Electroluminescent, polycrystalline cadmium selenide nanowire arrays.

    Science.gov (United States)

    Ayvazian, Talin; van der Veer, Wytze E; Xing, Wendong; Yan, Wenbo; Penner, Reginald M

    2013-10-22

    Electroluminescence (EL) from nanocrystalline CdSe (nc-CdSe) nanowire arrays is reported. The n-type, nc-CdSe nanowires, 400-450 nm in width and 60 nm in thickness, were synthesized using lithographically patterned nanowire electrodeposition, and metal-semiconductor-metal (M-S-M) devices were prepared by the evaporation of two gold contacts spaced by either 0.6 or 5 μm. These M-S-M devices showed symmetrical current voltage curves characterized by currents that increased exponentially with applied voltage bias. As the applied biased was increased, an increasing number of nanowires within the array "turned on", culminating in EL emission from 30 to 50% of these nanowires at applied voltages of 25-30 V. The spectrum of the emitted light was broad and centered at 770 nm, close to the 1.74 eV (712 nm) band gap of CdSe. EL light emission occurred with an external quantum efficiency of 4 × 10(-6) for devices with a 0.60 μm gap between the gold contacts and 0.5 × 10(-6) for a 5 μm gap-values similar to those reported for M-S-M devices constructed from single-crystalline CdSe nanowires. Kelvin probe force microscopy of 5 μm nc-CdSe nanowire arrays showed pronounced electric fields at the gold electrical contacts, coinciding with the location of strongest EL light emission in these devices. This electric field is implicated in the Poole-Frenkel minority carrier emission and recombination mechanism proposed to account for EL light emission in most of the devices that were investigated.

  16. Organic solution-processible electroluminescent molecular glasses for non-doped standard red OLEDs with electrically stable chromaticity

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Xiaoman; Zuo, Weiwei; Liu, Yingliang, E-mail: liuylxn@sohu.com; Zhang, Zhenru; Zeng, Cen; Xu, Shengang; Cao, Shaokui, E-mail: caoshaokui@zzu.edu.cn

    2015-10-15

    Highlights: • The D–A–D electroluminescent molecular glasses are synthesized. • Non-doped red electroluminescent film is fabricated by spin-coating. • Red OLED shows stable wavelength, luminous efficiency and chromaticity. • CIE1931 coordinate is in accord with standard red light in PAL system. - Abstract: Organic light-emitting molecular glasses (OEMGs) are synthesized through the introduction of nonplanar donor and branched aliphatic chain into electroluminescent emitters. The target OEMGs are characterized by {sup 1}H NMR, {sup 13}C NMR, IR, UV–vis and fluorescent spectra as well as elemental analysis, TG and DSC. The results indicated that the optical, electrochemical and electroluminescent properties of OEMGs are adjusted successfully by the replacement of electron-donating group. The non-doped OLED device with a standard red electroluminescent emission is achieved by spin-coating the THF solution of OEMG with a triphenylamine moiety. This non-doped red OLED device takes on an electrically stable electroluminescent performance, including the stable maximum electroluminescent wavelength of 640 nm, the stable luminous efficiency of 2.4 cd/A and the stable CIE1931 coordinate of (x, y) = (0.64, 0.35), which is basically in accord with the CIE1931 coordinate (x, y) = (0.64, 0.33) of standard red light in PAL system.

  17. STED microscopy detects and quantifies liquid phase separation in lipid membranes using a new far-red emitting fluorescent phosphoglycerolipid analogue.

    Science.gov (United States)

    Honigmann, Alf; Mueller, Veronika; Hell, Stefan W; Eggeling, Christian

    2013-01-01

    We have developed a bright, photostable, and far-red emitting fluorescent phosphoglycerolipid analogue to probe diffusion characteristics of lipids in membranes. The lipid analogue consists of a saturated (C18) phosphoethanolamine and a hydrophilic far-red emitting fluorescent dye (KK114) that is tethered to the head group by a long polyethylenglycol linker. In contrast to reported far-red emitting fluorescent lipid analogues, this one partitions predominantly into liquid ordered domains of phase-separated ternary bilayers. We performed fluorescence correlation spectroscopy with a super-resolution STED microscope (STED-FCS) to measure the lateral diffusion of the new lipid analogue in the liquid ordered (Lo) and disordered (Ld) phase. On a mica support, we observed micrometer large phases and found that the lipid analogue diffuses freely on all tested spatial scales (40-250 nm) in both the Ld and Lo phase with diffusion coefficients of 1.8 microm2 s(-1) and 0.7 microm2 s(-1) respectively. This indicates that the tight molecular packing of the Lo phase mainly slows down the diffusion rather than causing anomalous sub-diffusion. The same ternary mixture deposited on acid-cleaned glass forms Lo nanodomains of analogue into the nano-domains, where diffusion is slowed down. Our results suggest that STED-FCS in combination with a Lo-partitioning fluorescent lipid analogue can directly probe the presence of Lo nano-domains, which in the future should allow the study of potential lipid rafts in live-cell membranes.

  18. Red emitting phosphors of Eu{sup 3+} doped Na{sub 2}Ln{sub 2}Ti{sub 3}O{sub 10} (Ln = Gd, Y) for white light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Niumiao [National Key Laboratory of Photoelectric Technology and Functional Materials Culture Base in Shaanxi Province, National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069 (China); Guo, Chongfeng, E-mail: guocf@nwu.edu.cn [National Key Laboratory of Photoelectric Technology and Functional Materials Culture Base in Shaanxi Province, National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069 (China); Yin, Luqiao; Zhang, Jianhua [Key Laboratory of Advanced Display and System Applications (Shanghai University), Ministry of Education, Shanghai 200072 (China); Wu, Mingmei, E-mail: ceswmm@mail.sysu.edu.cn [School of Chemistry and Chemical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275 (China)

    2015-06-25

    Highlights: • Layered red phosphors Na{sub 2}Ln{sub 2}Ti{sub 3}O{sub 10} (Ln = Gd, Y):Eu{sup 3+} were prepared. • The synthesis parameters of phosphors were optimized. • PL and thermal stability of the samples were investigated. • LED devices were also fabricated including the present red phosphor. - Abstract: A series of Eu{sup 3+} doped Na{sub 2}Ln{sub 2}Ti{sub 3}O{sub 10} (Ln = Gd, Y) red-emitting phosphors for application in ultraviolet based light emitting diodes (LEDs) were successfully synthesized by a modified sol–gel method. Their structure and luminescent properties were characterized by powder X-ray diffraction (XRD), photoluminescence excitation (PLE) and emission (PL) spectra and absorption spectra, according to these results the optimal compositions and synthesis parameters were determined. In addition, the thermal stabilities of the phosphors were investigated according to the temperature-dependent PL spectra. The red and white-LEDs (W-LEDs) comprising the Na{sub 2}Ln{sub 2}Ti{sub 3}O{sub 10}:Eu{sup 3+} (Ln = Gd, Y) red emitting phosphors were fabricated with a near-ultraviolet (n-UV) chip. In comparison with Na{sub 2}Y{sub 1.4}Eu{sub 0.6}Ti{sub 3}O{sub 10}, the Na{sub 2}Gd{sub 0.6}Eu{sub 1.4}Ti{sub 3}O{sub 10} phosphor offers higher brightness, quantum efficiency, and excellent thermal stability. W-LEDs comprising Na{sub 2}Gd{sub 0.6}Eu{sub 1.4}Ti{sub 3}O{sub 10} showed bright white emission with a color rendering index (Ra) of 82, a color temperature of 2151 K, and Commission Internationale de I’Eclairage (CIE) color coordinates of (0.34, 0.37). The phosphor Na{sub 2}Gd{sub 0.6}Eu{sub 1.4}Ti{sub 3}O{sub 10} is more suitable candidate for application in LEDs.

  19. Electroluminescence in BaFCl single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Somaiah, K.; Paracchini, C.

    1987-06-01

    A study of electroluminescence in BaFCl single crystals as a function of temperature is reported. At an excitation voltage of 5 kV, electroluminescent intensity, which is feeble at room temperature, is shown to increase with decreasing temperature. The increase is rapid between 250 K and 175 K and levels off as 80 K is approached. A tentative explanation, in the light of x-ray induced luminescence, is offered. (U.K.).

  20. Materials for Powder-Based AC-Electroluminescence

    Directory of Open Access Journals (Sweden)

    Hubert Schulze Dieckhoff

    2010-02-01

    Full Text Available At present, thick film (powder based alternating current electroluminescence (AC-EL is the only technology available for the fabrication of large area, laterally structured and coloured light sources by simple printing techniques. Substrates for printing may be based on flexible polymers or glass, so the final devices can take up a huge variety of shapes. After an introduction of the underlying physics and chemistry, the review highlights the technical progress behind this development, concentrating on luminescent and dielectric materials used. Limitations of the available materials as well as room for further improvement are also discussed.

  1. Temperature variable luminescence and color tuning of Eu2+/Mn2+-codoped strontium magnesium phosphates as promising red-emitting phosphors for light emitting diodes.

    Science.gov (United States)

    Yun, Young Jun; Lim, Hee Jeong; Park, Jin-Seong; Wu, Mihye; Jung, Ha-Kyun; Choi, Sungho

    2015-01-07

    Eu(2+) and Mn(2+) codoped violet-/red-emitting strontium magnesium phosphates, SrMgP2O7, SrMg2P2O8 and Sr2Mg3P4O15, were prepared and their emission properties, especially for color tuning with temperature variable luminescence, were investigated. Simply by changing the host composition of the SrO-MgO-P2O5 ternary system, we can control the Eu(2+)-sensitized Mn(2+) emission efficiency as well as the thermal quenching of incorporated activators. We can realize that the overall luminescence behavior is induced by the Mn(2+) center positioned at different coordination states with intermixed Sr(2+)/Mg(2+) sites in various hosts, which resulted in widely tunable colors from violet-red through orange-red to pure red. Finally, bright and stable reddish color illuminated light emitting diodes (LEDs) can be obtained by combining the proposed phosphates with ultraviolet LEDs, demonstrating the potential red-emitting phosphors for ultraviolet-pumped phosphor converted white-LEDs.

  2. Novel Mechano-Luminescent Sensors Based on Piezoelectric/Electroluminescent Composites

    Directory of Open Access Journals (Sweden)

    Yunzhang Fang

    2011-04-01

    Full Text Available A high-sensitivity mechano-luminescent sensor was fabricated on the basis of piezoelectric/electroluminescent composites. The working principle of this mechano-luminescent sensor was elucidated by analyzing the relationship between the piezoelectric-induced charges and the electroluminescent effects. When a stress is applied on the piezoelectric layer, electrical charges will be induced at both the top and bottom sides of the piezoelectric layer. The induced electrical charges will lead to a light output from the electroluminescent layer, thus producing a mechano-luminescence effect. By increasing the vibration strength or frequency applied, the mechano-luminescence output can be obviously enhanced. Mechano-luminescence sensors have potential in smart stress-to-light devices, such as foot-stress-distribution-diagnosis systems and dynamic-load-monitors for bridge hanging cables.

  3. Dye linked conjugated homopolymers: using conjugated polymer electroluminescence to optically pump porphyrin-dye emission

    DEFF Research Database (Denmark)

    Nielsen, K.T.; Spanggaard, H.; Krebs, Frederik C

    2004-01-01

    . Electroluminescent devices of the homopolymer itself and of the zinc-porphyrin containing polymer were prepared and the nature of the electroluminescence was characterized. The homopolymer segments were found to optically pump the emission of the zinc-porphyrin dye moities. The homopolymer exhibits blue......Zinc-porphyrin dye molecules were incorporated into the backbone of a conjugated polymer material by a method, which allowed for the incorporation of only one zinc-porphyrin dye molecule into the backbone of each conjugated polymer molecule. The electronic properties of the homopolymer were......-green emission and the zinc-porphyrin linked homopolymers emit near-infrared/infrared light. This was demonstrated to be due to electroluminescence pumping of the zinc-porphyrin moieties that were covalently linked to homopolymer material. When only one zinc-porphyrin dye was incorporated into the backbone...

  4. Factors affecting afterglow properties of red-emitting phosphor MgSiO3∶Mn2+,Nd3+ for luminescent fiber

    Institute of Scientific and Technical Information of China (English)

    ZHU Yanan; GE Mingqiao

    2013-01-01

    With stable physical properties,the rare-earth silicate phosphor of MgSiO3∶Mn2+,Nd3+ is one of the suitable luminescent materials used in preparing functional fibers.In order to promote the afterglow properties of red-emitting phosphors,we prepared it by means of solid-state reaction,and the effect of manufacturing elements including H3BO3 and environmental factor of calcining temperature,type of flux on its luminescence property were investigated through evaluating their afterglow properties.The results showed that with the concentration of Nd3+ increasing,the amounts of H3BO3 doping and calcining temperature,the afterglow time and initial brightness of the rare-earth silicate phosphor increased and then decreased gradually.The afterglow properties of different flux concentration were different from one to another as:H3BO3>Na+>K+>No flux.

  5. Synthesis, electronic structure and luminescent properties of a new red-emitting phosphor GdBiW2O9:Eu3+

    Science.gov (United States)

    Xie, Zhi; Zhou, Weiwei; Zhao, Wang; Zhang, Hao; Hu, Qichang; Xu, Xuee

    2017-10-01

    Red phosphor of GdBiW2O9:Eu3+ was prepared by solid-state reaction method. The phase purity and structure of the samples were characterized by XRD. The electronic structures of GdBiW2O9 host were estimated by DFT calculation. The PLE and PL spectra were also investigated. The optimal luminescent properties of GdBiW2O9:Eu3+ phosphors were obtained at 900 °C with 40 mol% of Eu3+ concentration. The phosphors can be excited efficiently by 396 nm NUV light and emit intense red light peaking at 618 nm. The results indicate GdBiW2O9:Eu3+ can act as a potential red-emitting phosphor for LEDs application.

  6. Red-emitting phosphor Rb2TiF6:Mn4+ with high thermal-quenching resistance for wide color-gamut white light-emitting diodes

    Science.gov (United States)

    Wang, Zhengliang; Yang, Zhiyu; Tan, Huiying; Brik, Mikhail G.; Zhou, Qiang; Chen, Guo; Liang, Hongbin

    2017-10-01

    Red-emitting phosphor plays a critical role in improving performance of the phosphor-converted white light-emitting diodes (pc-WLEDs). Herein, a red-emitting phosphor, Rb2TiF6:Mn4+, was synthesized via the ion exchange method under mild condition. The crystal structure and morphology were characterized by the powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The Rietveld refinements of Rb2TiF6:Mn4+ indicate that this sample is of single phase with hexagonal crystal structure. The as-prepared Rb2TiF6:Mn4+ has sharp red emissions with broad excitation band at ∼460 nm. The luminescent behavior of Mn4+ was discussed in detail. The temperature-dependent emission spectra of Rb2TiF6:Mn4+ indicate that this phosphor shares high thermal quenching resistance and excellent color stability. A series of WLEDs with tunable color rendering index and color temperature were fabricated by combining commercial Y3Al5O12:Ce3+ and Rb2TiF6:Mn4+ on blue GaN-LED chips. With the addition of Rb2TiF6:Mn4+, WLED with wide gamut was obtained with low color temperature (3123 K), high color rendering index (91.5) and high luminous efficacy (187.9 lm/W). These findings show this phosphor could be a promising commercial red phosphor in wide color-gamut WLEDs.

  7. The synthesis and luminescence properties of a novel red-emitting phosphor: Eu3+-doped Ca9La(PO4)7

    Science.gov (United States)

    Liang, Zehui; Mu, Zhongfei; Wang, Qiang; Zhu, Daoyun; Wu, Fugen

    2017-10-01

    A series of novel red-emitting phosphors Ca9La1- x (PO4)7: xEu3+ were synthesized by high-temperature solid state reactions. The photoluminescence excitation and photoluminescence spectra of these phosphors were investigated in detail. O2--Eu3+ charge transfer band peaking at about 261 nm is dominant in the PLE spectra of Eu3+-doped Ca9La(PO4)7, indicating that the phosphors are suitable for tricolor fluorescent lamps. The phosphors also show a good absorption in near ultraviolet (around 395 nm) and blue (around 465 nm) spectral region, which indicates that it can be pumped with NUV and blue chips for white light-emitting diodes. The transition of 5D0 → 7F2 of Eu3+ in this lattice can emit bright red light. Ca9La(PO4)7 could accommodate a large amount of Eu3+ with an optimal concentration of 60 mol%. The dipole-dipole interaction between Eu3+ is the dominant mechanism for concentration quenching of Eu3+. The calculated color coordinates lie in red region ( x = 0.64, y = 0.36), which is close to Y2O3: 0.05Eu3+ ( x = 0.65, y = 0.34). The integral emission intensity of Ca9La0.4(PO4)7: 0.6Eu3+ is 1.9 times stronger than that of widely used commercial red phosphor Y2O3: 0.05Eu3+. All these results indicate that Eu3+-doped Ca9La(PO4)7 is a promising red-emitting phosphor which can be used in tricolor fluorescent lamps and white light-emitting diodes.

  8. Organic Nonlinear Optical Materials and Devices Symposium Held in San Francisco, California on 6-9 April 1999. Volume 561

    Science.gov (United States)

    electroluminescent materials and devices for displays. The symposium highlighted developments in materials chemistry and physics relevant to such devices and struck a balance between basic science and technology.

  9. Far-infrared electroluminescence characteristics of an InGaP/InGaAs/Ge triple-junction solar cell under forward DC bias

    Institute of Scientific and Technical Information of China (English)

    Xiao Wenbo; He Xingdao; Gao Yiqing; Zhang Zhimin; Liu Jiangtao

    2012-01-01

    The far-infrared electroluminescence characteristics of an InGaP/InGaAs/Ge solar cell are investigated under forward DC bias at room temperature in dark conditions.An electroluminescence viewgraph shows the clear device structures,and the electroluminescence intensity is shown to increases exponentially with bias voltage and linearly with bias current.The results can be interpreted using an equivalent circuit of a single ideal diode model for triple-junction solar cells.The good fit between the measured and calculated data proves the above conclusions.This work is of guiding significance for current solar cell testing and research.

  10. Quantitative description of electroluminescence images of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Seeland, Marco; Roesch, Roland; Hoppe, Harald [Institute of Physics, Ilmenau University of Technology, Ilmenau (Germany)

    2011-07-01

    We present a quantitative description of electroluminescence images obtained on organic solar cells, which is based on a device modeling employing a network of interconnected microdiodes. The equivalent circuit network model takes interface and bulk resistances as well as the sheet resistance of the transparent electrode into account. The application of this model allows direct calculation of the lateral current and voltage distribution as well as determination of internal resistances and the sheet resistance of the higher resistive electrode. Furthermore, we have extended the microdiode-model to also describe and predict current voltage characteristics for devices under illumination. Finally the local nature of this description enables important conclusions concerning the geometry dependent performance of thin film solar cells.

  11. Electroluminescence Spectrum Shift with Switching Behaviour of Diamond Thin Films

    Institute of Scientific and Technical Information of China (English)

    王小平; 王丽军; 张启仁; 姚宁; 张兵临

    2003-01-01

    We report a special phenomenon on switching behaviour and the electroluminescence (EL) spectrum shift of doped diamond thin films. Nitrogen and cerium doped diamond thin films were deposited on a silicon substrate by microwave plasma-assisted chemical vapour deposition system and other special techniques. An EL device with a three-layer structure of nitrogen doped diamond/cerium doped diamond/SiO2 thin films was made. The EL device was driven by a direct-current power supply. Its EL character has been investigated, and a switching behaviour was observed. The EL light emission colour of diamond films changes from yellow (590nm) to blue (454 nm) while the switching behaviour appears.

  12. Synthesis and Application of a Full Water-Soluble and Red-Emitting Chemosensor Based on Phenoxazinium for Copper(ll) Ions%Synthesis and Application of a Full Water-Soluble and Red-Emitting Chemosensor Based on Phenoxazinium for Copper(ll) Ions

    Institute of Scientific and Technical Information of China (English)

    闫保龙; 孙如; 葛健锋; 许玉杰; 张欠欠; 杨学波; 路建美

    2012-01-01

    A phenoxazinium-based chemosensor (1) bearing di(2-picolyl)amine unit was successfully synthesized. The result shows that it is a red-emitting and full water-soluble chemosensor for the selective detection of Cu2+ in pure water. The fluorescence on-off mechanism was studied by ab initio calculations. To confirm the suitability of 1 for biological applications, it was employed in the fluorescence detection of the intracellular Cu2+ with cultured KB cells. The results indicated that 1 had good membrane permeability and could be useful for the fluorescence micro- scopic imaging.

  13. Prosress in long wavelength emission in fluorene-based electroluminescent blue materials

    Institute of Scientific and Technical Information of China (English)

    JIANG HongJi; WAN JunHua; HUANG Wei

    2008-01-01

    On account of the advantages of organic electroluminescent materials compared with their inorganic counterparts, the development of organic electroluminescent materials is one of the hot areas of the optoelectronic materials. Fluorene and its derivatives, which have an aromatic biphenyl structure with a wide energy gap in the backbones and high luminescent efficiency, have drawn much attention of material chemists and device physicists. However, one drawback of fluorene-based electroluminescent blue materials is that there is an occurrence of long wavelength emission after annealing the films in air or after operating organic light-emitting diodes for a long time. To clarify the origin of this long wavelength emission, the scientists at home and abroad have put forward all kinds of correlative explanations. Among the scientists, some thought it was caused by excimer-related species, while some others claimed that it was caused by the fluorenone of photooxdized fluorene. The corresponding solutions to this problem have also been proposed and the problem has been partially resolved in some degree. The present review summarizes and analyzes the progress made on the origin of long wavelength emission in fluorene-based electroluminescent blue materials at home and abroad in the past few years. Some issues to be addressed and hotspots to be further investigated are also presented and discussed.

  14. Progress in long wavelength emission in fluorene-based electroluminescent blue materials

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    On account of the advantages of organic electroluminescent materials compared with their inorganic counterparts,the development of organic electroluminescent materials is one of the hot areas of the optoelectronic materials.Fluorene and its derivatives,which have an aromatic biphenyl structure with a wide energy gap in the backbones and high luminescent efficiency,have drawn much attention of ma-terial chemists and device physicists.However,one drawback of fluorene-based electroluminescent blue materials is that there is an occurrence of long wavelength emission after annealing the films in air or after operating organic light-emitting diodes for a long time.To clarify the origin of this long wave-length emission,the scientists at home and abroad have put forward all kinds of correlative explana-tions.Among the scientists,some thought it was caused by excimer-related species,while some others claimed that it was caused by the fluorenone of photooxdized fluorene.The corresponding solutions to this problem have also been proposed and the problem has been partially resolved in some degree.The present review summarizes and analyzes the progress made on the origin of long wavelength emission in fluorene-based electroluminescent blue materials at home and abroad in the past few years.Some issues to be addressed and hotspots to be further investigated are also presented and discussed.

  15. OLED devices with internal outcoupling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jr., Jie Jerry; Sista, Srinivas Prasad; Shi, Xiaolei; Zhao, Ri-An; Chichak, Kelly Scott; Youmans, Jeffrey Michael; Janora, Kevin Henry; Turner, Larry Gene

    2016-12-06

    Optoelectronic devices with enhanced internal outcoupling include a substrate, an anode, a cathode, an electroluminescent layer, and an electron transporting layer comprising inorganic nanoparticles dispersed in an organic matrix.

  16. AC Electroluminescent Processes in Pr3+-Activated (Ba0.4Ca0.6TiO3 Diphase Polycrystals

    Directory of Open Access Journals (Sweden)

    Nan Gao

    2017-05-01

    Full Text Available We investigated the properties of alternating current (AC-driven electroluminescence from (Ba0.4Ca0.6TiO3:Pr3+ diphase polycrystal-based device. The results of crystal phases and micrographs, and the symmetrical dual emissions in one AC cycle, indicate the spontaneous formation of a dielectric/phosphor/dielectric sandwich microstructure in (Ba0.4Ca0.6TiO3:Pr3+. The electroluminescent device emits a red light of 617 nm, which is attributed to the 1D2-3H4 transition of Pr3+ in the phosphor phase. At a fixed AC frequency, the intensity of electroluminescence exhibits a steep enhancement when applying an increased driving electric field that is beyond a threshold. In a fixed driving electric field, the intensity of electroluminescence shows a rapid rise at low frequencies, but reaches saturation at high frequencies. Based on a double-injection model, we discussed systematically the electroluminescent processes in a whole cycle of AC electric field, which matched well with the experimental data. Our investigation is expected to expand our understanding of such a diphase electroluminescent device, thereby promoting their applications in lighting and displays.

  17. Optically active red-emitting Cu nanoclusters originating from complexation and redox reaction between copper(ii) and d/l-penicillamine

    Science.gov (United States)

    Long, Tengfei; Guo, Yanjia; Lin, Min; Yuan, Mengke; Liu, Zhongde; Huang, Chengzhi

    2016-05-01

    Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging.Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of

  18. Photoluminescence properties of a novel orange-red emitting Ba2CaZn2Si6O17:Sm3+ phosphor

    Institute of Scientific and Technical Information of China (English)

    G Annadurai; S Masilla Moses Kennedy; V Sivakumar

    2016-01-01

    Novel orange-red emitting Ba2Ca1–xZn2Si6O17:xSm3+(0.02≤x≤0.08) phosphors were synthesized using conventional solid-state reaction method under air atmosphere.The phase formation of the samples was characterized by powder X-ray diffraction patterns. Scanning electron microscopy (SEM) and photoluminescence properties were also investigated. The narrow excitation and emission spectra indicated the typical 4f-4f transitions of Sm3+. The dominant excitation line was around 405 nm attributed to6H5/2→4F7/2 and the emission spectrum consisted of four emission peaks at 562, 600, 647, and 708 nm corresponding to the various transi-tions4G5/2 to6HJ (J=5/2, 7/2, 9/2 and 11/2) of the Sm3+ ions in the same order. The strongest emission band located at 600 nm was at-tributed to4G5/2→6H7/2 transition of Sm3+, producing bright orange-red color emission. The optimal dopant concentration of Sm3+ ion in Ba2CaZn2Si6O17:xSm3+ phosphor was around 4 mol.% and the critical transfer distance (Rc) of Sm3+ was calculated to be 2.65 nm. Decay time varied with the Sm3+concentrations in Ba2CaZn2Si6O17 phosphors. In addition, the Commission International del’Eclairagethe (CIE) chromaticity coordinates of Ba2Ca0.96Zn2Si6O17:0.04Sm3+ phosphor was located in the orange-red region (0.547, 0.450) and the correlated color temperature (CCT) was 2543 K. The present results indicated that Sm3+ activated Ba2CaZn2Si6O17 phosphors may be used as an orange-red emitting phosphor for near-ultraviolet (n-UV) based white light emitting diodes (WLEDs) applications.

  19. Mechanism of hot electron electroluminescence in GaN-based transistors

    Science.gov (United States)

    Brazzini, Tommaso; Sun, Huarui; Sarti, Francesco; Pomeroy, James W.; Hodges, Chris; Gurioli, Massimo; Vinattieri, Anna; Uren, Michael J.; Kuball, Martin

    2016-11-01

    The nature of hot electron electroluminescence (EL) in AlGaN/GaN high electron mobility transistors is studied and attributed to Bremsstrahlung. The spectral distribution has been corrected, for the first time, for interference effects due to the multilayered device structure, and this was shown to be crucial for the correct interpretation of the data, avoiding artefacts in the spectrum and misinterpretation of the results. An analytical expression for the spectral distribution of emitted light is derived assuming Bremsstrahlung as the only origin and compared to the simplified exponential model for the high energy tail commonly used for electron temperature extraction: the electron temperature obtained results about 20% lower compared to the approximated exponential model. Comparison of EL intensity for devices from different wafers illustrated the dependence of EL intensity on the material quality. The polarization of electroluminescence also confirms Bremsstrahlung as the dominant origin of the light emitted, ruling out other possible main mechanisms.

  20. Electroluminescent Polymers and Carbon Nanotubes for Flat Panel Displays

    Institute of Scientific and Technical Information of China (English)

    Liming Dai; Limin Dong; Mei Gao; Shaoming Huang; Oddvar Johansen; Albert W.H.Mau,Zoran Vasic; Berthold Winkler; Yongyuang Yang

    2000-01-01

    polymeric light-emitting diodes(LEDs) with sufficient brightness. efficiencies, low driving voltages, and various interesting features have been reported. The relatively short device lifetime, however, still remains as a major problem to be solved before any commercial applications will be realized. In this regard,carbon nanotubes have recently been proposed as more robust electron field emitters for flat panel displays. We have synthesised large arrays of vertically aligned carbon nanotubes, from which micropatterns of the aligned nanotubes suitable for flat panel displays were fabricated on various substrates. In this paper, we summarise our work on the synthesis and microfabrication of electroluminescent polymers and carbon nanotubes for flat panel displays with reference to other complementary work as appropriate.

  1. Quantum Dots for Wide Color Gamut Displays from Photoluminescence to Electroluminescence

    Science.gov (United States)

    Kang, Yongyin; Song, Zhicheng; Jiang, Xiaofang; Yin, Xia; Fang, Long; Gao, Jing; Su, Yehua; Zhao, Fei

    2017-02-01

    Monodisperse quantum dots (QDs) were prepared by low-temperature process. The remarkable narrow emission peak of the QDs helps the liquid crystal displays (LCD) and electroluminescence displays (QD light-emitting diode, QLED) to generate wide color gamut performance. The range of the color gamut for QD light-converting device (QLCD) is controlled by both the QDs and color filters (CFs) in LCD, and for QLED, the optimized color gamut is dominated by QD materials.

  2. Synthesis and photoluminescence properties of LaAlO{sub 3}:Mn{sup 4+}, Na{sup +} deep red-emitting phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Renping; Ceng, Dong; Yu, Xiaoguang; Guo, Siling; Zheng, Guotai [Jinggangshan University, College of Mathematics and Physics, Ji' an (China); Liu, Pan [Jinggangshan University, Scientific Research Office, Ji' an (China)

    2016-04-15

    LaAlO{sub 3}:Mn{sup 4+} and LaAlO{sub 3}:Mn{sup 4+}, Na{sup +} deep red-emitting phosphors are synthesized by a solid-state reaction method in air. Their crystal structures, lifetimes, and luminescence properties are investigated, respectively. PLE spectrum monitored at 730 nm contains three PLE bands peaking at ∝276, 325, and 500 nm within the range 200-550 nm, and PL spectrum with excitation 325 nm exhibits two PL band peaks located at ∝703 and 730 nm owing to anti-stokes vibronic sidebands associated with the excited state {sup 2}E of Mn{sup 4+} ion and the {sup 2}E → {sup 4}A{sub 2} transition of Mn{sup 4+} ion, respectively. The optimal Mn{sup 4+} doping concentration is ∝0.8 mol%. Lifetime of LaAl{sub 0.992}O{sub 3}:0.8 %Mn{sup 4+} phosphor is ∝0.92 ms. Na{sup +} ion as charge compensator can improve obviously the luminescence properties of LaAlO{sub 3}:Mn{sup 4+} phosphor due to the charge compensation. The luminous mechanism of Mn{sup 4+} ion is explained by using Tanabe-Sugano diagram of Mn{sup 4+} ion in octahedral crystal field. The contents of this paper will be helpful to develop novel Mn{sup 4+}-doped materials and improve their luminescence properties. (orig.)

  3. Ca(La 1-xEu x) 4Si 3O 13 red emitting phosphor for white light emitting diodes

    Science.gov (United States)

    Shen, Changyu; Yang, Yi; Jin, Shongzhong; Ming, Jiangzhou; Feng, Huajun; Xu, Zhihai

    2009-05-01

    Series of Ca(La 1-xEu x) 4Si 3O 13 red emitting phosphor were synthesized by solid-state reaction method. Photoluminescence excitation and emission spectra showed that the phosphors could be efficiently excited by near ultraviolet to blue light from 350 to 470 nm to give bright red emission. There were four emission bands peaking at 591, 615, 655, and 700 nm, due to the transition of the Eu 3+ ( 5D 0→ 7F j ( j=0, 1,2,3,4)), respectively. After using the 3.5% Li 2CO 3 as the flux, the sample's emission intensity increased obviously. White LED was obtained by combining blue LED chip (InGaN-based 460 nm emitting) with Ca(La 1-xEu x) 4Si 3O 13 and YAG:Ce 3+. As the x has the value of 0.5, the InGaN-based Ca(La 0.5Eu 0.5) 4Si 3O 13 WLED presented intense white emitting and good color rendering of over 89.

  4. Orange red emitting Eu{sup 3+} doped zinc oxide nanophosphor material prepared using Guizotia abyssinica seed extract: Structural and photoluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Kavyashree, D. [Department of Physics, Channabasaveshwara Institute of Technology, VTU affiliated , Gubbi 572216 (India); Kumari, R. Ananda [Department of Physics, Sree Siddaganga College for Women, Tumkur 572103 (India); Nagabhushana, H., E-mail: bhushanvlc@gmail.com [Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572103 (India); Sharma, S.C. [Dayananda Sagar University, Shavige Malleshwara Hills, Kumaraswamy Layout, Bangalore 560078 (India); Vidya, Y.S. [Department of Physics, Lal Bahadur Shastry Government First Grade College, Bangalore 560032 (India); Anantharaju, K.S. [Research Center, Department of Science, East West Institute of Technology, VTU affiliated, Bangalore 560091 (India); Prasad, B.Daruka [Department of Physics, BMS Institute of Technology, VTU affiliated , Bangalore 560064 (India); Prashantha, S.C. [Research Center, Department of Science, East West Institute of Technology, VTU affiliated, Bangalore 560091 (India); Lingaraju, K.; Rajanaik, H. [Department of Studies and Research in Environmental Science, Tumkur University, Tumkur 572103 (India)

    2015-11-15

    Europium ions doped (1–11 mol%) ZnO nanoparticles (NPs) were synthesized by a facile green synthesis method using Guizotia abyssinica as fuel. The obtained ZnO:Eu{sup 3+} (1–11 mol%) NPs were characterized by using powder X-ray diffraction studies (PXRD), scanning electron microscopy (SEM) and photoluminescence (PL) techniques. The dependency of dopant concentration on the crystal structure, surface morphology and luminescence properties was discussed in detail. The particle size and the existing states of the ions within the material were analyzed by TEM and XPS respectively. The PL emission of ZnO:Eu{sup 3+} NPs shows characteristics transitions of Eu{sup 3+} ions. It has been demonstrated that intrinsic defects may act as the media in the energy transfer process from the ZnO host to Eu{sup 3+} ions. The CIE chromaticity and CCT confirms the phosphor material as orange red emitting hence it was quite useful in display applications. - Highlights: • Bioinspired modified combustion method of synthesis to prepare ZnO:Eu{sup 3+}. • Prepared samples were characterized by PXRD, Rietveld refinement and SEM. • Photoluminescence studies shows the probable excitation and emission ranges. • ZnO:Eu{sup 3+} nanophosphor exhibits intense orange red emission. • Prepared materials may be suitable for display applications.

  5. Highly luminescent pure-red-emitting fluorinated β-diketonate europium(III) complex for full solution-processed OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Joao P. [CEMDRX, Physics Department, Universidade de Coimbra, Rua Larga, Coimbra P-3004-516 (Portugal); Serviço de Medicina Nuclear, SESARAM E.P.E., Avenida Luís de Camões 57, Funchal 9004-514, Madeira (Portugal); Martín-Ramos, Pablo [CEMDRX, Physics Department, Universidade de Coimbra, Rua Larga, Coimbra P-3004-516 (Portugal); Higher Technical School of Telecommunications Engineering, Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén 15, Valladolid 47011 (Spain); Coya, Carmen, E-mail: carmen.coya@urjc.es [Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid 28933 (Spain); Silva, Manuela Ramos [CEMDRX, Physics Department, Universidade de Coimbra, Rua Larga, Coimbra P-3004-516 (Portugal); Eusebio, M. Ermelinda S. [Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra P-3004-535 (Portugal); Andrés, Alicia de [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid 28049 (Spain); Álvarez, Ángel L. [Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid 28933 (Spain); Martín-Gil, Jesús [Advanced Materials Laboratory, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, Palencia 34004 (Spain)

    2015-03-15

    Current manufacturing technologies for OLEDs involve the use of expensive high vacuum techniques and call for thermal stability requirements which are not fulfilled by many materials. These problems disappear when the OLED films are deposited directly from solution. In this study, we have designed, synthesized and characterized a novel octacoordinated complex, Tris(1-(4-chlorophenyl)-4,4,4-trifluoro-1, 3-butanedionate)mono(bathophenanthroline) europium(III), to be used as a “complex-only” emissive layer in wet-processed OLEDs. Upon excitation in the UV region, very efficient energy transfer from the ligands to Eu{sup 3+} takes place, giving rise to intense red emission with very high monochromaticity (R=19), both in powder and as a thin film. The decay times of 754 µs (powder) and 620 µs (thin film) are comparable to those of the most efficient Eu{sup 3+} β-diketonate complexes reported to date. The same energy transfer leading to saturated red and narrow emission is also observed in the OLED device (glass/ITO/PEDOT:PSS/[Eu(cbtfa){sub 3}(bath)]/Ca/Al) when biased at >5.2 V. Its high quantum efficiency (∼60%), good thermal stability up to 200 °C and adequate thin film forming properties make this material a promising chromophore for cost-effective OLEDs. - Highlights: • A highly fluorinated europium(III) octacoordinated complex, [Eu(cbtfa)3(bath)], has been synthesized and its structure elucidated by single crystal X-ray diffraction. • The chosen coordination environment is well-suited for sensitizing the luminescence of the Eu{sup 3+} ion, achieving very efficient energy transfer from the organic ligands (excited in the UV region) to the rare earth ion, leading to highly efficient (Q∼60% in crystalline powder and Q∼50% in thin film) and saturated red photoluminescence. • The material has also been integrated into a single active layer, full solution-processed OLED, with ITO/PEDOT:PSS/[Eu(cbtfa)3(bath)]/ Ca/Al structure.

  6. Narrow-band red emitting phosphor BaTiF6:Mn(4+): preparation, characterization and application for warm white LED devices.

    Science.gov (United States)

    Gao, Xiaoli; Song, Yan; Liu, Guixia; Dong, Xiangting; Wang, Jinxian; Yu, Wensheng

    2016-11-28

    As a new class of non-rare-earth red phosphors for high-efficiency warm white light-emitting diodes (white LEDs), Mn(4+) ion activated fluoride compounds have been extensively investigated recently and hold the potential to supersede commercial rare earth doped nitride phosphors. Herein, a series of Mn(4+) ions doped BaTiF6 phosphors have been prepared via the hydrothermal route using citric acid as a surfactant. After a systematic investigation, we illustrate the effects of reaction time, nominal concentration of HF solution, and reaction temperature on the luminescence performance of the phosphor. The BaTiF6:Mn(4+) phosphor generates narrow red emission, which is highly perceived by the human eyes and leads to excellent chromatic saturation of red emission spectra. Simultaneously, concentration and thermal quenching are investigated systematically, and the quenching mechanisms are elucidated in detail. Employing BaTiF6:Mn(4+) as a red phosphor, we fabricate a high-performance white LED with low correlated color temperature of 3974 K, high color rendering index of 90.6 and luminous efficacy of 132.54 lm W(-1). Based on the improvement in correlated color temperature and color rendering index, the BaTiF6:Mn(4+) red phosphor supplements the deficiency of LEDs fabricated by combining blue chips and only YAG:Ce(3+), which suggests that it is a promising commercial red phosphor in warm white LEDs.

  7. Frequency Response of Modulated Electroluminescence of Light-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    FENG Lie-Feng; LI Yang; LI Ding; WANG Cun-Da; ZHANG Guo-Yi; YAO Dong-Sheng; LIU Wei-Fang; XING Peng-Fei

    2011-01-01

    Frequency responses of modulated electroluminescence (EL) of light-emitting diodes were measured using a testing setup.With increasing frequency of the ac signal,the relative light intensity (RLI) clearly decreases.Furthermore,a peculiar asynchrony between the RLI and ac small-signal is observed.At frequencies higher than 10kHz,the RLI clearly lags behind the ac signal and the absolute value of the lagging angle is nearly proportional to the signal frequency.Using the classical recombination model of light-emitting diodes under ac small-signal modulation,these abnormal characteristics of modulated EL can be clearly explained.High-power light-emitting diodes (LEDs) have received great attention recently owing to their applications in energy-saving lights,display items and many other fields;therefore,the optical and electrical characteristics of LEDs at forward bias hold significant potential for research.[1-4] However,for a new kind of light emission device,the general research on its performance focuses on the light emission and dc currentvoltage (I-V) characteristics.%Frequency responses of modulated electroluminescence (EL) of light-emitting diodes were measured using a testing setup. With increasing frequency of the ac signal, the relative light intensity (RLI) clearly decreases. Furthermore, a peculiar asynchrony between the RLI and ac small-signal is observed. At frequencies higher than 10kHz, the RLI clearly lags behind the ac signal and the absolute value of the lagging angle is nearly proportional to the signal frequency. Using the classical recombination model of light-emitting diodes under ac small-signal modulation, these abnormal characteristics of modulated EL can be clearly explained.

  8. Nanoscale dynamic inhomogeneities in electroluminescence of conjugated polymers

    Science.gov (United States)

    Hatano, Tatsuhiko; Nozue, Shuho; Habuchi, Satoshi; Vacha, Martin

    2011-09-01

    We report the observation and characterization of dynamic spatial heterogeneities in the electroluminescence (EL) of conjugated polymer organic light-emitting diodes via high-sensitivity fluorescence microscopy. The active layers of the single-layer devices are polymers of the poly(phenylene vinylene) family, i.e., poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene vinylene] and a commercially available copolymer, Super Yellow. The devices are prepared directly on a microscope coverslip, making it possible to use high numerical aperture oil-immersion objective lenses with a diffraction-limited resolution of a few hundred nanometers for microscopic EL imaging. Detection via high-sensitivity CCD camera allows the measurement of EL dynamics with millisecond time resolution for a wide range of applied voltages. We found spatial heterogeneities in the form of high EL intensity sites in all devices studied. The EL from these sites is strongly fluctuating in time, and the dynamics is bias voltage dependent. At the same time, there is no difference in the local microscopic EL spectra between the high- and low-intensity sites. The results are interpreted in terms of a changing charge balance and local structural changes in the active film layer.

  9. Synthesis, characterization, photoluminescence and thermally stimulated luminescence investigations of orange red-emitting Sm3+-doped ZnAl2O4 phosphor

    Indian Academy of Sciences (India)

    Mithlesh Kumar; V Natarajan; S V Godbole

    2014-10-01

    Sm3+-doped ZnAl2O4 phosphor was synthesized by citrate sol–gel method and characterized using X-ray diffraction and scanning electron microscopy to identify the crystalline phase and determine the particle size. Photoluminescence (PL) studies on the sample showed emission peaks at 563, 601, 646 and 707 nm with ex = 230 nm corresponding to the ${}^{4}G_{5/2} \\rightarrow {}^{6}H_{5/2}, {}^{4}G_{5/2} \\rightarrow {}^{6}H_{7/2}, {}^{4}G_{5/2} \\rightarrow {}^{6}H_{9/2}$ and ${}^{4}G_{5/2} \\rightarrow {}^{6}H_{11/2}$ transitions, respectively, due to Sm3+ ions. PL lifetime decay studies confirmed that Sm3+ ions partly entered into the lattice by replacing Al3+ ions and remaining located at the surface of ZnAl2O4 host matrix. Thermally stimulated luminescence (TSL) studies of -irradiated Sm3+-doped ZnAl2O4 sample showed two glow peaks at 440 and 495 K, the former being most intense than the latter. The trap parameters were determined using different heating rate methods. Spectral characteristics of the TSL glow showed emission around 565, 599 and 641 nm, indicating the role of Sm3+ ion as the luminescent centre. A probable mechanism for the prominent TSL glow peak, observed at 440 K, was proposed. CIE chromaticity coordinates for the system was evaluated, which suggested that Sm3+-doped ZnAl2O4 could be employed as a potential orange red-emitting phosphor.

  10. Rare-earth-free red-emitting K2Ge4O9:Mn(4+) phosphor excited by blue light for warm white LEDs.

    Science.gov (United States)

    Ding, Xin; Wang, Qian; Wang, Yuhua

    2016-03-21

    A series of novel K2Ge4O9:Mn(4+) phosphors with red emission under blue light excitation have been synthesized successfully by traditional high-temperature solid-state reaction. The structure of K2Ge4O9 has been investigated by high-resolution transmission electron microscopy, scanning electron microscopy and X-ray powder diffraction with Rietveld refinement. The PL properties have been investigated by measuring diffuse reflection spectra, emission spectra, excitation spectra, decay curves and temperature-dependent spectra. The KGO:0.1% Mn(4+) phosphor can emit red light peaking at 663 nm under UV or blue light excitation. The critical quenching concentration of Mn(4+) was about 0.1 mol%. The concentration quenching mechanism could be a d-d interaction for the Mn(4+) center. The CIE chromaticity coordinates and FWHM are (0.702, 0.296) and 20 nm, which demonstrated that the K2Ge4O9:Mn(4+) has a high color purity. By tuning the weight ratio of yellow and red phosphors, the fabricated white LEDs, using a 455 nm InGaN blue chip combined with a blend of the yellow phosphor YAG:Ce(3+) and the red-emitting KGO:Mn(4+) phosphor driven by a 40 mA current, can get white light with chromaticity coordinates (0.405, 0.356) and CCT 3119 K. These results indicated that K2Ge4O9:Mn(4+) is a potential red phosphor to match blue LED chips to get warm white light.

  11. Red-emitting LaOF:Eu{sup 3+} phosphors: Synthesis, structure and their Judd–Ofelt analysis for LED applications

    Energy Technology Data Exchange (ETDEWEB)

    Dhananjaya, N., E-mail: ndhananjayas@gmail.com [Department of Physics, B. M. S. Institute of Technology and Management, Bangalore 560064 (India); Shivakumara, C.; Saraf, Rohit [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Nagabhushana, H. [C. N. R. Rao Center for Advanced Materials, Tumkur University, Tumkur 572103 (India)

    2016-03-15

    Highlights: • Red-emitting LaOF:Eu{sup 3+} phosphors were synthesized via facile solid state route. • Judd–Ofelt intensity parameters and radiative properties were determined from PL data. • CIE color coordinates of LaOF:Eu{sup 3+} phosphor is close to the commercial red phosphors. • Eu{sup 3+}-activated LaOF phosphor is a potential candidate for the production of red component in white LEDs. - Abstract: In the present study, we have synthesized a series of La{sub 1−x}Eu{sub x}OF (0.01 ≤ x ≤ 0.09) phosphors by the conventional solid-state reaction route at relatively low temperature (500 °C) and shorter duration of 2 h. The compounds were crystallized in the rhombohedral structure with the space group R-3m (No. 166). Upon UV excitation (254 nm), the photoluminescence spectra exhibit characteristic luminescence {sup 5}D{sub 0} → {sup 7}F{sub J} (J = 1, 2, 3, and 4) intra-4f shell Eu{sup 3+} ion transitions. An intense red emission peak at 610 nm was observed due to electric dipole ({sup 5}D{sub 0} → {sup 7}F{sub 2}) transition. Judd–Ofelt theory was employed to evaluate various radiative parameters such as radiative emission rates, lifetime, branching and asymmetry ratios. CIE color coordinates confirmed the red emission of the phosphors. The luminescent results reveal that LaOF:Eu{sup 3+} phosphor can be used as potential candidate for developing red component in white LED applications.

  12. A Stable Blue Organic Electroluminescent Material%一种稳定的蓝色有机电致发光材料

    Institute of Scientific and Technical Information of China (English)

    郑新友; 吴有智; 朱文清; 张步新; 蒋雪茵; 张志林; 许少鸿

    2002-01-01

    In order to compare two kinds of blue electroluminescent materials, we have investigated two kinds of blue OLEDs with the similar structrue ITO/CuPc/NPB/JBEM: perylene/Alq/Mg: Ag [ device (J) ] and ITO/CuPc/NPB/DPVBi: perylene/Alq/Mg: Ag [device(D) ]. The difference of luminance and efficiency was not obvious for the two devices. However, there was remarkable difference for their lifetime. The device(J) achieved longer half lifetime of 1035 h at initial luminance of 100 cd/m2, and that of device(D) was only 255 h. According to their energy level diagrams , the difference of their stability may originate from different host materials in the two devices. It may be attributed to the better thermal stability of JBEM molecules than that of DPVBi. It is shown that JBEM may be a promising blue organic electroluminescent material with great stability.

  13. Photo- and electroluminescence properties of lanthanide tungstate-doped porous anodic aluminum oxide

    Science.gov (United States)

    Staninski, Krzysztof; Piskuła, Zbigniew; Kaczmarek, Małgorzata

    2017-02-01

    A new cathode material for the potential use in light-emitting devices, based on porous anodic alumina (PAA), aluminum and ITO layers has been synthesized. Porous alumina samples with ordered pore arrays were prepared electrochemically from high purity Al sheet in H2SO4 and H3PO4. To be able to apply the matrix obtained in the electroluminescence cell, the thickness of the barrier layer of aluminum oxide was decreased by slow reduction of the anodization voltage to zero. The luminescence and electroluminescence (EL) properties of the Al2O3 matrix admixtured with Eu3+ and Tb3+ ions as well as europium and terbium tungstates, were determined. The particles of inorganic luminophore were synthesized on the walls of the matrix cylindrical nanopores in the two-step process of immersion in solutions of TbCl3 or EuCl3 and Na2WO4. The effect of the nanopores diameter and the thickness of the porous Al2O3 layer on the intensity and relative yield of electroluminescence was analyzed, the best results were obtained for 80-90 μm PAA layers with 140 nm nanopores.

  14. Photoluminescence properties of a new orange–red emitting Sm{sup 3+}-doped Y{sub 2}Mo{sub 4}O{sub 15} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Huajuan; Zhao, Ze; Wang, Jing; Hei, Zhoufei; Li, Mengxue [College of Science, Northwest A& F University, Yangling, Shaanxi 712100 (China); Noh, Hyeon Mi [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of); Jeong, Jung Hyun, E-mail: jhjeong@pknu.ac.kr [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of); Yu, Ruijin, E-mail: yuruijin@nwsuaf.edu.cn [College of Science, Northwest A& F University, Yangling, Shaanxi 712100 (China)

    2015-08-15

    A series of novel Y{sub 2}Mo{sub 4}O{sub 15}:xSm{sup 3+} ( (0.01 ≤ x ≤ 0.20) phosphors for white light-emitting (W-LEDs) were successfully prepared by the solid state reaction technology at 973 K for 12 h. X-ray diffraction and photoluminescence spectra were utilized to characterize the structure and luminescence properties of the as-synthesized phosphors. The emission spectra of the Y{sub 2}Mo{sub 4}O{sub 15}:Sm{sup 3+} phosphors consisted of some sharp emission peaks of Sm{sup 3+} ions centered at 565 nm, 605 nm, 650 nm, and 712 nm. The strongest one is located at 605 nm due to {sup 4}G{sub 5/2}–{sup 6}H{sub 7/2} transition of Sm{sup 3+}, generating bright orange–red light. The optimum dopant concentration of Sm{sup 3+} ions in Y{sub 2}Mo{sub 4}O{sub 15}:xSm{sup 3+} is around 5 mol% and the critical transfer distance of Sm{sup 3+} is calculated as 23.32 Å. The CIE chromaticity coordinates of the Y{sub 2}Mo{sub 4}O{sub 15}:0.05Sm{sup 3+} phosphors were located in the orange reddish region. The Y{sub 2}Mo{sub 4}O{sub 15}:Sm{sup 3+} phosphors may be potentially used as red phosphors for white light-emitting diodes. - Graphical abstract: The excitation spectrum of Y{sub 2}Mo{sub 4}O{sub 15}:Sm{sup 3+} is composed of a broad band and some sharp f–f transitions. Under 407 nm excitation, the phosphor presents some sharp emission peaks of Sm{sup 3+} ions. - Highlights: • An orange–red emitting Y{sub 2}Mo{sub 4}O{sub 15}:Sm{sup 3+} phosphor has been firstly synthesized. • Their structures, luminescent properties have also been investigated. • The optical absorption edge for the molybdate lies around 325 nm. • The CIE chromaticity coordinates were located in the orange reddish region.

  15. Investigation of excitons fission and annihilation pro cesses in Rubrene based devices by utilizing magneto-electroluminescence curves%利用磁致发光曲线研究Rubrene器件中激子分裂和湮没过程∗

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    That the energy of triplet exciton in Rubrene is about half of its singlet leads to energy resonance. This resonance not only allows two triplets to annihilate into a singlet, but also makes a singlet probably fission into two triplets in different molecules. On the other hand, the π-π conjugation of two Rubrene molecules could be formed during molecules stacking, and this spatial relationship will affect the charge transport property enormously. In this article, we use organic magnetic-field effect as a convenient approach to explore the influence of the energy resonant excited states in the Rubrene molecules and the π-π conjugation between the different molecules on the luminescence property of Rubrene. Firstly, we fabricate organic light emitting diodes based on pure Rubrene and modulate the thickness of Rubrene. Experimental measurements of these devices at room temperature exhibit that the thickness can affect the devices’ magneto-electroluminescence (MEL) curves substantially. Values of high-field MEL increase with the thickness of Rubrene and gradually saturate after reaching 30 nm. This can be attributed to the fact that the ratio of π-πconjugation in Rubrene molecules to the stacking will grow with increasing thickness, and then saturate at a proper thickness. Subsequently, we modulate the concentration of Rubrene by doping Buthocuproine (BCP) in the active layer. Experimental results at room temperature show that the values of high-field MEL decrease as the concentration of Rubrene decreases. These results verify that the influence ofπ-πconjugation is not only on the MEL curves, but also on the singlet fission. Furthermore, all the MEL curves exhibit a high-field decay at low temperatures since the endothermic fission process in the Rubrene molecules becomes weaker as the temperature decreases, and the longer triplet lifetime at lower temperatures also enhances the process of triplet annihilation. Besides, the extensively existent intersystem

  16. Tentative anatomy of ZnS-type electroluminescence

    Science.gov (United States)

    Bringuier, E.

    1994-05-01

    The paper reviews the electrical and optical mechanisms at work in sulfide-based thin-film electroluminescence display devices within the framework of general semiconductor physics. The electrical problem is twofold: (i) charge carriers are sourced at high electric field in a nominally insulating material, the carrier density increasing by almost eight orders of magnitude; (ii) the carriers are transported at high field, with an average energy largely exceeding the thermal one. (i) Carrier sourcing is best understood from direct-current-driven ZnS films, and is ascribed to partly filled deep donors transferring electrons to the conduction band by Fowler-Nordheim tunneling. The deep donors also act as carrier sinkers, and evidence for space charge is afforded by small-signal impedance analysis disclosing a markedly inductive behavior. The conduction picture obtained from dc-driven films is then used to clarify the operation of alternating-current electroluminescence structures where the sulfide is sandwiched between two blocking oxide layers. The electrostatics of the ac structure is investigated in detail including space charge and field nonuniformity, and external observables are related to internal quantities. The simple model of interfacial carrier sourcing and sinking is examined. (ii) High-field electronic transport is controlled by the electron-phonon interaction, and the modeling resorts to numerical simulations or the lucky-drift concept. At low electron energies the interaction with phonons is predominantly polar, while at optical energies it proceeds via deformation potential scattering. In spite of the uncertainties in transport models in that range, it is likely that ˜50% of the electrons overtake 2 eV at the usual operating fields in ZnS. Light emission is associated with impurity luminescence centers embedded in the sulfide host. They are excited while current is flowing, and the ensuing relaxation is partly radiative. We describe the two ways in

  17. Experimental observation of electroluminescence enhancement on green LEDs mediated by surface plasmons.

    Science.gov (United States)

    Lee, Kwang-Geol; Choi, Ki-Young; Kim, Jin-Ha; Song, Seok Ho

    2014-08-25

    We experimentally demonstrate the 1.5-fold enhancement of the electroluminescence (EL) of surface-plasmon (SP)-mediated green LEDs. On the p-clad surface of InGaN/GaN multi-quantum well LEDs, a 2-dimensional, second-order grating structure is textured and coated with an Ag electrode. With this setup, a larger EL enhancement factor is obtained at a higher injected current, which suggests that SP-LEDs can be a possible solution to efficiency droop, which is one of the main problems in developing high-power LEDs. Details regarding the implementation of our device are discussed.

  18. Non-Uniformities in Thin-Film Cadmium Telluride Solar Cells Using Electroluminescence and Photoluminescence: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zaunbrecher, K.; Johnston, S.; Yan, F.; Sites, J.

    2011-07-01

    It is the purpose of this research to develop specific imaging techniques that have the potential to be fast, in-line tools for quality control in thin-film CdTe solar cells. Electroluminescence (EL) and photoluminescence (PL) are two techniques that are currently under investigation on CdTe small area devices made at Colorado State University. It is our hope to significantly advance the understanding of EL and PL measurements as applied to CdTe. Qualitative analysis of defects and non-uniformities is underway on CdTe using EL, PL, and other imaging techniques.

  19. Investigation of electroluminescence properties of CdTe@CdS core-shell nanocrystals (NCs)

    Indian Academy of Sciences (India)

    M Molaei; S Pourjafari

    2014-02-01

    In this work, CdTe@CdS NCs were synthesized using a thermochemical approach and synthesized NCs were used as an emissive layer, a light emitting device, with ITO/MoO3/PVK/CdTe@CdS(core-shell)/Mg:Ag structure. Structural and optical properties of synthesized NCs were investigated by means of XRD, UV–Vis and photoluminescence (PL) analyses. Fabricated device was characterized by electroluminescence spectra. XRD analysis demonstrated cubic phase NCs. Photoluminescence spectra showed a narrow band emission with a peak centred at about 600 nm. Fabricated device showed an emission at 600 nm, which is related to CdTe@CdS NCs. Turn on voltage of fabricated device is about 8 V and brightness is 53.7 Cd/m2 at a working voltage of about 14.57 V.

  20. Electroluminescence of Zn{sub 2}GeO{sub 4}:Mn through SiC whisker electric field enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Wagstaff, Brandon, E-mail: wagstabj@mcmaster.ca [McMaster University, Department of Engineering Physics, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8 (Canada); Kitai, Adrian, E-mail: kitaia@mcmaster.ca [McMaster University, Department of Engineering Physics, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8 (Canada); McMaster University, Department of Materials Science and Engineering, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8 (Canada)

    2015-11-15

    Alternating current (AC) electroluminescence of thin film oxide phosphors is well known. However in this work electroluminescence of bulk oxide powder phosphors is achieved. A new type of AC Electroluminescent (ACEL) device has been created and developed by integrating SiC whiskers into a phosphor matrix composed of manganese-activated zinc germanate (Zn{sub 2}GeO{sub 4}:Mn{sup 2+}). The conductive SiC whiskers enhance the average electric field in specific regions of the phosphor such that localized breakdown of the phosphor occurs, thus emitting green light. This field enhancement allows light emission to occur in thick film oxide powder phosphors and is notably the first time that bright and reasonably efficient electroluminescence of zinc germanate has been observed without using expensive thin film deposition techniques. Light emission has been achieved in thick pressed pellets using surface-deposited electrodes and the brightness-voltage characteristics of light emission are shown to be consistent with field emission of carriers from the embedded whiskers. - Highlights: • A new electroluminescent phosphor, Zn{sub 2}GeO{sub 4}Mn{sup 2+}+SiC whiskers, is proposed. • A procedure is described to fabricate a solid sample of this composite material. • Under an AC voltage, green light is emitted only in samples containing the SiC whiskers. • A brightness of 25 Cd/m{sup 2} and efficiency of 0.25 Lm/W is observed 9.6×10{sup 6} V/m. • This is notably the first time that ACEL has been observed in bulk Zn{sub 2}GeO{sub 4}Mn{sup 2+}.

  1. Theoretical and material studies on thin-film electroluminescent devices

    Science.gov (United States)

    Summers, C. J.; Goldman, J. A.; Brennan, K.

    1988-01-01

    During this report period work was performed on the modeling of High Field Electronic Transport in Bulk ZnS and ZnSe, and also on the surface cleaning of Si for MBE growth. Some MBE growth runs have also been performed in the Varian GEN II System. A brief outline of the experimental work is given. A complete summary will be done at the end of the next reporting period at the completion of the investigation. The theoretical studies are included.

  2. Luminescent properties and application of Eu3+ -activated Gd2(MoO4)3 red-emitting phosphor with pseudo-pompon shape for solid-state lighting

    Institute of Scientific and Technical Information of China (English)

    HE

    2010-01-01

    Eu3+ -activated Gd2(MoO4)3 pseudo-pompon-like red-emitting phosphors were prepared by solid-state method.The structure,morphology,and luminescent properties of these powder samples were investigated by X-ray diffraction (XRD),scanning electron microscopy(SEM),and fluorescent spectrophotometry,respectively.The as-obtained phosphors were single crystalline phase with orthorhombic unit cell.The particles of the powder samples had the length of 5-12 μm and width of 3-7 μm with flake shape and large surface area,which is suitable for manufacture of white LEDs.The phosphor could be efficiently excited by the incident light of 348-425 nm,well matched with the output wavelength of near-UV (In,Ga)N chip,and re-emitted an intense red light peaking at 615 nm.By combing this phosphor with a~395 nmemitting (In,Ga)N chip,a red LED was fabricated,so that the applicability of this novel phosphor to white LEDs was confirmed.It is considered to be an efficient red-emitting conversion phosphor for solid-state lighting based on (In,Ga)N LEDs.

  3. Orange-red emitting Eu2+-activated (Sr0.883Ba0.1Lu0.0.17)3(Si0.95Al0.05)O5 phosphor:structure, photoluminescence, and application in white LEDs

    Institute of Scientific and Technical Information of China (English)

    赵凤阳; 吕雁鹏; 周广洲; 朴贤卿; 孙卓

    2015-01-01

    Orange-red emitting (Sr0.883–xBa0.1Lu0.0.17Eux)3(Si0.95Al0.05)O5 phosphors were synthesized by conventional solid-state reac-tion. The effect of NH4F flux on structural and luminescent properties of phosphors was investigated. Results suggested that the opti-mal content of NH4F flux was 3 wt.%and the optimal doping concentration of Eu2+was x=0.023 mol. The phosphors showed intense absorption in near-ultraviolet to blue region and exhibited orange-red emissions. The thermal stability of synthesized (Sr0.86Ba0.1Lu0.017Eu0.023)3(Si0.95Al0.05)O5 phosphor were examined and compared with commercial YAG:Ce3+ yellow phosphors. Combining an InGaN blue 460 nm chip and a white-emitting (Sr0.86Ba0.1Lu0.017Eu0.023)3(Si0.95Al0.05)O5 phosphor produced a white-light LED, demonstrating CIE chromaticity coordinates of (0.314, 0.329) and a color temperature of 5595 K. All results showed that this phosphor is a promising candidate as orange-red emitting phosphor for white light emitting diode (w-LED) application.

  4. Electroluminescence from indirect band gap semiconductor ReS2

    Science.gov (United States)

    Gutiérrez-Lezama, Ignacio; Aditya Reddy, Bojja; Ubrig, Nicolas; Morpurgo, Alberto F.

    2016-12-01

    It has been recently claimed that bulk crystals of transition metal dichalcogenide (TMD) ReS2 are direct band gap semiconductors, which would make this material an ideal candidate, among all TMDs, for the realization of efficient opto-electronic devices. The situation is however unclear, because even more recently an indirect transition in the PL spectra of this material has been detected, whose energy is smaller than the supposed direct gap. To address this issue we exploit the properties of ionic liquid gated field-effect transistors (FETs) to investigate the gap structure of bulk ReS2. Using these devices, whose high quality is demonstrated by a record high electron FET mobility of 1100 cm2 V-1 s-1 at 4 K, we can induce hole transport at the surface of the material and determine quantitatively the smallest band gap present in the material, irrespective of its direct or indirect nature. The value of the band gap is found to be 1.41 eV, smaller than the 1.5 eV direct optical transition but in good agreement with the energy of the indirect optical transition, providing an independent confirmation that bulk ReS2 is an indirect band gap semiconductor. Nevertheless, contrary to the case of more commonly studied semiconducting TMDs (e.g., MoS2, WS2, etc) in their bulk form, we also find that ReS2 FETs fabricated on bulk crystals do exhibit electroluminescence when driven in the ambipolar injection regime, likely because the difference between direct and indirect gap is only 100 meV. We conclude that ReS2 does deserve more in-depth investigations in relation to possible opto-electronic applications.

  5. Wavelength-Tunable Electroluminescent Light Sources from Individual Ga-Doped ZnO Microwires.

    Science.gov (United States)

    Jiang, Mingming; He, Gaohang; Chen, Hongyu; Zhang, Zhenzhong; Zheng, Lingxia; Shan, Chongxin; Shen, Dezhen; Fang, Xiaosheng

    2017-03-07

    Electrically driven wavelength-tunable light emission from biased individual Ga-doped ZnO microwires (ZnO:Ga MWs) is demonstrated. Single crystalline ZnO:Ga MWs with different Ga-doping concentrations have been synthesized using a one-step chemical vapor deposition method. Strong electrically driven light emission from individual ZnO:Ga MW based devices is realized with tunable colors, and the emission region is localized toward the center of the wires. Increasing Ga-doping concentration in the MWs can lead to the redshift of electroluminescent emissions in the visible range. Interestingly, owing to the lack of rectification characteristics, relevant electrical measurement results show that the alternating current-driven light emission functions excellently on the ZnO:Ga MWs. Consequently, individual ZnO:Ga MWs, which can be analogous to incandescent sources, offer unique possibilities for future electroluminescence light sources. This typical multicolor emitter can be used to rival and complement other conventional semiconductor devices in displays and lighting.

  6. Red electroluminescence of ruthenium sensitizer functionalized by sulfonate anchoring groups.

    Science.gov (United States)

    Shahroosvand, Hashem; Abbasi, Parisa; Mohajerani, Ezeddin; Janghouri, Mohammad

    2014-06-28

    We have synthesized five novel Ru(ii) phenanthroline complexes with an additional aryl sulfonate ligating substituent at the 5-position [Ru(L)(bpy)2](BF4)2 (1), [Ru(L)(bpy)(SCN)2] (2), [Ru(L)3](BF4)2 (3), [Ru(L)2(bpy)](BF4)2 (4) and [Ru(L)(BPhen)(SCN)2] (5) (where L = 6-one-[1,10]phenanthroline-5-ylamino)-3-hydroxynaphthalene 1-sulfonic, bpy = 2,2'-bipyridine, BPhen = 4,7-diphenyl-1,10-phenanthroline), as both photosensitizers for oxide semiconductor solar cells (DSSCs) and light emitting diodes (LEDs). The absorption and emission maxima of these complexes red shifted upon extending the conjugation of the phenanthroline ligand. Ru phenanthroline complexes exhibit broad metal to ligand charge transfer-centered electroluminescence (EL) with a maximum near 580 nm. Our results indicated that a particular structure (2) can be considered as both DSSC and OLED devices. The efficiency of the LED performance can be tuned by using a range of ligands. Device (2) has a luminance of 550 cd m(-2) and maximum efficiency of 0.9 cd A(-1) at 18 V, which are the highest values among the five devices. The turn-on voltage of this device is approximately 5 V. The role of auxiliary ligands in the photophysical properties of Ru complexes was investigated by DFT calculation. We have also studied photovoltaic properties of dye-sensitized nanocrystalline semiconductor solar cells based on Ru phenanthroline complexes and an iodine redox electrolyte. A solar energy to electricity conversion efficiency (η) of 0.67% was obtained for Ru complex (2) under standard AM 1.5 irradiation with a short-circuit photocurrent density (Jsc) of 2.46 mA cm(-2), an open-circuit photovoltage (Voc) of 0.6 V, and a fill factor (ff) of 40%, which are all among the highest values for ruthenium sulfonated anchoring groups reported so far. Monochromatic incident photon to current conversion efficiency was 23% at 475 nm. Photovoltaic studies clearly indicated dyes with two SCN substituents yielded a higher Jsc for the

  7. Syntheses and electroluminescent properties of two europium ternary complexes Eu(DBM){sub 3}(PBO) and Eu(DBM){sub 3}(PBT)

    Energy Technology Data Exchange (ETDEWEB)

    Guan Min [State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, Beijing 100871 (China); Gao Lihua [Department of Chemistry, Beijing Normal University, Beijing 100875 (China); Wang Shanshan [State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, Beijing 100871 (China); Huang Chunhui [State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, Beijing 100871 (China)], E-mail: chhuang@pku.edu.cn; Wang Kezhi [Department of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2007-12-15

    Two europium complexes, Eu(DBM){sub 3}(PBO) and Eu(DBM){sub 3}(PBT) (DBM=dibenzoylmethanato, PBO=2-(2-pyridyl)benzoxazole, PBT=2-(2-pyridyl)benzothiazole), were prepared and used as emitting materials in organic electroluminescent (EL) devices. The devices with the structures ITO/TPD/Eu(DBM){sub 3}(PBO) (or Eu(DBM){sub 3}(PBT)/BCP/Alq{sub 3}/Mg:Ag/Ag emit red light originating from the europium complexes.

  8. Electroluminescence and photoluminescence of conjugated polymer films prepared by plasma enhanced chemical vapor deposition of naphthalene

    CERN Document Server

    Rajabi, Mojtaaba; Firouzjah, Marzieh Abbasi; Hosseini, Seyed Iman; Shokri, Babak

    2012-01-01

    Polymer light-emitting devices were fabricated utilizing plasma polymerized thin films as emissive layers. These conjugated polymer films were prepared by RF Plasma Enhanced Chemical Vapor Deposition (PECVD) using naphthalene as monomer. The effect of different applied powers on the chemical structure and optical properties of the conjugated polymers was investigated. The fabricated devices with structure of ITO/PEDOT:PSS/ plasma polymerized Naphthalene/Alq3/Al showed broadband Electroluminescence (EL) emission peaks with center at 535-550 nm. Using different structural and optical tests, connection between polymers chemical structure and optical properties under different plasma powers has been studied. Fourier transform infrared (FTIR) and Raman spectroscopies confirmed that a conjugated polymer film with a 3-D cross-linked network was developed. By increasing the power, products tended to form as highly cross-linked polymer films. Photoluminescence (PL) spectra of plasma polymers showed different excimerc ...

  9. On the spectral difference between electroluminescence and photoluminescence of Si nanocrystals: a mechanism study of electroluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong-Chen; Chen, Jia-Rong; Zhu, Jiang; Lu, Chen-Tian; Lu, Ming, E-mail: minglu@fudan.ac.cn [Fudan University, Department of Optical Science and Engineering, and Shanghai Ultra-Precision Optical Manufacturing Engineering Center (China)

    2013-11-15

    Spectral shift, especially blueshift, in peak position of electroluminescence (EL) spectrum of Si nanocrystal (Si-nc) with respect to its photoluminescence (PL) counterpart has been often observed. Explanations for the spectral difference are different for different EL mechanisms adopted. To gain a relevant picture of the EL process, in this work, we analyze three EL mechanisms that are mainly applied nowadays, i.e., the model of defect light emission, that of band-filling, and that of Si-nc size selection by the carrier energy. Different Si-nc samples and working conditions are designed and their EL and PL emissions monitored according to the predictions of the three models. It is concluded that the observed EL is mainly of Si-nc-related origin. The experimental results are more consistent with the model of Si-nc size selection.

  10. A green emitting phosphorescent copper(I) complex with tetrazole derived ligand for electroluminescence application.

    Science.gov (United States)

    Tong, Senmiao; Yuan, Donglin; Yi, Lita

    2014-09-15

    In this paper, a tetrazole derived diamine ligand of 2-(1H-tetrazol-5-yl)pyridine (TP) owing electron-donors and short conjugation chain was synthesized to increase the band gap of its corresponding phosphorescent Cu(I) complex. This Cu(I) complex was characterized in detail, including its single crystal structure, singlet electronic transitions, photophysical parameters, thermal stability and electrochemical property. Upon on photoexcitation, this Cu(I) complex emitted green emission peaking at 497 nm with biexponential decay pattern of τ1=5.5414 μs (A1=0.137) and τ2=1.0679 μs (A2=0.11503). Cyclic voltammerty experiment suggested that this Cu(I) complex owned HOMO and LUMO energy levels of -5.79 eV and -2.39 eV. The thermal decomposition temperature was 170°C as indicated by thermogravimetric analysis. The optimal electroluminescence device constructed by solution processed coating procedure showed green electroluminescence peaking at 525 nm, with maximum luminance of 2860 cd/m2 and maximum current efficiency of 5.9 cd/A.

  11. Automatic Detection of Inactive Solar Cell Cracks in Electroluminescence Images

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2017-01-01

    We propose an algorithm for automatic determination of the electroluminescence (EL) signal threshold level corresponding to inactive solar cell cracks, resulting from their disconnection from the electrical circuit of the cell. The method enables automatic quantification of the cell crack size...

  12. Encapsulation methods for organic electrical devices

    Science.gov (United States)

    Blum, Yigal D.; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijian

    2013-06-18

    The disclosure provides methods and materials suitable for use as encapsulation barriers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device encapsulated by alternating layers of a silicon-containing bonding material and a ceramic material. The encapsulation methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  13. An Electroluminescence Delay Time Model of Bilayer Organic Light-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    LI Hong-Jian; ZHU Ru-Hui; LI Xue-Yong; YANG Bing-Chu

    2007-01-01

    @@ Based on the mechanism of injection, transport and recombination of the charge carriers, we develop a model to calculate the delay time of electroluminescence (EL) from bilayer organic light emitting diodes. The effect of injection, transport and recombination processes on the EL delay time is discussed, and the relationship between the internal interface barrier and the recombination time is revealed. The results show that the EL delay time is dominated by the recombination process at lower applied voltage and by the transport process at higher applied voltage. When the internal interface barrier varies from 0.15 eV to 0.3 eV, the recombination delay time increases rapidly, while the internal interface barrier exceeds about 0.3eV, the dependence of the recombination delay time on applied voltage is almost undiversified, which may serve as a guideline for designing of a high-speed EL response device.

  14. Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Jay Prakash; Bhargava, Nupur; Kim, Sangcheol; Kolodzey, James [Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716 (United States); Adam, Thomas [Nanofab, University of Albany, SUNY, Albany, New York 12203 (United States)

    2013-06-24

    Infrared electroluminescence was observed from GeSn/Ge p-n heterojunction diodes with 8% Sn, grown by molecular beam epitaxy. The GeSn layers were boron doped, compressively strained, and pseudomorphic on Ge substrates. Spectral measurements indicated an emission peak at 0.57 eV, about 50 meV wide, increasing in intensity with applied pulsed current, and with reducing device temperatures. The total integrated emitted power from a single edge facet was 54 {mu}W at an applied peak current of 100 mA at 100 K. These results suggest that GeSn-based materials maybe useful for practical light emitting diodes operating in the infrared wavelength range near 2 {mu}m.

  15. Experimental and theoretical study of photo- and electroluminescence of divinyldiphenyl and divinylphenanthrene derivatives

    Science.gov (United States)

    Samsonova, L. G.; Valiev, R. R.; Degtyarenko, K. M.; Sunchugashev, D. A.; Kukhta, I. N.; Kukhta, A. V.; Kopylova, T. N.

    2017-02-01

    Electronic absorption and luminescence spectra of four new compounds of divinyldiphenyl and divinylphenanthrene derivatives are investigated experimentally in tetrahydrofuran solutions and thin films obtained by thermal vacuum deposition and by spin coating of these substances embedded into polyvinylcarbazole matrix. Molecular geometry optimizations and electronic spectra have been calculated in the framework of XMC-QDPT2/6-31G (d, p) and TDDFT/B3LYP/6-31G (d, p) levels of theory. We have fabricated and studied OLED devices with the structure ITO/PEDOT:PSS/NPD/L/Ca/Al and ITO/PEDOT:PSS/PVK + L/Ca, where L is the luminophore. It is demonstrated that the photo-and electroluminescence spectra of divinyldiphenyl are not identical and undergo strong changes depending on the method of sample preparation.

  16. Tuning of the excitation wavelength in Eu(3+)-aminophenyl based polyfluorinated β-diketonate complexes: a red-emitting Eu(3+)-complex encapsulated in a silica/polymer hybrid material excited by blue light.

    Science.gov (United States)

    Usha Gangan, T V; Reddy, M L P

    2015-09-28

    We describe herein the synthesis, characterization and photophysical properties of a series of europium complexes based on three aminophenyl based polyfluorinated β-diketonates, namely, 1-(4-aminophenyl)-4,4,5,5,5-pentafluoro-3-hydroxypent-2-en-1-one, 1-(4-(dimethylamino)phenyl)-4,4,5,5,5-pentafluoro-3-hydroxypent-2-en-1-one and 1-(4-(diphenylamino)phenyl)-4,4,5,5,5-pentafluoro-3-hydroxypent-2-en-1-one, and an ancillary ligand, 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene oxide. The results demonstrated that the triphenylamine based polyfluorinated Eu(3+)-β-diketonate complexes dramatically red-shifted the excitation maximum to the visible region (λex, max = 400 nm) with an impressive quantum yield (40%) as compared to the simple Eu(3+)-aminophenyl-β-diketonate complexes (λex, max = 370 nm). This can be explained on the basis of the conjugation between nitrogen lone pair electrons and the phenyl π-electrons in the β-diketonate ligand system. On the other hand, the electron-donating dimethylamino group (Hammett constant: σp = -0.83) containing Eu(3+)-β-diketonate complexes moderately shifted the excitation maximum in the UV region from 370 to 380 nm as compared to unsubstituted aminophenyl (Hammett constant: σp = -0.66) Eu(3+) complexes. The displacement of water molecules in aminophenyl based Eu(3+)-β-diketonate binary complexes by a rigid phosphine oxide ligand richly enhances the photoluminescence quantum yields as well as the excited state lifetime values of the corresponding ternary complexes. As an integral part of this work, hybrid materials have been developed through a sol-gel route by encapsulating a ternary Eu(3+) compound in a silica/polymer hybrid for high performance luminescence applications. In addition, a bright red-emitting diode was fabricated by coating the designed hybrid material onto a 400 nm emitting InGaN chip and the photoluminescence was examined. Notably, the current study clearly shows that the developed triphenylamine

  17. Luminescent properties of red-emitting LiSr{sub 4}B{sub 3}O{sub (9-3x/2)}N{sub x}:Eu{sup 2+} phosphor for white-LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Yu Hua, E-mail: yuhua5101@163.com [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Deng Degang; Xu Shiqing [College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Yu Cuiping; Yin Haoyong; Nie Qiulin [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2012-10-15

    An Eu{sup 2+}-activated oxynitride LiSr{sub (4-y)}B{sub 3}O{sub (9-3x/2)}N{sub x}:yEu{sup 2+} red-emitting phosphor was synthesized by solid-state reactions. The synthesized phosphor crystallized in a cubic system with space group Ia-3d. The LiSr{sub 4}B{sub 3}O{sub (9-3x/2)}N{sub x}:Eu{sup 2+} phosphors exhibited a broad red emission band with a peak at 610 nm and a full width at half maximum of 106 nm under 410 nm excitation, which is ascribed to the 4f{sup 6}5d{sup 1}{yields}4f{sup 7} transition of Eu{sup 2+}. The optimal doped nitrogen concentration was observed to be x=0.75. The average decay times of two different emission centers were estimated to be 568 and 489 ns in the LiSr{sub 3.99}B{sub 3}O{sub 8.25}N{sub 0.5}:0.01Eu{sup 2+} phosphors, respectively. Concentration quenching of Eu{sup 2+} ions occurred at y=0.07, and the critical distance was determined as 17.86 A. The non-radiative transitions via dipole-dipole interactions resulted in the concentration quenching of Eu{sup 2+}-site emission centers in the LiSr{sub 4}B{sub 3}O{sub 9} host. These results indicate LiSr{sub 4}B{sub 3}O{sub (9-3x/2)}N{sub x}:Eu{sup 2+} phosphor is promising for application in white near-UV LEDs. - Highlights: Black-Right-Pointing-Pointer An oxynitride LiSr{sub 4}B{sub 3}O{sub 9}N:Eu{sup 2+} red-emitting phosphor was prepared at low synthesis temperature. Black-Right-Pointing-Pointer The introduced nitrogen improved the excitation and emission intensity of the phosphor. Black-Right-Pointing-Pointer The wide excitation band matches well with near-UV LED chips. Black-Right-Pointing-Pointer The emission spectrum of the phosphor showed a broad full width at half maximum of about 106 nm.

  18. Direct observation of bubble-assisted electroluminescence in liquid xenon

    CERN Document Server

    Erdal, E; Chepel, V; Rappaport, M L; Vartsky, D; Breskin, A

    2015-01-01

    Bubble formation in liquid xenon underneath a Thick Gaseous Electron Multiplier (THGEM) electrode immersed in liquid xenon was observed with a CCD camera. With voltage across the THGEM, the appearance of bubbles was correlated with that of electroluminescence signals induced by ionization electrons from alpha-particle tracks. This confirms recent indirect evidence that the observed photons are due to electroluminescence within a xenon vapor layer trapped under the electrode. The bubbles seem to emerge spontaneously due to heat flow from 300K into the liquid, or in a controlled manner, by locally boiling the liquid with resistive wires. Controlled bubble formation resulted in energy resolution of {\\sigma}/E~7.5% for ~6,000 ionization electrons. The phenomenon could pave ways towards the conception of large-volume 'local dual-phase' noble-liquid TPCs.

  19. Liquid Hole Multipliers: bubble-assisted electroluminescence in liquid xenon

    CERN Document Server

    Arazi, L; Coimbra, A E C; Rappaport, M L; Vartsky, D; Chepel, V; Breskin, A

    2015-01-01

    In this work we discuss the mechanism behind the large electroluminescence signals observed at relatively low electric fields in the holes of a Thick Gas Electron Multiplier (THGEM) electrode immersed in liquid xenon. We present strong evidence that the scintillation light is generated in xenon bubbles trapped below the THGEM holes. The process is shown to be remarkably stable over months of operation, providing - under specific thermodynamic conditions - energy resolution similar to that of present dual-phase liquid xenon experiments. The observed mechanism may serve as the basis for the development of Liquid Hole Multipliers (LHMs), capable of producing local charge-induced electroluminescence signals in large-volume single-phase noble-liquid detectors for dark matter and neutrino physics experiments.

  20. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso; Glick, Stephen; Kerekes, Tamas; Teodorescu, Remus

    2015-06-14

    This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module's electroluminescence intensity distribution, applied at module and cell level. These concepts are demonstrated on a crystalline silicon photovoltaic module that was subjected to several rounds of mechanical loading and humidity-freeze cycling, causing increasing levels of solar cell cracks. The proposed method can be used as a diagnostic tool to rate cell damage or quality of modules after transportation. Moreover, the method can be automated and used in quality control for module manufacturers, installers, or as a diagnostic tool by plant operators and diagnostic service providers.

  1. Synthesis, structure, photophysical and electroluminescent properties of a blue-green self-host phosphorescent iridium(III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing; Wang, Hua [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); Xu, Huixia, E-mail: xuhuixiatyut@163.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); Li, Jie; Wu, Yuling; Du, Xiaogang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); Xu, Bingshe, E-mail: xubs@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-07-15

    A kind of blue-green self-host phosphorescent iridium(III) complex, (CzPhBI){sub 2}Ir(tfmptz) [CzPhBI = 9-(6-(2-phenyl-1-benzimidazolyl)hexyl)-9-carbazole; tfmptz = 2-(5-trifluoromethyl-1,2,4-triazolyl)pyridine], was designed and synthesized. The synthesized iridium(III) complex was characterized by {sup 1}H NMR, {sup 19}F NMR, FT-IR, elemental analysis and X-ray single-crystal diffraction, respectively. Its thermal properties, optical properties and electrochemical properties were also investigated. The host-free organic electroluminescent devices with the configuration of ITO/MoO{sub 3} (3 nm)/NPB (30 nm)/TAPC (15 nm)/(CzPhBI){sub 2}Ir(tfmptz) (30 nm)/TBPI (30 nm)/LiF (1 nm)/Al (100 nm) had been fabricated. The devices exhibited excellent performance indicating that (CzPhBI){sub 2}Ir(tfmptz) was a promising phosphorescent material. - Highlights: • A blue-green self-host phosphorescent iridium(III) complex was synthesized. • The molecular structure, and photophysical properties were investigated. • Electroluminescent performance in host-free devices were discussed. • The maximum current efficiency 8.2 cd A{sup −1} and the maximum brightness 5420 cd m{sup −2} were achieved.

  2. Passive Matrix Organic Electroluminescent Display for 3G Cellular Phone

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The major features of the display technologies for 3G cellular phone are reviewed. The comparison between their potential candidates for 3G cellular phone is given, and a detailed discussion is made on passive matrix organic electroluminescent display technology. A novel method to improve display contrast ratio is presented. Finally several 3G phone set prototypes with OLED display panels are given as well as the market forecast

  3. Study on electroluminescence from porous silicon light-emitting diode

    Institute of Scientific and Technical Information of China (English)

    Yajun Yang; Qingshan Li; Xianyun Liu

    2006-01-01

    @@ Porous silicon (PS) light-emitting diode (LED) with an ITO/PS/p-Si/Al structure was fabricated by anodic oxidation method. Photoluminescence (PL) of the PS LED was measured with a peak at 593 nm, and electroluminescence (EL) was measured with a peak at 556 nm under the conditions of 7.5-V forward bias and 210-mA current intensity. The spectral width of EL was measured to be about 160 nm.

  4. Luminescence properties of a new red emitting Eu3+-doped alkaline-earth fluoborate phosphor: BaCa(1-2x)BO3F:xEu3+, xM+ (M=Li, Na, K)

    Institute of Scientific and Technical Information of China (English)

    SUN Jiayue; LAI Jinli; SUN Jianfeng; DU Haiyan

    2011-01-01

    A series of new red-emitting BaCa1-2xBO3F:xEu3+, xM+ (M=Li, Na, K) phosphors were synthesized by the solid-reaction method.X-ray diffraction (XRD), diffuse reflection (UV-vis) and photoluminescence spectra were utilized to characterize the crystallization process,structure and luminescence properties of the as-synthesized phosphors. The XRD results indicated that the sample began to crystallize at 800 ℃,and single-phase BaCaBO3F was fully obtained after annealing at 1000 C. The charge compensated behaviors were investigated in this paper by considering different cations like Li+, Na+ and K- acting as the charge compensator. The as-prepared phosphors had better emission properties, and the two characteristic emission lines peaking at 590 and 615 nm could be obtained upon 394, 463 and 532 nm excitation with the chromaticity coordinates of (0.596, 0.391), which were due to 5D0-7F1 and 5D0-TF2 transitions of Eu3+ ions. Further, the concentration quenching and corresponding luminescence mechanisms of BaCa1-2xBO3F:xEu3+, xNa+ phosphors were also discussed.

  5. Facile Atmospheric Pressure Synthesis of High Thermal Stability and Narrow-Band Red-Emitting SrLiAl3N4:Eu(2+) Phosphor for High Color Rendering Index White Light-Emitting Diodes.

    Science.gov (United States)

    Zhang, Xuejie; Tsai, Yi-Ting; Wu, Shin-Mou; Lin, Yin-Chih; Lee, Jyh-Fu; Sheu, Hwo-Shuenn; Cheng, Bing-Ming; Liu, Ru-Shi

    2016-08-03

    Red phosphors (e.g., SrLiAl3N4:Eu(2+)) with high thermal stability and narrow-band properties are urgently explored to meet the next-generation high-power white light-emitting diodes (LEDs). However, to date, synthesis of such phosphors remains an arduous task. Herein, we report, for the first time, a facile method to synthesize SrLiAl3N4:Eu(2+) through Sr3N2, Li3N, Al, and EuN under atmospheric pressure. The as-synthesized narrow-band red-emitting phosphor exhibits excellent thermal stability, including small chromaticity shift and low thermal quenching. Intriguingly, the title phosphor shows an anomalous increase in theoretical lumen equivalent with the increase of temperature as a result of blue shift and band broadening of the emission band, which is crucial for high-power white LEDs. Utilizing the title phosphor, commercial YAG:Ce(3+), and InGaN-based blue LED chip, a proof-of-concept warm white LEDs with a color rendering index (CRI) of 91.1 and R9 = 68 is achieved. Therefore, our results highlight that this method, which is based on atmospheric pressure synthesis, may open a new means to explore narrow-band-emitting nitride phosphor. In addition, the underlying requirements to design Eu(2+)-doped narrow-band-emitting phosphors were also summarized.

  6. Temperature dependence of structural and luminescence properties of Eu{sup 3+}-doped Y{sub 2}O{sub 3} red-emitting phosphor thin films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.G.; Dejene, B.F. [University of the Free State (Qwaqwa Campus), Department of Physics, Phuthaditjhaba (South Africa); Swart, H.C. [University of the Free State, Department of Physics, Bloemfontein (South Africa)

    2016-04-15

    Pulse laser deposition was used to obtain nanocrystalline red-emitting Y{sub 2}O{sub 3}:Eu{sup 3+} thin-film phosphors. X-ray diffraction measurements show that the un-annealed thin film was amorphous, while those annealed were crystalline. At lower annealing temperature of 600-700 C, cubic bixbyite Y{sub 2}O{sub 3}:Eu{sup 3+} was formed. As the annealing temperatures were increased to 800 C, hexagonal phase emerged. The average crystallite size of the film was 64 nm. Photoluminescence measurement indicates intense red emission around 612 nm due to the {sup 5}D{sub 0} → {sup 7}F{sub 2} transition. Scanning electron microscopy indicated that agglomerates of non-crystalline particles with spherical shapes were present for the un-annealed films. After annealing at high temperature, finer morphology was revealed. Atomic force microscopy further confirmed the formation of new morphology at the higher annealing temperatures. UV-Vis measurement indicated a band gap in the range of 4.6-4.8 eV. It was concluded that the annealing temperature played an important role in the luminescence intensity and crystallinity of these films. (orig.)

  7. Effect of Heat Treatment on Luminescent Properties of White Organic Light Emitting Device

    Institute of Scientific and Technical Information of China (English)

    LI Juan; HUA Yu-lin; WANG Chang-sheng; XIONG Shao-zhen

    2004-01-01

    The white organic light emitting device (OLED) with single-structure using a polymer blend as the light emitting layer is fabricated. Heat treatment is used to control the ratio between the intensities of main electroluminescent spectral peaks. The electroluminescent spectrum of our device is quite similar to that of white inorganic LED produced by Nichia Corporation after being annealed, and its turn-on voltage can be decreased by 1 V.

  8. Quantitative structure-property relationships of electroluminescent materials: Artificial neural networks and support vector machines to predict electroluminescence of organic molecules

    Indian Academy of Sciences (India)

    Alana Fernandes Golin; Ricardo Stefani

    2013-12-01

    Electroluminescent compounds are extensively used as materials for application in OLED. In order to understand the chemical features related to electroluminescence of such compounds, QSPR study based on neural network model and support vector machine was developed on a series of organic compounds commonly used in OLED development. Radial-basis function-SVM model was able to predict the electroluminescence with good accuracy ( = 0.90). Moreover, RMSE of support vector machine model is approximately half of RMSE observed for artificial neural networks model, which is significant from the point of view of model precision, as the dataset is very small. Thus, support vector machine is a good method to build QSPR models to predict the electroluminescence of materials when applied to small datasets. It was observed that descriptors related to chemical bonding and electronic structure are highly correlated with electroluminescence properties. The obtained results can help in understating the structural features related to the electroluminescence, and supporting the development of new electroluminescent materials.

  9. Electroluminescence of a-Si/c-Si heterojunction solar cells after high energy irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Manuela

    2009-11-24

    The crystalline silicon as absorber material will certainly continue to dominate the market for space applications of solar cells. In the contribution under consideration the applicability of a-Si:H/c-Si heterojunction solar cells in space has been tested by the investigation of the cell modification by high energy protons and comparing the results to the degradation of homojunction crystalline silicon reference cells. The investigated solar cells have been irradiated with protons of different energies and doses. For all investigated solar cells the maximum damage happens for an energy of about 1.7 MeV and is mainly due to the decrease of the effective minority carrier diffusion length in the crystalline silicon absorber. Simulations carried out by AFORS-HET, a heterojunction simulation program, also confirmed this result. The main degradation mechanism for all types of devices is the monotonically decreasing charge carrier diffusion length in the p-type monocrystalline silicon absorber layer. For the heterojunction solar cell an enhancement of the photocurrent in the blue wavelength region has been observed but only in the case of heterojunction solar cell with intrinsic a-Si:H buffer layer. Additionally to the traditional characterization techniques the electroluminescence technique used for monitoring the modifications of the heteroluminescence technique used for monitoring the modifications of the heterointerface between amorphous silicon and crystalline silicon in solar cells after proton irradiation. A direct relation between minority carrier diffusion length and electroluminescence quantum efficiency has been observed but also details of the interface modification could be monitored by this technique.

  10. Hole-exciton interaction induced high field decay of magneto-electroluminescence in Alq{sub 3}-based organic light-emitting diodes at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tingting; Holford, D. F.; Gu, Hang; Kreouzis, T. [Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zhang, Sijie, E-mail: Sijie.zhang@scu.edu.cn, E-mail: w.gillin@qmul.ac.uk [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Gillin, W. P., E-mail: Sijie.zhang@scu.edu.cn, E-mail: w.gillin@qmul.ac.uk [Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2016-01-11

    The magnetic field effects on the electroluminescence of aluminium tris-(8-hydroxyqinoline) (Alq{sub 3}) based organic light emitting diodes have been investigated by varying the electron/hole ratio in the emissive layer. Experimental results reveal that a negative high field effect in the magneto-electroluminescence (MEL) can be found in devices with very low triplet exciton concentration at room temperature. This suggests triplet-triplet annihilation cannot be used to explain the negative high field MEL in the Alq{sub 3} system. Our results suggest that hole-exciton interaction may be the origin of the negative high field MEL and also, in parallel with this interaction, there is also the more common positive high field process occurring which has been tentatively attributed to electron-exciton interactions. The competition between these different processes decides the final shape of the MEL at high fields.

  11. Electroluminescence from GeSn heterostructure pin diodes at the indirect to direct transition

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, J. D.; Menéndez, J. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States); Senaratne, C. L.; Sims, P.; Kouvetakis, J. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States); Aoki, T. [LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, Arizona 85287- 1704 (United States)

    2015-03-02

    The emission properties of GeSn heterostructure pin diodes have been investigated. The devices contain thick (400–600 nm) Ge{sub 1−y}Sn{sub y} i-layers spanning a broad compositional range below and above the crossover Sn concentration y{sub c} where the Ge{sub 1−y}Sn{sub y} alloy becomes a direct-gap material. These results are made possible by an optimized device architecture containing a single defected interface thereby mitigating the deleterious effects of mismatch-induced defects. The observed emission intensities as a function of composition show the contributions from two separate trends: an increase in direct gap emission as the Sn concentration is increased, as expected from the reduction and eventual reversal of the separation between the direct and indirect edges, and a parallel increase in non-radiative recombination when the mismatch strains between the structure components is partially relaxed by the generation of misfit dislocations. An estimation of recombination times based on the observed electroluminescence intensities is found to be strongly correlated with the reverse-bias dark current measured in the same devices.

  12. Energy transfer from Sm3+ to Eu3+ in red-emitting phosphor LaMgAl11O19:Sm3+, Eu3+ for solar cells and near-ultraviolet white light-emitting diodes.

    Science.gov (United States)

    Min, Xin; Huang, Zhaohui; Fang, Minghao; Liu, Yan-Gai; Tang, Chao; Wu, Xiaowen

    2014-06-16

    The red-emitting phosphor LaMgAl11O19:Sm(3+), Eu(3+) was prepared by solid-state reaction at 1600 °C for 4 h. The phase formation, luminescence properties, and energy transfer from Sm(3+) to Eu(3+) were studied. With the addition of 5 mol % Sm(3+) as the sensitizer, the excitation wavelength of LaMgAl11O19:Eu(3+) phosphor was extended from 464 to 403 nm, and the emission intensity under the excitation at 403 nm was also enhanced. The host material LaMgAl11O19 could contain the high doping content of Eu(3+) (20 mol %) without concentration quenching. This energy transfer from Sm(3+) to Eu(3+) was confirmed by the decay times of energy donor Sm(3+). The mechanism of energy transfer (Sm(3+) → Eu(3+)) was proved to be quadrupole-quadrupole interaction. Under the 403 nm excitation at 150 °C, the emission intensities of the characteristic peaks of Sm(3+) and Eu(3+) in LaMgAl11O19:0.05Sm(3+), 0.2Eu(3+) phosphor were decreased to 65% and 56% of the initial intensities at room temperature, and the relatively high activation energy proved that this phosphor had a good thermal stability. The CIE coordinate was calculated to be (x = 0.601, y = 0.390). The LaMgAl11O19:0.05Sm(3+), 0.2Eu(3+) phosphor is a candidate for copper phthalocyanine-based solar cells and white light-emitting diodes.

  13. Dispositivos poliméricos eletroluminescentes Polymeric light emitting devices

    Directory of Open Access Journals (Sweden)

    Hueder P. M. de Oliveira

    2006-04-01

    Full Text Available Here we present an overview of electroluminescent devices that use conjugated polymers as the active media. The principal components of the devices are described and we show some examples of conjugated polymers and copolymers usually employed in polymeric light emitting devices (PLED. Some aspects of the photo and electroluminescence properties as well as of the energy transfer processes are discussed. As an example, we present some of the photophysical properties of poly(fluorenes, a class of conjugated polymers with blue emission.

  14. Developments in polymer materials for electroluminescence

    Science.gov (United States)

    Becker, Heinrich; Buesing, Arne; Falcou, Aurelie; Heun, Susanne; Kluge, Edgar; Parham, Amir; Stoessel, Philipp; Spreitzer, Hubert; Treacher, Kevin; Vestweber, Horst

    2002-02-01

    In the last few years industrial research into materials fulfilling the needs of the fledgling OLED display industry have intensified considerably. At Covion we have developed a range of polymers based on phenyl-PPV derivatives which are now being commercially exploited in the first polymer LED applications. These materials have been developed systematically with the demanding requirements of the devices (e.g., high efficiency and lifetime) and the industrial applicability (e.g. processibility, reproducibility and reliability of supply) in mind. However due to market forces, such as the introduction of 3rd generation mobile communication technology, there will be an immediate demand for materials for full color OLED displays. In this paper we will report on progress in the development of Red, Green and Blue (RGB) materials at Covion. The requirements for the different colors vary depending on band gap (amongst others) and therefore the challenges for each color are different. The experience gained in understanding the important structure-property relationships in the phenyl-PPVs has been used to develop these new RGB materials.

  15. Electroluminescence and cathodoluminescence from polyethylene and polypropylene films: Spectra reconstruction from elementary components and underlying mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, B. [Université de Toulouse, UPS, INP, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse (France); Teyssedre, G.; Laurent, C. [Université de Toulouse, UPS, INP, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France)

    2016-01-14

    The mechanisms of electroluminescence from large band gap polymers used as insulation in electric components are still under debate. It becomes important to unravel the underlying physics of the emission because of increasing thermo-electric stress and a possible relationship between electroluminescence and field withstand. We report herein on the cathodoluminescence spectra of polyethylene and polypropylene films as a way to uncover the nature of its contributions to electroluminescence emission. It is shown that spectra from the two materials are structured around four elementary components, each of them being associated with a specific process contributing to the overall emission with different weights depending on excitation conditions and on materials. The cathodoluminescence and electroluminescence spectra of each material are reconstructed from the four spectral components and their relative contribution are discussed. It is shown that electroluminescence from polyethylene and polypropylene has the same origin pointing towards generic mechanisms in both.

  16. Electroluminescence and cathodoluminescence from polyethylene and polypropylene films: Spectra reconstruction from elementary components and underlying mechanisms

    Science.gov (United States)

    Qiao, B.; Teyssedre, G.; Laurent, C.

    2016-01-01

    The mechanisms of electroluminescence from large band gap polymers used as insulation in electric components are still under debate. It becomes important to unravel the underlying physics of the emission because of increasing thermo-electric stress and a possible relationship between electroluminescence and field withstand. We report herein on the cathodoluminescence spectra of polyethylene and polypropylene films as a way to uncover the nature of its contributions to electroluminescence emission. It is shown that spectra from the two materials are structured around four elementary components, each of them being associated with a specific process contributing to the overall emission with different weights depending on excitation conditions and on materials. The cathodoluminescence and electroluminescence spectra of each material are reconstructed from the four spectral components and their relative contribution are discussed. It is shown that electroluminescence from polyethylene and polypropylene has the same origin pointing towards generic mechanisms in both.

  17. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    Science.gov (United States)

    de Vos, Marc; Torah, Russel; Tudor, John

    2016-04-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps.

  18. Electroluminescence of Si Nanocrystal-Doped SiO2

    Institute of Scientific and Technical Information of China (English)

    CHEN Dan; XIE Zhi-Qiang; WU Qian; ZHAO You-Yuan; LU Ming

    2007-01-01

    @@ We perform a comparative study on the electroluminescence (EL) and photoluminescence (PL) of Si nanocrystaldoped SiO2 (nc-Si:SiO2) and SiO2, and clarify whether the contribution from Si nanocrystals in the EL of nc-Si:SiO2 truly exists. The results unambiguously indicate the presence of EL of Si nanocrystals. The difference of peak positions between the EL and PL spectra are discussed. It is found that the normal method of passivation to enhance the PL of Si nanocrystals is not equally effective for the EL, hence new methods need to be explored to promote the EL of Si nanocrystals.

  19. Synthesis, characterization, photoluminescence and electroluminescence properties of new 1,3,4-oxadiazole-containing rhenium(Ⅰ)complex Re(CO)3(Bphen)(PTOP)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new 1,3,4-oxadiazole-contanining rhenium(Ⅰ) complex, with the formula [Re(CO)3(Bphen)(PTOP)], (Bphen = bathophenardine, PTOP = 4-(5-p-tolyl-1, 3, 4-oxadiazd-2-yl) pyridine), is synthesized and characterized by elemental analysis, IR, 1H NMR,UV-vis and luminescence spectroscopy. The double-layer electroluminescence devices based on the Re(Ⅰ) complex have been fabricated by spin-coating technique. The turn-on voltage, maximum efficiency, and brightness for green emission obtained from the devices are 9 V, 2.1 cd/A and 165 cd/m2, respectively.

  20. Defect-assisted tuning of electroluminescence from p-GaN/n-ZnO nanorod heterojunction

    Indian Academy of Sciences (India)

    Lawrence S Vikas; C K Sruthi; Madambi K Jayaraj

    2015-08-01

    Growth of nanostructured ZnO by solution process always lead to the formation of various kinds of defects. Defect states also can aid in improving different properties of the material. In the case of light-emitting diodes (LEDs), major research is focused on tuning the emission colour so as to achieve white emission without the use of any phosphors. Vertically aligned ZnO nanorods were grown over Mg:GaN substrate by hydrothermal process. High-resolution X-ray diffraction (HRXRD) analysis confirms the epitaxial growth of nanorods over the substrate. The photoluminescence (PL) studies revealed a narrow near band edge emission and a broad defect-induced deep level emission. The intensity of deep level emissions related to Zni, Vo, Oi defects decreases on annealing. The - characteristics of the heterojunction showed excellent rectifying nature with electroluminescence emission on forward bias. Device fabricated by as-grown ZnO nanorods emits in the UV–blue region and broad emission in the visible region. While the annealed device emitted only in UV–blue region. The emission wavelengths closely matched with that of defect state emissions obtained in the PL studies. By annealing, various defect states density can be controlled, thereby emission colour tuned from white to blue.

  1. Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes

    CERN Document Server

    Nishizawa, N; Munekata, H

    2016-01-01

    We report the room-temperature electroluminescence (EL) with nearly pure circular polarization (CP) from GaAs-based spin-polarized light-emitting diodes (spin-LEDs). External magnetic fields are not used during device operation. There are two small schemes in the tested spin-LEDs: firstly, the stripe-laser-like structure that helps intensifying the EL light at the cleaved side walls below the spin injector Fe slab, and secondly, the crystalline AlOx spin tunnel barrier that ensures electrically stable device operation. The purity of CP is depressively low in the low current density (J) region, whereas it increases steeply and reaches close to the pure CP when J = 100 A/cm2. There, either right- or left-handed CP component is significantly suppressed depending on the direction of magnetization of the spin injector. Spin-polarized-current induced birefringence and optical spin-axis conversion are suggested to account for the observed experimental results.

  2. Synthesis and electroluminescent properties of anthracene derivatives containing electron-withdrawing oxide moieties

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jhin-yeong; Na, Eun Jae; Park, Soo Na [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Lee, Seok Jae [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@wow.hongik.ac.kr [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)

    2014-10-15

    Highlights: • Blue fluorescent material is important for application in full-color displays. • We have synthesized emitters based on anthracene connected with oxide moieties. • 1C shows a highly efficient blue EL emission due to electron-injection property. - Abstract: A series of new blue-emitting materials: (4-(10-(naphthalen-2-yl)anthracen-9-yl)phenyl)(phenyl)methanone (1); 9-(naphthalen-2-yl)-10-(4-((diphenyl)phosphine oxide)phenyl)anthracene (2); 9-(naphthalen-2-yl)-10-(4-(phenylsulfonyl)phenyl)anthracene (3) were designed and synthesized via Suzuki cross-coupling reaction. Multilayer OLEDs were fabricated in the following sequence: ITO (180 nm)/NPB (50 nm)/blue materials 1–3 (30 nm)/TPBi (15 nm)/Liq (2 nm)/Al (100 nm). All devices showed the efficient blue EL emissions. In particular, the device using 1 as an emitter exhibited efficient blue electroluminescent properties with a maximum luminous, power, external quantum efficiency and CIE coordinates of 0.36 cd/A, 0.90 lm/W, 0.55% at 20 mA/cm{sup 2} and (x = 0.16, y = 0.20) at 10.0 V, respectively.

  3. Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films.

    Science.gov (United States)

    Hu, Youfan; Zhang, Yan; Lin, Long; Ding, Yong; Zhu, Guang; Wang, Zhong Lin

    2012-07-11

    We present that the electroluminescence (EL) properties of Mg-doped p-type GaN thin films can be tuned by the piezo-phototronic effect via adjusting the minority carrier injection efficiency at the metal-semiconductor (M-S) interface by strain induced polarization charges. The device is a metal-semiconductor-metal structure of indium tin oxide (ITO)-GaN-ITO. Under different straining conditions, the changing trend of the transport properties of GaN films can be divided into two types, corresponding to the different c-axis orientations of the films. An extreme value was observed for the integral EL intensity under certain applied strain due to the adjusted minority carrier injection efficiency by piezoelectric charges introduced at the M-S interface. The external quantum efficiency of the blue EL at 430 nm was changed by 5.84% under different straining conditions, which is 1 order of magnitude larger than the change of the green peak at 540 nm. The results indicate that the piezo-phototronic effect has a larger impact on the shallow acceptor states related EL process than on the one related to the deep acceptor states in p-type GaN films. This study has great significance on the practical applications of GaN in optoelectronic devices under a working environment where mechanical deformation is unavoidable such as for flexible/printable light emitting diodes.

  4. High-sensitivity strain visualization using electroluminescence technologies

    Science.gov (United States)

    Xu, Jian; Jo, Hongki

    2016-04-01

    Visualizing mechanical strain/stress changes is an emerging area in structural health monitoring. Several ways are available for strain change visualization through the color/brightness change of the materials subjected to the mechanical stresses, for example, using mechanoluminescence (ML) materials and mechanoresponsive polymers (MRP). However, these approaches were not effectively applicable for civil engineering system yet, due to insufficient sensitivity to low-level strain of typical civil structures and limitation in measuring both static and dynamic strain. In this study, design and validation for high-sensitivity strain visualization using electroluminescence technologies are presented. A high-sensitivity Wheatstone bridge, of which bridge balance is precisely controllable circuits, is used with a gain-adjustable amplifier. The monochrome electroluminescence (EL) technology is employed to convert both static and dynamic strain change into brightness/color change of the EL materials, through either brightness change mode (BCM) or color alternation mode (CAM). A prototype has been made and calibrated in lab, the linearity between strain and brightness change has been investigated.

  5. Electroluminescence emission patterns of organic light-emitting transistors based on crystallized fluorene-type polymers

    Science.gov (United States)

    Kajii, Hirotake; Ohtomo, Takahiro; Ohmori, Yutaka

    2017-03-01

    The electroluminescence (EL) emission patterns of organic light-emitting transistors (OLETs) based on crystallized poly(9,9-dioctylfluorene) (F8), poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) and poly(9,9-dioctylfluorene-co-dithienyl-benzothiadiazole) (F8TBT) films are investigated. For the single-layer devices and the mixed-layer device without an F8/F8BT interface, only line-shaped EL emission patterns are observed between source/drain (S/D) electrodes. For an F8BT (F8TBT)/F8 heterostructure device, a localized electric field is generated by the positive (negative) charges of the accumulated holes (electrons) in the F8 upper layer, which allow the injection of electrons (holes) in the F8BT (F8TBT) lower layer at a lower (higher) gate voltage. The F8/F8BT device exhibits unique light emission properties with a surface like EL emission pattern between S/D electrodes at a lower gate voltage. The interfacial structure is important for forming field-effect transistor channels along different organic layers to obtain a surface like emission between S/D electrodes. For the F8TBT/F8 OLET, the hole carrier transport mainly occurs at the F8TBT lower layer, and line-shaped EL emission patterns are observed in the vicinity of the source electrode upon varying the gate voltages owing to the worse carrier balance between the F8TBT lower layer and the F8 upper layer.

  6. Comparison of electroluminescence intensity and photocurrent of polymer based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Ulrich; Swonke, Thomas; Auer, Richard [Bayerisches Zentrum fuer Angewandte Energieforschung e.V., Erlangen (Germany); Pinna, Luigi; Brabec, Christoph J. [Bayerisches Zentrum fuer Angewandte Energieforschung e.V., Erlangen (Germany); I-MEET, University Erlangen (Germany); Stubhan, Tobias; Li, Ning [I-MEET, University Erlangen (Germany)

    2011-11-15

    The reciprocity theorem for solar cell predicts a linear relation between electroluminescence emission and photovoltaic quantum efficiency and an exponential dependence of the electroluminescence signal on the applied voltage. Both dependencies are experimentally verified for polymer based solar cells in this paper. Furthermore it is shown, that electroluminescence imaging of organic solar cells has the potential to visualize the photocurrent distribution significantly faster than standard laser beam induced current mapping (LBIC) techniques. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Highly stretchable electroluminescent skin for optical signaling and tactile sensing.

    Science.gov (United States)

    Larson, C; Peele, B; Li, S; Robinson, S; Totaro, M; Beccai, L; Mazzolai, B; Shepherd, R

    2016-03-04

    Cephalopods such as octopuses have a combination of a stretchable skin and color-tuning organs to control both posture and color for visual communication and disguise. We present an electroluminescent material that is capable of large uniaxial stretching and surface area changes while actively emitting light. Layers of transparent hydrogel electrodes sandwich a ZnS phosphor-doped dielectric elastomer layer, creating thin rubber sheets that change illuminance and capacitance under deformation. Arrays of individually controllable pixels in thin rubber sheets were fabricated using replica molding and were subjected to stretching, folding, and rolling to demonstrate their use as stretchable displays. These sheets were then integrated into the skin of a soft robot, providing it with dynamic coloration and sensory feedback from external and internal stimuli.

  8. Kinetics of transient electroluminescence in organic light emitting diodes

    Science.gov (United States)

    Shukla, Manju; Kumar, Pankaj; Chand, Suresh; Brahme, Nameeta; Kher, R. S.; Khokhar, M. S. K.

    2008-08-01

    Mathematical simulation on the rise and decay kinetics of transient electroluminescence (EL) in organic light emitting diodes (OLEDs) is presented. The transient EL is studied with respect to a step voltage pulse. While rising, for lower values of time, the EL intensity shows a quadratic dependence on (t - tdel), where tdel is the time delay observed in the onset of EL, and finally attains saturation at a sufficiently large time. When the applied voltage is switched off, the initial EL decay shows an exponential dependence on (t - tdec), where tdec is the time when the voltage is switched off. The simulated results are compared with the transient EL performance of a bilayer OLED based on small molecular bis(2-methyl 8-hydroxyquinoline)(triphenyl siloxy) aluminium (SAlq). Transient EL studies have been carried out at different voltage pulse amplitudes. The simulated results show good agreement with experimental data. Using these simulated results the lifetime of the excitons in SAlq has also been calculated.

  9. Electroluminescence Gray Scale Display Driving Method and Circuit

    Institute of Scientific and Technical Information of China (English)

    KANG Hao; LI Rong-yu; YANG Xin

    2007-01-01

    The increasing use of color terminals for personal computers has raised a demand for video graphic adapter(VGA)-format panel displays. Since only monochrome(ZnS∶Mn) electroluminescence(EL) displays of suitable size and speed are available, lack of colors has to be replaced by grayscale in the first place. There are two basic driving methods to achieve grayscale in thin-film EL displays: pulse amplitude modulation(PAM) method and pulse width modulation(PWM) method. But there are serious disadvantages of the two traditional methods. For the former method, the high voltage PAM ICs are too expensive to produce the grayscale EL display in bulks and the driver integrated circuit(IC) is complex. Though the PWM method has good grayscale display quality, the hardware implementation is too complex. A new driving method with which the width and the amplitude of the pulse can be modulated and simultaneously the challenge can be solved efficaciously is presented.

  10. Design of efficient electroluminescent lanthanide(III) complexes

    CERN Document Server

    You, B R; Park, N G; Kim, Y S

    2001-01-01

    The lanthanide complexes have been anticipated to exhibit high efficiency along with a narrow emission spectrum. Photoluminescence for the lanthanide complex is characterized by a high efficiency since both single and triplet excitons are involved in the luminescence process. However, the maximum external electroluminescence quantum efficiencies have exhibited values around 1% due to triplet-triplet annihilation at high current. Here, we proposed a new energy transfer mechanism to overcome triplet-triplet annihilation by the Eu complex doped into phosphorescent materials with triplet levels that were higher than single levels of the Eu complex. In order to show the feasibility of the proposed energy transfer mechanism and to obtain the optimal ligands and host material, we have calculated the effect depending on ligands as a factor that controls emission intensity in lanthanide complexes. The calculation shows that triplet state as well as singlet state of anion ligand affects on absorption efficiency indirec...

  11. Structural, morphological and electroluminescence studies of Zno:Co nanophosphor

    Science.gov (United States)

    Singh, Anju; Vishwakarma, H. L.

    2016-09-01

    The nanoparticles of zinc oxide (ZnO) doped with various concentrations of cobalt (Co) were synthesized by chemical precipitation method in the presence of capping agent polyvinylpyrrolidone (PVP). The effect of doping concentration on structural and morphological properties has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). Cell volume, bond length, texture coefficient, lattice constants and dislocation density are also studied. Here, we also compared the interplaner spacing and relative peak intensities from their standard values with different angles. Crystallite sizes have been calculated by Debye-Scherrer's formula whose values are decreasing with increase in cobalt content up to 3 %. It has been seen that the growth orientation of the prepared ZnO nanorods was (101). The XRD analysis also ensures that ZnO has a hexagonal (wurtzite) crystal structure. The electroluminescence (EL) cells were prepared by placing pure and cobalt-doped ZnO nanoparticles between ITO-coated conducting glass plate and aluminium foil. Alternating voltage of various frequencies was applied, and EL brightness at different voltages was measured and corresponding current was also recorded. The voltage dependence of electroluminescence (EL) brightness of the ZnO:Co shows exponential increase. The linear voltage-current characteristic indicates ohmic nature. The EL brightness at a particular voltage is found to increase by increasing Co doping, but for higher percentage of Co the EL brightness is reduced. It is also seen that Co does not influence the threshold voltage. The brightness is also affected by increasing the frequency of AC signal.

  12. Electroluminescent properties of three ternary europium complexes with different phenanthroline derivatives

    Institute of Scientific and Technical Information of China (English)

    BIAN Zuqiang; GAO Deqing; GUAN Min; XIN Hao; LI Fuyou; HUANG Chunhui; WANG Kezhi; JIN Linpei

    2004-01-01

    Three ternary Eu(Ⅲ) complexes with general formula of Eu(DBM)3LN (DBM =dibenzoylmethanate, and LN (N= 1-3 ) stand for three different 1,1 0-phenanthroline derivatives)have been synthesized for vacuum deposition films-based electroluminescent devices. The complex Eu(DBM)3L3 (L3 = 2-phenyl-3-[3-(carbazol-9-yl)propyl]imidazo[4,5-f]1,10-phenanthroline) was designed with an effort to combine the electron-transporting phenanthroline platform and the hole-transporting carbazole group into one molecule expecting to improve both electron and hole transporting properties simultaneously. The results show that the variation of the neutral ligands in Eu(Ⅲ) mixed ligand complexes is a simple and effective approach to the improvement in the thermal stability, PL and EL properties of materials. A double-layer device with the configuration of ITO/TPD (50 nm)/Eu(DBM)3L3 (50 nm)/Mgo.9Ago.1 (200 nm)/Ag (100 nm)exhibited Eu(Ⅲ)-based pure red emission with a maximum brightness of 561 cd/m2 at 16 V, and an onset driving voltage of 8 V. A device with the configuration of ITO/TPD (50 nm)/[Eu(DBM)3L3(5 nm):BCP (5 nm)]4/BCP (20 nm)/AIQ (10 nm) Mgo.gAgo.1 (110 nm)/Ag (100 nm) gave high efficient and pure red light emission with a luminance of 1419 cd/m2.

  13. Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells

    Science.gov (United States)

    Lin, Chung-Yi; Huang, Chih-Hsiung; Huang, Shih-Hsien; Chang, Chih-Chiang; Liu, C. W.; Huang, Yi-Chiau; Chung, Hua; Chang, Chorng-Ping

    2016-08-01

    Ge/strained GeSn/Ge quantum wells are grown on a 300 mm Si substrate by chemical vapor deposition. The direct bandgap emission from strained GeSn is observed in the photoluminescence spectra and is enhanced by Al2O3/SiO2 passivation due to the field effect. The electroluminescence of the direct bandgap emission of strained GeSn is also observed from the Ni/Al2O3/GeSn metal-insulator-semiconductor tunneling diodes. Electroluminescence is a good indicator of GeSn material quality, since defects in GeSn layers degrade the electroluminescence intensity significantly. At the accumulation bias, the holes in the Ni gate electrode tunnel to the strained n-type GeSn layer through the ultrathin Al2O3 and recombine radiatively with electrons. The emission wavelength of photoluminescence and electroluminescence can be tuned by the Sn content.

  14. Three-Colour Single-Mode Electroluminescence from Alq3 Tuned by Microcavities

    Institute of Scientific and Technical Information of China (English)

    赵家民; 马凤英; 刘星元; 刘云; 初国强; 宁永强; 王立军

    2002-01-01

    Organic metal microcavities were fabricated by using full-reflectivity aluminium film and semi-transparent silverfilm as cavity mirrors. Unlike conventional organic microcavities, such as the typical structure of glass/DBR/ITO/-organic layers/metal mirror, a microcavity with a shorter cavity length was obtained by using two metal mirrors,where DBR is the distributed Bragg reflector consisting of alternate quarter-wave layers of high and low refractiveindex materials. It is realized that red, green and blue single-mode electroluminescence (EL) from the micro-cavities with the structure, glass/Ag/TPD/Alqa/A1, are electrically-driven when the thickness of the Alqa layerchanges. Compared to a non-cavity reference sample whose EL spectrum peak is located at 520nm with a fullwidth at half maximum (FWHM) of 93 nm, the microcavity devices show apparent cavity effects. The EL spectraof red, green and blue microcavities are peaked at 604nm, 540nm and 491 nm, with FWHM of 43 nm, 38nm and47nm, respectively.

  15. The Study of Electroluminescence and Reliability of Polyimide Films in High DC Fields

    Directory of Open Access Journals (Sweden)

    Jiaqi LIN

    2015-11-01

    Full Text Available Electroluminescence (EL intensity of the polyimide (PI films was tested under dc high electric field by home-made experimental device. The results showed that the EL intensity of PI films increased along with the electric field. EL intensity is approximately to background intensity when the electric-field intensity was less than 2.00 MV/cm. EL intensity increases along with increasing the electric field when electric-field intensity greater than 2.00 MV/cm. When electric-field at 2.80 MV/cm, EL intensity increasing strongly suggests that the excitation process related to hot electrons accelerated by the field approaching a critical threshold. Meanwhile, this work elaborates a method to deal with identical samples get different experimental data by using Weibull distribution method, and the concept of the reliability was presented. The nine groups of EL experimental data were analyzed, and the result showed that the lifetime of mid-value (t = 164.9 min. Mid-value of the breakdown field is E = 2.76 MV/cm.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9694

  16. Near-infrared roll-off-free electroluminescence from highly stable diketopyrrolopyrrole light emitting diodes

    Science.gov (United States)

    Sassi, Mauro; Buccheri, Nunzio; Rooney, Myles; Botta, Chiara; Bruni, Francesco; Giovanella, Umberto; Brovelli, Sergio; Beverina, Luca

    2016-09-01

    Organic light emitting diodes (OLEDs) operating in the near-infrared spectral region are gaining growing relevance for emerging photonic technologies, such as lab-on-chip platforms for medical diagnostics, flexible self-medicated pads for photodynamic therapy, night vision and plastic-based telecommunications. The achievement of efficient near-infrared electroluminescence from solution-processed OLEDs is, however, an open challenge due to the low photoluminescence efficiency of most narrow-energy-gap organic emitters. Diketopyrrolopyrrole-boron complexes are promising candidates to overcome this limitation as they feature extremely high photoluminescence quantum yield in the near-infrared region and high chemical stability. Here, by incorporating suitably functionalized diketopyrrolopyrrole derivatives emitting at ~760 nm in an active matrix of poly(9,9-dioctylfluorene-alt-benzothiadiazole) and without using complex light out-coupling or encapsulation strategies, we obtain all-solution-processed NIR-OLEDs with external quantum efficiency as high as 0.5%. Importantly, our test-bed devices show no efficiency roll-off even for high current densities and high operational stability, retaining over 50% of the initial radiant emittance for over 50 hours of continuous operation at 10 mA/cm2, which emphasizes the great applicative potential of the proposed strategy.

  17. Polarization-induced pn diodes in wide-band-gap nanowires with ultraviolet electroluminescence.

    Science.gov (United States)

    Carnevale, Santino D; Kent, Thomas F; Phillips, Patrick J; Mills, Michael J; Rajan, Siddharth; Myers, Roberto C

    2012-02-08

    Almost all electronic devices utilize a pn junction formed by random doping of donor and acceptor impurity atoms. We developed a fundamentally new type of pn junction not formed by impurity-doping, but rather by grading the composition of a semiconductor nanowire resulting in alternating p and n conducting regions due to polarization charge. By linearly grading AlGaN nanowires from 0% to 100% and back to 0% Al, we show the formation of a polarization-induced pn junction even in the absence of any impurity doping. Since electrons and holes are injected from AlN barriers into quantum disk active regions, graded nanowires allow deep ultraviolet LEDs across the AlGaN band-gap range with electroluminescence observed from 3.4 to 5 eV. Polarization-induced p-type conductivity in nanowires is shown to be possible even without supplemental acceptor doping, demonstrating the advantage of polarization engineering in nanowires compared with planar films and providing a strategy for improving conductivity in wide-band-gap semiconductors. As polarization charge is uniform within each unit cell, polarization-induced conductivity without impurity doping provides a solution to the problem of conductivity uniformity in nanowires and nanoelectronics and opens a new field of polarization engineering in nanostructures that may be applied to other polar semiconductors.

  18. Near-infrared roll-off-free electroluminescence from highly stable diketopyrrolopyrrole light emitting diodes

    Science.gov (United States)

    Sassi, Mauro; Buccheri, Nunzio; Rooney, Myles; Botta, Chiara; Bruni, Francesco; Giovanella, Umberto; Brovelli, Sergio; Beverina, Luca

    2016-01-01

    Organic light emitting diodes (OLEDs) operating in the near-infrared spectral region are gaining growing relevance for emerging photonic technologies, such as lab-on-chip platforms for medical diagnostics, flexible self-medicated pads for photodynamic therapy, night vision and plastic-based telecommunications. The achievement of efficient near-infrared electroluminescence from solution-processed OLEDs is, however, an open challenge due to the low photoluminescence efficiency of most narrow-energy-gap organic emitters. Diketopyrrolopyrrole-boron complexes are promising candidates to overcome this limitation as they feature extremely high photoluminescence quantum yield in the near-infrared region and high chemical stability. Here, by incorporating suitably functionalized diketopyrrolopyrrole derivatives emitting at ~760 nm in an active matrix of poly(9,9-dioctylfluorene-alt-benzothiadiazole) and without using complex light out-coupling or encapsulation strategies, we obtain all-solution-processed NIR-OLEDs with external quantum efficiency as high as 0.5%. Importantly, our test-bed devices show no efficiency roll-off even for high current densities and high operational stability, retaining over 50% of the initial radiant emittance for over 50 hours of continuous operation at 10 mA/cm2, which emphasizes the great applicative potential of the proposed strategy. PMID:27677240

  19. Electroluminescence and Photoluminescence from a Fluorescent Cobalt Porphyrin Grafted on Graphene Oxide

    Science.gov (United States)

    Janghouri, Mohammad

    2017-10-01

    A new graphene oxide-cobalt porphyrin (GO-CoTPP) hybrid material has been used as an emissive layer in organic light-emitting diodes (OLEDs). Devices with fundamental structure of indium-doped tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS, 45 nm)/polyvinylcarbazole (PVK):2-(4-biphenyl)-5-(4- t-butylphenyl)-1,3,4-oxadiazole (PBD):GO-CoTPP (70 nm)/1,3,5-tris( N-phenylbenzimidazol-2-yl)-benzene (TPBI, 20 nm)/Al (150 nm) were fabricated. A red electroluminescence (EL) was obtained from thin-film PVK:PBD:CoTPP at 70 nm thickness. When CoTPP was covalently grafted on graphene oxide (GO) sheets, near-white EL was obtained. The white emission, which was composed of bluish green and red, is attributed to electroplex formation at the GO-CoTPP/PBD interface. Such electroplex emission between electrons and holes is a reason for the low turn-on voltage of the GO-CoTPP-based OLED. Maximum luminance efficiency of 1.43 cd/A with Commission International de l'Eclairage coordinates of 0.33 and 0.40 was achieved at current of 0.02 mA and voltage of 14 V.

  20. Ultrabroad Photoluminescence and Electroluminescence at New Wavelengths from Doped Organometal Halide Perovskites.

    Science.gov (United States)

    Zhou, Yang; Yong, Zi-Jun; Zhang, Kai-Cheng; Liu, Bo-Mei; Wang, Zhao-Wei; Hou, Jing-Shan; Fang, Yong-Zheng; Zhou, Yi; Sun, Hong-Tao; Song, Bo

    2016-07-21

    Doping of semiconductors by introducing foreign atoms enables their widespread applications in microelectronics and optoelectronics. We show that this strategy can be applied to direct bandgap lead-halide perovskites, leading to the realization of ultrawide photoluminescence (PL) at new wavelengths enabled by doping bismuth (Bi) into lead-halide perovskites. Structural and photophysical characterization reveals that the PL stems from one class of Bi doping-induced optically active center, which is attributed to distorted [PbI6] units coupled with spatially localized bipolarons. Additionally, we find that compositional engineering of these semiconductors can be employed as an additional way to rationally tune the PL properties of doped perovskites. Finally, we accomplished the electroluminescence at cryogenic temperatures by using this system as an emissive layer, marking the first electrically driven devices using Bi-doped photonic materials. Our results suggest that low-cost, earth-abundant, solution-processable Bi-doped perovskite semiconductors could be promising candidate materials for developing optical sources operating at new wavelengths.

  1. Electroluminescence and negative differential resistance studies of TPD:PBD:Alq3 blend organic-light-emitting diodes

    Indian Academy of Sciences (India)

    M A Mohd Sarjidan; S H Basri; N K Za’aba; M S Zaini; W H Abd Majid

    2015-02-01

    Ternary system of single-layer organic-light-emitting diodes (OLEDs) were fabricated containing tris(8-hydroxyquinoline) aluminium (Alq3) blended with N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine and 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole small molecules. Electroluminescence properties were investigated with respect to blend systems. Significant improvement in turn-on voltage and luminance intensity was observed by employing the blends technique. Negative differential resistance (NDR) characteristics observed at a low voltage region in blended OLED is related to the generation of guest hopping site and phonon scattering phenomenon. However, luminescence of the devices is not altered by the NDR effect.

  2. Poly(meta-phenylene) Derivative with Rigid Twisted Biphenyl Units in Backbone: Synthesis, Structural Characterization,Photophysical Properties and Electroluminescence

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yan; YANG Bing; ZHANG Hai-quan; LU Ping; SHEN Fang-zhong; LIU Lin-lin; XU Hai; YANG Guang-di; MA Yu-guang

    2007-01-01

    A soluble poly(meta-phenylene) derivative with rigid twisted biphenyl unit was synthesized by the Yamamoto coupling reaction. The polymer is soluble in common organic solvents, and the number-average molecular weight is about 6500. The UV-Vis and quantum chemical calculation indicate that the different conformation segments named "conformers" exist in the polymer backbones; it was also further confirmed by the single crystal X-ray diffraction study of the dimeric model compound. The π-π* transition of biphenyl segments of twisted and planar conformations made the polymer exhibit a strong absorption around 256 nm and a weak absorption at about 300 nm. Furthermore,the polymer exhibits a strong UV photoluminescence at 372 nm when the excitation wavelengths are longer than 300 nm. The ultraviolet-emitting electroluminescence(EL) device with the single layer structure shows EL λmax of the derivative at 370 nm.

  3. Cathodoluminescence and electroluminescence from multi-layered organic structures induced by field electron emission from carbon nanotubes

    Science.gov (United States)

    Kuznetzov, Alexander A.; Zakhidov, Alexander A.; Ovalle, Raquel; Nanjundaswami, Rashmi; Williams, Christopher; Zhang, Mei; Lee, Sergey B.; Ferraris, John; Zakhidov, Anvar A.

    2005-10-01

    We report the observation of cathodoluminescence (CL) of organic multilayers of tris-(8-hydroxyquinoline) aluminium (Alq3) and 2- (4biphenyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole (PBD) deposited on ITO-coated glass, with and without hole transport layer and compare it with electroluminescence (EL) from similar devices. Excitation of the CL of such multilayer organic anodes was accomplished by low energy electrons field emitted by single walled carbon nanotube cathodes. The dependence of CL spectrum and intensity on voltage (V), current (I), type of transport layer and the cathode-anode geometry has been studied. We propose carbon nanotubes as efficient cathodes for stable CL emission from multi-layer anodes at small cathode-anode separations. The role of hole-transport layer is also discussed.

  4. Inkjet printed polymer light-emitting devices fabricated by thermal embedding of semiconducting polymer nanospheres in an inert matrix

    Science.gov (United States)

    Fisslthaler, Evelin; Sax, Stefan; Scherf, Ullrich; Mauthner, Gernot; Moderegger, Erik; Landfester, Katharina; List, Emil J. W.

    2008-05-01

    An aqueous dispersion of semiconducting polymer nanospheres was used to fabricate polymer light-emitting devices by inkjet printing in an easy-to-apply process with a minimum feature size of 20μm. To form the devices, the electroluminescent material was printed on a nonemitting polystyrene matrix layer and embedded by thermal annealing. The process allows the printing of light-emitting thin-film devices without extensive optimization of film homogeneity and thickness of the active layer. Optical micrographs of printed device arrays, electroluminescence emission spectra, and I /V characteristics of printed ITO/PEDOT:PSS/PS/SPN/Al devices are presented.

  5. Analysis of the electroluminescence features of silicon metal-insulator-semiconductor structures as a tool for diagnostics of the injection properties of a dielectric layer

    Science.gov (United States)

    Illarionov, Yu. Yu.; Vexler, M. I.; Isakov, D.; Fedorov, V. V.; Sing, Yew Kwang

    2013-10-01

    A technique for diagnostics of the injection properties of thin dielectric layers based on analysis of the data on silicon electroluminescence in a metal-insulator-semiconductor structure is proposed. The possibility of applying this technique to control the electron injection energy (in particular, when the barrier parameters are poorly known) is demonstrated by the example of samples with CaF2 and HfO2/SiO2. The results obtained are important for application of the insulators under study in microelectronic devices.

  6. Near infrared electroluminescence of ZnMgO/InN core-shell nanorod heterostructures grown on Si substrate.

    Science.gov (United States)

    Wu, Guoguang; Zheng, Weitao; Gao, Fubin; Yang, Hang; Zhao, Yang; Yin, Jingzhi; Zheng, Wei; Li, Wancheng; Zhang, Baolin; Du, Guotong

    2016-07-27

    This paper presents a systematic investigation of a ZnMgO/InN core-shell nanorods heterojunction device on a p-Si substrate. Here we demonstrated the heteroepitaxial growth of the well-aligned ZnMgO/InN core-shell nanorods structure, which enabled an increased heterojunction area to improve the carrier injection efficiency of nanodevices by plasma-assisted molecular beam epitaxy combined with metal-organic chemical vapor deposition. In situ X-ray photoelectron spectroscopy measurements were performed on the ZnMgO nanorods, the interface of ZnMgO/InN and the InN core-shell nanorods to fully understand the structure and working mechanism of the heterojunction device. The current transport mechanism has been discussed in terms of the characteristics of current-voltage and the energy band diagram of the n-InN/ZnMgO/p-Si heterojunction. At a low forward voltage, the current transport followed the dependence of I ∼ V(1.47), which was attributed to the deep-level assisted tunneling. When the forward voltage was larger than 10 V, the current followed the relation of I ∼ V(2) because of the radiative recombination process. In accordance with the above conclusion, the near-infrared electroluminescence of the diode could be observed after the forward bias voltage up to 11.6 V at room temperature. In addition, the size quantization effect and the intrinsic electron accumulation of the InN core-shell nanorods were investigated to explain the blueshift and broadened bandwidth. Furthermore, the light output power of about 0.6 microwatt at a fixed wavelength of 1500 nm indicated that our study will further provide a useful route for realizing the near-infrared electroluminescence of InN on Si substrate.

  7. Characteristics of electroluminescence phenomenon in virgin and thermally aged LDPE

    Science.gov (United States)

    Bani, N. A.; Abdul-Malek, Z.; Ahmad, H.; Muhammad-Sukki, F.; Mas'ud, A. A.

    2015-08-01

    High voltage cable requires a good insulating material such as low density polyethylene (LDPE) to be able to operate efficiently in high voltage stresses and high temperature environment. However, any polymeric material will experience degradation after prolonged application of high electrical stresses or other extreme conditions. The continuous degradation will shorten the life of a cable therefore further understanding on the behaviour of the aged high voltage cable needs to be undertaken. This may be observed through electroluminescence (EL) measurement. EL occurs when a solid-state material is subjected to a high electrical field stress and associated with the generation of charge carriers within the polymeric material and that these charges can be produced by injection, de-trapping and field-dissociation at the metal-polymer interface. The behaviour of EL emission can be affected by applied field, applied frequency, ageing time, ageing temperature and types of materials, among others. This paper focuses on the measurement of EL emission of additive-free LDPE thermally aged at different temperature subjected to varying electric stresses at 50Hz. It can be observed that EL emission increases as voltage applied is increased. However, EL emission decreases as ageing temperature is increased for varying applied voltage.

  8. Kinetics of transient electroluminescence in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Manju; Brahme, Nameeta [School of Studies in Physics, Pt. Ravishanker Shukla University, Raipur (Congo, The Democratic Republic of the) 492010 (India); Kumar, Pankaj; Chand, Suresh [Center for Organic Electronics, National Physical Laboratory, Dr K S Krishnan Road, New Delhi-110012 (India); Kher, R S [Department of Physics, Government Science PG College, Bilaspur (Congo, The Democratic Republic of the) 495006 (India); Khokhar, M S K [Department of Rural Technology, GuruGhasidas University Bilaspur (Congo, The Democratic Republic of the) 495009 (India)], E-mail: manjushukla2003@gmail.com

    2008-08-21

    Mathematical simulation on the rise and decay kinetics of transient electroluminescence (EL) in organic light emitting diodes (OLEDs) is presented. The transient EL is studied with respect to a step voltage pulse. While rising, for lower values of time, the EL intensity shows a quadratic dependence on (t - t{sub del}), where t{sub del} is the time delay observed in the onset of EL, and finally attains saturation at a sufficiently large time. When the applied voltage is switched off, the initial EL decay shows an exponential dependence on (t - t{sub dec}), where t{sub dec} is the time when the voltage is switched off. The simulated results are compared with the transient EL performance of a bilayer OLED based on small molecular bis(2-methyl 8-hydroxyquinoline)(triphenyl siloxy) aluminium (SAlq). Transient EL studies have been carried out at different voltage pulse amplitudes. The simulated results show good agreement with experimental data. Using these simulated results the lifetime of the excitons in SAlq has also been calculated.

  9. Pattern Visual Evoked Potentials Elicited by Organic Electroluminescence Screen

    Directory of Open Access Journals (Sweden)

    Celso Soiti Matsumoto

    2014-01-01

    Full Text Available Purpose. To determine whether organic electroluminescence (OLED screens can be used as visual stimulators to elicit pattern-reversal visual evoked potentials (p-VEPs. Method. Checkerboard patterns were generated on a conventional cathode-ray tube (S710, Compaq Computer Co., USA screen and on an OLED (17 inches, 320 × 230 mm, PVM-1741, Sony, Tokyo, Japan screen. The time course of the luminance changes of each monitor was measured with a photodiode. The p-VEPs elicited by these two screens were recorded from 15 eyes of 9 healthy volunteers (22.0 ± 0.8 years. Results. The OLED screen had a constant time delay from the onset of the trigger signal to the start of the luminescence change. The delay during the reversal phase from black to white for the pattern was 1.0 msec on the cathode-ray tube (CRT screen and 0.5 msec on the OLED screen. No significant differences in the amplitudes of P100 and the implicit times of N75 and P100 were observed in the p-VEPs elicited by the CRT and the OLED screens. Conclusion. The OLED screen can be used as a visual stimulator to elicit p-VEPs; however the time delay and the specific properties in the luminance change must be taken into account.

  10. Sputter deposition of rare earth doped zinc sulfide for near infrared electroluminescence

    Science.gov (United States)

    Glass, William Robert, III

    2003-10-01

    Near infrared emitting alternating current thin film electroluminescent (ACTFEL) phosphors were fabricated by simultaneous R.F. magnetron sputtering from both a target of doped ZnS and an undoped ZnS target. The intensities of both near infrared (NIR) and visible emission from ZnS doped with thulium (Tm), neodymium (Nd), or erbium (Er) fluorides were dependent on deposition parameters such as target duty cycle (varied from 25 to 100% independently for the two targets) and substrate temperature (140--180°C), with lower temperatures giving 400% better NIR brightness. By optimizing the rare earth concentration between 0.8 and 1.1 at%, the near infrared irradiance was improved by 400% for each dopant. The increase in brightness and optimal concentrations are attributed to decreased crystallinity and increased dopant interaction at higher rare earth concentrations. The brightness increase with decreasing deposition temperature was attributed to a reduction of thermal desorption of the ZnS during deposition, and consequently thicker films and optimized rare earth concentration. Luminescent decay lifetimes were short (20--40 musec) because of a high concentration of non-radiative pathways due to defects from the strain of the large rare earth ions on the ZnS lattice. The threshold voltage for visible and near infrared emission was identical despite emission of NIR and visible light resulting from electrons relaxing from low and high energy excited levels, respectively. The optical threshold voltages were identical to the electrical threshold voltages, and it was concluded that at the voltages necessary for electrical breakdown, the accelerated electrons had enough energy to excite either the visible or NIR emitting levels. Phosphors doped with Nd exhibited increased internal charge at higher dopant concentrations despite a reduction in phosphor field (i.e. reduced applied voltage) In contrast; the charge did not change appreciably for Er and decreased for Tm doped films

  11. Fourier transform infrared spectroscopy approach for measurements of photoluminescence and electroluminescence in mid-infrared

    Science.gov (United States)

    Zhang, Y. G.; Gu, Y.; Wang, K.; Fang, X.; Li, A. Z.; Liu, K. H.

    2012-05-01

    An improved Fourier transform infrared spectroscopy approach adapting to photoluminescence and electroluminescence measurements in mid-infrared has been developed, in which diode-pumped solid-state excitation lasers were adopted for photoluminescence excitation. In this approach, three different Fourier transform infrared modes of rapid scan, double modulation, and step scan were software switchable without changing the hardware or connections. The advantages and limitations of each mode were analyzed in detail. Using this approach a group of III-V and II-VI samples from near-infrared extending to mid-infrared with photoluminescence intensities in a wider range have been characterized at room temperature to demonstrate the validity and overall performances of the system. The weaker electroluminescence of quantum cascade lasers in mid-infrared band was also surveyed at different resolutions. Results show that for samples with relatively strong photoluminescence or electroluminescence out off the background, rapid scan mode is the most preferable. For weaker photoluminescence or electroluminescence overlapped with background, double modulation is the most effective mode. To get a better signal noise ratio when weaker photoluminescence or electroluminescence signal has been observed in double modulation mode, switching to step scan mode should be an advisable option despite the long data acquiring time and limited resolution.

  12. Fourier transform infrared spectroscopy approach for measurements of photoluminescence and electroluminescence in mid-infrared.

    Science.gov (United States)

    Zhang, Y G; Gu, Y; Wang, K; Fang, X; Li, A Z; Liu, K H

    2012-05-01

    An improved Fourier transform infrared spectroscopy approach adapting to photoluminescence and electroluminescence measurements in mid-infrared has been developed, in which diode-pumped solid-state excitation lasers were adopted for photoluminescence excitation. In this approach, three different Fourier transform infrared modes of rapid scan, double modulation, and step scan were software switchable without changing the hardware or connections. The advantages and limitations of each mode were analyzed in detail. Using this approach a group of III-V and II-VI samples from near-infrared extending to mid-infrared with photoluminescence intensities in a wider range have been characterized at room temperature to demonstrate the validity and overall performances of the system. The weaker electroluminescence of quantum cascade lasers in mid-infrared band was also surveyed at different resolutions. Results show that for samples with relatively strong photoluminescence or electroluminescence out off the background, rapid scan mode is the most preferable. For weaker photoluminescence or electroluminescence overlapped with background, double modulation is the most effective mode. To get a better signal noise ratio when weaker photoluminescence or electroluminescence signal has been observed in double modulation mode, switching to step scan mode should be an advisable option despite the long data acquiring time and limited resolution.

  13. Large Size Color-tunable Electroluminescence from Cationic Iridium Complexes-based Light-emitting Electrochemical Cells

    Science.gov (United States)

    Zeng, Qunying; Li, Fushan; Guo, Tailiang; Shan, Guogang; Su, Zhongmin

    2016-06-01

    Solution-processable light-emitting electrochemical cells (LECs) with simple device architecture have become an attractive candidate for application in next generation lighting and flat-panel displays. Herein, single layer LECs employing two cationic Ir(III) complexes showing highly efficient blue-green and yellow electroluminescence with peak current efficiency of 31.6 cd A‑1 and 40.6 cd A‑1, respectively, have been reported. By using both complexes in the device, color-tunable LECs with a single spectral peak in the wavelength range from 499 to 570 nm were obtained by varying their rations. In addition, the fabrication of efficient LECs was demonstrated based on low cost doctor-blade coating technique, which was compatible with the roll to roll fabrication process for the large size production. In this work, for the first time, 4 inch LEC devices by doctor-blade coating were fabricated, which exhibit the efficiencies of 23.4 cd A‑1 and 25.4 cd A‑1 for the blue-green and yellow emission, respectively. The exciting results indicated that highly efficient LECs with controllable color could be realized and find practical application in large size lighting and displays.

  14. Organic Light-Emitting Device Based on Terbium Complex

    Institute of Scientific and Technical Information of China (English)

    Xu Ying; Deng Zhenbo; Xu Denghui; Xiao Jing; Wang Ruifen

    2005-01-01

    A new rare earth complex Tb(p-MBA)3phen was synthesized, which is first used as an emitting material in organic electroluminescence. By doping it into the conjugated polymer PVK, single-layer and double-layer devices were fabricated with structures: device 1: ITO/PVK∶ Tb(p-MBA)3phen/Al; device 2∶ ITO/PVK: Tb(p-MBA)3phen/AlQ/LiF/Al. The characteristics of these devices have been investigated. The emission of PVK is completely restrained, and only the pure green emission from Tb3+ can be observed in electroluminescence. The optimized device 2 has better monochromatic characteristics with the maximal brightness of 152 cd · m-2 at the voltage of 20 V.

  15. Co-deposition methods for the fabrication of organic optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Mark E.; Liu, Zhiwei; Wu, Chao

    2016-09-06

    A method for fabricating an OLED by preparing phosphorescent metal complexes in situ is provided. In particular, the method simultaneously synthesizes and deposits copper (I) complexes in an organic light emitting device. Devices comprising such complexes may provide improved photoluminescent and electroluminescent properties.

  16. A Novel Ternary Complex of Europium(Ⅲ) for Eletroluminescent Device

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Introduction Since Tang[1]and Adachi et al.[2]reported their double and triplelayered devices, organic electroluminescent(EL) devices have attracted a great interest due to their efficient emission in the visible region and their possible application to flat panel full color display.

  17. Methods and apparatus of spatially resolved electroluminescence of operating organic light-emitting diodes using conductive atomic force microscopy

    Science.gov (United States)

    Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)

    2008-01-01

    A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.

  18. Discrimination between spin-dependent charge transport and spin-dependent recombination in π-conjugated polymers by correlated current and electroluminescence-detected magnetic resonance

    Science.gov (United States)

    Kavand, Marzieh; Baird, Douglas; van Schooten, Kipp; Malissa, Hans; Lupton, John M.; Boehme, Christoph

    2016-08-01

    Spin-dependent processes play a crucial role in organic electronic devices. Spin coherence can give rise to spin mixing due to a number of processes such as hyperfine coupling, and leads to a range of magnetic field effects. However, it is not straightforward to differentiate between pure single-carrier spin-dependent transport processes which control the current and therefore the electroluminescence, and spin-dependent electron-hole recombination which determines the electroluminescence yield and in turn modulates the current. We therefore investigate the correlation between the dynamics of spin-dependent electric current and spin-dependent electroluminescence in two derivatives of the conjugated polymer poly(phenylene-vinylene) using simultaneously measured pulsed electrically detected (pEDMR) and optically detected (pODMR) magnetic resonance spectroscopy. This experimental approach requires careful analysis of the transient response functions under optical and electrical detection. At room temperature and under bipolar charge-carrier injection conditions, a correlation of the pEDMR and the pODMR signals is observed, consistent with the hypothesis that the recombination currents involve spin-dependent electronic transitions. This observation is inconsistent with the hypothesis that these signals are caused by spin-dependent charge-carrier transport. These results therefore provide no evidence that supports earlier claims that spin-dependent transport plays a role for room-temperature magnetoresistance effects. At low temperatures, however, the correlation between pEDMR and pODMR is weakened, demonstrating that more than one spin-dependent process influences the optoelectronic materials' properties. This conclusion is consistent with prior studies of half-field resonances that were attributed to spin-dependent triplet exciton recombination, which becomes significant at low temperatures when the triplet lifetime increases.

  19. Structural factors impacting carrier transport and electroluminescence from Si nanocluster-sensitized Er ions.

    Science.gov (United States)

    Cueff, Sébastien; Labbé, Christophe; Jambois, Olivier; Berencén, Yonder; Kenyon, Anthony J; Garrido, Blas; Rizk, Richard

    2012-09-24

    We present an analysis of factors influencing carrier transport and electroluminescence (EL) at 1.5 µm from erbium-doped silicon-rich silica (SiOx) layers. The effects of both the active layer thickness and the Si-excess content on the electrical excitation of erbium are studied. We demonstrate that when the thickness is decreased from a few hundred to tens of nanometers the conductivity is greatly enhanced. Carrier transport is well described in all cases by a Poole-Frenkel mechanism, while the thickness-dependent current density suggests an evolution of both density and distribution of trapping states induced by Si nanoinclusions. We ascribe this observation to stress-induced effects prevailing in thin films, which inhibit the agglomeration of Si atoms, resulting in a high density of sub-nm Si inclusions that induce traps much shallower than those generated by Si nanoclusters (Si-ncs) formed in thicker films. There is no direct correlation between high conductivity and optimized EL intensity at 1.5 µm. Our results suggest that the main excitation mechanism governing the EL signal is impact excitation, which gradually becomes more efficient as film thickness increases, thanks to the increased segregation of Si-ncs, which in turn allows more efficient injection of hot electrons into the oxide matrix. Optimization of the EL signal is thus found to be a compromise between conductivity and both number and degree of segregation of Si-ncs, all of which are governed by a combination of excess Si content and sample thickness. This material study has strong implications for many electrically-driven devices using Si-ncs or Si-excess mediated EL.

  20. Tunneling electron induced molecular electroluminescence from individual porphyrin J-aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qiushi; Zhang, Chao; Zhang, Yang, E-mail: zhyangnano@ustc.edu.cn, E-mail: zcdong@ustc.edu.cn; Zhang, Yao; Liao, Yuan; Dong, Zhenchao, E-mail: zhyangnano@ustc.edu.cn, E-mail: zcdong@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-07-27

    We investigate molecular electroluminescence from individual tubular porphyrin J-aggregates on Au(111) by tunneling electron excitations in an ultrahigh-vacuum scanning tunneling microscope (STM). High-resolution STM images suggest a spiral tubular structure for the porphyrin J-aggregate with highly ordered “brickwork”-like arrangements. Such aggregated nanotube is found to behave like a self-decoupled molecular architecture and shows red-shifted electroluminescence characteristics of J-aggregates originated from the delocalized excitons. The positions of the emission peaks are found to shift slightly depending on the excitation sites, which, together with the changes in the observed spectral profiles with vibronic progressions, suggest a limited exciton coherence number within several molecules. The J-aggregate electroluminescence is also found unipolar, occurring only at negative sample voltages, which is presumably related to the junction asymmetry in the context of molecular excitations via the carrier injection mechanism.

  1. Performance evaluation of multi-junction solar cells by spatially resolved electroluminescence microscopy.

    Science.gov (United States)

    Kong, Lijing; Wu, Zhiming; Chen, Shanshan; Cao, Yiyan; Zhang, Yong; Li, Heng; Kang, Junyong

    2015-01-01

    An electroluminescence microscopy combined with a spectroscopy was developed to visually analyze multi-junction solar cells. Triple-junction solar cells with different conversion efficiencies were characterized by using this system. The results showed that the mechanical damages and material defects in solar cells can be clearly distinguished, indicating a high-resolution imaging. The external quantum efficiency (EQE) measurements demonstrated that different types of defects or damages impacted cell performance in various degrees and the electric leakage mostly degraded the EQE. Meanwhile, we analyzed the relationship between electroluminescence intensity and short-circuit current density J SC. The results indicated that the gray value of the electroluminescence image corresponding to the intensity was almost proportional to J SC. This technology provides a potential way to evaluate the current matching status of multi-junction solar cells.

  2. Electroluminescent apparatus having a structured luminescence conversion layer

    Science.gov (United States)

    Krummacher, Benjamin Claus [Sunnyvale, CA

    2008-09-02

    An apparatus such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains color-changing and non-color-changing regions arranged in a particular pattern.

  3. Synthesis and Optoelectronic Properties of a Red-Emitting Iridium(III) Complex Containing 1-Phenylpyrazole%以1-苯基吡唑为主配体的红光Ir(III)配合物的合成及光电特性

    Institute of Scientific and Technical Information of China (English)

    任静琨; 许慧侠; 屈丽桃; 郝玉英; 王华; 许并社

    2013-01-01

    at room temperature and 598 nm in 2-methyltetrahydrofuran (2-MeTHF) at 77 K, from which its triplet state energy (ET) is estimated to be 2.07 eV. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels of [(ppz)2Ir(piq)] are-5.92 and-3.62 eV, respectively. A theoretical calculation reveals that the HOMO of [(ppz)2Ir(piq)] is mainly distributed on ppz and the iridium ion, while the LUMO is mainly centered on piq. Organic light-emitting diodes (OLEDs) containing [(ppz)2 Ir(piq)]-doped CBP emitting layer exhibit an electroluminescence (EL) maximum at 616 nm, an optimized doping concentration of 8%-12%(w), maximum current efficiency of about 10 cd·A-1, maximum power efficiency of 4.44 lm·W-1, and International Commission on Il umination (CIE) coordinates of (0.65, 0.35). This investigation provides an important experimental basis for the application of [(ppz)2Ir(piq)] in organic electroluminescent devices.

  4. Electroluminescence from InGaN quantum dots in a monolithically grown GaN/AlInN cavity

    Energy Technology Data Exchange (ETDEWEB)

    Dartsch, Heiko; Tessarek, Christian; Figge, Stephan; Aschenbrenner, Timo; Kruse, Carsten; Hommel, Detlef [University of Bremen, Institute of Solid State Physics - Semiconductor Epitaxy (Germany); Schowalter, Marco; Rosenauer, Andreas [University of Bremen, Institute of Solid State Physics - Electron Microscopy (Germany)

    2011-07-01

    InGaN quantum dots (QDs) and their implementation into the micro cavity of a vertical distributed Bragg reflector (DBR) resonator are the key elements to achieve single photon emission required for quantum cryptography. However, the epitaxial overgrowth of InGaN QDs is challenging because they are easily destroyed by elevated temperatures. For this reason a common approach is the fabrication of a hybrid cavity structure by non epitaxial deposition of a dielectric top DBR. We present the first successful implementation of electrically driven InGaN QDs into a monolithic GaN/AlInN cavity structure fully epitaxial grown by metal organic vapor phase epitaxy. A single layer of InGaN QDs has been embedded in a n- and p-type doped 5{lambda} GaN cavity surrounded by a 40 fold bottom- and a 10 fold GaN/AlInN top-DBR. The bottom DBR shows a reflectivity of 97%. Structural properties were investigated by scanning transmission microscopy (STEM) and will be discussed. Electroluminescence of the InGaN QDs was achieved by the application of intra cavity contacts. This demonstrates for the first time the possibility of using InGaN QD in fully epitaxial made devices like vertical cavity surface emitting lasers or single photon sources. We present the first successful implementation of electrically driven InGaN QDs into a monolithic GaN/AlInN cavity structure fully epitaxial grown by metal organic vapor phase epitaxy. Therefore a single layer of InGaN QDs has been embedded in a n- and p-type doped 5{lambda} GaN cavity surrounded by a 40 fold bottom- and a 10 fold GaN/AlInN top-DBR. The bottom DBR shows a reflectivity of 97%. Electroluminescence of the InGaN QDs was achieved by the application of intra cavity contacts. Optical and structural properties of the device are discussed. This demonstrates for the first time the possibility of using InGaN QD in fully epitaxial made devices like vertical cavity surface emitting lasers or single photon sources.

  5. Visible electroluminescence on FTO/thin SRO/n-Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Leyva, K.M., E-mail: kmonfil@inaoep.mx [Department of Electronics, INAOE, Apdo., 51, Puebla, 72000 Pue. (Mexico); Aceves-Mijares, M.; Yu, Z. [Department of Electronics, INAOE, Apdo., 51, Puebla, 72000 Pue. (Mexico); Flores, F. [CDIS-ICUAP-BUAP, Apdo. 1651, Puebla, 72000 Pue. (Mexico); Morales-Sanchez, A. [Department of Electronics, INAOE, Apdo., 51, Puebla, 72000 Pue. (Mexico); Alcantara, S. [CDIS-ICUAP-BUAP, Apdo. 1651, Puebla, 72000 Pue. (Mexico)

    2010-10-25

    Photoluminescence (PL) and electroluminescence (EL) of silicon rich oxide (SRO) films deposited by low pressure chemical vapour deposition (LPCVD) have been researched. SRO films emit an intense PL band between 550 and 850 nm. EL was studied using fluorine-doped tin oxide (FTO)/thin SRO/n-Si structures. Intense and stable electroluminescence was observed under reverse bias. EL is observed between 400 and 900 nm with two main peaks around 450 and 600 nm. EL was related to charge injection through conductive paths and radiative recombination between traps or defect levels.

  6. Room temperature electroluminescence from mechanically formed van der Waals III–VI homojunctions and heterojunctions

    OpenAIRE

    Balakrishnan, Nilanthy; Kudrynskyi, Zakhar R.; Fay, Mike W.; Mudd, Garry W.; Svatek, Simon A; Makarovsky, Oleg; Kovalyuk, Zakhar D.; Eaves, Laurence; Peter H. Beton; Patanè, Amalia

    2014-01-01

    Room temperature electroluminescence from semiconductor junctions is demonstrated. The junctions are fabricated by the exfoliation and direct mechanical adhesion of InSe and GaSe van der Waals layered crystals. Homojunction diodes formed from layers of p- and n-type InSe exhibit electroluminescence at energies close to the bandgap energy of InSe (Eg= 1.26 eV). In contrast, heterojunction diodes formed by combining layers of p-type GaSe and n-type InSe emit photons at lower energies, which is ...

  7. Sharp green electroluminescence from 1H-pyrazolo[3,4-b]quinoline-based light-emitting diodes

    Science.gov (United States)

    Tao, Y. T.; Balasubramaniam, E.; Danel, A.; Jarosz, B.; Tomasik, P.

    2000-09-01

    A multilayer organic light-emitting diode was fabricated using a fluorescent compound {6-N,N-diethylamino-1-methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoline} (PAQ-NEt2) doped into the hole-transporting layer of NPB {4,4'-bis[N-(1-naphthyl-1-)-N-phenyl-amino]-biphenyl}, with the TPBI {2,2',2″-(1,3,5-phenylene)tris[1-phenyl-1H-benzimidazole]} as an electrontransporting material. At 16% PAQ-NEt2 doping concentration, the device gave a sharp, bright, and efficient green electroluminescence (EL) peaked at around 530 nm. The full width at half maximum of the EL is 60 nm, which is 60% of the green emission from typical NPB/AlQ [where AlQ=tris(8-hydroxyquinoline) aluminum] device. For the same concentration, a maximum luminance of 37 000 cd/m2 was obtained at 10.0 V and the maximum power, luminescence, and external quantum efficiencies were obtained 4.2 lm/W, 6.0 cd/A, and 1.6%, respectively, at 5.0 V.

  8. Photo- and electroluminescent properties of bithiophene disubstituted 1,3,4-thiadiazoles and their application as active components in organic light emitting diodes

    Science.gov (United States)

    Grykien, Remigiusz; Luszczynska, Beata; Glowacki, Ireneusz; Kurach, Ewa; Rybakiewicz, Renata; Kotwica, Kamil; Zagorska, Malgorzata; Pron, Adam; Tassini, Paolo; Maglione, Maria Grazia; Mauro, Anna De Girolamo Del; Fasolino, Tommaso; Rega, Romina; Pandolfi, Giuseppe; Minarini, Carla; Aprano, Salvatore

    2014-11-01

    Photo- and electroluminescence of five bithiophene disubstituted 1,3,4-thiadiazoles, constituting a new class of solution processable materials for organic opto-electronics, were studied. It was found that the introduction of alkyl solubilizing substituents bathochromically shifted the photo- and electroluminescence bands. The most pronounced effect was observed for the substitution at the Cα position which changed the emitting light color from bluish to green. All five derivatives were tested in host/guest type organic light emitting diodes (OLEDs) with either poly(N-vinylcarbazole) (PVK) or poly(N-vinylcarbazole) + 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PVK + PBD) matrices. The latter matrix turned out especially well suited for these guest molecules yielding devices of varying color coordinates. The best luminance (750 cd/m2) was measured for 2,5-bis(5‧-octyl-2,2‧-bithiophene-5-yl)-1,3,4-thiadiazole with the luminous efficiency exceeding 0.4 cd/A.

  9. Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2016-01-01

    A method for detecting micro cracks in solar cell using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical microcracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we sh...

  10. Enhanced electroluminescence from nanocrystallite Si based MOSLED by interfacial Si nanopyramids

    Institute of Scientific and Technical Information of China (English)

    Gong-Ru Lin

    2007-01-01

    The interfacial Si nano-pyramid-enhanced electroluminescence (EL) of an ITO/SiOx/p-Si/Al metal-oxidesemiconductor (MOS) diode with turn-on voltage of 50 V, threshold current of 1.23 mA/cm2, output power of 16 nW, and lifetime of 10 h is reported.

  11. Relationship between structure and electroluminescence of oligo(y-phenylenevinylene)s

    NARCIS (Netherlands)

    Stalmach, U; Detert, H; Meier, H; Gebhardt, [No Value; Haarer, D; Bacher, A

    1998-01-01

    The preparation of LEDs with poly(p-phenylenevinylene) (PPV) as emitting material is well established, However, due to the presence of a distribution of conjugated chain lengths in the polymer, systematic investigations of the electroluminescence with polymeric materials are difficult, as far as the

  12. Efficient Deep-Blue Electroluminescence Based on Phenanthroimidazole-Dibenzothiophene Derivatives with Different Oxidation States of the Sulfur Atom.

    Science.gov (United States)

    Tang, Xiangyang; Shan, Tong; Bai, Qing; Ma, Hongwei; He, Xin; Lu, Ping

    2017-03-02

    Developing efficient deep-blue materials is a long-term research focus in the field of organic light-emitting diodes (OLEDs). In this paper, we report two deep-blue molecules, PITO and PISF, which share similar chemical structures but exhibit different photophysical and device properties. These two molecules consist of phenanthroimidazole and dibenzothiophene analogs. The distinction of their chemical structures lies in the different oxidation states of the S atom. For PITO, the S atom is oxidized and the resulting structure dibenzothiophene S,S-dioxide becomes electron deficient. Therefore, PITO displays remarkable solvatochromism, implying a charge-transfer (CT) excited state formed between the donor (D) phenanthroimidazole and acceptor (A) dibenzothiophene S,S-dioxide. For PISF, it is constituted of phenanthroimidazole and dibenzothiophene in which the S atom is not oxidized. PISF displays locally excited (LE) emission with little solvatochromism. Compared with PISF, the D-A molecule PITO with an electron-deficient group shows a much lower LUMO energy level, which is in favor of electron injection in device. In addition, PITO exhibits more balanced carrier transport. However, PISF is capable of emitting in the shorter wavelength region, which is beneficial to obtain better color purity. The doped electroluminescence (EL) device of the D-A molecule PITO manifests deep-blue emission with CIE coordinates of (0.15, 0.08) and maximum external quantum efficiency (EQE) of 4.67 %. The doped EL device of the LE molecule PISF, however, reveals an even bluer emission with CIE coordinates of (0.15, 0.06) and a maximum EQE of 4.08 %.

  13. Nanostructured Sublayers for Improved Light Extraction of Top-Emitting and Transparent Organic Electroluminescent Devices

    Science.gov (United States)

    2007-05-01

    fluoride and magnesium- silver alloy were thermally evaporated with an evaporation rate ratio of 10:1 to form a translucent cathode (10 nm). The schemes for...onto the transfer film and transferred to the substrate. A small molecular HTL, N,N’-diphenyl-N,N’-bis(1-naphthyl)-(1,1’-biphenyl)- 4,4’- diamine (α...Appl. Phys. Lett. 88, 113515 [14] Fan, S H, Villeneuve P R, Joannopoulos J D, and Schubert E F 1997 Phys. Rev. Lett. 78, 3294 [15] Schnitzer I

  14. Osmium Complexes Useful in the Preparation of Metal Thin Film and Highly Efficient Electroluminescent Devices

    Institute of Scientific and Technical Information of China (English)

    Yun Chi

    2004-01-01

    Treatment of β-diketone ligand, such as hfacH (hexafluoroacetylacetone), with Os3(CO)12 in a stainless steel autoclave at elevated temperature afforded the corresponding mononuclear osmium complex [Os(CO)3(hfac)(tfa)] (1) in good yield. This complex is highly volatile and displays moderate stability at the higher temperatures; thus, it can be utilized for depositing metal thin-film material with overall quality comparable or better than those deposited using the commercially available chemical reagents. Moreover, combination of Os3(CO)12 with another class of chelate ligand such as 3-trifluoromethyl-5-(2-pyridyl) pyrazole (ppz)H gave formation of the Os(H) dicarbonyl complex [Os(CO)2(ppz)2] (2). This osmium complex shows blue phosphorescence at room temperature, which is characteristic for the 3ππ* emission with vibronic progressions at 430,457 and 480 nm. The remarkable photophysical properties were rationalized by a combination of π electron accepting CO ligand, relative ppz orientation and heavy-atom enhanced spin-orbit coupling effects. Related chemical transformations that afforded other useful luminescent Os complexes are presented.

  15. Materials for optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Shiang, Joseph John; Smigelski, Jr., Paul Michael

    2015-01-27

    Energy efficient optoelectronic devices include an electroluminescent layer containing a polymer made up of structural units of formula I and II; ##STR00001## wherein R.sup.1 and R.sup.2 are independently C.sub.22-44 hydrocarbyl, C.sub.22-44 hydrocarbyl containing one or more S, N, O, P, or Si atoms, oxaalkylaryl, or a combination thereof; R.sup.3 and R.sup.4 are independently H, C.sub.1-44 hydrocarbyl or C.sub.1-44 hydrocarbyl containing one or more S, N, O, P, or Si atoms, or R.sup.3 and R.sup.4, taken together, form a C.sub.2-10 monocyclic or bicyclic ring containing up to three S, N, O, P, or Si heteroatoms; and X is S, Se, or a combination thereof.

  16. Electroluminescence from perovskite LEDs with the structure of Ag/Spiro-OMeTAD/CH3NH3PbI3/TiO2/FTO

    Science.gov (United States)

    Wang, Minhuan; Shi, Yantao; Bian, Jiming; Dong, Qingshun; Sun, Hongjun; Liu, Hongzhu; Luo, Yingmin; Zhang, Yuzhi

    2016-10-01

    The perovskite light-emitting diodes (Pe-LEDs) with the structure of Ag/Spiro-OMeTAD/CH3NH3PbI3/TiO2/FTO were synthesized, where the CH3NH3PbI3 perovskite layer was deposited by a two-step spin-coating process. A dominant near-infrared electroluminescence (EL) at 773 nm was detected from the Pe-LEDs under forward bias at room temperature. The origin and mechanism of the EL were discussed in comparison with the photoluminescence (PL) spectra, and it was attributed to the radiative recombination of electrons and holes confined in the CH3NH3PbI3 emissive layer. Moreover, the corresponding energy band diagrams was proposed to illustrate the carrier transport mechanism in the Pe-LED device.

  17. Synthesis, crystal structures and photo- and electro-luminescence of copper(I) complexes containing electron-transporting diaryl-1,3,4-oxadiazole.

    Science.gov (United States)

    Yu, Tianzhi; Liu, Peng; Chai, Haifang; Kang, Jundan; Zhao, Yuling; Zhang, Hui; Fan, Duowang

    2014-05-01

    Two mononuclear Cu(I) complexes based on 2-(2-pyridyl)benzimidazolyl derivative ligand containing electron-transporting 1,3,4-oxadiazole group (L), [Cu(L)(PPh(3))2](BF(4)) and [Cu(L)(DPEphos)](BF(4)), where L = 1-(4-(5-(4-tert-butylphenyl)-1,3,4-oxadiazol-2-yl)benzyl)-2-(pyridin-2-yl)benzimidazole and DPEphos = bis[2-(diphenylphosphino)phenyl]ether, have been successfully synthesized and characterized. The X-ray crystal structure analyses of the ligand L and the complex [Cu(L)(PPh(3))2](BF(4)) were described. The photophysical properties of the complexes were examined by using UV-vis, photoluminescence spectroscopic analysis. The doped light-emitting devices using the Cu(I) complexes as dopants were fabricated. With no electron transporting layers employed in the devices, yellow electroluminescence from Cu(I) complexes were observed. The devices based on the complex [Cu(L)(DPEphos)](BF4) possess better performance as compared with the devices fabricated by the complex [Cu(L)(PPh(3))2](BF(4)). The devices with the structure of ITO/MoO(3) (2 nm)/NPB (40 nm)/CBP:[Cu(L)(DPEphos)](BF(4)) (8 wt%, 30 nm)/BCP (30 nm)/LiF (1 nm)/Al (150 nm) exhibit a maximum efficiency of 3.04 cd/A and a maximum brightness of 4,758 cd/m(2).

  18. Interband cascade light emitting devices based on type-II quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui Q.; Lin, C.H.; Murry, S.J. [Univ. of Houston, TX (United States). Space Vacuum Epitaxy Center] [and others

    1997-06-01

    The authors discuss physical processes in the newly developed type-II interband cascade light emitting devices, and review their recent progress in the demonstration of the first type-II interband cascade lasers and the observation of interband cascade electroluminescence up to room temperature in a broad mid-infrared wavelength region (extended to 9 {mu}m).

  19. Analysis of defect-related inhomogeneous electroluminescence in InGaN/GaN QW LEDs

    Science.gov (United States)

    Ren, C. X.; Rouet-Leduc, B.; Griffiths, J. T.; Bohacek, E.; Wallace, M. J.; Edwards, P. R.; Hopkins, M. A.; Allsopp, D. W. E.; Kappers, M. J.; Martin, R. W.; Oliver, R. A.

    2016-11-01

    The inhomogeneous electroluminescence (EL) of InGaN/GaN quantum well light emitting diode structures was investigated in this study. Electroluminescence hyperspectral images showed that inhomogeneities in the form of bright spots exhibited spectrally blue-shifted and broadened emission. Scanning electron microscopy combined with cathodoluminescence (SEM-CL) was used to identify hexagonal pits at the centre of approximately 20% of these features. Scanning transmission electron microscopy imaging with energy dispersive X-ray spectroscopy (STEM-EDX) indicated there may be p-doped AlGaN within the active region caused by the presence of the pit. Weak beam dark-field TEM (WBDF-TEM) revealed the presence of bundles of dislocations associated with the pit, suggesting the surface features which cause the inhomogeneous EL may occur at coalescence boundaries, supported by trends in the number of features observed across the wafer.

  20. Influence of Exciplex formation on the electroluminescent properties of dimeric Zn (II) bis-2-(2'-hydroxyphenyl) benzoxazole complex and monomeric Zn (II) 2-(1'-hydroxynaphthyl) benzothiazole complex

    Science.gov (United States)

    Prakash, Sattey; Anand, R. S.; Manoharan, S. Sundar

    2011-10-01

    In this paper we present the factors affecting electroluminescent properties of Zinc complexes of oxazole & thiazole derivatives. Electroluminescent spectra of the Zinc (II) complex of bis-[2-(2'-hydroxyphenyl) benzoxazole], [Zn (HPBO)2]2 and 2-(1'-hydroxynaphthyl) benzothiazole [Zn (HNBT)2] show unusual broadening and shows structural and photophysical similarity with [Zn (HPBT)2]2, a dimeric complex. The [Zn (HPBO)2]2 complex as an emissive layer in the device structure ITO /PEDOT:PSS /TPD (30nm) /[Zn (HPBO)2]2 (60nm) /BCP (6nm) /Ca (3nm) /Al (200nm) shows a broad bluish green emission, with a full width at half maxima (FWHM1˜70nm). The EL spectra is much broader compared to the PL spectra because of exciplex formation at the interfacial region between the emissive layer (EML) & hole transport layer (HTL). We also show the device performance of Zinc 2-(1'-hydroxynaphthyl) benzothiazole [Zn (HNBT)2] complex as emissive layer. Distinctly this device shows a broad greenish yellow emission with a peak maxima at 535nm and 690nm, owing to the exciplex formation between electron transport layer (ETL) and emissive layer (EML), which is in sharp contrast to the exciplex formation across the HTL-EML interface observed for the [Zn (HPBO)2]2 complex.

  1. Quantification of Solar Cell Failure Signatures Based on Statistical Analysis of Electroluminescence Images

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2017-01-01

    We demonstrate a method to quantify the extent of solar cell cracks, shunting, or damaged cell interconnects, present in crystalline silicon photovoltaic (PV) modules by statistical analysis of the electroluminescence (EL) intensity distributions of individual cells within the module. From the EL...... operation. The method can be easily automated for quality control by module manufacturers or installers, or as a diagnostic tool by plant operators and diagnostic service providers....

  2. Green-Light Electroluminescence of Conjugated Copolymer Containing p-Phenylene-ethynylene and Oxadiazole

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The title copolymer(PDEBO) was synthesized. The thermal characteristics of the polymer were determined by means of DSC and TGA, revealing that the polymer has a good thermal stability. The X-ray diffraction measurements of the thin films showed that the polymer is disorder. Electroluminescence(EL) in the green region of the spectrum with a maximum at 500 nm was observed from the polymer films sandwiched between indium-tin-oxide and an Al electrode.

  3. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence

    Science.gov (United States)

    Xing, Guichuan; Wu, Bo; Wu, Xiangyang; Li, Mingjie; Du, Bin; Wei, Qi; Guo, Jia; Yeow, Edwin K. L.; Sum, Tze Chien; Huang, Wei

    2017-01-01

    The slow bimolecular recombination that drives three-dimensional lead-halide perovskites' outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 1015 cm−3, defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative recombination. Herein, we overcome this limitation using van-der-Waals-coupled Ruddlesden-Popper perovskite multi-quantum-wells. Injected charge carriers are rapidly localized from adjacent thin few layer (n≤4) multi-quantum-wells to the thick (n≥5) multi-quantum-wells with extremely high efficiency (over 85%) through quantum coupling. Light emission originates from excitonic recombination in the thick multi-quantum-wells at much higher decay rate and efficiency than bimolecular recombination in three-dimensional perovskites. These multi-quantum-wells retain the simple solution processability and high charge carrier mobility of two-dimensional lead-halide perovskites. Importantly, these Ruddlesden-Popper perovskites offer new functionalities unavailable in single phase constituents, permitting the transcendence of the slow bimolecular recombination bottleneck in lead-halide perovskites for efficient electroluminescence. PMID:28239146

  4. Optical and electroluminescent properties of a number of new derivatives of divinyl dibenzothiophene sulfone

    Science.gov (United States)

    Kukhto, A. V.; Kopylova, T. N.; Gadirov, R. M.; Degtyarenko, K. N.; Nikonova, E. N.; Solodova, T. A.; Kukhto, I. N.

    2016-02-01

    Photoluminescent and electroluminescent properties of four new bipolar linear derivatives of divinyl dibenzothiophene sulfone are studied. It is found that amorphous films of solutions, as well as films of the compounds under study in the poly(N-vinylcarbazole) matrix, have a rather high quantum yield of photoluminescence in the blue and blue-green spectrum regions. Bright blue electroluminescence is obtained in the samples with a structure of ITO/PEDOT:PSS/TPD/OC/LiF/Al using vacuum deposition of the compounds under study and in the single-layer ITO/PEDOT:PSS/PVK:OC/LiF/Al structure when applied from the solution with a threshold voltage of 2.5-3.5 V. The influence of a molecule structure on the spectra and quantum yield of fluorescence as well as on the electroluminescent properties of the compounds is shown. Results of quantum-chemical calculations in the context of the density functional theory of the structure and characteristics of main molecular orbitals are presented.

  5. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence.

    Science.gov (United States)

    Xing, Guichuan; Wu, Bo; Wu, Xiangyang; Li, Mingjie; Du, Bin; Wei, Qi; Guo, Jia; Yeow, Edwin K L; Sum, Tze Chien; Huang, Wei

    2017-02-27

    The slow bimolecular recombination that drives three-dimensional lead-halide perovskites' outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 10(15) cm(-3), defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative recombination. Herein, we overcome this limitation using van-der-Waals-coupled Ruddlesden-Popper perovskite multi-quantum-wells. Injected charge carriers are rapidly localized from adjacent thin few layer (n≤4) multi-quantum-wells to the thick (n≥5) multi-quantum-wells with extremely high efficiency (over 85%) through quantum coupling. Light emission originates from excitonic recombination in the thick multi-quantum-wells at much higher decay rate and efficiency than bimolecular recombination in three-dimensional perovskites. These multi-quantum-wells retain the simple solution processability and high charge carrier mobility of two-dimensional lead-halide perovskites. Importantly, these Ruddlesden-Popper perovskites offer new functionalities unavailable in single phase constituents, permitting the transcendence of the slow bimolecular recombination bottleneck in lead-halide perovskites for efficient electroluminescence.

  6. Influence of the material parameters on quantum cascade devices

    Science.gov (United States)

    Benveniste, E.; Vasanelli, A.; Delteil, A.; Devenson, J.; Teissier, R.; Baranov, A.; Andrews, A. M.; Strasser, G.; Sagnes, I.; Sirtori, C.

    2008-09-01

    An experimental investigation on the influence of the material systems on the optical properties of quantum cascade structures is presented. Three electroluminescent quantum cascade devices have been grown using GaAs /AlGaAs, GaInAs /AlInAs, and InAs /AlSb heterostructures. The devices emit at 10μm and are based on a similar bandstructure design. Our results verify that the optical quantum efficiency has the predicted dependence on the electron effective mass. We also demonstrate that the shape of the electroluminescence spectra is independent from the particular material parameters and mainly depends on the tunnel coupling between the injector state and the upper state of the radiative transition.

  7. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  8. Organic optoelectronics:materials,devices and applications

    Institute of Scientific and Technical Information of China (English)

    LIU Yi; CUI Tian-hong

    2005-01-01

    The interest in organic materials for optoelectronic devices has been growing rapidly in the last two decades. This growth has been propelled by the exciting advances in organic thin films for displays, low-cost electronic circuits, etc. An increasing number of products employing organic electronic devices have become commercialized, which has stimulated the age of organic optoelectronics. This paper reviews the recent progress in organic optoelectronic technology. First, organic light emitting electroluminescent materials are introduced. Next, the three kinds of most important organic optoelectronic devices are summarized, including light emitting diode, organic photovoltaic cell, and photodetectors. The various applications of these devices are also reviewed and discussed in detail. Finally, the market and future development of optoelectronic devices are also demonstrated.

  9. Efficient light emitting devices based on phosphorescent partially doped emissive layers

    KAUST Repository

    Yang, Xiaohui

    2013-05-29

    We report efficient organic light emitting devices employing an ultrathin phosphor emissive layer. The electroluminescent spectra of these devices can be tuned by introducing a low-energy emitting phosphor layer into the emission zone. Devices with the emissive layer consisting of multiple platinum-complex/spacer layer cells show a peak external quantum efficiency of 18.1%, which is among the best EQE values for platinum-complex based light emitting devices. Devices with an ultrathin phosphor emissive layer show stronger luminance decay with the operating time compared to the counterpart devices having a host-guest emissive layer.

  10. Correlating electroluminescence characterization and physics-based models of InGaN/GaN LEDs: Pitfalls and open issues

    Energy Technology Data Exchange (ETDEWEB)

    Calciati, Marco; Vallone, Marco; Zhou, Xiangyu; Ghione, Giovanni [Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino (Italy); Goano, Michele, E-mail: michele.goano@polito.it; Bertazzi, Francesco [Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino (Italy); IEIIT-CNR, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino (Italy); Meneghini, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico [Dipartimento di Ingegneria dell' Informazione, Università di Padova, Via Gradenigo 6/B, 35131 Padova (Italy); Bellotti, Enrico [Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary' s Street, 02215 Boston, MA (United States); Verzellesi, Giovanni [Dipartimento di Scienze e Metodi dell' Ingegneria, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Zhu, Dandan; Humphreys, Colin [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2014-06-15

    Electroluminescence (EL) characterization of InGaN/GaN light-emitting diodes (LEDs), coupled with numerical device models of different sophistication, is routinely adopted not only to establish correlations between device efficiency and structural features, but also to make inferences about the loss mechanisms responsible for LED efficiency droop at high driving currents. The limits of this investigative approach are discussed here in a case study based on a comprehensive set of current- and temperature-dependent EL data from blue LEDs with low and high densities of threading dislocations (TDs). First, the effects limiting the applicability of simpler (closed-form and/or one-dimensional) classes of models are addressed, like lateral current crowding, vertical carrier distribution nonuniformity, and interband transition broadening. Then, the major sources of uncertainty affecting state-of-the-art numerical device simulation are reviewed and discussed, including (i) the approximations in the transport description through the multi-quantum-well active region, (ii) the alternative valence band parametrizations proposed to calculate the spontaneous emission rate, (iii) the difficulties in defining the Auger coefficients due to inadequacies in the microscopic quantum well description and the possible presence of extra, non-Auger high-current-density recombination mechanisms and/or Auger-induced leakage. In the case of the present LED structures, the application of three-dimensional numerical-simulation-based analysis to the EL data leads to an explanation of efficiency droop in terms of TD-related and Auger-like nonradiative losses, with a C coefficient in the 10{sup −30} cm{sup 6}/s range at room temperature, close to the larger theoretical calculations reported so far. However, a study of the combined effects of structural and model uncertainties suggests that the C values thus determined could be overestimated by about an order of magnitude. This preliminary

  11. Correlating electroluminescence characterization and physics-based models of InGaN/GaN LEDs: Pitfalls and open issues

    Science.gov (United States)

    Calciati, Marco; Goano, Michele; Bertazzi, Francesco; Vallone, Marco; Zhou, Xiangyu; Ghione, Giovanni; Meneghini, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico; Bellotti, Enrico; Verzellesi, Giovanni; Zhu, Dandan; Humphreys, Colin

    2014-06-01

    Electroluminescence (EL) characterization of InGaN/GaN light-emitting diodes (LEDs), coupled with numerical device models of different sophistication, is routinely adopted not only to establish correlations between device efficiency and structural features, but also to make inferences about the loss mechanisms responsible for LED efficiency droop at high driving currents. The limits of this investigative approach are discussed here in a case study based on a comprehensive set of current- and temperature-dependent EL data from blue LEDs with low and high densities of threading dislocations (TDs). First, the effects limiting the applicability of simpler (closed-form and/or one-dimensional) classes of models are addressed, like lateral current crowding, vertical carrier distribution nonuniformity, and interband transition broadening. Then, the major sources of uncertainty affecting state-of-the-art numerical device simulation are reviewed and discussed, including (i) the approximations in the transport description through the multi-quantum-well active region, (ii) the alternative valence band parametrizations proposed to calculate the spontaneous emission rate, (iii) the difficulties in defining the Auger coefficients due to inadequacies in the microscopic quantum well description and the possible presence of extra, non-Auger high-current-density recombination mechanisms and/or Auger-induced leakage. In the case of the present LED structures, the application of three-dimensional numerical-simulation-based analysis to the EL data leads to an explanation of efficiency droop in terms of TD-related and Auger-like nonradiative losses, with a C coefficient in the 10-30 cm6/s range at room temperature, close to the larger theoretical calculations reported so far. However, a study of the combined effects of structural and model uncertainties suggests that the C values thus determined could be overestimated by about an order of magnitude. This preliminary attempt at

  12. Correlating electroluminescence characterization and physics-based models of InGaN/GaN LEDs: Pitfalls and open issues

    Directory of Open Access Journals (Sweden)

    Marco Calciati

    2014-06-01

    Full Text Available Electroluminescence (EL characterization of InGaN/GaN light-emitting diodes (LEDs, coupled with numerical device models of different sophistication, is routinely adopted not only to establish correlations between device efficiency and structural features, but also to make inferences about the loss mechanisms responsible for LED efficiency droop at high driving currents. The limits of this investigative approach are discussed here in a case study based on a comprehensive set of current- and temperature-dependent EL data from blue LEDs with low and high densities of threading dislocations (TDs. First, the effects limiting the applicability of simpler (closed-form and/or one-dimensional classes of models are addressed, like lateral current crowding, vertical carrier distribution nonuniformity, and interband transition broadening. Then, the major sources of uncertainty affecting state-of-the-art numerical device simulation are reviewed and discussed, including (i the approximations in the transport description through the multi-quantum-well active region, (ii the alternative valence band parametrizations proposed to calculate the spontaneous emission rate, (iii the difficulties in defining the Auger coefficients due to inadequacies in the microscopic quantum well description and the possible presence of extra, non-Auger high-current-density recombination mechanisms and/or Auger-induced leakage. In the case of the present LED structures, the application of three-dimensional numerical-simulation-based analysis to the EL data leads to an explanation of efficiency droop in terms of TD-related and Auger-like nonradiative losses, with a C coefficient in the 10−30 cm6/s range at room temperature, close to the larger theoretical calculations reported so far. However, a study of the combined effects of structural and model uncertainties suggests that the C values thus determined could be overestimated by about an order of magnitude. This preliminary

  13. Electroluminescence property of organic light emitting diode (OLED)

    Energy Technology Data Exchange (ETDEWEB)

    Özdemir, Orhan; Kavak, Pelin; Saatci, A. Evrim; Gökdemir, F. Pınar; Menda, U. Deneb; Can, Nursel; Kutlu, Kubilay [Yıldız Technical University, Department of Physics, Esenler, Istanbul (Turkey); Tekin, Emine; Pravadalı, Selin [National Metrology Instıtute of Turkey (TUBİTAK-UME), Kocaeli (Turkey)

    2013-12-16

    Transport properties of electrons and holes were investigated not only in a anthracene-containing poly(p-phenylene-ethynylene)- alt - poly(p-phenylene-vinylene) (PPE-PPV) polymer (AnE-PVstat) light emitting diodes (OLED) but also in an ITO/Ag/polymer/Ag electron and ITO/PEDOT:PSS/polymer/Au hole only devices. Mobility of injected carriers followed the Poole-Frenkel type conduction mechanism and distinguished in the frequency range due to the difference of transit times in admittance measurement. Beginning of light output took place at the turn-on voltage (or flat band voltage), 1.8 V, which was the difference of energy band gap of polymer and two barrier offsets between metals and polymer.

  14. Preparation and characterization of electroluminescent devices based on complexes of {beta}-diketonates of Tb{sup 3+}, Eu{sup 3+}, Gd{sup 3+} ions with macrocyclic ligands and UO{sub 2}{sup 2+} films; Preparacao e caracterizacao de dispositivos eletroluminescentes de complexos de {beta}-dicetonados de ions Tb{sup 3+}, Eu{sup 3+}, Gd{sup 3+} com ligantes macrociclicos e filmes de UO{sub 2}{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Gibelli, Edison Bessa

    2010-07-01

    Complexes containing Rare Earth ions are of great interest in the manufacture of electro luminescent devices as organic light emitting devices (OLED). These devices, using rare earth trivalent ions (TR{sup 3+}) as emitting centers, show high luminescence with extremely fine spectral bands due to the structure of their energy levels, long life time and high quantum efficiency. This work reports the preparation of Rare Earth {beta}-diketonate complexes (Tb{sup 3+}, Eu{sup 3+} and Gd{sup 3+}) and (tta - thenoyltrifluoroacetonate and acac - acetylacetonate) containing a ligand macrocyclic crown ether (DB18C6 - dibenzo18coroa6) and polymer films of UO{sub 2}{sup 2+}. The materials were characterized by complexometric titration with EDTA, CH elemental analysis, near infrared absorption spectroscopy, thermal analysis, X-ray diffraction (powder method) and luminescence spectroscopy. For manufacturing the OLED it was used the technique of deposition of thin films by physical vapor (PVD, Physical Vapor Deposition). (author)

  15. Impact ionisation electroluminescence in planar GaAs-based heterostructure Gunn diodes: Spatial distribution and impact of doping non-uniformities

    Science.gov (United States)

    Montes Bajo, M.; Dunn, G.; Stephen, A.; Khalid, Ata; Cumming, D. R. S.; Oxley, C. H.; Glover, J.; Kuball, M.

    2013-03-01

    When biased in the negative differential resistance regime, electroluminescence (EL) is emitted from planar GaAs heterostructure Gunn diodes. This EL is due to the recombination of electrons in the device channel with holes that are generated by impact ionisation when the Gunn domains reach the anode edge. The EL forms non-uniform patterns whose intensity shows short-range intensity variations in the direction parallel to the contacts and decreases along the device channel towards the cathode. This paper employs Monte Carlo models, in conjunction with the experimental data, to analyse these non-uniform EL patterns and to study the carrier dynamics responsible for them. It is found that the short-range lateral (i.e., parallel to the device contacts) EL patterns are probably due to non-uniformities in the doping of the anode contact, illustrating the usefulness of EL analysis on the detection of such inhomogeneities. The overall decreasing EL intensity towards the anode is also discussed in terms of the interaction of holes with the time-dependent electric field due to the transit of the Gunn domains. Due to their lower relative mobility and the low electric field outside of the Gunn domain, freshly generated holes remain close to the anode until the arrival of a new domain accelerates them towards the cathode. When the average over the transit of several Gunn domains is considered, this results in a higher hole density, and hence a higher EL intensity, next to the anode.

  16. White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer.

    Science.gov (United States)

    Liang, Junfei; Zhao, Sen; Jiang, Xiao-Fang; Guo, Ting; Yip, Hin-Lap; Ying, Lei; Huang, Fei; Yang, Wei; Cao, Yong

    2016-03-01

    In this Article, we designed and synthesized a series of polyfluorene derivatives, which consist of the electron-rich 4,4'-(9-alkyl-carbazole-3,6-diyl)bis(N,N-diphenylaniline) (TPA-Cz) in the side chain and the electron-deficient dibenzothiophene-5,5-dioxide (SO) unit in the main chain. The resulting copolymer PF-T25 that did not comprise the SO unit exhibited blue light-emission with the Commission Internationale de L'Eclairage coordinates of (0.16, 0.10). However, by physically blending PF-T25 with a blue light-emitting SO-based oligomer, a novel low-energy emission correlated to exciplex emerged due to the appropriate energy level alignment of TPA-Cz and the SO-based oligomers, which showed extended exciton lifetime as confirmed by time-resolved photoluminescent spectroscopy. The low-energy emission was also identified in copolymers consisting of SO unit in the main chain, which can effectively compensate for the high-energy emission to produce binary white light-emission. Polymer light-emitting diodes based on the exciplex-type single greenish-white polymer exhibit the peak luminous efficiency of 2.34 cd A(-1) and the maximum brightness of 12 410 cd m(-2), with Commission Internationale de L'Eclairage color coordinates (0.27, 0.39). The device based on such polymer showed much better electroluminescent stability than those based on blending films. These observations indicated that developing a single polymer with the generated exciplex emission can be a novel and effective molecular design strategy toward highly stable and efficient white polymer light-emitting diodes.

  17. PECASE: Nanostructure Hybrid Organic/Inorganic Materials for Active Opto-Electronic Devices

    Science.gov (United States)

    2011-01-03

    intergration and active device development: (1) the directed structuring of materials at the nanoscale through pattening and material growth methods, (2) the...electroluminescence (EL) that can be of use in fields as diverse as optical communications , spectroscopy, and environmental and industrial sensing. The RC structure...TFEL) devices already occupy a segment of the large-area, high-resolution, flat-panel-display market . The AC-TFEL displays, which consist of a

  18. Electroluminescence from nonpolar n-ZnO/p-AlGaN heterojunction light-emitting diode on r-sapphire

    Science.gov (United States)

    Chen, Jingwen; Zhang, Jun; Dai, Jiangnan; Wu, Feng; Wang, Shuai; Chen, Cheng; Long, Hanling; Liang, Renli; Zhao, Chong; Chen, Changqing; Tang, Zhiwu; Cheng, Hailing; He, Yunbin; Li, Mingkai

    2017-03-01

    Nonpolar a-plane n-ZnO/p-AlGaN heterojunction light-emitting diodes (LEDs) have been prepared on r-sapphire substrate using metal organic chemical vapor deposition and a pulsed laser deposition method. The dominant electroluminescence emission at 390 nm from the interband transition in n-ZnO layer under a forward bias was observed. Interestingly, electroluminescence with emission at 385 nm based on an avalanche mechanism was also achieved under reverse bias. The mechanisms of both the electroluminescence and I–V characteristics are discussed in detail by considering the avalanche effect. It is demonstrated that the crystalline quality of n-ZnO, not the p-AlGaN, is what affects the performance of the nonpolar ZnO based avalanche LED.

  19. Synthesis and Properties of Novel Red-emitting Phosphor Li2SrSiO4 : Eu3+ for White LED%白光LED用新型红色荧光粉Li2SrSiO4:Eu3+的合成及性质

    Institute of Scientific and Technical Information of China (English)

    翟永清; 王欣; 冯仕华; 刘毅兰; 游志江

    2011-01-01

    A novel red-emitting phosphor Li2SrSiO4 :Eu3+ was synthesized by gel-combustion method, using the metal nitrates as raw materials, and tetraethoxysilane as silica source. The formation process,structure and luminescence properties of as-synthesized Li2SrSiO4 :Eu3+ were investigated by FI-IR, XRD and fluorescence spectrophotometer respectively. The results show that the goal product Li2SrSiO4 :Eu3+ can be obtained after the precursor obtained from the combustion of dry gel was calcined at 700℃ for 3h. The as-synthesized sample has hexagonal crystal structure and P3121 space group, and unit cell parameter is a = 0. 5012nm, c= 1. 2360nm. The excitation spectrum shows a broad band, and the strongest excitation peak is at 396 nm. The strongest emission peak is at 618 nm, which is ascribed to 5 D0→7F2 characteristic transition of Eu3+ . When the mole fraction x of doped Eu3+ is in the range of 0. 04-0.24, the luminescence intensity of the sample increases gradually with the the increase of Eu3+ concentration. It is interesting that no concentration quenching occurs. The synthesized phosphor can absorb near-UV light around 396nm effectively, so it is a suitable red-emitting phosphor for white light-emitting diodes excited by 350-410nm InGaN chip.%以金属硝酸盐为原料,正硅酸乙酯为硅源,采用凝胶-燃烧法合成了新型红色荧光粉Li2SrSi04:Eu3+,用红外分光光度计、X射线粉末衍射仪、荧光分光光度计等手段研究了该荧光粉的形成过程、结构及发光性能.结果表明:凝胶燃烧所得前驱物在700℃焙烧3h即得目标产物Li2SrSi04:Eu3+,其晶体结构属六方晶系,空间群为P3(1)21,晶胞参数:α=0.5012nm,c=1.2360nm;激发光谱为一宽带,最大激发峰位于396nm处;最强的发射峰位于618nm处,是典型的Eu3的5D0-F2跃迁导致的;当Eu3+掺杂摩尔分数x在0.04-0.24的范围内时,随Eu3+浓度的增加,发光强度逐渐增强,无浓度碎灭现象发生.由于

  20. The physical reason of intense electroluminescence in ITO-Si heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Oleksandr [Electronics Department, National Institute for Astrophysics, Optics, and Electronics (INAOE), P.O. 51 and 216, Puebla, 72000 (Mexico)], E-mail: amalik@inaoep.mx; Martinez, Arturo I.; Hidalga W, F.J. de la [Electronics Department, National Institute for Astrophysics, Optics, and Electronics (INAOE), P.O. 51 and 216, Puebla, 72000 (Mexico)

    2007-10-15

    Intense electroluminescence from a spray deposited heavily tin-doped indium oxide (ITO)-n type silicon (Si) heterojunctions, presenting the properties of an induced p-n junction, has been observed. The role of the degenerated n-type ITO film as a good supplier of holes to maintain an inversion layer formed at the silicon interface is discussed. However, the physical mechanism responsible for a significantly higher quantum efficiency of the radiation emission from such structures is not clear. The explanation of this phenomenon, based on the confinement of carriers at the interface due to multi-point contacts between the ITO film and the silicon, is discussed.

  1. Blue and white light electroluminescence in a multilayer OLED using a new aluminium complex

    Indian Academy of Sciences (India)

    Pabitra K Nayak; Neeraj Agarwal; Farman Ali; Meghan P Patankar; K L Narasimhan; N Periasamy

    2010-11-01

    Synthesis, structure, optical absorption, emission and electroluminescence properties of a new blue emitting Al complex, namely, bis-(2-amino-8-hydroxyquinolinato), acetylacetonato Al(III) are reported. Multilayer OLED using the Al complex showed blue emission at 465 nm, maximum brightness of ∼ 425 cd/m2 and maximum current efficiency of 0.16 cd/A. Another multilayer OLED using the Al complex doped with phosphorescent Ir complex showed `white’ light emission, CIE coordinate (0.41, 0.35), maximum brightness of ∼ 970 cd/m2 and maximum current efficiency of 0.53 cd/A.

  2. Temperature-dependent electroluminescence from GeSn heterojunction light-emitting diode on Si substrate

    Science.gov (United States)

    Chang, Chiao; Li, Hui; Huang, Ssu-Hsuan; Lin, Li-Chien; Cheng, Hung-Hsiang

    2016-04-01

    The electroluminescence from a Ge/GeSn/Ge p-i-n light-emitting diode on Si was investigated under different temperatures ranging from 25 to 150 K. The diode was operated at a low injection current density of 13 A/cm2. We obtained no-phonon- and phonon-assisted replicas in emission spectra. Also, the relationship between indirect bandgap energy and temperature was investigated. The temperature-dependent bandgap energy followed Varshni’s empirical expression with α = 4.884 × 10-4 eV/K and β = 130 K.

  3. Enhanced Electroluminescent Efficiency Based on Functionalized Europium Complexes in Polymer Light-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; WANG Lei; LI Chun; ZENG Wen-Jin; SHI Hua-Hong; CAO Yong

    2007-01-01

    Efficient red polymer light-emitting diodes are fabricated with the single active layer from the blends of poly (Nvinylcarbazole) (PVK) in the presence of 30wt.% electron-transporting compound 2-(4-biphenylyl)-5-(p-tertbutylphenyl)-1,3,4-oxadiazole (PBD) and europium complexes. The polyphenylene functionalized europium complex shows an enhanced electroluminescent efficiency due to the large site-isolation effect. For the polyphenylene functionalized europium complex, the maximum external quantum efficiency of 1.90% and luminous efficiency of 2.01 cd A-1 are achieved with emission peak at 612nm. The maximum brightness is more than 300cd m-2.

  4. About the Nature of Electroluminescence Centers in Plastically Deformed Crystals of p-type Silicon

    Directory of Open Access Journals (Sweden)

    B.V. Pavlyk

    2015-10-01

    Full Text Available The paper describes research of dislocation electroluminescence of single crystal p-type silicon with a high concentration of dislocations on the surface (111. It is shown the reaction of the luminescence spectra and capacitive-modulation spectra of samples after high-temperature annealing in an atmosphere of flowing oxygen. The analysis of the results lets us to establish the nature of recombination centers and their reorganization under high-temperature annealing. It is shown that deposition of Al film on the substrate p-Si leads to the formation of strain capacity and the localization of defects in the surface layer that corresponds to luminescence centers.

  5. Electroluminescence in organic single-layer light-emitting diodes at high fields

    Institute of Scientific and Technical Information of China (English)

    杨盛谊; 徐征; 王振家; 侯延冰; 徐叙; 张希清

    2001-01-01

    By considering the interaction between Fowler-Nordheim tunneling injection theory and charge carriers transporting through the bulk, an electroluminescence model for organic single-layer diodes is presented. The expressions of the recombination current density, recombination efficiency and conductivity of the diodes are provided, which elucidate the controlling role of the electric field on mobility and recombination zone. The equilibrium of two opposite charge carriers injection and the central position of recombination zone are two important preconditions for reducing the leakage current. Space-charge-limited current occurs only over a certain high bias, meanwhile, the quantity of injection carriers increases over the transport capacity of the bulk.

  6. Transport and electroluminescence mechanism in Au/(Si/SiO2)/P-Si film

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kai-biao; MA Shu-yi; MA Zi-jun; CHEN Hai-xia

    2006-01-01

    The samples of Au/(Si/SiO2)/p-Si structure were fabricated by using the R.F magnetron sputtering technique.Its carrier transport and electroluminescence mechanism were studied from the I-V curves and EL spectra by using the Configuration Coordinate as a theoretical model.The result indicates that there are two defect centers in SiO2 films.The electron in Au and the hole in p-Si went into SiO2 film by the Fowler-Nordheim tunneling model at a high bias voltage and recombined through these defect centers in SiO2 film.

  7. Electroluminescence from Si/SiO2 films deposited on p-Si substrates

    Institute of Scientific and Technical Information of China (English)

    马书懿; 萧勇; 陈辉

    2002-01-01

    The structure of Au/Si/SiO2/p-Si has been fabricated using the magnetron sputtering technique. It has a verygood rectifying behaviour. Visible electroluminescence (EL) has been observed from the Au/Si/SiO2/p-Si structureat a forward bias of 5V or larger. A broad band with one peak around 650-660 nm appears in all the EL spectra ofthe structure. The effects of the thickness of the Si layer in the Si/SiO2 films and of the input electrical power on ELspectra are studied systematically.

  8. Spectral and surface investigations of Ca{sub 2}V{sub 2}O{sub 7}:Eu{sup 3+} nanophosphors prepared by citrate-gel combustion method: a potential red-emitting phosphor for near-UV light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinay [Shri Mata Vaishno Devi University, School of Physics, Katra, J and K (India); University of the Free State, Department of Physics, P.O. Box 339, Bloemfontein (South Africa); Bedyal, A.K.; Sharma, J. [Shri Mata Vaishno Devi University, School of Physics, Katra, J and K (India); Kumar, V.; Ntwaeaborwa, O.M.; Swart, H.C. [University of the Free State, Department of Physics, P.O. Box 339, Bloemfontein (South Africa)

    2014-09-15

    In the present work, red-emitting Ca{sub 2}V{sub 2}O{sub 7}:xEu{sup 3+} (x = 0.5-6.0 mol%) nanophosphors, in the form of powders, were synthesized by the citrate-gel combustion method using metal nitrates as precursors and citric acid as fuel. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy, photoluminescence (PL) and cathodoluminescence (CL) spectroscopy were used to study the structure, morphology and spectral properties of the samples. The chemical compositions and electronic states of the powders were analyzed with X-ray photoelectron spectroscopy. The average crystallite sizes estimated using the XRD data were found to be in the range of 30-45 nm, and were cross verified by TEM. The lattice parameters determined by the POWD program were approximated as a = 7.242 Aa, b = 6.674 Aa, c = 6.932 Aa and V = 291.24 Aa{sup 3}, respectively. Under UV (395 nm) (PL) and electron (CL) excitation, the nanophosphors show characteristic emission from the Eu{sup 3+} ion ({sup 5}D{sub 0} → {sup 7}F{sub j}, j = 1-5) with the main peaks at 612 and 616 nm. The maximum emission intensity was recorded from the sample with an Eu{sup 3+} concentration of 4 mol% and a critical energy distance of 19.084 Aa between the donor and the acceptor. Above this concentration, there was a reduction in the intensity due to dipole-dipole induced concentration quenching effects. The potential applications of this phosphor as a high color-purity phosphor in light-emitting diodes are evaluated. (orig.)

  9. Red emitting NLOphoric 3-styryl coumarins: Experimental and computational studies

    Science.gov (United States)

    Tathe, Abhinav B.; Sekar, Nagaiyan

    2016-01-01

    The coumarin molecules are versatile fluorophores and can be modified synthetically to give desired properties. The molecules studied have 4-cyano group as an assistance to original chromophore and imparts a red shift. These coumarins were expected to show good non-linear optical (NLO) properties. The experimental and theoretical methods were employed to determine their NLO properties. Directional components of hyperpolarizabilities were calculated and showed a variation according to the placement of electron pulling groups. Studied molecules show a very high (494-794 times of urea) total first order hyperpolarizability. The NLO properties of the molecules were found to be solvent dependant.

  10. Red emitting neutral fluorescent glycoconjugates for membrane optical imaging.

    Science.gov (United States)

    Redon, Sébastien; Massin, Julien; Pouvreau, Sandrine; De Meulenaere, Evelien; Clays, Koen; Queneau, Yves; Andraud, Chantal; Girard-Egrot, Agnès; Bretonnière, Yann; Chambert, Stéphane

    2014-04-16

    A family of neutral fluorescent probes was developed, mimicking the overall structure of natural glycolipids in order to optimize their membrane affinity. Nonreducing commercially available di- or trisaccharidic structures were connected to a push-pull chromophore based on dicyanoisophorone electron-accepting group, which proved to fluoresce in the red region with a very large Stokes shift. This straightforward synthetic strategy brought structural variations to a series of probes, which were studied for their optical, biophysical, and biological properties. The insertion properties of the different probes into membranes were evaluated on a model system using the Langmuir monolayer balance technique. Confocal fluorescence microscopy performed on muscle cells showed completely different localizations and loading efficiencies depending on the structure of the probes. When compared to the commercially available ANEPPS, a family of commonly used membrane imaging dyes, the most efficient probes showed a similar brightness, but a sharper pattern was observed. According to this study, compounds bearing one chromophore, a limited size of the carbohydrate moiety, and an overall rod-like shape gave the best results.

  11. Realization of Ultraviolet Electroluminescence from ZnO Homo junction Fabricated on Silicon Substrate with p-Type ZnO:N Layer Formed by Radical N2O Doping

    Institute of Scientific and Technical Information of China (English)

    SUN Jing-Chang; LIANG Hong-Wei; ZHAO Jian-Ze; BIAN Ji-Ming; FENG Qiu-Ju; WANG Jing-Wei; ZHAO Zi-Wen; DU Guo-Tong

    2008-01-01

    @@ ZnO homojunction light-emitting diodes are fabricated on Si(100) substrates by plasma assisted metal organic chemical vapour deposition, A p-type layer of nitrogen-doped ZnO film is formed using radical N2O as the acceptor precursor.The n-type ZnO layer is composed of un-doped ZnO film.The device exhibits desirable rectifying behaviour with a turn-on voltage of 3.3 V and a reverse breakdown voltage higher than 6 V.Distinct electroluminescence emissions centred at 395nm and 49Ohm are detected from this device at forvcard current higher than 20mA at room temperature.

  12. Luminescent Efficiency in Single-layer Organic Electrophosphorescent Devices

    Institute of Scientific and Technical Information of China (English)

    OU Yang-jun; LI Hong-jian; DAI Xiao-yu

    2006-01-01

    Based on the charge injection and recombination processes and the triplet-triplet annihilation process, a model to calculate the electroluminescent(EL) efficiency is presented. The influences of the applied electric field on the injection efficiency, recombination efficiency and electroluminescent efficiency are discussed. It is found that: (1) The injection efficiency is increasing while the recombination efficiency is decreasing with the applied electric field increasing. (2) The EL efficiency is enhanced at low electric field slowly but is decreasing at high electric field with the increase of applied voltage. (3) The EL efficiency is decreasing with the increase of the host-guest molecular distance (R). So, it is concluded that the EL efficiency in single-layer organic electrophosphorescent devices is dominated by injection efficiency at lower electric field and recombination efficiency at higher electric field.

  13. The dependence of the polycrystalline structure and electroluminescent properties of ZnS:Mn deposited on Y 2O 3 films on thickness

    Science.gov (United States)

    Nakanishi, Y.; Fukuda, Y.; Hatanaka, Y.; Shimaoka, G.

    1991-06-01

    The dependence of polycrystalline structure and electroluminescent (EL) properties of ZnS:Mn on the thickness of ZnS:Mn thin films deposited on Y 2O 3 films at 200°C by electron-beam evaporation has been investigated. RHEED experiments showed that the Y 2O 3 film deposited on a transparent electrode at 200°C had a fiber structure with [100] orientation. It was found from RHEED observation that ZnS:Mn films with thickness below about 500Ådeposited over the Y 2O 3 film had a zincblende structure which changed to a fiber structure with [111] orientation as the film thickness increased. The brightness and the efficiency of ZnS:Mn thin film EL devices with a thickness below about 1000Åwere lower than those of EL devices with a thickness above 1000Å. These effects are attributed to a very poor crystallinity in the transition region from [100] to [111] orientation during the early stages of growth.

  14. Proportional electroluminescence in two-phase argon and its relevance to rare-event experiments

    CERN Document Server

    Bondar, A; Dolgov, A; Nosov, V; Shekhtman, L; Shemyakina, E; Sokolov, A

    2015-01-01

    Proportional electroluminescence (EL) in gaseous Ar has for the first time been systematically studied in the two-phase mode, at 87 K and 1.00 atm. Liquid Ar had a minor (56 ppm) admixture of N2, which allowed to understand, inter alia, the effect of N2 doping on the EL mechanism in rare-event experiments using two-phase Ar detectors. The measurements were performed in a two-phase Cryogenic Avalanche Detector (CRAD) with EL gap located directly above the liquid-gas interface. The EL gap was optically read out in the Vacuum Ultraviolet (VUV), near 128 nm (Ar excimer emission), and in the near Ultraviolet (UV), at 300-450 nm (N2 Second Positive System emission), via cryogenic PMTs and a Geiger-mode APD (GAPD). Proportional electroluminescence was measured to have an amplification parameter of 109+-10 photons per drifting electron per kV overall in the VUV and UV, of which 51+-6% were emitted in the UV. The measured EL threshold, at an electric field of 3.7+-0.2 kV/cm, was in accordance with that predicted by th...

  15. Enhanced electroluminescence of organic light-emitting diodes by using halloysite nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mondragón, Margarita, E-mail: mmondragon@ipn.mx [Instituto Politécnico Nacional, ESIME Azcapotzalco, Av. de las Granjas 682, 02250 México D.F. (Mexico); Moggio, Ivana; León, Arxel de; Arias, Eduardo [Centro de Investigación en Química Aplicada, CIQA, Blvd. Enrique Reyna 140, 25253 Saltillo, Coahuila (Mexico)

    2013-12-15

    The effect of halloysite clay nanotubes (HNTs) on the optical and electronic properties of poly(2-methoxy-5-[2′-ethylhexyloxy]-1,4-phenylenevinylene) (MEH-PPV) have been investigated. The UV–vis absorption band of the conjugated polymer remains unchanged upon the incorporation of halloysite nanotubes (HNTs). Photoluminescence (PL) measurements reveal a decreased quantum yield in the MEH-PPV/HNTs nanocomposites, compared with bulk MEH-PPV. Improvement of the electroluminescence of organic light-emitting diodes (OLEDs) was achieved by incorporating high contents of HNTs. The nanotubes act to enhanced polymer aggregates, as revealed by AFM analysis, thus increasing charge transport and therefore electroluminescence but also decreasing PL quantum yield. -- Highlights: • Thin films of nanocomposites of MEH-PPV/HNTs were prepared by spin coating. • Quantum yield in the nanocomposites was decreased compared with bulk MEH-PPV. • Improvement of the EL of OLEDs was achieved by incorporating high contents of HNTs. • The HNTs act to enhanced polymer aggregates, as revealed by AFM.

  16. Efficient Blue Electroluminescence Using Quantum-Confined Two-Dimensional Perovskites.

    Science.gov (United States)

    Kumar, Sudhir; Jagielski, Jakub; Yakunin, Sergii; Rice, Peter; Chiu, Yu-Cheng; Wang, Mingchao; Nedelcu, Georgian; Kim, Yeongin; Lin, Shangchao; Santos, Elton J G; Kovalenko, Maksym V; Shih, Chih-Jen

    2016-10-03

    Solution-processed hybrid organic-inorganic lead halide perovskites are emerging as one of the most promising candidates for low-cost light-emitting diodes (LEDs). However, due to a small exciton binding energy, it is not yet possible to achieve an efficient electroluminescence within the blue wavelength region at room temperature, as is necessary for full-spectrum light sources. Here, we demonstrate efficient blue LEDs based on the colloidal, quantum-confined 2D perovskites, with precisely controlled stacking down to one-unit-cell thickness (n = 1). A variety of low-k organic host compounds are used to disperse the 2D perovskites, effectively creating a matrix of the dielectric quantum wells, which significantly boosts the exciton binding energy by the dielectric confinement effect. Through the Förster resonance energy transfer, the excitons down-convert and recombine radiatively in the 2D perovskites. We report room-temperature pure green (n = 7-10), sky blue (n = 5), pure blue (n = 3), and deep blue (n = 1) electroluminescence, with record-high external quantum efficiencies in the green-to-blue wavelength region.

  17. A Successive Scans Method of Adjusting Scan-Time for Injection Electroluminescent Display Panels

    Institute of Scientific and Technical Information of China (English)

    OU Peng; YANG Gang; JIANG Quan; WANG Jun; HU Jian-Hua; WU Qi-Peng; LUO Kai-Jun

    2011-01-01

    @@ Aiming at the problem of luminance uniformity for injection electroluminescent display panels, we present a new scan method for display panels according to successive scans theory.First, on the basis of the number of pixels requiring light emitting in one frame period, we adjust the scan time for each row.Secondly, for ensuring image transmission synchronization, the frame period must to be a constant.We adopt a 64 × 32 LED display panel as an example to expound the new scan method and we obtain the good result that the reduce amplitude of luminance non-uniformity is 31.34% and the increase amplitude of the average luminance value is 7.8258%.%Aiming at the problem of luminance uniformity for injection electroluminescent display panels,we present a new scan method for display panets according to successive scans theory.First,on the basis of the number of pixels requiring light emitting in one frame period,we adjust the scan time for each row.Secondly,for ensuring image transmission synchronization,the frame period must to be a constant.We adopt a 64×32 LED display panel as an example to expound the new scan method and we odtain the good result that the reduce amplitude of luminance non-uniformity is 31.34% and the increase amplitude of the average luminance value is 7.8258%.

  18. Electroluminescence of SrS, BaS and SrSe Phosphors Activated by Cu and Er

    Science.gov (United States)

    Kulkarni, V. W.; Patwardhan, S. S.; Ghanbahadur, R. Y.

    1982-03-01

    Results of the investigations of the spectral characteristics of electroluminescence of SrS:Cu, Er, BaS:Cu, Er and SrSe:Cu, Er phosphors are presented. Some new features of the voltage and frequency dependence of EL-emission are reported.

  19. Floating substrate luminescence from silicon rich oxide metal-oxide-semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Sánchez, A., E-mail: alfredo.morales@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S. C., Unidad Monterrey-PIIT, 66600 Apodaca, Nuevo León (Mexico); Domínguez, C. [Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC). 08193 Barcelona (Spain); Barreto, J. [Nanoscale Physics Research Laboratory, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Aceves-Mijares, M. [INAOE, Electronics Department, Apartado 51, 72000 Puebla (Mexico); Licea-Jiménez, L. [Centro de Investigación en Materiales Avanzados S. C., Unidad Monterrey-PIIT, 66600 Apodaca, Nuevo León (Mexico); Luna-López, J.A.; Carrillo, J. [CIDS-ICUAP. Benemérita Universidad Autónoma de Puebla. 72570 Puebla (Mexico)

    2013-03-01

    The electro-optical properties of metal-oxide-semiconductor devices with embedded Si nanoparticles in silicon-rich (4 at.%) oxide films have been studied. Devices show intense visible continuous luminescence not only in the regular metal-oxide-semiconductor configuration, but when biased via surface electrodes (floating substrate) separated 10 μm. Electroluminescence manifests as extremely bright randomly scattered discrete spots on the gate area or the periphery of the devices depending on the bias direction. The mechanism responsible for the surface-electroluminescence has been related to the recombination of electron–hole pairs injected through enhanced current paths within the silicon-rich oxide film. - Highlights: ► Silicon rich oxide (SRO) based metal-oxide-semiconductor like luminescent devices. ► Electroluminescence (EL) in floating-substrate, horizontal electrodes configuration. ► EL is observed as multiple shining spots with surface electrodes. ► Preferential current paths established in the SRO between several electrodes.

  20. Room temperature direct-bandgap electroluminescence from a horizontal Ge ridge waveguide on Si

    Science.gov (United States)

    He, Chao; Liu, Zhi; Cheng, Bu-Wen

    2016-12-01

    We report a lateral Ge-on-Si ridge waveguide light emitting diode (LED) grown by ultrahigh vacuum chemical vapor deposition (UHV-CVD). Direct-bandgap electroluminescence (EL) of Ge waveguide under continuous current is observed at room temperature. The heat-enhancing luminescence and thermal radiation-induced superlinear increase of edge output optical power are found. The spontaneous emission and thermal radiation based on the generalized Planck radiation law are calculated and fit very well to the experimental results. The Ge waveguides with different lengths are studied and the shorter one shows stronger EL intensity. Project supported by the National Basic Research Program of China (Grant No. 2013CB632103), the National Natural Science Foundation of China (Grant Nos. 61176013 and 61036003), and the Science Fund from Beijing Science and Technology Commission, China (Grant No. Z151100003315019).

  1. Molecular-scale simulation of electroluminescence in a multilayer white organic light-emitting diode

    DEFF Research Database (Denmark)

    Mesta, Murat; Carvelli, Marco; de Vries, Rein J;

    2013-01-01

    we show that it is feasible to carry out Monte Carlo simulations including all of these molecular-scale processes for a hybrid multilayer organic light-emitting diode combining red and green phosphorescent layers with a blue fluorescent layer. The simulated current density and emission profile......In multilayer white organic light-emitting diodes the electronic processes in the various layers--injection and motion of charges as well as generation, diffusion and radiative decay of excitons--should be concerted such that efficient, stable and colour-balanced electroluminescence can occur. Here...... are shown to agree well with experiment. The experimental emission profile was obtained with nanometre resolution from the measured angle- and polarization-dependent emission spectra. The simulations elucidate the crucial role of exciton transfer from green to red and the efficiency loss due to excitons...

  2. Visible electroluminescence from p-n junction porous Si diode with a polyaniline film contact

    Institute of Scientific and Technical Information of China (English)

    Hongjian Li (李宏建); Baiyun Huang (黄伯云); Danqing Yi (易丹青); Haoyang Gui (崔昊杨); Jingcui Peng (彭景翠)

    2003-01-01

    We have fabricated a light emitting diode using a p-type conducting polyaniline layer deposited on a n-type porous silicon (PS) layer. The contact formed between a p-type conducting polyaniline layer and a n-type PS wafer has rectified behaviour demonstrated clearly by the I-V curves. The series resistance Rs in the p-type conducting polyaniline/n-PS diode is reduced greatly and has a lower onset voltage compared with ITO/n-PS diode. The PS has an orange photoluminescence (PL) band after coating with polyaniline.Visible electroluminescence (EL) has been obtained from this junction when a forward bias is applied. The emission band is very broad extending from 600 - 803 nm with a peak at 690 nm.

  3. A Noble Gas Detector with Electroluminescence Readout based on an Array of APDs

    CERN Document Server

    Bourguille, B; Gil-Botella, I; Lux, T; Palomares, C; Sanchez, F; Santorelli, R

    2015-01-01

    We present the results of the operation of an array of avalanche photodiodes (APDs) for the readout of an electroluminescence detector. The detector contains 24 APDs with a pitch of 15 mm between them allowing energy and position measurements simultaneously. Measurements were performed in xenon (3.8 bar) and argon (4.8 bar) showing a good energy resolution of 5.3% FWHM at 60 keV in xenon and 9.4% in argon respectively. In X-ray energies of 13 could be clearly separated from the pedestals indicating that this kind of technology might be also interesting for dark matter detectors. Following Monte Carlo studies the performance could be improved significantly by reducing the pitch between the sensors.

  4. Democratizing an electroluminescence imaging apparatus and analytics project for widespread data acquisition in photovoltaic materials.

    Science.gov (United States)

    Fada, Justin S; Wheeler, Nicholas R; Zabiyaka, Davis; Goel, Nikhil; Peshek, Timothy J; French, Roger H

    2016-08-01

    We present a description of an electroluminescence (EL) apparatus, easily sourced from commercially available components, with a quantitative image processing platform that demonstrates feasibility for the widespread utility of EL imaging as a characterization tool. We validated our system using a Gage R&R analysis to find a variance contribution by the measurement system of 80.56%, which is typically unacceptable, but through quantitative image processing and development of correction factors a variance contribution by the measurement system of 2.41% was obtained. We further validated the system by quantifying the signal-to-noise ratio (SNR) and found values consistent with other systems published in the literature, at SNR values of 10-100, albeit at exposure times of greater than 1 s compared to 10 ms for other systems. This SNR value range is acceptable for image feature recognition, providing the opportunity for widespread data acquisition and large scale data analytics of photovoltaics.

  5. Two-phase Cryogenic Avalanche Detector with electroluminescence gap operated in argon doped with nitrogen

    CERN Document Server

    Bondar, A; Dolgov, A; Nosov, V; Shekhtman, L; Shemyakina, E; Sokolov, A

    2016-01-01

    A two-phase Cryogenic Avalanche Detector (CRAD) with electroluminescence (EL) gap, operated in argon doped with a minor (49$\\pm$7 ppm) admixture of nitrogen, has been studied. The EL gap was optically read out using cryogenic PMTs located on the perimeter of the gap. We present the results of the measurements of the N$_2$ content, detector sensitivity to X-ray-induced signals, EL gap yield and electron lifetime in the liquid. The detector sensitivity, at a drift field in liquid Ar of 0.6 kV/cm, was measured to be 9 and 16 photoelectrons recorded at the PMTs per keV of deposited energy at 23 and 88 keV respectively. Such two-phase detectors, with enhanced sensitivity to the S2 (ionization-induced) signal, are relevant in the field of argon detectors for dark matter search and low energy neutrino detection.

  6. Development and Characterization of a Multi-APD Xenon Electroluminescence TPC

    CERN Document Server

    Lux, T; Ballester, O; Bordoni, S; Gil-Botella, I; Hamer, N; Illa, J; Mañas, G Jover; Martin-Mari, C; Palomares, C; Rico, J; Sanchez, F; Santorelli, R; Verdugo, A

    2014-01-01

    The performance of an electroluminescence (EL) time projection chamber (TPC) with a multi avalanche photodiode (APD) readout was studied in pure xenon at 3.8 bar. Intercalibration and reconstruction methods were developed and applied to the data yielding energy resolutions as good as 5.3$+-$0.1 % FWHM for 59.5 keV gammas from 241-Am. The result was verified with a Monte Carlo (MC) based on Geant4 and Penelope predicting 5.2 % FWHM for the used setup. Point resolutions of about 0.5 mm were obtained by a pitch of 15 mm between the APDs. The results show that a multi-APD readout is a competitive technology for EL detectors filled with pure xenon with possible applications as Compton Cameras.

  7. Colour electroluminescence with end light-emitting from ZnO nanowire/polymer film

    Energy Technology Data Exchange (ETDEWEB)

    He Ying; Wang Junan [Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhang Wenfei; Chen Xiaoban; Huang Zonghao; Gu Qiuwen [Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, Shanghai 200072 (China)], E-mail: yinghe@staff.shu.edu.cn

    2009-03-01

    The ZnO nanowires with polymer film were self-assembly grown on n-type (111) plane of the silicon substrate using polymer assisted complexing soft-template process through a simple polymer complexation and low-temperature oxidizing-sintering, which have smooth top and fine hexagonal columnar structure with average length of about 6 {mu}m and the diameter of about 40 nm. These columnar structured ZnO nanowires had strong near-band ultraviolet emission at {approx}383 nm and blue electrically driven emission at {approx} 400 nm with a relatively low turn-on voltage, as well as a typical diode characteristic property at room temperature. In particular, these structures, being of high aspect ratio and small tip radius of curvature, may possess a good amplified stimulated emission and lasing property. These results suggested a potential application of ZnO nanowire/polymer film as electroluminescence flat panel displays or illuminations in the future.

  8. Electroluminescence from Ge1-ySny diodes with degenerate pn junctions

    Science.gov (United States)

    Gallagher, J. D.; Senaratne, C. L.; Wallace, P. M.; Menéndez, J.; Kouvetakis, J.

    2015-09-01

    The light emission properties of GeSn pn diodes were investigated as a function of alloy composition and doping levels. Very sharp interfaces between contiguous ultra-highly doped p- and n-layers were obtained using in situ doping with B2H6 and P(SiH3)3 in a chemical vapor deposition environment, yielding nearly ideal model systems for systematic studies. Changes in the doping levels and layer Sn concentrations are shown to greatly affect the electroluminescence spectra. This sensitivity should make it possible to optimize the emission efficiency for these structures in the interesting quasi-direct regime, for which direct gap luminescence is observed due to the proximity of the conduction band quasi-Fermi level to the minimum of the conduction band at the center of the Brillouin zone. Such structures represent the basic building block of Ge-based electrically pumped lasers.

  9. Room-temperature direct band-gap electroluminescence from germanium (111)-fin light-emitting diodes

    Science.gov (United States)

    Tani, Kazuki; Saito, Shin-ichi; Oda, Katsuya; Miura, Makoto; Wakayama, Yuki; Okumura, Tadashi; Mine, Toshiyuki; Ido, Tatemi

    2017-03-01

    Germanium (Ge) (111) fins of 320 nm in height were successfully fabricated using a combination of flattening sidewalls of a silicon (Si) fin structure by anisotropic wet etching with tetramethylammonium hydroxide, formation of thin Ge fins by selective Si oxidation in SiGe layers, and enlargement of Ge fins by Ge homogeneous epitaxial growth. The excellent electrical characteristics of Ge(111) fin light-emitting diodes, such as an ideality factor of 1.1 and low dark current density of 7.1 × 10‑5 A cm‑2 at reverse bias of ‑2 V, indicate their good crystalline quality. A tensile strain of 0.2% in the Ge fins, which originated from the mismatch of the thermal expansion coefficients between Ge and the covering SiO2 layers, was expected from the room-temperature photoluminescence spectra, and room-temperature electroluminescence corresponding to the direct band-gap transition was observed from the Ge fins.

  10. Probe beam-free detection of terahertz wave by electroluminescence induced by intense THz pulse

    Science.gov (United States)

    Shin, J.; Jin, Z.; Nosaka, Y.; Nakazawa, T.; Kodama, R.

    2016-03-01

    Recently, a table-top fs laser system can generate MW terahertz (THz) pulse with its electric field higher than 100 kV/cm can be generated by several schemes. Such a strong THz field can directly drive electrons inside various materials. Here, we demonstrated a direct THz electric field detection method by measuring the electroluminescence induced by intense THz pulse inside commonly available light emitting diode. An intense THz wave obtained by the two-color laser scheme was focused onto LED along with an external DC bias to induce luminescence which we found proportional to the amplitude of the incident THz field. The scheme can be useful to realize a low-cost, probe-free THz detection and imaging system.

  11. Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters

    Energy Technology Data Exchange (ETDEWEB)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2016-11-21

    A method for detecting micro-cracks in solar cells using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical micro-cracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we show how to automatically estimate the total length of each micro-crack from these maps, and propose a method to identify severe types of micro-cracks, such as parallel, dendritic, and cracks with multiple orientations. With an optimized threshold parameter, the technique detects over 90 % of cracks larger than 3 cm in length. The method shows great potential for quantifying micro-crack damage after manufacturing or module transportation for the determination of a module quality criterion for cell cracking in photovoltaic modules.

  12. Drift mobility measurements in a-C:H films by time-resolved electroluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Foulani, A

    2002-12-30

    Carrier transport mechanism has been studied in thin insulating hydrogenated amorphous carbon (a-C:H) films. The layers were prepared by plasma polymerization of methane (CH{sub 4}) at a frequency of 20 kHz. Electron mobility was derived from time-resolved luminescence experiments. Between the application of a rectangular voltage pulse and the first appearance of electroluminescence (EL) a time lag exists, which depends on the pulse height. Transit times are in the order of 10{sup -3} to {approx}10{sup -6} s in a voltage rabetween 10 and 25 V. And the estimated electron mobility varies accordingly from 8x10{sup -8} to {approx}10{sup -6} cm{sup 2}/(V s). The field dependence of the carriers mobility is characteristic of Poole-Frenkel-detrapping conduction model, and thus confirms the results obtained by dc experimental data.

  13. Democratizing an electroluminescence imaging apparatus and analytics project for widespread data acquisition in photovoltaic materials

    Science.gov (United States)

    Fada, Justin S.; Wheeler, Nicholas R.; Zabiyaka, Davis; Goel, Nikhil; Peshek, Timothy J.; French, Roger H.

    2016-08-01

    We present a description of an electroluminescence (EL) apparatus, easily sourced from commercially available components, with a quantitative image processing platform that demonstrates feasibility for the widespread utility of EL imaging as a characterization tool. We validated our system using a Gage R&R analysis to find a variance contribution by the measurement system of 80.56%, which is typically unacceptable, but through quantitative image processing and development of correction factors a variance contribution by the measurement system of 2.41% was obtained. We further validated the system by quantifying the signal-to-noise ratio (SNR) and found values consistent with other systems published in the literature, at SNR values of 10-100, albeit at exposure times of greater than 1 s compared to 10 ms for other systems. This SNR value range is acceptable for image feature recognition, providing the opportunity for widespread data acquisition and large scale data analytics of photovoltaics.

  14. Wannier-Stark localization and terahertz electroluminescence of natural SiC superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Sankin, V. I.; Andrianov, A. V.; Petrov, A. G.; Zakhar' in, A. O. [A.F. Ioffe Physical Technical Institute, 194021 St. Petersburg (Russian Federation)

    2013-12-04

    We report on efficient terahertz electroluminescence in the region of 1.5-2 THz from high electric field biased 6H-SiC n{sup +}−n{sup −}−n{sup +} structures with a natural superlattice at 7 K. The properties of the terahertz emission allow it to be attributed to spontaneous radiation resulting from electron Bloch oscillations in SiC natural superlattice. The use of the unique object, namely, natural superlattice of SiC allowed us to demonstrate a whole series of remarkable effects of Wannier-Stark localization and to get the intensive terahertz emission under steady-state electrical excitation of Bloch oscillations.

  15. White Electroluminescence Using ZnO Nanotubes/GaN Heterostructure Light-Emitting Diode

    Directory of Open Access Journals (Sweden)

    Sadaf JR

    2010-01-01

    Full Text Available Abstract We report the fabrication of heterostructure white light–emitting diode (LED comprised of n-ZnO nanotubes (NTs aqueous chemically synthesized on p-GaN substrate. Room temperature electroluminescence (EL of the LED demonstrates strong broadband white emission spectrum consisting of predominating peak centred at 560 nm and relatively weak violet–blue emission peak at 450 nm under forward bias. The broadband EL emission covering the whole visible spectrum has been attributed to the large surface area and high surface states of ZnO NTs produced during the etching process. In addition, comparison of the EL emission colour quality shows that ZnO nanotubes have much better quality than that of the ZnO nanorods. The colour-rendering index of the white light obtained from the nanotubes was 87, while the nanorods-based LED emit yellowish colour.

  16. Photo and electroluminescence of ZnSe: Sn and ZnSe:(Sn, Pr) phosphors

    Science.gov (United States)

    Mishra, A. K.; Mishra, S. K.; Pandey, S. P.; Lakshmi Mishra, Kshama

    2016-09-01

    We have prepared ZnSe (luminescent grade) phosphor doped with Sn and (Sn,Pr) with varying concentration in an inert atmosphere in a silica tubular furnace at temperature of (780 ± 20) °C for 1 hr to obtain ZnSe:Sn and ZnSe: (Sn,Pr) phosphors. The photo luminescence (PL) and electroluminescence (EL) spectra of these phosphors have been studied at room temperature and results were discussed in the light of existing models. Dependence of EL emission on the voltage frequency has also been carried out. It is found that the plot between the integrated light intensity versus 1/√Vrms is a straight line suggesting the existence of Mott-Schottky type barrier on the metal semiconductor interface.

  17. Two-phase Cryogenic Avalanche Detector with electroluminescence gap operated in argon doped with nitrogen

    Science.gov (United States)

    Bondar, A.; Buzulutskov, A.; Dolgov, A.; Nosov, V.; Shekhtman, L.; Shemyakina, E.; Sokolov, A.

    2017-02-01

    A two-phase Cryogenic Avalanche Detector (CRAD) with electroluminescence (EL) gap, operated in argon doped with a minor (49±7 ppm) admixture of nitrogen, has been studied. The EL gap was optically read out using cryogenic PMTs located on the perimeter of the gap. We present the results of the measurements of the N2 content, detector sensitivity to X-ray-induced signals, EL gap yield and electron lifetime in the liquid. The detector sensitivity, at a drift field in liquid Ar of 0.6 kV/cm, was measured to be 9 and 16 photoelectrons recorded at the PMTs per keV of deposited energy at 23 and 88 keV respectively. Such two-phase detectors, with enhanced sensitivity to the S2 (ionization-induced) signal, are relevant in the field of argon detectors for dark matter search and low energy neutrino detection.

  18. Nanoscale electroluminescence from n-type GaAs(110) in tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X L; Fujita, D; Niori, N; Keisuke, S; Onishi, K [Advanced Nanocharacterization Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2007-05-16

    Nanoscale electroluminescence (EL) was induced from n-type GaAs(110) in tunnel junctions using an indium tin oxide (ITO)-coated optical fibre probe at both polarities, room temperature (RT), and 80 K. The quantum efficiency of photon emission at negative bias is much higher than at positive bias at both RT and 80 K. A high quantum efficiency of about {approx}10{sup -4}(photons/electron) was achieved at 80 K. The well-defined optical spectra exhibit two-peak features at 1.49 and 1.39 eV which are generated by the radiative recombination of hole-electron pairs over the direct band gap and surface states, respectively.

  19. Kinetics of electroluminescence of thin-film emitters based on zinc sulfide at ultralow frequencies

    CERN Document Server

    Gurin, N T; Sabitov, O Y

    2002-01-01

    Paper presents the results of investigation into kinetics of luminescence instantaneous luminance of thin-film electroluminescent structures excited by 0.1-2 Hz frequency triangular sing-variable voltage. One detected two regions with time rise of instantaneous luminance and of current (slow and quick ones) to which corresponded various regions at field and charge dependences of instantaneous luminance and at other electrophysical characteristics. On the basis of solution of kinetic equation one derived time dependences of instantaneous luminance and of inner quantum yield. The results are explained by generation of space charges within luminophore layer followed by reduction of the efficient thickness of the layer and by variation of mechanism of excitation of luminescence centers

  20. Structure–property relationships of electroluminescent polythiophenes: role of nitrogen-based heterocycles as side chains

    Indian Academy of Sciences (India)

    S Radhakrishnan; S J Ananthakrishnan; N Somanathan

    2011-07-01

    A series of conjugated polythiophenes containing nitrogen-containing heterocycles as side chain, with differing substituent nature and linkage have been studied using quantum-chemical calculations. The optical properties of synthesized polymers were compared with that of model compounds with intricate structural variations. The theoretically predicted optical characteristics are correlated with the experimentally determined parameters. Experimentally determined band gap and absorption maxima found to follow the predicted trends. Single emissive layer polymeric light emitting diodes are fabricated and the structural influence on photo- and electro-emission was studied in detail. The study shows that the nature of side chain substituent such as number/position of nitrogen atoms and mode of linking of side chain plays a crucial role in deciding the geometry which in turn controls the voltage response of the electroluminescence.

  1. Significant improvement of near-UV electroluminescence from ZnO quantum dot LEDs via coupling with carbon nanodot surface plasmons.

    Science.gov (United States)

    Zhang, Cen; Zhu, Feifei; Xu, Haiyang; Liu, Weizhen; Yang, Liu; Wang, Zhongqiang; Ma, Jiangang; Kang, Zhenhui; Liu, Yichun

    2017-10-05

    Short-wavelength LEDs, a hot research topic in modern optoelectronics, have attracted tremendous attention in recent years because of their great application potential in both civil and military domains. Compared to conventional metallic surface-plasmons (SPs), carbon nanodot (CD) SPs with less optical loss and low cost, broader SP resonant frequency and good biocompatibility are expected to provide more prominent luminescence enhancement for light emitters. Herein, SP-enhanced near-UV emission quantum dot LEDs (Q-LED) were fabricated via introducing CDs into p-GaN/Al2O3/ZnO Q-LEDs by optimizing the molar ratio of ZnO quantum dots to CDs and a significant enhancement (∼20-fold) of the near-UV electroluminescence (EL) intensity from the ZnO-based Q-LEDs was achieved. Time-resolved spectroscopy studies reveal that the observed luminescence enhancement arises due to the resonant coupling between ZnO excitons and CD SPs. The current study not only demonstrates a feasible way to acquire near-UV emission from all-inorganic Q-LEDs, but also provides an effective strategy to enhance the EL intensity of these QD light emitters, which can further be extended to other types of light-emitting devices to improve EL efficiency.

  2. 2-(2-Hydroxyphenyl)benzimidazole-based four-coordinate boron-containing materials with highly efficient deep-blue photoluminescence and electroluminescence.

    Science.gov (United States)

    Zhang, Zhenyu; Zhang, Houyu; Jiao, Chuanjun; Ye, Kaiqi; Zhang, Hongyu; Zhang, Jingying; Wang, Yue

    2015-03-16

    Two novel four-coordinate boron-containing emitters 1 and 2 with deep-blue emissions were synthesized by refluxing a 2-(2-hydroxyphenyl)benzimidazole ligand with triphenylborane or bromodibenzoborole. The boron chelation produced a new π-conjugated skeleton, which rendered the synthesized boron materials with intense fluorescence, good thermal stability, and high carrier mobility. Both compounds displayed deep-blue emissions in solutions with very high fluorescence quantum yields (over 0.70). More importantly, the samples showed identical fluorescence in the solution and solid states, and the efficiency was maintained at a high level (approximately 0.50) because of the bulky substituents between the boron atom and the benzimidazole unit, which can effectively separate the flat luminescent units. In addition, neat thin films composed of 1 or 2 exhibited high electron and hole mobility in the same order of magnitude 10(-4), as determined by time-of-flight. The fabricated electroluminescent devices that employed 1 or 2 as emitting materials showed high-performance deep-blue emissions with Commission Internationale de L'Eclairage (CIE) coordinates of (X = 0.15, Y = 0.09) and (X = 0.16, Y = 0.08), respectively. Thus, the synthesized boron-containing materials are ideal candidates for fabricating high-performance deep-blue organic light-emitting diodes.

  3. Analysis of interfacial energy states in Au/pentacene/polyimide/indium-zinc-oxide diodes by electroluminescence spectroscopy and electric-field-induced optical second-harmonic generation measurement

    Science.gov (United States)

    Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-03-01

    By using electroluminescence (EL) spectroscopy and electric-field-induced optical second-harmonic generation (EFISHG) measurement, we analyzed interfacial energy states in Au/pentacene/polyimide/indium-zinc-oxide (IZO) diodes, to characterize the pentacene/polyimide interface. Under positive voltage application to the Au electrode with reference to the IZO electrode, the EFISHG showed that holes are injected from Au electrode, and accumulate at the pentacene/polyimide interface with the surface charge density of Qs = 3.8 × 10-7 C/cm2. The EL spectra suggested that the accumulated holes are not merely located in the pentacene but they are transferred to the interface states of polyimide. These accumulated holes distribute with the interface state density greater than 1012 cm-2 eV-1 in the range E = 1.5-1.8 and 1.7-2.4 eV in pentacene and in polyimide, respectively, under assumption that accumulated holes govern recombination radiation. The EL-EFISHG measurement is helpful to characterize organic-organic layer interfaces in organic devices and provides a way to analyze interface energy states.

  4. Dependence of Performance of Organic Light-emitting Devices on Sheet Resistance of Indium-tin-oxide Anodes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indium-tin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance.

  5. Large magneto-conductance and magneto-electroluminescence in exciplex-based organic light-emitting diodes at room temperature

    Science.gov (United States)

    Ling, Yongzhou; Lei, Yanlian; Zhang, Qiaoming; Chen, Lixiang; Song, Qunliang; Xiong, Zuhong

    2015-11-01

    In this work, we report on large magneto-conductance (MC) over 60% and magneto-electroluminescence (MEL) as high as 112% at room temperature in an exciplex-based organic light-emitting diode (OLED) with efficient reverse intersystem crossing (ISC). The large MC and MEL are individually confirmed by the current density-voltage characteristics and the electroluminescence spectra under various magnetic fields. We proposed that this type of magnetic field effect (MFE) is governed by the field-modulated reverse ISC between the singlet and triplet exciplex. The temperature-dependent MFEs reveal that the small activation energy of reverse ISC accounts for the large MFEs in the present exciplex-based OLEDs.

  6. Luminescence properties of composites made of a europium(III) complex and electroluminescent polymers with different energy gaps

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, Jorge [Instituto de Telecomunicacoes, Av. Rovisco Pais, P-1049-001 Lisbon (Portugal); Charas, Ana [Instituto de Telecomunicacoes, Av. Rovisco Pais, P-1049-001 Lisbon (Portugal); Fernandes, Jose A [Departamento de Quimica and CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Goncalves, Isabel S [Departamento de Quimica and CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Carlos, Luis D [Departamento de Fisica and CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Alcacer, Luis [Instituto de Telecomunicacoes, Av. Rovisco Pais, P-1049-001 Lisbon (Portugal)

    2006-08-21

    We present the optoelectronic properties of composites made of a europium(III) complex, Eu(NTA){sub 3} phen (where NTA=1-(2-naphthoyl)-3,3,3-trifluoroacetonate; phen=1,10-phenantroline), dispersed in three electroluminescent polymers, namely, poly(N-vinylcarbazole), poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-alt-benzothiadiazole). We find that the photo- and electroluminescence (EL) properties of these composites are well rationalized in terms of the relative position of the frontier levels of the host polymers and of the europium complex. We find also that charge recombination at the europium complex sites plays a key role on the EL properties of the composites.

  7. Electroluminescence from InGaN quantum dots in a fully monolithic GaN/AlInN cavity

    Science.gov (United States)

    Dartsch, Heiko; Tessarek, Christian; Aschenbrenner, Timo; Figge, Stephan; Kruse, Carsten; Schowalter, Marco; Rosenauer, Andreas; Hommel, Detlef

    2011-04-01

    We present for the first time electroluminescence from InGaN quantum dots inside a monolithic nitride based cavity. The structure consists of a 40-fold bottom GaN/Al 0.82In 0.18N distributed Bragg reflector (DBR), a single InGaN quantum dot layer inside a 5λ n-type (bottom) and p-type (top) doped GaN cavity and a 10-fold GaN/Al 0.82In 0.18N top DBR. Structural properties have been investigated by scanning transmission electron microscopy. Optical reflectivity measurements are in good agreement with calculations which predict a peak reflectivity of 92% and a quality factor of 220. Electroluminescence shows a pronounced emission at the spectral position of the cavity mode near 500 nm.

  8. The effect of absorption and coherent interference in the photoluminescence and electroluminescence spectra of SRO/SRN MIS capacitors.

    Science.gov (United States)

    Juvert, Joan; González-Fernández, Alfredo Abelardo; Llobera, Andreu; Domínguez, Carlos

    2013-04-22

    In this paper we present a technique that can be used to study the effect of absorption and coherent interference in the luminescence of multilayer structures. We apply the technique to the measured photoluminescence and electroluminescence spectra of MIS capacitors where the insulator is composed of a silicon rich oxide (SRO)/silicon rich nitride (SRN) bilayer structure. We remove the effect of the multilayer stack on the measured photoluminescence spectrum of the samples without the metal contact to find the intrinsic spectrum. Then we apply the effect of the MIS structure on the intrinsic spectrum in order to calculate the electroluminescence spectrum. Good agreement with the experimentally measured EL spectrum is found. We discuss which parameters affect the spectra most significantly.

  9. Luminescence and Electroluminescence of Nd, Tm and Yb Doped GaAs and some II-Vi Compounds

    Science.gov (United States)

    1994-02-28

    the Sixth International Workshop on Electroluminescence, El Paso, Texas, 1992 ( Cingo Puntos Press, El Paso, Texas, 1992), and references therein. 2. R...34. impurity seems to be traps (represented by ellipse) with the atomiclike 4f" core ideal . states. (a) Trapping (liberation) "r.(,r) of electron on REI traps...34structured" impurity seems to be ideal . KINETIC MODEL AND COMPUTATION RESULTS The luminescence kinetic model involving RE`3 "structured" isoelectronic

  10. Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices.

    Science.gov (United States)

    Lai, May L; Tay, Timothy Y S; Sadhanala, Aditya; Dutton, Siân E; Li, Guangru; Friend, Richard H; Tan, Zhi-Kuang

    2016-07-21

    Infrared emitters are reasonably rare in solution-processed materials. Recently, research into hybrid organo-lead halide perovskite, originally popular in photovoltaics,1-3 has gained traction in light-emitting diodes (LED) due to their low-cost solution processing and good performance.4-9 The lead-based electroluminescent materials show strong colorful emission in the visible region, but lack emissive variants further in the infrared. The concerns with the toxicity of lead may, additionally, limit their wide-scale applications. Here, we demonstrate tunable near-infrared electroluminescence from a lead-free organo-tin halide perovskite, using an ITO/PEDOT:PSS/CH3NH3Sn(Br1-xIx)3/F8/Ca/Ag device architecture. In our tin iodide (CH3NH3SnI3) LEDs, we achieved a 945 nm near-infrared emission with a radiance of 3.4 W sr(-1) m(-2) and a maximum external quantum efficiency of 0.72%, comparable with earlier lead-based devices. Increasing the bromide content in these tin perovskite devices widens the semiconductor bandgap and leads to shorter wavelength emissions, tunable down to 667 nm. These near-infrared LEDs could find useful applications in a range of optical communication, sensing and medical device applications.

  11. Electroluminescence enhancement of glass/ITO/PEDOT:PSS/MEH-PPV/PEDOT:PSS/Al OLED by thermal annealing

    Science.gov (United States)

    Hewidy, Dina; Gadallah, A.-S.; Fattah, G. Abdel

    2017-02-01

    Manufacturing of glass/ITO/PEDOT:PSS/MEH-PPV/PEDOT:PSS/Al organic light emitting diode (OLED) by depositing PEDOT:PSS/MEH-PPV/PEDOT:PSS using spin coating has been reported. The roles of PEDOT:PSS in the structure have been reported. It allows transportation of holes from ITO to the highest occupied molecular orbit (HOMO) of MEH-PPV. In additions, it allows transportation of electrons from Al to lowest unoccupied molecular orbit (LUMO) of MEH:PPV. Further, it confines electrons in the LUMO of MEH:PPV due to the higher barrier of PEDOT:PSS of LUMO. The effect of thermal annealing on the current-voltage curve as well as on the electroluminescence intensity has been reported. The results show that the current increased from 25 mA to 52 mA at 7 V, when the sample was thermally annealed at 150 °C. Such enhancement in electrical injection leads to enhancement of the electroluminescence to a factor of 4.7 at the peak luminescence wavelength (∼592 nm). Reasons for electroluminescence improvement caused by thermal annealing have been proposed.

  12. A new series of short axially symmetrically and asymmetrically 1,3,6,8-tetrasubstituted pyrenes with two types of substituents: Syntheses, structures, photophysical properties and electroluminescence

    Science.gov (United States)

    Zhang, Ran; Zhang, Tengfei; Xu, Lu; Han, Fangfang; Zhao, Yun; Ni, Zhonghai

    2017-01-01

    A new series of short axially symmetrically (4a and 4b) and asymmetrically (4c and 4d) 1,3,6,8-tetrasubstituted pyrene-based compounds with two phenyl moieties and two diphenylamine units on the pyrene core were designed and synthesized based on stepwise synthetic strategy. These compounds were structurally characterized and their photoelectric properties were investigated by spectroscopy, electrochemical and theoretical studies. The structures of 4a and 4b were determined by single-crystal X-ray diffraction analysis, indicating that the compounds are twisted by the peripheral substituents and the intermolecular π-π interactions have been efficiently interrupted. The four compounds exhibit high absolute fluorescence quantum yields (VF) in dichloromethane (83.31-88.45%) and moderate VFs in film states (20.78-38.68%). In addition, compounds 4a and 4b display relatively higher absolute VFs than those of 4c and 4d in film states. All the compounds exhibit high thermal stability with decomposition temperatures above 358 °C and the values of 4c and 4d are higher than 4a and 4b. Compounds 4a and 4b can form morphologically stable amorphous thin films with Tg values of 146 °C and 149 °C, respectively. However, there are no obvious Tg observed in compounds 4c and 4d. Electroluminescent devices using 4a and 4b as doped emission layer show promising device performance with low turn-on voltage (3.0 V), maximum brightness around 15100 cd/m2 and 16100 cd/m2, maximum luminance efficiency of 12.4 cd/A and 13.6 cd/A and maximum external quantum efficiency of 5.34% and 5.63%, respectively.

  13. Organic Electroluminescent Device from Dopant%掺杂型有机电致发光器件

    Institute of Scientific and Technical Information of China (English)

    蒋业文; 谭海曙

    2003-01-01

    成功制备了可溶性电子型聚合物PPQ[poly (phenyl quinoxaline)]掺杂的可溶性空穴型聚合物PDDOPV[poly (2,5-bis (dodecyloxy)-phenylenevinylene)]的单层发光器件.与具有相同厚度的纯PDDOPV的单层器件相比,起亮电压从4.5 V降低到2.6 V,在电压相同的条件下,掺杂的单层器件的电流和纯PDDOPV的单层器件在同一个数量级,但其亮度和发光效率均比未掺杂器件提高1个数量级以上.结果表明,在可溶性空穴型聚合物中掺杂可溶性电子型聚合物是提高器件性能的有效方法.

  14. Organic Light Emitting Devices Based on Terbium Complex

    Institute of Scientific and Technical Information of China (English)

    肖静; 邓振波; 张志锋; 徐登辉; 徐颖; 王瑞芬

    2004-01-01

    Rare earth complex TbY(m-MOBA)6(phen)2·2H2O was synthesized,which was first used as an emitting material in electroluminescence.The properties of monolayer device with the rate of 1000 r·min-1 (70 nm) and the impure concentration of 1∶5 were the best.And the highest brightness of this device reached 21.8 cd·cm-2 at a fixed bias of 20 V.Bright green emission can be obtained from the optimized double-layer device,and the highest EL brightness of the device reached 289 cd·m-2 at the voltage of 21 V.

  15. Organic Light Emitting Devices Based on Terbium Complex

    Institute of Scientific and Technical Information of China (English)

    Xiao Jing; Deng Zhenbo; Xu Denghui; Xu Ying; Wang Ruifen

    2005-01-01

    Rare earth complex Tb(BA)3phen was synthesized, which is first used as an emitting material in electroluminescence. The properties of monolayer device with the swing film rate of 1000 r·min-1(70 nm) and the weight ratio of 1:5(PVK:Tb(BA)3phen) are the best. And the highest brightness of this device reached 26.8 cd·cm-2 at a fixed bias of 21 V. Bright green emission could be obtained from the optimized double-layer device and the highest EL brightness of the device reached 322 cd·m-2 at the voltage of 22 V.

  16. Efficient Visible Electroluminescence from Porous Silicon Diodes Passivated by Carbon Films

    Institute of Scientific and Technical Information of China (English)

    李宏建; 彭景翠; 瞿述; 颜永红; 许雪梅; 赵楚军

    2002-01-01

    By using n-butylamine as a carbon resource, carbon film is deposited on the p-n porous silicon (PS) surface with aradio-frequency glow discharge plasma system. Raman spectra and infrared reflection (IR) spectra of the carbonfilms indicate that there are amine-group and hydrogen atoms therein. The IR spectra of the passivated PSsamples exhibit that the PS surfaces are mainly covered with Si-C, Si-N and Si-O bonds. Electroluminescence(EL) spectra show that the EL intensity of the passivated PS diodes increases greatly and the blueshift of theEL peak occurs compared with the diodes without treatment. Both of these are stable while the passivateddiodes are exposed to the air indoors. The I-V characteristics reveal that the passivated diodes have a smallerseries resistance and a lower onset voltage. The influence of the carbon film passivation on EL properties of PShas also been discussed. The results have proven that carbon film passivation is a good way to enhance the PSluminescent intensity and stability.

  17. Origin of the Electroluminescence from Annealed-ZnO/GaN Heterojunction Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Kai-Chiang Hsu

    2015-11-01

    Full Text Available This paper addressed the effect of post-annealed treatment on the electroluminescence (EL of an n-ZnO/p-GaN heterojunction light-emitting diode (LED. The bluish light emitted from the 450 °C-annealed LED became reddish as the LED annealed at a temperature of 800 °C under vacuum atmosphere. The origins of the light emission for these LEDs annealed at various temperatures were studied using measurements of electrical property, photoluminescence, and Auger electron spectroscopy (AES depth profiles. A blue-violet emission located at 430 nm was associated with intrinsic transitions between the bandgap of n-ZnO and p-GaN, the green-yellow emission at 550 nm mainly originating from the deep-level transitions of native defects in the n-ZnO and p-GaN surfaces, and the red emission at 610 nm emerging from the Ga-O interlayer due to interdiffusion at the n-ZnO/p-GaN interface. The above-mentioned emissions also supported the EL spectra of LEDs annealed at 700 °C under air, nitrogen, and oxygen atmospheres, respectively.

  18. Extended structural defects and their influence on the electroluminescence in efficient Si light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Sobolev, N.A.; Emel' yanov, A.M.; Shek, E.I.; Vdovin, V.I

    2003-12-31

    We report our results on electroluminescence (EL) in the range of 1.0-1.6 {mu}m, structural defects and electrophysical properties of light-emitting diodes fabricated by implantation of B and P ions into Si substrates with a subsequent thermal annealing at 700-1200 deg. C in argon. A band-to-band emission peak dominates in the EL spectra of all the samples at 80-500 K. The internal quantum efficiency of the band-to-band EL, {eta}{sub int}, and the minority carrier lifetime, {tau}{sub p}, increase with annealing temperature to 1100 deg. C, with the efficiency practically proportional to the lifetime. The maximum {eta}{sub int} was registered after annealing at 1100 deg. C, when there are no extended structural defects. Rod-like defects, partial Frank and perfect prismatic dislocation loops are formed after annealing at lower temperatures. No correlation between the quantum efficiency and the defect structure was revealed with the variation of the annealing temperature. An increase of the value {tau}{sub p}/{eta}{sub int}, proportional to the radiative lifetime, with an increasing temperature has been observed.

  19. Electroluminescence from ZnO/Si heterojunctions fabricated by PLD with bias voltage application

    Energy Technology Data Exchange (ETDEWEB)

    Seno, Yuuki; Konno, Daisuke; Komiyama, Takao; Chonan, Yasunori; Yamaguchi, Hiroyuki; Aoyama, Takashi [Electronics and Information Systems, Akita Prefectural Univ. Yuri-honjo, Akita 015-0055 (Japan)

    2014-02-21

    Electroluminescence (EL) for ZnO films has been investigated by fabricating n-ZnO/p-Si heterojunctions and changing the VI/II (O/Zn) ratio of the films. In the photoluminescence (PL) spectra, both the near band edge (NBE) emission and the defect-related emission were observed, while in the EL spectra only defect-related emission was observed. The EL spectra were divided into three components: green (550 nm), yellow (618 nm) and red (700 nm) bands; and their intensities were compared. As the VI/II (O/Zn) ratio was increased, the red band emission intensity decreased and the green band emission intensity increased. This implies that the oxygen and the zinc vacancies are related to the red and the green band emissions, respectively. Electron transitions from the conduction band minimum (Ec) to the deep energy levels of these vacancies are suggested to cause the red and the green luminescences while the energy levels of the Zn interstitials are close to the Ec in the band gap and no NBE emission is observed.

  20. First proof of topological signature in high pressure xenon gas with electroluminescence amplification

    CERN Document Server

    Ferrario, P.; López-March, N.; Gómez-Cadenas, J.J.; Álvarez, V.; Azevedo, C.D.R.; Borges, F.I.G.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C.A.N.; Dafni, T.; Díaz, J.; Diesburg, M.; Esteve, R.; Fernandes, L.M.P.; Ferreira, A.L.; Freitas, E.D.C.; Gehman, V.M.; Goldschmidt, A.; González-Díaz, D.; Gutiérrez, R.M.; Hauptman, J.; Henriques, C.A.O.; Hernando Morata, J.A.; Irastorza, I.G.; Labarga, L.; Lebrun, P.; Liubarsky, I.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C.M.B.; Mora, F.J.; Moutinho, L.M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Novella, P.; Nygren, D.; Para, A.; Pérez, J.; Pérez Aparicio, J.L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F.P.; dos Santos, J.M.F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J.F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J.F.C.A.; Villar, J.A.; Webb, R.; White, J.T.; Yahlali, N.; Yepes-Ramírez, H.

    2016-01-01

    The NEXT experiment aims to observe the neutrinoless double beta decay of xenon in a high-pressure Xe136 gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qbb. This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype. Single electrons resulting from the interactions of Na22 1275 keV gammas and electron-positron pairs produced by conversions of gammas from the Th228 decay chain were used to represent the background and the signal in a double beta decay. These data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24.3 +- 1.4 (stat.)%, while maintaining an efficiency of 66.7 +- 0.6 (stat.)% for signal events.

  1. First proof of topological signature in high pressure xenon gas with electroluminescence amplification

    CERN Document Server

    Ferrario, P; López-March, N.; Gómez-Cadenas, J.J.; Álvarez, V.; Azevedo, C.D.R.; Borges, F.I.G.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C.A.N.; Dafni, T.; Díaz, J.; Diesburg, M.; Esteve, R.; Fernandes, L.M.P.; Ferreira, A.L.; Freitas, E.D.C.; Gehman, V.M.; Goldschmidt, A.; González-Díaz, D.; Gutiérrez, R.M.; Hauptman, J.; Henriques, C.A.O.; Hernando Morata, J.A.; Irastorza, I.G.; Labarga, L.; Lebrun, P.; Liubarsky, I.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C.M.B.; Mora, F.J.; Moutinho, L.M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Novella, P.; Nygren, D.; Para, A.; Pérez, J.; Pérez Aparicio, J.L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F.P.; dos Santos, J.M.F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J.F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J.F.C.A.; Villar, J.A.; Webb, R.; White, J.T.; Yahlali, N.; Yepes-Ramírez, H.

    2016-01-01

    The NEXT experiment aims to observe the neutrinoless double beta decay of xenon in a high-pressure Xe136 gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qbb. This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype. Single electrons resulting from the interactions of Na22 1275 keV gammas and electron-positron pairs produced by conversions of gammas from the Th228 decay chain were used to represent the background and the signal in a double beta decay. These data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24.3 +- 1.4 (stat.)%, while maintaining an efficiency of 66.7 +- 0.6 (stat.)% for signal events.

  2. Molecular-scale simulation of electroluminescence in a multilayer white organic light-emitting diode

    Science.gov (United States)

    Mesta, Murat; Carvelli, Marco; de Vries, Rein J.; van Eersel, Harm; van der Holst, Jeroen J. M.; Schober, Matthias; Furno, Mauro; Lüssem, Björn; Leo, Karl; Loebl, Peter; Coehoorn, Reinder; Bobbert, Peter A.

    2013-07-01

    In multilayer white organic light-emitting diodes the electronic processes in the various layers—injection and motion of charges as well as generation, diffusion and radiative decay of excitons—should be concerted such that efficient, stable and colour-balanced electroluminescence can occur. Here we show that it is feasible to carry out Monte Carlo simulations including all of these molecular-scale processes for a hybrid multilayer organic light-emitting diode combining red and green phosphorescent layers with a blue fluorescent layer. The simulated current density and emission profile are shown to agree well with experiment. The experimental emission profile was obtained with nanometre resolution from the measured angle- and polarization-dependent emission spectra. The simulations elucidate the crucial role of exciton transfer from green to red and the efficiency loss due to excitons generated in the interlayer between the green and blue layers. The perpendicular and lateral confinement of the exciton generation to regions of molecular-scale dimensions revealed by this study demonstrate the necessity of molecular-scale instead of conventional continuum simulation.

  3. Temperature and current dependent electroluminescence measurements on colour-coded multiple quantum well light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Bergbauer, Werner [OSRAM Opto Semiconductors GmbH, Regensburg (Germany); FH Deggendorf (Germany); Laubsch, Ansgar; Peter, Matthias; Mayer, Tobias; Bader, Stefan; Oberschmid, Raimund; Hahn, Berthold [OSRAM Opto Semiconductors GmbH, Regensburg (Germany); Benstetter, Guenther [FH Deggendorf (Germany)

    2008-07-01

    As the efficiency and the luminous flux have been increased enormously in the last few years, today Light Emitting Diodes (LEDs) are even pushed to applications like general lighting and Home Cinema Projection. Still, InGaN/GaN heterostructure based LEDs suffer from loss-mechanisms like non-radiative defect and Auger recombination, carrier leakage and piezo-field induced carrier separation. To optimize the high current efficiency we evaluated the benefit of Multiple Quantum Well (MQW) compared to Single Quantum Well (SQW) LEDs. Temperature dependent electroluminescence of colour-coded structures with different Indium content in certain Quantum Wells was measured. The experiments demonstrated a strong temperature and current dependence of the MQW operation. The comparison between different LED structures showed effectively the increased LED performance of those structures which operate with a well adjusted MQW active area. Due to the enhanced carrier distribution in the high current range, these LEDs show a higher light output and additionally a reduced wavelength shift.

  4. Room-temperature near-infrared electroluminescence from boron-diffused silicon pn junction diodes

    Directory of Open Access Journals (Sweden)

    Si eLi

    2015-02-01

    Full Text Available Silicon pn junction diodes with different doping concentrations were prepared by boron diffusion into Czochralski (CZ n-type silicon substrate. Their room-temperature near-infrared electroluminescence (EL was measured. In the EL spectra of the heavily boron doped diode, a luminescence peak at ~1.6 m (0.78 eV was observed besides the band-to-band line (~1.1eV under the condition of high current injection, while in that of the lightly boron doped diode only the band-to-band line was observed. The intensity of peak at 0.78 eV increases exponentially with current injection with no observable saturation at room temperature. Furthermore, no dislocations were found in the cross-sectional transmission electron microscopy image, and no dislocation-related luminescence was observed in the low-temperature photoluminescence spectra. We deduce the 0.78 eV emission originates from the irradiative recombination in the strain region of diodes caused by the diffusion of large number of boron atoms into silicon crystal lattice.

  5. Charicteristic of a novel optoelectronic polymer and related device fabrication

    Institute of Scientific and Technical Information of China (English)

    SUN Jian-yuan; HE Zhi-qun; HAN Xiao; WANG Bin; WANG Yong-sheng; LlU Ying-liang; CAO Shao-kui

    2007-01-01

    In this paper a preliminary investigation of a novel optoelectronic polymer, poly (p-phenylene N-4-n-butylphenyl-N,N-bis-4-vinylenephenylamine) (PNB), is reported. A single layer structure of ITO/PNB/Al was prepared via spin-coating of PNB solution as a thin film on the top of an ITO substrate, while aluminum top electrode was vacuum evaporated. Dark currentvoltage characteristics of this device showed a typical rectifying behaviour. Photovoltaic response under a monochromatic illumination at 420 nm was observed, with an open circuit voltage of 0.3 V and fill factor of 0.21. Spectral response and optical absorption were found to be matched well. It was also discovered that the device showed a green electroluminescent emission at a forward bias. Turn-on voltage of the device was about 6 V and light output about 22.6 nW at a forward bias of 10 V. The work demonstrated that the PNB material might possess dual exciton sites resulting in a competition for excitons to be either separated or recombined. Both effects were associated with each other, which limited the photovoltaic or electroluminescence to some degrees.

  6. Role of the inversion layer on the charge injection in silicon nanocrystal multilayered light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Tondini, S. [Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento (Italy); Dipartimento di Fisica, Informatica e Matematica, Università di Modena e Reggio Emilia, Via Campi 213/a, 41125 Modena (Italy); Pucker, G. [Advanced Photonics and Photovoltaics Group, Bruno Kessler Foundation, Via Sommarive 18, 38123 Trento (Italy); Pavesi, L. [Nanoscience Laboratory, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento (Italy)

    2016-09-07

    The role of the inversion layer on injection and recombination phenomena in light emitting diodes (LEDs) is here studied on a multilayer (ML) structure of silicon nanocrystals (Si-NCs) embedded in SiO{sub 2}. Two Si-NC LEDs, which are similar for the active material but different in the fabrication process, elucidate the role of the non-radiative recombination rates at the ML/substrate interface. By studying current- and capacitance-voltage characteristics as well as electroluminescence spectra and time-resolved electroluminescence under pulsed and alternating bias pumping scheme in both the devices, we are able to ascribe the different experimental results to an efficient or inefficient minority carrier (electron) supply by the p-type substrate in the metal oxide semiconductor LEDs.

  7. Synthesis and electroluminescent properties of blue fluorescent materials based on 9,9-diethyl-N,N-diphenyl-9 H-fluoren-2-amine substituted anthracene derivatives for organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seul Bee; Kim, Chanwoo; Park, Soo Na; Kim, Young Seok [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Lee, Ho Won [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)

    2015-11-30

    Four 9,9-diethyl-N,N-diphenyl-9 H-fluoren-2-amine substituted anthracene derivatives have been designed and synthesized by Suzuki cross coupling reactions. To explore the electroluminescent properties of these blue materials, multilayer blue organic light-emitting diodes were fabricated in the following device structure: indium tin oxide (180 nm)/N,N’-diphenyl-N,N’-(1-napthyl)-(1,1′-phenyl)-4,4′-diamine (50 nm)/blue emitting materials (1–4) (30 nm)/bathophenanthroline (30 nm)/lithium quinolate (2 nm)/Al (100 nm). All devices appeared excellent deep-blue emissions. Among them, a device exhibited a maximum luminance of 5686 cd/m{sup 2}, the luminous, power and external quantum efficiencies of 5.11 cd/A, 3.79 lm/W, and 4.06% with the Commission International de L'Eclairage coordinates of (0.15, 0.15) at 500 cd/m{sup 2}, respectively. - Highlights: • We synthesized blue fluorescent materials based on anthracene derivatives. • The EL efficiencies of these materials depend on the quantum yields in solid states. • These materials have great potential for applications as blue emitter in OLEDs.

  8. Enhanced DC-operated electroluminescence of forwardly aligned p/MQW/n InGaN nanorod LEDs via DC offset-AC dielectrophoresis.

    Science.gov (United States)

    Eo, Yun Jae; Yoo, Gang Yeol; Kang, Hyelim; Lee, Youngki; Kim, Chan Sik; Oh, Ji Hye; Lee, Keyong Nam; Kim, Woong; Do, Young Rag

    2017-10-11

    We introduce orientation-controlled alignment process of p-GaN/InGaN multi quantum-well/n-GaN (p/MQW/n InGaN) nanorod light-emitting diodes (LEDs) by applying direct-current (DC) offset alternating-current (AC) or pulsed DC electric fields across interdigitated metal electrodes. The as-forwardly aligned p/MQW/n InGaN nanorod LEDs by a pulsed DC dielectrophoresis (DEP) assembly process improve the electroluminescence (EL) intensities by 1.8 times compared to the conventional AC DEP assembly process under DC electric field operation and exhibit an enhanced applied current and EL brightness in the current-voltage and EL intensity-voltage curves that can be directly used as fundamental data to construct DC-operated nanorod LED devices, such as LED areal surface lightings, scalable lightings (micrometers to inches) and formable surface lightings. The enhancement of the applied current, the improved EL intensity, and the increased number of forwardly aligned p/MQW/n InGaN nanorods in panchromatic cathodoluminescence (CL) images confirm the considerable enhancement of forwardly aligned 1D nanorod LEDs between two opposite electrodes using DC offset-AC or a pulsed DC electric field DEP assembly process. These DC offset-AC or pulsed DC electric field DEP assembly process suggests that designing for these types of interactions could yield new ways to control the orientation of asymmetric p/MQW/n InGaN diode-type LED nanorods with a relatively low aspect ratio.

  9. Photo- and electroluminescent properties of zinc(II) complexes with tetradentate Schiff bases, derivatives of salicylic aldehyde

    Science.gov (United States)

    Vashchenko, A. A.; Lepnev, L. S.; Vitukhnovskii, A. G.; Kotova, O. V.; Eliseeva, S. V.; Kuz'mina, N. P.

    2010-03-01

    It is studied how the introduction of various substituents into the composition of organic ligands affects the photoluminescence spectra of new zinc(II) complexes with tetradentate Schiff bases H2L (derivatives of salicylic aldehyde (H2SAL1, H2SAL2) and o-vanillin (H2MO1, H2MO2) with ethylenediamine and o-phenylenediamine) in the form of bulk solids and thin films. It is demonstrated that the emission spectra of bulk solid complexes without o-phenylenediamine bridges (ZnSAL1 and ZnMO1) contain additional long-wavelength bands compared to the spectra of corresponding thin films. In the case of films obtained from [ZnSAL1]2 dimer complexes, the long-wavelength band is dominant. At the same time, the photoluminescence spectra of ZnSAL2 and ZnMO2 complexes with o-phenylenediamine bridges are similar in the case of solid samples and thin films. The electroluminescent properties of organic light-emitting diodes (OLEDs) with the ITO/α-NPD/ZnL/Ca:Al structure are studied. The bathochromic shift of the electroluminescence peaks of OLEDs with respect to the photoluminescence spectra of bulk solid samples and thin films is probably related to the formation of exciplexes at the α-NPD/ZnL interface. The electroluminescence spectra of OLEDs based on [ZnSAL1]2 show a hypsochromic shift of the emission maximum, which can be caused by a shift of the recombination region into the α-NPD layer.

  10. Synthesis and light-emitting properties of organic electroluminescent compounds and their metal complexes

    Institute of Scientific and Technical Information of China (English)

    CUI Jianzhong; Kim Sung-Hoon

    2004-01-01

    Several organic electroluminescent (EL) compounds, 2,2′-(1,4-phenylenedivinylene)bis-3,3-dimethyl-in- dolenine (1), 2,2′-(1,4-phenylenedivinylene)bis-benzoxazole (2), 2,2′-(1,4-phenylenedivinylene)bis-benzothiazole (3), 4,4′- (1,4-phenylenedivinylene)bis-quinoline (4), 2,2′-(1,4-phenyle- nedivinylene)bis-quinoline (5), 2,2′-(1,4-phenylenedivinyle- ne)bis-1,3,3-trimethyl-indolenine dichlo ride (6), 2,2′-(1,4- phenylene-divinylene)bis-1-hydro-3,3-dimethyl-indolenine dichloride (7), 2,2′-(1,4-phenylenedivinylene)bis-8-acetoxy- quinoline (8), 2,2′-(1,4-phenylenedivinylene)bis-8-hydroxyq- uinoline (9) and metal complexes of 9, Al(PHQ) (10) and Zn(PHQ) (11), have been synthesized and characterized. The crystal structure of 6 was determined. Light emitting properties of the prepared compounds have been investigated. 1 produces an orange-yellow emission (λmax = 575 nm). The cation, 6, gives a red emission (λmax = 607 nm), which is shifted 32 nm to the red compared to 1. 8 produces a yellow emission (λmax = 567 nm). The metal complex 10 gives a red emission (λmax = 610 nm), which is a red shift of 43 nm compared to 8. The change in structure in the prepared compound caused a change in the electron distribution in the compounds, which induces a large wavelength shift of the emitted-light. Thermal analysis showed that the decomposition temperatures of the metal complexes (10, 11) were higher than those for the smaller organic molecular compounds (1-9). Therefore, metal complexes (10, 11) can be used as EL materials over a larger temperature range.

  11. A comparative study of electroluminescence from Ge/SiO2 and Si/SiO2 films

    Institute of Scientific and Technical Information of China (English)

    Ma Shu-Yi; Chen Hui; Xiao Yong; Ma Zi-Jun; Sun Ai-Min

    2004-01-01

    Ge/SiO2 and Si/SiO2 films were deposited using the two-target alternation magnetron sputtering technique. The Au/Ge/SiO2/p-Si and Au/Si/SiO2/p-Si structures were fabricated and their electroluminescence (EL) characteristics were comparatively studied. Both Au/Ge/SiO2/p-Si and Au/Si/SiO2/p-Si structures have rectifying property. All the EL spectra from the two types of the structure have peak positions around 650-660 nm. The EL mechanisms of the structures are discussed.

  12. SYNTHESIS OF POLY(2,5-DIPHENYL-1,3,4-THIADIAZOLYL)-4,4'-VINYLENE AND ITS ELECTROLUMINESCENT PERFORMANCE

    Institute of Scientific and Technical Information of China (English)

    Shou-gen Yin; Zheng Xu; Yan-bing Hou; Yong-sheng Wang; Xu-rong Xu; Wen-qiang Huang; Fu-qiang Zhang

    1999-01-01

    The synthesis, characterization and electroluminescence performance of a new type of conjugated polymer, poly(2,5-diphenyl-1,3,4-thiadiazolyl)-4,4'-vinylene (TPPV) are presented. A light-emitting diode consisted of ITO/TPPV/Al is driven at about 4.0 V and has a peak emission wavelength of 485 nm. This blue-shift of the peak is due to the decrease of conjugate degree of TPPV compared to PPV. This result is in accord with that determined by XPS and theoretical model of MNDO/3

  13. The Electroluminescence Characterization of Poly(p-phenyleneethynylene)——The π-conjugated Backbone Interrupted by a Butylene Unit

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    π-Conjugated poly(p-phenyleneethynylene) with the interruption of the conjugation by a butylene unit was synthesized. Its absorption, PL and EL spectra were investigated respectively. The spectral peaks shifted to the higher energy side with the interruption of the conjugation lengths. The model compound was synthesized, by which the results were proved. The thermal characteristics of the polymer was determined by DSC and TGA, indicating that the polymer has a good thermal stability. The electroluminescence(EL) in the green region of the spectrum with a maximum at 500 nm was observed from the polymer films sandwiched between indium-tin-oxide and an Al electrode.

  14. Organic light emitting devices synthesis, properties and applications

    CERN Document Server

    Müllen, Klaus; Mllen, Klaus; Mü Llen, Klaus; Mullen, Klaus

    2006-01-01

    This high-class book reflects a decade of intense research, culminating in excellent successes over the last few years. The contributions from both academia as well as the industry leaders combine the fundamentals and latest research results with application know-how and examples of functioning displays. As a result, all the four important aspects of OLEDs are covered: - syntheses of the organic materials - physical theory of electroluminescence and device efficiency - device conception and construction - characterization of both materials and devices. The whole is naturally rounded off with a look at what the future holds in store. The editor, Klaus Muellen, is director of the highly prestigious MPI for polymer research in Mainz, Germany, while the authors include Nobel Laureate Alan Heeger, one of the most notable founders of the field, Richard Friend, as well as Ching Tang, Eastman Kodak's number-one OLED researcher, known throughout the entire community for his key publications.

  15. Study on Microcavity Organic Light-emitting Devices Containing Negative Refractive Index Dielectric Layer

    Institute of Scientific and Technical Information of China (English)

    CAI Hong-xin; LI Li-xin

    2009-01-01

    A new structure containing negative refractive index dielectric layer(NRIDL) is introduced into microcavity.The properties of the new microcavity organic light-emitting devices(MOLEDs) are investigated.In the experiment,the transfer matrix method is adopted.The dependence of reflectance and transmittance on the refractive index and thickness of NRIDL are analyzed in detail.Compared with the electroluminescence spectra of non-NRIDL diodes,the line widths of the spectra of the MOLEDs are narrower and all the peaks enhance.The results show that the new structure is beneficial to improve the performance and reduce the thickness of microcavity devices.

  16. The Electric and Optical Properties of Doped Small Molecular Organic Light-Emitting Devices

    CERN Document Server

    Kwang Ohk Cheo

    2003-01-01

    Organic light-emitting devices (OLEDs) constitute a new and exciting emissive display technology. In general, the basic OLED structure consists of a stack of fluorescent organic layers sandwiched between a transparent conducting-anode and metallic cathode. When an appropriate bias is applied to the device, holes are injected from the anode and electrons from the cathode; some of the recombination events between the holes and electrons result in electroluminescence (EL). Until now, most of the efforts in developing OLEDs have focused on display applications, hence on devices within the visible range. However some organic devices have been developed for ultraviolet or infrared emission. Various aspects of the device physics of doped small molecular OLEDs were described and discussed. The doping layer thickness and concentration were varied systematically to study their effects on device performances, energy transfer, and turn-off dynamics. Low-energy-gap DCM2 guest molecules, in either alpha-NPD or DPVBi host l...

  17. Electrical Properties and Electroluminescence of 4H-SiC p-n Junction Diodes

    Institute of Scientific and Technical Information of China (English)

    Sun Guosheng; Zhang Yongxing; Gao Xin; Wang Lei; Zhao Wanshun; Zeng Yiping; Li Jinmin

    2004-01-01

    Homoepitaxial growth of 4H-SiC on off-oriented Si-face(0001 ) substrates was performed by using the step-controlled epitaxy technique in a newly developed low-pressure hot-wall CVD (LP-HWCVD) system with a horizontal aircooled quartz tube at around 1500 ℃and 1.33 × 104 Pa by employing SiH4 + C2H4 + H2. In-situ doping during growth was carried out by adding NH3 gas into the precursor gases. It was shown that the maximum Hall mobility of the undoped 4H-SiC epilayers at room temperature is about 430 cm2 ·V -1 ·s -1 with a carrier concentration of ~ 1016 cm-3 and the highest carrier concentration of the N-doped 4H-SiC epilayer obtained at NH3 flow rate of 3 sccm is about 2.7 × 1021 cm-3 with a mobility of 0.75 cm2 ·V -1 ·S -1. SiC p-n junctions were obtained by epitaxially growing N-doped 4H-SiC epilayers on Aldoped 4H-SiC substrates. The C-V characteristics of the diodes were linear in the 1/C3-V coordinates indicating that the obtained p-n junctions were graded with a built-in voltage of 2.7 eV. The room temperature electroluminescence spectra of 4H-SiC p-n junctions are studied as a function of forward current. The D-A pair recombination due to nitrogen donors and the unintentional, deep boron center is dominant at low forward bias, while the D-A pair recombination due to nitrogen donors and aluminum acceptors are dominant at higher forward biases. The p-n junctions could operate at temperature of up to 400 ℃, which provides a potential for high-temperature applications.

  18. Near-Intrinsic Energy Resolution for 30 to 662 keV Gamma Rays in a High Pressure Xenon Electroluminescent TPC

    CERN Document Server

    Álvarez, V; Cárcel, S; Castel, J; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Dias, T H V T; Díaz, J; Egorov, M; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gehman, V M; Gil, A; Goldschmidt, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Iguaz, F J; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Martínez, A; Miller, T; Moiseenko, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot, M; Nygren, D; Oliveira, C A B; Palma, R; Pérez, J; Aparicio, J L Pérez; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Segui, L; Serra, L; Shuman, D; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Vázquez, D; Veloso, J F C A; Villar, J A; Webb, R; White, J T; Yahlali, N

    2012-01-01

    We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 $^{136}$Xe neutrino-less double beta decay ($0\

  19. Efficient light-emitting devices based on platinum-complexes-anchored polyhedral oligomeric silsesquioxane materials

    KAUST Repository

    Yang, Xiaohui

    2010-08-24

    The synthesis, photophysical, and electrochemical characterization of macromolecules, consisting of an emissive platinum complex and carbazole moieties covalently attached to a polyhedral oligomeric silsesquioxane (POSS) core, is reported. Organic light-emitting devices based on these POSS materials exhibit a peak external quantum efficiency of ca. 8%, which is significantly higher than that of the analogous devices with a physical blend of the platinum complexes and a polymer matrix, and they represent noticeable improvement in the device efficiency of solution-processable phosphorescent excimer devices. Furthermore, the ratio of monomer and excimer/aggregate electroluminescent emission intensity, as well as the device efficiency, increases as the platinum complex moiety presence on the POSS macromolecules decreases. © 2010 American Chemical Society.

  20. Luminescent Enhancement of Heterostructure Organic Light-Emitting Devices Based on Aluminum Quinolines

    Institute of Scientific and Technical Information of China (English)

    Jun-Sheng Yu; Lu Li; Ya-Dong Jiang; Xing-Qiao Ji; Tao Wang

    2007-01-01

    High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenyl-phenolato)aluminum(BAlq) as an emissive layer on the performance of multicolor devices consisting of N, N'-bis-(1-naphthyl)-N,N'diphenyI-l,l'-biphenyI-4,4'-diamine (NPB) as hole transport layer. The results show that the performance of heterostructure blue light-emitting device composed of 8-hydroxyquinoline aluminum (Alq3) as an electron transport layer has been dramatically enhanced. In the case of high performance heterostructure devices, the electroluminescent spectra has been perceived to vary strongly with the thickness of the organic layers due to the different recombination region, which indicates that various color devices composed of identical components could be implemented by changing the film thickness of different functional layers.

  1. Insertion devices

    CERN Document Server

    Bahrdt, J

    2006-01-01

    The interaction of an insertion device with the electron beam in a storage ring is discussed. The radiation property including brightness, ux and polarization of an ideal and real planar and helical / elliptical device is described. The magnet design of planar, helical, quasiperiodic devices and of devices with a reduced on axis power density are resumed.

  2. Effect of gold nanorods and nanocubes on electroluminescent performances in organic light-emitting diodes and its working mechanism

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2015-06-01

    Full Text Available In this manuscript we investigated the influence of Au nanoparticles on electrical and electroluminescent (EL performances in organic light-emitting diodes (OLEDs via doping as-synthesized Au nanorods (NRs or nanocubes (NCs into hole transport layer (HTL. Through accurately controlling the distance between the Au NRs and the emitting layer, altering the guest emitter’s lifetime, and replacing Au NRs with Au NCs to satisfy a better spectrum overlap with the emission guest, we got a conclusion that doping Au NRs or NCs into HTL has no significant influence on the device’s electrical and EL performances, although we observed an increase in the spontaneous emission rate in a fluorescent material by the exciton-surface plasmon-coupling. Our results suggest that a further research on emission mechanism in surface plasmon-enhanced OLEDs is still in process.

  3. Design and Synthesis of a Highly Stable Six-hydrogen-bonded Self-assembly Yellowish Green Electroluminescent Molecular Duplex

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper describes the design, synthesis and characterization of a hydrogen-bonded molecular duplex with 1,8-naphthalimide fluorescent pendants. The two oligoamide molecular strands, with complementary hydrogen bond sequences of DDADAA and AADADD, caa form an ultra stable self-assembly duplex. Its molecular structure was confirmed by 1H NMR and ESI-MS, and its photoluminescence properties were determined. The resulting duplex exhibited a dramatically enhanced photoluminescence (PL) quantum efficiency of 63.7% compared to the corresponding 1,8-naphthalimide segment (32.4%), suggesting that the formation of the duplex with larger molecular weight could successfully inhibit the quenching of the fluorescent pendant.This novel duplex is a prospective candidate for new electroluminescent emitter.

  4. Spectral and Electroluminescent Properties of Binuclear Zinc Complexes with Halogen-Substituted Derivatives of 1,2,4-Triazole

    Science.gov (United States)

    Kopylova, T. N.; Degtyarenko, K. M.; Samsonova, L. G.; Gadirov, R. M.; Gusev, A. N.; Shul'gin, V. F.; Meshkova, S. B.

    2015-03-01

    Spectral properties of binuclear zinc complexes in chloroform solutions and polyvinylcarbazole (PVC) films are investigated. It is demonstrated that incorporation of a halogen atom (chlorine or bromine) in a ligand benzene ring leads to a small shift of the spectrum toward the red region and a reduction of the fluorescence quantum yield. The fluorescence and phosphorescence spectra at T = 77K are investigated. The fluorescence undergoes a blue shift of about 30 nm and multiply increases in the intensity, and the phosphorescence is observed at 540-580 nm. The phosphorescence lifetime is estimated. The electroluminescent properties of metal complexes in structures with thermal vacuum spin coating of complexes and in PVC films are investigated.

  5. Blue to red electroluminescence emission from organic light-emitting diodes based on π-conjugated organic semiconductor materials

    Science.gov (United States)

    Sharbati, Mohammad Taghi; Panahi, Farhad; Nekoei, Abdo-Reza; Emami, Farzin; Niknam, Khodabakhsh

    2014-01-01

    Blue to red organic light-emitting diodes based on a series of newly synthesized distyrylbenzenes have been demonstrated. Their optical properties have been theoretically and experimentally studied in order to inquire into the substitution effects (such as electron-donating, electron-withdrawing, and steric hindrance) on the emission color. Density functional theory at B3LYP/6-311+G(d) level of calculation was employed to obtain the molecular structures and highest occupied molecular orbital and lowest unoccupied molecular orbital surfaces. Electroluminescence emission range of compounds could be tuned by changing the strength of the acceptor component and using push-pull and nonplanarity effects from 483 (blue) to 600 (red) nm.

  6. PHOTO- AND ELECTRO-LUMINESCENCE FROM HYDROGENATED AMORPHOUS SILICON CARBIDE FILMS PREPARED BY USING ORGANIC CARBON SOURCE

    Institute of Scientific and Technical Information of China (English)

    Xu Jun; Ma Tian-fu; Li Wei; Chen Kun-ji; Li Zhi-feng; Lu Wei

    2000-01-01

    Hydrogenated amorphous silicon carbide (a-SiC:H) films were grown byusing an organic source, xylene (C8H{10), instead of methane(CH4) in a conventional plasma enhanced chemical vapor depositionsystem. The optical band gap of these samples was increased gradually bychanging the gas ratio of C8H10 to SiH4. The film with highoptical band gap was soft and polymer-like and intense photoluminescencewere obtained. Room temperature electro-luminescence was also achievedwith peak energy at 2.05 eV (600 nm) for the a-SiC:H film withoptical band gap of 3.2 eV.1.8mm

  7. Theoretical Investigation on the Electron and Energy Transfer between Peripheral Carrier Transport Groups and Central Chromophores in Electroluminescent Materials

    Institute of Scientific and Technical Information of China (English)

    潘玉钰; 刘丹丹; 许海; 刘晓冬; 孙冠楠; 杨兵; 马於光

    2012-01-01

    The molecular materials with structures of luminescent core and peripheral carrier groups (e.g. carbazoles), have exhibited high-performance in organic light-emitting diodes (OLEDs). Present work is to understand the basic process of electronic and energy exchange between the peripheral functional groups and the central core through quantum chemical analysis. As an example, 4,7-bis(9,9-bis(6-(9H-carbazol-9-yl)hexyl)-9H-fluoren-2-yl)benzo[c]- [1,2,5]thiadiazole (TCBzC) is investigated in regards to optoelectronic properties using density functional theory (DFT). The results suggest that the forbidden transition from peripheral carbazole to the central chromophore core makes for separated electrical and optical properties, and high performance electroluminescence (EL) is mainly at- tributed to the energy-transfer from carbazoles to the fluorene derivative core.

  8. Effect of the substituents on the photophysical, electrochemical and electroluminescence properties of OLED dopant Iridium bis(2-phenylbenzothiozolato- N,C2')(acetylacetonate)

    Science.gov (United States)

    Ivanov, P.; Tomova, R.; Petrova, P.

    2014-12-01

    The effect of two substituents: clorine and 1,3-diphenylpropane-1,3-dionate, placed on different position in the molecule of Iridium (III) bis(2-phenylbenzothiozolato-N,C2')- (acetylacetonate) (bt)2Ir(acac), on its electrochemical behaviour, photophysical and electroluminescence properties were investigated. Three complexes (bt)2Ir(acac), Iridium (III) bis[2-(4-chlorophenyl)benzothiazolato-N,C2']-acetylacetonate (Clbt)2Ir(acac), in which the Cl atom was introduced on the 4-position in the benzothiazole ring, and the new Iridium (Ill) bis[2 -phenylbenzothiazolato -N,C2'] -(1,3 -diphenylpropane-1,3 -dionate) (bt)2Ir(dbm), where ancillary acetylacetonate ligand was replaced by 1,3-diphenylpropane-1,3-dionate, were synthesized and characterised by 1H-NMR and elemental analysis. The HOMO/LUMO energy levels of the complexes were determined by cyclic voltammetry (CV) and their properties were established by UV-Visible and fluorescence spectroscopy. The application of (Clbt)2Ir(acac), (bt)2Ir(bsm) and (bt)2Ir(acac) as dopants in hole transporting layer (HTL) of Organic light- emitting diodes(OLEDs). It was found that with respect to the reference (bt)2Ir(acac): both LUMO and HOMO of the substituted complexes were shifted to more positive values accordingly with 0.23 and 0.19 eV for (Clbt)2Ir(acac) and 0.14 and 0.12 eV for (bt)2Ir(dbm). OLEDs doped with 1 w% of the complexes irradiated the warm white light with Commission internationale de l'eclairage (CIE) coordinates: 0.24;0.38 for (Clbt)2Ir(acac), 0.30;0.44 for (bt)2Ir(acac) and 0.28;0.46 for (bt)2Ir(dbm). Devices doped with 10 w% of all complexes irradiated in the yellow orange region of the spectrum.

  9. Enhanced ultraviolet electroluminescence and spectral narrowing from ZnO quantum dots/GaN heterojunction diodes by using high-k HfO{sub 2} electron blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Xiaoming; Long, Hao; Wang, Haoning; Chen, Zhao; Wan, Jiawei; Liu, Yuping; Fang, Guojia, E-mail: gjfang@whu.edu.cn [Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Li, Songzhan [Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430073 (China); Feng, Yamin [Department of Physics, Institute of Nanoscience and Nanotechnology, Central China Normal University, Wuhan 430079 (China); Ouyang, Yifang [College of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004 (China)

    2014-08-11

    We demonstrated the capability of realizing enhanced ZnO-related UV emissions by using the low-cost and solution-processable ZnO quantum dots (QDs) with the help of a high-k HfO{sub 2} electron blocking layer (EBL) for the ZnO QDs/p-GaN light-emitting diodes (LEDs). Full-width at half maximum of the LED devices was greatly decreased from ∼110 to ∼54 nm, and recombinations related to nonradiative centers were significantly suppressed with inserting HfO{sub 2} EBL. The electroluminescence of the ZnO QDs/HfO{sub 2}/p-GaN LEDs demonstrated an interesting spectral narrowing effect with increasing HfO{sub 2} thickness. The Gaussian fitting revealed that the great enhancement of the Zn{sub i}-related emission at ∼414 nm whereas the deep suppression of the interfacial recombination at ∼477 nm should be the main reason for the spectral narrowing effect.

  10. Advanced Semiconductor Devices

    Science.gov (United States)

    Shur, Michael S.; Maki, Paul A.; Kolodzey, James

    2007-06-01

    I. Wide band gap devices. Wide-Bandgap Semiconductor devices for automotive applications / M. Sugimoto ... [et al.]. A GaN on SiC HFET device technology for wireless infrastructure applications / B. Green ... [et al.]. Drift velocity limitation in GaN HEMT channels / A. Matulionis. Simulations of field-plated and recessed gate gallium nitride-based heterojunction field-effect transistors / V. O. Turin, M. S. Shur and D. B. Veksler. Low temperature electroluminescence of green and deep green GaInN/GaN light emitting diodes / Y. Li ... [et al.]. Spatial spectral analysis in high brightness GaInN/GaN light emitting diodes / T. Detchprohm ... [et al.]. Self-induced surface texturing of Al2O3 by means of inductively coupled plasma reactive ion etching in Cl2 chemistry / P. Batoni ... [et al.]. Field and termionic field transport in aluminium gallium arsenide heterojunction barriers / D. V. Morgan and A. Porch. Electrical characteristics and carrier lifetime measurements in high voltage 4H-SiC PiN diodes / P. A. Losee ... [et al.]. Geometry and short channel effects on enhancement-mode n-Channel GaN MOSFETs on p and n- GaN/sapphire substrates / W. Huang, T. Khan and T. P. Chow. 4H-SiC Vertical RESURF Schottky Rectifiers and MOSFETs / Y. Wang, P. A. Losee and T. P. Chow. Present status and future Directions of SiGe HBT technology / M. H. Khater ... [et al.]Optical properties of GaInN/GaN multi-quantum Wells structure and light emitting diode grown by metalorganic chemical vapor phase epitaxy / J. Senawiratne ... [et al.]. Electrical comparison of Ta/Ti/Al/Mo/Au and Ti/Al/Mo/Au Ohmic contacts on undoped GaN HEMTs structure with AlN interlayer / Y. Sun and L. F. Eastman. Above 2 A/mm drain current density of GaN HEMTs grown on sapphire / F. Medjdoub ... [et al.]. Focused thermal beam direct patterning on InGaN during molecular beam epitaxy / X. Chen, W. J. Schaff and L. F. Eastman -- II. Terahertz and millimeter wave devices. Temperature-dependent microwave performance of

  11. Photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  12. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  13. Concentration device

    DEFF Research Database (Denmark)

    2013-01-01

    A concentration device (2) for filter filtration concentration of particles (4) from a volume of a fluid (6). The concentration device (2) comprises a filter (8) configured to filter particles (4) of a predefined size in the volume of the fluid (6). The concentration device (2) comprises...

  14. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  15. Organic Light-Emitting Devices with a LiF Hole Blocking Layer

    Institute of Scientific and Technical Information of China (English)

    LIAN Jia-Rong; YUAN Yong-Bo; ZHOU Xiang

    2007-01-01

    We introduce a thin LiF layer into tris-8-hydroxyquinoline aluminium (Alq3) based bilayer organic light-emittingdevices to block hole transport. By varying the thickness and position of this LiF layer in Alq3, we obtain an electroluminescent efficiency increase by a factor of two with respect to the control devices without a LiF blocking layer. By using a 10nm dye doped Alq3 sensor layer, we prove that LiF can block holes and excitons effectively.Experimental results suggest that the thin LiF layer may be a good hole and exciton blocking layer.

  16. Calcium chloride electron injection/extraction layers in organic electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Bo, E-mail: bqu@pku.edu.cn, E-mail: qhgong@pku.edu.cn; Gao, Zhi; Yang, Hongsheng; Xiao, Lixin; Chen, Zhijian; Gong, Qihuang, E-mail: bqu@pku.edu.cn, E-mail: qhgong@pku.edu.cn [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)

    2014-01-27

    Nontoxic calcium chloride (CaCl{sub 2}) was introduced into organic electronic devices as cathode buffer layer (CBL). The turn-on voltage and maximum luminance of organic light-emitting diode (OLED) with 1.5 nm CaCl{sub 2} was 3.5 V and 21 960 cd/m{sup 2}, respectively. OLED with 1.5 nm CaCl{sub 2} possessed comparable electroluminescent characteristics to that of the commonly used LiF. Moreover, the performance of the organic photovoltaic device with 0.5 nm CaCl{sub 2} was comparable to that of the control device with LiF. Therefore, CaCl{sub 2} has the potential to be used as the CBL for organic electronic devices.

  17. Smart materials: strain sensing and stress determination by means of nanotube sensing systems, composites, and devices

    Science.gov (United States)

    Barrera, Enrique V. (Inventor); Nagarajaiah, Satish (Inventor); Dharap, Prasad (Inventor); Zhiling, Li (Inventor); Kim, Jong Dae (Inventor)

    2010-01-01

    The present invention is directed toward devices comprising carbon nanotubes that are capable of detecting displacement, impact, stress, and/or strain in materials, methods of making such devices, methods for sensing/detecting/monitoring displacement, impact, stress, and/or strain via carbon nanotubes, and various applications for such methods and devices. The devices and methods of the present invention all rely on mechanically-induced electronic perturbations within the carbon nanotubes to detect and quantify such stress/strain. Such detection and quantification can rely on techniques which include, but are not limited to, electrical conductivity/conductance and/or resistivity/resistance detection/measurements, thermal conductivity detection/measurements, electroluminescence detection/measurements, photoluminescence detection/measurements, and combinations thereof. All such techniques rely on an understanding of how such properties change in response to mechanical stress and/or strain.

  18. TUNING OF PHOTOLUMINESCENCE AND ELECTROLUMINESCENCE IN ALKYLATED POLYTHIOPHENES WITH WELL-DEFINED REGIOREGULARITY

    NARCIS (Netherlands)

    GILL, RE; MALLIARAS, GG; WILDEMAN, J; HADZIIOANNOU, G

    1994-01-01

    Color tuning of luminescence via molecular engineering of the Active polymer is important for the commercial application of pi-conjugated polymers in photonic devices. The synthesis of a series of regiospecific alkylated polythiophenes is described. in which the effective conjugation length could be

  19. Circularly polarized electroluminescence of light-emitting InGaAs/GaAs (III, Mn)V diodes on the basis of structures with a tunneling barrier

    Energy Technology Data Exchange (ETDEWEB)

    Malysheva, E. I., E-mail: malysheva@phys.unn.ru; Dorokhin, M. V.; Ved’, M. V.; Kudrin, A. V.; Zdoroveishchev, A. V. [Lobachevsky State University of Nizhny Novgorod (Russian Federation)

    2015-11-15

    The comparative investigation of circularly polarized electroluminescence in Zener diodes based on InGaAs/n-GaAs/n{sup +}-GaAs/GaMnAs and InGaAs/n-GaAs/n{sup +}-GaAs/GaMnSb is carried out. It is established that the circularly polarized electroluminescence is associated with the spin injection of electrons from a ferromagnetic semiconductor layer. The luminescence parameters are determined by the properties of these layers. It is shown that the ferromagnetic properties of the GaMnSb layer allow us to obtain circularly polarized emission at room temperature from InGaAs/n-GaAs/n{sup +}-GaAs/GaMnSb heterostructures.

  20. Electroluminescence imaging of Morgan Solar Inc.'s 4th generation CPV technology for in-line quality control and optical efficiency estimation

    Science.gov (United States)

    Sinclair, Michael; Dufour, Pascal; Drew, Kristine; Myrskog, Stefan; Morgan, John Paul

    2014-10-01

    An electroluminescence test for a Concentrated PV system is presented with the objective of capturing high resolution pseudo-efficiency maps that highlight optical defects in the concentrator system. Key parameters of the experimental setup and imaging system are presented. Image processing is discussed, including comparison of experimental to nominal results and the quantitative estimation of optical efficiency. Efficiency estimates are validated using measurements under a collimated solar simulator and ray-tracing software. Further validation is performed by comparison of the electroluminescence technique to direct mapping of the optical efficiency. Initial results indicate the mean estimation error for Isc is -2.4% with a standard deviation is 6.9% and a combined measurement and analysis time of less than 5 seconds per optic. An extension of this approach to in-line quality control is discussed.

  1. Carrier recombination spatial transfer by reduced potential barrier causes blue/red switchable luminescence in C8 carbon quantum dots/organic hybrid light-emitting devices

    Directory of Open Access Journals (Sweden)

    Xifang Chen

    2016-04-01

    Full Text Available The underlying mechanism behind the blue/red color-switchable luminescence in the C8 carbon quantum dots (CQDs/organic hybrid light-emitting devices (LEDs is investigated. The study shows that the increasing bias alters the energy-level spatial distribution and reduces the carrier potential barrier at the CQDs/organic layer interface, resulting in transition of the carrier transport mechanism from quantum tunneling to direct injection. This causes spatial shift of carrier recombination from the organic layer to the CQDs layer with resultant transition of electroluminescence from blue to red. By contrast, the pure CQDs-based LED exhibits green–red electroluminescence stemming from recombination of injected carriers in the CQDs.

  2. Electroluminescence in Potassium Iodide Single Crystals Containing Potassium Metal Colloids (VII) -Theory of the Frequency Dependence of the Threshold a.c. Electric Field-

    OpenAIRE

    HAGIHARA, Takeshi; HAYASHIUCHI, Yoshihiro

    1996-01-01

    Electroluminescence(EL) in colored KI single crystals containing potassium metal colloids has been studied theoretically to understand the characteristics of the EL. A simple rate equation is introduced to describe the dynamical change in numbers of both luminescence centers and conduction electrons produced from the potassium metal colloids by external high a.c. electric field excitation. The present model explains well the EL experimental results reported previously, e.g., the frequency dep...

  3. 微波辅助溶胶-凝胶法合成红色发光材料NaLa(MoO4)2∶Eu3+及其发光性能研究%Synthesis and Luminescent Properties of Red-emitting Phosphors NaLa (MoO4)2∶Eu3 + by Microwave-assisted Sol-gel Method

    Institute of Scientific and Technical Information of China (English)

    翟永清; 马健; 胡志春; 赵佳佳; 崔瑶轩; 宋珊珊

    2013-01-01

    以柠檬酸为络合剂,采用微波辅助溶胶-凝胶法制备了红色荧光粉NaLa(MoO4)2∶Eu3+,运用热重-差热分析仪、红外光谱、X射线粉末衍射仪、扫描电子显微镜和荧光分光光度计等对样品进行了分析和表征.结果表明:前驱体经700 ~900℃焙烧均能得到目标产物NaLa(Mo04) 2∶Eu3+,且具有四方晶系白钨矿结构;样品由尺寸约1~3μm类球形小颗粒组成.激发光谱在250~350 nm处有一宽的吸收带,峰值位于290 nm,属于Mo-O,Eu-O的电荷迁移带;350~ 500 nm范围内的系列尖峰是由Eu3+的4f-4f跃迁所致;发射光谱由一系列发射峰组成,主峰位于616nm处,属于5Do→+7F2电偶极跃迁发射.同时研究了焙烧温度和时间、柠檬酸和乙二醇的摩尔比,以及助熔剂等对样品发光性能的影响.%The red-emitting phosphors NaLa(MoO4) 2∶Eu3 + was synthesized by microwave-assisted sol-gel method using citric as complexing agent.These compounds were characterized by means of thermo gravimetric-differential thermal analysis,fourier transform infrared spectroscopy,X-ray diffraction,scanning electron microscope and fluorescence spectrophotometer.The results show that the target products NaLa (MoO4)2∶Eu3 + have been synthesized by calcining precursor at the temperature from 700 ℃ to 900 ℃.The obtained products are of pure scheelite type molybdate with tetragonal crystal structure.The particles of NaLa(MoO4)2∶Eu3+ are spherical in shape with a diameter of 1-3 μm.The excitation spectrum of NaLa(MoO4)2∶Eu3+ has a broad band in the range of 250-350 nm,and the main peak is at 290 nm.The broad band can be ascribed to the charge transfer band of Mo-O and Eu-O.The sharp lines in 350-500 nm range are due to 4f-4f transitions of Eu3 +.The emission spectrum contains a series of narrow peaks,with the main peak at 616 nm originated from the electric dipole transition of 5D0 →7F2 of Eu3+.Meanwhile,the influences of reaction temperature and time

  4. Surface-Assisted Luminescence: The PL Yellow Band and the EL of n-GaN Devices

    Directory of Open Access Journals (Sweden)

    José Ignacio Izpura

    2013-01-01

    Full Text Available Although everybody should know that measurements are never performed directly on materials but on devices, this is not generally true. Devices are physical systems able to exchange energy and thus subject to the laws of physics, which determine the information they provide. Hence, we should not overlook device effects in measurements as we do by assuming naively that photoluminescence (PL is bulk emission free from surface effects. By replacing this unjustified assumption with a proper model for GaN surface devices, their yellow band PL becomes surface-assisted luminescence that allows for the prediction of the weak electroluminescence recently observed in n-GaN devices when holes are brought to their surfaces.

  5. Microfluidic Device

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2017-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  6. Synthesis and blue electroluminescent properties of zinc (II) [2-(2-hydroxyphenyl)benzoxazole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Sam [Department of Chemistry and BPRC, Inje University, Gimhae 621-749 (Korea, Republic of); You, Jung Min [Department of Chemistry and BPRC, Inje University, Gimhae 621-749 (Korea, Republic of); Lee, Burm-Jong [Department of Chemistry and BPRC, Inje University, Gimhae 621-749 (Korea, Republic of)]. E-mail: chemlbj@inje.ac.kr; Jang, Yoon-Ki [Department of Electrical Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Kim, Dong-Eun [Department of Electrical Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Kwon, Young-Soo [Department of Electrical Engineering, Dong-A University, Busan 604-714 (Korea, Republic of)

    2007-04-23

    This study reports on the properties of organic light-emitting diodes (OLEDs) with zinc (II) [2-(2-hydroxyphenyl)benzoxazole] as a hole-blocking layer. OLEDs devices are prepared in a conventional OLEDs structure (i.e., anode/HTL/EL/HBL/cathode and anode/HTL/HBL/EL/cathode). The luminescence efficiencies and the turn-on voltage are significantly affected by the existence of the hole-blocking layer. This is attributed to an excellent hole-blocking property, which is in turn due to the high HOMO energy level (6.5 eV). The device showed luminous efficiency 2.46 lm/W at 5 V. The maximum luminance of about 10,000 cd/m{sup 2} is obtained, and the turn-on voltage (2.5 V) is affected by the existence of the hole-blocking layer.

  7. Solution-processed low dimensional nanomaterials with self-assembled polymers for flexible photo-electronic devices (Presentation Recording)

    Science.gov (United States)

    Park, Cheolmin

    2015-09-01

    Self assembly driven by complicated but systematic hierarchical interactions offers a qualified alternative for fabricating functional micron or nanometer scale pattern structures that have been potentially useful for various organic and nanotechnological devices. Self assembled nanostructures generated from synthetic polymer systems such as controlled polymer blends, semi-crystalline polymers and block copolymers have gained a great attention not only because of the variety of nanostructures they can evolve but also because of the controllability of these structures by external stimuli. In this presentation, various novel photo-electronic materials and devices are introduced based on the solution-processed low dimensional nanomaterials such as networked carbon nanotubes (CNTs), reduced graphene oxides (rGOs) and 2 dimensional transition metal dichalcogenides (TMDs) with self assembled polymers including field effect transistor, electroluminescent device, non-volatile memory and photodetector. For instance, a nanocomposite of networked CNTs and a fluorescent polymer turned out an efficient field induced electroluminescent layer under alternating current (AC) as a potential candidate for next generation displays and lightings. Furthermore, scalable and simple strategies employed for fabricating rGO as well as TMD nanohybrid films allowed for high performance and mechanically flexible non-volatile resistive polymer memory devices and broad band photo-detectors, respectively.

  8. OLEDs under high current densities. Transient electroluminescence turn-on peaks and singlet-triplet quenching

    Energy Technology Data Exchange (ETDEWEB)

    Kasemann, Daniel

    2012-02-27

    This work focuses on a better understanding of the behavior of organic light emitting devices (OLEDs) under intense electrical excitation. Attaining high exciton densities in organic semiconductors by electrical excitation is of special interest for the field of organic semiconductor lasers (OSLs). In these devices, the high singlet exciton density needed in the active layer to obtain population inversion is easily created by pulsed optical pumping, but direct electrical pumping has not been achieved yet. First, the steps necessary to achieve stable high current densities in organic semiconductors are discussed. After determining the optimal excitation scheme using single p-doped transport layers, the device complexity is increased up to full p-i-n OLEDs with their power dependent emission spectra. For this purpose, two exemplary emitter systems are chosen: the fluorescent laser dye 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) doped into Aluminum(III)bis (2-methyl-8-quinolinato)-4-phenylphenolate (Alq{sub 3}) and the efficient phosphorescent emitter system N,N'-di(naphthalen-1-yl)-N,N'-diphenyl-benzidine (alpha-NPD) doped by Iridium(III) bis(2-methyl-dibenzo[f,h]quinoxaline)(acetylacetonate) (Ir(MDQ){sub 2}(acac)). For pulsed excitation using 50 ns pulses and a repetition rate of 1 kHz, single 100 nm thin p- and n-doped transport layers sustain current densities of over 6 kA/cm{sup 2}. While the maximum current density decreases with increasing device thickness, the full OLEDs still sustain current densities beyond 800 A/cm{sup 2} and exhibit a continuously increasing emission intensity with increasing input power. Next, the time-resolved emission behavior of the singlet and triplet emitter device at high excitation densities is analyzed on the nanosecond scale. Here, the peak emission intensity of the phosphorescent emitter system is found to be more than eight times lower than for the singlet emitter system at comparable current

  9. Photo- and Electro-luminescence of the New Ternary Europium(Ⅲ) Complex

    Institute of Scientific and Technical Information of China (English)

    Chen Xia DU; Zhi Qiang WANG; Qi XIN; Yang Jie WU; Wen Lian LI

    2005-01-01

    A new luminescent europium complex [Eu(DBM)3dpq] (DBM = 1, 3-diphenyl-1, 3-propanedionate and dpq=dipyrido[2,3-f][2',3'-h]quinoxaline) has been synthesized and shows intense red emission under UV excitation. With the device structure ITO/TPD/Eu(DBM)3dpq:TPD (1:2)/Gd(DBM)3bath/Mg:Ag, sharp-band red emissions with low turn-on voltage of 3V and high brightness of 304cd m-2 were achieved.

  10. Series resistance mapping of Cu(In,Ga)Se{sub 2} solar cells by voltage dependent electroluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Daume, Felix; Puttnins, Stefan [Solarion AG, Ostende 5, 04288 Leipzig (Germany); Institut fuer Experimentelle Physik II, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Scheit, Christian; Rahm, Andreas [Solarion AG, Ostende 5, 04288 Leipzig (Germany); Grundmann, Marius [Institut fuer Experimentelle Physik II, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany)

    2011-07-01

    Cu(In,Ga)Se{sub 2} (CIGSe) thin film solar cells deposited on flexible polyimide foil promising innovative applications and a fabrication in continuous roll-to-roll processes currently reach efficiencies up to 17.6 %. The optimization of the solar cell efficiency requires the reduction of inherent losses in the cell. In order to achieve this goal preferably spatially resolved access to parameters characterizing ohmic losses like series and shunt resistances are indispensable. We apply an interpretation method for electroluminescence (EL) images taken at different voltages which is known for solar cells made of crystalline silicon from literature to solar cells made of polycrystalline CIGSe. The theory of this method to obtain a mapping of the series resistance and the EL imaging process as well as the data interpretation ils reviewed and demonstrated on an example. Furthermore, the benefit of this method for the characterization of solar cells under accelerated aging conditions (damp heat) which is important for the estimation of the long-term stability is shown.

  11. Magnetic field enhanced electroluminescence in organic light emitting diodes based on electron donor-acceptor exciplex blends

    Science.gov (United States)

    Baniya, Sangita; Basel, Tek; Sun, Dali; McLaughlin, Ryan; Vardeny, Zeev Valy

    2016-03-01

    A useful process for light harvesting from injected electron-hole pairs in organic light emitting diodes (OLED) is the transfer from triplet excitons (T) to singlet excitons (S) via reverse intersystem crossing (RISC). This process adds a delayed electro-luminescence (EL) emission component that is known as thermally activated delayed fluorescence (TADF). We have studied electron donor (D)/acceptor(A) blends that form an exciplex manifold in which the energy difference, ΔEST between the lowest singlet (S1) and triplet (T1) levels is relatively small (field of 50 mT at ambient. Moreover the MEL response is activated with activation energy similar that of the EL emission. This suggests that the large magneto-EL originates from an additional spin-mixing channel between singlet and triplet states of the generated exciplexes, which is due to TADF. We will report on the MEL dependencies on the temperature, bias voltage, and D-A materials for optimum OLED performance. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  12. Indium-Induced Effect on Polarized Electroluminescence from InGaN/GaN MQWs Light Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    RUAN Jun; YU Tong-Jun; JIA Chuan-Yu; TAO Ren-Chun; WANG Zhan-Guo; ZHANG Guo-Yi

    2009-01-01

    Polarization-resolved edge-emitting electroluminescence (EL) studies of InGaN/GaN MQWs of wavelengths from near-UV (390nm) to blue (468nm) light-emitting diodes (LEDs) are performed.Although the TE mode is dominant in all the samples of InGaN/GaN MQW LEDs,an obvious difference of light polarization properties is found in the InGaN/GaN MQW LEDs with different wavelengths.The polarization degree decreases from 52.4% to 26.9% when light wavelength increases.Analyses of band structures of InGaN/GaN quantum wells and luminescence properties of quantum dots imply that quantum-dot-like behavior is the dominant reason for the low luminescence polarization degree of blue LEDs,and the high luminescence polarization degree of UV LEDs mainly comes from QW confinement and the strain effect.Therefore,indium induced carrier confinement (quantum-dot-like behavior) might play a major role in the polarization degree change of InGaN/GaN MQW LEDs from near violet to blue.

  13. Electroluminescence and Photoluminescence from Scored Si-Rich SiO2 Film/p-Si Structure

    Institute of Scientific and Technical Information of China (English)

    冉广照; 孙永科; 陈源; 戴伦; 崔晓明; 张伯蕊; 乔永平; 马振昌; 宗婉华; 秦国刚

    2003-01-01

    Electroluminescence (EL) is observed from the Au/Si-rich SiO2 film/p-Si diodes, in which the Si-rich SiO2 films are scored deliberately by a diamond tip. The EL intensity of the scored diode annealed at 800°C is about 6times of that of the unscored counterpart. The EL spectrum of the unscored diode could be decomposed into two Gaussian luminescence bands with peaks at about 1.83 and 2.23 eV, while for the EL spectrum of the scored diode, an additional Gaussian band at about 3.0eV appears, and the 1.83-eV peak increases significantly in intensity. The photoluminescence (PL) spectrum of an unscored Si-rich SiO2 film has only one band peaking at about 1.48eV, whereas the PL spectrum of the scored one has two bands at about 1.48 and 1.97eV. We consider that the high-density defect regions produced by the scoring provide new luminescence centres and become some types of nonradiative centres in the Si oxide layer, which thus result in changes of the EL and PL spectra.

  14. Electroluminescence and Photoluminescence from Scored Si-Rich SiO2 Film/p-Si Structure

    Science.gov (United States)

    Ran, Guang-Zhao; Sun, Yong-Ke; Chen, Yuan; Dai, Lun; Cui, Xiao-Ming; Zhang, Bo-Rui; Qiao, Yong-Ping; Ma, Zhen-Chang; Zong, Wan-Hua; Qin, Guo-Gang

    2003-02-01

    Electroluminescence (EL) is observed from the Au/Si-rich SiO2 film/p-Si diodes, in which the Si-rich SiO2 films are scored deliberately by a diamond tip. The EL intensity of the scored diode annealed at 800°C is about 6 times of that of the unscored counterpart. The EL spectrum of the unscored diode could be decomposed into two Gaussian luminescence bands with peaks at about 1.83 and 2.23 eV, while for the EL spectrum of the scored diode, an additional Gaussian band at about 3.0 eV appears, and the 1.83-eV peak increases significantly in intensity. The photoluminescence (PL) spectrum of an unscored Si-rich SiO2 film has only one band peaking at about 1.48 eV, whereas the PL spectrum of the scored one has two bands at about 1.48 and 1.97 eV. We consider that the high-density defect regions produced by the scoring provide new luminescence centres and become some types of nonradiative centres in the Si oxide layer, which thus result in changes of the EL and PL spectra.

  15. Effect of n-type doping level on direct band gap electroluminescence intensity for asymmetric metal/Ge/metal diodes

    Science.gov (United States)

    Maekura, T.; Tanaka, K.; Motoyama, C.; Yoneda, R.; Yamamoto, K.; Nakashima, H.; Wang, D.

    2017-10-01

    The direct band gap electroluminescence (EL) intensity was investigated for asymmetric metal/Ge/metal diodes fabricated on n-type Ge with doping levels in the range of 4.0 × 1013-3.1 × 1018 cm-3. Up to a doping level of 1016 cm-3 order, commercially available (100) n-Ge substrates were used. To obtain a doping level higher than 1017 cm-3 order, which is commercially unavailable, n+-Ge/p-Ge structures were fabricated by Sb doping on p-type (100) Ge substrates with an in-diffusion at 600 °C followed by a push-diffusion at 700 °C-850 °C. The EL intensity was increased with increasing doping level up to 1.0 × 1018 cm-3. After that, it was decreased with a further increase in n-type doping level. This EL intensity decrease is explained by the decreased number of holes in the active region. One reason is the difficulty in hole injection through the PtGe/n-Ge contact due to the occurring of tunneling electron current. Another reason is the loss of holes caused by both the small thickness of n+-Ge layer and the existence of n+p junction.

  16. Phosphorescent Iridium(III) Complexes Bearing Fluorinated Aromatic Sulfonyl Group with Nearly Unity Phosphorescent Quantum Yields and Outstanding Electroluminescent Properties.

    Science.gov (United States)

    Zhao, Jiang; Yu, Yue; Yang, Xiaolong; Yan, Xiaogang; Zhang, Huiming; Xu, Xianbin; Zhou, Guijiang; Wu, Zhaoxin; Ren, Yixia; Wong, Wai-Yeung

    2015-11-11

    A series of heteroleptic functional Ir(III) complexes bearing different fluorinated aromatic sulfonyl groups has been synthesized. Their photophysical features, electrochemical behaviors, and electroluminescent (EL) properties have been characterized in detail. These complexes emit intense yellow phosphorescence with exceptionally high quantum yields (ΦP > 0.9) at room temperature, and the emission maxima of these complexes can be finely tuned depending upon the number of the fluorine substituents on the pendant phenyl ring of the sulfonyl group. Furthermore, the electrochemical properties and electron injection/transporting (EI/ET) abilities of these Ir(III) phosphors can also be effectively tuned by the fluorinated aromatic sulfonyl group to furnish some desired characters for enhancing the EL performance. Hence, the maximum luminance efficiency (ηL) of 81.2 cd A(-1), corresponding to power efficiency (ηP) of 64.5 lm W(-1) and external quantum efficiency (ηext) of 19.3%, has been achieved, indicating the great potential of these novel phosphors in the field of organic light-emitting diodes (OLEDs). Furthermore, a clear picture has been drawn for the relationship between their optoelectronic properties and chemical structures. These results should provide important information for developing highly efficient phosphors.

  17. Towards Monodisperse Star-Shaped Ladder-Type Conjugated Systems: Design, Synthesis, Stabilized Blue Electroluminescence and Amplified Spontaneous Emission.

    Science.gov (United States)

    Lai, Wen-Yong; Jiang, Yi; Fang, Mei; Chang, Si-Ju; Huang, Jin-Jin; Chu, Shuang-Quan; Hu, Shan-Ming; Liu, Cheng-Fang; Huang, Wei

    2017-02-14

    A novel series of monodisperse star-shaped ladder-type oligo(p-phenylene)s, named as TrL-n (n = 1-3), have been explored. Their thermal and electrochemical properties, fluorescence transients, photoluminescence quantum yields, density functional theory calculations, electroluminescence (EL) and amplified spontaneous emission (ASE) properties have been systematically investigated to unravel the molecular design on optoelectronic properties. The resulting materials showed excellent structural perfection free of chemical defects, exhibiting great thermal stability (Td: 404-418°C and Tg:147-184°C) and amorphous glassy morphologies. Compared with their corresponding linear counterparts FL-m (m = 1-3), TrL-n showed only little bathochromic shifts (5-12 nm) for the absorption maxima λmax in both solution and films. The star-shaped ladder-type compounds exhibited enhanced optical stability and suppressed low-energy emission. Their EL spectra exhibited excellent stability with increasing the driving voltage from 6 to 12 V. Moreover, superior low ASE thresholds were recorded for TrL-n compared with FL-m. Rather low ASE threshold (29 nJ/pulse or 1.60 μJ/cm2) was recorded for TrL-3, demonstrating their promising potential as excellent gain media. This study provides a novel design concept to develop monodisperse star-shaped ladder-type materials with excellent structural perfection, which are vital for shedding light on exploring robust organic emitters for optoelectronic applications.

  18. Synthesis and Electroluminescence Property of New Hexaphenyl Benzene Derivatives Including Emitting Core for OLED.

    Science.gov (United States)

    Shin, Hwangyu; Kang, Hyeonmi; Kim, Jong-Hyung; Wang, Yun-Fan; Kim, Seungho; Kay, Kwang-Yol; Park, Jongwook

    2015-10-01

    Three new emitting compounds of 5P-2TPA, 5P-2An and 5P-2Py for OLED based on hexaphenyl benzene moiety were synthesized. Physical properties were systematically examined by the change of the substitution groups of the synthesized materials. Photoluminescence (PL) spectrum of the synthesized materials showed maximum emitting wavelengths of about 437~488 nm in solution state and 457~516 nm in film state, indicating blue emission color. OLED devices were fabricated by the synthesized compounds using vacuum deposition process as an emitting layer. Device structure was ITO/2-TNATA 60 nm/NPB 15 nm/EML 35 nm/TPBi 20 nm/LiF 1 nm/Al 200 nm. External quantum efficiencies and CIE values of 5P-2TPA, 5P-2An and 5P-2Py were 3.34, 1.06 and 2.06% and (0.14, 0.12), (0.23, 0.45) and (0.24, 0.45), respectively. The three compounds exhibited thermal stablility with high Td of 426 °C, 449 °C and 467 °C.

  19. White-Light Electroluminescence with Tetraphenylethylene as Emitting Layer of Aggregation-Induced Emissions Enhancement

    Institute of Scientific and Technical Information of China (English)

    罗建芳; 王晓宏; 王筱梅; 苏文明; 陶绪堂; 陈志刚

    2012-01-01

    Tetraphenylethylene (TPE) based molecules with easy synthesis, good thermal stability, and especially their aggregation-induced emissions enhancement (AIEE) effect recently become attractive organic emitting materials due to their potentially practical application in OLEDs. Herein, the AIEE behaviors of tetraphenylethylene dyes (TMTPE and TBTPE) were investigated. Fabricated luminesent device using TMTPE dye as emitting layer displays two strong emitting bands: the blue emission coming from the first-step aggregation and the yellow emission attrib- uted to the second-step aggregation. Thus, it can be utilized to fabricate the white-light OLEDs (WOLEDs) of the single-emitting-component. A three-layer device with the brightness of 1200 cd·m^-2 and current efficiency of 0.78 cd·A^-1 emits the close to white light with the CIE coordinates of x=0.333 and y=0.358, when applied voltage from 8-13 V, verifying that the TPE-based dyes of AIEE effect can be effectively applied in single-emitting- component WOLEDs fabrication.

  20. Electroluminescence from charge transfer states in Donor/Acceptor solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Madsen, Morten

    charge transfer (CT) excitons, which is Coulombically bound interfacial electron- hole pairs residing at the donor/acceptor heterojunctions. The CT state represents an intermediate state between the exciton dissociation and recombination back to the ground state. Since the recombination of photo...... at the donor/acceptor interface is detected. As a less studied system, we examine here the interfacial charge transfer state recombination in DBP:C70 thin-films. The weak EL from the small molecule solar cell biased in the forward direction gives valuable information about the CT state recombination, from...... which the maximum open-circuit voltage can be estimated, and further can be used in the modeling and optimization of the OPV devices. [1] C. Deibe, T. Strobe, and V. Dyakonov, “Role of the charge transfer state in organic donor-acceptor solar cells,” Adv. Mater., vol. 22, pp. 4097–4111, 2010. [2] K...

  1. Preparation,Photo and Electroluminescence Properties of Novel Rare Earth Aromatic Carboxylates

    Institute of Scientific and Technical Information of China (English)

    林秦; 符连社; 等

    2002-01-01

    Novel soluble rare earth aromatic carboxylates were prepared.The triplet energy level of organic ligand was measured.The photoluminescence properties of the Tb3+and Eu3+aromatic carboxylates and lifetimes were investated ,which indicated that these rare earth complexes have high quantum efficiency,Because of their excellent solubility,polmer-doping rare earth carboxylates were fabricated as thin fimls by spin-coating method and theri luminescence properties were studied,Some rare earth organic light-emitting diodes were successfully fabricated which performed high pure color,The maximum luminacnce of the device of ITO/PVK/PVK:Tb(AS)3Phen:PBD/PBD/Al is 32cd·m-2at28V.

  2. Preparation, Photo and Electroluminescence Properties of Novel Rare Earth Aromatic Carboxylates

    Institute of Scientific and Technical Information of China (English)

    林秦; 符连社; 梁玉军; 郑佑轩; 林君; 张洪杰

    2002-01-01

    Novel soluble rare earth aromatic carboxylates were prepared. The triplet energy level of organic ligand was measured. The photoluminescence properties of the Tb3+ and Eu3+ aromatic carboxylates and lifetimes were investigated, which indicated that these rare earth complexes have high quantum efficiency. Because of their excellent solubility, polymer-doping rare earth carboxylates were fabricated as thin films by spin-coating method and their luminescence properties were studied. Some rare earth organic light-emitting diodes were successfully fabricated which performed high pure color. The maximum luminance of the device of ITO/PVK/PVK∶Tb(AS)3Phen∶PBD/PBD/Al is 32 cd*m-2 at 28 V.

  3. Ferroelectric devices

    CERN Document Server

    Uchino, Kenji

    2009-01-01

    Updating its bestselling predecessor, Ferroelectric Devices, Second Edition assesses the last decade of developments-and setbacks-in the commercialization of ferroelectricity. Field pioneer and esteemed author Uchino provides insight into why this relatively nascent and interdisciplinary process has failed so far without a systematic accumulation of fundamental knowledge regarding materials and device development.Filling the informational void, this collection of information reviews state-of-the-art research and development trends reflecting nano and optical technologies, environmental regulat

  4. Green route synthesis of high quality CdSe quantum dots for applications in light emitting devices

    Science.gov (United States)

    Bera, Susnata; Singh, Shashi B.; Ray, S. K.

    2012-05-01

    Investigation was made on light emitting diodes fabricated using CdSe quantum dots. CdSe quantum dots were synthesized chemically using olive oil as the capping agent, instead of toxic phosphine. Room temperature photoluminescence investigation showed sharp 1st excitonic emission peak at 568 nm. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting devices were fabricated by solution process. The electroluminescence study showed low turn on voltage (˜2.2 V) .The EL peak intensity was found to increase by increasing the operating current.

  5. Influence of the matrix properties on the performances of Er-doped Si nanoclusters light emitting devices

    Science.gov (United States)

    Irrera, Alessia; Iacona, Fabio; Franzò, Giorgia; Miritello, Maria; Lo Savio, Roberto; Castagna, Maria Eloisa; Coffa, Salvatore; Priolo, Francesco

    2010-03-01

    We investigated the properties of light emitting devices whose active layer consists of Er-doped Si nanoclusters (nc) generated by thermal annealing of Er-doped SiOx layers prepared by magnetron cosputtering. Differently from a widely used technique such as plasma enhanced chemical vapor deposition, sputtering allows to synthesize Er-doped Si nc embedded in an almost stoichiometric oxide matrix, so as to deeply influence the electroluminescence properties of the devices. Relevant results include the need for an unexpected low Si excess for optimizing the device efficiency and, above all, the strong reduction of the influence of Auger de-excitation, which represents the main nonradiative path which limits the performances of such devices and their application in silicon nanophotonics.

  6. Analysing the effect of crystal size and structure in highly efficient CH3NH3PbI3 perovskite solar cells by spatially resolved photo- and electroluminescence imaging.

    Science.gov (United States)

    Mastroianni, S; Heinz, F D; Im, J-H; Veurman, W; Padilla, M; Schubert, M C; Würfel, U; Grätzel, M; Park, N-G; Hinsch, A

    2015-12-14

    CH3NH3PbI3 perovskite solar cells with a mesoporous TiO2 layer and spiro-MeOTAD as a hole transport layer (HTL) with three different CH3NH3I concentrations (0.032 M, 0.044 M and 0.063 M) were investigated. Strong variations in crystal size and morphology resulting in diversified cell efficiencies (9.2%, 16.9% and 12.3%, respectively) were observed. The physical origin of this behaviour was analysed by detailed characterization combining current-voltage curves with photo- and electroluminescence (PL and EL) imaging as well as light beam induced current measurements (LBIC). It was found that the most efficient cell shows the highest luminescence and the least efficient cell is most strongly limited by non-radiative recombination. Crystal size, morphology and distribution in the capping layer and in the porous scaffold strongly affect the non-radiative recombination. Moreover, the very non-uniform crystal structure with multiple facets, as evidenced by SEM images of the 0.032 M device, suggests the creation of a large number of grain boundaries and crystal dislocations. These defects give rise to increased trap-assisted non-radiative recombination as is confirmed by high-resolution μ-PL images. The different imaging techniques used in this study prove to be well-suited to spatially investigate and thus correlate the crystal morphology of the perovskite layer with the electrical and radiative properties of the solar cells and thus with their performance.

  7. 白光 LED 用红色发光材料 CaLa2(MoO4)4:Eu3+的微波辅助溶胶-凝胶法合成及发光特性%Synthesis and Luminescent Properties of CaLa2(MoO4)4:Eu3+ Red-emitting Phosphors for White LED by Microwave-assisted Sol-gel Method

    Institute of Scientific and Technical Information of China (English)

    翟永清; 李金航; 李璇; 宋珊珊; 曹丽丽

    2015-01-01

    以柠檬酸为络合剂,采用微波辅助溶胶–凝胶法制备了 CaLa2(MoO4)4:Eu3+红色荧光粉。研究了前驱体的热分解历程,分析表征了样品的结构、形貌和发光性能。探讨了焙烧温度、Eu3+掺杂量、柠檬酸与乙二醇摩尔比和硼酸用量等对样品发光性能的影响。结果表明:前驱体经700~900℃焙烧均能得到目标产物 CaLa2–x(MoO4)4:xEu3+,样品具有白钨矿结构,属于四方晶系。样品的激发光谱在250~350 nm 处有一宽吸收带,对应于 Mo–O,Eu–O 电荷迁移带;在395和464 nm 处存在很强的吸收峰,归属于 Eu3+的4f–4f 跃迁。发射光谱主峰位于616 nm 处,归属于 Eu3+的5D0→7F2电偶极跃迁发射。前驱体经800℃焙烧所得样品发光强度最大,且发光强度随着 Eu3+掺杂量的增加而增大,在 x=0.2~1.0范围内未出现猝灭现象。体系中加入适量乙二醇,可以起到细化晶粒、提高粉体分散性的作用,但浓度过高则会降低样品的发光强度;助熔剂硼酸的用量对样品发光强度影响较大,当用量为3%时,样品的发光性能较好。%The red-emitting CaLa2(MoO4)4:Eu3+ powders were prepared by a microwave-assisted sol-gel method, with citric acid as a chelating agent. The heat decomposion mechanism of the precursor, phase structure, morphology and luminescent properties of the samples were characterized. The influences of calcining temperature, Eu3+ content, mole ratio of citric to ethylene glycol (EG) and the dosage of H3BO3 on the luminescent properties of the samples were investigated. The results indicate that the target products of CaLa2–x(MoO4)4:xEu3+ are synthesized by calcining precursor in a temperature range from 700 ℃ to 900 ℃. The products are readily indexed to a pure tetragonal phase with scheelite structure. The excitation spectra consist of a broad band at 250–350 nm and the intense lines at 395 nm and 464 nm. The former is attributed to

  8. Observation of Photovoltaic Effects in Bright Red Organic Electroluminescent Diodes Doped with Red Dopant

    Institute of Scientific and Technical Information of China (English)

    WEI Han-Zhi; Li Wen-Lian; WANG Dong-Yue; CHU Bei; Li Ming-Tao; ZHANG Zhi-Qiang; HU Zhi-Zhi

    2004-01-01

    @@ Photovoltaic (PV) effects for red bright organic light-emitting diodes (OLEDs) in which the red light emitted from the dopant 4-(dicyanomethylene)-2-t-butyl-6- (1,1,7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) have been observed. The OLEDs show organic photovoltaic properties. At the optimum doping concentration, the main eletroluminescence parameters including the maximum brightness and the maximum luminous efficiency under current density of 20mA/cm2 are 3280cd/m2 and 1.54cd/A, respectively. When irradiated by a 365-nm UVlight (4 mW/cm2), the device exhibits the PV parameters of the open-circuit voltage 1.4 V, short-circuit current 2.9 μA/cm2, fill factor 0.22, and power conversion efficiency 0.022%. Effects of every organic layer, especially the doped DCJTB on the PV performance, are also discussed. It is expected that the research for the PV property of the small molecular doping OLEDs will be of benefit for flat panel display technology in the future.

  9. Spectra of surface plasmon polariton enhanced electroluminescence from electroformed Al-Al{sub 2}O{sub 3}-Ag diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hickmott, T. W. [Department of Physics, State University of New York at Albany, Albany, New York 12222 (United States)

    2015-03-07

    Narrow band-pass filters have been used to measure the spectral distribution of electroluminescent photons with energies between 1.8 eV and 3.0 eV from electroformed Al-Al{sub 2}O{sub 3}-Ag diodes with anodic Al{sub 2}O{sub 3} thicknesses between 12 nm and 18 nm. Electroforming of metal-insulator-metal (MIM) diodes is a non-destructive dielectric breakdown that results in a conducting channel in the insulator and changes the initial high resistance of the MIM diode to a low resistance state. It is a critical step in the development of resistive-switching memories that utilize MIM diodes as the active element. Electroforming of Al-Al{sub 2}O{sub 3}-Ag diodes in vacuum results in voltage-controlled negative resistance (VCNR) in the current-voltage (I-V) characteristics. Electroluminescence (EL) and electron emission into vacuum (EM) develop simultaneously with the current increase that results in VCNR in the I-V characteristics. EL is due to recombination of electrons injected at the Al-Al{sub 2}O{sub 3} interface with radiative defect centers in Al{sub 2}O{sub 3}. Measurements of EL photons between 1.8 eV and 3.0 eV using a wide band-pass filter showed that EL intensity is exponentially dependent on Al{sub 2}O{sub 3} thickness for Al-Al{sub 2}O{sub 3}-Ag diodes between 12 nm and 20 nm thick. Enhanced El intensity in the thinnest diodes is attributed to an increase in the spontaneous emission rate of recombination centers due to high electromagnetic fields generated in Al{sub 2}O{sub 3} when EL photons interact with electrons in Ag or Al to form surface plasmon polaritons at the Al{sub 2}O{sub 3}-Ag or Al{sub 2}O{sub 3}-Al interface. El intensity is a maximum at 2.0–2.2 eV for Al-Al{sub 2}O{sub 3}-Ag diodes with Al{sub 2}O{sub 3} thicknesses between 12 nm and 18 nm. EL in diodes with 12 nm or 14 nm of Al{sub 2}O{sub 3} is enhanced by factors of 8–10 over EL from a diode with 18 nm of Al{sub 2}O{sub 3}. The extent of EL enhancement in

  10. Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling

    Science.gov (United States)

    David, Aurelien; Hurni, Christophe A.; Young, Nathan G.; Craven, Michael D.

    2016-08-01

    The current-voltage characteristic and ideality factor of III-Nitride quantum well light-emitting diodes (LEDs) grown on bulk GaN substrates are investigated. At operating temperature, these electrical properties exhibit a simple behavior. A model in which only active-region recombinations have a contribution to the LED current is found to account for experimental results. The limit of LED electrical efficiency is discussed based on the model and on thermodynamic arguments, and implications for electroluminescent cooling are examined.

  11. Electroluminescence of a Multi-Layered Organic Light-Emitting Diode Utilizing Trans-4-[p-[Nmethyl-N-(hydroxymethyl)amino]styryl]-N-Methylphridinium Tetraphenylborate as the Active Layer

    Institute of Scientific and Technical Information of China (English)

    FENG Xue-Yuan; ZHANG Jia-Yu; XU Chun-Xiang; QIAO Yi; GUI Yi-Ping

    2006-01-01

    Employing an organic dye salt oftrans-4-[p-[N-methyl-N-(hydroxymethyl)amino]styryl]-N-methylphridinium tetraphenylborate (ASPT) as the active layer, 8-hydrocyquinoline aluminium (Alqa) as the electron transporting layer and N,Nt-diphenyl-N,Nl-bis(3-methylphenyl)-[l,l'-biphenyl]-4,4'-diamine (TPD) as the hole transporting layer, respectively, we fabricate a multi-layered organic light-emitting diode and observe the colour tunable electroluminescence (EL). The dependence of the EL spectra on the applied voltage is investigated in detail, and the recombination mechanism is discussed by considering the variation of the hole-electron recombination region.

  12. Synthesis, photophysics, electrochemistry, thermal stability and electroluminescent performances of a new europium complex with bis(β-diketone) ligand containing carbazole group.

    Science.gov (United States)

    Liu, Jian; Liang, Quan-Bin; Wu, Hong-Bin

    2016-09-07

    We synthesized a new europium complex [Eu(ecbpd)3 (Phen)] with bis(β-diketone) ligand containing a carbazole group, in which ecbpd and Phen are dehydro-3,3'-(9-ethyl-9H-carbazole-3,6-diyl)bis(1-phenylpropane-1,3-dione) and 1,10-phenanthroline, respectively. Its UV/vis and photoluminescent spectra, quantum yield, luminescence lifetime, electrochemistry, thermal stability and electroluminescent performances were studied. This europium complex showed low efficiency luminescence, which is probably due to the mismatching energy levels of its ligand and Eu(3)(+) , as well as the double Eu(3)(+) core resonance.

  13. Ventricular assist device

    Science.gov (United States)

    VAD; RVAD; LVAD; BVAD; Right ventricular assist device; Left ventricular assist device; Biventricular assist device; Heart pump; Left ventricular assist system; LVAS; Implantable ventricular assist device

  14. Separating device

    NARCIS (Netherlands)

    De Jong, T.P.R.

    2001-01-01

    A sorting device (1) suitable for sorting wire from a waste stream, comprising a body (2) that moves when in use, and provided with spikes or similar projections. The body is embodied as a rotatable roll (2), which oscillates axially during its rotation. The roll is coupled to an oscillation engine

  15. Detection device

    Science.gov (United States)

    Smith, J.E.

    1981-02-27

    The present invention is directed to a detection device comprising: (1) an entrance chamber; (2) a central chamber; and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  16. Assistive Devices

    Science.gov (United States)

    ... a number of assistive devices. These are tools, products or types of equipment that help you perform tasks and activities. They may help you move around, see, communicate, eat, or get dressed. Some are high-tech tools, such as computers. Others are much simpler, ...

  17. Printing Device

    NARCIS (Netherlands)

    Berg, van den M.J.; Markies, P.R.; Zuilhof, H.

    2014-01-01

    An ink jetprinting device includes a pressure chamber formed by a plurality of wall segments, a first aperture extending through a wall segment and communicating with an ink jet orifice and a second aperture extending through a wall segment and communicating with an ink supply duct. The pressure

  18. Electrochemical device

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  19. Printing Device

    NARCIS (Netherlands)

    Berg, van den M.J.; Markies, P.R.; Zuilhof, H.

    2014-01-01

    An ink jetprinting device includes a pressure chamber formed by a plurality of wall segments, a first aperture extending through a wall segment and communicating with an ink jet orifice and a second aperture extending through a wall segment and communicating with an ink supply duct. The pressure cha

  20. Balancing device

    NARCIS (Netherlands)

    Van Dorsser, W.D.; Herder, J.L.; Wisse B.M.; Barents, R.

    2007-01-01

    The invention relates to a balancing device for a mass, comprising an arm that is adjustable about a pivoting point and with which the mass is coupled, and an adjustable spring system that is coupled with the arm, which spring system comprises at least one spring, wherein the spring system comprises

  1. Light Emission Properties of a Cross-Conjugated Fluorene Polymer: Demonstration of Its Use in Electro-Luminescence and Lasing Devices

    Directory of Open Access Journals (Sweden)

    Sergio Romero-Servin

    2016-02-01

    Full Text Available Light emission properties of a fluorene cross-conjugated polymer (PF–1 based on the monomer 4,7-bis[2-(9,9-dimethylfluorenyl] benzo[1,2,5]thiadiazole are reported. This polymer exhibits solubility at high concentrations, good processability into thin solid films of good quality and a broad emission band with a fluorescence quantum yield of approximately 1. Based on these features, in this paper we implemented the use of PF–1 as an active layer in polymer light-emitting diodes (PLEDs and as a laser gain medium in solution. To get insight on the conducting properties of PF–1, two different electron injectors, poly [(9,9-bis(3′-(N,N-dimethylamino propyl-2,7-fluorene-alt-2,7-(9,9–dioctylfluorene] (PFN and lithium fluoride (LiF, were used in a simple PLED architecture. PLEDs with the PFN film were found to exhibit better performance with a maximum luminous efficiency of 40 cd/A, a turn-on voltage (Von of approximately 4.5 V and a luminance maximum of 878 cd/m2 at 5.5 V, with a current density of 20 A/m2. For the lasing properties of PF–1, we found a lasing threshold of around 75 μJ and a tunability of 20 nm. These values are comparable with those of rhodamine 6G, a well-known laser dye.

  2. Oligoethylene glycol-substituted aza-BODIPY dyes as red emitting ER-probes.

    Science.gov (United States)

    Kamkaew, Anyanee; Thavornpradit, Sopida; Puangsamlee, Thamon; Xin, Dongyue; Wanichacheva, Nantanit; Burgess, Kevin

    2015-08-14

    This study features aza-BODIPY (BF2-chelated azadipyrromethene) dyes with two aromatic substituents linked by oligoethylene glycol fragments to increase hydrophilicity of aza-BODIPY for applications in intracellular imaging. To prepare these, two chalcones were attached α,ω onto oligoethylene glycol fragments, then reacted with nitromethane anion. Conjugate addition products from this reaction were then subjected to typical conditions for synthesis of aza-BODIPY dyes (NH4OAc, (n)BuOH, 120 °C); formation of boracycles in this reaction was concomitant with creation of macrocycles containing the oligoethylene glycol fragments. Similar dyes with acyclic oligoelythene glycol substituents in the same position were used to compare the efficiencies of the intra- and inter-molecular aza-BODIPY forming reactions, and the characteristics of the products. All the fluors with oligoethylene glycol fragments, i.e. cyclic or acyclic, localized in the endoplasmic reticulum of a fibroblast cell line (WEHI-13VAR), the human pancreatic cancer cell line (PANC-1, rough ER predominates) and human liver cancer cell line (HepG2, smooth ER prevalent). These fluors are potentially useful for near IR (λmax emis at 730 nm) ER staining probes.

  3. Temperature dependent morphology variation of red emitting microcrystalline YPO4:Eu3+ fabricated by hydrothermal method

    Science.gov (United States)

    Cybińska, Joanna

    2017-03-01

    Phosphor materials based on the orthophosphates have been widely investigated in the past as crystals, bulk, or nanomaterials. These non-hydroscopic matrices are able to accommodate high concentrations of lanthanide ions without suffering of concentration quenching of the luminescence. One of the most important issue, which is necessary to overcome to use these materials as a phosphors it is to find a synthesis route giving a control over the products morphology, what allows to manage their spectroscopic properties. The investigated YPO4:Eu3+ samples doped with 5 mol % of optically active ions were prepared by the classic hydrothermal method. By changing the temperature of the synthesis it is possible to control the shape and the size of the particles. Based on the results obtained from the electron microscopy studies (TEM and SEM) the morphology of the obtained materials has been correlated with their optical properties such as decay times or emission quantum yields.

  4. New NaSrPO$_4$:Sm$^{3+}$ phosphor as orange-red emitting material

    Indian Academy of Sciences (India)

    KUN-HSIEN CHEN; MIN-HANG WENG; RU-YUAN YANG; CHENG-TANG PAN

    2016-09-01

    Sm$^{3+}$-activated NaSrPO4 phosphors could be efficiently excited at 403 nm, and exhibited a bright red emission mainly including four wavelength peaks of 565, 600, 646 and 710 nm. The highest emission intensity was foundfor NaSr$_{1−x}$PO$_{4}$:$x$Sm$^{3+}$ with a composition of $x = 0.007$. Concentration quenching was observed as the composition of $x$ exceeds 0.007. The decay time values of NaSr1−xPO4:xSm3+ phosphors range from around 2.55 to 3.49 ms. NaSr$_{1−x}$PO$_{4}$:$x$Sm$^{3+}$ phosphor shows a higher thermally stable luminescence and its thermal quenching temperature$T_{50}$ was found to be 350$^{\\circ}$C, which is higher than that of commercial YAG:Ce$^{3+}$ phosphor and ZnS:(Al, Ag) phosphor. Because NaSr$_{1−x}$PO$_{4}$:$x$Sm$^{3+}$ phosphor features a high colour-rendering index and chemical stability, it is potentially useful as a new scintillation material for white light-emitting diodes.

  5. Red Emitting Phosphor (Y,Gd)BO3:Eu3+ for PDP Prepared by Complex Method

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Red phosphor (Y, Gd)BO3:Eu3+ with grain shape, small size, non-agglomerate, high crystallinity and good photoluminescence (PL) intensity was prepared by a complex method that the precursor of the phosphor was prepared by co-precipitation method and the phosphor was prepared by combustion method. The SEM photos and the photoluminescence spectrum excited under VUV show that the morphology and luminescent properties of this phosphor are satisfied when an appropriate amount of urea was adopted as the combustion agent in the preparation procedure.

  6. Blue- and red-emitting phosphor nanoparticles embedded in a porous matrix

    Energy Technology Data Exchange (ETDEWEB)

    Taghavinia, N. [Physics Department, Sharif University of Technology, Tehran P.O. Box 11365-9161, Tehran 14588 (Iran, Islamic Republic of) and Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588 (Iran, Islamic Republic of)]. E-mail: taghavinia@sharif.edu; Lerondel, G. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Univ. de Technologie de Troyes, 10010 Troyes cedex (France); Makino, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yao, T. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2006-05-01

    Eu{sup 3+}- and Ce{sup 3+}-doped yttrium silicate, as well as Eu{sup 2+}-doped zinc silicate nanoparticles, were grown in a porous SiO{sub 2} matrix using an impregnation method. For Y{sub 2}Si{sub 2}O{sub 7}:Eu{sup 3+}, particles of about 50 nm size were obtained that exhibited several photoluminescence (PL) peaks in red. Different peaks showed slightly different decay times; however, their excitation mechanism was found the same. Increasing the Eu concentration increased the PL intensity while reducing the decay time. Y{sub 2}Si{sub 2}O{sub 7}:Ce{sup 3+} nanoparticles in the porous matrix showed bright blue emission, consisting of two peaks at 358 nm and 378 nm. Re-impregnation process was found effective in changing the relative intensity of the two peaks. Zn{sub 2}SiO{sub 4}:Eu{sup 2+} nanoparticles in porous glass consisted of amorphous particles of about 20 nm size inside the porous matrix. The luminescence was a broad peak centered at 418 nm. These phosphor systems, together with our previously reported Zn{sub 2}SiO{sub 4}:Mn{sup 2+} in porous SiO{sub 2} structure, comprise a red-green-blue system that can be used in display applications.

  7. Synthesis and spectroscopic investigation of nanostructured europium oxalate: A potential red emitting phosphor

    Science.gov (United States)

    Vimal, G.; Mani, K. P.; Biju, P. R.; Joseph, C.; Unnikrishnan, N. V.; Ittyachen, M. A.

    2015-10-01

    Nanostructured europium oxalate was successfully synthesized for the first time by microwave assisted co-precipitation method. Structure and nanocrystalline nature of the synthesized europium oxalate was analyzed using X-ray diffraction and the results were confirmed by transmission electron microscopy. Fourier transform infrared spectroscopy was employed to identify the different functional groups present in the nanostructured europium oxalate. Detailed spectroscopic investigations were carried out using Judd-Ofelt theory to find out the spectroscopic parameters of europium oxalate. Nature of the metal-ligand bond and symmetry of the environment around Eu3+ ions, which strongly influences the luminescence characteristics of the material, were analyzed. Photoluminescence emission spectrum of the material confirmed the strong red emission predicted by the JO theoretical analysis which is further ascertained by CIE chromaticity diagram. Further analysis on the luminescence parameters such as life time, quantum efficiency and color purity of nanostructured europium oxalate revealed the suitability of this material as a potential phosphor for red emission.

  8. EL device pad-printed on a curved surface

    Science.gov (United States)

    Lee, Taik-Min; Hur, Shin; Kim, Jae-Hyun; Choi, Hyun-Cheol

    2010-01-01

    This paper is unique in that the electro-luminescence (EL) display device is fabricated on a curved surface using the pad-printing method. The precision of the pad-printing process is explored to verify whether it can be used for micro patterning. The minimum pattern size and pattern distortion, which is caused by use of the pad, were tested and simulated. The minimal pattern was found to be 35 µm wide and 2.4 µm thick. Pattern distortion when pad-printing on a flat surface, caused by the deformation of the silicon pad, was less than 5 µm. Numerical analysis shows how to estimate pattern distortion when pad-printing on a curved surface. The proposed EL display device consists of five layers, namely a bottom electrode, dielectric layer, phosphor, transparent electrode and a bus electrode. The ink of each layer was reformulated with solvents and the pad-printing conditions were controlled. A PEN film was used first in order to realize the pad-printing process condition of each layer. Finally, the EL display device was printed onto a dish with a radius of curvature of 80 mm. The luminance was 180 cd m-2.

  9. Preparation and characterizations of electroluminescent p-ZnO : N/n-ZnO : Ga/ITO thin films by spray pyrolysis method

    Directory of Open Access Journals (Sweden)

    C. Panatarani

    2016-02-01

    Full Text Available ZnO thin films were fabricated by spray pyrolysis (SP method with p-ZnO : N/n-ZnO:Ga/ITO structure. The X-ray results show that the deposited films have hexagonal wurtzite structure. The EDS results observed that the composition of Ga in ZnO:Ga and N in ZnO:N was 3.73% and 27.73% respectively. The photoluminescence (PL with excitation wave length of 260 nm shows that ZnO:Ga and ZnO:N films emitted UV emission at ∼393 and ∼388 nm, respectively and the films resistivity was 7.12 and 12.80 Ohm-cm respectively. The electroluminescence of the p-ZnO : N/n-ZnO:Ga/ITO structure was obtained by applying forward bias of 5 volt with 30 mA current, resulting in a 3.35 volt threshold bias with the peak electroluminescence in UV-blue range.

  10. Room Temperature Electroluminescence from Tensile-Strained Si0.13Ge0.87/Ge Multiple Quantum Wells on a Ge Virtual Substrate

    Directory of Open Access Journals (Sweden)

    Guangyang Lin

    2016-09-01

    Full Text Available Direct band electroluminescence (EL from tensile-strained Si0.13Ge0.87/Ge multiple quantum wells (MQWs on a Ge virtual substrate (VS at room temperature is reported herein. Due to the competitive result of quantum confinement Stark effect and bandgap narrowing induced by tensile strain in Ge wells, electroluminescence from Γ1-HH1 transition in 12-nm Ge wells was observed at around 1550 nm. As injection current density increases, additional emission shoulders from Γ2-HH2 transition in Ge wells and Ge VS appeared at around 1300–1400 nm and 1600–1700 nm, respectively. The peak energy of EL shifted to the lower energy side superquadratically with an increase of injection current density as a result of the Joule heating effect. During the elevation of environmental temperature, EL intensity increased due to a reduction of energy between L and Γ valleys of Ge. Empirical fitting of the relationship between the integrated intensity of EL (L and injection current density (J with L~Jm shows that the m factor increased with injection current density, suggesting higher light emitting efficiency of the diode at larger injection current densities, which can be attributed to larger carrier occupations in the Γ valley and the heavy hole (HH valance band at higher temperatures.

  11. Electrical and electroluminescent characterization of nanometric multilayers of SiOX/SiOY obtained by LPCVD including non-normal emission

    Science.gov (United States)

    Alarcón-Salazar, J.; Zaldívar-Huerta, I. E.; Aceves-Mijares, M.

    2016-06-01

    This work describes the analysis and fabrication by Low Pressure Chemical Vapor Deposition of two light-emitting capacitors (LECs) constituted by nanometric multilayers of silicon-rich oxide. For both structures, seven layers were used: three light emitting layers with 6% silicon excess and four conductive layers with 12% silicon excess for one LEC and the other with 14% silicon excess. Both LECs were annealed at 1100 °C. Both multilayers demonstrate a substantially improved photoluminescent response compared to single emitting layers. A dielectric constant of 4.1 and a trap density of 1016 cm-3 were obtained from capacitance-voltage curves. Analysis of current-voltage and electroluminescence-voltage (EL-V) characteristics indicates that EL initiates under the space-charge-limited current mechanism, and the required voltage to turn on the emission is 38 V which is the trap-free limit voltage. However, EL increases exponentially under the impact ionization and trap-assisted tunneling conduction mechanisms. The electroluminescence spectra for both multilayers show two emission peaks centered in 450 and 700 nm attributed to oxygen defects. Also, the LEC non-normal emission was measured and it behaves like a Lambertian optical source. Both multilayers obtain the values of efficiency in the order of 10-6 which is in good agreement with the values reported in the literature.

  12. "Distinvar" device

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    The alignment of one of the accelerator magnets being checked by the AR Division survey group. A "distinvar" device, invented by the group, using calibrated invar wires stretched between the fixed survey pillar (on the left) and a fixed point on the magnet. In two days it is thus possible to measure the alignment of the 100 magnets with an accuracy better than 1/10.

  13. Magnetohydrodynamic device

    Energy Technology Data Exchange (ETDEWEB)

    Gorlin, S.M.; Ljubimov, G.A.; Bitjurin, V.A.; Kovbasjuk, V.I.; Maximenko, V.I.; Medin, S.A.; Barshak, A.E.

    1979-12-25

    A magnetohydrodynamic device having a duct for a conducting gas to flow at an angle with the direction of the magnetic field induction vector is described. The duct is situated in the magnetic system and is provided with a plurality of electrodes adapted to interact electrically with the gas, whereas the cross-sectional shape of the duct working space is bounded by a closed contour formed by a curve inscribed into a rectangle. 1 claim.

  14. Synthesis, characterization, and photophysical and electroluminescent properties of blue-emitting cationic iridium(III) complexes bearing nonconjugated ligands.

    Science.gov (United States)

    Zhang, Fuli; Ma, Dongxin; Duan, Lian; Qiao, Juan; Dong, Guifang; Wang, Liduo; Qiu, Yong

    2014-07-07

    -type ancillary ligands, where emission originates from the cyclometalated main ligands. Solution-processed organic light-emitting diodes based on complexes 1 and 2 gave blue-green (498 nm) and blue (478 nm) electroluminescence with maximum current efficiencies of 3.8 and 3.4 cd A(-1), respectively. The results indicate that introducing nonconjugated ligands into cationic iridium complexes is an effective means of achieving short-wavelength light-emitting phosphors.

  15. Electrooptical devices

    Science.gov (United States)

    Hurwitz, C. E.

    1980-03-01

    This report covers work carried out with support of the Department of the Air Force during the period 1 October 1979 through 31 March 1980. A part of this support was provided by the Rome Air Development Center. CW operation at temperatures up to 55 C has been achieved for GaInAsP/InP double-heterostructure (DH) lasers emitting at 1.5 micrometers, which were grown without a GaInAsP buffer layer. These devices are of interest for use as sources in fiber-optics communications systems, since the lowest transmission loss reported for fused-silica optical fibers occurs at 1.55 micrometers. Surface passivation techniques developed for InP and GaInAsP avalanche photodiodes have resulted in reductions of dark current as large as four orders of magnitude, to values as low as .0000016 A/sq cm at 0.9 V(b) where V(b) is the breakdown voltage. Devices consisting entirely of InP have been passivated with plasma-deposited Si3N4, and those with a GaInAsP layer but with the p-n junction in InP have been passivated with polyimide. Neither of these techniques successfully reduces dark currents in devices with the p-n junction in the GaInAsP, but a film of photoresist sprayed with SF6 as the propellant has given excellent results. The electrical characteristics in InP ion implanted with Sn, Ge, Si, and C have been investigated. All of these column IV elements yielded n-type conductivity and Sn, Ge, and Si showed high electrical activation; however, implanted C was found to have a net electrical activation of only about 5 percent.

  16. Scalable devices

    KAUST Repository

    Krüger, Jens J.

    2014-01-01

    In computer science in general and in particular the field of high performance computing and supercomputing the term scalable plays an important role. It indicates that a piece of hardware, a concept, an algorithm, or an entire system scales with the size of the problem, i.e., it can not only be used in a very specific setting but it\\'s applicable for a wide range of problems. From small scenarios to possibly very large settings. In this spirit, there exist a number of fixed areas of research on scalability. There are works on scalable algorithms, scalable architectures but what are scalable devices? In the context of this chapter, we are interested in a whole range of display devices, ranging from small scale hardware such as tablet computers, pads, smart-phones etc. up to large tiled display walls. What interests us mostly is not so much the hardware setup but mostly the visualization algorithms behind these display systems that scale from your average smart phone up to the largest gigapixel display walls.

  17. Physical phenomena in efficiency and stability of organic light-emitting devices

    Science.gov (United States)

    Luo, Yichun

    2007-12-01

    the undoped one upon increasing electric field. The phenomenon is attributed to the narrower energy bandgap of the doped material relative to that of the host material, which makes it less sensitive to electric-field-induced dissociation of excitons. On the other hand, the doped emitting layer shows a more obvious decrease in luminescence efficiency than the undoped one upon increasing the device current. This result is attributed to the simultaneous trapping of charges (holes or electrons) and excitons by the doped molecules, which increases the probability of charge-induced quenching of excitons. Last, we investigated the effect of using pulsed current (PC) versus direct current (DC) driving modes on the electroluminescence efficiency and operational stability of an OLED. The results show that the dependence of device stability on the driving mode correlates with the relative electroluminescence efficiency under PC and DC driving modes, where the mode that gives higher electroluminescence efficiency also gives higher operational stability, regardless of the duty cycle of the driving scheme.

  18. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  19. Electrophoresis device

    Science.gov (United States)

    Rhodes, P. H.; Snyder, R. S. (Inventor)

    1982-01-01

    A device for separating cellular particles of a sample substance into fractionated streams of different cellular species includes a casing having a distribution chamber, a separation chamber, and a collection chamber. The electrode chambers are separated from the separation chamber interior by means of passages such that flow variations and membrane variations around the slotted portion of the electrode chamber do not enduce flow perturbations into the laminar buffer curtain flowing in the separation chamber. The cellular particles of the sample are separated under the influence of the electrical field and the separation chamber into streams of different cellular species. The streams of separated cells enter a partition array in the collection chamber where they are fractionated and collected.

  20. Stratification devices

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2008-01-01

    heating system. High temperatures in the top of the storage tank established by the energy from the solar collector reduce the use of auxiliary energy. Low temperatures in the bottom of the storage tank improve the operation conditions for the solar collector. Using thermal stratified heat storages...... results in longer operation periods and improved utilization of the solar collector. Thermal stratification can be achieved, for example by using inlet stratification devices at all inlets to the storage tank. This paper presents how thermal stratification is established and utilized by means of inlet......Thermal stratification in the storage tank is extremely important in order to achieve high thermal performance of a solar heating system. High temperatures in the top of the storage tank and low temperatures in the bottom of the storage tank lead to the best operation conditions for any solar...

  1. Reverse-bias-driven dichromatic electroluminescence of n-ZnO wire arrays/p-GaN film heterojunction light-emitting diodes

    Science.gov (United States)

    Jeong, Junseok; Choi, Ji Eun; Kim, Yong-Jin; Hwang, Sunyong; Kim, Sung Kyu; Kim, Jong Kyu; Jeong, Hu Young; Hong, Young Joon

    2016-09-01

    Position-controlled n-ZnO microwire (MW) and nanowire-bundle (NW-B) arrays were fabricated using hydrothermal growth of ZnO on a patterned p-GaN film. Both the wire/film p-n heterojunctions showed electrical rectification features at reverse-bias (rb) voltages, analogous to backward diodes. Dichromatic electroluminescence (EL) emissions with 445- and 560-nm-wavelength peaks displayed whitish-blue and greenish-yellow light from MW- and NW-B-based heterojunctions at rb voltages, respectively. The different dichromatic EL emission colors were studied based on photoluminescence spectra and the dichromatic EL peak intensity ratios as a function of the rb voltage. The different EL colors are discussed with respect to depletion thickness and electron tunneling probability determined by wire/film junction geometry and size.

  2. Electroluminescence from a forward-biased Schottky barrier diode on modulation Si {delta}-doped GaAs/InGaAs/AlGaAs heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Babinski, Adam; Witczak, P.; Twardowski, A.; Baranowski, J. M.

    2001-06-18

    Electroluminescence (EL) from a forward-biased Schottky barrier diode on modulation Si {delta}-doped pseudomorphic GaAs/InGaAs/AlGaAs heterostructure with high mobility electron gas is investigated in this work. It has been found that the EL from the InGaAs quantum well can be observed at temperatures up to 90 K. The EL line shape depends on the current density, which reflects the filling of the InGaAs channel with electrons. The total integrated EL intensity depends linearly on the current density. We propose that hole diffusion from an inversion layer at the Schottky barrier is responsible for the observed optical recombination with electrons in the InGaAs quantum well. {copyright} 2001 American Institute of Physics.

  3. Characterization of the InGaN/GaN Multi-Quantum-Wells Light-Emitting Diode Grown on Patterned Sapphire Substrate with Wide Electroluminescence Spectrum

    Science.gov (United States)

    Reum Lee, Ah; Jeon, Hunsoo; Lee, Gang-Seok; Ok, Jin-Eun; Jo, Dong-Wan; Kim, Kyoung Hwa; Yi, Sam Nyung; Yang, Min; Ahn, Hyung Soo; Cho, Chae-Ryong; Kim, Suok-Whan; Lee, Jae-Hak; Ha, Hong-Ju

    2011-01-01

    We report the characterization of the InGaN/GaN multi-quantum-well (MQW) light-emitting diode (LED) grown on a patterned sapphire substrate by metal organic chemical vapor deposition (MOCVD) using the selective area growth (SAG) method. The SAG patterns were designed to be circular and their diameters were 700 and 200 µm. After the growth, the InGaN/GaN MQW LED of 200 µm diameter had various crystal facets and a shape similar to volcanic craters, which were not observed in the 700-µm-diameter sample. We obtained an active layer with compositional nonuniformity and superior optical properties. We found wide electroluminescence (EL) spectral peaks near 470, 570, and 600 nm. The distribution of the EL spectrum of the sample was similar to that of a conventional phosphor-converted white LED.

  4. Mid-infrared electro-luminescence and absorption from AlGaN/GaN-based multi-quantum well inter-subband structures

    Science.gov (United States)

    Hofstetter, Daniel; Bour, David P.; Kirste, Lutz

    2014-06-01

    We present electro-modulated absorption and electro-luminescence measurements on chirped AlGaN/GaN-based multi-quantum well inter-subband structures grown by metal-organic vapour phase epitaxy. The absorption signal is a TM-polarized, 70 meV wide feature centred at 230 meV. At medium injection current, a 58 meV wide luminescence peak corresponding to an inter-subband transition at 1450 cm-1 (180 meV) is observed. Under high injection current, we measured a 4 meV wide structure peaking at 92.5 meV in the luminescence spectrum. The energy location of this peak is exactly at the longitudinal optical phonon of GaN.

  5. Mid-infrared electro-luminescence and absorption from AlGaN/GaN-based multi-quantum well inter-subband structures

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Daniel, E-mail: Daniel.Hofstetter@unine.ch [University of Neuchâtel, Institute of Physics, 51 Avenue de Bellevaux, Neuchâtel, CH–2009 (Switzerland); Bour, David P. [Avogy, Inc., 677 River Oaks Parkway, San Jose, California 95134 (United States); Kirste, Lutz [Fraunhofer Institute for Applied Solid State Physics (IAF), Tullastrasse 72, D-79108 Freiburg i. Brsg. (Germany)

    2014-06-16

    We present electro-modulated absorption and electro-luminescence measurements on chirped AlGaN/GaN-based multi-quantum well inter-subband structures grown by metal-organic vapour phase epitaxy. The absorption signal is a TM-polarized, 70 meV wide feature centred at 230 meV. At medium injection current, a 58 meV wide luminescence peak corresponding to an inter-subband transition at 1450 cm{sup −1} (180 meV) is observed. Under high injection current, we measured a 4 meV wide structure peaking at 92.5 meV in the luminescence spectrum. The energy location of this peak is exactly at the longitudinal optical phonon of GaN.

  6. Thermal resistanse and nonuniform distribution of electroluminescence and temperature in high-power AlGaInN light-emitting diodes

    Directory of Open Access Journals (Sweden)

    A.V. Aladov

    2015-06-01

    Full Text Available The paper studies current spreading, light emission, and heat transfer in high-power flip-chip light-emitting diodes (LEDs and their effect on the chip thermal resistance by experimental and theoretical approaches. The thermal resistance was measured using two methods: by monitoring the transient response of the LED operation voltage to the temperature variation with the Transient Tester T3Ster and by temperature mapping with the use of an infrared thermal-imaging microscope. The near field of the electroluminescence intensity was recorded with an optical microscope and a CCD camera. Three-dimensional numerical simulation of the current spreading and heat transfer in the LED chip was carried out using the SimuLED package in order to interpret the obtained experimental results.

  7. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    Science.gov (United States)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  8. Integrated device architectures for electrochromic devices

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Jonathan Mack; Berland, Brian Spencer

    2015-04-21

    This disclosure describes systems and methods for creating monolithically integrated electrochromic devices which may be a flexible electrochromic device. Monolithic integration of thin film electrochromic devices may involve the electrical interconnection of multiple individual electrochromic devices through the creation of specific structures such as conductive pathway or insulating isolation trenches.

  9. Laser device

    Science.gov (United States)

    Scott, Jill R.; Tremblay, Paul L.

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  10. Medical devices: US medical device regulation.

    Science.gov (United States)

    Jarow, Jonathan P; Baxley, John H

    2015-03-01

    Medical devices are regulated by the US Food and Drug Administration (FDA) within the Center for Devices and Radiological Health. Center for Devices and Radiological Health is responsible for protecting and promoting the public health by ensuring the safety, effectiveness, and quality of medical devices, ensuring the safety of radiation-emitting products, fostering innovation, and providing the public with accurate, science-based information about the products we oversee, throughout the total product life cycle. The FDA was granted the authority to regulate the manufacturing and marketing of medical devices in 1976. It does not regulate the practice of medicine. Devices are classified based on complexity and level of risk, and "pre-1976" devices were allowed to remain on the market after being classified without FDA review. Post-1976 devices of lower complexity and risk that are substantially equivalent to a marketed "predicate" device may be cleared through the 510(k) premarket notification process. Clinical data are typically not needed for 510(k) clearance. In contrast, higher-risk devices typically require premarket approval. Premarket approval applications must contain data demonstrating reasonable assurance of safety and efficacy, and this information typically includes clinical data. For novel devices that are not high risk, the de novo process allows FDA to simultaneously review and classify new devices. Devices that are not legally marketed are permitted to be used for clinical investigation purposes in the United States under the Investigational Device Exemptions regulation.

  11. Multiple functional UV devices based on III-Nitride quantum wells for biological warfare agent detection

    Science.gov (United States)

    Wang, Qin; Savage, Susan; Persson, Sirpa; Noharet, Bertrand; Junique, Stéphane; Andersson, Jan Y.; Liuolia, Vytautas; Marcinkevicius, Saulius

    2009-02-01

    We have demonstrated surface normal detecting/filtering/emitting multiple functional ultraviolet (UV) optoelectronic devices based on InGaN/GaN, InGaN/AlGaN and AlxGa1-xN/AlyGa1-yN multiple quantum well (MQW) structures with operation wavelengths ranging from 270 nm to 450 nm. Utilizing MQW structure as device active layer offers a flexibility to tune its long cut-off wavelength in a wide UV range from solar-blind to visible by adjusting the well width, well composition and barrier height. Similarly, its short cut-off wavelength can be adjusted by using a GaN or AlGaN block layer on a sapphire substrate when the device is illuminated from its backside, which further provides an optical filtering effect. When a current injects into the device under forward bias the device acts as an UV light emitter, whereas the device performs as a typical photodetector under reverse biases. With applying an alternating external bias the device might be used as electroabsorption modulator due to quantum confined Stark effect. In present work fabricated devices have been characterized by transmission/absorption spectra, photoresponsivity, electroluminescence, and photoluminescence measurements under various forward and reverse biases. The piezoelectric effect, alloy broadening and Stokes shift between the emission and absorption spectra in different InGaN- and AlGaN-based QW structures have been investigated and compared. Possibilities of monolithic or hybrid integration using such multiple functional devices for biological warfare agents sensing application have also be discussed.

  12. Medical Device Safety

    Science.gov (United States)

    A medical device is any product used to diagnose, cure, or treat a condition, or to prevent disease. They ... may need one in a hospital. To use medical devices safely Know how your device works. Keep ...

  13. Hybrid device based on GaN nanoneedles and MEH-PPV/PEDOT:PSS polymer

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Min Jeong; Gwon, Dong-Oh; Lee, Chan-Mi; Lee, Gang Seok [Department of Applied Science, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Jeon, In-Jun [Department of Nano-semiconductor Engineering, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Ahn, Hyung Soo [Department of Applied Science, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Department of Nano-semiconductor Engineering, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Yi, Sam Nyung, E-mail: snyi@kmou.ac.kr [Department of Applied Science, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Department of Nano-semiconductor Engineering, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Ha, Dong Han [Division of Convergence Technology, Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of)

    2015-08-15

    Highlights: • A hybrid device was demonstrated by using MEH-PPV, PEDOT:PSS, and GaN nanoneedles. • I–V curve of the hybrid device showed its rectification behaviour, similar to a diode. • EL peak originated by the different potential barriers at MEH-PPV and GaN interface. - Abstract: A hybrid device that combines the properties of organic and inorganic semiconductors was fabricated and studied. It incorporated poly[2-methoxy-5-(2-ethylhexyloxy)- 1,4-phenylenevinylene] (MEH-PPV) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as organic polymers and GaN nanoneedles as an inorganic semiconductor. Layers of the two polymers were spin coated on to the GaN nanoneedles. The one peak in the electroluminescence spectrum originated from the MEH-PPV layer owing to the different potential barriers of electrons and holes at its interface with the GaN nanoneedles. However, the photoluminescence spectrum showed peaks due to both GaN nanoneedles and MEH-PPV. Such hybrid structures, suitably developed, might be able to improve the efficiency of optoelectronic devices.

  14. Implantable electronic medical devices

    CERN Document Server

    Fitzpatrick, Dennis

    2014-01-01

    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  15. Effect of doping different dyes in Alq{sub 3} on electroluminescence and morphology of layers using single furnace method

    Energy Technology Data Exchange (ETDEWEB)

    Janghouri, Mohammad [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 1983963113 (Iran, Islamic Republic of); Mohajerani, Ezeddin, E-mail: e-mohajerani@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 1983963113 (Iran, Islamic Republic of); Khabazi, Amir; Abedi, Zahra; Razavi, Hosein [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 1983963113 (Iran, Islamic Republic of)

    2013-08-15

    A method for obtaining red emission from organic-light emitting diodes has been developed by dissolving red and green dyes in a common solvent and thermally evaporating the mixture in a single furnace. Devices with fundamental structure of ITO/PEDOT: PSS (55 nm)/PVK (90 nm)/Alq{sub 3}: porphyrin (50 nm)/Al (180 nm) were fabricated. The emission properties and chromaticity coordinates of the devices depend on the energy transfer between the emission of host and the absorption of the dyes. TPP and TPPNO{sub 2} doped in Alq{sub 3} showed more pure red emission compared to 3,4-TPP, and PdTPP doped in Alq{sub 3} based devices. AFM measurement showed that the morphology of the layers depends on the type of dyes and uniform mixing of porphyrin compounds and Alq{sub 3} at constant deposition rate. It is shown that this new method is a promising candidate for fabrication of low cost red OLEDs at more homogeneous layer. -- Highlights: ► We fabricated light emitting layer by dissolving dyes in common solvent followed by thermal evaporation of dyes. ► Achieving red emissions with a single furnace. ► We employed single furnace for the first time to control the emitting color of OLED. ► The morphology of the films depends on the homogeneity and type of dyes. ► Low cost, homogeneity and effective energy transfer are advantages of this method.

  16. Fabrication and electroluminescence properties of white organic light-emitting diode with a new yellow fluorescent dopant.

    Science.gov (United States)

    Lee, Sung Nam; Lee, Seok Jae; Kim, Young Kwan; Shin, Dong Myung

    2014-08-01

    A new yellow fluorescent material, (2Z)-3-[4,4"-bis(dimethylamino)-1,1':4',1"-terphenyl-2'-yl]-2-phenylacrylonitrile (BDAT-P), have been synthesized for use in organic light-emitting diodes. Opto-electronic properties of device with the structure of ITO (180 nm)/NPB (50 nm)/MADN:PFVtPh (SYB-41) 8% (17 nm)/CBP (5 nm)/CBP:Ir(pq)2acac 8% (3 nm)/CBP (5 nm)/MADN:BDAT-P 8% (3 nm)/CBP (5 nm)/MADN:SYB-41 8% (17 nm)/TPBi (40 nm)/Liq (2 nm)/Al (100 nm) was measured and revealed that BDAT-P was sufficiently applicable as a dopant of one of emitting layers in white light-emitting diodes. Maximum luminance of device was measured to be 26,950 cd/m2. Maximum luminous and quantum efficiency were observed to be 14.22 cd/A and 6.58%, respectively. The device emitted warm white light corresponding to Commission Internationale de l'Eclairage (CIExy) coordinates of (0.372, 0.424) at 11 V, (0.375,0.417) at 12 V, (0.372,0.409) at 13 V, (0.366, 0.401) at 14 V, and (0.360, 0.393) at 15 V, respectively.

  17. Recent Advances in Conjugated Polymers for Light Emitting Devices

    Directory of Open Access Journals (Sweden)

    Mohan Raja

    2011-03-01

    Full Text Available A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review.

  18. Recent advances in conjugated polymers for light emitting devices.

    Science.gov (United States)

    Alsalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review.

  19. Energy transfer probability in organic electrophosphorescence device with dopant

    Science.gov (United States)

    Dai, Guo-Zhang; Li, Hong-Jian; Pan, Yan-Zhi; Dai, Xiao-Yu; Xie, Qiang

    2005-12-01

    Based on the energy transfer process from host to dopant in an organic electrophosphorescent (EP) device, the expression of energy transfer probability (η) between the host (TPD) and guest (Ir(ppy)3) EP systems was proposed. The results show that: (1) The rate of the triplet energy transfer (KHG and KGH) increases exponentially with increasing donor-acceptor molecular distance (R), whereas decreases as the intermolecular distance (RHH) increases from 0.8 to 2.4 nm. Furthermore, KGH changes more quickly than KHG. (2) The energy transfer probability (η) increases as R reduces and the RHH changes can be safely neglected for R1.1nm, the transfer probability will be below zero. Here, the energy transfer principle may be less important and the high electroluminescence (EL) quantum efficiency of phosphorescent system will be attributed to the direct electron-hole recombination in phosphorescent molecules. (3) The η will increase when the Forster radius (R0) increases or Gibb's energy decreases.

  20. Energy transfer probability in organic electrophosphorescence device with dopant

    Institute of Scientific and Technical Information of China (English)

    Dai Guo-Zhang; Li Hong-Jian; Pan Yan-Zhi; Dai Xiao-Yu; Xie Qiang

    2005-01-01

    Based on the energy transfer process from host to dopant in an organic electrophosphorescent (EP) device, the expression of energy transfer probability (η) between the host (TPD) and guest (Ir(ppy)3) EP systems was proposed.The results show that: (1) The rate of the triplet energy transfer (KHG and KGH) increases exponentially with increasing donor-acceptor molecular distance (R), whereas decreases as the intermolecular distance (RHH) increases from 0.8 to 2.4 nm. Furthermore, KGH changes more quickly than KHG. (2) The energy transfer probability (η) increases as R reduces, and the RHH changes can be safely neglected for R <0.9 nm. The situation changes for 0.9nm< R < 1.1nm,RHH (< 1nm) plays an essential role when η changes and increases with the latter. However, if R > 1.1nm, the transfer probability will be below zero. Here, the energy transfer principle may be less important, and the high electroluminescence (EL) quantum efficiency of phosphorescent system will be attributed to the direct electron-hole recombination in phosphorescent molecules. (3) The ηwill increase when the Forster radius (R0) increases or Gibb's energy decreases.

  1. Ultraefficient Themoelectric Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermoelectric (TE) devices already found a wide range of commercial, military and aerospace applications. However, at present commercially available TE devices...

  2. Highly luminescent colloidal CdS quantum dots with efficient near-infrared electroluminescence in light-emitting diodes

    OpenAIRE

    Bansal, Ashu Kumar; Antolini, F.; Zhang, Shuyue; Stroea, L.; Orlotani, L; Lanzi, M; Serra, E; Allard, S; Scherf, U.; Samuel, Ifor David William

    2016-01-01

    We acknowledge financial support from FP7 project “Laser Induced Synthesis of Polymeric Nanocomposite Materials and Development of Micro-Patterned Hybrid Light Emitting Diodes (LED) and Transistors (LET)”-LAMP (Project G.A.247928). A.K.B. and I.D.W.S. also acknowledge financial support from EPSRC Programme “Challenging the Limits of Photonics: Structured Light” Grant EP/J01771X/1. Quantum dots are of growing interest as emissive materials in light emitting devices. Here first we report the fo...

  3. Tunable electroluminescence from low-threshold voltage LED structure based on electrodeposited Zn{sub 1-x}Cd{sub x}O-nanorods/p-GaN heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Pauporte, T. [Laboratoire d' Electrochimie, Chimie des Interfaces et Modelisation pour l' Energie (LECIME), UMR 7575 CNRS, Chimie ParisTech, Paris (France); Lupan, O. [Laboratoire d' Electrochimie, Chimie des Interfaces et Modelisation pour l' Energie (LECIME), UMR 7575 CNRS, Chimie ParisTech, Paris (France); Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, Chisinau (Moldova); Viana, B. [Laboratoire de Chimie de la Matiere Condensee de Paris, UMR 7574-CNRS-Chimie ParisTech-UPMC, Paris (France)

    2012-02-15

    Violet light-emitting diode (LED) structures based on Cd-alloyed zinc oxide (Zn{sub 1-x}Cd{sub x}O) nanorods (NRs)/p-GaN heterojunction have been fabricated by epitaxial electrodeposition at low temperatures in an aqueous soft bath followed by a mild thermal annealing. The ultraviolet (UV) room-temperature emission peak at around 397 nm with a full width at half-maximum (FWHM) of 10 nm observed from pure ZnO-NRs/p-GaN at room temperature was shifted to 417 nm with FWHM of 14 nm by employing a Zn{sub 0.92}Cd{sub 0.08}O-NRs/p-GaN heterojunction. The emission threshold voltage was low at about 5.0 V and the electroluminescence (EL) intensity rapidly increased with the applied forward-bias voltage. The emission wavelength increased with the Cd content in the alloy. The EL physics mechanism in LED structures of the heterojunctions is discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Blueshift of electroluminescence from single n-InP nanowire/p-Si heterojunctions due to the Burstein-Moss effect.

    Science.gov (United States)

    Liu, C; Dai, L; You, L P; Xu, W J; Qin, G G

    2008-11-19

    Single-crystalline n-type InP nanowires (NWs) with different electron concentrations were synthesized on Si substrates via the vapor phase transport method. The electrical properties of the InP nanowires were investigated by fabricating and measuring single NW field-effect transistors (FETs). Single InP NW/p(+)-Si heterojunctions were fabricated, and electroluminescence (EL) spectra from them were studied. It was found that both the photoluminescence (PL) spectra of the InP NWs and the EL spectra of the heterojunctions blueshift from 920 to 775 nm when the electron concentrations of the InP NWs increase from 2 × 10(17) to 1.4 × 10(19) cm(-3). The blueshifts can be attributed to the Burstein-Moss effect rather than the quantum confinement effect in the InP NWs. The large blueshifts observed in this study indicate a potential application of InP NWs in nano-multicolour displays.

  5. Polarization-resolved electroluminescence study of InGaN/GaN dot-in-a-wire light-emitting diodes grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.H.; Wang, Q.; Nguyen, H.P.T.; Zhao, S.; Mi, Z. [Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec (Canada)

    2015-05-15

    The polarization properties of light emission from InGaN nanowire (NW) light-emitting diodes (LEDs) have been studied with the use of goniometric setup. A maximum polarization ratio of ∝0.7 has been obtained from the edge emission of NW array-based LEDs and the light is mainly polarized parallel to the c-axis of NWs. The nearly isotropic polarization response from a core-shell NW LED structure is also observed, and it is found that the degree of polarization is strongly depended on the NW diameter. With the growth of the AlGaN shell, the resulting diameter of core-shell NWs becomes larger and is comparable to the emission wavelength, thus weakening the optical confinement effect and the polarization behavior. The size-dependent polarization properties of NW structures are further verified by the finite-difference time-domain simulation. NWs with diameters much less than the emission wavelength render a strong contrast between the p- and s-polarized light emissions. (Left) FE-SEM image of MBE-grown NWs covered with polyimide. (Right) Plot of integrated electroluminescence intensity as a function of polarizer angle for a NW LED. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Near-intrinsic energy resolution for 30–662 keV gamma rays in a high pressure xenon electroluminescent TPC

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez, V. [Instituto de Física Corpuscular (IFIC), CSIC and Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Borges, F.I.G.M. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Cárcel, S. [Instituto de Física Corpuscular (IFIC), CSIC and Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Castel, J.; Cebrián, S. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cervera, A. [Instituto de Física Corpuscular (IFIC), CSIC and Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Conde, C.A.N. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Dafni, T. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Dias, T.H.V.T. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Díaz, J. [Instituto de Física Corpuscular (IFIC), CSIC and Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); and others

    2013-04-21

    We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 {sup 136}Xe neutrino-less double beta decay (0νββ) experiment with the main objectives of demonstrating near-intrinsic energy resolution at energies up to 662 keV and of optimizing the NEXT-100 detector design and operating parameters. Energy resolutions of ∼1% FWHM for 662 keV gamma rays were obtained at 10 and 15 atm and ∼5% FWHM for 30 keV fluorescence xenon X-rays. These results demonstrate that 0.5% FWHM resolutions for the 2459 keV hypothetical neutrino-less double beta decay peak are realizable. This energy resolution is a factor 7–20 better than that of the current leading 0νββ experiments using liquid xenon and thus represents a significant advancement. We present also first results from a track imaging system consisting of 64 silicon photo-multipliers recently installed in NEXT–DBDM that, along with the excellent energy resolution, demonstrates the key functionalities required for the NEXT-100 0νββ search.

  7. Effect of localization states on the electroluminescence spectral width of blue–green light emitting InGaN/GaN multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China and School of Electronic and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Zhao, De Gang, E-mail: dgzhao@red.semi.ac.cn; Jiang, De Sheng; Chen, Ping; Liu, Zong Shun; Zhu, Jian Jun; Li, Xiang; Shi, Ming; Zhao, Dan Mei [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Liu, Jian Ping; Zhang, Shu Ming; Wang, Hui; Yang, Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2015-11-15

    The electroluminescence (EL) spectra of blue–green light emitting InGaN/GaN multiple quantum well (MQW) structures grown via metal-organic chemical vapor deposition are investigated. With increasing In content in InGaN well layers, the peak energy redshifts, the emission intensity reduces and the inhomogeneous broadening of the luminescence band increases. In addition, it is found that the EL spectra shrink with increasing injection current at low excitation condition, which may be ascribed to both Coulomb screening of polarization field and carrier transferring from shallower localization states to the deeper ones, while at high currents the state-filling effect in all localization states may become significant and lead to a broadening of EL spectra. However, surprisingly, for the MQW sample with much higher In content, the EL spectral bandwidth can be almost unchanged with increasing current at the high current range, since a large number of carriers may be captured by the nonradiative recombination centers distributed outside the localized potential traps and the state-filling effect in the localization states is suppressed.

  8. Electroluminescent TCC, C3dg and fB/Bb epitope assays for profiling complement cascade activation in vitro using an activated complement serum calibration standard.

    Science.gov (United States)

    van Vuuren, B Jansen; Bergseth, G; Mollnes, T E; Shaw, A M

    2014-01-15

    Electroluminescent assays for epitopes on the complement components C3dg, terminal complement complex (TCC) and factor B/Bb (fB/Bb) have been developed with capture and detection antibodies to produce detection limits C3dg=91±9ng/mL, TCC=3±0.1ng/mL and fB=55.7±0.1ng/mL. The assay performance was assessed against a series of zymosan and heat aggregated IgG (HAIgG) in vitro activations of complement using a calibrated activated complement serum (ACS) as calibration standard. The ACS standard was stable within 20% accuracy over a 6-month period with freeze-thaw cycles as required. Differential activation of the complement cascade was observed for TCC showing a pseudo-first order formation half-life of 3.5h after activation with zymosan. The C3dg activation fragment indicates a 10% total activation for both activation agents. The kinetic-epitope analysis for fB indicates that the capture epitope is on the fB/Bb protein fragment which can then become covered by the formation of C3bBb or C3bBbP complexes during the time course of the cascade.

  9. Strong room temperature electroluminescence from lateral p-SiGe/i-Ge/n-SiGe heterojunction diodes on silicon-on-insulator substrate

    Science.gov (United States)

    Lin, Guangyang; Yi, Xiaohui; Li, Cheng; Chen, Ningli; Zhang, Lu; Chen, Songyan; Huang, Wei; Wang, Jianyuan; Xiong, Xihuan; Sun, Jiaming

    2016-10-01

    A lateral p-Si0.05Ge0.95/i-Ge/n-Si0.05Ge0.95 heterojunction light emitting diode on a silicon-on-insulator (SOI) substrate was proposed, which is profitable to achieve higher luminous extraction compared to vertical junctions. Due to the high carrier injection ratio of heterostructures and optical reflection at the SiO2/Si interface of the SOI, strong room temperature electroluminescence (EL) at around 1600 nm from the direct bandgap of i-Ge with 0.30% tensile strain was observed. The EL peak intensity of the lateral heterojunction is enhanced by ˜4 folds with a larger peak energy than that of the vertical Ge p-i-n homojunction, suggesting that the light emitting efficiency of the lateral heterojunction is effectively improved. The EL peak intensity of the lateral heterojunction, which increases quadratically with injection current density, becomes stronger for diodes with a wider i-Ge region. The CMOS compatible fabrication process of the lateral heterojunctions paves the way for the integration of the light source with the Ge metal-oxide-semiconductor field-effect-transistor.

  10. Controlling non-radiative energy transfer in organic binary blends: a route towards colour tunability and white emission from single-active-layer light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Pisignano, Dario [NNL, National Nanotechnology Laboratory of Istituto Nazionale di Fisica della Materia (INFM), c/o Dipartimento di Ingegneria dell' Innovazione, via Arnesano, I-73100 Lecce (Italy); Mazzeo, Marco [NNL, National Nanotechnology Laboratory of Istituto Nazionale di Fisica della Materia (INFM), c/o Dipartimento di Ingegneria dell' Innovazione, via Arnesano, I-73100 Lecce (Italy); Gigli, Giuseppe [NNL, National Nanotechnology Laboratory of Istituto Nazionale di Fisica della Materia (INFM), c/o Dipartimento di Ingegneria dell' Innovazione, via Arnesano, I-73100 Lecce (Italy); Barbarella, Giovanna [Consiglio Nazionale delle Ricerche (CNR), ICOCEA, Area della Ricerca di Bologna, via Gobetti 101, I-40129 Bologna (Italy); Favaretto, Laura [Consiglio Nazionale delle Ricerche (CNR), ICOCEA, Area della Ricerca di Bologna, via Gobetti 101, I-40129 Bologna (Italy); Cingolani, Roberto [NNL, National Nanotechnology Laboratory of Istituto Nazionale di Fisica della Materia (INFM), c/o Dipartimento di Ingegneria dell' Innovazione, via Arnesano, I-73100 Lecce (Italy)

    2003-10-21

    We show how colour tunability (including white) can be achieved by controlling non-radiative intermolecular energy transfer from the donor to the acceptor in binary blends of oligomeric compounds. Blends of different concentrations of a novel functionalized thiophene-based oligomer and a low-molar-mass diamine derivative (N, N'-diphenyl-N, N'-bis(3-methylphenyl)-1, 1'-biphenyl-4.4'diamine) are used to tune both the photoluminescence and the electroluminescence (EL) from red to blue, including balanced white, according to the standards of the Commission Internationale de l'Eclairage. The single-active-layer light-emitting devices, realized by spin-coating, exhibit good EL performance. In particular, the white-emitting device shows an EL efficiency of 5 x 10{sup -1} cd A{sup -1} and a luminance of more than 180 cd m{sup -2}.

  11. Optoelectronic characterization of Eu3+ doped MLa2O4 (M = Sr, Ca, Mg nanophosphors for display devices

    Directory of Open Access Journals (Sweden)

    Devender Singh

    2015-12-01

    Full Text Available Eu3+ doped MLa2O4 (M = Mg, Ca, Sr nanophosphors were synthesized by a rapid facile gel combustion route. Luminescence properties of these prepared nanophosphors were analyzed by their excitation and emission spectra. The excitation spectrum consisted of some peaks in the 350–410 nm range due to the f–f transitions. The emission spectra of prepared nanophosphors had transitions of Eu3+ ions i.e. 5D0 → 7F0 (580 nm, 5D0 → 7F1 (594–596 nm, 5D0 → 7F2 (614–618, 628–629 nm, and 5D0 → 7F3 (650–651 nm. The main emission peak was observed at 614–618 nm of 5D0→7F2 transitions of Eu3+ ions. The enhancement in optical properties was observed when materials were reheated at higher temperatures. The nanostructural morphology was confirmed with scanning as well as transmission electron microscopy. The prepared materials were having size in the range of 10–50 nm. X-ray powder diffraction (XRD technique was used to determine the crystal structure and phase of the prepared phosphor materials. XRD measurements revealed that the crystallinity of MLa2O4 materials increased with increasing the sintering temperature. The prepared materials had bright red emitting optical properties that could be suitably applied in various display devices.

  12. Synthesis and Property of New Propeller Shaped Emitting Materials for Organic Light-Emitting Devices.

    Science.gov (United States)

    Kang, Seokwoo; Lee, Hayoon; Kim, Beomjin; Park, Youngil; Park, Jongwook

    2016-03-01

    New propeller type emitting compound, namely 3,6-di-anthracen-9-yl-9,10-bis-(4-anthracen-9-yi-phenyl)-phenanthrene[TAnDAP] and 3,6-bis-(10-phenyl-anthracen-9-yl)-9,10-bis-[4-(10-phenyl-anthracen-9-yl)-phenyl]-phenanthrene [TAnPDAP] were synthesized through Suzuki and McMurry reactions. We investigated their physical properties such as optical, electrochemical, and electroluminescent properties. The two compounds were used as an emitting layer in OLED devices: ITO/2-TNATA (60 nm)/NPB (15 nm)/non-doped: TAnDAP or TAnPDAP (35 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm). The TAnDAP OLED device showed C.I.E. value of (0.28, 0.41) and luminance efficiency of 3.81 cd/A at 10 mA/cm2. The TAnPDAP device showed C.I.E. value of (0.20, 0.27) and high luminance efficiency of 5.40 cd/A at 10 mA/cm2. TAnPDAP was found to show better luminance efficiency and C.I.E. value than TAnDAP because it has a bulky 9-phenylanthracene.

  13. Highly efficient non-doped blue organic light emitting devices based on anthracene–pyridine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Haykir, Gulcin; Tekin, Emine; Atalar, Taner; Türksoy, Figen

    2013-12-02

    Four different 2-(10-aryl)anthracen-9-yl)pyridine derivatives 5a–d were synthesized via the Suzuki cross-coupling reaction. Photo-physical characteristics of these materials having strong electron donating or electron withdrawing groups were explored. Multilayer small molecule organic light emitting diodes without any dopant were fabricated in the following sequence: Indium tin oxide/4,4′-bis(N-(1-naphthyl)-N-phenylamino)biphenyl (50 nm)/5a–d (30 nm)/4,7-diphenyl-1,10-phenanthroline (30 nm)/LiF/Al. The electroluminescent property of the device fabricated with 5d as an emitter exhibited a high external quantum efficiency of 3.80% (at around 1 mA/cm{sup 2}) with Commission Internationale De L'Eclairage coordinates of (0.14, 0.25). - Highlights: • Synthesis and characterization of 2-(10-aryl)anthracen-9-yl)pyridine derivatives • Thermal, photophysical and electrochemical properties of anthracene derivatives • Emitters from blue to greenish blue for organic light emitting device applications • Organic light emitting device fabrication and characterization of 2-(10-aryl)anthracen-9-yl)pyridine derivatives.

  14. Blue and green organic light-emitting devices with various film thicknesses for color tuning

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Blue and green organic light-emitting devices with a structure of indium tin oxide (ITO)/N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1 '-biphenyl-4,4'-diamine (NPB)/aluminum(Ⅲ) bis(2-methyl-8-quinolinato)4 -phenylphenolato (BAlq)/tris(8-hydroxyquinolate)-aluminum (Alq3)/Mg:Ag have been fabricated. Blue to green light emission has been achieved with the change of organic film thickness. Based on energy band diagram and charge carrier tunneling theory, it is concluded that the films of different thicknesses play a role as a color-tuning layer and the color-variable electroluminescence (EL) is ascribed to the modulation function within the charge carrier recombination zone. In the case of heterostructure devices with high performance, the observed EL spectra varies significantly with the thickness of organic films, which is resulted from the shift of recombination region site. It has not been hitherto indicated that the devices compose of identical components could be implemented to realize different color emission by changing the film thickness of functional layers.

  15. Rhetorical Devices in English Advertisements

    Institute of Scientific and Technical Information of China (English)

    陈芃

    2011-01-01

    In order to achieve persuasive and convincing effects,rhetorical devices are frequently applied in English advertisements.The paper classifies rhetorical devices into four basic categories: phonetic devices,lexical devices,syntactic devices and figures of

  16. Stable White Light Electroluminescence from Highly Flexible Polymer/ZnO Nanorods Hybrid Heterojunction Grown at 50°C

    Directory of Open Access Journals (Sweden)

    Zainelabdin A

    2010-01-01

    Full Text Available Abstract Stable intrinsic white light–emitting diodes were fabricated from c-axially oriented ZnO nanorods (NRs grown at 50°C via the chemical bath deposition on top of a multi-layered poly(9,9-dioctylfluorene-co–N-(4-butylpheneylaminediphenylamine/poly(9,9dioctyl-fluorene deposited on PEDOT:PSS on highly flexible plastic substrate. The low growth temperature enables the use of a variety of flexible plastic substrates. The fabricated flexible white light–emitting diode (FWLED demonstrated good electrical properties and a single broad white emission peak extending from 420 nm and up to 800 nm combining the blue light emission of the polyflourene (PFO polymer layer with the deep level emission (DLEs of ZnO NRs. The influence of the temperature variations on the FWLED white emissions characteristics was studied and the devices exhibited high operation stability. Our results are promising for the development of white lighting sources using existing lighting glass bulbs, tubes, and armature technologies.

  17. Implantable Medical Devices

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Implantable Medical Devices Updated:Sep 16,2016 For Rhythm Control ... a Heart Attack Introduction Medications Surgical Procedures Implantable Medical Devices • Life After a Heart Attack • Heart Attack ...

  18. Thermography of electronic devices

    OpenAIRE

    Panfilova S. P.; Vlasov A. I.; Gridnev V. N.; Chervinsky A. S.

    2007-01-01

    The possibility of application of thermography to diagnose the electronic devices is analyzed in the article. Typical faults of electronic devices which can be found by means of thermography are given. Advantages of noncontact thermal inspection in comparison with the contact one are described. Some features of thermography of electronic devices are considered. Thermography apparatus is viewed and some pieces of advice about choosing it for electronic devices diagnosis are given. An example o...

  19. Heterostructures and quantum devices

    CERN Document Server

    Einspruch, Norman G

    1994-01-01

    Heterostructure and quantum-mechanical devices promise significant improvement in the performance of electronic and optoelectronic integrated circuits (ICs). Though these devices are the subject of a vigorous research effort, the current literature is often either highly technical or narrowly focused. This book presents heterostructure and quantum devices to the nonspecialist, especially electrical engineers working with high-performance semiconductor devices. It focuses on a broad base of technical applications using semiconductor physics theory to develop the next generation of electrical en

  20. Organic photosensitive devices

    Science.gov (United States)

    Rand, Barry P; Forrest, Stephen R

    2013-11-26

    The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.

  1. Device-less interaction

    NARCIS (Netherlands)

    Monaci, G.; Triki, M.; Sarroukh, B.E.

    2009-01-01

    This document describes the results of a technology survey for device-less interaction. The Device-less Interaction project (2007-307) aims at providing interaction options for future home appliances without resorting to a remote control or any other dedicated control device. The target home applia

  2. Organic photosensitive devices

    Energy Technology Data Exchange (ETDEWEB)

    Rand, Barry P; Forrest, Stephen R

    2013-11-26

    The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.

  3. Photovoltaic device and method

    Science.gov (United States)

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  4. Electroluminescence of a Multi-Layered Organic Light-Emitting Diode Utilizing Trans-4-[p-[N-methyl-N-(hydroxymethyl)amino]styryl]-N-Methylphridinium Tetraphenylborate as the Active Layer

    Science.gov (United States)

    Feng, Xue-Yuan; Zhang, Jia-Yu; Xu, Chun-Xiang; Qiao, Yi; Cui, Yi-Ping

    2006-06-01

    Employing an organic dye salt of trans-4-[p-[N-methyl-N-(hydroxymethyl)amino]styryl]-N-methylphridinium tetraphenylborate (ASPT) as the active layer, 8-hydrocyquinoline aluminium (Alq3) as the electron transporting layer and N,N'-diphenyl-N,N'-bis(3-methylphenyl)-[1,1'-biphenyl]-4,4'-diamine (TPD) as the hole transporting layer, respectively, we fabricate a multi-layered organic light-emitting diode and observe the colour tunable electroluminescence (EL). The dependence of the EL spectra on the applied voltage is investigated in detail, and the recombination mechanism is discussed by considering the variation of the hole-electron recombination region.

  5. Unitary lens semiconductor device

    Science.gov (United States)

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  6. Optical plasma microelectronic devices

    CERN Document Server

    Forati, Ebrahim; Dill, Thyler; Sievenpiper, Dan

    2015-01-01

    The semiconductor channel in conventional microelectronic devices was successfully replaced with an optically triggered gas plasma channel. The combination of DC and laser-induced gas ionizations controls the conductivity of the channel, enabling us to realize different electronic devices such as transistors, switches, modulators, etc. A special micro-scale metasurface was used to enhance the laser-gas interaction, as well as combining it with DC ionization properly. Optical plasma devices benefit form the advantages of plasma/vacuum electronic devices while preserving most of the integrablity of semiconductor based devices.

  7. FLUIDICS DEVICE FOR ASSAY

    DEFF Research Database (Denmark)

    2007-01-01

    The present invention relates to a device for use in performing assays on standard laboratory solid supports whereon chemical entities are attached. The invention furthermore relates to the use of such a device and a kit comprising such a device. The device according to the present invention is a......, when operatively connected, one or more chambers (21) comprising the chemical entities (41), the inlet(s) (5) and outlet(s) (6) and chambers (21) being in fluid connection. The device further comprise means for providing differing chemical conditions in each chamber (21)....

  8. Solid state devices

    Science.gov (United States)

    1991-01-01

    The Solid State Device research program is directed toward developing innovative devices for space remote and in-situ sensing, and for data processing. Innovative devices can result from the standard structures in innovative materials such as low and high temperature superconductors, strained layer superlattices, or diamond films. Innovative devices can also result from innovative structures achieved using electron tunneling or nanolithography in standard materials. A final step is to use both innovative structures and innovative materials. A new area of emphasis is the miniaturization of sensors and instruments molded by using the techniques of electronic device fabrication to micromachine silicon into micromechanical and electromechanical sensors and actuators.

  9. A review on organic spintronic materials and devices: II. Magnetoresistance in organic spin valves and spin organic light emitting diodes

    Directory of Open Access Journals (Sweden)

    Rugang Geng

    2016-09-01

    Full Text Available In the preceding review paper, Paper I [Journal of Science: Advanced Materials and Devices 1 (2016 128–140], we showed the major experimental and theoretical studies on the first organic spintronic subject, namely organic magnetoresistance (OMAR in organic light emitting diodes (OLEDs. The topic has recently been of renewed interest as a result of a demonstration of the magneto-conductance (MC that exceeds 1000% at room temperature using a certain type of organic compounds and device operating condition. In this report, we will review two additional organic spintronic devices, namely organic spin valves (OSVs where only spin polarized holes exist to cause magnetoresistance (MR, and spin organic light emitting diodes (spin-OLEDs where both spin polarized holes and electrons are injected into the organic emissive layer to form a magneto-electroluminescence (MEL hysteretic loop. First, we outline the major advances in OSV studies for understanding the underlying physics of the spin transport mechanism in organic semiconductors (OSCs and the spin injection/detection at the organic/ferromagnet interface (spinterface. We also highlight some of outstanding challenges in this promising research field. Second, the first successful demonstration of spin-OLEDs is reviewed. We also discuss challenges to achieve the high performance devices. Finally, we suggest an outlook on the future of organic spintronics by using organic single crystals and aligned polymers for the spin transport layer, and a self-assembled monolayer to achieve more controllability for the spinterface.

  10. Device characterization of cadmium telluride photovoltaics

    Science.gov (United States)

    Geisthardt, Russell M.

    measurement systems. Characterization of plasma-cleaned cells show an improvement in performance, even at thinner CdS layer thickness. Measurements of thinning CdTe samples reveal additional optical losses, likely caused by the increasing importance of the back diode. Characterization of Cd(S,O) devices show improved performance, both from improved optical properties and theorized improvement in band alignment properties. Uniformity can have an effect on whole-cell performance, but can also be an important parameter to characterize on its own. Light-beam-induced current is a powerful tool for characterizing uniformity. The LBIC tool was upgraded to improve its accuracy, functionality, and speed. The improved LBIC system aids in the collection of uniformity data. A number of parameters can be varied to provide in-depth uniformity information and help identify causes of nonuniformity. The wavelength can be varied to provide information on different layers. This can help identify variations in CdS thickness and local CdTe band gap. An applied voltage bias can be used to identify locations with weak diode properties. The resolution can also be varied to provide information on nonuniformities at different scales, from variations across the whole cell to variations on the size of several grains. LBIC can also be paired with electroluminescence to create a powerful nonuniformity characterization suite. The two can be paired with EL used as a screening tool to identify cells or areas which need further characterization from LBIC.

  11. Optical devices featuring textured semiconductor layers

    Science.gov (United States)

    Moustakas, Theodore D.; Cabalu, Jasper S.

    2011-10-11

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  12. Abstract Storage Devices

    CERN Document Server

    Koenig, Robert; Tessaro, Stefano

    2007-01-01

    A quantum storage device differs radically from a conventional physical storage device. Its state can be set to any value in a certain (infinite) state space, but in general every possible read operation yields only partial information about the stored state. The purpose of this paper is to initiate the study of a combinatorial abstraction, called abstract storage device (ASD), which models deterministic storage devices with the property that only partial information about the state can be read, but that there is a degree of freedom as to which partial information should be retrieved. This concept leads to a number of interesting problems which we address, like the reduction of one device to another device, the equivalence of devices, direct products of devices, as well as the factorization of a device into primitive devices. We prove that every ASD has an equivalent ASD with minimal number of states and of possible read operations. Also, we prove that the reducibility problem for ASD's is NP-complete, that t...

  13. Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot

    Science.gov (United States)

    Cao, Jin; Xie, Jing-Wei; Wei, Xiang; Zhou, Jie; Chen, Chao-Ping; Wang, Zi-Xing; Jhun, Chulgyu

    2016-12-01

    A bright white quantum dot light-emitting device (white-QLED) with 4-[4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl]-2- [3-(tri-phenylen-2-yl)phen-3-yl]quinazoline deposited on a thin film of mixed green/red-QDs as a bilayer emitter is fabricated. The optimized white-QLED exhibits a turn-on voltage of 3.2 V and a maximum brightness of 3660 cd/m2@8 V with the Commission Internationale de l’Eclairage (CIE) chromaticity in the region of white light. The ultra-thin layer of QDs is proved to be critical for the white light generation in the devices. Excitation mechanism in the white-QLEDs is investigated by the detailed analyses of electroluminescence (EL) spectral and the fluorescence lifetime of QDs. The results show that charge injection is a dominant mechanism of excitation in the white-QLED. Project supported by the National Natural Science Foundation of China (Grant No. 21302122) and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 13ZR1416600).

  14. Smart portable rehabilitation devices

    Directory of Open Access Journals (Sweden)

    Leahey Matt

    2005-07-01

    Full Text Available Abstract Background The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s. Methods In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Results Laboratory tests of the devices

  15. Smart portable rehabilitation devices.

    Science.gov (United States)

    Mavroidis, Constantinos; Nikitczuk, Jason; Weinberg, Brian; Danaher, Gil; Jensen, Katherine; Pelletier, Philip; Prugnarola, Jennifer; Stuart, Ryan; Arango, Roberto; Leahey, Matt; Pavone, Robert; Provo, Andrew; Yasevac, Dan

    2005-07-12

    The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Laboratory tests of the devices demonstrated that they were able to meet their design

  16. Red Emitting Coumarin-Azo Dyes : Synthesis, Characterization, Linear and Non-linear Optical Properties-Experimental and Computational Approach.

    Science.gov (United States)

    Tathe, Abhinav B; Sekar, Nagaiyan

    2016-07-01

    The coumarin molecules with 7-(N,N-diethylamino) substitution and aryl azo (Ar-N=N-) at 3-position were synthesized, by reacting diazonium salt of substituted amines and 7-(N, N-diethylamino)-4-hydroxy coumarin under basic conditions. They were found to be fluorescent despite the presence of azo group. The azo group rotation was blocked by complexing with -BF2, so as to get a red shift in absorption. The azo molecules show charge transfer, whereas BF2-complexes do not. The dipole moment ratios between the ground and excited states calculated suggest highly polar excited state and an intra-molecular charge transfer at the excited state in the case of azo dyes. The NLO properties were calculated by solvatochromic method and computationally. Second order hyperpolarizability was found to be 46 to 1083 times more than urea. DFT and TDTDF calculations were performed to understand the electronic properties of the molecules at the ground as well as excited states.

  17. Sol-gel synthesis and luminescent properties of red-emitting Y(P,V)O4:Eu(3+) phosphors.

    Science.gov (United States)

    Zhang, Xinguo; Zhou, Fangxiang; He, Pei; Zhang, Min; Gong, Menglian

    2016-02-01

    Eu(3+)-activated Y(P,V)O4 phosphors were prepared by the EDTA sol-gel method, and the corresponding morphologies and luminescent properties were investigated. The sample particles were relatively spheroid with size of 2-3 µm and had a smooth surface. The excitation spectra for Y(P,V)O4:Eu(3+) consisted of three strong excitation bands in the 200-350 nm range, which were attributed to a Eu(3+)- O(2-) charge-transfer band and (1)A1-(1) T1/(1) T2 transitions in VO4(3-). The as-synthesized phosphors exhibited a highly efficient red luminescence at 613 nm due to the Eu(3+5) D0-(7) F2 electric dipole transition. With the increase in the V(5+)/P(5+) ratio, the luminescence intensity of the red phosphor under UV excitation was greatly improved due to enhanced VO4(3-) → Eu(3+) energy transfer.

  18. Cathodoluminescence Properties of Red-Emitting Sr{sub 1-x}Ca{sub x}S : Eu Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young-Sik; Huh, Young-Duk [Dankook University, Yongin (Korea, Republic of)

    2016-07-15

    Sr{sub 1-x}Ca{sub x}S:Eu (x = 0, 0.2, 0.4, 0.6, 0.8, 1) phosphors were prepared from CaS, SrS, and EuS via a solid-state reaction in air. The cathodoluminescence (CL) spectra of the Sr{sub 1-x}Ca{sub x}S:Eu phosph ors for the moderate voltage ranging from 4 to 10 kV were obtained to test their usefulness in field emission displays (FEDs). The maximum wavelength of the CL spectra of the Sr{sub 1-x}Ca{sub x}S:Eu phosphors increases from 629 to 668 nm as the mole fraction of calcium increases up to x = 0.8, and then decreases to 663 nm at x = 1. The relationship between the CL spectra and crystal structures of the Sr{sub 1-x}Ca{sub x}S:Eu phosphors was determined.

  19. A Novel Orange-Red Emitting ZnB4O7:Eu3+ Phosphor with Urchin-Like Nanostructure

    Directory of Open Access Journals (Sweden)

    Hom Nath Luitel

    2015-01-01

    Full Text Available A novel phosphor, ZnB4O7:Eu3+, with urchin-like structure consisting of radially arranged high density nanorods was successfully synthesized by hydrothermal process at 150°C for 24 h. The nanorods were measured from 200 to 400 nm in diameter and several µm in length. The urchins were few µm to 40 µm in diameter. The ZnB4O7:Eu3+ phosphors were efficiently excited by ultraviolet (UV ~ 254 nm to visible light of ~ 220 to 450 nm and exhibited intense orange-red emission consisting of main peaks at 590, 615, and 695 nm due to the charge transfer in the host and f→f transitions (5D0 to 7F1,2,4 of the Eu3+ ions. Effect of the Eu3+ ions concentration on the photoluminescence (PL emission intensity was investigated and it was found that 5 at% Eu3+ is the optimum concentration. Meanwhile, the concentration quenching mechanism was discussed. The key parameters, such as temperature dependent PL and CIE values of ZnB4O7:Eu3+ phosphors, were studied. The ZnB4O7:Eu3+ phosphor exhibited good thermal stability and better absorption cross section compared to the commercial Y2O2S:Eu3+ phosphor. All these characteristics indicate that the phosphor will be a potential candidate for the UV based white LEDs.

  20. Sensitizing effects of ZnO quantum dots on red-emitting Pr3+-doped SiO2 phosphor

    CSIR Research Space (South Africa)

    Mbule, PS

    2012-05-01

    Full Text Available In this study, red cathodoluminescence (CL) ( emission=614 nm) was observed from Pr3+ ions in a glassy (amorphous) SiO2 host. This emission was enhanced considerably when ZnO quantum dots (QDs) were incorporated in the SiO2:Pr3+ suggesting...