WorldWideScience

Sample records for red spectral edge

  1. Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR and Quantification of Red-Edge Band BRDF Effects

    Directory of Open Access Journals (Sweden)

    David P. Roy

    2017-12-01

    Full Text Available Optical wavelength satellite data have directional reflectance effects over non-Lambertian surfaces, described by the bidirectional reflectance distribution function (BRDF. The Sentinel-2 multi-spectral instrument (MSI acquires data over a 20.6° field of view that have been shown to have non-negligible BRDF effects in the visible, near-infrared, and short wave infrared bands. MSI red-edge BRDF effects have not been investigated. In this study, they are quantified by an examination of 6.6 million (January 2016 and 10.7 million (April 2016 pairs of forward and back scatter reflectance observations extracted over approximately 20° × 10° of southern Africa. Non-negligible MSI red-edge BRDF effects up to 0.08 (reflectance units across the 290 km wide MSI swath are documented. A recently published MODIS BRDF parameter c-factor approach to adjust MSI visible, near-infrared, and short wave infrared reflectance to nadir BRDF-adjusted reflectance (NBAR is adapted for application to the MSI red-edge bands. The red-edge band BRDF parameters needed to implement the algorithm are provided. The parameters are derived by a linear wavelength interpolation of fixed global MODIS red and NIR BRDF model parameters. The efficacy of the interpolation is investigated using POLDER red, red-edge, and NIR BRDF model parameters, and is shown to be appropriate for the c-factor NBAR generation approach. After adjustment to NBAR, red-edge MSI BRDF effects were reduced for the January data (acquired close to the solar principal where BRDF effects are maximal and the April data (acquired close to the orthogonal plane for all the MSI red-edge bands.

  2. Red-Edge Spectral Reflectance as an Indicator of Surface Moisture Content in an Alaskan Peatland Ecosystem

    Science.gov (United States)

    McPartland, M.; Kane, E. S.; Turetsky, M. R.; Douglass, T.; Falkowski, M. J.; Montgomery, R.; Edwards, J.

    2015-12-01

    Arctic and boreal peatlands serve as major reservoirs of terrestrial organic carbon (C) because Net Primary Productivity (NPP) outstrips C loss from decomposition over long periods of time. Peatland productivity varies as a function of water table position and surface moisture content, making C storage in these systems particularly vulnerable to the climate warming and drying predicted for high latitudes. Detailed spatial knowledge of how aboveground vegetation communities respond to changes in hydrology would allow for ecosystem response to environmental change to be measured at the landscape scale. This study leverages remotely sensed data along with field measurements taken at the Alaska Peatland Experiment (APEX) at the Bonanza Creek Long Term Ecological Research site to examine relationships between plant solar reflectance and surface moisture. APEX is a decade-long experiment investigating the effects of hydrologic change on peatland ecosystems using water table manipulation treatments (raised, lowered, and control). Water table levels were manipulated throughout the 2015 growing season, resulting in a maximum separation of 35 cm between raised and lowered treatment plots. Water table position, soil moisture content, depth to seasonal ice, soil temperature, photosynthetically active radiation (PAR), CO2 and CH4 fluxes were measured as predictors of C loss through decomposition and NPP. Vegetation was surveyed for percent cover of plant functional types. Remote sensing data was collected during peak growing season, when the separation between treatment plots was at maximum difference. Imagery was acquired via a SenseFly eBee airborne platform equipped with a Canon S110 red-edge camera capable of detecting spectral reflectance from plant tissue at 715 nm band center to within centimeters of spatial resolution. Here, we investigate empirical relationships between spectral reflectance, water table position, and surface moisture in relation to peat carbon balance.

  3. Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI) Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR) and Quantification of Red-Edge Band BRDF Effects

    OpenAIRE

    David P. Roy; Zhongbin Li; Hankui K. Zhang

    2017-01-01

    Optical wavelength satellite data have directional reflectance effects over non-Lambertian surfaces, described by the bidirectional reflectance distribution function (BRDF). The Sentinel-2 multi-spectral instrument (MSI) acquires data over a 20.6° field of view that have been shown to have non-negligible BRDF effects in the visible, near-infrared, and short wave infrared bands. MSI red-edge BRDF effects have not been investigated. In this study, they are quantified by an examination of 6.6 mi...

  4. Comparing Broad-Band and Red Edge-Based Spectral Vegetation Indices to Estimate Nitrogen Concentration of Crops Using Casi Data

    Science.gov (United States)

    Wang, Yanjie; Liao, Qinhong; Yang, Guijun; Feng, Haikuan; Yang, Xiaodong; Yue, Jibo

    2016-06-01

    In recent decades, many spectral vegetation indices (SVIs) have been proposed to estimate the leaf nitrogen concentration (LNC) of crops. However, most of these indices were based on the field hyperspectral reflectance. To test whether they can be used in aerial remote platform effectively, in this work a comparison of the sensitivity between several broad-band and red edge-based SVIs to LNC is investigated over different crop types. By using data from experimental LNC values over 4 different crop types and image data acquired using the Compact Airborne Spectrographic Imager (CASI) sensor, the extensive dataset allowed us to evaluate broad-band and red edge-based SVIs. The result indicated that NDVI performed the best among the selected SVIs while red edge-based SVIs didn't show the potential for estimating the LNC based on the CASI data due to the spectral resolution. In order to search for the optimal SVIs, the band combination algorithm has been used in this work. The best linear correlation against the experimental LNC dataset was obtained by combining the 626.20nm and 569.00nm wavebands. These wavelengths correspond to the maximal chlorophyll absorption and reflection position region, respectively, and are known to be sensitive to the physiological status of the plant. Then this linear relationship was applied to the CASI image for generating an LNC map, which can guide farmers in the accurate application of their N fertilization strategies.

  5. Natural and artificial spectral edges in exoplanets

    Science.gov (United States)

    Lingam, Manasvi; Loeb, Abraham

    2017-09-01

    Technological civilizations may rely upon large-scale photovoltaic arrays to harness energy from their host star. Photovoltaic materials, such as silicon, possess distinctive spectral features, including an 'artificial edge' that is characteristically shifted in wavelength shortwards of the 'red edge' of vegetation. Future observations of reflected light from exoplanets would be able to detect both natural and artificial edges photometrically, if a significant fraction of the planet's surface is covered by vegetation or photovoltaic arrays, respectively. The stellar energy thus tapped can be utilized for terraforming activities by transferring heat and light from the day side to the night side on tidally locked exoplanets, thereby producing detectable artefacts.

  6. DAVs: Red Edge and Outbursts

    Science.gov (United States)

    Luan, Jing

    2018-04-01

    As established by ground based surveys, white dwarfs with hydrogen atmospheres pulsate as they cool across the temperature range, 12500Kred edge is a two-decade old puzzle. Recently, Kepler discovered a number of cool DAVs exhibiting sporadic outbursts separated by days, each lasting several hours, and releasing \\sim 10^{33}-10^{34} {erg}. We provide quantitative explanations for both the red edge and the outbursts. The minimal frequency for overstable modes rises abruptly near the red edge. Although high frequency overstable modes exist below the red edge, their photometric amplitudes are generally too small to be detected by ground based observations. Nevertheless, these overstable parent modes can manifest themselves through nonlinear mode couplings to damped daughter modes which generate limit cycles giving rise to photometric outbursts.

  7. Towards red-edge positions less sensitive to canopy biophysical parameters for leaf chlorophyll estimation using properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves (SAILH) simulated data

    NARCIS (Netherlands)

    Cho, M.A.; Skidmore, A.K.; Atzberger, C.

    2008-01-01

    Several methods for extracting the chlorophyll sensitive red-edge position (REP) from hyperspectral data are reported in literature. This study is a continuation of a recent paper published as 'A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation

  8. Potential utility of the spectral red-edge region of SumbandilaSat imagery for assessing indigenous forest structure and health

    CSIR Research Space (South Africa)

    Cho, Moses A

    2012-06-01

    Full Text Available , SumbandilaSat in characterising forest fragmentation in a fragile rural landscape in Dukuduku, northern KwaZulu-Natal. The AISA Eagle hyperspectral image was resampled to the band settings of SumbandilaSat and SPOT 5 (green, red and near infrared bands only...

  9. Spectrally adapted red flare tracers with superior spectral performance

    Directory of Open Access Journals (Sweden)

    Ramy Sadek

    2017-12-01

    Full Text Available The production of bright light, with vivid color, is the primary purpose of signaling, illuminating devices, and fire control purposes. This study, reports on the development of red flame compositions with enhanced performance in terms of luminous intensity, and color quality. The light intensity and the imprint spectra of developed red flame compositions to standard NATO red tracer (R-284 NATO were measured using digital luxmeter, and UV–Vis. spectrometer. The main giving of this study is that the light intensity of standard NATO red tracer was increased by 72%, the color quality was also improved by 60% (over the red band from 650 to 780 nm. This enhanced spectral performance was achieved by means of deriving the combustion process to maximize the formation of red color emitting species in the combustion flame. Thanks to the optimum ratio of color source to color intensifier using aluminum metal fuel; this approach offered the highest intensity and color quality. Upon combustion, aluminum was found to maximize the formation SrCL (the main reactive red color emitting species and to minimize the interfering incandescent emission resulted from MgO and SrO. Quantification of active red color emitting species in the combustion flame was conducted using chemical equilibrium thermodynamic code named ICT. The improvement in red flare performance, established the rule that the color intensifier should be in the range from 10 to 15 Wt % of the total composition.

  10. Comparative Analysis of Red-Edge Hyperspectral Indices

    Science.gov (United States)

    Gupta, R.; Vijayan, D.; Prasad, T.

    The spectrally continuous observations of 3 nm bandwidth in 680 to 800 nm range over the growth cycle of wheat were subjected to first order differentiation to identify the point of inflection in red to near-IR transition zone. During 40 to 84 days after sowing (DAS), the point of inflection was observed in 723 to 735 nm region with peak response at 729 nm for 64 DAS . For differentiated curve pertaining to 25 DAS (initial vegetative) and 90 DAS (initial senescence) phenological stages, the point of inflection was in 690-693 and 744-747 nm spectral region, respectively. The ratios corresponding to 1dB (RI1dB = R 735 /R720), 2dB (RI 2dB = R738/R 720), 3dB (RI3dB = R741 /R 717) down signal levels and half signal level (RIhalf = R747/R 708 ) were computed. For nomenclature point of view, R41 refers to reflectance for 3 nm7 bandwidth centered at 741 nm. Correlations for these developed RIs were studied with reference to indices given by Vogelmann i.e., VOG a = R 740 /R720 , VOG b = [(R 734-R747)/(R715+R720)] and red edge spectral parameter (RESP) = R750 /R 710. VOG a and RESP conceptually resemble with developed RI 2dB and RIhalf , respectively. All RIs were found correlated with VOGa , VOG b and RESP with r2 in the range of 0.96 to 0.99; r2 was 0.998 for RI2dB and VOG a pair and 0.996 for RI half and RESP pair; the slope factor of regression relationship improved by about 50% from RI dB to2 RI3dB and by about 125% from RI3dB to RIhalf with r2 in 0.97-0.99 range. Thus, theoretical basis for VOG a and RESP in terms of dB based indices has been provided. The wavelengths used in VOGb are noticed in dB based indices ; to provide stability to small magnitude R720, the sum of R720 and R715 has been used in VOGb. Based on regression analysis of these indices with LAI in its growth and decline phases separately, the slope value for VOG b, RI 2dB, VOG a, RIhalf, RESP and area under 680 to 760 nm for first order derivative curve (area) were in 0.08-0.11, 0.24 - 0.34, 0

  11. Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation.

    Science.gov (United States)

    Urban, Philipp; Rosen, Mitchell R; Berns, Roy S

    2009-08-01

    Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.

  12. Canny Edge Detection in Cross-Spectral Fused Images

    Directory of Open Access Journals (Sweden)

    Patricia Suárez

    2017-02-01

    Full Text Available Considering that the images of different spectra provide an ample information that helps a lo in the process of identification and distinction of objects that have unique spectral signatures. In this paper, the use of cross-spectral images in the process of edge detection is evaluated. This study aims to assess the Canny edge detector with two variants. The first relates to the use of merged cross-spectral images and the second the inclusion of morphological filters. To ensure the quality of the data used in this study the GQM (Goal-Question- Metrics, framework, was applied to reduce noise and increase the entropy on images. The metrics obtained in the experiments confirm that the quantity and quality of the detected edges increases significantly after the inclusion of a morphological filter and a channel of near infrared spectrum in the merged images.

  13. Green's function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral edge case

    KAUST Repository

    Kuchment, Peter

    2012-06-21

    Precise asymptotics known for the Green\\'s function of the Laplace operator have found their analogs for periodic elliptic operators of the second order at and below the bottom of the spectrum. Due to the band-gap structure of the spectra of such operators, the question arises whether similar results can be obtained near or at the edges of spectral gaps. As the result of this work shows, this is possible at a spectral edge when the dimension d ≥ 3. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Green's function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral edge case

    KAUST Repository

    Kuchment, Peter; Raich, Andrew

    2012-01-01

    Precise asymptotics known for the Green's function of the Laplace operator have found their analogs for periodic elliptic operators of the second order at and below the bottom of the spectrum. Due to the band-gap structure of the spectra of such operators, the question arises whether similar results can be obtained near or at the edges of spectral gaps. As the result of this work shows, this is possible at a spectral edge when the dimension d ≥ 3. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The red edge in arid region vegetation: 340-1060 nm spectra

    Science.gov (United States)

    Ray, Terrill W.; Murray, Bruce C.; Chehbouni, A.; Njoku, Eni

    1993-01-01

    The remote sensing study of vegetated regions of the world has typically been focused on the use of broad-band vegetation indices such as NDVI. Various modifications of these indices have been developed in attempts to minimize the effect of soil background, e.g., SAVI, or to reduce the effect of the atmosphere, e.g., ARVI. Most of these indices depend on the so-called 'red edge,' the sharp transition between the strong absorption of chlorophyll pigment in visible wavelengths and the strong scattering in the near-infrared from the cellular structure of leaves. These broadband indices tend to become highly inaccurate as the green canopy cover becomes sparse. The advent of high spectral resolution remote sensing instrument such as the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) has allowed the detection of narrow spectral features in vegetation and there are reports of detection of the red edge even for pixels with very low levels of green vegetation cover by Vane et al. and Elvidge et al., and to characterize algal biomass in coastal areas. Spectral mixing approaches similar to those of Smith et al. can be extended into the high spectral resolution domain allowing for the analysis of more endmembers, and potentially, discrimination between material with narrow spectral differences. Vegetation in arid regions tends to be sparse, often with small leaves such as the creosote bush. Many types of arid region vegetation spend much of the year with their leaves in a senescent state, i.e., yellow, with lowered chlorophyll pigmentation. The sparseness of the leaves of many arid region plants has the dual effect of lowering the green leaf area which can be observed and of allowing more of the sub-shrub soil to be visible which further complicates the spectrum of a region covered with arid region vegetation. Elvidge examined the spectral characteristics of dry plant materials showing significant differences in the region of the red edge and the diagnostic ligno

  16. Theoretical red edge of the RR Lyrae Gap. II. Dependence of the red edge on luminosity and composition, and observational consequences

    International Nuclear Information System (INIS)

    Deupree, R.G.

    1977-01-01

    The theoretical location of the red edge of the RR Lyrae Gap is computed for two luminosities and two compositions. An increase in luminosity or an increase in helium abundance decreases the effective temperature of the red edge. A comparison of the width of the instability strip with observations indicates that Yapprox. =0.3. The effects of convection on the light curves, velocity curves, pulsation periods, and overall structure of the models are small

  17. [Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis].

    Science.gov (United States)

    Zhao, Wen-zhi; Luo, Li-qun; Guo, Zhou; Yue, Jun; Yu, Xue-ying; Liu, Hui; Wei, Jing

    2015-10-01

    Roads are typically man-made objects in urban areas. Road extraction from high-resolution images has important applications for urban planning and transportation development. However, due to the confusion of spectral characteristic, it is difficult to distinguish roads from other objects by merely using traditional classification methods that mainly depend on spectral information. Edge is an important feature for the identification of linear objects (e. g. , roads). The distribution patterns of edges vary greatly among different objects. It is crucial to merge edge statistical information into spectral ones. In this study, a new method that combines spectral information and edge statistical features has been proposed. First, edge detection is conducted by using self-adaptive mean-shift algorithm on the panchromatic band, which can greatly reduce pseudo-edges and noise effects. Then, edge statistical features are obtained from the edge statistical model, which measures the length and angle distribution of edges. Finally, by integrating the spectral and edge statistical features, SVM algorithm is used to classify the image and roads are ultimately extracted. A series of experiments are conducted and the results show that the overall accuracy of proposed method is 93% comparing with only 78% overall accuracy of the traditional. The results demonstrate that the proposed method is efficient and valuable for road extraction, especially on high-resolution images.

  18. Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes.

    Science.gov (United States)

    Tian, Yu; Zhou, Chenkun; Worku, Michael; Wang, Xi; Ling, Yichuan; Gao, Hanwei; Zhou, Yan; Miao, Yu; Guan, Jingjiao; Ma, Biwu

    2018-05-01

    Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m -2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Spatial-Spectral Approaches to Edge Detection in Hyperspectral Remote Sensing

    Science.gov (United States)

    Cox, Cary M.

    This dissertation advances geoinformation science at the intersection of hyperspectral remote sensing and edge detection methods. A relatively new phenomenology among its remote sensing peers, hyperspectral imagery (HSI) comprises only about 7% of all remote sensing research - there are five times as many radar-focused peer reviewed journal articles than hyperspectral-focused peer reviewed journal articles. Similarly, edge detection studies comprise only about 8% of image processing research, most of which is dedicated to image processing techniques most closely associated with end results, such as image classification and feature extraction. Given the centrality of edge detection to mapping, that most important of geographic functions, improving the collective understanding of hyperspectral imagery edge detection methods constitutes a research objective aligned to the heart of geoinformation sciences. Consequently, this dissertation endeavors to narrow the HSI edge detection research gap by advancing three HSI edge detection methods designed to leverage HSI's unique chemical identification capabilities in pursuit of generating accurate, high-quality edge planes. The Di Zenzo-based gradient edge detection algorithm, an innovative version of the Resmini HySPADE edge detection algorithm and a level set-based edge detection algorithm are tested against 15 traditional and non-traditional HSI datasets spanning a range of HSI data configurations, spectral resolutions, spatial resolutions, bandpasses and applications. This study empirically measures algorithm performance against Dr. John Canny's six criteria for a good edge operator: false positives, false negatives, localization, single-point response, robustness to noise and unbroken edges. The end state is a suite of spatial-spectral edge detection algorithms that produce satisfactory edge results against a range of hyperspectral data types applicable to a diverse set of earth remote sensing applications. This work

  20. Spectral Comparison and Stability of Red Regions on Jupiter

    Science.gov (United States)

    Simon, A. A.; Carlson, R. W.; Sanchez-Lavega, A.

    2013-01-01

    A study of absolute color on Jupiter from Hubble Space Telescope imaging data shows that the Great Red Spot (GRS) is not the reddest region of the planet. Rather, a transient red cyclone visible in 1995 and the North Equatorial Belt both show redder spectra than the GRS (i.e., more absorption at blue and green wavelengths). This cyclone is unique among vortices in that it is intensely colored yet low altitude, unlike the GRS. Temporal analysis shows that the darkest regions of the NEB are relative constant in color from 1995 to 2008, while the slope of the GRS core may vary slightly. Principal component analysis shows several spectral components are needed, in agreement with past work, and further highlights the differences between regions. These color differences may be indicative of the same chromophore(s) under different conditions, such as mixing with white clouds, longer UV irradiation at higher altitude, and thermal processing, or may indicate abundance variations in colored compounds. A single compound does not fit the spectrum of any region well and mixes of multiple compounds including NH4SH, photolyzed NH3, hydrocarbons, and possibly P4, are likely needed to fully match each spectrum.

  1. Photopic spectral sensitivities of the red and the yellow field of the pigeon retina

    NARCIS (Netherlands)

    Wortel, J.F.; Wubbels, R.J.; Nuboer, J.F.W.

    1984-01-01

    The spectral sensitivities of the red field and the yellow field in the retina of the homing pigeon (Columba Livia) were determined on the basis of ERG responses. Between 450 and 550 nm the relative spectral sensitivity of the yellow field turned out to be higher than that of the red field. The

  2. Spectral and energy efficiency analysis of uplink heterogeneous networks with small-cells on edge

    KAUST Repository

    Shakir, Muhammad Zeeshan

    2014-12-01

    This paper presents a tractable mathematical framework to analyze the spectral and energy efficiency of an operator initiated deployment of the small-cells (e.g., femtocells) where the small-cell base stations are deliberately positioned around the edge of the macrocell. The considered deployment facilitates the cell-edge mobile users in terms of their coverage, spectral, and energy efficiency and is referred to as cell-on-edge (COE) configuration. The reduction in energy consumption is achieved by considering fast power control where the mobile users transmit with adaptive power to compensate the path loss, shadowing and fading. In particular, we develop a moment generating function (MGF) based approach to derive analytical bounds on the area spectral efficiency and exact expressions for the energy efficiency of the mobile users in the considered COE configuration over generalized-K fading channels. Besides the COE configuration, the derived bounds are also shown to be useful in evaluating the performance of random small-cell deployments, e.g., uniformly distributed small-cells. Simulation results are presented to demonstrate the improvements in spectral and energy efficiency of the COE configuration with respect to macro-only networks and other unplanned deployment strategies. © 2014 Elsevier B.V. All rights reserved.

  3. On the location of spectral edges in \\mathbb {Z}-periodic media

    KAUST Repository

    Exner, Pavel; Kuchment, Peter; Winn, Brian

    2010-01-01

    Periodic second-order ordinary differential operators on ℝ are known to have the edges of their spectra to occur only at the spectra of periodic and antiperiodic boundary value problems. The multi-dimensional analog of this property is false, as was shown in a 2007 paper by some of the authors of this paper. However, one sometimes encounters the claims that in the case of a single periodicity (i.e., with respect to the lattice ℤ), the 1D property still holds, and spectral edges occur at the periodic and anti-periodic spectra only. In this work, we show that even in the simplest case of quantum graphs this is not true. It is shown that this is true if the graph consists of a 1D chain of finite graphs connected by single edges, while if the connections are formed by at least two edges, the spectral edges can already occur away from the periodic and anti-periodic spectra. © 2010 IOP Publishing Ltd.

  4. On the location of spectral edges in \\mathbb {Z}-periodic media

    KAUST Repository

    Exner, Pavel

    2010-11-09

    Periodic second-order ordinary differential operators on ℝ are known to have the edges of their spectra to occur only at the spectra of periodic and antiperiodic boundary value problems. The multi-dimensional analog of this property is false, as was shown in a 2007 paper by some of the authors of this paper. However, one sometimes encounters the claims that in the case of a single periodicity (i.e., with respect to the lattice ℤ), the 1D property still holds, and spectral edges occur at the periodic and anti-periodic spectra only. In this work, we show that even in the simplest case of quantum graphs this is not true. It is shown that this is true if the graph consists of a 1D chain of finite graphs connected by single edges, while if the connections are formed by at least two edges, the spectral edges can already occur away from the periodic and anti-periodic spectra. © 2010 IOP Publishing Ltd.

  5. Red-edge position of habitable exoplanets around M-dwarfs.

    Science.gov (United States)

    Takizawa, Kenji; Minagawa, Jun; Tamura, Motohide; Kusakabe, Nobuhiko; Narita, Norio

    2017-08-08

    One of the possible signs of life on distant habitable exoplanets is the red-edge, which is a rise in the reflectivity of planets between visible and near-infrared (NIR) wavelengths. Previous studies suggested the possibility that the red-edge position for habitable exoplanets around M-dwarfs may be shifted to a longer wavelength than that for Earth. We investigated plausible red-edge position in terms of the light environment during the course of the evolution of phototrophs. We show that phototrophs on M-dwarf habitable exoplanets may use visible light when they first evolve in the ocean and when they first colonize the land. The adaptive evolution of oxygenic photosynthesis may eventually also use NIR radiation, by one of two photochemical reaction centers, with the other center continuing to use visible light. These "two-color" reaction centers can absorb more photons, but they will encounter difficulty in adapting to drastically changing light conditions at the boundary between land and water. NIR photosynthesis can be more productive on land, though its evolution would be preceded by the Earth-type vegetation. Thus, the red-edge position caused by photosynthetic organisms on habitable M-dwarf exoplanets could initially be similar to that on Earth and later move to a longer wavelength.

  6. Behaviour of spectral entropy, spectral edge frequency 90%, and alpha and beta power parameters during low-dose propofol infusion.

    LENUS (Irish Health Repository)

    Mahon, P

    2012-02-03

    BACKGROUND: In this study we analyse the behaviour, potential clinical application and optimal cortical sampling location of the spectral parameters: (i) relative alpha and beta power; (ii) spectral edge frequency 90%; and (iii) spectral entropy as monitors of moderate propofol-induced sedation. METHODS: Multi-channel EEG recorded from 12 ASA 1 (American Society of Anesthesiologists physical status 1) patients during low-dose, target effect-site controlled propofol infusion was used for this analysis. The initial target effect-site concentration was 0.5 microg ml(-1) and increased at 4 min intervals in increments of 0.5 to 2 microg ml(-1). EEG parameters were calculated for 2 s epochs in the frequency ranges 0.5-32 and 0.5-47 Hz. All parameters were calculated in the channels: P4-O2, P3-O1, F4-C4, F3-C3, F3-F4, and Fp1-Fp2. Sedation was assessed clinically using the OAA\\/S (observer\\'s assessment of alertness\\/sedation) scale. RESULTS: Relative beta power and spectral entropy increased with increasing propofol effect-site concentration in both the 0.5-47 Hz [F(18, 90) = 3.455, P<0.05 and F(18, 90) = 3.33, P<0.05, respectively] and 0.5-32 Hz frequency range. This effect was significant in each individual channel (P<0.05). No effect was seen of increasing effect-site concentration on relative power in the alpha band. Averaged across all channels, spectral entropy did not outperform relative beta power in either the 0.5-32 Hz [Pk=0.79 vs 0.814 (P>0.05)] or 0.5-47 Hz range [Pk=0.81 vs 0.82 (P>0.05)]. The best performing indicator in any single channel was spectral entropy in the frequency range 0.5-47 Hz in the frontal channel F3-F4 (Pk=0.85). CONCLUSIONS: Relative beta power and spectral entropy when considered over the propofol effect-site range studied here increase in value, and correlate well with clinical assessment of sedation.

  7. Spectral relationships for atmospheric correction. I. Validation of red and near infra-red marine reflectance relationships.

    Science.gov (United States)

    Goyens, C; Jamet, C; Ruddick, K G

    2013-09-09

    The present study provides an extensive overview of red and near infra-red (NIR) spectral relationships found in the literature and used to constrain red or NIR-modeling schemes in current atmospheric correction (AC) algorithms with the aim to improve water-leaving reflectance retrievals, ρw(λ), in turbid waters. However, most of these spectral relationships have been developed with restricted datasets and, subsequently, may not be globally valid, explaining the need of an accurate validation exercise. Spectral relationships are validated here with turbid in situ data for ρw(λ). Functions estimating ρw(λ) in the red were only valid for moderately turbid waters (ρw(λNIR) turbidity ranges presented in the in situ dataset. In the NIR region of the spectrum, the constant NIR reflectance ratio suggested by Ruddick et al. (2006) (Limnol. Oceanogr. 51, 1167-1179), was valid for moderately to very turbid waters (ρw(λNIR) turbid waters (ρw(λNIR) > 10(-2)). The results of this study suggest to use the red bounding equations and the polynomial NIR function to constrain red or NIR-modeling schemes in AC processes with the aim to improve ρw(λ) retrievals where current AC algorithms fail.

  8. Red photoluminescence and band edge shift from ZnO thin films

    International Nuclear Information System (INIS)

    Marotti, Ricardo E.; Badan, Juan A.; Quagliata, Eduardo; Dalchiele, Enrique A.

    2007-01-01

    The red photoluminescence (PL) band (peaked between 610 and 640 nm) from electrochemically deposited ZnO thin films is studied. The absorption coefficient is obtained from diffuse reflectance measurements. The absorption band edge depends on deposition conditions. The PL peak follows the shift of the band edge. A similar correlation appears when cooling down to 20 K. This suggests that PL is due to a transition from an intrinsic shallow state to an intrinsic deep state. Comparing against ZnO samples showing green PL, the shallow nature of the state is confirmed

  9. Dependence of the red edge of the RR Lyrae gap on helium abundance

    International Nuclear Information System (INIS)

    Deupree, R.G.

    1976-01-01

    Calculations have been performed to determine the position of the red edge of the RR Lyrae gap with the chemical compositions (X,Z) = (0.7, 0.001) and (0.8, 0.001). The calculations are composed of the time integration of the conservation equations of mass, momentum, and energy in two spatial dimensions. The calculations allow time-dependent convection to be followed without either arbitrary assumptions regarding time dependence or the application of any theory of convection. The primary assumptions are the restriction to two spatial dimensions and that an ''eddy viscosity'' is employed to mimic the process of turbulent cascade and the conversion of convective kinetic energy into heat. The ability of time dependent convection to stabilize pulsation is shown, and the process by which this is achieved is discussed. The time dependence of convection is found to play a crucial role in the stabilization process. The dependence of the position of the red edge on helium abundance is examined. The results indicate that the color difference between the red and blue edges is a sensitive indicator of helium abundance. Comparison is made with certain globular cluster color differences which indicate that the helium abundance is close to 0.3 by weight

  10. Construction of Spectral Discoloration Model for Red Lead Pigment by Aging Test and Simulating Degradation Experiment

    Directory of Open Access Journals (Sweden)

    Jinxing Liang

    2016-01-01

    Full Text Available The construction of spectral discoloration model, based on aging test and simulating degradation experiment, was proposed to detect the aging degree of red lead pigment in ancient murals and to reproduce the spectral data supporting digital restoration of the ancient murals. The degradation process of red lead pigment under the aging test conditions was revealed by X-ray diffraction, scanning electron microscopy, and spectrophotometer. The simulating degradation experiment was carried out by proportionally mixing red lead and lead dioxide with referring to the results of aging test. The experimental result indicated that the pure red lead was gradually turned into black lead dioxide, and the amount of tiny particles of the aging sample increased faced with aging process. Both the chroma and lightness of red lead pigment decreased with discoloration, and its hue essentially remains unchanged. In addition, the spectral reflectance curves of the aging samples almost started rising at about 550 nm with the inflection moving slightly from about 570 nm to 550 nm. The spectral reflectance of samples in long- and in short-wavelength regions was fitted well with the logarithmic and linear function. The spectral discoloration model was established, and the real aging red lead pigment in Dunhuang murals was measured and verified the effectiveness of the model.

  11. The red thermoluminescence of quartz: 3-D spectral measurements

    International Nuclear Information System (INIS)

    Scholefield, R.B.; Prescott, J.R.

    1999-01-01

    As part of a general study of the thermoluminescence (TL) of quartz, we have examined the 3-D spectra of samples of quartz extracted from a variety of sediments. Blue emission at about 2.6 eV/475 nm, which is the photon energy region commonly used in luminescence dating, seems ubiquitous. Significant emission in the red, ∼1.9 eV/650 nm, has been found at most glow temperatures in all of our samples of Australian quartz sediments, and it is to this that particular attention is paid in the present work. A limited selection of samples from other countries has also been included. The ratio of the intensities of the red and blue emissions varies widely among samples. We have not found any evidence of a correlation between this ratio, nor the intensity of the red emission, with trace element concentration, including that of Al for which a correlation has been previously observed. In the context of luminescence dating, all samples have been examined to see whether they have a rapidly bleaching red component in a similar sense to the well-known 305 deg. C/2.95 eV/420 nm peak in quartz: some samples have such a component--some do not. A suggestive parallelism is found between the blue and red spectra, in that there are 'slowly bleaching' and 'rapidly bleaching' components at similar temperatures in the both red and the blue. However, there is no red component associated with the 110 deg. C peak used in pre-dose dating

  12. Red shift of near band edge emission in cerium implanted GaN

    International Nuclear Information System (INIS)

    Majid, Abdul; Ali, Akbar

    2009-01-01

    Rare earth (RE) doping in GaN is a promising technology to control the optical properties. However, there are no reports on doping of cerium (Ce) into GaN, which is a very unique RE element. In this paper, we performed photoluminescence (PL) and optical transmission measurements on Ce-doped GaN for the first time. A significant red shift of about 120 meV was observed in the PL peak position of the donor bound excitons. This red shift of near band emission was corroborated by the red shift of the absorption edge related to GaN in the optical transmission measurements. This observation is attributed to the band gap narrowing in GaN heavily doped with Ce. The activation energy of the Ce-related shallow donor is found to be 21.9 meV in GaN.

  13. Red shift of near band edge emission in cerium implanted GaN

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul; Ali, Akbar, E-mail: abdulmajid40@yahoo.co, E-mail: akbar@qau.edu.p [Advance Materials Physics Laboratory, Physics Department, Quaid-i-Azam University, Islamabad (Pakistan)

    2009-02-21

    Rare earth (RE) doping in GaN is a promising technology to control the optical properties. However, there are no reports on doping of cerium (Ce) into GaN, which is a very unique RE element. In this paper, we performed photoluminescence (PL) and optical transmission measurements on Ce-doped GaN for the first time. A significant red shift of about 120 meV was observed in the PL peak position of the donor bound excitons. This red shift of near band emission was corroborated by the red shift of the absorption edge related to GaN in the optical transmission measurements. This observation is attributed to the band gap narrowing in GaN heavily doped with Ce. The activation energy of the Ce-related shallow donor is found to be 21.9 meV in GaN.

  14. Spatial and Temporal Extent of Ion Spectral Structures at the Inner Edge of the Plasma Sheet

    Science.gov (United States)

    Ferradas, C.; Reeves, G. D.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Skoug, R. M.; Funsten, H. O.

    2017-12-01

    Several ion spectral structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift and loss in the highly dynamic environment of the inner magnetosphere. Their study helps us understand ion access and losses in this region. Several studies have found that these structures vary with geomagnetic activity, local time, and ion species, but their spatial and temporal extent remain undetermined. We use data from the Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometers onboard the Van Allen Probes to analyze the spectral structures in the energy range of 1- 50 keV. HOPE measurements on both Van Allen Probes spacecraft enable us to resolve the extent of these ion structures in space and time. As the structures respond to changes in the convection electric field on a variety of time scales, the lapping of the two spacecraft on time scales of minutes to hours helps determine their spatial and temporal evolution.

  15. Smoothing of Fused Spectral Consistent Satellite Images with TV-based Edge Detection

    DEFF Research Database (Denmark)

    Sveinsson, Johannes; Aanæs, Henrik; Benediktsson, Jon Atli

    2007-01-01

    based on satellite data. Additionally, most conventional methods are loosely connected to the image forming physics of the satellite image, giving these methods an ad hoc feel. Vesteinsson et al. [1] proposed a method of fusion of satellite images that is based on the properties of imaging physics...... in a statistically meaningful way and was called spectral consistent panshapening (SCP). In this paper we improve this framework for satellite image fusion by introducing a better image prior, via data-dependent image smoothing. The dependency is obtained via total variation edge detection method.......Several widely used methods have been proposed for fusing high resolution panchromatic data and lower resolution multi-channel data. However, many of these methods fail to maintain the spectral consistency of the fused high resolution image, which is of high importance to many of the applications...

  16. Active-Optical Sensors Using Red NDVI Compared to Red Edge NDVI for Prediction of Corn Grain Yield in North Dakota, U.S.A.

    Science.gov (United States)

    Sharma, Lakesh K; Bu, Honggang; Denton, Anne; Franzen, David W

    2015-11-02

    Active-optical sensor readings from an N non-limiting area standard established within a farm field are used to predict yield in the standard. Lower yield predictions from sensor readings obtained from other parts of the field outside of the N non-limiting standard area indicate a need for supplemental N. Active-optical sensor algorithms for predicting corn (Zea mays, L.) yield to direct in-season nitrogen (N) fertilization in corn utilize red NDVI (normalized differential vegetative index). Use of red edge NDVI might improve corn yield prediction at later growth stages when corn leaves cover the inter-row space resulting in "saturation" of red NDVI readings. The purpose of this study was to determine whether the use of red edge NDVI in two active-optical sensors (GreenSeeker™ and Holland Scientific Crop Circle™) improved corn yield prediction. Nitrogen rate experiments were established at 15 sites in North Dakota (ND). Sensor readings were conducted at V6 and V12 corn. Red NDVI and red edge NDVI were similar in the relationship of readings with yield at V6. At V12, the red edge NDVI was superior to the red NDVI in most comparisons, indicating that it would be most useful in developing late-season N application algorithms.

  17. Active-Optical Sensors Using Red NDVI Compared to Red Edge NDVI for Prediction of Corn Grain Yield in North Dakota, U.S.A.

    Science.gov (United States)

    Sharma, Lakesh K.; Bu, Honggang; Denton, Anne; Franzen, David W.

    2015-01-01

    Active-optical sensor readings from an N non-limiting area standard established within a farm field are used to predict yield in the standard. Lower yield predictions from sensor readings obtained from other parts of the field outside of the N non-limiting standard area indicate a need for supplemental N. Active-optical sensor algorithms for predicting corn (Zea mays, L.) yield to direct in-season nitrogen (N) fertilization in corn utilize red NDVI (normalized differential vegetative index). Use of red edge NDVI might improve corn yield prediction at later growth stages when corn leaves cover the inter-row space resulting in “saturation” of red NDVI readings. The purpose of this study was to determine whether the use of red edge NDVI in two active-optical sensors (GreenSeeker™ and Holland Scientific Crop Circle™) improved corn yield prediction. Nitrogen rate experiments were established at 15 sites in North Dakota (ND). Sensor readings were conducted at V6 and V12 corn. Red NDVI and red edge NDVI were similar in the relationship of readings with yield at V6. At V12, the red edge NDVI was superior to the red NDVI in most comparisons, indicating that it would be most useful in developing late-season N application algorithms. PMID:26540057

  18. A comparison of habitat use and demography of red squirrels at the southern edge of their range

    Science.gov (United States)

    Katherine M. Leonard; John L. Koprowski

    2009-01-01

    Populations at the edge of their geographic range may demonstrate different population dynamics from central populations. Endangered Mt. Graham red squirrels (Tamiasciurus hudsonicus grahamensis), endemic to southeastern Arizona, represent the southernmost red squirrel population and are found at lower densities than conspecifics in the center of the...

  19. Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs

    International Nuclear Information System (INIS)

    Zhengqing, Gan

    2010-01-01

    In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides a

  20. Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Zhengqing, Gan [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides

  1. Spectral K-edge subtraction imaging of experimental non-radioactive barium uptake in bone.

    Science.gov (United States)

    Panahifar, Arash; Samadi, Nazanin; Swanston, Treena M; Chapman, L Dean; Cooper, David M L

    2016-12-01

    To evaluate the feasibility of using non-radioactive barium as a bone tracer for detection with synchrotron spectral K-edge subtraction (SKES) technique. Male rats of 1-month old (i.e., developing skeleton) and 8-month old (i.e., skeletally mature) were orally dosed with low dose of barium chloride (33mg/kg/day Ba 2+ ) for 4weeks. The fore and hind limbs were dissected for imaging in projection and computed tomography modes at 100μm and 52μm pixel sizes. The SKES method utilizes a single bent Laue monochromator to prepare a 550eV energy spectrum to encompass the K-edge of barium (37.441keV), for collecting both 'above' and 'below' the K-edge data sets in a single scan. The SKES has a very good focal size, thus limits the 'crossover' and motion artifacts. In juvenile rats, barium was mostly incorporated in the areas of high bone turnover such as at the growth plate and the trabecular surfaces, but also in the cortical bone as the animals were growing at the time of tracer administration. However, the adults incorporated approximately half the concentration and mainly in the areas where bone remodeling was predominant and occasionally in the periosteal and endosteal layers of the diaphyseal cortical bone. The presented methodology is simple to implement and provides both structural and functional information, after labeling with barium, on bone micro-architecture and thus has great potential for in vivo imaging of pre-clinical animal models of musculoskeletal diseases to better understand their mechanisms and to evaluate the efficacy of pharmaceuticals. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Modulation of EEG spectral edge frequency during patterned pneumatic oral stimulation in preterm infants

    Science.gov (United States)

    Song, Dongli; Jegatheesan, Priya; Weiss, Sunshine; Govindaswami, Balaji; Wang, Jingyan; Lee, Jaehoon; Oder, Austin; Barlow, Steven M

    2014-01-01

    Background Stimulation of the nervous system plays a central role in brain development and neurodevelopmental outcome. Thalamocortical and corticocortical development is diminished in premature infants and correlated to electroencephalography (EEG) progression. The purpose of this study was to determine the effects of orocutaneous stimulation on the modulation of spectral edge frequency, fc=90% (SEF-90) derived from EEG recordings in preterm infants. Methods Twenty two preterm infants were randomized to experimental and control conditions. Pulsed orocutaneous stimulation was presented during gavage feedings begun at around 32 weeks postmenstrual age (PMA). The SEF-90 was derived from 2-channel EEG recordings. Results Compared to the control condition, the pulsed orocutaneous stimulation produced a significant reorganization of SEF-90 in the left (p = 0.005) and right (p stimulation also produced a significant pattern of short term cortical adaptation and a long term neural adaptation manifest as a 0.5 Hz elevation in SEF-90 after repeated stimulation sessions. Conclusion This is the first study to demonstrate the modulating effects of a servo-controlled oral somatosensory input on the spectral features of EEG activity in preterm infants. PMID:24129553

  3. Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Eckart, M. E.; Smith, Adams; Bailey, C. N.; Bandler, S. R.; Chevenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2012-01-01

    We are developing small pitch transition-edge sensor (TES) X-ray detectors optimized for solar astronomy. These devices are fabricated on thick Si substrates with embedded Cu heat-sink layer. We use 35 x 35 square micrometers Mo/Au TESs with 4.5 micrometer thick Au absorbers. We have tested devices with different geometric absorber stem contact areas with the TES and surrounding substrate area. This allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between thc stem contact area and a broadening in the spectral line shape indicative of athermal phonon loss. When the contact area is minimized we have obtained exceptional broadband spectral resolution of 1.28 plus or minus 0.03 eV at an energy of 1.5 keV, 1.58 plus or minus 0.07 eV at 5.9 keV and 1.96 plus or minus 0.08 eV at 8 keV. The linearity in the measured gain scale is understood in the context of the longitudinal proximity effect from the electrical bias leads resulting in transition characteristics that are strongly dependent upon TES size.

  4. Properties of Spectrally Defined Red QSOs at z = 0.3–1.2

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, A.-L.; Hwang, C.-Y., E-mail: altsai@astro.ncu.edu.tw, E-mail: hwangcy@astro.ncu.edu.tw [Institute of Astronomy, National Central University, No. 300, Jhongda Rd., Jhongli, Taoyuan 32001, Taiwan (China)

    2017-06-10

    We investigated the properties of a sample of red Quasi-stellar Objects (QSOs) using optical, radio, and infrared data. These QSOs were selected from the Sloan Digital Sky Survey Data Release 7 quasar catalog. We only selected sources with sky coverage in the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters survey, and searched for sources with Wide-field Infrared Survey Explorer counterparts. We defined the spectral color of the QSOs based on the flux ratio of the rest-frame 4000 to 3000 Å continuum emission to select red QSOs and typical QSOs. In accordance with this criterion, only QSOs with redshifts between 0.3 and 1.2 could be selected. We found that red QSOs have stronger infrared emission than typical QSOs. We noted that the number ratios of red QSOs to typical QSOs decrease with increasing redshifts, although the number of typical QSOs increase with redshifts. Furthermore, at high redshifts, the luminosity distributions of typical QSOs and red QSOs seem to have similar peaks; however, at low redshifts, the luminosities of red QSOs seem to be lower than those of typical QSOs. These findings suggest that there might be at least two types of red QSOs in our QSO samples.

  5. [Comparison of red edge parameters of winter wheat canopy under late frost stress].

    Science.gov (United States)

    Wu, Yong-feng; Hu, Xin; Lü, Guo-hua; Ren, De-chao; Jiang, Wei-guo; Song, Ji-qing

    2014-08-01

    In the present study, late frost experiments were implemented under a range of subfreezing temperatures (-1 - -9 degrees C) by using a field movable climate chamber (FMCC) and a cold climate chamber, respectively. Based on the spectra of winter wheat canopy measured at noon on the first day after the frost experiments, red edge parameters REP, Dr, SDr, Dr(min), Dr/Dr(min) and Dr/SDr were extracted using maximum first derivative spectrum method (FD), linear four-point interpolation method (FPI), polynomial fitting method (POLY), inverted Gaussian fitting method (IG) and linear extrapolation technique (LE), respectively. The capacity of the red edge parameters to detect late frost stress was explicated from the aspects of the early, sensitivity and stability through correlation analysis, linear regression modeling and fluctuation analysis. The result indicates that except for REP calculated from FPI and IG method in Experiment 1, REP from the other methods was correlated with frost temperatures (P frost temperatures (P frost temperatures which indicated that LE method is the best for REP extraction. In Experiment 1 and 2, only Dr(min) and Dr/Dr(min), calculated by FD method simultaneously achieved the requirements for the early (their correlations with frost temperatures showed a significant level P frost temperatures al- ways keep a consistent direction). Dr/SDr calculated from FD and IG methods always had a low sensitivity in Experiment 2. In Experiment 1, the sensitivity of Dr/SDr from FD was moderate and IG was high. REP calculated from LE method had a lowest sensitivity in the two experiments. Totally, Dr(min) and Dr/Dr(min) calculated by FD method have the strongest detection capacity for frost temperature, which will be helpful to conducting the research on early diagnosis of late frost injury to winter wheat.

  6. Image Segmentation Based on Constrained Spectral Variance Difference and Edge Penalty

    Directory of Open Access Journals (Sweden)

    Bo Chen

    2015-05-01

    Full Text Available Segmentation, which is usually the first step in object-based image analysis (OBIA, greatly influences the quality of final OBIA results. In many existing multi-scale segmentation algorithms, a common problem is that under-segmentation and over-segmentation always coexist at any scale. To address this issue, we propose a new method that integrates the newly developed constrained spectral variance difference (CSVD and the edge penalty (EP. First, initial segments are produced by a fast scan. Second, the generated segments are merged via a global mutual best-fitting strategy using the CSVD and EP as merging criteria. Finally, very small objects are merged with their nearest neighbors to eliminate the remaining noise. A series of experiments based on three sets of remote sensing images, each with different spatial resolutions, were conducted to evaluate the effectiveness of the proposed method. Both visual and quantitative assessments were performed, and the results show that large objects were better preserved as integral entities while small objects were also still effectively delineated. The results were also found to be superior to those from eCongnition’s multi-scale segmentation.

  7. Towards realistic modelling of spectral line formation - lessons learnt from red giants

    Science.gov (United States)

    Lind, Karin

    2015-08-01

    Many decades of quantitative spectroscopic studies of red giants have revealed much about the formation histories and interlinks between the main components of the Galaxy and its satellites. Telescopes and instrumentation are now able to deliver high-resolution data of superb quality for large stellar samples and Galactic archaeology has entered a new era. At the same time, we have learnt how simplifying physical assumptions in the modelling of spectroscopic data can bias the interpretations, in particular one-dimensional homogeneity and local thermodynamic equilibrium (LTE). I will present lessons learnt so far from non-LTE spectral line formation in 3D radiation-hydrodynamic atmospheres of red giants, the smaller siblings of red supergiants.

  8. Changes in spectral signatures of red lettuce regards to Zinc uptake

    Science.gov (United States)

    Shin, J.; Yu, J.; Koh, S. M.; Park, G.; Kim, S.

    2017-12-01

    Heavy metal contaminations caused by human activities such as mining and industrial activities caused serious soil contamination. Soil contaminations causes secondary impact on vegetation by uptake processes. Intakes of vegetables harvested from heavy metal contaminated soil may cause serious health problems. It would be very effective if screening tool could be developed before the vegetables are distributed over the market. This study investigated spectral response of red lettuce regards to Zn uptake from the treated soil in a laboratory condition. Zn solutions at different levels of concentration are injected to potted lettuce. The chemical composition and spectral characteristics of the leaves are analyzed every 2 days and the correlation between the Zn concentration and spectral reflectance is investigated. The experiment reveals that Zn uptake of red lettuce is significantly higher for the leaves from treated pot compared to untreated pot showing highly contaminated concentrations beyond the standard Zn concentrations for food. The spectral response regards to Zn is manifested at certain level of concentration threshold. Below the threshold, reflectance at NIR regions increases regards to increase in Zn concentration. On the other hand, above the threshold, IR reflectance decreases and slope of NIR shoulder increases regards to higher Zn concentration. We think this result may contribute for development of screening tools for heavy metal contaminations in vegetables.

  9. Exploring the Potential of WorldView-2 Red-Edge Band-Based Vegetation Indices for Estimation of Mangrove Leaf Area Index with Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Yuanhui Zhu

    2017-10-01

    Full Text Available To accurately estimate leaf area index (LAI in mangrove areas, the selection of appropriate models and predictor variables is critical. However, there is a major challenge in quantifying and mapping LAI using multi-spectral sensors due to the saturation effects of traditional vegetation indices (VIs for mangrove forests. WorldView-2 (WV2 imagery has proven to be effective to estimate LAI of grasslands and forests, but the sensitivity of its vegetation indices (VIs has been uncertain for mangrove forests. Furthermore, the single model may exhibit certain randomness and instability in model calibration and estimation accuracy. Therefore, this study aims to explore the sensitivity of WV2 VIs for estimating mangrove LAI by comparing artificial neural network regression (ANNR, support vector regression (SVR and random forest regression (RFR. The results suggest that the RFR algorithm yields the best results (RMSE = 0.45, 14.55% of the average LAI, followed by ANNR (RMSE = 0.49, 16.04% of the average LAI, and then SVR (RMSE = 0.51, 16.56% of the average LAI algorithms using 5-fold cross validation (CV using all VIs. Quantification of the variable importance shows that the VIs derived from the red-edge band consistently remain the most important contributor to LAI estimation. When the red-edge band-derived VIs are removed from the models, estimation accuracies measured in relative RMSE (RMSEr decrease by 3.79%, 2.70% and 4.47% for ANNR, SVR and RFR models respectively. VIs derived from red-edge band also yield better accuracy compared with other traditional bands of WV2, such as near-infrared-1 and near-infrared-2 band. Furthermore, the estimated LAI values vary significantly across different mangrove species. The study demonstrates the utility of VIs of WV2 imagery and the selected machine-learning algorithms in developing LAI models in mangrove forests. The results indicate that the red-edge band of WV2 imagery can help alleviate the saturation

  10. Regional estimation of savanna grass nitrogen using the red-edge band of the RapidEye sensor

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2012-10-01

    Full Text Available recent high resolution spaceborne multispectral sensor (i.e. RapidEye) in the Kruger National Park (KNP) and its surrounding areas, South Africa. The RapidEyesensor contains five spectral bands in the visible-to-near infrared (VNIR), including a red...

  11. Influence of spectral resolution, spectral range and signal-to-noise ratio of Fourier transform infra-red spectra on identification of high explosive substances

    Science.gov (United States)

    Banas, Krzysztof; Banas, Agnieszka M.; Heussler, Sascha P.; Breese, Mark B. H.

    2018-01-01

    In the contemporary spectroscopy there is a trend to record spectra with the highest possible spectral resolution. This is clearly justified if the spectral features in the spectrum are very narrow (for example infra-red spectra of gas samples). However there is a plethora of samples (in the liquid and especially in the solid form) where there is a natural spectral peak broadening due to collisions and proximity predominately. Additionally there is a number of portable devices (spectrometers) with inherently restricted spectral resolution, spectral range or both, which are extremely useful in some field applications (archaeology, agriculture, food industry, cultural heritage, forensic science). In this paper the investigation of the influence of spectral resolution, spectral range and signal-to-noise ratio on the identification of high explosive substances by applying multivariate statistical methods on the Fourier transform infra-red spectral data sets is studied. All mathematical procedures on spectral data for dimension reduction, clustering and validation were implemented within R open source environment.

  12. Brown carbon absorption in the red and near-infrared spectral region

    Science.gov (United States)

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András

    2017-06-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  13. Excited State s-cis Rotamers Produced by Extreme Red Edge Excitation of all-trans-1,4-Diphenyl-1,3-butadiene

    DEFF Research Database (Denmark)

    Wallace-Williams, Stacie E.; Møller, Søren; Goldbeck, Robert A.

    1993-01-01

    with the wavelength independence observed for the excited singlet-state absorption and fluorescence emission spectra of 1,5-diphenyl-2,3,4,6,7,8- hexahydronaphthalene and for the fluorescence emission spectra of 1,4diphenyl-1,3-cyclopentadiene, s-trans and s-cis structural analogs of DPB, respectively. The spectral...... changes in DPB can be explained in terms of an excitation wavelength-dependent production of s-cis and s-trans rotamer populations in the excited state. The DPB fluorescence emission spectrum was resolved into s-cis and s-trans components. The vibronic structure of the s-cis fluorescence spectrum...... is similar to that of s-trans, but the band origin is red-shifted and there is a slightly larger amplitude on the red edge. The excited-state absorption spectrum of s-cis DPB appears to be red-shifted relative to that of s-trans DPB as well....

  14. Modelling Perception of Structure and Affect in Music: Spectral Centroid and Wishart's Red Bird

    Directory of Open Access Journals (Sweden)

    Roger T. Dean

    2011-12-01

    Full Text Available Pearce (2011 provides a positive and interesting response to our article on time series analysis of the influences of acoustic properties on real-time perception of structure and affect in a section of Trevor Wishart’s Red Bird (Dean & Bailes, 2010. We address the following topics raised in the response and our paper. First, we analyse in depth the possible influence of spectral centroid, a timbral feature of the acoustic stream distinct from the high level general parameter we used initially, spectral flatness. We find that spectral centroid, like spectral flatness, is not a powerful predictor of real-time responses, though it does show some features that encourage its continued consideration. Second, we discuss further the issue of studying both individual responses, and as in our paper, group averaged responses. We show that a multivariate Vector Autoregression model handles the grand average series quite similarly to those of individual members of our participant groups, and we analyse this in greater detail with a wide range of approaches in work which is in press and continuing. Lastly, we discuss the nature and intent of computational modelling of cognition using acoustic and music- or information theoretic data streams as predictors, and how the music- or information theoretic approaches may be applied to electroacoustic music, which is ‘sound-based’ rather than note-centred like Western classical music.

  15. Self-similar spectral structures and edge-locking hierarchy in open-boundary spin chains

    International Nuclear Information System (INIS)

    Haque, Masudul

    2010-01-01

    For an anisotropic Heisenberg (XXZ) spin chain, we show that an open boundary induces a series of approximately self-similar features at different energy scales, high up in the eigenvalue spectrum. We present a nonequilibrium phenomenon related to this fractal structure, involving states in which a connected block near the edge is polarized oppositely to the rest of the chain. We show that such oppositely polarized blocks can be 'locked' to the edge of the spin chain and that there is a hierarchy of edge-locking effects at various orders of the anisotropy. The phenomenon enables dramatic control of quantum-state transmission and magnetization control.

  16. Spectral and energy efficiency analysis of uplink heterogeneous networks with small-cells on edge

    KAUST Repository

    Shakir, Muhammad Zeeshan; Tabassum, Hina; Qaraqe, Khalid A.; Serpedin, Erchin; Alouini, Mohamed-Slim

    2014-01-01

    by considering fast power control where the mobile users transmit with adaptive power to compensate the path loss, shadowing and fading. In particular, we develop a moment generating function (MGF) based approach to derive analytical bounds on the area spectral

  17. Remotely Estimating Aerial N Uptake in Winter Wheat Using Red-Edge Area Index From Multi-Angular Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Bin-Bin Guo

    2018-05-01

    Full Text Available Remote sensing techniques can be efficient for non-destructive, rapid detection of wheat nitrogen (N nutrient status. In the paper, we examined the relationships of canopy multi-angular data with aerial N uptake of winter wheat (Triticum aestivum L. across different growing seasons, locations, years, wheat varieties, and N application rates. Seventeen vegetation indices (VIs selected from the literature were measured for the stability in estimating aerial N uptake of wheat under 13 view zenith angles (VZAs in the solar principal plane (SPP. In total, the back-scatter angles showed better VI behavior than the forward-scatter angles. The correlation coefficient of VIs with aerial N uptake increased with decreasing VZAs. The best linear relationship was integrated with the optimized common indices DIDA and DDn to examine dynamic changes in aerial N uptake; this led to coefficients of determination (R2 of 0.769 and 0.760 at the −10° viewing angle. Our novel area index, designed the modified right-side peak area index (mRPA, was developed in accordance with exploration of the spectral area calculation and red-edge feature using the equation: mRPA = (R760/R6001/2 × (R760-R718. Investigating the predictive accuracy of mRPA for aerial N uptake across VZAs demonstrated that the best performance was at −10° [R2 = 0.804, p < 0.001, root mean square error (RMSE = 3.615] and that the effect was relatively similar between −20° to +10° (R2 = 0.782, p < 0.001, RMSE = 3.805. This leads us to construct a simple model under wide-angle combinations so as to improve the field operation simplicity and applicability. Fitting independent datasets to the models resulted in relative error (RE, % values of 12.6, 14.1, and 14.9% between estimated and measured aerial N uptake for mRPA, DIDA, and DDn across the range of −20° to +10°, respectively, further confirming the superior test performance of the mRPA index. These results illustrate that the novel index

  18. Quantitative spectral K-edge imaging in preclinical photon-counting x-ray computed tomography.

    Science.gov (United States)

    de Vries, Anke; Roessl, Ewald; Kneepkens, Esther; Thran, Axel; Brendel, Bernhard; Martens, Gerhard; Proska, Roland; Nicolay, Klaas; Grüll, Holger

    2015-04-01

    The objective of this study was to investigate the feasibility and the accuracy of spectral computed tomography (spectral CT) to determine the tissue concentrations and localization of high-attenuation, iodine-based contrast agents in mice. Iodine tissue concentrations determined with spectral CT are compared with concentrations measured with single-photon emission computed tomography (SPECT) and inductively coupled plasma mass spectrometry (ICP-MS). All animal procedures were performed according to the US National Institutes of Health principles of laboratory animal care and were approved by the ethical review committee of Maastricht, The Netherlands. Healthy Swiss mice (n = 4) were injected with an iodinated emulsion radiolabeled with indium as multimodal contrast agent for CT and SPECT. The CT and SPECT scans were acquired using a dedicated small-animal SPECT/CT system. Subsequently, scans were performed with a preclinical spectral CT scanner equipped with a photon-counting detector and 6 energy threshold levels. Quantitative data analysis of SPECT and spectral CT scans were obtained using 3-dimensional volumes-of-interest drawing methods. The ICP-MS on dissected organs was performed to determine iodine uptake per organ and was compared with the amounts determined from spectral CT and SPECT. Iodine concentrations obtained with image-processed spectral CT data correlated well with data obtained either with noninvasive SPECT imaging (slope = 0.96, r = 0.75) or with ICP-MS (slope = 0.99, r = 0.89) in tissue samples. This preclinical proof-of-concept study shows the in vivo quantification of iodine concentrations in tissues using spectral CT. Our multimodal imaging approach with spectral CT and SPECT using radiolabeled iodinated emulsions together with ICP-based quantification allows a direct comparison of all methods. Benchmarked against ICP-MS data, spectral CT in the present implementation shows a slight underestimation of organ iodine concentrations compared

  19. Integration of environmental and spectral data for sunflower stress determination. [Red River Valley, Minnesota

    Science.gov (United States)

    Lillesand, T.; Seeley, M.

    1983-01-01

    Stress in sunflowers was assessed in western and northwestern Minnesota. Weekly ground observations (acquired in 1980 and 1981) were analyzed in concert with large scale aerial photography and concurrent LANDSAT data. Using multidate supervised and unsupervised classification procedures, it was found that all crops grown in association with sunflowers in the study area are spectrally separable from one another. Under conditions of extreme drought, severely stressed plants were differentiable from those not severely stressed, but between-crop separation was not possible. Initial regression analyses to estimate sunflower seed yield showed a sensitivity to environmental stress during the flowering and seed development stages. One of the most important biological factors related to sunflower production in the Red River Valley area was found to be the extent and severity of insect infestations.

  20. A Gaussian process and derivative spectral-based algorithm for red blood cell segmentation

    Science.gov (United States)

    Xue, Yingying; Wang, Jianbiao; Zhou, Mei; Hou, Xiyue; Li, Qingli; Liu, Hongying; Wang, Yiting

    2017-07-01

    As an imaging technology used in remote sensing, hyperspectral imaging can provide more information than traditional optical imaging of blood cells. In this paper, an AOTF based microscopic hyperspectral imaging system is used to capture hyperspectral images of blood cells. In order to achieve the segmentation of red blood cells, Gaussian process using squared exponential kernel function is applied first after the data preprocessing to make the preliminary segmentation. The derivative spectrum with spectral angle mapping algorithm is then applied to the original image to segment the boundary of cells, and using the boundary to cut out cells obtained from the Gaussian process to separated adjacent cells. Then the morphological processing method including closing, erosion and dilation is applied so as to keep adjacent cells apart, and by applying median filtering to remove noise points and filling holes inside the cell, the final segmentation result can be obtained. The experimental results show that this method appears better segmentation effect on human red blood cells.

  1. An Interferometric 270--355 GHz Spectral Line Survey of the Red Supergiant VY CMa

    Science.gov (United States)

    Menten, K. M.; Young, K. H.; Patel, N. A.; Gottlieb, C. A.; Thaddeus, P.; McCarthy, M. C.; Gurwell, M. A.; Belloche, A.; Kaminski, T.; Verheyen, L.; Decin, L.; Brunken, S.; Holger, S. P. M.

    2011-05-01

    We have used the Submillimeter Array to image the molecular line emission in the circumstellar envelope of the peculiar red supergiant star VY Canis Majoris over the whole 870 μm atmospheric window. Employing adaptive calibration using the object's continuum emission we achieve high quality one arcsecond resolution imaging of the whole 280--355 GHz range within which we find 211 distinct spectral lines from 33 molecules (including isotopologues) plus 40 unidentified lines. From the distribution of molecules we are obtaining their abundances and isotopologic abundance ratios. Using data for multiple transitions in a number of molecules we are deriving the physical conditions in the circumstellar envelope to reach a picture of the star's chemistry that can be compared with models. Our legacy survey is accompanied by a strong laboratory effort that helps with the identification of possibly newly found molecules traced by unidentified lines. We shall create a publicly accessible database of spectral-line channel-maps of the emission from all the lines detected in the survey.

  2. A new technique for extracting the red edge position from hyperspectral data : the linear extrapolation method

    NARCIS (Netherlands)

    Cho, M.A.; Skidmore, A.K.

    2006-01-01

    There is increasing interest in using hyperspectral data for quantitative characterization of vegetation in spatial and temporal scopes. Many spectral indices are being developed to improve vegetation sensitivity by minimizing the background influence. The chlorophyll absorption continuum index

  3. Determination of edge plasma parameters by a genetic algorithm analysis of spectral line shapes

    International Nuclear Information System (INIS)

    Marandet, Y.; Genesio, P.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R.; Capes, H.; Guirlet, R.

    2003-01-01

    Comparing an experimental and a theoretical line shape can be achieved by a genetic algorithm (GA) based on an analogy to the mechanisms of natural selection. Such an algorithm is able to deal with complex non-linear models, and can avoid local minima. We have used this optimization tool in the context of edge plasma spectroscopy, for a determination of the temperatures and fractions of the various populations of neutral deuterium emitting the D α line in 2 configurations of Tore-Supra: ergodic divertor and toroidal pumped limiter. Using the GA fit, the neutral emitters are separated into up to 4 populations which can be identified as resulting from molecular dissociation reactions, charge exchange, or reflection. In all the edge plasmas studied, a significant fraction of neutrals emit in the line wings, leading to neutrals with a temperature up to a few hundreds eV if a Gaussian line shape is assumed. This conclusion could be modified if the line wing exhibits a non Gaussian behavior

  4. Determination of edge plasma parameters by a genetic algorithm analysis of spectral line shapes

    Energy Technology Data Exchange (ETDEWEB)

    Marandet, Y.; Genesio, P.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R. [Universite de Provence (PIIM), Centre de Saint-Jerome, 13 - Marseille (France); Capes, H.; Guirlet, R. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2003-07-01

    Comparing an experimental and a theoretical line shape can be achieved by a genetic algorithm (GA) based on an analogy to the mechanisms of natural selection. Such an algorithm is able to deal with complex non-linear models, and can avoid local minima. We have used this optimization tool in the context of edge plasma spectroscopy, for a determination of the temperatures and fractions of the various populations of neutral deuterium emitting the D{sub {alpha}} line in 2 configurations of Tore-Supra: ergodic divertor and toroidal pumped limiter. Using the GA fit, the neutral emitters are separated into up to 4 populations which can be identified as resulting from molecular dissociation reactions, charge exchange, or reflection. In all the edge plasmas studied, a significant fraction of neutrals emit in the line wings, leading to neutrals with a temperature up to a few hundreds eV if a Gaussian line shape is assumed. This conclusion could be modified if the line wing exhibits a non Gaussian behavior.

  5. Using the fluorescence red edge effect to assess the long-term stability of lyophilized protein formulations.

    Science.gov (United States)

    Qian, Ken K; Grobelny, Pawel J; Tyagi, Madhusudan; Cicerone, Marcus T

    2015-04-06

    Nanosecond relaxation processes in sugar matrices are causally linked through diffusional processes to protein stability in lyophilized formulations. Long-term protein degradation rates track mean-squared displacement (⟨u(2)⟩) of hydrogen atoms in sugar glasses, a parameter describing dynamics on a time scale of picoseconds to nanoseconds. However, measurements of ⟨u(2)⟩ are usually performed by neutron scattering, which is not conducive to rapid formulation screening in early development. Here, we present a benchtop technique to derive a ⟨u(2)⟩ surrogate based on the fluorescence red edge effect. Glycerol, lyophilized trehalose, and lyophilized sucrose were used as model systems. Samples containing 10(-6) mole fraction of rhodamine 6G, a fluorophore, were excited at either 532 nm (main peak) or 566 nm (red edge), and the ⟨u(2)⟩ surrogate was determined based the corresponding Stokes shifts. Results showed reasonable agreement between ⟨u(2)⟩ from neutron scattering and the surrogate from fluorescence, although deviations were observed at very low temperatures. We discuss the sources of the deviations and suggest technique improvements to ameliorate these. We expect that this method will be a valuable tool to evaluate lyophilized sugar matrices with respect to their ability to protect proteins from diffusion-limited degradation processes during long-term storage. Additionally, the method may have broader applications in amorphous pharmaceutical solids.

  6. Eliminating the non-Gaussian spectral response of X-ray absorbers for transition-edge sensors

    Science.gov (United States)

    Yan, Daikang; Divan, Ralu; Gades, Lisa M.; Kenesei, Peter; Madden, Timothy J.; Miceli, Antonino; Park, Jun-Sang; Patel, Umeshkumar M.; Quaranta, Orlando; Sharma, Hemant; Bennett, Douglas A.; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathon D.; Hays-Wehle, James P.; Morgan, Kelsey M.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.

    2017-11-01

    Transition-edge sensors (TESs) as microcalorimeters for high-energy-resolution X-ray spectroscopy are often fabricated with an absorber made of materials with high Z (for X-ray stopping power) and low heat capacity (for high resolving power). Bismuth represents one of the most compelling options. TESs with evaporated bismuth absorbers have shown spectra with undesirable and unexplained low-energy tails. We have developed TESs with electroplated bismuth absorbers over a gold layer that are not afflicted by this problem and that retain the other positive aspects of this material. To better understand these phenomena, we have studied a series of TESs with gold, gold/evaporated bismuth, and gold/electroplated bismuth absorbers, fabricated on the same die with identical thermal coupling. We show that the bismuth morphology is linked to the spectral response of X-ray TES microcalorimeters.

  7. Tools for spectral data analysis of arbitrary emitters in edge plasma

    International Nuclear Information System (INIS)

    Marandet, Y.; Genesio, P.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R.; Felts, B.; Capes, H.; Guirlet, R.; Lotte, P.; Lowry, C.

    2003-01-01

    A line shape code including Stark, Zeeman and Doppler effects has been upgraded to include atomic fine structure effects and the motional Stark effect (MST). Genetic algorithms provide an efficient and robust tool for automated analysis of edge plasma line shapes. Such an algorithm has been used to fit Doppler-broadened Zeeman D α /H α spectra observed in Tore-Supra. Spectra were analyzed from 2 different machine configurations, corresponding to: 1) recycling from the ergodic divertor (ED), with lines of sight tangential to the magnetic field; 2) recycling at the toroidal pump limiter (TPL) with vertical lines of sight perpendicular to the magnetic field. Preliminary results indicate that the plasma above the TPL contains a larger fraction of warm particles than the ED plasma. (A.C.)

  8. Spectral sensitivity of the photointrinsic iris in the red-eared slider turtle (Trachemys scripta elegans).

    Science.gov (United States)

    Sipe, Grayson O; Dearworth, James R; Selvarajah, Brian P; Blaum, Justin F; Littlefield, Tory E; Fink, Deborah A; Casey, Corinne N; McDougal, David H

    2011-01-01

    Our goal in this study was to examine the red-eared slider turtle for a photomechanical response (PMR) and define its spectral sensitivity. Pupils of enucleated eyes constricted to light by ∼11%, which was one-third the response measured in alert behaving turtles at ∼33%. Rates of constriction in enucleated eyes that were measured by time constants (1.44-3.70 min) were similar to those measured in turtles at 1.97 min. Dilation recovery rates during dark adaptation for enucleated eyes were predicted using line equations and computed times for reaching maximum sizes between 26 and 44 min. Times were comparable to the measures in turtles where maximum pupil size occurred within 40 min and possessed a time constant of 12.78 min. Hill equations were used to derive irradiance threshold values from enucleated hemisected eyes and then plot a spectral sensitivity curve. The analysis of the slopes and maximum responses revealed contribution from at least two different photopigments, one with a peak at 410 nm and another with a peak at 480 nm. Fits by template equations suggest that contractions are triggered by multiple photopigments in the iris including an opsin-based visual pigment and some other novel photopigment, or a cryptochrome with an absorbance spectrum significantly different from that used in our model. In addition to being regulated by retinal feedback via parasympathetic nervous pathways, the results support that the iris musculature is photointrinsically responsive. In the turtle, the control of its direct pupillary light response (dPLR) includes photoreceptive mechanisms occurring both in its iris and in its retina. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Primer on Use of Multi-Spectral and Infra Red Imaging for On-Site Inspections

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, J R

    2010-10-26

    The purpose of an On-Site Inspection (OSI) is to determine whether a nuclear explosion has occurred in violation of the Comprehensive Nuclear Test Ban Treaty (CTBT), and to gather information which might assist in identifying the violator (CTBT, Article IV, Paragraph 35) Multi-Spectral and Infra Red Imaging (MSIR) is allowed by the treaty to detect observables which might help reduce the search area and thus expedite an OSI and make it more effective. MSIR is permitted from airborne measurements, and at and below the surface to search for anomalies and artifacts (CTBT, Protocol, Part II, Paragraph 69b). The three broad types of anomalies and artifacts MSIR is expected to be capable of observing are surface disturbances (disturbed earth, plant stress or anomalous surface materials), human artifacts (man-made roads, buildings and features), and thermal anomalies. The purpose of this Primer is to provide technical information on MSIR relevant to its use for OSI. It is expected that this information may be used for general background information, to inform decisions about the selection and testing of MSIR equipment, to develop operational guidance for MSIR use during an OSI, and to support the development of a training program for OSI Inspectors. References are provided so readers can pursue a topic in more detail than the summary information provided here. The following chapters will provide more information on how MSIR can support an OSI (Section 2), a short summary what Multi-Spectral Imaging and Infra Red Imaging is (Section 3), guidance from the CTBT regarding the use of MSIR (Section 4), and a description of several nuclear explosion scenarios (Section 5) and consequent observables (Section 6). The remaining sections focus on practical aspects of using MSIR for an OSI, such as specification and selection of MSIR equipment, operational considerations for deployment of MISR equipment from an aircraft, and the conduct of field exercises to mature MSIR for an OSI

  10. Coastline change mapping using a spectral band method and Sobel edge operator

    Science.gov (United States)

    Al-Mansoori, Saeed; Al-Marzouqi, Fatima

    2016-10-01

    Coastline extraction has become an essential activity in wake of the natural disasters taking place in some regions such as tsunami, flooding etc. Salient feature of such catastrophes is lack of reaction time available for combating emergency, thus it is the endeavor of any country to develop constant monitoring mechanism of shorelines. This is a challenging task because of the magnitude of changes taking place to the coastline regularly. Previous research findings highlight a need of formulating automation driven methodology for timely and accurate detection of alterations in the coastline impacting sustainability of mankind operating in the coastal zone. In this study, we propose a new approach for automatic extraction of the coastline using remote sensing data. This approach is composed of three main stages. Firstly, classifying pixels of the image into two categories i.e. land and water body by applying two normalized difference indices i.e. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). Then, the process of binary conversion of classified image takes place using a local threshold method. Finally, the coastline is extracted by applying Sobel edge operator with a pair of (3×3) kernels. The approach is tested using 2.5m DubaiSat-1 (DS1) and DubaiSat-2 (DS2) images captured to detect and monitor the changes occurring along Dubai coastal zone within a period of six years from 2009 till 2015. Experimental results prove that the approach is capable of extracting the coastlines from DS1 and DS2 images with moderate human interaction. The results of the study show an increase of 6% in Dubai shoreline resulting on account of numerous man-made infrastructure development projects in tourism and allied sectors.

  11. Why is the Great Red Spot Red? The Exogenic, Photolytic Origin of the UV/Blue-Absorbing Chromophores of Jupiter’s Great Red Spot as Determined by Spectral Analysis of Cassini/VIMS Observations using New Laboratory Optical Coefficients

    Science.gov (United States)

    Baines, Kevin H.; Carlson, Robert W.; Momary, Thomas W.

    2014-11-01

    For centuries, a major question for Jupiter has been: Why is the Great Red Spot red? In particular, two major theories have been proposed: (1) that the coloring is due to photolytic processes in the upper cloud layer, or (2) it is due to the upwellimg of red materials processed relatively deep within the troposphere. Utilizing indices of refraction for red choromophores generated by the photolysis of ammonia and acetylene in the laboratory, we present results of a spectral analysis of the core of Jupiter’s Great Red Spot (GRS) as observed by the visual channel of the Cassini/Visual Infrared Mapping Spectrometer (VIMS). Consistent with the physical origin of such laboratory-generated chromophores in Jupiter - i.e., by solar-driven UV photolysis within the upper levels of the GRS structure near ~ 0.3 bar - our spectral modeling yields satisfactory results for such Mie scattering chromophores only when they are confined to the upper ~ 100 mbar of the GRS. Beneath this reddish upper cloud layer, our models indicate that the remainder of the GRS cloud - assumed to extend down to at least the ammonia condensation level near 0.6 bar - must be relatively spectrally bright throughout the UV-red spectrum; that is, they must be predominantly a whitish or grey color at depth. Thus, our 0.35-1.0 micron spectral models of the GRS are inconsistent with an endogenic origin of the reddish coloring originating in the depths of Jupiter, but are consistent with a photolytic origin due to the photolysis of ammonia and acetylene in the upper troposphere.

  12. Identification of Spectral Regions for Quantification of Red Wine Tannins with Fourier Transform Mid-Infrared Spectroscopy

    DEFF Research Database (Denmark)

    Jensen, Jacob Skibsted; Egebo, Max; Meyer, Anne S.

    2008-01-01

    Accomplishment of fast tannin measurements is receiving increased interest as tannins are important for the mouthfeel and color properties of red wines. Fourier transform mid-infrared spectroscopy allows fast measurement of different wine components, but quantification of tannins is difficult due...... to interferences from spectral responses of other wine components. Four different variable selection tools were investigated for the identification of the most important spectral regions which would allow quantification of tannins from the spectra using partial least-squares regression. The study included...... to be particularly important for tannin quantification. The spectral regions identified from the variable selection methods were used to develop calibration models. All four variable selection methods identified regions that allowed an improved quantitative prediction of tannins (RMSEP = 69−79 mg of CE/L; r = 0...

  13. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    International Nuclear Information System (INIS)

    Smith, Verne V.; Cunha, Katia; Shetrone, Matthew D.; Meszaros, Szabolcs; Allende Prieto, Carlos; Bizyaev, Dmitry; Garcìa Pèrez, Ana; Majewski, Steven R.; Schiavon, Ricardo; Holtzman, Jon; Johnson, Jennifer A.

    2013-01-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants (α Boo and μ Leo), two M-giants (β And and δ Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes 12 C, 13 C, 14 N, and 16 O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of 12 C synthesized during 4 He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to ∼0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  14. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Verne V.; Cunha, Katia [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Shetrone, Matthew D. [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Meszaros, Szabolcs; Allende Prieto, Carlos [Instituto d' Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain); Bizyaev, Dmitry [Apache Point Observatory, Sunspot, NM 88349 (United States); Garcia Perez, Ana; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Schiavon, Ricardo [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5UX (United Kingdom); Holtzman, Jon [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Johnson, Jennifer A., E-mail: vsmith@noao.edu [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)

    2013-03-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  15. Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?

    KAUST Repository

    Colas, Florent; Cottat, Maximilien; Gillibert, Raymond; Guillot, Nicolas; Djaker, Nadia; Lidgi-Guigui, Nathalie; Toury, Timothé e; Barchiesi, Dominique; Toma, Andrea; Di Fabrizio, Enzo M.; Gucciardi, Pietro Giuseppe; de la Chapelle, Marc Lamy

    2016-01-01

    Optimum amplification in Surface Enhanced Raman Scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the Localized Surface Plasmon Resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80nm, to obtain highest SERS. Such discrepancy is usually attributed to a Near-Field (NF) to Far-Field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multi-wavelength excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180nm diameter, followed by a decrease and a pronounced skewness.

  16. Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?

    KAUST Repository

    Colas, Florent

    2016-06-06

    Optimum amplification in Surface Enhanced Raman Scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the Localized Surface Plasmon Resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80nm, to obtain highest SERS. Such discrepancy is usually attributed to a Near-Field (NF) to Far-Field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multi-wavelength excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180nm diameter, followed by a decrease and a pronounced skewness.

  17. Numerical modelling of edge-driven convection during rift-to-drift transition: application to the Red Sea

    Science.gov (United States)

    Fierro, Elisa; Capitanio, Fabio A.; Schettino, Antonio; Morena Salerno, V.

    2017-04-01

    We use numerical modeling to investigate the coupling of mantle instabilities and surface tectonics along lithospheric steps developing during rifting. We address whether edge driven convection (EDC) beneath rifted continental margins and shear flow during rift-drift transition can play a role in the observed post-rift compressive tectonic evolution of the divergent continental margins along the Red Sea. We run a series of 2D simulations to examine the relationship between the maximum compression and key geometrical parameters of the step beneath continental margins, such as the step height due to lithosphere thickness variation and the width of the margins, and test the effect of rheology varying temperature- and stress-dependent viscosity in the lithosphere and asthenosphere. The development of instabilities is initially illustrated as a function of these parameters, to show the controls on the lithosphere strain distribution and magnitude. We then address the transient evolution of the instabilities to characterize their duration. In an additional suite of models, we address the development of EDC during plate motions, thus accounting for the mantle shearing due to spreading. Our results show an increase of strain with the step height as well as with the margin width up to 200 km. After this value the influence of ridge margin can be neglected. Strain rates are, then, quantified for a range of laboratory-constrained constitutive laws for mantle and lithosphere forming minerals. These models propose a viable mechanism to explain the post-rift tectonic inversion observed along the Arabian continental margin and the episodic ultra-fast sea floor spreading in the central Red Sea, where the role of EDC has been invoked.

  18. Relationship of red and photographic infrared spectral radiances to alfalfa biomass, forage water content, percentage canopy cover, and severity of drought stress

    Science.gov (United States)

    Tucker, C. J.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III

    1979-01-01

    Red and photographic infrared spectral data were collected using a handheld radiometer for two cuttings of alfalfa. Significant linear and non-linear correlation coefficients were found between the spectral variables and plant height, biomass, forage water content, and estimated canopy cover for the earlier alfalfa cutting. The alfalfa of later cutting experienced a period of severe drought stress which limited growth. The spectral variables were found to be highly correlated with the estimated drought scores for this alfalfa cutting.

  19. Identification of spectral regions for the quantification of red wine tannins with fourier transform mid-infrared spectroscopy.

    Science.gov (United States)

    Jensen, Jacob S; Egebo, Max; Meyer, Anne S

    2008-05-28

    Accomplishment of fast tannin measurements is receiving increased interest as tannins are important for the mouthfeel and color properties of red wines. Fourier transform mid-infrared spectroscopy allows fast measurement of different wine components, but quantification of tannins is difficult due to interferences from spectral responses of other wine components. Four different variable selection tools were investigated for the identification of the most important spectral regions which would allow quantification of tannins from the spectra using partial least-squares regression. The study included the development of a new variable selection tool, iterative backward elimination of changeable size intervals PLS. The spectral regions identified by the different variable selection methods were not identical, but all included two regions (1485-1425 and 1060-995 cm(-1)), which therefore were concluded to be particularly important for tannin quantification. The spectral regions identified from the variable selection methods were used to develop calibration models. All four variable selection methods identified regions that allowed an improved quantitative prediction of tannins (RMSEP = 69-79 mg of CE/L; r = 0.93-0.94) as compared to a calibration model developed using all variables (RMSEP = 115 mg of CE/L; r = 0.87). Only minor differences in the performance of the variable selection methods were observed.

  20. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  1. Do Red Edge and Texture Attributes from High-Resolution Satellite Data Improve Wood Volume Estimation in a Semi-Arid Mountainous Region?

    DEFF Research Database (Denmark)

    Schumacher, Paul; Mislimshoeva, Bunafsha; Brenning, Alexander

    2016-01-01

    to overcome this issue. However, clear recommendations on the suitability of specific proxies to provide accurate biomass information in semi-arid to arid environments are still lacking. This study contributes to the understanding of using multispectral high-resolution satellite data (RapidEye), specifically...... red edge and texture attributes, to estimate wood volume in semi-arid ecosystems characterized by scarce vegetation. LASSO (Least Absolute Shrinkage and Selection Operator) and random forest were used as predictive models relating in situ-measured aboveground standing wood volume to satellite data...

  2. Comparative study of Poincaré plot analysis using short electroencephalogram signals during anaesthesia with spectral edge frequency 95 and bispectral index.

    Science.gov (United States)

    Hayashi, K; Yamada, T; Sawa, T

    2015-03-01

    The return or Poincaré plot is a non-linear analytical approach in a two-dimensional plane, where a timed signal is plotted against itself after a time delay. Its scatter pattern reflects the randomness and variability in the signals. Quantification of a Poincaré plot of the electroencephalogram has potential to determine anaesthesia depth. We quantified the degree of dispersion (i.e. standard deviation, SD) along the diagonal line of the electroencephalogram-Poincaré plot (named as SD1/SD2), and compared SD1/SD2 values with spectral edge frequency 95 (SEF95) and bispectral index values. The regression analysis showed a tight linear regression equation with a coefficient of determination (R(2) ) value of 0.904 (p plot tightly correlates with SEF95, reflecting anaesthesia-dependent changes in electroencephalogram oscillation. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  3. MO-FG-CAMPUS-IeP1-01: Alternative K-Edge Filters for Low-Energy Image Acquisition in Contrast Enhanced Spectral Mammography

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, S; Vedantham, S; Karellas, A [University of Massachusetts Medical School, Worcester, MA (United States)

    2016-06-15

    Purpose: In Contrast Enhanced Spectral Mammography (CESM), Rh filter is often used during low-energy image acquisition. The potential for using Ag, In and Sn filters, which exhibit K-edge closer to, and just below that of Iodine, instead of the Rh filter, was investigated for the low-energy image acquisition. Methods: Analytical computations of the half-value thickness (HVT) and the photon fluence per mAs (photons/mm2/mAs) for 50µm Rh were compared with other potential K-edge filters (Ag, In and Sn), all with K-absorption edge below that of Iodine. Two strategies were investigated: fixed kVp and filter thickness (50µm for all filters) resulting in HVT variation, and fixed kVp and HVT resulting in variation in Ag, In and Sn thickness. Monte Carlo simulations (GEANT4) were conducted to determine if the scatter-to-primary ratio (SPR) and the point spread function of scatter (scatter PSF) differed between Rh and other K-edge filters. Results: Ag, In and Sn filters (50µm thick) increased photon fluence/mAs by 1.3–1.4, 1.8–2, and 1.7–2 at 28-32 kVp compared to 50µm Rh, which could decrease exposure time. Additionally, the fraction of spectra closer to and just below Iodine’s K-edge increased with these filters, which could improve post-subtraction image contrast. For HVT matched to 50µm Rh filtered spectra, the thickness range for Ag, In, and Sn were (41,44)µm, (49,55)µm and (45,53)µm, and increased photon fluence/mAs by 1.5–1.7, 1.6–2, and 1.6–2.2, respectively. Monte Carlo simulations showed that neither the SPR nor the scatter PSF of Ag, In and Sn differed from Rh, indicating no additional detriment due to x-ray scatter. Conclusion: The use of Ag, In and Sn filters for low-energy image acquisition in CESM is potentially feasible and could decrease exposure time and may improve post-subtraction image contrast. Effect of these filters on radiation dose, contrast, noise and associated metrics are being investigated. Funding Support: Supported in

  4. Evaluating the capabilities of vegetation spectral indices on chlorophyll content estimation at Sentinel-2 spectral resolutions

    Science.gov (United States)

    Sun, Qi; Jiao, Quanjun; Dai, Huayang

    2018-03-01

    Chlorophyll is an important pigment in green plants for photosynthesis and obtaining the energy for growth and development. The rapid, nondestructive and accurate estimation of chlorophyll content is significant for understanding the crops growth, monitoring the disease and insect, and assessing the yield of crops. Sentinel-2 equipped with the Multi-Spectral Instrument (MSI), which will provide images with high spatial, spectral and temporal resolution. It covers the VNIR/SWIR spectral region in 13 bands and incorporates two new spectral bands in the red-edge region and a spatial resolution of 20nm, which can be used to derive vegetation indices using red-edge bands. In this paper, we will focus on assessing the potential of vegetation spectral indices for retrieving chlorophyll content from Sentinel-2 at different angles. Subsequently, we used in-situ spectral data and Sentinel-2 data to test the relationship between VIs and chlorophyll content. The REP, MTCI, CIred-edge, CIgreen, Macc01, TCARI/OSAVI [705,750], NDRE1 and NDRE2 were calculated. NDRE2 index displays a strongly similar result for hyperspectral and simulated Sentinel-2 spectral bands (R2 =0.53, R2 =0.51, for hyperspectral and Sentinel-2, respectively). At different observation angles, NDRE2 has the smallest difference in performance (R2 = 0.51, R2 =0.64, at 0° and 15° , respectively).

  5. Variation in growth form in relation to spectral light quality (red/far-red ratio) in Plantago lanceolata L in sun and shade populations

    NARCIS (Netherlands)

    Van Hinsberg, A.; Van Tienderen, P.H.

    1997-01-01

    Plants from a sun and shade population were grown in two environments differing in the ratio of red to far-red light (R/FR ratio). A low R/FR ratio, simulating vegetation shade, promoted the formation of long, upright-growing leaves and allocation towards shoot growth, whereas a high R/FR ratio had

  6. A rhodamine–dansyl conjugate as a FRET based sensor for Fe{sup 3+} in the red spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Puhui, E-mail: pxie2007@yahoo.com.cn [College of Sciences, Henan Agricultural University, Zhengzhou 450002 (China); Guo, Fengqi, E-mail: fqguo@zzu.edu.cn [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Xia, Ruirui; Wang, Yao [College of Sciences, Henan Agricultural University, Zhengzhou 450002 (China); Yao, Denghui [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Yang, Guoyu; Xie, Lixia [College of Sciences, Henan Agricultural University, Zhengzhou 450002 (China)

    2014-01-15

    A new fluorescent resonance energy transfer (FRET) based fluorescent probe (compound 1) containing a dansyl unit as a donor and rhodamine 101 as an acceptor was developed to detect Fe{sup 3+} from other transition metal ions through ratiometric sensing in organic-aqueous solutions. Fe{sup 3+} induced a ring-opening reaction of the spirolactam rhodamine moiety of 1 resulting in the formation of a fluorescent derivative that can serve as the FRET acceptor. Ratiometric sensing of Fe{sup 3+} was accomplished by plotting the fluorescence intensity ratio at 605 nm and 515 nm versus ferric ion concentration. The probe displayed a linear response to Fe{sup 3+} in the range of 5.5–25 μM with a detection limit of 0.64 μM. A 1:1 stoichiometry for the 1–Fe{sup 3+} complex was formed with an association constant of 1.74×10{sup 4} M{sup −1}. The probe also exhibited a large Stokes shift (225 nm) which can eliminate backscattering effects of excitation light. -- Highlights: • A new colorimetric and fluorescent “off–on” chemosensor for Fe{sup 3+} was synthesized. • It can respond to Fe{sup 3+} in the red spectral region based on a FRET mechanism. • Its ratiometric sensing for Fe{sup 3+} can be accomplished with a signal to noise ratio of 214. • The large Stokes shift (225 nm) can rule out the excitation backscattering effects.

  7. Comparability of red/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra.

    Science.gov (United States)

    Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing

    2013-11-26

    Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from -12.67% to 36.30% for the red reflectance, -8.52% to -0.23% for the NIR reflectance, and -9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed

  8. Evaluation of spectral light management on growth of container-grown willow oak, nuttall oak and summer red maple

    Science.gov (United States)

    Plant response to blue, red, gray or black shade cloth was evaluated with willow oak (Quercus phellos L.), Nuttall oak (Quercus nuttallii Palmer, Nuttall) and Summer Red maple (Acer rubrum L. ‘Summer Red’) liners. Light transmitted through the colored shade cloth had no influence on germination of ...

  9. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band.

    Science.gov (United States)

    Zaske, Sebastian; Lenhard, Andreas; Becher, Christoph

    2011-06-20

    We report on single photon frequency downconversion from the red part of the spectrum (738 nm) to the telecommunications C-band. By mixing attenuated laser pulses with an average photon number per pulse telecommunications wavelengths.

  10. Simple luminosity normalization of greenness, yellowness and redness/greenness for comparison of leaf spectral profiles in multi-temporally acquired remote sensing images.

    Science.gov (United States)

    Doi, Ryoichi

    2012-09-01

    Observation of leaf colour (spectral profiles) through remote sensing is an effective method of identifying the spatial distribution patterns of abnormalities in leaf colour, which enables appropriate plant management measures to be taken. However, because the brightness of remote sensing images varies with acquisition time, in the observation of leaf spectral profiles in multi-temporally acquired remote sensing images, changes in brightness must be taken into account. This study identified a simple luminosity normalization technique that enables leaf colours to be compared in remote sensing images over time. The intensity values of green and yellow (green+red) exhibited strong linear relationships with luminosity (R2 greater than 0.926) when various invariant rooftops in Bangkok or Tokyo were spectralprofiled using remote sensing images acquired at different time points. The values of the coefficient and constant or the coefficient of the formulae describing the intensity of green or yellow were comparable among the single Bangkok site and the two Tokyo sites, indicating the technique's general applicability. For single rooftops, the values of the coefficient of variation for green, yellow, and red/green were 16% or less (n=6-11), indicating an accuracy not less than those of well-established remote sensing measures such as the normalized difference vegetation index. After obtaining the above linear relationships, raw intensity values were normalized and a temporal comparison of the spectral profiles of the canopies of evergreen and deciduous tree species in Tokyo was made to highlight the changes in the canopies' spectral profiles. Future aspects of this technique are discussed herein.

  11. Tuning the light emission of novel donor-acceptor phenoxazine dye-based materials towards the red spectral range

    Science.gov (United States)

    Damaceanu, Mariana-Dana; Constantin, Catalin-Paul

    2018-04-01

    A novel red fluorescent push-pull system able to generate an intramolecular charge-transfer (ICT) complex was synthesized. The novel dye (R-POX) combines some structural features which are rarely encountered in the design of other push-pull systems: hexyl-substituted phenoxazine as donor moiety, divinylketone as π-linker, and p-fluorobenzene as electron acceptor group. The relationship between the structural motif, photo-physical and electrochemical properties by UV-Vis absorption, photoluminescence and cyclic voltammetry was thoroughly investigated both as red dopant in poly(methylmethacrylate) (PMMA) or polyimide (PI) matrix, and non-doped host emitter. The molecular rigid cores of the synthesized dye formed supramolecular rod-like structures in condensed phase with a strong impact on the emissive centers. The aggregation was totally suppressed when the dye was used as dopant in an amorphous polymeric matrix, such as PMMA or PI. Electrochemical measurements revealed the dye ability for both hole and electron injection and transport. The fluorescence emission was found to be highly sensitive to solvent polarity, rendering blue-green, yellow, orange and red light emission in different organic solvents. The absolute fluorescence quantum yield reached 39.57% in solution, and dropped to 1.2% in solid state and to 14.01% when the dye was used as dopant in PMMA matrix. According to the available CIE 1931 standard, R-POX emitted pure and saturated red light of single wavelength with chromaticity coordinates very close to those of National Television System Committee (NTSC) standard red colour. The R-POX photo-optical features were compared to those of the commercial red emitter 6, 13-diphenylpentacene.

  12. Protanopia (red color-blindness) in medaka: a simple system for producing color-blind fish and testing their spectral sensitivity.

    Science.gov (United States)

    Homma, Noriko; Harada, Yumi; Uchikawa, Tamaki; Kamei, Yasuhiro; Fukamachi, Shoji

    2017-02-06

    Color perception is important for fish to survive and reproduce in nature. Visual pigments in the retinal photoreceptor cells are responsible for receiving light stimuli, but the function of the pigments in vivo has not been directly investigated in many animals due to the lack of color-blind lines and appropriate color-perception tests. In this study, we established a system for producing color-blind fish and testing their spectral sensitivity. First, we disrupted long-wavelength-sensitive (LWS) opsins of medaka (Oryzias latipes) using the CRISPR/Cas9 system to make red-color-blind lines. Single guide RNAs were designed using the consensus sequences between the paralogous LWSa and LWSb genes to simultaneously introduce double-frameshift mutations. Next, we developed a non-invasive and no-prior-learning test for spectral sensitivity by applying an optomotor response (OMR) test under an Okazaki Large Spectrograph (OLS), termed the O-O test. We constructed an electrical-rotary cylinder with black/white stripes, into which a glass aquarium containing one or more fish was placed under various monochromatic light conditions. The medaka were irradiated by the OLS every 10 nm, from wavelengths of 700 nm to 900 nm, and OMR was evaluated under each condition. We confirmed that the lws - medaka were indeed insensitive to red light (protanopia). While the control fish responded to wavelengths of up to 830 nm (λ = 830 nm), the lws - mutants responded up to λ = 740 nm; however, this difference was not observed after adaptation to dark: both the control and lws - fish could respond up to λ = 820 ~ 830 nm. These results suggest that the lws - mutants lost photopic red-cone vision, but retained scotopic rod vision. Considering that the peak absorption spectra (λ max ) of medaka LWSs are about 560 nm, but the light-adapted control medaka could respond behaviorally to light at λ = 830 nm, red-cone vision could cover an unexpectedly wide range of

  13. Characterization of standard reference material 2944, Bi-ion-doped glass, spectral correction standard for red fluorescence

    International Nuclear Information System (INIS)

    DeRose, Paul C.; Smith, Melody V.; Anderson, Jeffrey R.; Kramer, Gary W.

    2013-01-01

    Standard Reference Material (SRM) 2944 is a cuvette-shaped, Bi-ion-doped glass, recommended for optimal use for relative spectral correction of emission from 590 nm to 805 nm and day-to-day performance verification of steady-state fluorescence spectrometers. Properties of this standard that influence its effective use or contribute to the uncertainty in its certified emission spectrum were explored here. These properties include its photostability, absorbance, dissolution rate in water, anisotropy and temperature coefficient of fluorescence intensity. The expanded uncertainties (k=2) in the certified spectrum are about 4% around the nominal peak maximum at 704 nm and increase to about 6% at the wings, using an excitation wavelength of 515 nm. -- Highlights: ► The fluorescence emission spectrum of SRM 2944 was determined for spectral correction. ► This Bi-ion-doped glass has been certified in the fluorescence region from 530 nm to 830 nm. ► Fluorescence properties of the glass were determined, e.g., anisotropy, lifetime. ► SRM 2944 is photostable under common visible lamp excitation, when UV light is not present

  14. Calculation of near-edge x-ray-absorption fine structure at finite temperatures: Spectral signatures of hydrogen bond breaking in liquid water

    International Nuclear Information System (INIS)

    Hetenyi, Balazs; De Angelis, Filippo; Giannozzi, Paolo; Car, Roberto

    2004-01-01

    We calculate the near-edge x-ray-absorption fine structure of H 2 O in the gas, hexagonal ice, and liquid phases using heuristic density-functional based methods. We present a detailed comparison of our results with experiment. The differences between the ice and water spectra can be rationalized in terms of the breaking of hydrogen bonds around the absorbing molecule. In particular the increase in the pre-edge absorption feature from ice to water is shown to be due to the breaking of a donor hydrogen bond. We also find that in water approximately 19% of hydrogen bonds are broken

  15. [Spectral features analysis of Pinus massoniana with pest of Dendrolimus punctatus Walker and levels detection].

    Science.gov (United States)

    Xu, Zhang-Hua; Liu, Jian; Yu, Kun-Yong; Gong, Cong-Hong; Xie, Wan-Jun; Tang, Meng-Ya; Lai, Ri-Wen; Li, Zeng-Lu

    2013-02-01

    Taking 51 field measured hyperspectral data with different pest levels in Yanping, Fujian Province as objects, the spectral reflectance and first derivative features of 4 levels of healthy, mild, moderate and severe insect pest were analyzed. On the basis of 7 detecting parameters construction, the pest level detecting models were built. The results showed that (1) the spectral reflectance of Pinus massoniana with pests were significantly lower than that of healthy state, and the higher the pest level, the lower the reflectance; (2) with the increase in pest level, the spectral reflectance curves' "green peak" and "red valley" of Pinus massoniana gradually disappeared, and the red edge was leveleds (3) the pest led to spectral "green peak" red shift, red edge position blue shift, but the changes in "red valley" and near-infrared position were complicated; (4) CARI, RES, REA and REDVI were highly relevant to pest levels, and the correlations between REP, RERVI, RENDVI and pest level were weak; (5) the multiple linear regression model with the variables of the 7 detection parameters could effectively detect the pest levels of Dendrolimus punctatus Walker, with both the estimation rate and accuracy above 0.85.

  16. Edge Matters

    DEFF Research Database (Denmark)

    Earon, Ofri

    2013-01-01

    of this container is to separate inside from outside and to protect and provide privacy, psychological as well as physical (Venturi, 1966). But, if dwelling phenomenon takes place both inside and outside the private house – why is the urban house an enclosed box? What is the differentiation between inside...... and outside the contemporary urban house? And what is the interplay between them? The research argues for re-thinking the edge zone between inside and outside the urban house. Therefore, although, residential buildings in the city are the objects of study, the focal point here is the edge zone along...... the building. The research explores and develops the architectural characteristics of correlations between the resident, the singular unit, the building and the given location at the edge zone. It approaches the edge zone of the urban house as a platform for dynamic interactions between these behaviours...

  17. Spectral edge: gradient-preserving spectral mapping for image fusion.

    Science.gov (United States)

    Connah, David; Drew, Mark S; Finlayson, Graham D

    2015-12-01

    This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.

  18. Application of MCD spectroscopy and TD-DFT to a highly non-planar porphyrinoid ring system. New insights on red-shifted porphyrinoid spectral bands.

    Science.gov (United States)

    Mack, John; Asano, Yoshiaki; Kobayashi, Nagao; Stillman, Martin J

    2005-12-21

    The first magnetic circular dichroism (MCD) spectra are reported for tetraphenyltetraacenaphthoporphyrin (TPTANP). The impact on the electronic structure of steric interactions between the fused acenaphthalene rings and the meso-tetraphenyl substituents is explored based on an analysis of the optical spectra of the Zn(II) complex (ZnTPTANP) and the free base dication species ([H4TPTANP]2+). In the case of ZnTPTANP, significant folding of the porphyrinoid ligand induces a highly unusual MCD-sign reversal providing the first direct spectroscopic evidence of ligand nonplanarity. Density functional theory (DFT) geometry optimizations for a wide range of Zn(II) porphyrinoids based on the B3LYP functional and TD-DFT calculations of the associated UV-visible absorption spectra are reported, allowing a complete assessment of the MCD data. TPTANP complexes are found to fall into a class of cyclic polyenes, termed as soft MCD chromophores by Michl (J. Pure Appl. Chem. 1980, 52, 1549.), since the signs of the Faraday A1 terms observed in the MCD spectrum are highly sensitive to slight structural changes. The origin of an unusually large red shift of the main B (or Soret) band of MTPTANP (the most red shifted ever reported for fused-ring-expanded metal porphines) and of similar red shifts observed in the spectra of other peripherally crowded porphyrinoid complexes is also explored and explained on this basis.

  19. Edge Detection,

    Science.gov (United States)

    1985-09-01

    PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE

  20. Reduction of airfoil trailing edge noise by trailing edge blowing

    International Nuclear Information System (INIS)

    Gerhard, T; Carolus, T; Erbslöh, S

    2014-01-01

    The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length

  1. Edge-based correlation image registration for multispectral imaging

    Science.gov (United States)

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  2. Living edge

    DEFF Research Database (Denmark)

    Earon, Ofri

    2014-01-01

    was originally introduced to enhance indoor qualities including light and view. Throughout the paper, it is argued that these ecological motives have grown to architectural and urban dimensions. The paper analyzes the characteristics and potentials of these dimensions and their interconnections. The paper...... on the ground level, but there is a lack of recognition in the significance of communicative characters as well at the higher part of the edge. The city’s planning approach is “Consider urban life before urban space. Consider urban space before buildings” This urban strategy neglects the possible architectural...... contribution to the street atmosphere and its effect on urban life. Bay balcony has been a common architectural element in Copenhagen’s residential buildings, since the end of the twenties. It is a domestic border with an architectural thickness combining window, door, windowsill and balcony. The bay balcony...

  3. Red but not dead: unveiling the star-forming far-infrared spectral energy distribution of SpARCS brightest cluster galaxies at 0 < z < 1.8

    Science.gov (United States)

    Bonaventura, N. R.; Webb, T. M. A.; Muzzin, A.; Noble, A.; Lidman, C.; Wilson, G.; Yee, H. K. C.; Geach, J.; Hezaveh, Y.; Shupe, D.; Surace, J.

    2017-08-01

    We present the results of a Spitzer/Herschel infrared photometric analysis of the largest (716) and the highest-redshift (z = 1.8) sample of brightest cluster galaxies (BCGs), those from the Spitzer Adaptation of the Red-Sequence Cluster Survey Given the tension that exists between model predictions and recent observations of BCGs at z energy distributions (SEDs) to a variety of model templates in the literature, we identify the major sources of their infrared energy output, in multiple redshift bins between 0 solar masses per year down to z = 0.5. This discovery challenges the accepted belief that BCGs should only passively evolve through a series of gas-poor, minor mergers since z ˜ 4, but agrees with an improved semi-analytic model of hierarchical structure formation that predicts star-forming BCGs throughout the epoch considered. We attribute the star formation inferred from the stacked infrared SEDs to both major and minor 'wet' (gas-rich) mergers, based on a lack of key signatures (to date) of cooling-flow-induced star formation, as well as a number of observational and simulation-based studies that support this scenario.

  4. Spectral changes in conifers subjected to air pollution and water stress: Experimental studies

    Science.gov (United States)

    Westman, Walter E.; Price, Curtis V.

    1988-01-01

    The roles of leaf anatomy, moisture and pigment content, and number of leaf layers on spectral reflectance in healthy, pollution-stressed, and water-stressed conifer needles were examined experimentally. Jeffrey pine (Pinus jeffreyi) and giant sequoia (Sequoiadendron gigantea) were exposed to ozone and acid mist treatments in fumigation chambers; red pine (Pinus resinosa) needles were artificially dried. Infrared reflectance from stacked needles rose with free water loss. In an air-drying experiment, cell volume reductions induced by loss of turgor caused near-infrared reflectance (TM band 4) to drop after most free water was lost. Under acid mist fumigation, stunting of tissue development similarly reduced band 4 reflectance. Both artificial drying and pollutant fumigation caused a blue shift of the red edge of spectral reflectance curves in conifers, attributable to chlorophyll denaturation. Thematic mapper band ratio 4/3 fell and 5/4 rose with increasing pollution stress on artificial drying. Loss of water by air-drying, freeze-drying, or oven-drying enhanced spectral features, due in part to greater scattering and reduced water absorption. Grinding of the leaf tissue further enhanced the spectral features by increasing reflecting surfaces and path length. In a leaf-stacking experiment, an asymptote in visible and infrared reflectance was reached at 7-8 needle layers of red pine.

  5. Spectral Reflectance and Vegetation Index Changes in Deciduous Forest Foliage Following Tree Removal: Potential for Deforestation Monitoring

    Science.gov (United States)

    Peng, D.; Hu, Y.; Li, Z.

    2016-05-01

    It is important to detect and quantify deforestation to guide strategic decisions regarding environment, socioeconomic development, and climate change. In the present study, we conducted a field experiment to examine spectral reflectance and vegetation index changes in poplar and locust tree foliage with different leaf area indices over the course of three sunny days, following tree removal from the canopy. The spectral reflectance of foliage from harvested trees was measured using an ASD FieldSpec Prospectroradiometer; synchronous meteorological data were also obtained. We found that reflectance in short-wave infrared and red-edge reflectance was more time sensitive after tree removal than reflectance in other spectral regions, and that the normalized difference water index (NDWI) and the red-edge chlorophyll index (CIRE) were the preferred indicators of these changes from several indices evaluated. Synthesized meteorological environments were found to influence water and chlorophyll contents after tree removal, and this subsequently changed the spectral canopy reflectance. Our results indicate the potential for such tree removal to be detected with NDWI or CIRE from the second day of a deforestation event.

  6. Spectral ansatz in quantum electrodynamics

    International Nuclear Information System (INIS)

    Atkinson, D.; Slim, H.A.

    1979-01-01

    An ansatz of Delbourgo and Salam for the spectral representation of the vertex function in quantum electrodynamics. The Ward-Takahashi identity is respected, and the electron propagator does not have a ghost. The infra-red and ultraviolet behaviours of the electron propagator in this theory are considered, and a rigorous existence theorem for the propagator in the Yennie gauge is presented

  7. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    Science.gov (United States)

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  8. Spectral stratigraphy

    Science.gov (United States)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  9. Stability of edge states and edge magnetism in graphene nanoribbons

    OpenAIRE

    Kunstmann, Jens; Özdoğan, Cem; Quandt, Alexander; Fehske, Holger

    2010-01-01

    We critically discuss the stability of edge states and edge magnetism in zigzag edge graphene nanoribbons (ZGNRs). We point out that magnetic edge states might not exist in real systems, and show that there are at least three very natural mechanisms - edge reconstruction, edge passivation, and edge closure - which dramatically reduce the effect of edge states in ZGNRs or even totally eliminate them. Even if systems with magnetic edge states could be made, the intrinsic magnetism would not be ...

  10. Nanoindentation near the edge

    Science.gov (United States)

    J.E. Jakes; C.R. Frihart; J.F. Beecher; R.J. Moon; P.J. Resto; Z.H. Melgarejo; O.M. Saurez; H. Baumgart; A.A. Elmustafa; D.S. Stone

    2009-01-01

    Whenever a nanoindent is placed near an edge, such as the free edge of the specimen or heterophase interface intersecting the surface, the elastic discontinuity associated with the edge produces artifacts in the load-depth data. Unless properly handled in the data analysis, the artifacts can produce spurious results that obscure any real trends in properties as...

  11. Power deposition on misaligned edges in COMPASS

    Directory of Open Access Journals (Sweden)

    R. Dejarnac

    2017-08-01

    Full Text Available If the decision is made not to apply a toroidal chamfer to tungsten monoblocks at ITER divertor vertical targets, exposed leading edges will arise as a result of assembly tolerances between adjacent plasma-facing components. Then, the advantage of glancing magnetic field angles for spreading plasma heat flux on top surfaces is lost at the misaligned edges with an interaction occurring at near normal incidence, which can drive melting for the expected inter-ELM heat fluxes. A dedicated experiment has been performed on the COMPASS tokamak to thoroughly study power deposition on misaligned edges using inner-wall limited discharges on a special graphite tile presenting gaps and leading edges directly viewed by a high resolution infra-red camera. The parallel power flux deducted from the unperturbed measurement far from the gap is fully consistent with the observed temperature increase at the leading edge, respecting the power balance. All the power flowing into the gap is deposited at the leading edge and no mitigation factor is required to explain the thermal response. Particle-in-cell simulations show that the ion Larmor smoothing effect is weak and that the power deposition on misaligned edges is well described by the optical approximation because of an electron dominated regime associated with non-ambipolar parallel current flow.

  12. Edge detection in landing budgerigars (Melopsittacus undulatus.

    Directory of Open Access Journals (Sweden)

    Partha Bhagavatula

    Full Text Available BACKGROUND: While considerable scientific effort has been devoted to studying how birds navigate over long distances, relatively little is known about how targets are detected, obstacles are avoided and smooth landings are orchestrated. Here we examine how visual features in the environment, such as contrasting edges, determine where a bird will land. METHODOLOGY/PRINCIPAL FINDINGS: Landing in budgerigars (Melopsittacus undulatus was investigated by training them to fly from a perch to a feeder, and video-filming their landings. The feeder was placed on a grey disc that produced a contrasting edge against a uniformly blue background. We found that the birds tended to land primarily at the edge of the disc and walk to the feeder, even though the feeder was in the middle of the disc. This suggests that the birds were using the visual contrast at the boundary of the disc to target their landings. When the grey level of the disc was varied systematically, whilst keeping the blue background constant, there was one intermediate grey level at which the budgerigar's preference for the disc boundary disappeared. The budgerigars then landed randomly all over the test surface. Even though this disc is (for humans clearly distinguishable from the blue background, it offers very little contrast against the background, in the red and green regions of the spectrum. CONCLUSIONS: We conclude that budgerigars use visual edges to target and guide landings. Calculations of photoreceptor excitation reveal that edge detection in landing budgerigars is performed by a color-blind luminance channel that sums the signals from the red and green photoreceptors, or, alternatively, receives input from the red double-cones. This finding has close parallels to vision in honeybees and primates, where edge detection and motion perception are also largely color-blind.

  13. A Simple Spectral Observer

    Directory of Open Access Journals (Sweden)

    Lizeth Torres

    2018-05-01

    Full Text Available The principal aim of a spectral observer is twofold: the reconstruction of a signal of time via state estimation and the decomposition of such a signal into the frequencies that make it up. A spectral observer can be catalogued as an online algorithm for time-frequency analysis because is a method that can compute on the fly the Fourier transform (FT of a signal, without having the entire signal available from the start. In this regard, this paper presents a novel spectral observer with an adjustable constant gain for reconstructing a given signal by means of the recursive identification of the coefficients of a Fourier series. The reconstruction or estimation of a signal in the context of this work means to find the coefficients of a linear combination of sines a cosines that fits a signal such that it can be reproduced. The design procedure of the spectral observer is presented along with the following applications: (1 the reconstruction of a simple periodical signal, (2 the approximation of both a square and a triangular signal, (3 the edge detection in signals by using the Fourier coefficients, (4 the fitting of the historical Bitcoin market data from 1 December 2014 to 8 January 2018 and (5 the estimation of a input force acting upon a Duffing oscillator. To round out this paper, we present a detailed discussion about the results of the applications as well as a comparative analysis of the proposed spectral observer vis-à-vis the Short Time Fourier Transform (STFT, which is a well-known method for time-frequency analysis.

  14. Theoretical Mn K-edge XANES for Li2MnO3: DFT + U study

    International Nuclear Information System (INIS)

    Tamura, Tomoyuki; Ohwaki, Tsukuru; Ito, Atsushi; Ohsawa, Yasuhiko; Kobayashi, Ryo; Ogata, Shuji

    2012-01-01

    Spectral features of Mn K-edge x-ray absorption near-edge structure (XANES) for Li 2 MnO 3 were calculated using the first-principles full projector augmented wave method with the general gradient approximation plus U method. We demonstrated that the U parameter affects the spectral features in the pre-edge region while it does not affect those in the major absorption region. From the comparison with the experimental spectra and those of reference compounds, we showed that the spectral features of Mn K-edge XANES and the differences in the valence state can be reproduced well. (paper)

  15. An edge pedestal model

    International Nuclear Information System (INIS)

    Stacev, W.M.

    2001-01-01

    A new model for calculation of the gradient scale lengths in the edge pedestal region and of the edge transport barrier width in H-mode tokamak plasmas will be described. Model problem calculations which demonstrate the promise of this model for predicting experimental pedestal properties will be discussed. The density and Prague gradient scale lengths (L) in the edge are calculated from the particle and ion and electron energy radial transport equations, making use of (presumed) known particle and energy fluxes flowing across the edge transport barrier from the core into the SOL and of edge transport coefficients. The average values of the particle and heat fluxes in the edge transport barrier are calculated in terms of the fluxes crossing into the SOL and the atomic physics reaction rates (ionisation, charge-exchange, elastic scattering, impurity radiation) in the edge by integrating the respective transport equations from the pedestal to the separatrix. An important implication of this model is that the pedestal gradient scale lengths depend not just on local pedestal platers properties but also on particle and energy fluxes from the core plasma and on recycling neutral fluxes that penetrate into the plasma edge, both of which in turn depend on the pedestal properties. The MHD edge pressure gradient constraint α≤ α C is used to determine the pressure width of the edge transport barrier, Δ TB = Δ TB (α c ). Three different models for the MHD edge pressure gradient constraint have been investigated: (1) nominal ideal ballooning mode theory, (2) ballooning mode theory taking into account the edge geometry and shear to access He second stability region; and pedestal β-limit theory when the ballooning modes are stabilised by diamagnetic effects. A series of calculations have been made for a DIII-D model problem. The calculated gradient scale lengths and edge transport barrier widths are of the magnitude of values observed experimentally, and certain trends

  16. Spectral Imaging of Portolan Charts

    Science.gov (United States)

    France, Fenella G.; Wilson, Meghan A.; Ghez, Anita

    2018-05-01

    Spectral imaging of Portolan Charts, early nautical charts, provided extensive new information about their construction and creation. The origins of the portolan chart style have been a continual source of perplexity to numerous generations of cartographic historians. The spectral imaging system utilized incorporates a 50 megapixel mono-chrome camera with light emitting diode (LED) illumination panels that cover the range from 365 nm to 1050 nm to capture visible and non-visible information. There is little known about how portolan charts evolved, and what influenced their creation. These early nautical charts began as working navigational tools of medieval mariners, initially made in the 1300s in Italy, Portugal and Spain; however the origin and development of the portolan chart remained shrouded in mystery. Questions about these early navigational charts included whether colorants were commensurate with the time period and geographical location, and if different, did that give insight into trade routes, or possible later additions to the charts? For example; spectral data showed the red pigment on both the 1320 portolan chart and the 1565 Galapagos Islands matched vermillion, an opaque red pigment used since antiquity. The construction of these charts was also of great interest. Spectral imaging with a range of illumination modes revealed the presence of a "hidden circle" often referred to in relation to their construction. This paper will present in-depth analysis of how spectral imaging of the Portolans revealed similarities and differences, new hidden information and shed new light on construction and composition.

  17. Power spectrum weighted edge analysis for straight edge detection in images

    Science.gov (United States)

    Karvir, Hrishikesh V.; Skipper, Julie A.

    2007-04-01

    Most man-made objects provide characteristic straight line edges and, therefore, edge extraction is a commonly used target detection tool. However, noisy images often yield broken edges that lead to missed detections, and extraneous edges that may contribute to false target detections. We present a sliding-block approach for target detection using weighted power spectral analysis. In general, straight line edges appearing at a given frequency are represented as a peak in the Fourier domain at a radius corresponding to that frequency, and a direction corresponding to the orientation of the edges in the spatial domain. Knowing the edge width and spacing between the edges, a band-pass filter is designed to extract the Fourier peaks corresponding to the target edges and suppress image noise. These peaks are then detected by amplitude thresholding. The frequency band width and the subsequent spatial filter mask size are variable parameters to facilitate detection of target objects of different sizes under known imaging geometries. Many military objects, such as trucks, tanks and missile launchers, produce definite signatures with parallel lines and the algorithm proves to be ideal for detecting such objects. Moreover, shadow-casting objects generally provide sharp edges and are readily detected. The block operation procedure offers advantages of significant reduction in noise influence, improved edge detection, faster processing speed and versatility to detect diverse objects of different sizes in the image. With Scud missile launcher replicas as target objects, the method has been successfully tested on terrain board test images under different backgrounds, illumination and imaging geometries with cameras of differing spatial resolution and bit-depth.

  18. Red Blood Cell Count Automation Using Microscopic Hyperspectral Imaging Technology.

    Science.gov (United States)

    Li, Qingli; Zhou, Mei; Liu, Hongying; Wang, Yiting; Guo, Fangmin

    2015-12-01

    Red blood cell counts have been proven to be one of the most frequently performed blood tests and are valuable for early diagnosis of some diseases. This paper describes an automated red blood cell counting method based on microscopic hyperspectral imaging technology. Unlike the light microscopy-based red blood count methods, a combined spatial and spectral algorithm is proposed to identify red blood cells by integrating active contour models and automated two-dimensional k-means with spectral angle mapper algorithm. Experimental results show that the proposed algorithm has better performance than spatial based algorithm because the new algorithm can jointly use the spatial and spectral information of blood cells.

  19. Hybrid spectral CT reconstruction.

    Directory of Open Access Journals (Sweden)

    Darin P Clark

    Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with

  20. Hybrid spectral CT reconstruction

    Science.gov (United States)

    Clark, Darin P.

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  1. A spectral route to determining chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We show how one-dimensional structured media can be used to measure chirality, via the spectral shift of the photonic band gap edges. Analytically, we show that a chiral contrast can, in some cases, be mapped unto an index contrast, thereby greatly simplifying the analysis of such structures. Using...... this mapping, we derive a first-order shift of the band gap edges with chirality. Potentially, this effect could be used for measuring enantiomeric excess....

  2. Images of Edge Turbulence in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.J.; Bush, C.E.; Maqueda, R.; Munsat, T.; Stotler, D.; Lowrance, J.; Mastracola, V.; Renda, G.

    2004-01-01

    The 2-D structure of edge plasma turbulence has been measured in the National Spherical Torus Experiment (NSTX) by viewing the emission of the Da spectral line of deuterium. Images have been made at framing rates of up to 250,000 frames/sec using an ultra-high speed CCD camera developed by Princeton Scientific Instruments. A sequence of images showing the transition between L-mode and H-mode states is shown

  3. Separability Analysis of Sentinel-2A Multi-Spectral Instrument (MSI Data for Burned Area Discrimination

    Directory of Open Access Journals (Sweden)

    Haiyan Huang

    2016-10-01

    Full Text Available Biomass burning is a global phenomenon and systematic burned area mapping is of increasing importance for science and applications. With high spatial resolution and novelty in band design, the recently launched Sentinel-2A satellite provides a new opportunity for moderate spatial resolution burned area mapping. This study examines the performance of the Sentinel-2A Multi Spectral Instrument (MSI bands and derived spectral indices to differentiate between unburned and burned areas. For this purpose, five pairs of pre-fire and post-fire top of atmosphere (TOA reflectance and atmospherically corrected (surface reflectance images were studied. The pixel values of locations that were unburned in the first image and burned in the second image, as well as the values of locations that were unburned in both images which served as a control, were compared and the discrimination of individual bands and spectral indices were evaluated using parametric (transformed divergence and non-parametric (decision tree approaches. Based on the results, the most suitable MSI bands to detect burned areas are the 20 m near-infrared, short wave infrared and red-edge bands, while the performance of the spectral indices varied with location. The atmospheric correction only significantly influenced the separability of the visible wavelength bands. The results provide insights that are useful for developing Sentinel-2 burned area mapping algorithms.

  4. Electromagnetic radiation of protons in edge fields of synchrotron dipole magnets

    International Nuclear Information System (INIS)

    Smolyakov, N.V.

    1986-01-01

    Effect of the edge shape of magnetic field of a dipole on the short-wave part of electromagnetic radiation spectrum of a proton beam is investigated. In some cases short-wave photons are shown to be shaped in the ranges of largest edge curvature of the magnetic field. Universality of edge radiation spectrum is proved. Spectral characteristics of proton edge radiation in a superconducting magnetic dipole of the storage-accelerator complex are obtained

  5. Product (RED)

    DEFF Research Database (Denmark)

    Ponte, Stefano

    2011-01-01

    ) and the consumers who buy iconic brand products to help ‘distant others’. While in many other forms of causumerism, labels or certification systems ‘prove’ that a product is just, in RED, aid celebrities provide the proof. From the consumer point of view both labels and celebrities provide a similar simplification...... of complex social, economic, and environmental processes. At the same time, we argue that there are important distinctions as well—labels and certifications are ultimately about improving the conditions of production, whereas RED is about accepting existing production and trade systems and donating......(PRODUCT)RED™ (hereafter RED) is a cobranding initiative launched in 2006 by the aid celebrity Bono to raise money from product sales to support The Global Fund to Fight AIDS, Tuberculosis and Malaria. In this paper we argue that RED is shifting the boundaries of ‘causumerism’ (shopping...

  6. Edge effects in composites

    International Nuclear Information System (INIS)

    Guz, A.N.; Kokhanenko, Yu.V.

    1995-01-01

    In the present article we survey papers on edge effects investigated by the rigorous approach. We interpret edge effects as stressed states created in a composite as a result of zones in which the stresses exhibit a rapidly changing behavior in comparison with the slow variation of the stresses outside such zones. Here the range of the edge effect is defined as the distance from the point of its inception to the boundary of the edge zone in a given direction. The transition of the stresses to the slowly varying state is determined within prescribed error limits. The size and configuration of the edge zone depends on the tolerated error. Clearly, the main difficulty associated with the rigorous approach is finding solutions of the elasticity problems. The finite-difference approach is suggested for the approximate solution of these problems. In light of the comparative time consumption of the finite-difference approach, it is best directed at certain classes of problems rather than at particular individual problems. Not too many papers on the investigation of edge effects by the rigorous approach have been published to date. Below, following in their footsteps, we formulate edge effect problems in composites, determine classes of problems, and investigate edge effects in composite materials and structural elements using them in Cartesian (planar and three-dimensional problems) and cylindrical (axisymmetric problems) coordinate frames. We note that the division of approaches to the study of edge effects into qualitative (nonrigorous) and quantitative (rigorous) reflects the authors own point of view. Of course, other schemes of classification of the approaches to the investigation of the regions of rapidly varying states in composites are possible

  7. Edge colouring by total labellings

    DEFF Research Database (Denmark)

    Brandt, Stephan; Rautenbach, D.; Stiebitz, M.

    2010-01-01

    We introduce the concept of an edge-colouring total k-labelling. This is a labelling of the vertices and the edges of a graph G with labels 1, 2, ..., k such that the weights of the edges define a proper edge colouring of G. Here the weight of an edge is the sum of its label and the labels of its...

  8. Adobe Edge Quickstart Guide

    CERN Document Server

    Labrecque, Joseph

    2012-01-01

    Adobe Edge Quickstart Guide is a practical guide on creating engaging content for the Web with Adobe's newest HTML5 tool. By taking a chapter-by-chapter look at each major aspect of Adobe Edge, the book lets you digest the available features in small, easily understandable chunks, allowing you to start using Adobe Edge for your web design needs immediately. If you are interested in creating engaging motion and interactive compositions using web standards with professional tooling, then this book is for you. Those with a background in Flash Professional wanting to get started quickly with Adobe

  9. Bidirectional soliton spectral tunneling effects in the regime of optical event horizon

    DEFF Research Database (Denmark)

    Gu, Jie; Guo, Hairun; Wang, Shaofei

    2015-01-01

    We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects.......We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects....

  10. Adobe Edge Preview 3

    CERN Document Server

    Grover, Chris

    2011-01-01

    Want to use an Adobe tool to design animated web graphics that work on iPhone and iPad? You've come to the right book. Adobe Edge Preview 3: The Missing Manual shows you how to build HTML5 graphics using simple visual tools. No programming experience? No problem. Adobe Edge writes the underlying code for you. With this eBook, you'll be designing great-looking web elements in no time. Get to know the workspace. Learn how Adobe Edge Preview 3 performs its magic.Create and import graphics. Make drawings with Edge's tools, or use art you designed in other programs.Work with text. Build menus, lab

  11. Pavement edge treatment.

    Science.gov (United States)

    2013-01-01

    Four projects were built over two construction seasons using special devices attached to the paving machine that produces a 30 slope on the outside pavement edge instead of the near vertical drop-off common with conventional paving equipment. This ...

  12. Edge Simulation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, Sergei I. [Univ. of California, San Diego, CA (United States); Angus, Justin [Univ. of California, San Diego, CA (United States); Lee, Wonjae [Univ. of California, San Diego, CA (United States)

    2018-01-05

    The goal of the Edge Simulation Laboratory (ESL) multi-institutional project is to advance scientific understanding of the edge plasma region of magnetic fusion devices via a coordinated effort utilizing modern computing resources, advanced algorithms, and ongoing theoretical development. The UCSD team was involved in the development of the COGENT code for kinetic studies across a magnetic separatrix. This work included a kinetic treatment of electrons and multiple ion species (impurities) and accurate collision operators.

  13. Far red bioluminescence from two deep-sea fishes.

    Science.gov (United States)

    Widder, E A; Latz, M I; Herring, P J; Case, J F

    1984-08-03

    Spectral measurements of red bioluminescence were obtained from the deep-sea stomiatoid fishes Aristostomias scintillans (Gilbert) and Malacosteus niger (Ayres). Red luminescence from suborbital light organs extends to the near infrared, with peak emission at approximately 705 nanometers in the far red. These fishes also have postorbital light organs that emit blue luminescence with maxima between 470 and 480 nanometers. The red bioluminescence may be due to an energy transfer system and wavelength-selective filtering.

  14. Influence of spectral properties on cassava leaf development and ...

    African Journals Online (AJOL)

    sunny t

    2014-02-12

    Feb 12, 2014 ... changes in leaf spectral characteristics were studied using Digimizer ... main wavelengths used by plants (blue, green and red) with the blue being the most preferred. Total ...... differences observed allude to plant behavior.

  15. Red Sirius

    Energy Technology Data Exchange (ETDEWEB)

    Martynov, D Ya

    1976-01-01

    A hypothesis is proposed explaining the assumption that Sirius changed its colour from red in the second century to pale blue in the tenth century A.D. The hypothesis is based on the possibility of transformation of a Sirius satellite (Sirius B) from a red giant in the past to a white dwarf in the present. Such a transformation would have been accompanied by an explosion of Sirius B, which is clearly visible from the Earth. The fact that the increase in Sirius brightness by 4-5 units is not reflected in historical chronicles is attributed to the degradation of sciences in Europe in 4-10 centuries.

  16. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  17. Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting.

    Science.gov (United States)

    Swainsbury, David J K; Martin, Elizabeth C; Vasilev, Cvetelin; Parkes-Loach, Pamela S; Loach, Paul A; Neil Hunter, C

    2017-11-01

    The reaction centre-light harvesting 1 (RC-LH1) complex of Thermochromatium (Tch.) tepidum has a unique calcium-ion binding site that enhances thermal stability and red-shifts the absorption of LH1 from 880nm to 915nm in the presence of calcium-ions. The LH1 antenna of mesophilic species of phototrophic bacteria such as Rhodobacter (Rba.) sphaeroides does not possess such properties. We have engineered calcium-ion binding into the LH1 antenna of Rba. sphaeroides by progressively modifying the native LH1 polypeptides with sequences from Tch. tepidum. We show that acquisition of the C-terminal domains from LH1 α and β of Tch. tepidum is sufficient to activate calcium-ion binding and the extent of red-shifting increases with the proportion of Tch. tepidum sequence incorporated. However, full exchange of the LH1 polypeptides with those of Tch. tepidum results in misassembled core complexes. Isolated α and β polypeptides from our most successful mutant were reconstituted in vitro with BChl a to form an LH1-type complex, which was stabilised 3-fold by calcium-ions. Additionally, carotenoid specificity was changed from spheroidene found in Rba. sphaeroides to spirilloxanthin found in Tch. tepidum, with the latter enhancing in vitro formation of LH1. These data show that the C-terminal LH1 α/β domains of Tch. tepidum behave autonomously, and are able to transmit calcium-ion induced conformational changes to BChls bound to the rest of a foreign antenna complex. Thus, elements of foreign antenna complexes, such as calcium-ion binding and blue/red switching of absorption, can be ported into Rhodobacter sphaeroides using careful design processes. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  18. Properties on the edge: graphene edge energies, edge stresses, edge warping, and the Wulff shape of graphene flakes

    International Nuclear Information System (INIS)

    Branicio, Paulo S; Jhon, Mark H; Gan, Chee Kwan; Srolovitz, David J

    2011-01-01

    It has been shown that the broken bonds of an unreconstructed graphene edge generate compressive edge stresses leading to edge warping. Here, we investigate edge energies and edge stresses of graphene nanoribbons with arbitrary orientations from armchair to zigzag, considering both flat and warped edge shapes in the presence and absence of hydrogen. We use the second generation reactive empirical bond order potential to calculate the edge energies and stresses for clean and hydrogenated edges. Using these energies, we perform a Wulff construction to determine the equilibrium shapes of flat graphene flakes as a function of hydrogen chemical potential. While edge stresses for clean, flat edges are compressive, they become tensile if allowed to warp. Conversely, we find that edge energies change little (∼1%) with edge warping. Hydrogenation of the edges virtually eliminates both the edge energy and edge stresses. For warped edges an approximately linear relationship is found between amplitudes and wavelengths. The equilibrium shape of a graphene flake is determined by the value of the hydrogen chemical potential. For very small (and large) values of it the flakes have a nearly hexagonal (dodecagon) shape with zigzag oriented edges, while for intermediate values graphene flakes are found with complex shapes

  19. Theory of edge radiation

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Kocharyan, V.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2008-08-15

    We formulate a complete theory of Edge Radiation based on a novel method relying on Fourier Optics techniques. Similar types of radiation like Transition UndulatorRadiation are addressed in the framework of the same formalism. Special attention is payed in discussing the validity of approximations upon which the theory is built. Our study makes consistent use of both similarity techniques and comparisons with numerical results from simulation. We discuss both near and far zone. Physical understanding of many asymptotes is discussed. Based on the solution of the field equation with a tensor Green's function technique, we also discuss an analytical model to describe the presence of a vacuum chamber. In particular, explicit calculations for a circular vacuum chamber are reported. Finally, we consider the use of Edge Radiation as a tool for electron beam diagnostics. We discuss Coherent Edge Radiation, Extraction of Edge Radiation by a mirror, and other issues becoming important at high electron energy and long radiation wavelength. Based on this work we also study the impact of Edge Radiation on XFEL setups and we discuss recent results. (orig.)

  20. Automatic Color Sorting of Hardwood Edge-Glued Panel Parts

    Science.gov (United States)

    D. Earl Kline; Richard Conners; Qiang Lu; Philip A. Araman

    1997-01-01

    This paper describes an automatic color sorting system for red oak edge-glued panel parts. The color sorting system simultaneously examines both faces of a panel part and then determines which face has the "best" color, and sorts the part into one of a number of color classes at plant production speeds. Initial test results show that the system generated over...

  1. High Speed Edge Detection

    Science.gov (United States)

    Prokop, Norman F (Inventor)

    2016-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  2. Anomalous transport in the tokamak edge

    International Nuclear Information System (INIS)

    Vayakis, G.

    1991-04-01

    The tokamak edge has been studied with arrays of Langmuir and magnetic probes on the DITE and COMPASS-C devices. Measurements of plasma parameters such as density, temperature and radial magnetic field were taken in order to elucidate the character, effect on transport and origin of edge fluctuations. The tokamak edge is a strongly-turbulent environment, with large electrostatic fluctuation levels and broad spectra. The observations, including direct correlation measurements, are consistent with a picture in which the observed magnetic field fluctuations are driven by the perturbations in electrostatic parameters. The propagation characteristics of the turbulence, investigated using digital spectral techniques, appear to be dominated by the variation of the radial electric field, both in limiter and divertor plasmas. A shear layer is formed, associated in each case with the last closed flux surface. In the shear layer, the electrostatic wavenumber spectra are significantly broader. The predictions of a drift wave model (DDGDT) and of a family of models evolving from the rippling mode (RGDT group), are compared with experimental results. RGDT, augmented by impurity radiation effects, is shown to be the most reasonable candidate to explain the nature of the edge turbulence, only failing in its estimate of the wavenumber range. (Author)

  3. Spectral reflectance relationships to leaf water stress

    Science.gov (United States)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  4. Material Discrimination Based on K-edge Characteristics

    Directory of Open Access Journals (Sweden)

    Peng He

    2013-01-01

    Full Text Available Spectral/multienergy CT employing the state-of-the-art energy-discriminative photon-counting detector can identify absorption features in the multiple ranges of photon energies and has the potential to distinguish different materials based on K-edge characteristics. K-edge characteristics involve the sudden attenuation increase in the attenuation profile of a relatively high atomic number material. Hence, spectral CT can utilize material K-edge characteristics (sudden attenuation increase to capture images in available energy bins (levels/windows to distinguish different material components. In this paper, we propose an imaging model based on K-edge characteristics for maximum material discrimination with spectral CT. The wider the energy bin width is, the lower the noise level is, but the poorer the reconstructed image contrast is. Here, we introduce the contrast-to-noise ratio (CNR criterion to optimize the energy bin width after the K-edge jump for the maximum CNR. In the simulation, we analyze the reconstructed image quality in different energy bins and demonstrate that our proposed optimization approach can maximize CNR between target region and background region in reconstructed image.

  5. Study of old ecological hazards, oil seeps and contaminations using earth observation methods – spectral library for oil seep

    Directory of Open Access Journals (Sweden)

    Smejkalová Eva

    2017-03-01

    Full Text Available The possibilities of remote sensing techniques in the field of the Earth surface monitoring and protection specifically for the problems caused by petroleum contaminations, for the mapping of insufficiently plugged and abandoned old oil wells and for the analysis of onshore oil seeps are described. Explained is the methodology for analyzing and detection of potential hydrocarbon contaminations using the Earth observation in the area of interest in Slovakia (Korňa and in Czech Republic (Nesyt, mainly building and calibrating the spectral library for oil seeps. The acquisition of the in-situ field data (ASD, Cropscan spectroradiometers for this purpose, the successful building and verification of hydrocarbon spectral library, the application of hydrocarbon indexes and use of shift in red-edge part of electromagnetic spectra, the spectral analysis of input data are clarified in the paper. Described is approach which could innovate the routine methods for investigating the occurrence of hydrocarbons and can assist during the mapping and locating the potential oil seep sites. Important outcome is the successful establishment of a spectral library (database with calibration data suitable for further application in data classification for identifying the occurrence of hydrocarbons.

  6. The Inner Urban Edge

    Science.gov (United States)

    Ferebee, Ann; Carpenter, Edward K.

    1974-01-01

    In this article, renewal of the inner urban edge is discussed. Norfolk (Virginia) is attempting to blur the difference between old and new neighbor hoods through zoning and architectural controls. Cincinnati (Ohio) is developing an environmentally sound hillside design. Reading (Pennsylvania) is utilizing old railyards for greenbelts of hiking and…

  7. Swords with Blunt Edges

    Science.gov (United States)

    Popham, W. James

    2004-01-01

    Many U.S. educators now wonder whether they're teachers or targets. This mentality stems from the specter of their school being sanctioned for failing the state accountability tests mandated under No Child Left Behind (NCLB). According to this author, most of those tests are like blunt-edged swords: They function badly in two directions. While…

  8. Vortex dynamics in superconducting transition edge sensors

    Science.gov (United States)

    Ezaki, S.; Maehata, K.; Iyomoto, N.; Asano, T.; Shinozaki, B.

    2018-02-01

    The temperature dependence of the electrical resistance (R-T) and the current-voltage (I-V) characteristics has been measured and analyzed in a 40 nm thick Ti thin film, which is used as a transition edge sensor (TES). The analyses of the I-V characteristics with the vortex-antivortex pair dissociation model indicate the possible existence of the Berezinskii-Kosterlitz-Thouless (BKT) transition in two-dimensional superconducting Ti thin films. We investigated the noise due to the vortices' flow in TESs. The values of the current noise spectral density in the TESs were estimated by employing the vortex dynamics caused by the BKT transition in the Ti thin films. The estimated values of the current noise spectral density induced by the vortices' flow were in respectable agreement with the values of excess noise experimentally observed in the TESs with Ti/Au bilayer.

  9. Spectral discrimination of giant reed (Arundo donax L.): A seasonal study in riparian areas

    Science.gov (United States)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2013-06-01

    The giant reed (Arundo donax L.) is amongst the one hundred worst invasive alien species of the world, and it is responsible for biodiversity loss and failure of ecosystem functions in riparian habitats. In this work, field spectroradiometry was used to assess the spectral separability of the giant reed from the adjacent vegetation and from the common reed, a native similar species. The study was conducted at different phenological periods and also for the giant reed stands regenerated after mechanical cutting (giant reed_RAC). A hierarchical procedure using Kruskal-Wallis test followed by Classification and Regression Trees (CART) was used to select the minimum number of optimal bands that discriminate the giant reed from the adjacent vegetation. A new approach was used to identify sets of wavelengths - wavezones - that maximize the spectral separability beyond the minimum number of optimal bands. Jeffries Matusita and Bhattacharya distance were used to evaluate the spectral separability using the minimum optimal bands and in three simulated satellite images, namely Landsat, IKONOS and SPOT. Giant reed was spectrally separable from the adjacent vegetation, both at the vegetative and the senescent period, exception made to the common reed at the vegetative period. The red edge region was repeatedly selected, although the visible region was also important to separate the giant reed from the herbaceous vegetation and the mid infrared region to the discrimination from the woody vegetation. The highest separability was obtained for the giant reed_RAC stands, due to its highly homogeneous, dense and dark-green stands. Results are discussed by relating the phenological, morphological and structural features of the giant reed stands and the adjacent vegetation with their optical traits. Weaknesses and strengths of the giant reed spectral discrimination are highlighted and implications of imagery selection for mapping purposes are argued based on present results.

  10. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  11. New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery

    Directory of Open Access Journals (Sweden)

    Qiong Zheng

    2018-03-01

    Full Text Available Yellow rust is one of the most destructive diseases for winter wheat and has led to a significant decrease in winter wheat quality and yield. Identifying and monitoring yellow rust is of great importance for guiding agricultural production over large areas. Compared with traditional crop disease discrimination methods, remote sensing technology has proven to be a useful tool for accomplishing such a task at large scale. This study explores the potential of the Sentinel-2 Multispectral Instrument (MSI, a newly launched satellite with refined spatial resolution and three red-edge bands, for discriminating between yellow rust infection severities (i.e., healthy, slight, and severe in winter wheat. The corresponding simulative multispectral bands for the Sentinel-2 sensor were calculated by the sensor’s relative spectral response (RSR function based on the in situ hyperspectral data acquired at the canopy level. Three Sentinel-2 spectral bands, including B4 (Red, B5 (Re1, and B7 (Re3, were found to be sensitive bands using the random forest (RF method. A new multispectral index, the Red Edge Disease Stress Index (REDSI, which consists of these sensitive bands, was proposed to detect yellow rust infection at different severity levels. The overall identification accuracy for REDSI was 84.1% and the kappa coefficient was 0.76. Moreover, REDSI performed better than other commonly used disease spectral indexes for yellow rust discrimination at the canopy scale. The optimal threshold method was adopted for mapping yellow rust infection at regional scales based on realistic Sentinel-2 multispectral image data to further assess REDSI’s ability for yellow rust detection. The overall accuracy was 85.2% and kappa coefficient was 0.67, which was found through validation against a set of field survey data. This study suggests that the Sentinel-2 MSI has the potential for yellow rust discrimination, and the newly proposed REDSI has great robustness and

  12. New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery.

    Science.gov (United States)

    Zheng, Qiong; Huang, Wenjiang; Cui, Ximin; Shi, Yue; Liu, Linyi

    2018-03-15

    Yellow rust is one of the most destructive diseases for winter wheat and has led to a significant decrease in winter wheat quality and yield. Identifying and monitoring yellow rust is of great importance for guiding agricultural production over large areas. Compared with traditional crop disease discrimination methods, remote sensing technology has proven to be a useful tool for accomplishing such a task at large scale. This study explores the potential of the Sentinel-2 Multispectral Instrument (MSI), a newly launched satellite with refined spatial resolution and three red-edge bands, for discriminating between yellow rust infection severities (i.e., healthy, slight, and severe) in winter wheat. The corresponding simulative multispectral bands for the Sentinel-2 sensor were calculated by the sensor's relative spectral response (RSR) function based on the in situ hyperspectral data acquired at the canopy level. Three Sentinel-2 spectral bands, including B4 (Red), B5 (Re1), and B7 (Re3), were found to be sensitive bands using the random forest (RF) method. A new multispectral index, the Red Edge Disease Stress Index (REDSI), which consists of these sensitive bands, was proposed to detect yellow rust infection at different severity levels. The overall identification accuracy for REDSI was 84.1% and the kappa coefficient was 0.76. Moreover, REDSI performed better than other commonly used disease spectral indexes for yellow rust discrimination at the canopy scale. The optimal threshold method was adopted for mapping yellow rust infection at regional scales based on realistic Sentinel-2 multispectral image data to further assess REDSI's ability for yellow rust detection. The overall accuracy was 85.2% and kappa coefficient was 0.67, which was found through validation against a set of field survey data. This study suggests that the Sentinel-2 MSI has the potential for yellow rust discrimination, and the newly proposed REDSI has great robustness and generalized ability

  13. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  14. Lipid chain saturation and the cholesterol in the phospholipid membrane affect the spectroscopic properties of lipophilic dye nile red

    Science.gov (United States)

    Halder, Animesh; Saha, Baishakhi; Maity, Pabitra; Kumar, Gopinatha Suresh; Sinha, Deepak Kumar; Karmakar, Sanat

    2018-02-01

    We have studied the effect of composition and the phase state of phospholipid membranes on the emission spectrum, anisotropy and lifetime of a lipophilic fluorescence probe nile red. Fluorescence spectrum of nile red in membranes containing cholesterol has also been investigated in order to get insights into the influence of cholesterol on the phospholipid membranes. Maximum emission wavelength (λem) of nile red in the fluid phase of saturated and unsaturated phospholipids was found to differ by 10 nm. The λem was also found to be independent of chain length and charge of the membrane. However, the λem is strongly dependent on the temperature in the gel phase. The λem and rotational diffusion rate decrease, whereas the anisotropy and lifetime increase markedly with increasing cholesterol concentration for saturated phosoholipids, such as, dimyristoyl phosphatidylcholine (DMPC) in the liquid ordered phase. However, these spectroscopic properties do not alter significantly in case of unsaturated phospholipids, such as, dioleoyl phosphatidylcholine (DOPC) in liquid disordered phase. Interestingly, red edge excitation shift (REES) in the presence of lipid-cholesterol membranes is the direct consequences of change in rotational diffusion due to motional restriction of lipids in the presence of cholesterol. This study provides correlations between the membrane compositions and fluorescence spectral features which can be utilized in a wide range of biophysical fields as well the cell biology.

  15. ICRF edge modeling

    International Nuclear Information System (INIS)

    1991-01-01

    This report describes the technical progress for the DOE sponsored grant, ''ICRF Edge Modeling.'' An emphasis is placed on the progress since the Technical Progress Report (January 10, 1990) was submitted to the Department of Energy. The design of ICRF antennas for C-Mod and TFTR was investigated during this period. In addition, quasilinear models for electron heating were refined and applied to the design of ICRF antennas. The relevant professional activities sponsored by this grant are given. 4 refs., 11 figs

  16. ICRF edge modeling studies

    Energy Technology Data Exchange (ETDEWEB)

    Lehrman, I.S. (Grumman Corp. Research Center, Princeton, NJ (USA)); Colestock, P.L. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1990-04-01

    Theoretical models have been developed, and are currently being refined, to explain the edge plasma-antenna interaction that occurs during ICRF heating. The periodic structure of a Faraday shielded antenna is found to result in strong ponderomotive force in the vicinity of the antenna. A fluid model, which incorporates the ponderomotive force, shows an increase in transport to the Faraday shield. A kinetic model shows that the strong antenna near fields act to increase the energy of deuterons which strike the shield, thereby increasing the sputtering of shield material. Estimates of edge impurity harmonic heating show no significant heating for either in or out-of-phase antenna operation. Additionally, a particle model for electrons near the shield shows that heating results from the parallel electric field associated with the fast wave. A quasilinear model for edge electron heating is presented and compared to the particle calculations. The models' predictions are shown to be consistent with measurements of enhanced transport. (orig.).

  17. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  18. Smoothness in Binomial Edge Ideals

    Directory of Open Access Journals (Sweden)

    Hamid Damadi

    2016-06-01

    Full Text Available In this paper we study some geometric properties of the algebraic set associated to the binomial edge ideal of a graph. We study the singularity and smoothness of the algebraic set associated to the binomial edge ideal of a graph. Some of these algebraic sets are irreducible and some of them are reducible. If every irreducible component of the algebraic set is smooth we call the graph an edge smooth graph, otherwise it is called an edge singular graph. We show that complete graphs are edge smooth and introduce two conditions such that the graph G is edge singular if and only if it satisfies these conditions. Then, it is shown that cycles and most of trees are edge singular. In addition, it is proved that complete bipartite graphs are edge smooth.

  19. Spectrally-Selective Photonic Structures for PV Applications

    Directory of Open Access Journals (Sweden)

    Benedikt Bläsi

    2010-01-01

    Full Text Available We review several examples of how spectrally-selective photonic structures may be used to improve solar cell systems. Firstly, we introduce different spectrally-selective structures that are based on interference effects. Examples shown include Rugate filter, edge filter and 3D photonic crystals such as artificial opals. In the second part, we discuss several examples of photovoltaic (PV concepts that utilize spectral selectivity such as fluorescence collectors, upconversion systems, spectrum splitting concepts and the intermediate reflector concept. The potential of spectrally selective filters in the context of solar cells is discussed.

  20. [Study on spectral detection of green plant target].

    Science.gov (United States)

    Deng, Wei; Zhao, Chun-jiang; He, Xiong-kui; Chen, Li-ping; Zhang, Lu-da; Wu, Guang-wei; Mueller, J; Zhai, Chang-yuan

    2010-08-01

    Weeds grow scatteredly in fields, where many insentient objects exist, for example, withered grasses, dry twig and barriers. In order to improve the precision level of spraying, it is important to study green plant detecting technology. The present paper discussed detecting method of green plant by using spectral recognizing technology, because of the real-time feature of spectral recognition. By analyzing the reflectivity difference between each of the two sides of the "red edge" of the spectrum from plants and surrounding environment, green plant discriminat index (GPDI) is defined as the value which equals the reflectivity ratio at the wavelength of 850 nm divided by the reflectivity ratio at the wavelength of 650 nm. The original spectral data of green plants and the background were measured by using the handhold FieldSpec 3 Spectroradiometer manufactured by ASD Inc. in USA. The spectral data were processed to get the reflectivity of each measured objects and to work out the GPDI thereof as well. The classification model of green plant and its background was built up using decision tree method in order to obtain the threshold of GPDI to distinguish green plants and the background. The threshold of GPDI was chosen as 5.54. The detected object was recognized as green plant when it is GPDI>GPDITH, and vice versa. Through another test, the accuracy rate was verified which was 100% by using the threshold. The authors designed and developed the green plant detector based on single chip microcomputer (SCM) "AT89S51" and photodiode "OPT101" to realize detecting green plants from the background. After passing through two optical filters, the center wavelengths of which are 650 and 850 nm respectively, the reflected light from measured targets was detected by two photodiodes and converted into electrical signals. These analog signals were then converted to digital signals via an analog-to-digital converter (ADS7813) after being amplified by a signal amplifier (OP400

  1. Dramatic Change in Jupiter's Great Red Spot

    Science.gov (United States)

    Simon, A. A.; Wong, M. H.; Rogers, J. H.; Orton, G. S.; de Pater, I.; Asay-Davis, X.; Carlson, R. W.; Marcus, P. S.

    2015-01-01

    Jupiter's Great Red Spot (GRS) is one of its most distinct and enduring features, having been continuously observed since the 1800's. It currently spans the smallest latitude and longitude size ever recorded. Here we show analyses of 2014 Hubble spectral imaging data to study the color, structure and internal dynamics of this long-live storm.

  2. Information theoretic analysis of canny edge detection in visual communication

    Science.gov (United States)

    Jiang, Bo; Rahman, Zia-ur

    2011-06-01

    In general edge detection evaluation, the edge detectors are examined, analyzed, and compared either visually or with a metric for specific an application. This analysis is usually independent of the characteristics of the image-gathering, transmission and display processes that do impact the quality of the acquired image and thus, the resulting edge image. We propose a new information theoretic analysis of edge detection that unites the different components of the visual communication channel and assesses edge detection algorithms in an integrated manner based on Shannon's information theory. The edge detection algorithm here is considered to achieve high performance only if the information rate from the scene to the edge approaches the maximum possible. Thus, by setting initial conditions of the visual communication system as constant, different edge detection algorithms could be evaluated. This analysis is normally limited to linear shift-invariant filters so in order to examine the Canny edge operator in our proposed system, we need to estimate its "power spectral density" (PSD). Since the Canny operator is non-linear and shift variant, we perform the estimation for a set of different system environment conditions using simulations. In our paper we will first introduce the PSD of the Canny operator for a range of system parameters. Then, using the estimated PSD, we will assess the Canny operator using information theoretic analysis. The information-theoretic metric is also used to compare the performance of the Canny operator with other edge-detection operators. This also provides a simple tool for selecting appropriate edgedetection algorithms based on system parameters, and for adjusting their parameters to maximize information throughput.

  3. Competing edge networks

    Science.gov (United States)

    Parsons, Mark; Grindrod, Peter

    2012-06-01

    We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails.

  4. USGS Spectral Library Version 7

    Science.gov (United States)

    Kokaly, Raymond F.; Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Hoefen, Todd M.; Pearson, Neil C.; Wise, Richard A.; Benzel, William M.; Lowers, Heather A.; Driscoll, Rhonda L.; Klein, Anna J.

    2017-04-10

    We have assembled a library of spectra measured with laboratory, field, and airborne spectrometers. The instruments used cover wavelengths from the ultraviolet to the far infrared (0.2 to 200 microns [μm]). Laboratory samples of specific minerals, plants, chemical compounds, and manmade materials were measured. In many cases, samples were purified, so that unique spectral features of a material can be related to its chemical structure. These spectro-chemical links are important for interpreting remotely sensed data collected in the field or from an aircraft or spacecraft. This library also contains physically constructed as well as mathematically computed mixtures. Four different spectrometer types were used to measure spectra in the library: (1) Beckman™ 5270 covering the spectral range 0.2 to 3 µm, (2) standard, high resolution (hi-res), and high-resolution Next Generation (hi-resNG) models of Analytical Spectral Devices (ASD) field portable spectrometers covering the range from 0.35 to 2.5 µm, (3) Nicolet™ Fourier Transform Infra-Red (FTIR) interferometer spectrometers covering the range from about 1.12 to 216 µm, and (4) the NASA Airborne Visible/Infra-Red Imaging Spectrometer AVIRIS, covering the range 0.37 to 2.5 µm. Measurements of rocks, soils, and natural mixtures of minerals were made in laboratory and field settings. Spectra of plant components and vegetation plots, comprising many plant types and species with varying backgrounds, are also in this library. Measurements by airborne spectrometers are included for forested vegetation plots, in which the trees are too tall for measurement by a field spectrometer. This report describes the instruments used, the organization of materials into chapters, metadata descriptions of spectra and samples, and possible artifacts in the spectral measurements. To facilitate greater application of the spectra, the library has also been convolved to selected spectrometer and imaging spectrometers sampling and

  5. Carbon K-edge spectra of carbonate minerals.

    Science.gov (United States)

    Brandes, Jay A; Wirick, Sue; Jacobsen, Chris

    2010-09-01

    Carbon K-edge X-ray spectroscopy has been applied to the study of a wide range of organic samples, from polymers and coals to interstellar dust particles. Identification of carbonaceous materials within these samples is accomplished by the pattern of resonances in the 280-320 eV energy region. Carbonate minerals are often encountered in the study of natural samples, and have been identified by a distinctive resonance at 290.3 eV. Here C K-edge and Ca L-edge spectra from a range of carbonate minerals are presented. Although all carbonates exhibit a sharp 290 eV resonance, both the precise position of this resonance and the positions of other resonances vary among minerals. The relative strengths of the different carbonate resonances also vary with crystal orientation to the linearly polarized X-ray beam. Intriguingly, several carbonate minerals also exhibit a strong 288.6 eV resonance, consistent with the position of a carbonyl resonance rather than carbonate. Calcite and aragonite, although indistinguishable spectrally at the C K-edge, exhibited significantly different spectra at the Ca L-edge. The distinctive spectral fingerprints of carbonates provide an identification tool, allowing for the examination of such processes as carbon sequestration in minerals, Mn substitution in marine calcium carbonates (dolomitization) and serpentinization of basalts.

  6. Carbon K-edge Spectra of Carbonate Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, J.; Wirick, S; Jacobsen, C

    2010-01-01

    Carbon K-edge X-ray spectroscopy has been applied to the study of a wide range of organic samples, from polymers and coals to interstellar dust particles. Identification of carbonaceous materials within these samples is accomplished by the pattern of resonances in the 280-320 eV energy region. Carbonate minerals are often encountered in the study of natural samples, and have been identified by a distinctive resonance at 290.3 eV. Here C K-edge and Ca L-edge spectra from a range of carbonate minerals are presented. Although all carbonates exhibit a sharp 290 eV resonance, both the precise position of this resonance and the positions of other resonances vary among minerals. The relative strengths of the different carbonate resonances also vary with crystal orientation to the linearly polarized X-ray beam. Intriguingly, several carbonate minerals also exhibit a strong 288.6 eV resonance, consistent with the position of a carbonyl resonance rather than carbonate. Calcite and aragonite, although indistinguishable spectrally at the C K-edge, exhibited significantly different spectra at the Ca L-edge. The distinctive spectral fingerprints of carbonates provide an identification tool, allowing for the examination of such processes as carbon sequestration in minerals, Mn substitution in marine calcium carbonates (dolomitization) and serpentinization of basalts.

  7. Degenerate band edge laser

    Science.gov (United States)

    Veysi, Mehdi; Othman, Mohamed A. K.; Figotin, Alexander; Capolino, Filippo

    2018-05-01

    We propose a class of lasers based on a fourth-order exceptional point of degeneracy (EPD) referred to as the degenerate band edge (DBE). EPDs have been found in parity-time-symmetric photonic structures that require loss and/or gain; here we show that the DBE is a different kind of EPD since it occurs in periodic structures that are lossless and gainless. Because of this property, a small level of gain is sufficient to induce single-frequency lasing based on a synchronous operation of four degenerate Floquet-Bloch eigenwaves. This lasing scheme constitutes a light-matter interaction mechanism that leads also to a unique scaling law of the laser threshold with the inverse of the fifth power of the laser-cavity length. The DBE laser has the lowest lasing threshold in comparison to a regular band edge laser and to a conventional laser in cavities with the same loaded quality (Q ) factor and length. In particular, even without mirror reflectors the DBE laser exhibits a lasing threshold which is an order of magnitude lower than that of a uniform cavity laser of the same length and with very high mirror reflectivity. Importantly, this novel DBE lasing regime enforces mode selectivity and coherent single-frequency operation even for pumping rates well beyond the lasing threshold, in contrast to the multifrequency nature of conventional uniform cavity lasers.

  8. Edge turbulence and transport: Text and ATF modeling

    International Nuclear Information System (INIS)

    Ritz, C.P.; Rhodes, T.L.; Lin, H.; Rowan, W.L.; Bengtson, R.; Wootton, A.J.; Diamond, P.H.; Ware, A.S.; Thayer, D.R.

    1990-01-01

    We present experimental results on edge turbulence and transport from the tokamak TEXT and the torsatron ATF. The measured electrostatic fluctuations can explain the edge transport of particles and energy. Certain drive (radiation) and stabilizing (velocity shear) terms are suggested by the results. The experimental fluctuation levels and spectral widths can be reproduced by considering the nonlinear evolution of the reduced MHD equations, incorporating a thermal drive from line radiation. In the tokamak limit (with toroidal electric field) the model corresponds to the resistivity gradient mode, while in the currentless torsatron or stellarator limit it corresponds to a thermally driven drift wave

  9. Spectral and angle dependent emission of solar fluorescence collectors

    Energy Technology Data Exchange (ETDEWEB)

    Straeter, Hendrik; Knabe, Sebastian; Bauer, Gottfried H. [Institute of Physics, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg (Germany)

    2011-07-01

    Fluorescence collectors (FCs) provide the option for concentration and simultaneous spectral selection of solar photons of direct or diffuse light. The energetic and commercial benefit of these systems depend on the yield of the conversion of solar photons into luminescence photons and on the efficiency of their respective conductance to the edges of the FC where they are coupled into appropriate solar cells. For the characterization of the performance of FCs and the identification of losses, we have performed angle and spectrally resolved measurements of fluorescence photons from FC with two different types of optical designs, a PMMA substrate with homogeneous depth dependent dye concentration and a novel type of FC, which consist of a transparent substrate with a thin overlayer containing the absorbing and emitting dye. We have recorded the edge fluorescence when illuminating the entire FC surface laterally homogeneously, as well as for slit-like excitation on the front surface with variation of the distance of the illuminated slit from the edge. We compare the experimental fluorescence results with a 2-dimensional ray-tracing approach and verify the spectral and angle dependent edge emission. Moreover we illuminate the FC with long wavelength photons which are not absorbed and conclude, again from angle dependent and spectrally resolved edge emission, on scattering losses at surfaces and in the bulk.

  10. Active probing of plasma edge turbulence and feedback studies on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Richards, B.; Bengtson, R.D.

    1993-01-01

    The edge fluctuations play a critical role in the overall tokamak confinement. Experiments on TEXT show that electrostatic fluctuations in the edge plasma are the dominant mechanism for energy and particle transport. The basic mechanisms responsible for the edge turbulence are the subject of ongoing research in fusion devices. To understand the driving forces responsible for edge fluctuations, a novel experiment is underway on TEXT to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. This technique permits active probing of the spectral properties of the edge turbulence. This new approach to the study of edge fluctuations can provide more insight into the basic dynamics of the turbulence and may, in turn, enable detailed comparison with the theory. These experiments, which rely on the use of oscillating electric fields at the plasma edge, complement edge fluctuation control studies that are presently limited to the use of applied dc biasing to influence the edge electric field profile. These experiments have been extended to control of the edge plasma fluctuation level, using feedback to explore its effects on the edge turbulence characteristics as well as on confinement. (author) 8 refs., 7 figs

  11. Active probing of plasma edge turbulence and feedback studies on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Carreras, B.A.; Richards, B.; Bengtson, R.D.; Crockett, D.B.; Gentle, K.W.; Li, G.X.; Hurwitz, P.D.; Rowan, W.L.; Tsui, H.Y.W.; Wootton, A.J.

    1993-01-01

    The edge fluctuations play a critical role in the overall tokamak confinement. Experiments on TEXT show that electrostatic fluctuations in the edge plasma are the dominant mechanism for energy and particle transport. The basic mechanisms responsible for the edge turbulence are the subject of ongoing research in fusion devices. To understand the driving forces responsible for edge fluctuations, a novel experiment is underway on TEXT to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. This technique permits active probing of the spectral properties of the edge turbulence. This new approach to the study of edge fluctuations can provide more insight into the basic dynamics of the turbulence and may, in turn, enable detailed comparison with the theory. These experiments, which rely on the use of oscillating electric fields at the plasma edge, complement edge fluctuation control studies that are presently limited to the use of applied dc biasing to influence the edge electric field profile. These experiments have been extended to control of the edge plasma fluctuation level, using feedback to explore its effects on the edge turbulence characteristics as well as on confinement

  12. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  13. Dramatic Change in Jupiter's Great Red Spot from Spacecraft Observations

    Science.gov (United States)

    Simon, Amy A.; Wong, Michael H.; Rogers, John H.; Orton, Glenn S.; de Pater, Imke; Asay-Davis, Xylar; Carlson, Robert W.; Marcus, Philip S.

    2015-01-01

    Jupiter's Great Red Spot (GRS) is one of its most distinct and enduring features. Since the advent of modern telescopes, keen observers have noted its appearance and documented a change in shape from very oblong to oval, confirmed in measurements from spacecraft data. It currently spans the smallest latitude and longitude size ever recorded. Here we show that this change has been accompanied by an increase in cloud/haze reflectance as sensed in methane gas absorption bands, increased absorption at wavelengths shorter than 500 nanometers, and increased spectral slope between 500 and 630 nanometers. These changes occurred between 2012 and 2014, without a significant change in internal tangential wind speeds; the decreased size results in a 3.2 day horizontal cloud circulation period, shorter than previously observed. As the GRS has narrowed in latitude, it interacts less with the jets flanking its north and south edges, perhaps allowing for less cloud mixing and longer UV irradiation of cloud and aerosol particles. Given its long life and observational record, we expect that future modeling of the GRS's changes, in concert with laboratory flow experiments, will drive our understanding of vortex evolution and stability in a confined flow field crucial for comparison with other planetary atmospheres.

  14. Cheating on the edge.

    Directory of Open Access Journals (Sweden)

    Lee Alan Dugatkin

    2008-07-01

    Full Text Available We present the results of an individual agent-based model of antibiotic resistance in bacteria. Our model examines antibiotic resistance when two strategies exist: "producers"--who secrete a substance that breaks down antibiotics--and nonproducers ("cheats" who do not secrete, or carry the machinery associated with secretion. The model allows for populations of up to 10,000, in which bacteria are affected by their nearest neighbors, and we assume cheaters die when there are no producers in their neighborhood. Each of 10,000 slots on our grid (a torus could be occupied by a producer or a nonproducer, or could (temporarily be unoccupied. The most surprising and dramatic result we uncovered is that when producers and nonproducers coexist at equilibrium, nonproducers are almost always found on the edges of clusters of producers.

  15. Challenges in edge modeling

    International Nuclear Information System (INIS)

    Schneider, R.

    2007-01-01

    Fluid models like B2, UEDGE or EDGE2D are the working horses for scrape-off layer physics, both for design and experimental support. The concept of a numerical tokamak, aiming at a predictive code for ITER, triggers the need to re-assess the available tools and their necessary extensions. These additional physics issues will be summarized from a personal point-of-view. Depending on the specific problem, several complexity levels of scrape-off layer models will be needed. Therefore, a hierarchy of tools is necessary, which will be discussed. Furthermore, the experience existing in other scientific fields with multi-scale problems and modeling should be used. Here, the coupling of different length and time scales are in particular of interest for fusion problems. (author)

  16. Edge remap for solids

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, James R.; Love, Edward; Robinson, Allen C; Young, Joseph G.; Ridzal, Denis

    2013-12-01

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  17. Playing on the edge

    DEFF Research Database (Denmark)

    Cermak-Sassenrath, Daniel

    2018-01-01

    and specific ways. For instance, gambling for money, party and drinking games, professional play and show sports, art installations, violent and military propaganda computer games, pervasive/mobile gaming, live-action role playing, festivals, performances, and games such as Ghosting and Planking. It is argued......Everything gets more interesting, challenging, or intense the closer it gets to the edge, and so does play. How edgy can play become and still be play? Based on Huizinga’s notion of play, this chapter discusses how a wide range of playful activities pushes the boundaries of play in different...... that in concert with a number of characteristics that mark an activity as play, play is essentially a subjective perspective and individual decision of the player. Huizinga calls this attitude the play spirit, which informs a player’s actions and is in turn sustained by them. Edgy digital or mobile games do...

  18. Competing edge networks

    International Nuclear Information System (INIS)

    Parsons, Mark; Grindrod, Peter

    2012-01-01

    We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails. -- Highlights: ► A model for edgewise-competing evolving network pairs is introduced. ► Defined competition equations yield to a mean field analysis. ► Multiple equilibrium states and different bifurcation types can occur. ► The system is sensitive to sparse initial conditions and near unstable equilibriums.

  19. SPECTRAL SMILE CORRECTION IN CRISM HYPERSPECTRAL IMAGES

    Science.gov (United States)

    Ceamanos, X.; Doute, S.

    2009-12-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is affected by a common artifact in "push-broom" sensors, the so-called "spectral smile". As a consequence, both central wavelength and spectral width of the spectral response vary along the across-track dimension, thus giving rise to a shifting and smoothing of spectra (see Fig. 1 (left)). In fact, both effects are greater for spectra on the edges, while they are minimum for data acquired by central detectors, the so-called "sweet spot". The prior artifacts become particularly critical for Martian observations which contain steep spectra such as CO2 ice-rich polar images. Fig. 1 (right) shows the horizontal brightness gradient which appears in every band corresponding to a steep portion of spectra. The correction of CRISM spectral smile is addressed using a two-step method which aims at modifying data sensibly in order to mimic the optimal CRISM response. First, all spectra, which are previously interpolated by cubic splines, are resampled to the "sweet spot" wavelengths in order to overcome the spectra shift. Secondly, the non-uniform spectral width is overcome by mimicking an increase of spectral resolution thanks to a spectral sharpening. In order to minimize noise, only bands particularly suffering from smile are selected. First, bands corresponding to the outliers of the Minimum Noise Transformation (MNF) eigenvector, which corresponds to the MNF band related to smile (MNF-smile), are selected. Then, a spectral neighborhood Θi, which takes into account the local spectral convexity or concavity, is defined for every selected band in order to maximize spectral shape preservation. The proposed sharpening technique takes into account both the instrument parameters and the observed spectra. First, every reflectance value belonging to a Θi is reevaluated by a sharpening which depends on a ratio of the spectral width of the current detector and the "sweet spot" one. Then, the optimal degree of

  20. Advanced Trailing Edge Blowing Concepts for Fan Noise Control

    Directory of Open Access Journals (Sweden)

    Cezar RIZEA

    2012-03-01

    Full Text Available This study documents trailing edge blowing research performed to reduce rotor / stator interaction noise in turbofan engines. The existing technique of filling every velocity deficit requires a large amount of air and is therefore impractical. The purpose of this research is to investigate new blowing configurations in order to achieve noise reduction with lesser amounts of air. Using the new configurations air is not injected into every fan blade, but is instead varied circumferentially. For example, blowing air may be applied to alternating fan blades. This type of blowing configuration both reduces the amount of air used and changes the spectral shape of the tonal interaction noise. The original tones at the blade passing frequency and its harmonics are reduced and new tones are introduced between them. This change in the tonal spectral shape increases the performance of acoustic liners used in conjunction with trailing edge blowing.

  1. Edge computing technologies for Internet of Things: a primer

    Directory of Open Access Journals (Sweden)

    Yuan Ai

    2018-04-01

    Full Text Available With the rapid development of mobile internet and Internet of Things applications, the conventional centralized cloud computing is encountering severe challenges, such as high latency, low Spectral Efficiency (SE, and non-adaptive machine type of communication. Motivated to solve these challenges, a new technology is driving a trend that shifts the function of centralized cloud computing to edge devices of networks. Several edge computing technologies originating from different backgrounds to decrease latency, improve SE, and support the massive machine type of communication have been emerging. This paper comprehensively presents a tutorial on three typical edge computing technologies, namely mobile edge computing, cloudlets, and fog computing. In particular, the standardization efforts, principles, architectures, and applications of these three technologies are summarized and compared. From the viewpoint of radio access network, the differences between mobile edge computing and fog computing are highlighted, and the characteristics of fog computing-based radio access network are discussed. Finally, open issues and future research directions are identified as well. Keywords: Internet of Things (IoT, Mobile edge computing, Cloudlets, Fog computing

  2. Cutting Edge Localisation in an Edge Profile Milling Head

    NARCIS (Netherlands)

    Fernandez Robles, Laura; Azzopardi, George; Alegre, Enrique; Petkov, Nicolai

    2015-01-01

    Wear evaluation of cutting tools is a key issue for prolonging their lifetime and ensuring high quality of products. In this paper, we present a method for the effective localisation of cutting edges of inserts in digital images of an edge profile milling head. We introduce a new image data set of

  3. Cell-Edge Multi-User Relaying with Overhearing

    DEFF Research Database (Denmark)

    Sun, Fan; Kim, Tae Min; Paulraj, Arogyaswami

    2013-01-01

    Carefully designed protocols can turn overheard interference into useful side information to allow simultaneous transmission of multiple communication flows and increase the spectral efficiency in interference-limited regime. In this letter, we propose a novel scheme in a typical cell-edge scenar....... By exploiting the overhearing link through proper relay precoding and adaptive receiver processing, rate performance can be significantly improved compared to the conventional transmission which does not utilize overhearing....

  4. Contribution of the New WORLDVIEW-2 Spectral Bands for Urban Mapping in Coastal Areas: Case Study SÃO LUÍS ( MARANHÃO State, Brazil)

    Science.gov (United States)

    Souza, U. D. V.; kux, H. J. H.

    2012-07-01

    The objective of this study is to verify the contribution of the spectral bands from the new WorldView-2 satellite for the extraction of urban targets aiming a detailed mapping from the city of São Luis, at the coastal zone of Maranhão State, Brazil. This satellite system has 3 bands in the visible portion of the spectrum and also the following 4 new bands: Coastal (400-450 nm), Yellow (585- 625 nm), Red Edge (705-745 nm), and Near Infrared 2 (860-1040 nm). As for the methodology used, initially a fusion was made among the panchromatic and the multispectral bands, combining the spectral information of the multispectral bands with the geometric information of the panchromatic band. Following the ortho-rectification of the dataset was done, using ground control points (GCPs) obtained during field survey. The classification reached high values of Kappa indices. The use of the new bands Red Edge and Near Infrared 2, allowed the improvement of discriminations at tidal flats, mangrove and other vegetation types. The Yellow band improved the discrimination of bare soils - very important information for urban planning - and ceramic roofs. The Coastal band allowed to map the tidal channels which cross the urban area of São Luis, a typical feature of this coastal area. The functionalities of software GEODMA used, allowed an efficient attribute selection which improved the land cover classification from the test sites. The new WorldView-2 bands permit the identification and extraction of the features mentioned, because these bands are positioned at important parts of the electromagnetic spectrum, such as band Red Edge, which strongly improves the discrimination of vegetation conditions. Combining both higher spatial and spectral resolutions, WorldView-2 data allows an improvement on the discrimination of physical characteristics of the targets of interest, thus permitting a higher precision of land use/land cover maps, contributing to urban planning. The test sites of this

  5. Spectral stability of shifted states on star graphs

    Science.gov (United States)

    Kairzhan, Adilbek; Pelinovsky, Dmitry E.

    2018-03-01

    We consider the nonlinear Schrödinger (NLS) equation with the subcritical power nonlinearity on a star graph consisting of N edges and a single vertex under generalized Kirchhoff boundary conditions. The stationary NLS equation may admit a family of solitary waves parameterized by a translational parameter, which we call the shifted states. The two main examples include (i) the star graph with even N under the classical Kirchhoff boundary conditions and (ii) the star graph with one incoming edge and N  -  1 outgoing edges under a single constraint on coefficients of the generalized Kirchhoff boundary conditions. We obtain the general counting results on the Morse index of the shifted states and apply them to the two examples. In the case of (i), we prove that the shifted states with even N ≥slant 4 are saddle points of the action functional which are spectrally unstable under the NLS flow. In the case of (ii), we prove that the shifted states with the monotone profiles in the N  -  1 edges are spectrally stable, whereas the shifted states with non-monotone profiles in the N  -  1 edges are spectrally unstable, the two families intersect at the half-soliton states which are spectrally stable but nonlinearly unstable under the NLS flow. Since the NLS equation on a star graph with shifted states can be reduced to the homogeneous NLS equation on an infinite line, the spectral instability of shifted states is due to the perturbations breaking this reduction. We give a simple argument suggesting that the spectrally stable shifted states in the case of (ii) are nonlinearly unstable under the NLS flow due to the perturbations breaking the reduction to the homogeneous NLS equation.

  6. Within- and between- class variability of spectrally similar tree species

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-07-01

    Full Text Available of hyperspectral data applied to mixtures of lichen and rock,” IEEE Transactions of Geoscience and Re- mote Sensing, vol. 42(9), pp. 1934–1940, 2004. [7] R.L. Pu, P. Gong, G.S. Biging, and M.R. Larrieu, “Extraction of red edge optical parameters from Hyperion...

  7. Edge instabilities of topological superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Johannes S. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Assaad, Fakher F. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Schnyder, Andreas P. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground state degeneracy and a diverging density of states. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry broken phases, which lift the ground-state degeneracy. Here, we employ Monte Carlo simulations combined with mean-field considerations to examine the instabilities of the flat-band edge states of d{sub xy}-wave superconductors. We find that attractive interactions induce a complex s-wave pairing instability together with a density wave instability. Repulsive interactions, on the other hand, lead to ferromagnetism mixed with spin-triplet pairing at the edge. We discuss the implications of our findings for experiments on cuprate high-temperature superconductors.

  8. High-resolution UV-visible spectroscopy of lunar red spots

    Science.gov (United States)

    Bruno, B. C.; Lucey, P. G.; Hawke, B. R.

    1991-01-01

    A spectral reflectance study of selected lunar 'red spots', highland areas characterized by an absorption in the ultraviolet relative to the visible was conducted. Some red spots were suggested to be the sites of ancient highland volcanism. High-resolution spectral data of eight red spots on the western portion of the moon over the wavelength region 0.39-0.82 micron were obtained. Much spectral variation among these red spots in the magnitude as well as the wavelength position of the ultraviolet absorption were found. Spectral structure at visible and near-infrared wavelength were also identified. These spectral differences indicate that red spots do not have a single mineralogical composition, which in turn suggests that red spots may have multiple origins. Additional imaging spectroscopic observations were taken of the Herigonius red spot, a morphologically complex region northeast of Mare Humorum. These data reveal significant spectral differences among the various morphological units within the Herigonius red spot. Although some of these are likely due to the effects of the maturation process, others appear to reflect differences in mineral abundances and composition.

  9. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    . The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...

  10. Introduction to spectral theory

    CERN Document Server

    Levitan, B M

    1975-01-01

    This monograph is devoted to the spectral theory of the Sturm- Liouville operator and to the spectral theory of the Dirac system. In addition, some results are given for nth order ordinary differential operators. Those parts of this book which concern nth order operators can serve as simply an introduction to this domain, which at the present time has already had time to become very broad. For the convenience of the reader who is not familar with abstract spectral theory, the authors have inserted a chapter (Chapter 13) in which they discuss this theory, concisely and in the main without proofs, and indicate various connections with the spectral theory of differential operators.

  11. The edge of space time

    International Nuclear Information System (INIS)

    Hawking, S.

    1993-01-01

    What happened at the beginning of the expansion of the universe. Did space time have an edge at the Big Bang. The answer is that, if the boundary conditions of the universe are that it has no boundary, time ceases to be well-defined in the very early universe as the direction ''north'' ceases to be well defined at the North Pole of the Earth. The quantity that we measure as time has a beginning but that does not mean spacetime has an edge, just as the surface of the Earth does not have an edge at the North Pole. 8 figs

  12. Bulk-edge correspondence in topological transport and pumping

    Science.gov (United States)

    Imura, Ken-Ichiro; Yoshimura, Yukinori; Fukui, Takahiro; Hatsugai, Yasuhiro

    2018-03-01

    The bulk-edge correspondence (BEC) refers to a one-to-one relation between the bulk and edge properties ubiquitous in topologically nontrivial systems. Depending on the setup, BEC manifests in different forms and govern the spectral and transport properties of topological insulators and semimetals. Although the topological pump is theoretically old, BEC in the pump has been established just recently [1] motivated by the state-of-the-art experiments using cold atoms [2, 3]. The center of mass (CM) of a system with boundaries shows a sequence of quantized jumps in the adiabatic limit associated with the edge states. Despite that the bulk is adiabatic, the edge is inevitably non-adiabatic in the experimental setup or in any numerical simulations. Still the pumped charge is quantized and carried by the bulk. Its quantization is guaranteed by a compensation between the bulk and edges. We show that in the presence of disorder the pumped charge continues to be quantized despite the appearance of non-quantized jumps.

  13. Enhancement of Faraday rotation at photonic-band-gap edge in garnet-based magnetophotonic crystals

    International Nuclear Information System (INIS)

    Zhdanov, A.G.; Fedyanin, A.A.; Aktsipetrov, O.A.; Kobayashi, D.; Uchida, H.; Inoue, M.

    2006-01-01

    Spectral dependences of Faraday rotation angle in one-dimensional garnet-based magnetophotonic crystals are considered. The enhancement of Faraday angle is demonstrated at the photonic band gap (PBG) edge both theoretically and experimentally. It is shown to be associated with the optical field localization in the magnetic layers of the structure. The advantages of magnetophotonic crystals in comparison with traditional magnetic microcavities are discussed. The specially designed microcavity structures optimized for the Faraday effect enhancement at the PBG edge are suggested

  14. Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures

    International Nuclear Information System (INIS)

    Fefferman, C L; Lee-Thorp, J P; Weinstein, M I

    2016-01-01

    Edge states are time-harmonic solutions to energy-conserving wave equations, which are propagating parallel to a line-defect or ‘edge’ and are localized transverse to it. This paper summarizes and extends the authors’ work on the bifurcation of topologically protected edge states in continuous two-dimensional (2D) honeycomb structures. We consider a family of Schrödinger Hamiltonians consisting of a bulk honeycomb potential and a perturbing edge potential. The edge potential interpolates between two different periodic structures via a domain wall. We begin by reviewing our recent bifurcation theory of edge states for continuous 2D honeycomb structures (http://arxiv.org/abs/1506.06111). The topologically protected edge state bifurcation is seeded by the zero-energy eigenstate of a one-dimensional Dirac operator. We contrast these protected bifurcations with (more common) non-protected bifurcations from spectral band edges, which are induced by bound states of an effective Schrödinger operator. Numerical simulations for honeycomb structures of varying contrasts and ‘rational edges’ (zigzag, armchair and others), support the following scenario: (a) for low contrast, under a sign condition on a distinguished Fourier coefficient of the bulk honeycomb potential, there exist topologically protected edge states localized transverse to zigzag edges. Otherwise, and for general edges, we expect long lived edge quasi-modes which slowly leak energy into the bulk. (b) For an arbitrary rational edge, there is a threshold in the medium-contrast (depending on the choice of edge) above which there exist topologically protected edge states. In the special case of the armchair edge, there are two families of protected edge states; for each parallel quasimomentum (the quantum number associated with translation invariance) there are edge states which propagate in opposite directions along the armchair edge. (paper)

  15. Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures

    Science.gov (United States)

    Fefferman, C. L.; Lee-Thorp, J. P.; Weinstein, M. I.

    2016-03-01

    Edge states are time-harmonic solutions to energy-conserving wave equations, which are propagating parallel to a line-defect or ‘edge’ and are localized transverse to it. This paper summarizes and extends the authors’ work on the bifurcation of topologically protected edge states in continuous two-dimensional (2D) honeycomb structures. We consider a family of Schrödinger Hamiltonians consisting of a bulk honeycomb potential and a perturbing edge potential. The edge potential interpolates between two different periodic structures via a domain wall. We begin by reviewing our recent bifurcation theory of edge states for continuous 2D honeycomb structures (http://arxiv.org/abs/1506.06111). The topologically protected edge state bifurcation is seeded by the zero-energy eigenstate of a one-dimensional Dirac operator. We contrast these protected bifurcations with (more common) non-protected bifurcations from spectral band edges, which are induced by bound states of an effective Schrödinger operator. Numerical simulations for honeycomb structures of varying contrasts and ‘rational edges’ (zigzag, armchair and others), support the following scenario: (a) for low contrast, under a sign condition on a distinguished Fourier coefficient of the bulk honeycomb potential, there exist topologically protected edge states localized transverse to zigzag edges. Otherwise, and for general edges, we expect long lived edge quasi-modes which slowly leak energy into the bulk. (b) For an arbitrary rational edge, there is a threshold in the medium-contrast (depending on the choice of edge) above which there exist topologically protected edge states. In the special case of the armchair edge, there are two families of protected edge states; for each parallel quasimomentum (the quantum number associated with translation invariance) there are edge states which propagate in opposite directions along the armchair edge.

  16. Lagrangian Curves on Spectral Curves of Monopoles

    International Nuclear Information System (INIS)

    Guilfoyle, Brendan; Khalid, Madeeha; Ramon Mari, Jose J.

    2010-01-01

    We study Lagrangian points on smooth holomorphic curves in TP 1 equipped with a natural neutral Kaehler structure, and prove that they must form real curves. By virtue of the identification of TP 1 with the space LE 3 of oriented affine lines in Euclidean 3-space, these Lagrangian curves give rise to ruled surfaces in E 3 , which we prove have zero Gauss curvature. Each ruled surface is shown to be the tangent lines to a curve in E 3 , called the edge of regression of the ruled surface. We give an alternative characterization of these curves as the points in E 3 where the number of oriented lines in the complex curve Σ that pass through the point is less than the degree of Σ. We then apply these results to the spectral curves of certain monopoles and construct the ruled surfaces and edges of regression generated by the Lagrangian curves.

  17. On Longitudinal Spectral Coherence

    DEFF Research Database (Denmark)

    Kristensen, Leif

    1979-01-01

    It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between ...... observation sites and the turbulence intensity influence the results. The limitations of the theory are discussed....

  18. Diffraction at a Straight Edge

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 5. Diffraction at a Straight Edge: A Gem from Sommerfeld's Work in Classical Physics. Rajaram Nityananda. General Article Volume 20 Issue 5 May 2015 pp 389-400 ...

  19. Edge Fracture in Complex Fluids.

    Science.gov (United States)

    Hemingway, Ewan J; Kusumaatmaja, Halim; Fielding, Suzanne M

    2017-07-14

    We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge fracture in terms of the shear-rate derivative of the fluid's second normal stress difference, the shear-rate derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full mechanistic understanding of the edge fracture instability, carefully validated against our simulations. These findings, which are robust with respect to choice of rheological constitutive model, also suggest a possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately measure flows stronger than hitherto possible.

  20. Edge of polar cap patches

    Science.gov (United States)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  1. Red blood cell production

    Science.gov (United States)

    ... bone marrow of bones. Stem cells in the red bone marrow called hemocytoblasts give rise to all of the formed elements in blood. If a hemocytoblast commits to becoming a cell called a proerythroblast, it will develop into a new red blood cell. The formation of a red blood ...

  2. Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and aerosol direct radiative forcing

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2012-12-01

    Full Text Available This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 μm and vegetation water absorption features at 1.48 and 1.92 μm which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF at the top of atmosphere (TOA based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 μm based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02 W m−2 difference or 48% fraction of the aerosol DRF, −6.28 W m−2, calculated for high spectral resolution surface reflectance from 0.3 to 2.5 μm for deciduous vegetation surface. The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27 W m−2, or about 4% of the instantaneous DRF.

    Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 μm at TOA by over 60 W m−2 (for aspen 3 surface and aerosol DRF by over 10 W m−2 (for dry grass. Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 μm at

  3. Estimation of spectral kurtosis

    Science.gov (United States)

    Sutawanir

    2017-03-01

    Rolling bearings are the most important elements in rotating machinery. Bearing frequently fall out of service for various reasons: heavy loads, unsuitable lubrications, ineffective sealing. Bearing faults may cause a decrease in performance. Analysis of bearing vibration signals has attracted attention in the field of monitoring and fault diagnosis. Bearing vibration signals give rich information for early detection of bearing failures. Spectral kurtosis, SK, is a parameter in frequency domain indicating how the impulsiveness of a signal varies with frequency. Faults in rolling bearings give rise to a series of short impulse responses as the rolling elements strike faults, SK potentially useful for determining frequency bands dominated by bearing fault signals. SK can provide a measure of the distance of the analyzed bearings from a healthy one. SK provides additional information given by the power spectral density (psd). This paper aims to explore the estimation of spectral kurtosis using short time Fourier transform known as spectrogram. The estimation of SK is similar to the estimation of psd. The estimation falls in model-free estimation and plug-in estimator. Some numerical studies using simulations are discussed to support the methodology. Spectral kurtosis of some stationary signals are analytically obtained and used in simulation study. Kurtosis of time domain has been a popular tool for detecting non-normality. Spectral kurtosis is an extension of kurtosis in frequency domain. The relationship between time domain and frequency domain analysis is establish through power spectrum-autocovariance Fourier transform. Fourier transform is the main tool for estimation in frequency domain. The power spectral density is estimated through periodogram. In this paper, the short time Fourier transform of the spectral kurtosis is reviewed, a bearing fault (inner ring and outer ring) is simulated. The bearing response, power spectrum, and spectral kurtosis are plotted to

  4. Detecting a many-body mobility edge with quantum quenches

    Directory of Open Access Journals (Sweden)

    Piero Naldesi, Elisa Ercolessi, Tommaso Roscilde

    2016-10-01

    Full Text Available The many-body localization (MBL transition is a quantum phase transition involving highly excited eigenstates of a disordered quantum many-body Hamiltonian, which evolve from "extended/ergodic" (exhibiting extensive entanglement entropies and fluctuations to "localized" (exhibiting area-law scaling of entanglement and fluctuations. The MBL transition can be driven by the strength of disorder in a given spectral range, or by the energy density at fixed disorder - if the system possesses a many-body mobility edge. Here we propose to explore the latter mechanism by using "quantum-quench spectroscopy", namely via quantum quenches of variable width which prepare the state of the system in a superposition of eigenstates of the Hamiltonian within a controllable spectral region. Studying numerically a chain of interacting spinless fermions in a quasi-periodic potential, we argue that this system has a many-body mobility edge; and we show that its existence translates into a clear dynamical transition in the time evolution immediately following a quench in the strength of the quasi-periodic potential, as well as a transition in the scaling properties of the quasi-stationary state at long times. Our results suggest a practical scheme for the experimental observation of many-body mobility edges using cold-atom setups.

  5. Spectrally accurate contour dynamics

    International Nuclear Information System (INIS)

    Van Buskirk, R.D.; Marcus, P.S.

    1994-01-01

    We present an exponentially accurate boundary integral method for calculation the equilibria and dynamics of piece-wise constant distributions of potential vorticity. The method represents contours of potential vorticity as a spectral sum and solves the Biot-Savart equation for the velocity by spectrally evaluating a desingularized contour integral. We use the technique in both an initial-value code and a newton continuation method. Our methods are tested by comparing the numerical solutions with known analytic results, and it is shown that for the same amount of computational work our spectral methods are more accurate than other contour dynamics methods currently in use

  6. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  7. Flexible Photonics: Polymer LEDs Made from Monochromatic Red Emitting Lanthanide/Polymer Blends. Phase 1

    National Research Council Canada - National Science Library

    O'Regan, Marie

    1999-01-01

    .... Spectrally pure, red emitting flexible LEDs have been fabricated. Close to a four-fold increase in device efficiency is obtained when a suitable lanthanide complex is blended with the semi-conducting host polymer...

  8. Infra-Red Gas Analysers of Liquid Crystal Type for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2004-01-01

    Full Text Available The paper reveals an opportunity to use infra-red gas analysers on the basis of the developed dichroic liquid crystal cells for investigation of absorption bands of various gases in the near infrared spectral region.

  9. Spectral unmixing: estimating partial abundances

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...

  10. Protected Edge Modes without Symmetry

    Directory of Open Access Journals (Sweden)

    Michael Levin

    2013-05-01

    Full Text Available We discuss the question of when a gapped two-dimensional electron system without any symmetry has a protected gapless edge mode. While it is well known that systems with a nonzero thermal Hall conductance, K_{H}≠0, support such modes, here we show that robust modes can also occur when K_{H}=0—if the system has quasiparticles with fractional statistics. We show that some types of fractional statistics are compatible with a gapped edge, while others are fundamentally incompatible. More generally, we give a criterion for when an electron system with Abelian statistics and K_{H}=0 can support a gapped edge: We show that a gapped edge is possible if and only if there exists a subset of quasiparticle types M such that (1 all the quasiparticles in M have trivial mutual statistics, and (2 every quasiparticle that is not in M has nontrivial mutual statistics with at least one quasiparticle in M. We derive this criterion using three different approaches: a microscopic analysis of the edge, a general argument based on braiding statistics, and finally a conformal field theory approach that uses constraints from modular invariance. We also discuss the analogous result for two-dimensional boson systems.

  11. Project STOP (Spectral Thermal Optimization Program)

    Science.gov (United States)

    Goldhammer, L. J.; Opjorden, R. W.; Goodelle, G. S.; Powe, J. S.

    1977-01-01

    The spectral thermal optimization of solar cell configurations for various solar panel applications is considered. The method of optimization depends upon varying the solar cell configuration's optical characteristics to minimize panel temperatures, maximize power output and decrease the power delta from beginning of life to end of life. Four areas of primary investigation are: (1) testing and evaluation of ultraviolet resistant coverslide adhesives, primarily FEP as an adhesive; (2) examination of solar cell absolute spectral response and corresponding cell manufacturing processes that affect it; (3) experimental work with solar cell manufacturing processes that vary cell reflectance (solar absorptance); and (4) experimental and theoretical studies with various coverslide filter designs, mainly a red rejection filter. The Hughes' solar array prediction program has been modified to aid in evaluating the effect of each of the above four areas on the output of a solar panel in orbit.

  12. Rectangular spectral collocation

    KAUST Repository

    Driscoll, Tobin A.; Hale, Nicholas

    2015-01-01

    Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon

  13. Vowel Inherent Spectral Change

    CERN Document Server

    Assmann, Peter

    2013-01-01

    It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...

  14. Spectral solution of the inverse Mie problem

    Science.gov (United States)

    Romanov, Andrey V.; Konokhova, Anastasiya I.; Yastrebova, Ekaterina S.; Gilev, Konstantin V.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.; Yurkin, Maxim A.

    2017-10-01

    We developed a fast method to determine size and refractive index of homogeneous spheres from the power Fourier spectrum of their light-scattering patterns (LSPs), measured with the scanning flow cytometer. Specifically, we used two spectral parameters: the location of the non-zero peak and zero-frequency amplitude, and numerically inverted the map from the space of particle characteristics (size and refractive index) to the space of spectral parameters. The latter parameters can be reliably resolved only for particle size parameter greater than 11, and the inversion is unique only in the limited range of refractive index with upper limit between 1.1 and 1.25 (relative to the medium) depending on the size parameter and particular definition of uniqueness. The developed method was tested on two experimental samples, milk fat globules and spherized red blood cells, and resulted in accuracy not worse than the reference method based on the least-square fit of the LSP with the Mie theory. Moreover, for particles with significant deviation from the spherical shape the spectral method was much closer to the Mie-fit result than the estimated uncertainty of the latter. The spectral method also showed adequate results for synthetic LSPs of spheroids with aspect ratios up to 1.4. Overall, we present a general framework, which can be used to construct an inverse algorithm for any other experimental signals.

  15. Spectral and electronic measurements of solar radiation

    International Nuclear Information System (INIS)

    Suzuki, Mamoru; Hanyu, Mitsuhiro

    1977-01-01

    The spectral data of solar radiation are necessary if detailed discussion is intended in relation to the utilization of solar energy. Since those data have not been fully prepared so far, a measuring equipment developed in Electro-technical Laboratory to obtain those data is described. The laboratory is now continuing the measurement at the wavelength of 0.3 μm to 1.1 μm. The equipment employs the system to always calibrate with the standard light source, it can measure both the direct light of the sun only and the sun light including sky light, and it enables to obtain the value based on the secondary standard of spectral illumination intensity established by the laboratory. The solar spectral irradiance is determined with the current readings of photomultiplier in the standard light source and the sun-light measurements at a wavelength and with the spectral illumination intensity from the standard light source. In order to practice such measurement many times at various wavelengths, control of the equipment, data collection, computation, drawing and listing are performed by a microcomputer. As an example, the data on Sept. 10, 1976, are shown comparing the graphs at three different hours. It can be well observed that the transmissivity attenuates with shorter wavelength, and the transmissivity in near infra-red region changes greatly due to the absorption of radiation by water vapour. (Wakatsuki, Y.)

  16. All-graphene edge contacts

    DEFF Research Database (Denmark)

    Jacobsen, Kåre Wedel; Falkenberg, Jesper Toft; Papior, Nick Rübner

    2016-01-01

    Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures as a func......Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures...... to be in therange of 1-10 kΩμm which is comparable to the best contact resistance reportedfor edge-contacted graphene-metal contacts. We conclude that conductingall-carbon T-junctions should be feasible....

  17. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  18. Improving color constancy by photometric edge weighting

    NARCIS (Netherlands)

    Gijsenij, A.; Gevers, T.; van de Weijer, J.

    2012-01-01

    Edge-based color constancy methods make use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images, such as material, shadow, and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant

  19. The spectral changes of deforestation in the Brazilian tropical savanna.

    Science.gov (United States)

    Trancoso, Ralph; Sano, Edson E; Meneses, Paulo R

    2015-01-01

    The Cerrado is a biome in Brazil that is experiencing the most rapid loss in natural vegetation. The objective of this study was to analyze the changes in the spectral response in the red, near infrared (NIR), middle infrared (MIR), and normalized difference vegetation index (NDVI) when native vegetation in the Cerrado is deforested. The test sites were regions of the Cerrado located in the states of Bahia, Minas Gerais, and Mato Grosso. For each region, a pair of Landsat Thematic Mapper (TM) scenes from 2008 (before deforestation) and 2009 (after deforestation) was compared. A set of 1,380 samples of deforested polygons and an equal number of samples of native vegetation have their spectral properties statistically analyzed. The accuracy of deforestation detections was also evaluated using high spatial resolution imagery. Results showed that the spectral data of deforested areas and their corresponding native vegetation were statistically different. The red band showed the highest difference between the reflectance data from deforested areas and native vegetation, while the NIR band showed the lowest difference. A consistent pattern of spectral change when native vegetation in the Cerrado is deforested was identified regardless of the location in the biome. The overall accuracy of deforestation detections was 97.75%. Considering both the marked pattern of spectral changes and the high deforestation detection accuracy, this study suggests that deforestation in Cerrado can be accurately monitored, but a strong seasonal and spatial variability of spectral changes might be expected.

  20. The knife-edge chamber

    International Nuclear Information System (INIS)

    Barasch, E.F.; Bowcock, T.J.V.; Drew, M.M.; Elliott, S.M.; Lee, B.; McIntyre, P.M.; Pang, Y.; Popovic, M.; Smith, D.D.

    1990-01-01

    In this paper the design for a new technology for particle track detectors is described. Using standard IC fabrication techniques, a pattern of microscopic knife edges and field-shaping electrodes can be fabricated on a silicon substrate. The knife-edge chamber uniquely offers attractive performance for the track chambers required for SSC detectors, for which no present technology is yet satisfactory. Its features include: excellent radiation hardness (10 Mrad), excellent spatial resolution (∼20 μm), short drift time (20 ns), and large pulse height (1 mV)

  1. USGS Digital Spectral Library splib06a

    Science.gov (United States)

    Clark, Roger N.; Swayze, Gregg A.; Wise, Richard A.; Livo, K. Eric; Hoefen, Todd M.; Kokaly, Raymond F.; Sutley, Stephen J.

    2007-01-01

    Introduction We have assembled a digital reflectance spectral library that covers the wavelength range from the ultraviolet to far infrared along with sample documentation. The library includes samples of minerals, rocks, soils, physically constructed as well as mathematically computed mixtures, plants, vegetation communities, microorganisms, and man-made materials. The samples and spectra collected were assembled for the purpose of using spectral features for the remote detection of these and similar materials. Analysis of spectroscopic data from laboratory, aircraft, and spacecraft instrumentation requires a knowledge base. The spectral library discussed here forms a knowledge base for the spectroscopy of minerals and related materials of importance to a variety of research programs being conducted at the U.S. Geological Survey. Much of this library grew out of the need for spectra to support imaging spectroscopy studies of the Earth and planets. Imaging spectrometers, such as the National Aeronautics and Space Administration (NASA) Airborne Visible/Infra Red Imaging Spectrometer (AVIRIS) or the NASA Cassini Visual and Infrared Mapping Spectrometer (VIMS) which is currently orbiting Saturn, have narrow bandwidths in many contiguous spectral channels that permit accurate definition of absorption features in spectra from a variety of materials. Identification of materials from such data requires a comprehensive spectral library of minerals, vegetation, man-made materials, and other subjects in the scene. Our research involves the use of the spectral library to identify the components in a spectrum of an unknown. Therefore, the quality of the library must be very good. However, the quality required in a spectral library to successfully perform an investigation depends on the scientific questions to be answered and the type of algorithms to be used. For example, to map a mineral using imaging spectroscopy and the mapping algorithm of Clark and others (1990a, 2003b

  2. SpectralNET – an application for spectral graph analysis and visualization

    Directory of Open Access Journals (Sweden)

    Schreiber Stuart L

    2005-10-01

    Full Text Available Abstract Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices and interactions (edges that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors. Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is

  3. [Red Blood Cells Raman Spectroscopy Comparison of Type Two Diabetes Patients and Rats].

    Science.gov (United States)

    Wang, Lei; Liu, Gui-dong; Mu, Xin; Xiao, Hong-bin; Qi, Chao; Zhang, Si-qi; Niu Wen-ying; Jiang, Guang-kun; Feng, Yue-nan; Bian, Jing-qi

    2015-10-01

    By using confocal Raman spectroscopy, Raman spectra were measured in normal rat red blood cells, normal human red blood cells, STZ induced diabetetic rats red blood cells, Alloxan induced diabetetic rats red blood cells and human type 2 diabetes red blood cells. Then principal component analysis (PCA) with support vector machine (SVM) classifier was used for data analysis, and then the distance between classes was used to judge the degree of close to two kinds of rat model with type 2 diabetes. The results found significant differences in the Raman spectra of red blood cell in diabetic and normal red blood cells. To diabetic red blood cells, the peak in the amide VI C=O deformation vibration band is obvious, and amide V N-H deformation vibration band spectral lines appear deviation. Belong to phospholipid fatty acyl C-C skeleton, the 1 130 cm(-1) spectral line is enhanced and the 1 088 cm(-1) spectral line is abated, which show diabetes red cell membrane permeability increased. Raman spectra of PCA combined with SVM can well separate 5 types of red blood cells. Classifier test results show that the classification accuracy is up to 100%. Through the class distance between the two induced method and human type 2 diabetes, it is found that STZ induced model is more close to human type 2 diabetes. In conclusion, Raman spectroscopy can be used for diagnosis of diabetes and rats STZ induced diabetes method is closer to human type 2 diabetes.

  4. Leading-edge vortex shedding from rotating wings

    Energy Technology Data Exchange (ETDEWEB)

    Kolomenskiy, Dmitry [Centre de Recherches Mathématiques (CRM), Department of Mathematics and Statistics, McGill University, 805 Sherbrooke W., Montreal, QC H3A 0B9 (Canada); Elimelech, Yossef [Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Schneider, Kai, E-mail: dkolom@gmail.com [M2P2–CNRS, Université d' Aix-Marseille, 39, rue Frédéric Joliot-Curie, F-13453 Marseille Cedex 13 (France)

    2014-06-01

    This paper presents a numerical investigation of the leading-edge vortices generated by rotating triangular wings at Reynolds number Re = 250. A series of three-dimensional numerical simulations have been carried out using a Fourier pseudo-spectral method with volume penalization. The transition from stable attachment of the leading-edge vortex to periodic vortex shedding is explored, as a function of the wing aspect ratio and the angle of attack. It is found that, in a stable configuration, the spanwise flow in the recirculation bubble past the wing is due to the centrifugal force, incompressibility and viscous stresses. For the flow outside of the bubble, an inviscid model of spanwise flow is presented. (papers)

  5. Frustration-free Hamiltonians supporting Majorana zero edge modes

    International Nuclear Information System (INIS)

    Jevtic, Sania; Barnett, Ryan

    2017-01-01

    A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs. (paper)

  6. Frustration-free Hamiltonians supporting Majorana zero edge modes

    Science.gov (United States)

    Jevtic, Sania; Barnett, Ryan

    2017-10-01

    A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs.

  7. Determination of line edge roughness in low-dose top-down scanning electron microscopy images

    NARCIS (Netherlands)

    Verduin, T.; Kruit, P.; Hagen, C.W.

    2014-01-01

    We investigated the off-line metrology for line edge roughness (LER) determination by using the discrete power spectral density (PSD). The study specifically addresses low-dose scanning electron microscopy (SEM) images in order to reduce the acquisition time and the risk of resist shrinkage. The

  8. At the edge of intonation

    DEFF Research Database (Denmark)

    Niebuhr, Oliver

    2012-01-01

    The paper is concerned with the 'edge of intonation' in a twofold sense. It focuses on utterance-final F0 movements and crosses the traditional segment-prosody divide by investigating the interplay of F0 and voiceless fricatives in speech production. An experiment was performed for German with four...

  9. Capillary Sharp Inner Edge Manufacturing

    Czech Academy of Sciences Publication Activity Database

    Hošek, Jan; Studenovský, K.; Najdek, D.

    2009-01-01

    Roč. 19, č. 35 (2009), s. 19-25 ISSN 1584-5982. [MECAHITECH 09 /1./. Bukurešť, 08.10.2009-09.10.2009] R&D Projects: GA AV ČR IAA200760905 Institutional research plan: CEZ:AV0Z20760514 Keywords : capillary * edge * manufacturing Subject RIV: JR - Other Machinery

  10. Spectral interferometric length measurement and tomography

    International Nuclear Information System (INIS)

    Pinkl, W.

    1998-01-01

    This work presents a new method for optical length measurement using the principles of spectral interferometry. Results of thickness measurements on glass plates, the human cornea in vivo and human finger and toe nails in vivo and in vitro are discussed. It could be demonstrated that the absorption coefficient of red and green ink can be measured depth sensitive. Another chapter describes a new technique to measure a thickness profile of a sample within the illuminating beam. It could be demonstrated that a thickness profile over a distance of a few millimeters can be measured with one single measurement. At the Institute of Medical Physics of the University of Vienna a method to measure intraocular distances by the means of interferometry has been developed during the last ten years. Basing on this method (dual beam interferometry) an optical in vivo tomography experiment could be established. A thickness map of the retina of a human eye in vivo can be easily measured. The dual beam technique uses a Michelson interferometer with a moving mirror to adjust the length of the interferometer arms. The mirror is moved by a stepper motor. This movement induces vibrations, misalignment and other disadvantages. So mechanically moved parts as reasons for possible errors should be eliminated. This work shows one possible solution - using the principle of spectral interferometry. A spectral interferometry experiment is a static experiment, no moving parts are used. A spectral interferometry experiment has been used to measure the thickness of glass plates and stacks of glass plates. Using two light sources of different wavelengths spectral absorption properties of a sample can be measured depth sensitive. This could be demonstrated with stacks of glass plates and the use of red and green ink between two plates. The obtained results are compared to the results of a computer simulation. To demonstrate the ability of spectral interferometry to measure the thickness of biologic

  11. Development of edge effects around experimental ecosystem hotspots is affected by edge density and matrix type

    Science.gov (United States)

    Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...

  12. Inquiring into Red/Red Inquiring

    Directory of Open Access Journals (Sweden)

    Ken Gale

    2013-05-01

    Full Text Available This layered account of an inquiry into ‘red’ emerged out of a collective biography workshop. In the middle of the Wiltshire countryside, an international and interdisciplinary group of scholars gathered together to write and make other things and marks on paper that asked questions of, and into, the spaces between words, people, things and their environments. We did not set out to workshop or write into or paint ‘red’ but, rather, it was red that slipped in, uninvited, and painted and wrote us. Red arose as a blush or a stain seeping amongst us that became referenced obliquely by material objects, metaphors and fairytales. The stain spread, became noticeable through our weekend together and beyond it, creating another (bright red artery vein of connection to write with.

  13. Interaction of ICRF power and edge plasma in Tore Supra ergodic divertor configuration

    International Nuclear Information System (INIS)

    Nguyen, F.; Grosman, A.; Basiuk, V.; Fraboulet, D.; Beaumont, B.; Becoulet, A.; Ghendrih, Ph.; Ladurelle, L.; Meslin, B.

    2000-01-01

    The coupling of ICRF power to plasma is a crucial problem in Tore Supra for high power and long pulse operations and depends greatly on the edge parameters, in particular on the edge density. Conversely, the behaviour of the bulk plasma is related to the edge conditions and the injection of RF power also induces major modifications on the edge plasma. Moreover, the Ergodic Divertor (ED) of Tore Supra imposes a complex configuration at the edge due to the presence of the magnetic perturbation. Several diagnostics are available to study the interaction of ICRF power with the edge plasma: Langmuir probes on the ED modules, infra red (IR) cameras, charge exchange neutral analysers. In minority heating scheme, the edge density is very sensitive to any perturbation in the high recycling regime which is always found in the ED configuration for relevant plasma parameters. Partially detached regimes, with or without inhomogeneities of density and temperature induced by the flux tubes of the laminar layer, are obtained for high resistance coupling values. The coupling is then not very robust and feedback control or antenna automatic matching techniques are developed. In fast wave electron heating scheme with ED, various fast wave absorption mechanisms (minority heating, Mode Conversion, Alfven resonance) are present at the plasma edge due to the large size of the plasma. The ICRF coupling is difficult due to the low fast wave direct electron damping, even with high hydrogen minority scheme. An increase of the injected ICRF power could improve this situation

  14. Spectral theory and nonlinear analysis with applications to spatial ecology

    CERN Document Server

    Cano-Casanova, S; Mora-Corral , C

    2005-01-01

    This volume details some of the latest advances in spectral theory and nonlinear analysis through various cutting-edge theories on algebraic multiplicities, global bifurcation theory, non-linear Schrödinger equations, non-linear boundary value problems, large solutions, metasolutions, dynamical systems, and applications to spatial ecology. The main scope of the book is bringing together a series of topics that have evolved separately during the last decades around the common denominator of spectral theory and nonlinear analysis - from the most abstract developments up to the most concrete applications to population dynamics and socio-biology - in an effort to fill the existing gaps between these fields.

  15. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations

    Science.gov (United States)

    de Moura, Yhasmin Mendes; Galvão, Lênio Soares; Hilker, Thomas; Wu, Jin; Saleska, Scott; do Amaral, Cibele Hummel; Nelson, Bruce Walker; Lopes, Aline Pontes; Wiedeman, Kenia K.; Prohaska, Neill; de Oliveira, Raimundo Cosme; Machado, Carolyne Bueno; Aragão, Luiz E. O. C.

    2017-09-01

    The association between spectral reflectance and canopy processes remains challenging for quantifying large-scale canopy phenological cycles in tropical forests. In this study, we used a tower-mounted hyperspectral camera in an eastern Amazon forest to assess how canopy spectral signals of three species are linked with phenological processes in the 2012 dry season. We explored different approaches to disentangle the spectral components of canopy phenology processes and analyze their variations over time using 17 images acquired by the camera. The methods included linear spectral mixture analysis (SMA); principal component analysis (PCA); continuum removal (CR); and first-order derivative analysis. In addition, three vegetation indices potentially sensitive to leaf flushing, leaf loss and leaf area index (LAI) were calculated: the Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and the entitled Green-Red Normalized Difference (GRND) index. We inspected also the consistency of the camera observations using Moderate Resolution Imaging Spectroradiometer (MODIS) and available phenological data on new leaf production and LAI of young, mature and old leaves simulated by a leaf demography-ontogeny model. The results showed a diversity of phenological responses during the 2012 dry season with related changes in canopy structure and greenness values. Because of the differences in timing and intensity of leaf flushing and leaf shedding, Erisma uncinatum, Manilkara huberi and Chamaecrista xinguensis presented different green vegetation (GV) and non-photosynthetic vegetation (NPV) SMA fractions; distinct PCA scores; changes in depth, width and area of the 681-nm chlorophyll absorption band; and variations over time in the EVI, GRND and NDVI. At the end of dry season, GV increased for Erisma uncinatum, while NPV increased for Chamaecrista xinguensis. For Manilkara huberi, the NPV first increased in the beginning of August and then decreased toward

  16. Noncytotoxic orange and red/green derivatives of DsRed-Express2 for whole-cell labeling

    Directory of Open Access Journals (Sweden)

    Glick Benjamin S

    2009-04-01

    Full Text Available Abstract Background Whole-cell labeling is a common application of fluorescent proteins (FPs, but many red and orange FPs exhibit cytotoxicity that limits their use as whole-cell labels. Recently, a tetrameric red FP called DsRed-Express2 was engineered for enhanced solubility and was shown to be noncytotoxic in bacterial and mammalian cells. Our goal was to create derivatives of this protein with different spectral properties. Results Building on previous studies of DsRed mutants, we created two DsRed-Express2 derivatives: E2-Orange, an orange FP, and E2-Red/Green, a dual-color FP with both red and green emission. We show that these new FPs retain the low cytotoxicity of DsRed-Express2. In addition, we show that these new FPs are useful as second or third colors for flow cytometry and fluorescence microscopy. Conclusion E2-Orange and E2-Red/Green will facilitate the production of healthy, stably fluorescent cell lines and transgenic organisms for multi-color labeling studies.

  17. CRISS power spectral density

    International Nuclear Information System (INIS)

    Vaeth, W.

    1979-04-01

    The correlation of signal components at different frequencies like higher harmonics cannot be detected by a normal power spectral density measurement, since this technique correlates only components at the same frequency. This paper describes a special method for measuring the correlation of two signal components at different frequencies: the CRISS power spectral density. From this new function in frequency analysis, the correlation of two components can be determined quantitatively either they stem from one signal or from two diverse signals. The principle of the method, suitable for the higher harmonics of a signal as well as for any other frequency combinations is shown for the digital frequency analysis technique. Two examples of CRISS power spectral densities demonstrates the operation of the new method. (orig.) [de

  18. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  19. Photovoltaic spectral responsivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  20. Edge-injective and edge-surjective vertex labellings

    DEFF Research Database (Denmark)

    Brandt, Stephan; Rautenbach, D.; Regen, F.

    2010-01-01

    For a graph G = (V, E) we consider vertex-k-labellings f : V → {1,2, ,k} for which the induced edge weighting w : E → {2, 3,., 2k} with w(uv) = f(u) + f(v) is injective or surjective or both. We study the relation between these labellings and the number theoretic notions of an additive basis and ...

  1. Spectral analysis by correlation

    International Nuclear Information System (INIS)

    Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.

    1969-01-01

    The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr

  2. Spectral backward radiation profile

    International Nuclear Information System (INIS)

    Kwon, Sung Duck; Lee, Keun Hyun; Kim, Bo Ra; Yoon, Suk Soo

    2004-01-01

    Ultrasonic backward radiation profile is frequency-dependent when incident region has deptional gradient of acoustical properties or multi-layers. Until now, we have measured the profiles of principal frequencies of used transducers so that it was not easy to understand the change of the frequency component and spectrum of backward radiation from the profile. We tried to measure the spectral backward radiation profiles using DFP(digital filer package) Lecroy DSO. The very big changes in the shape and pattern of spectral backward radiation profiles leads to the conclusion that this new try could be very effective tool to evaluate frequency dependent surface area.

  3. Generalized Multi-Edge Analysis for K-Edge Densitometry

    International Nuclear Information System (INIS)

    Collins, M.

    1998-01-01

    In K-edge densitometry (KED), a continuous-energy x-ray beam is transmitted through a liquid sample. The actinide content of the sample can be measured through analysis of the transmitted portion of the x-ray beam. Traditional methods for KED analysis allow the simultaneous calculation of, at most, two actinide concentrations. A generalized multi-edge KED analytical method is presented, allowing up to six actinide concentrations to be calculated simultaneously. Applications of this method for hybrid KED/x-ray fluorescence (HKED) systems are discussed. Current HKED systems require the operator to know the approximate actinide content of each sample, and manually select the proper analysis mode. The new multi-edge KED technique allows rapid identification of the major actinide components in a sample, independent of actinide content. The proper HKED analysis mode can be selected automatically, without requiring sample content information from the user. Automatic HKED analysis would be especially useful in an analytical laboratory setting, where samples with truly unknown characteristics are encountered. Because this technique requires no hardware modifications, several facilities that use HKED may eventually benefit from this approach

  4. Combined effects of blue light and supplemental far-red light and effects of increasing red light with constant far-red light on growth of kidney bean [Phaseolus vulgaris] under mixtures of narrow-band light sources

    International Nuclear Information System (INIS)

    Hanyu, H.; Shoji, K.

    2000-01-01

    Increasing blue light and decreasing R: FR with supplementary far-red light affect morphogenesis, dry matter production and dry matter partitioning to leaves, stems and roots. In this study, the combined effects of the two spectral treatments were examined in kidney bean (Phaseolus vulgaris L.) grown under the mixture of four different narrow-band light sources. In addition, because the leaf and stem growth are accelerated by increasing red light (600-700 nm) in proportion to far-red light (700-800 nm) while keeping R : FR constant, this study was conducted to determine whether red light or far-red light causes the acceleration of growth. Increasing blue light (400-500 nm) and decreasing R : FR only interacted on stem extension. The results illustrated with figures suggest that blue light amplifies or attenuates the acceleration of stem extension caused by decreasing R : FR. On the other hand, increasing red light with constant far-red light had no influence on leaf expansion or stem extension while R : FR increased. Because the acceleration of leaf and stem growth is caused by increasing either far-red light or both red and far-red light in our environmental conditions, the stimulative effects on leaves and stems seem to require increases in far-red light rather than red light

  5. New insights into the sorption mechanism of cadmium on red mud

    International Nuclear Information System (INIS)

    Luo Lei; Ma Chenyan; Ma Yibing; Zhang Shuzhen; Lv Jitao; Cui Mingqi

    2011-01-01

    Effectiveness and mechanism of cadmium (Cd) sorption on original, acidified and ball milling nano-particle red muds were investigated using batch sorption experiments, sequential extraction analysis and X-ray absorption near edge structure (XANES) spectroscopy. The maximum sorption capacity of Cd was 0.16, 0.19, and 0.21 mol/kg for the original, acidified, and nano-particle red muds at pH 6.5, respectively. Both acidification and ball-milling treatments significantly enhanced Cd sorption and facilitated transformation of Cd into less extractable fractions. The Cd L III -edge XANES analysis indicated the formation of inner-sphere complexes of Cd similar to XCdOH (X represents surface groups on red mud) on the red mud surfaces although outer-sphere complexes of Cd were the primary species. This work shed light on the potential application of red mud to remediate Cd-contaminated soils and illustrated the promising tool of XANES spectroscopy for speciation of multicomponent systems of environmental relevance. - Graphical abstract: Display Omitted Highlights: → Red mud has a strong affinity for Cd contaminants. → Ball-milling treatments significantly enhance Cd sorption on red mud. → Cadmium partially formed inner-sphere complexes on the red mud surfaces. → Red mud can be used to remediate Cd contaminated soils effectively. - Cadmium can be strongly sorbed and partially forms inner-sphere complexes on red mud.

  6. Trojan Asteroids: Spectral Groups, Volatiles, and Rotational Variation

    Science.gov (United States)

    Emery, J. P.; Takir, D.; Stamper, N. G.; Lucas, M. P.

    2017-12-01

    Trojan asteroids comprise a substantial population of primitive bodies confined to Jupiter's stable Lagrange regions. ecause they likely became trapped in these orbits at the end of the initial phase of planetary formation and subsequent migration, the compositions of Trojans provide unique perspectives on chemical and dynamical processes that shaped the Solar System. Ices and organics are of particular interest for understanding Trojan histories. Published near-infrared (0.7 to 4.0 mm) spectra of Trojans show no absorption bands due to H2O or organics. However, if the Trojan asteroids formed at or beyond their present heliocentric distance of 5.2 AU and never spent significant amounts of time closer to the Sun, they should contain H2O ice. Two VNIR spectral groups exist within the Trojans: 2/3 of large Trojans form a cluster with very red (D-type-like) spectral slopes, while the other 1/3 cluster around less-red (P-type-like) slopes. Visible colors of smaller Trojans suggest that the ratio of red to less-red Trojans decreases with decreasing size, from which Wong and Brown (2015; AJ 150:174) suggest that the interiors of all Trojans are represented by the less-red spectral group. In order to further test the hypothesis that Trojans contain H­2O ice and complex organics and to test the result from visible colors that the spectral group ratio changes with size, we have measured near-infrared (0.8 - 2.5 μm) spectra of small ( 35 to 75 km) Trojans from both swarms using the SpeX spectrograph at the NASA Infrared Telescope Facility (IRTF). We have also measured 2 - 4 μm spectra of several Trojans to search for spectral signatures of H2O and organics. We confirm that the two spectral groups persist to smaller sizes, and we still detect no absorption features that would be diagnostic of composition. The spectrum of two large Trojans show evidence of spectral slope variations with rotation, but spectra of several others do not. We will present the new spectra and

  7. Edge imaging in intense beams

    Directory of Open Access Journals (Sweden)

    S. Bernal

    2002-06-01

    Full Text Available The appearance of rings of charge observed near the edge of beams from high-perveance guns is described with a simple ray tracing technique inspired by the particle-core model. We illustrate the technique, which has no analog in light optics, with examples from experiments employing solenoid focusing of an electron beam. The rings of charge result from the combined effects of external focusing and space-charge forces acting on paraxial fringe particles with relatively large initial transverse velocities. The model is independent of the physical mechanisms responsible for the fringe particles. Furthermore, the focal length for edge imaging in a uniform focusing channel is derived using a linearized trajectory equation for the motion of fringe particles. Counterintuitively, the focal length decreases as the beam current increases.

  8. Spectral Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Mandel, Jan; Kasanický, Ivan; Vejmelka, Martin; Fuglík, Viktor; Turčičová, Marie; Eben, Kryštof; Resler, Jaroslav; Juruš, Pavel

    2014-01-01

    Roč. 11, - (2014), EMS2014-446 [EMS Annual Meeting /14./ & European Conference on Applied Climatology (ECAC) /10./. 06.10.2014-10.10.2014, Prague] R&D Projects: GA ČR GA13-34856S Grant - others:NSF DMS-1216481 Institutional support: RVO:67985807 Keywords : data assimilation * spectral filter Subject RIV: DG - Athmosphere Sciences, Meteorology

  9. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Sherwood, D.G.; Wilson, J.F.; Salton, R.B.; Fensterer, H.F.

    1981-01-01

    A mechanical spectral shift reactor comprises apparatus for inserting and withdrawing water displacer elements from the reactor core for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The apparatus includes drivemechanisms for moving the displacer elements relative to the core and guide mechanisms for guiding the displayer rods through the reactor vessel

  10. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Sherwood, D.G.; Wilson, J.F.; Salton, R.B.; Fensterer, H.F.

    1982-01-01

    A mechanical spectral shift reactor comprises apparatus for inserting and withdrawing water displacer elements from the reactor core for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The apparatus includes drive mechanisms for moving the displacer elements relative to the core and guide mechanisms for guiding the displacer rods through the reactor vessel. (author)

  11. Nonreference Medical Image Edge Map Measure

    Directory of Open Access Journals (Sweden)

    Karen Panetta

    2014-01-01

    Full Text Available Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.

  12. Spectral affinity in protein networks.

    Science.gov (United States)

    Voevodski, Konstantin; Teng, Shang-Hua; Xia, Yu

    2009-11-29

    Protein-protein interaction (PPI) networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to quickly find nodes closest to a queried vertex in any protein

  13. Spectral affinity in protein networks

    Directory of Open Access Journals (Sweden)

    Teng Shang-Hua

    2009-11-01

    Full Text Available Abstract Background Protein-protein interaction (PPI networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. Results We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. Conclusion We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to

  14. Gyrosheath near the tokamak edge

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Xiao, H.; Valanju, P.M.

    1993-03-01

    A new model for the structure of the radial electric field profile in the edge during the H-mode is proposed. Charge separation caused by the difference between electron and ion gyromotion, or more importantly in a tokamak, the banana motion (halo effect) can self-consistently produce an electric dipole moment that causes the sheared radial electric field. The calculated results based on the model are consistent with D-III D and TEXTOR experimental results

  15. Spectral, luminescent and lasing properties of pyran derivatives

    International Nuclear Information System (INIS)

    Kopylova, T N; Svetlichnyi, Valerii A; Samsonova, L G; Svetlichnaya, N N; Reznichenko, A V; Ponomareva, O V; Komlev, I V

    2003-01-01

    The spectral, luminescent and lasing properties of eight organic molecules, substituted pyrans (DCM), are studied upon pumping by an exciplex XeCl laser at 308 nm and by the second harmonic from a Nd:YAG laser at 532 nm. These molecules exhibit lasing in the red spectral region between 600 and 780 nm with the efficiency of 45%. Lasing was also obtained in bis-substituted pyrans having the quantum yield of fluorescence equal to 0.01. The possibility of preparation of solid active media for tunable lasers based on polymer matrices doped with substituted pyrans is discussed. (active media. lasers)

  16. Knife-edge seal for vacuum bagging

    Science.gov (United States)

    Rauschl, J. A.

    1980-01-01

    Cam actuated clamps pinch bagging material between long knife edge (mounted to clamps) and high temperature rubber cushion bonded to baseplate. No adhesive, tape, or sealing groove is needed to seal edge of bagging sheet against base plate.

  17. Environmental Dataset Gateway (EDG) REST Interface

    Data.gov (United States)

    U.S. Environmental Protection Agency — Use the Environmental Dataset Gateway (EDG) to find and access EPA's environmental resources. Many options are available for easily reusing EDG content in other...

  18. Organizing on the Edge: Appreciation and Critique

    National Research Council Canada - National Science Library

    Scott, W. R

    2006-01-01

    .... Hayes, "Power to the Edge: Command, Control in the Information Age" (2003). The author places the "edge" perspective in the broader context of organizational studies, noting both its strengths and limitations...

  19. Edge effect on weevils and spiders

    Directory of Open Access Journals (Sweden)

    R. Horváth

    2002-05-01

    Full Text Available The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest interior was significantly lower than that of the forest edge and the meadow. The composition of the spider assemblage of the edge was more similar to the forest, while the composition of weevils in the edge was more similar to the meadow. Our results based on two invertebrate groups operating on different trophic levels suggest that there is a significant edge effect for the studied taxa resulting in higher species richness in the edge.

  20. Next generation red teaming

    CERN Document Server

    Dalziel, Henry

    2015-01-01

    Red Teaming is can be described as a type of wargaming.In private business, penetration testers audit and test organization security, often in a secretive setting. The entire point of the Red Team is to see how weak or otherwise the organization's security posture is. This course is particularly suited to CISO's and CTO's that need to learn how to build a successful Red Team, as well as budding cyber security professionals who would like to learn more about the world of information security. Teaches readers how to dentify systemic security issues based on the analysis of vulnerability and con

  1. CFAR Edge Detector for Polarimetric SAR Images

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning; Nielsen, Allan Aasbjerg

    2003-01-01

    Finding the edges between different regions in an image is one of the fundamental steps of image analysis, and several edge detectors suitable for the special statistics of synthetic aperture radar (SAR) intensity images have previously been developed. In this paper, a new edge detector for polar...

  2. Energetics of highly kinked step edges

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.

    2010-01-01

    We have determined the step edge free energy, the step edge stiffness and dimensionless inverse step edge stiffness of the highly kinked < 010> oriented step on a (001) surface of a simple square lattice within the framework of a solid-on-solid model. We have found an exact expression for the step

  3. Acyclicity in edge-colored graphs

    DEFF Research Database (Denmark)

    Gutin, Gregory; Jones, Mark; Sheng, Bin

    2017-01-01

    A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type...

  4. DRAMATIC CHANGE IN JUPITER'S GREAT RED SPOT FROM SPACECRAFT OBSERVATIONS

    International Nuclear Information System (INIS)

    Simon, Amy A.; Wong, Michael H.; De Pater, Imke; Rogers, John H.; Orton, Glenn S.; Carlson, Robert W.; Asay-Davis, Xylar; Marcus, Philip S.

    2014-01-01

    Jupiter's Great Red Spot (GRS) is one of its most distinct and enduring features. Since the advent of modern telescopes, keen observers have noted its appearance and documented a change in shape from very oblong to oval, confirmed in measurements from spacecraft data. It currently spans the smallest latitude and longitude size ever recorded. Here we show that this change has been accompanied by an increase in cloud/haze reflectance as sensed in methane gas absorption bands, increased absorption at wavelengths shorter than 500 nm, and increased spectral slope between 500 and 630 nm. These changes occurred between 2012 and 2014, without a significant change in internal tangential wind speeds; the decreased size results in a 3.2 day horizontal cloud circulation period, shorter than previously observed. As the GRS has narrowed in latitude, it interacts less with the jets flanking its north and south edges, perhaps allowing for less cloud mixing and longer UV irradiation of cloud and aerosol particles. Given its long life and observational record, we expect that future modeling of the GRS's changes, in concert with laboratory flow experiments, will drive our understanding of vortex evolution and stability in a confined flow field crucial for comparison with other planetary atmospheres

  5. DRAMATIC CHANGE IN JUPITER'S GREAT RED SPOT FROM SPACECRAFT OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Amy A. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Code 690, Greenbelt, MD 20771 (United States); Wong, Michael H.; De Pater, Imke [Astronomy Department, University of California Berkeley, Berkeley, CA 94720 (United States); Rogers, John H. [British Astronomical Association, Burlington House, Piccadilly, London W1J 0DU (United Kingdom); Orton, Glenn S.; Carlson, Robert W. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Asay-Davis, Xylar [Potsdam Institute for Climate Impact Research, Telegraphenberg A 31, 14473 Potsdam (Germany); Marcus, Philip S. [Department of Mechanical Engineering, University of California Berkeley, 6121 Etcheverry Hall, Mailstop 1740, Berkeley, CA 94720 (United States)

    2014-12-20

    Jupiter's Great Red Spot (GRS) is one of its most distinct and enduring features. Since the advent of modern telescopes, keen observers have noted its appearance and documented a change in shape from very oblong to oval, confirmed in measurements from spacecraft data. It currently spans the smallest latitude and longitude size ever recorded. Here we show that this change has been accompanied by an increase in cloud/haze reflectance as sensed in methane gas absorption bands, increased absorption at wavelengths shorter than 500 nm, and increased spectral slope between 500 and 630 nm. These changes occurred between 2012 and 2014, without a significant change in internal tangential wind speeds; the decreased size results in a 3.2 day horizontal cloud circulation period, shorter than previously observed. As the GRS has narrowed in latitude, it interacts less with the jets flanking its north and south edges, perhaps allowing for less cloud mixing and longer UV irradiation of cloud and aerosol particles. Given its long life and observational record, we expect that future modeling of the GRS's changes, in concert with laboratory flow experiments, will drive our understanding of vortex evolution and stability in a confined flow field crucial for comparison with other planetary atmospheres.

  6. Historical and Contemporary Trends in the Size, Drift, and Color of Jupiter's Great Red Spot

    Science.gov (United States)

    Simon, Amy A.; Tabataba-Vakili, Fachreddin; Cosentino, Richard; Beebe, Reta F.; Wong, Michael H.; Orton, Glenn S.

    2018-04-01

    Observations of Jupiter’s Great Red Spot (GRS) span more than 150 years. This allows for careful measurements of its size and drift rate. High spatial resolution spacecraft data also allow tracking of its spectral characteristics and internal dynamics and structure. The GRS continues to shrink in longitudinal length at an approximately linear rate of 0.°194 yr‑1 and in latitudinal width at 0.°048 yr‑1. Its westward drift rate (relative to System III W. longitude) has increased from ∼0.°26/day in the 1980s to ∼0.°36/day currently. Since 2014, the GRS’s short wavelength (indicating a change in clouds/haze at high altitudes. In addition, its north–south color asymmetry has decreased, and the dark core has become smaller. Internal velocities have increased on its east and west edges, and decreased on the north and south, resulting in decreased relative vorticity and circulation. The GRS’s color changes from 2014 to 2017 may be explained by changes in stretching vorticity or divergence acting to balance the decrease in relative vorticity.

  7. Edge and coupled core/edge transport modelling in tokamaks

    International Nuclear Information System (INIS)

    Lodestro, L.L.; Casper, T.A.; Cohen, R.H.

    1999-01-01

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer (SOL) and divertor plasmas are described. The effects of the poloidal E x B drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental trends; above a critical v ExB , the model predicts transitions to supersonic flow at the inboard midplane. 2D simulations show the importance of E x B flow in the private-flux region and of ∇ B-drifts. A theory of rough plasma-facing surfaces is given, predicting modifications to the SOL plasma. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts near the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative modelling. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are discussed and shown to be well modelled with UEDGE. (author)

  8. Edge and coupled core-edge transport modelling in tokamaks

    International Nuclear Information System (INIS)

    Lodestro, L.L.; Casper, T.A.; Cohen, R.H.

    2001-01-01

    Recent advances in the theory and modelling of tokamak edge, scrape-off-layer (SOL) and divertor plasmas are described. The effects of the poloidal ExB drift on inner/outer divertor-plate asymmetries within a 1D analysis are shown to be in good agreement with experimental trends; above a critical v ExB, the model predicts transitions to supersonic SOL flow at the inboard midplane. 2D simulations show the importance of ExB flow in the private-flux region and of ∇ B-drifts. A theory of rough plasma-facing surfaces is given, predicting modifications to the SOL plasma. The parametric dependence of detached-plasma states in slab geometry has been explored; with sufficient pumping, the location of the ionization front can be controlled; otherwise only fronts near the plate or the X-point are stable. Studies with a more accurate Monte-Carlo neutrals model and a detailed non-LTE radiation-transport code indicate various effects are important for quantitative modelling. Detailed simulations of the DIII-D core and edge are presented; impurity and plasma flow are discussed and shown to be well modelled with UEDGE. (author)

  9. Noncommutativity from spectral flow

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas; Ilderton, Anton [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2007-07-27

    We investigate the transition from second- to first-order systems. Quantum mechanically, this transforms configuration space into phase space and hence introduces noncommutativity in the former. This transition may be described in terms of spectral flow. Gaps in the energy or mass spectrum may become large which effectively truncates the available state space. Using both operator and path integral languages we explicitly discuss examples in quantum mechanics (light-front) quantum field theory and string theory.

  10. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Wilson, J.F.; Sherwood, D.G.

    1982-01-01

    A mechanical spectral shift reactor comprises a reactive core having fuel assemblies accommodating both water displacer elements and neutron absorbing control rods for selectively changing the volume of water-moderator in the core. The fuel assemblies with displacer and control rods are arranged in alternating fashion so that one displacer element drive mechanism may move displacer elements in more than one fuel assembly without interfering with the movement of control rods of a corresponding control rod drive mechanisms. (author)

  11. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    Carrier nature of speech; modulation spectrum; spectral dynamics ... the relationships between phonetic values of sounds and their short-term spectral envelopes .... the number of free parameters that need to be estimated from training data.

  12. Astrophysics of Red Supergiants

    Science.gov (United States)

    Levesque, Emily M.

    2017-12-01

    'Astrophysics of Red Supergiants' is the first book of its kind devoted to our current knowledge of red supergiant stars, a key evolutionary phase that is critical to our larger understanding of massive stars. It provides a comprehensive overview of the fundamental physical properties of red supergiants, their evolution, and their extragalactic and cosmological applications. It serves as a reference for researchers from a broad range of fields (including stellar astrophysics, supernovae, and high-redshift galaxies) who are interested in red supergiants as extreme stages of stellar evolution, dust producers, supernova progenitors, extragalactic metallicity indicators, members of massive binaries and mergers, or simply as compelling objects in their own right. The book is accessible to a range of experience levels, from graduate students up to senior researchers.

  13. red flour beetle

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-01

    Dec 1, 2009 ... 2Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan. 3Department of ... most important energy source around the globe ... T. castaneum (red flour beetle) samples were collected from rice.

  14. RED-ML

    DEFF Research Database (Denmark)

    Xiong, Heng; Liu, Dongbing; Li, Qiye

    2017-01-01

    using diverse RNA-seq datasets, we have developed a software tool, RED-ML: RNA Editing Detection based on Machine learning (pronounced as "red ML"). The input to RED-ML can be as simple as a single BAM file, while it can also take advantage of matched genomic variant information when available...... accurately detect novel RNA editing sites without relying on curated RNA editing databases. We have also made this tool freely available via GitHub . We have developed a highly accurate, speedy and general-purpose tool for RNA editing detection using RNA-seq data....... With the availability of RED-ML, it is now possible to conveniently make RNA editing a routine analysis of RNA-seq. We believe this can greatly benefit the RNA editing research community and has profound impact to accelerate our understanding of this intriguing posttranscriptional modification process....

  15. Image Edge Tracking via Ant Colony Optimization

    Science.gov (United States)

    Li, Ruowei; Wu, Hongkun; Liu, Shilong; Rahman, M. A.; Liu, Sanchi; Kwok, Ngai Ming

    2018-04-01

    A good edge plot should use continuous thin lines to describe the complete contour of the captured object. However, the detection of weak edges is a challenging task because of the associated low pixel intensities. Ant Colony Optimization (ACO) has been employed by many researchers to address this problem. The algorithm is a meta-heuristic method developed by mimicking the natural behaviour of ants. It uses iterative searches to find the optimal solution that cannot be found via traditional optimization approaches. In this work, ACO is employed to track and repair broken edges obtained via conventional Sobel edge detector to produced a result with more connected edges.

  16. K-edge densitometer (KED)

    Energy Technology Data Exchange (ETDEWEB)

    Sprinkle, J.K.; Hansen, W.J.

    1993-02-11

    In 1979, a K-edge densitometer (KED) was installed by the Safeguards Assay group from Los Alamos National Laboratory in the PNC reprocessing plant at Tokai-mura, Japan. It uses an active nondestructive assay technique, KED, to measure the plutonium concentration of the product solution. The measurement uncertainty of an assay depends on the count time chosen, but can be 0.5% or better. The computer hardware and software were upgraded in 1992. This manual describes the operation of the instrument, with an emphasis on the user interface to the software.

  17. Instant Adobe Edge Inspect starter

    CERN Document Server

    Khan, Joseph

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This easy-to-understand Starter guide will get you up to speed with Adobe Edge Inspect quickly and with little effort.This book is for frontend web developers and designers who are developing and testing web applications targeted for mobile browsers. It's assumed that you have a basic understanding of creating web applications using HTML, CSS, and JavaScript, as well as being familiar with running web pages from local HTTP servers. Readers are a

  18. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  19. The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying.

    Science.gov (United States)

    Kerckhoff, Joseph; Armen, Michael A; Pavlichin, Dmitri S; Mabuchi, Hideo

    2011-03-28

    We use a single 133Cs atom strongly coupled to an optical resonator to induce random binary phase modulation of a near infra-red, ∼ 500 pW laser beam, with each modulation edge caused by the dissipation of a single photon (≈ 0.23 aJ) by the atom. While our ability to deterministically induce phase edges with an additional optical control beam is limited thus far, theoretical analysis of an analogous, solid-state system indicates that efficient external control should be achievable in demonstrated nanophotonic systems.

  20. How Forest Inhomogeneities Affect the Edge Flow

    DEFF Research Database (Denmark)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas

    2016-01-01

    Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (>1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark...... is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between...... the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge...

  1. Energetics of edge oxidization of graphene nanoribbons

    Science.gov (United States)

    Yasuma, Airi; Yamanaka, Ayaka; Okada, Susumu

    2018-06-01

    On the basis of the density functional theory, we studied the geometries and energetics of O atoms adsorbed on graphene edges for simulating the initial stage of the edge oxidization of graphene. Our calculations showed that oxygen atoms are preferentially adsorbed onto the graphene edges with the zigzag portion, resulting in a large adsorption energy of about 5 eV. On the other hand, the edges with armchair shape are rarely oxidized, or the oxidization causes substantial structural reconstructions, because of the stable covalent bond at the armchair edge with the triple bond nature. Furthermore, the energetics sensitively depends on the edge angles owing to the inhomogeneity of the charge density at the edge atomic sites.

  2. Haptic Edge Detection Through Shear

    Science.gov (United States)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  3. Evidence of different red emissions in irradiated germanosilicate materials

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, A., E-mail: antonino.alessi@univ-st-etienne.fr [Univ-Lyon, Laboratoire H. Curien, UMR CNRS 5516, Université Jean Monnet, 18 rue du Pr. Benoît Lauras, 42000 Saint-Etienne (France); Di Francesca, D. [Univ-Lyon, Laboratoire H. Curien, UMR CNRS 5516, Université Jean Monnet, 18 rue du Pr. Benoît Lauras, 42000 Saint-Etienne (France); Agnello, S. [Dipartimento di Fisica e Chimica, Università di Palermo, I-90123 Palermo (Italy); Girard, S. [Univ-Lyon, Laboratoire H. Curien, UMR CNRS 5516, Université Jean Monnet, 18 rue du Pr. Benoît Lauras, 42000 Saint-Etienne (France); Cannas, M. [Dipartimento di Fisica e Chimica, Università di Palermo, I-90123 Palermo (Italy); Richard, N. [CEA, DAM, DIF, F91297 Arpajon (France); Boukenter, A.; Ouerdane, Y. [Univ-Lyon, Laboratoire H. Curien, UMR CNRS 5516, Université Jean Monnet, 18 rue du Pr. Benoît Lauras, 42000 Saint-Etienne (France)

    2016-09-15

    This experimental investigation is focused on a radiation induced red emission in Ge doped silica materials, elaborated with different methods and processes. The differently irradiated samples as well as the pristine ones were analyzed with various spectroscopic techniques, such as confocal microscopy luminescence (CML), time resolved luminescence (TRL), photoluminescence excitation (PLE) and electron paramagnetic resonance (EPR). Our data prove that irradiation induces a red luminescence related to the presence of the Ge atoms. Such emission features a photoexcitation spectrum in the UV-blue spectral range and, TRL measurements show that its decrease differs from a single exponential law with a lifetime of tens of nanoseconds. CML measurements under laser at 633 nm evidenced the lack of correlation of the emission here reported with that of the Ge- or Si- non bridging oxygen hole centers. Moreover, our EPR experiments highlighted the lack of correlation between the red emitting defect with other radiation induced paramagnetic centers such as the E′Ge and Ge(2). The relation of the investigated emission with the H(II) defects, previously considered as responsible for a red emission, can not be totally excluded. - Highlights: • Composite nature of the red emission in Ge-doped doped silica materials. • Experimental study with various spectroscopic techniques and on different samples. • Time resolved and stationary characterization of an new red emission. • Study of the spatial distributions of diverse red emissions in optical fibers.

  4. First derivative versus absolute spectral reflectance of citrus varieties

    Science.gov (United States)

    Blazquez, Carlos H.; Nigg, H. N.; Hedley, Lou E.; Ramos, L. E.; Sorrell, R. W.; Simpson, S. E.

    1996-06-01

    Spectral reflectance measurements from 400 to 800 nm were taken from immature and mature leaves of grapefruit ('McCarty' and 'Rio Red'), 'Minneola' tangelo, 'Satsuma' mandarin, 'Dancy' tangerine, 'Nagami' oval kumquat, and 'Valencia' sweet orange, at the Florida Citrus Arboretum, Division of Plant Industry, Winter Haven, Florida. Immature and mature leaves of 'Minneola' tangelo had greater percent reflectance in the 400 to 800 nm range than the other varieties and leaf ages measured. The slope of the citrus spectral curves in the 800 nm range was not as sharp as conventional spectrometers, but had a much higher reflectance value than those obtained with a DK-2 spectrometer. Statistical analyses of absolute spectral data yielded significant differences between mature and immature leaves and between varieties. First derivative data analyses did not yield significant differences between varieties.

  5. On spectral pollution

    International Nuclear Information System (INIS)

    Llobet, X.; Appert, K.; Bondeson, A.; Vaclavik, J.

    1990-01-01

    Finite difference and finite element approximations of eigenvalue problems, under certain circumstances exhibit spectral pollution, i.e. the appearance of eigenvalues that do not converge to the correct value when the mesh density is increased. In the present paper this phenomenon is investigated in a homogeneous case by means of discrete dispersion relations: the polluting modes belong to a branch of the dispersion relation that is strongly distorted by the discretization method employed, or to a new, spurious branch. The analysis is applied to finite difference methods and to finite element methods, and some indications about how to avoiding polluting schemes are given. (author) 5 figs., 10 refs

  6. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Doshi, P.K.; George, R.A.; Dollard, W.J.

    1982-01-01

    A mechanical spectral shift arrangement for controlling a nuclear reactor includes a plurality of reactor coolant displacer members which are inserted into a reactor core at the beginning of the core life to reduce the volume of reactor coolant-moderator in the core at start-up. However, as the reactivity of the core declines with fuel depletion, selected displacer members are withdrawn from the core at selected time intervals to increase core moderation at a time when fuel reactivity is declining. (author)

  7. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  8. Spectral shift reactor

    International Nuclear Information System (INIS)

    Carlson, W.R.; Piplica, E.J.

    1982-01-01

    A spectral shift pressurized water reactor comprising apparatus for inserting and withdrawing water displacer elements having differing neutron absorbing capabilities for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The displacer elements comprise substantially hollow cylindrical low neutron absorbing rods and substantially hollow cylindrical thick walled stainless rods. Since the stainless steel displacer rods have greater neutron absorbing capability, they can effect greater reactivity change per rod. However, by arranging fewer stainless steel displacer rods in a cluster, the reactivity worth of the stainless steel displacer rod cluster can be less than a low neutron absorbing displacer rod cluster. (author)

  9. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  10. A multi-object spectral imaging instrument

    International Nuclear Information System (INIS)

    Gibson, G M; Dienerowitz, M; Kelleher, P A; Harvey, A R; Padgett, M J

    2013-01-01

    We have developed a snapshot spectral imaging system which fits onto the side camera port of a commercial inverted microscope. The system provides spectra, in real time, from multiple points randomly selected on the microscope image. Light from the selected points in the sample is directed from the side port imaging arm using a digital micromirror device to a spectrometer arm based on a dispersing prism and CCD camera. A multi-line laser source is used to calibrate the pixel positions on the CCD for wavelength. A CMOS camera on the front port of the microscope allows the full image of the sample to be displayed and can also be used for particle tracking, providing spectra of multiple particles moving in the sample. We demonstrate the system by recording the spectra of multiple fluorescent beads in aqueous solution and from multiple points along a microscope sample channel containing a mixture of red and blue dye. (paper)

  11. Limitations of red noise in analysing Dansgaard-Oeschger events

    Directory of Open Access Journals (Sweden)

    H. Braun

    2010-02-01

    Full Text Available During the last glacial period, climate records from the North Atlantic region exhibit a pronounced spectral component corresponding to a period of about 1470 years, which has attracted much attention. This spectral peak is closely related to the recurrence pattern of Dansgaard-Oeschger (DO events. In previous studies a red noise random process, more precisely a first-order autoregressive (AR1 process, was used to evaluate the statistical significance of this peak, with a reported significance of more than 99%. Here we use a simple mechanistic two-state model of DO events, which itself was derived from a much more sophisticated ocean-atmosphere model of intermediate complexity, to numerically evaluate the spectral properties of random (i.e., solely noise-driven events. This way we find that the power spectral density of random DO events differs fundamentally from a simple red noise random process. These results question the applicability of linear spectral analysis for estimating the statistical significance of highly non-linear processes such as DO events. More precisely, to enhance our scientific understanding about the trigger of DO events, we must not consider simple "straw men" as, for example, the AR1 random process, but rather test against realistic alternative descriptions.

  12. Infra-red process for colour fixation on fabrics

    International Nuclear Information System (INIS)

    Raymond, D.J.; Biau, D.

    1983-01-01

    Infra-red radiations find wide application in industrial processes as heating, drying, stoving and forming. The results are often far better than those from the other techniques: convection oven, gas IR etc ... They come from the electric IR specific advantages: energy direct transmission, emitter and product spectral coupling, possible selectivity. That is the case in the Textile Industry, where experiments showed that infra-red process heating could be efficient for colour fixation on fabrics. Shorter production cycles and energy saving are the main results

  13. Ethical decisions at the edge.

    Science.gov (United States)

    Gillett, Grant

    2008-05-01

    Medicine grows incrementally in its ability to treat patients and at the growing edge it poses problems about the appropriateness of treatments that are different from those where good practice conforms to widely agreed standards. The growth of access to medical knowledge and the diversity of contemporary theoretical and clinical medicine have spawned deep divisions in the profession and divergent opinions about what constitutes reasonable care. That hallmark of acceptable practice is also under pressures from the threat of litigation, a highly commercialised contemporary medical environment, patient demands based on medical journalism and the internet and the exponential growth of bio-medical technology. Patient empowerment can result in complaints arising in new and complex areas and expert opinion can often differ markedly depending on where on the medical spectrum the experts are aligned. This column lays out some broad-brush principles to assess the adequacy of medical advice in such a climate.

  14. Imaging edges of nanostructured graphene

    DEFF Research Database (Denmark)

    Kling, Jens; Cagliani, Alberto; Booth, T. J.

    Graphene, as the forefather of 2D-materials, attracts much attention due to its extraordinary properties like transparency, flexibility and outstanding high conductivity, together with a thickness of only one atom. However, graphene also possesses no band gap, which makes it unsuitable for many...... electronic applications like transistors. It has been shown theoretically that by nanostructuring pristine graphene, e.g. with regular holes, the electronic properties can be tuned and a band gap introduced. The size, distance and edge termination of these “defects” influence the adaptability....... Such nanostructuring can be done experimentally, but especially characterization at atomic level is a huge challenge. High-resolution TEM (HRTEM) is used to characterize the atomic structure of graphene. We optimized the imaging conditions used for the FEI Titan ETEM. To reduce the knock-on damage of the carbon atoms...

  15. Intensity Conserving Spectral Fitting

    Science.gov (United States)

    Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.

    2015-01-01

    The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.

  16. Spectral data based vegetation indices to characterise crop growth parameters and radiation interception in brassica

    International Nuclear Information System (INIS)

    Kar, G.; Chakravarty, N.V.K.

    2001-01-01

    Four spectral data based vegetation indices viz., infra-red/red (IR/R) ratio, normalized difference (N.D.), greenness index (GNI) and brightness index (BNI) were derived to characterise leaf area index, above ground biomass production and intercepted photosynthetically active radiation in Brassica oilseed crop. It was found from correlation study among different spectral indices, plant growth parameters and radiation interception that there was strong relationship between infrared/red and normalized difference with green area index for all the three Brassica cultivars whereas these spectral were not significantly correlated with above ground biomass. On the other hand, the brightness and greenness indices were closely correlated with above groundry biomass as compared to infrared/red ratio and normalized difference. All the four spectral indices were correlated with intercepted photosynthetically active radiation (IP AR). The best fit equations relating them were derived, which can be incorporated in the algorithms of crop growth simulation model to estimate plant growth parameters and radiation interception using spectral indices

  17. Magnetohydrodynamic stability of tokamak edge plasmas

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Wilson, H.R.; Miller, R.L.

    1998-01-01

    A new formalism for analyzing the magnetohydrodynamic stability of a limiter tokamak edge plasma is developed. Two radially localized, high toroidal mode number n instabilities are studied in detail: a peeling mode and an edge ballooning mode. The peeling mode, driven by edge current density and stabilized by edge pressure gradient, has features which are consistent with several properties of tokamak behavior in the high confinement open-quotes Hclose quotes-mode of operation, and edge localized modes (or ELMs) in particular. The edge ballooning mode, driven by the pressure gradient, is identified; this penetrates ∼n 1/3 rational surfaces into the plasma (rather than ∼n 1/2 , expected from conventional ballooning mode theory). Furthermore, there exists a coupling between these two modes and this coupling provides a picture of the ELM cycle

  18. Edge and line detection of complicated and blurred objects

    OpenAIRE

    Haugsdal, Kari

    2010-01-01

    This report deals with edge and line detection in pictures with complicated and/or blurred objects. It explores the alternatives available, in edge detection, edge linking and object recognition. Choice of methods are the Canny edge detection and Local edge search processing combined with regional edge search processing in the form of polygon approximation.

  19. Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone.

    Science.gov (United States)

    Joshi, Manoj M; Haberle, Robert M

    2012-01-01

    M stars comprise 80% of main sequence stars, so their planetary systems provide the best chance for finding habitable planets, that is, those with surface liquid water. We have modeled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M stars), using spectrally resolved data of Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 μm, combined with M stars emitting a significant fraction of their radiation at these same longer wavelengths, means that the albedos of ice and snow on planets orbiting M stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of cryospheric albedo is considered, which in turn implies that the outer edge of the habitable zone around M stars may be 10-30% farther away from the parent star than previously thought.

  20. Study of airfoil trailing edge bluntness noise

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2010-01-01

    This paper deals with airfoil trailing edge noise with special focus on airfoils with blunt trailing edges. Two methods are employed to calculate airfoil noise: The flow/acoustic splitting method and the semi-empirical method. The flow/acoustic splitting method is derived from compressible Navier...... design or optimization. Calculations from both methods are compared with exist experiments. The airfoil blunt noise is found as a function of trailing edge bluntness, Reynolds number, angle of attack, etc....

  1. Selective Electroless Silver Deposition on Graphene Edges

    DEFF Research Database (Denmark)

    Durhuus, D.; Larsen, M. V.; Andryieuski, Andrei

    2015-01-01

    We demonstrate a method of electroless selective silver deposition on graphene edges or between graphene islands without covering the surface of graphene. Modifications of the deposition recipe allow for decoration of graphene edges with silver nanoparticles or filling holes in damaged graphene...... on silica substrate and thus potentially restoring electric connectivity with minimal influence on the overall graphene electrical and optical properties. The presented technique could find applications in graphene based transparent conductors as well as selective edge functionalization and can be extended...

  2. Discursive Maps at the Edge of Chaos

    Science.gov (United States)

    2017-05-25

    Discursive Maps at the Edge of Chaos A Monograph by Major Mathieu Primeau Canadian Army, Royal Canadian Engineer School of Advanced Military...Master’s Thesis 3. DATES COVERED (From - To) JUN 2016 – MAY 2017 4. TITLE AND SUBTITLE Discursive Maps at the Edge of Chaos 5a. CONTRACT NUMBER 5b...meaning of boundaries and polarize conflict towards violence. The edge of chaos is the fine line between disorder and coherence. Discursive maps

  3. Edge effect on weevils and spiders

    OpenAIRE

    Horváth, R.; Magura, T.; Péter, G.; Tóthmérész, B.

    2002-01-01

    The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest...

  4. Impurity line emission due to thermal charge exchange in JET edge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maggi, C F; Horton, L D; Koenig, R; Stamp, M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Summers, H P [Strathclyde Univ., Glasgow (United Kingdom)

    1994-07-01

    High n-shell emission from hydrogen-like carbon (C VI, n=8-7) has been routinely observed from the plasma edge of JET. By comparing the measured spectral line intensities with the signals predicted by advanced atomic physics modelling of carbon and hydrogen radiation, integrated with modelling of the divertor and edge plasma, it is concluded that charge transfer from excited state hydrogen donors into fully stripped carbon ions can account for the observed spectral emission, but that the hydrogen distribution and to a lesser extent the carbon distribution away from the strike zone predicted by the transport model are too low. Data presented are those of three upper X-point discharges, where the target material was carbon. 5 refs., 1 fig., 3 tabs.

  5. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.

  6. Moveable Leading Edge Device for a Wing

    Science.gov (United States)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  7. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.; Maqueda, R.; Hill, K.; Johnson, D.

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence

  8. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  9. Object detection using categorised 3D edges

    DEFF Research Database (Denmark)

    Kiforenko, Lilita; Buch, Anders Glent; Bodenhagen, Leon

    2015-01-01

    is made possible by the explicit use of edge categories in the feature descriptor. We quantitatively compare our approach with the state-of-the-art template based Linemod method, which also provides an effective way of dealing with texture-less objects, tests were performed on our own object dataset. Our...... categorisation algorithm for describing objects in terms of its different edge types. Relying on edge information allow our system to deal with objects with little or no texture or surface variation. We show that edge categorisation improves matching performance due to the higher level of discrimination, which...

  10. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence

  11. Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas.

    Science.gov (United States)

    Bellido, Edson P; Bernasconi, Gabriel D; Rossouw, David; Butet, Jérémy; Martin, Olivier J F; Botton, Gianluigi A

    2017-11-28

    We investigate the plasmonic behavior of Koch snowflake fractal geometries and their possible application as broadband optical antennas. Lithographically defined planar silver Koch fractal antennas were fabricated and characterized with high spatial and spectral resolution using electron energy loss spectroscopy. The experimental data are supported by numerical calculations carried out with a surface integral equation method. Multiple surface plasmon edge modes supported by the fractal structures have been imaged and analyzed. Furthermore, by isolating and reproducing self-similar features in long silver strip antennas, the edge modes present in the Koch snowflake fractals are identified. We demonstrate that the fractal response can be obtained by the sum of basic self-similar segments called characteristic edge units. Interestingly, the plasmon edge modes follow a fractal-scaling rule that depends on these self-similar segments formed in the structure after a fractal iteration. As the size of a fractal structure is reduced, coupling of the modes in the characteristic edge units becomes relevant, and the symmetry of the fractal affects the formation of hybrid modes. This analysis can be utilized not only to understand the edge modes in other planar structures but also in the design and fabrication of fractal structures for nanophotonic applications.

  12. Edge passivation induced single-edge ferromagnetism of zigzag MoS_2 nanoribbons

    International Nuclear Information System (INIS)

    Wang, Rui; Sun, Hui; Ma, Ben; Hu, Jingguo; Pan, Jing

    2017-01-01

    We performed density functional theory study on electronic structure, magnetic properties and stability of zigzag MoS_2 nanoribbons (ZMoS_2NRs) with and without oxygen (O) passivation. The bare ZMoS_2NRs are magnetic metal with ferromagnetic edge states, edge passivation decreases their magnetism because of the decrease of edge unsaturated electrons. Obviously, the electronic structure and magnetic properties of ZMoS_2NRs greatly depend on edge states. When both edges are passivated by O atoms, ZMoS_2NRs are nonmagnetic metals. When either edge is passivated by O atoms, the systems exhibit single-edge ferromagnetism and magnetism concentrates on the non-passivated edge. Edge passivation can not only tune the magnetism of ZMoS_2NRs, but also enhance their stability by eliminating dangling bonds. These interesting findings on ZMoS_2NRs may open the possibility of their application in nanodevices and spintronics. - Highlights: • Edge passivation for tuning magnetism of zigzag MoS_2 nanoribbons (ZMoS_2NRs) is proposed. • Edge passivation can tune ZMoS_2NRs from nonmagnetic metal to ferromagnetic metal. • When either edge is passivated, the systems exhibit single-edge ferromagnetic states. • These findings may inspire great interest in the community of ZMoS_2NRs and motivate numerous experimental researches.

  13. Lasing of Some Red Laser Dyes in Annealed Silica Xerogel

    Science.gov (United States)

    Bezkrovnaya, O. N.; Maslov, V. V.; Pritula, I. M.; Yurkevich, A. G.

    2018-01-01

    The spectral and energy characteristics of generation in the red spectral region 650-720 nm were measured and analyzed for three laser dyes in preliminarily annealed SiO2 xerogel matrices under laser excitation λp = 588 nm in a nonselective cavity. The specific laser-energy output for two of them (LK678 and Ox170) in the matrices was 10-13% higher than in MeOH. NBA dye in the matrix generated two laser radiation bands in the 700-720 nm region with pumping E p ≥ 80 mJ whereas its generation threshold in MeOH exceeded the maximum pumping energy of 140 mJ so that NBA generation was not observed. Laser emission spectra of the studied matrices in a nonselective cavity were red-shifted by 1000 cm-1 from the fluorescence maximum. Such a shift could improve the characteristics of biosensors based on these matrices.

  14. Rectangular spectral collocation

    KAUST Repository

    Driscoll, Tobin A.

    2015-02-06

    Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.

  15. Spectral evolution of galaxies

    International Nuclear Information System (INIS)

    Rocca-Volmerange, B.

    1989-01-01

    A recent striking event in Observational Cosmology is the discovery of a large population of galaxies at extreme cosmological distances (extended from spectral redshifts ≅ 1 to ≥ 3) corresponding to a lookback time of 80% of the Universe's age. However when galaxies are observed at such remote epochs, their appearances are affected by at least two simultaneous effects which are respectively a cosmological effect and the intrinsic evolution of their stellar populations which appear younger than in our nearby galaxies. The fundamental problem is first to disentangle the respective contributions of these two effects to apparent magnitudes and colors of distant galaxies. Other effects which are likely to modify the appearance of galaxies are amplification by gravitational lensing and interaction with environment will also be considered. (author)

  16. Spectral Line Shapes. Proceedings

    International Nuclear Information System (INIS)

    Zoppi, M.; Ulivi, L.

    1997-01-01

    These proceedings represent papers presented at the 13th International Conference on Spectral Line Shapes which was held in Firenze,Italy from June 16-21, 1996. The topics covered a wide range of subjects emphasizing the physical processes associated with the formation of line profiles: high and low density plasma; atoms and molecules in strong laser fields, Dopple-free and ultra-fine spectroscopy; the line shapes generated by the interaction of neutrals, atoms and molecules, where the relavant quantities are single particle properties, and the interaction-induced spectroscopy. There were 131 papers presented at the conference, out of these, 6 have been abstracted for the Energy Science and Technology database

  17. Edge turbulence effect on ultra-fast swept reflectometry core measurements in tokamak plasmas

    Science.gov (United States)

    Zadvitskiy, G. V.; Heuraux, S.; Lechte, C.; Hacquin, S.; Sabot, R.

    2018-02-01

    Ultra-fast frequency-swept reflectometry (UFSR) enables one to provide information about the turbulence radial wave-number spectrum and perturbation amplitude with good spatial and temporal resolutions. However, a data interpretation of USFR is quiet tricky. An iterative algorithm to solve this inverse problem was used in past works, Gerbaud (2006 Rev. Sci. Instrum. 77 10E928). For a direct solution, a fast 1D Helmholtz solver was used. Two-dimensional effects are strong and should be taken into account during data interpretation. As 2D full-wave codes are still too time consuming for systematic application, fast 2D approaches based on the Born approximation are of prime interest. Such methods gives good results in the case of small turbulence levels. However in tokamak plasmas, edge turbulence is usually very strong and can distort and broaden the probing beam Sysoeva et al (2015 Nucl. Fusion 55 033016). It was shown that this can change reflectometer phase response from the plasma core. Comparison between 2D full wave computation and the simplified Born approximation was done. The approximated method can provide a right spectral shape, but it is unable to describe a change of the spectral amplitude with an edge turbulence level. Computation for the O-mode wave with the linear density profile in the slab geometry and for realistic Tore-Supra density profile, based on the experimental data turbulence amplitude and spectrum, were performed to investigate the role of strong edge turbulence. It is shown that the spectral peak in the signal amplitude variation spectrum which rises with edge turbulence can be a signature of strong edge turbulence. Moreover, computations for misaligned receiving and emitting antennas were performed. It was found that the signal amplitude variation peak changes its position with a receiving antenna poloidal displacement.

  18. ATR neutron spectral characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.W.; Anderl, R.A.

    1995-11-01

    The Advanced Test Reactor (ATR) at INEL provides intense neutron fields for irradiation-effects testing of reactor material samples, for production of radionuclides used in industrial and medical applications, and for scientific research. Characterization of the neutron environments in the irradiation locations of the ATR has been done by means of neutronics calculations and by means of neutron dosimetry based on the use of neutron activation monitors that are placed in the various irradiation locations. The primary purpose of this report is to present the results of an extensive characterization of several ATR irradiation locations based on neutron dosimetry measurements and on least-squares-adjustment analyses that utilize both neutron dosimetry measurements and neutronics calculations. This report builds upon the previous publications, especially the reference 4 paper. Section 2 provides a brief description of the ATR and it tabulates neutron spectral information for typical irradiation locations, as derived from the more historical neutron dosimetry measurements. Relevant details that pertain to the multigroup neutron spectral characterization are covered in section 3. This discussion includes a presentation on the dosimeter irradiation and analyses and a development of the least-squares adjustment methodology, along with a summary of the results of these analyses. Spectrum-averaged cross sections for neutron monitoring and for displacement-damage prediction in Fe, Cr, and Ni are given in section 4. In addition, section4 includes estimates of damage generation rates for these materials in selected ATR irradiation locations. In section 5, the authors present a brief discussion of the most significant conclusions of this work and comment on its relevance to the present ATR core configuration. Finally, detailed numerical and graphical results for the spectrum-characterization analyses in each irradiation location are provided in the Appendix.

  19. Saturn's Rings Edge-on

    Science.gov (United States)

    1995-01-01

    In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and

  20. Clover, Red (Trifolium pretense)

    Science.gov (United States)

    Genetic modification of plants by the insertion of transgenes can be a powerful experimental approach to answer basic questions about gene product function. This technology can also be used to make improved crop varieties for use in the field. To apply this powerful tool to red clover, an important ...

  1. Fabrication of Ultrasensitive Transition Edge Sensor Bolometric Detectors for HIRMES

    Science.gov (United States)

    Brown, Ari-David; Brekosky, Regis; Franz, David; Hsieh, Wen-Ting; Kutyrev, Alexander; Mikula, Vilem; Miller, Timothy; Moseley, S. Harvey; Oxborrow, Joseph; Rostem, Karwan; hide

    2017-01-01

    The high resolution mid-infrared spectrometer (HIRMES) is a high resolving power (R approx. 100,000) instrument operating in the 25-122 micron spectral range and will fly on board the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA) in 2019. Central ot HIRMES are its two transition edge sensor (TES) bolometric cameras, an 8x16 detector high resolution array and a 64x16 detector low resolution array. Both types of detectors consist of MoAu TES fabricated on leg-isolated Si membranes. Whereas the high resolution detectors, with noise equivalent power (NEP) approx. 2 aW/square root of (Hz), are fabricated on 0.45 micron Si substrates, the low resolution detectors, with NEP approx. 10 aW/square root of (Hz), are fabricated on 1.40 micron Si. Here we discuss the similarities and difference in the fabrication methodologies used to realize the two types of detectors.

  2. Spectral Theory of Chemical Bonding

    National Research Council Canada - National Science Library

    Langhoff, P. W; Boatz, J. A; Hinde, R. J; Sheehy, J. A

    2004-01-01

    .... Wave function antisymmetry in the aggregate atomic spectral-product basis is enforced by unitary transformation performed subsequent to formation of the Hamiltonian matrix, greatly simplifying its construction...

  3. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  4. Exponential power spectra, deterministic chaos and Lorentzian pulses in plasma edge dynamics

    International Nuclear Information System (INIS)

    Maggs, J E; Morales, G J

    2012-01-01

    Exponential spectra have been observed in the edges of tokamaks, stellarators, helical devices and linear machines. The observation of exponential power spectra is significant because such a spectral character has been closely associated with the phenomenon of deterministic chaos by the nonlinear dynamics community. The proximate cause of exponential power spectra in both magnetized plasma edges and nonlinear dynamics models is the occurrence of Lorentzian pulses in the time signals of fluctuations. Lorentzian pulses are produced by chaotic behavior in the separatrix regions of plasma E × B flow fields or the limit cycle regions of nonlinear models. Chaotic advection, driven by the potential fields of drift waves in plasmas, results in transport. The observation of exponential power spectra and Lorentzian pulses suggests that fluctuations and transport at the edge of magnetized plasmas arise from deterministic, rather than stochastic, dynamics. (paper)

  5. X-ray speckle contrast variation at a sample-specific absorption edges

    International Nuclear Information System (INIS)

    Retsch, C. C.; Wang, Y.; Frigo, S. P.; Stephenson, G. B.; McNulty, I.

    2000-01-01

    The authors measured static x-ray speckle contrast variation with the incident photon energy across sample-specific absorption edges. They propose that the variation depends strongly on the spectral response function of the monochromator. Speckle techniques have been introduced to the x-ray regime during recent years. Most of these experiments, however, were done at photon energies above 5 keV. They are working on this technique in the 1 to 4 keV range, an energy range that includes many important x-ray absorption edges, e.g., in Al, Si, P, S, the rare-earths, and others. To their knowledge, the effect of absorption edges on speckle contrast has not yet been studied. In this paper, they present their initial measurements and understanding of the observed phenomena

  6. Competitive edge through technological innovation

    International Nuclear Information System (INIS)

    Gottlieb, M.

    1997-01-01

    The vital role of advanced technology in natural gas cost reduction has been described. Among advanced technologies, seismic, drilling and fracturing technologies have been singled out as being the most important. Access to new supply frontiers (aided by the application of advanced technology), and more effective business strategies were considered as the other most influential factors in efficiently exploiting oil and gas resources. In view of predictions of substantially increased demand, advanced technology is poised to be even more important in the future. With this as background, an examination of the level of investment for the development of advanced technology revealed that energy industry R and D expenditures were lowest among industries in the U.S. (only 0.7 per cent of sales). It was concluded that notwithstanding industry's ability to improve output per R and D dollar invested, the achievement of the necessary technological advancements is a strategic imperative for both the industry and the U.S. as a whole. As far as the industry is concerned, its ability to maintain a competitive edge over competing energy forms, will be determined largely on the basis of its willingness to invest in future advanced technology development. 2 refs., 14 figs

  7. CMS kinematic edge from sbottoms

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peisi; Wagner, Carlos E. M.

    2015-01-01

    We present two scenarios in the Minimal Supersymmetric Extension of the Standard Model (MSSM) that can lead to an explanation of the excess in the invariant mass distribution of two opposite charged, same flavor leptons, and the corresponding edge at an energy of about 78 GeV, recently reported by the CMS Collaboration. In both scenarios, sbottoms are pair produced, and decay to neutralinos and a b-jet. The heavier neutralinos further decay to a pair of leptons and the lightest neutralino through on-shell sleptons or off-shell neutral gauge bosons. These scenarios are consistent with the current limits on the sbottoms, neutralinos, and sleptons. Assuming that the lightest neutralino is stable we discuss the predicted relic density as well as the implications for darkmatter direct detection. We show that consistency between the predicted and the measured value of the muon anomalous magnetic moment may be obtained in both scenarios. Finally, we define the signatures of these models that may be tested at the 13 TeV run of the LHC

  8. LES tests on airfoil trailing edge serration

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform...

  9. Automatic Edging and Trimming of Hardwood Lumber

    Science.gov (United States)

    D. Earl Kline; Eugene M. Wengert; Philip A. Araman

    1990-01-01

    Studies have shown that there is a potential to increase hardwood lumber value by more than 20 percent through optimum edging and trimming. Even a small portion of this percentage can boost the profitability of hardwood lumber manufacturers substantially. The objective of this research project is to develop an automated system which would assist in correct edging and...

  10. Development of planar detectors with active edge

    International Nuclear Information System (INIS)

    Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Vianello, E.; Zorzi, N.

    2011-01-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  11. Development of planar detectors with active edge

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Giacomini, G.; Vianello, E.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2011-12-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  12. Annotated Bibliography of EDGE2D Use

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  13. Annotated Bibliography of EDGE2D Use

    International Nuclear Information System (INIS)

    Strachan, J.D.; Corrigan, G.

    2005-01-01

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables

  14. Comparison of iodine K-edge subtraction and fluorescence subtraction imaging in an animal system

    International Nuclear Information System (INIS)

    Zhang, H.; Zhu, Y.; Bewer, B.; Zhang, L.; Korbas, M.; Pickering, I.J.; George, G.N.; Gupta, M.; Chapman, D.

    2008-01-01

    K-Edge Subtraction (KES) utilizes the discontinuity in the X-ray absorption across the absorption edge of the selected contrast element and creates an image of the projected density of the contrast element from two images acquired just above and below the K-edge of the contrast element. KES has proved to be powerful in coronary angiography, micro-angiography, bronchography, and lymphatic imaging. X-ray fluorescence imaging is a successful technique for the detection of dilute quantities of elements in specimens. However, its application at high X-ray energies (e.g. at the iodine K-edge) is complicated by significant Compton background, which may enter the energy window set for the contrast material's fluorescent X-rays. Inspired by KES, Fluorescence Subtraction Imaging (FSI) is a technique for high-energy (>20 keV) fluorescence imaging using two different incident beam energies just above and below the absorption edge of a contrast element (e.g. iodine). The below-edge image can be assumed as a 'background' image, which includes Compton scatter and fluorescence from other elements. The above-edge image will contain nearly identical spectral content as the below-edge image but will contain the additional fluorescence of the contrast element. This imaging method is especially promising with thick objects with dilute contrast materials, significant Compton background, and/or competing fluorescence lines from other materials. A quality factor is developed to facilitate the comparison. The theoretical value of the quality factor sets the upper limit that an imaging method can achieve when the noise is Poisson limited. The measured value of this factor makes two or more imaging methods comparable. Using the Hard X-ray Micro-Analysis (HXMA) beamline at the Canadian Light Source (CLS), the techniques of FSI and KES were critically compared, with reference to radiation dose, image acquisition time, resolution, signal-to-noise ratios, and quality factor

  15. Magnetism of zigzag edge phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhili, E-mail: zlzhu@zzu.edu.cn, E-mail: jiayu@zzu.edu.cn; Li, Chong; Yu, Weiyang; Chang, Dahu; Sun, Qiang; Jia, Yu, E-mail: zlzhu@zzu.edu.cn, E-mail: jiayu@zzu.edu.cn [International Joint Research Laboratory for Quantum Functional Materials of Henan, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2014-09-15

    We have investigated, by means of ab initio calculations, the electronic and magnetic structures of zigzag edge phosphorene nanoribbons (ZPNRs) with various widths. The stable magnetic state was found in pristine ZPNRs by allowing the systems to be spin-polarized. The ground state of pristine ZPNRs prefers ferromagnetic order in the same edge but antiferromagnetic order between two opposite edges. The magnetism arises from the dangling bond states as well as edge localized π-orbital states. The presence of a dangling bond is crucial to the formation of the magnetism of ZPNRs. The hydrogenated ZPNRs get nonmagnetic semiconductors with a direct band gap. While, the O-saturated ZPNRs show magnetic ground states due to the weak P-O bond in the ribbon plane between the p{sub z}-orbitals of the edge O and P atoms.

  16. Edge separation using diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Ravel, B.; Bouldin, C.E.; Renevier, H.; Hodeau, J.L.; Berar, J.F.

    1999-01-01

    We exploit the crystallographic sensitivity of the Diffraction Anomalous Fine-Structure (DAFS) measurement to separate the fine structure contributions of different atomic species with closely spaced resonant energies. In BaTiO 3 the Ti K edge and Ba Lm edges are separated by 281 eV, or about 8.2 Angstrom -1 ), thus severely limiting the information content of the Ti K edge signal. Using the site selectivity of DAFS we can separate the two fine structure spectra using an iterative Kramers-Kronig method, thus extending the range of the Ti K edge spectrum. This technique has application to many rare earth/transition metal compounds, including many magnetic materials of technological significance for which K and L edges overlap in energy. (au)

  17. On the location of spectral edges in Z-periodic media

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Kuchment, P.; Winn, B.

    2010-01-01

    Roč. 43, č. 47 (2010), 474022/1-474022/8 ISSN 1751-8113 R&D Projects: GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : OPERATORS * GRAPHS Subject RIV: BE - Theoretical Physics Impact factor: 1.641, year: 2010

  18. Determination of ion temperatures from Zeeman broadened spectral lines in the edge of Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Klepper, C.C.; Isler, R.C.; Tobin, S.J.; Hogan, J.T. [Oak Ridge National Lab., TN (United States). Fusion Energy Div.; Hess, W.R. [Association EURATOM-CEA sur la Fusion Controlee, St-Paul-lez-Durance (France). Centre d`Etudes de Cadarache

    1994-09-01

    The authors have examined a {sup 3}P {yields} {sup 3}S multiplet of C III in Tore Supra in order to assess the possibility of determining the ion temperatures from transitions where the Zeeman effect cannot be neglected compared to the Doppler broadening. The preliminary studies lead them to believe that with good quality data the temperatures can be determined within about 20% in the 20--30 eV range and within about 50% in the neighborhood of 5 eV by fitting the entire multiplet rather than a semi-isolated feature, even though certain parameters important for the analysis, such as polarization effects of the optics, are not well characterized. In order to quantify these conclusions more precisely, future work will concentrate on developing numerical fitting routines and on examining the validity of the assumption that the distribution function for low ionization stages is Maxwellian.

  19. Determination of ion temperatures from Zeeman broadened spectral lines in the edge of Tore Supra

    International Nuclear Information System (INIS)

    Klepper, C.C.; Isler, R.C.; Tobin, S.J.; Hogan, J.T.; Hess, W.R.

    1994-01-01

    The authors have examined a 3 P → 3 S multiplet of C III in Tore Supra in order to assess the possibility of determining the ion temperatures from transitions where the Zeeman effect cannot be neglected compared to the Doppler broadening. The preliminary studies lead them to believe that with good quality data the temperatures can be determined within about 20% in the 20--30 eV range and within about 50% in the neighborhood of 5 eV by fitting the entire multiplet rather than a semi-isolated feature, even though certain parameters important for the analysis, such as polarization effects of the optics, are not well characterized. In order to quantify these conclusions more precisely, future work will concentrate on developing numerical fitting routines and on examining the validity of the assumption that the distribution function for low ionization stages is Maxwellian

  20. Ages of white dwarf-red subdwarf systems

    Directory of Open Access Journals (Sweden)

    Hektor Monteiro

    2006-01-01

    Full Text Available We provide the first age estimates for two recently discovered white dwarf-red subdwarf systems, LHS 193AB and LHS 300AB. These systems provide a new opportunity for linking the reliable age estimates for the white dwarfs to the (measurable metallicities of the red subdwarfs. We have obtained precise photometry in the VJRKCIKCJH bands and spectroscopy covering from 6,000°A to 9,000°A (our spectral coveragefor the two new systems, as well as for a comparison white dwarfmain sequence red dwarf system, GJ 283 AB. Using model grids, we estimate the cooling age as well as temperature, surface gravity, mass, progenitor mass and total lifetimes of the white dwarfs. The results indicate that the two new systems are probably ancient thick disk objects with ages of at least 6-9 gigayears (Gyr.

  1. Androgens increase lws opsin expression and red sensitivity in male three-spined sticklebacks.

    Directory of Open Access Journals (Sweden)

    Yi Ta Shao

    Full Text Available Optomotor studies have shown that three-spined sticklebacks (Gasterosteus aculeatus are more sensitive to red during summer than winter, which may be related to the need to detect the red breeding colour of males. This study aimed to determine whether this change of red light sensitivity is specifically related to reproductive physiology. The mRNA levels of opsin genes were examined in the retinae of sexually mature and immature fish, as well as in sham-operated males, castrated control males, or castrated males implanted with androgen 11-ketoandrostenedione (11 KA, maintained under stimulatory (L16:D8 or inhibitory (L8:D16 photoperiods. In both sexes, red-sensitive opsin gene (lws mRNA levels were higher in sexually mature than in immature fish. Under L16:D8, lws mRNA levels were higher in intact than in castrated males, and were up-regulated by 11 KA treatment in castrated males. Moreover, electroretinogram data confirmed that sexual maturation resulted in higher relative red spectral sensitivity. Mature males under L16:D8 were more sensitive to red light than males under L8:D16. Red light sensitivity under L16:D8 was diminished by castration, but increased by 11 KA treatment. Thus, in sexually mature male sticklebacks, androgen is a key factor in enhancing sensitivity to red light via regulation of opsin gene expression. This is the first study to demonstrate that sex hormones can regulate spectral vision sensitivity.

  2. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive red galaxies

    Science.gov (United States)

    Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.

    2017-01-01

    Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4 quality. The spectra of passive red galaxies were stacked in narrow bins of stellar mass and redshift. We use the stacked spectra to measure the 4000 Å break (D4000) and the Hδ Lick index (HδA) with high precision. These spectral features are used as indicators of the star formation history of passive red galaxies. We compare the results with a grid of synthetic spectra to constrain the star formation epochs of these galaxies. We characterize the formation redshift-stellar mass relation for intermediate-redshift passive red galaxies. Results: We find that at z 1 stellar populations in low-mass passive red galaxies are younger than in high-mass passive red galaxies, similar to what is observed at the present epoch. Over the full analyzed redshift range 0.4 web site is http://www.vipers.inaf.it/

  3. Skin quality in red potatoes

    Science.gov (United States)

    Attractive appearance is a highly desirable characteristic of fresh market red-skinned potatoes. The ideal red potato has a rich, uniform, deep red color. Color fading, netting, browning, and discoloration caused by skinning and disease decrease marketability and may reduce profits to growers and pa...

  4. Red alder potential in Alaska

    Science.gov (United States)

    Allen Brackley; David Nicholls; Mike Hannan

    2010-01-01

    Over the past several decades, red alder has established itself as a commercially important species in the Pacific Northwest. Once considered a weed species, red alder now commands respect within many markets, including furniture, architectural millwork, and other secondary manufactured products. Although red alder's natural range extends to southeast Alaska, an...

  5. SPECTRAL ANALYSIS OF EXCHANGE RATES

    Directory of Open Access Journals (Sweden)

    ALEŠA LOTRIČ DOLINAR

    2013-06-01

    Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates

  6. Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    Science.gov (United States)

    Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)

    2014-01-01

    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.

  7. Localized Edge Vibrations and Edge Reconstruction by Joule Heating in Graphene Nanostructures

    DEFF Research Database (Denmark)

    Engelund, Mads; Fürst, Joachim Alexander; Jauho, Antti-Pekka

    2010-01-01

    Control of the edge topology of graphene nanostructures is critical to graphene-based electronics. A means of producing atomically smooth zigzag edges using electronic current has recently been demonstrated in experiments [Jia et al., Science 323, 1701 (2009)]. We develop a microscopic theory...... for current-induced edge reconstruction using density functional theory. Our calculations provide evidence for localized vibrations at edge interfaces involving unpassivated armchair edges. We demonstrate that these vibrations couple to the current, estimate their excitation by Joule heating, and argue...

  8. Spectrally optimal illuminations for diabetic retinopathy detection in retinal imaging

    Science.gov (United States)

    Bartczak, Piotr; Fält, Pauli; Penttinen, Niko; Ylitepsa, Pasi; Laaksonen, Lauri; Lensu, Lasse; Hauta-Kasari, Markku; Uusitalo, Hannu

    2017-04-01

    Retinal photography is a standard method for recording retinal diseases for subsequent analysis and diagnosis. However, the currently used white light or red-free retinal imaging does not necessarily provide the best possible visibility of different types of retinal lesions, important when developing diagnostic tools for handheld devices, such as smartphones. Using specifically designed illumination, the visibility and contrast of retinal lesions could be improved. In this study, spectrally optimal illuminations for diabetic retinopathy lesion visualization are implemented using a spectrally tunable light source based on digital micromirror device. The applicability of this method was tested in vivo by taking retinal monochrome images from the eyes of five diabetic volunteers and two non-diabetic control subjects. For comparison to existing methods, we evaluated the contrast of retinal images taken with our method and red-free illumination. The preliminary results show that the use of optimal illuminations improved the contrast of diabetic lesions in retinal images by 30-70%, compared to the traditional red-free illumination imaging.

  9. Assessing Cd-induced stress from plant spectral response

    Science.gov (United States)

    Kancheva, Rumiana; Georgiev, Georgi

    2014-10-01

    Remote sensing plays a significant role in local, regional and global monitoring of land covers. Ecological concerns worldwide determine the importance of remote sensing applications for the assessment of soil conditions, vegetation health and identification of stress-induced changes. The extensive industrial growth and intensive agricultural land-use arise the serious ecological problem of environmental pollution associated with the increasing anthropogenic pressure on the environment. Soil contamination is a reason for degradation processes and temporary or permanent decrease of the productive capacity of land. Heavy metals are among the most dangerous pollutants because of their toxicity, persistent nature, easy up-take by plants and long biological half-life. This paper takes as its focus the study of crop species spectral response to Cd pollution. Ground-based experiments were performed, using alfalfa, spring barley and pea grown in Cd contaminated soils and in different hydroponic systems under varying concentrations of the heavy metal. Cd toxicity manifested itself by inhibition of plant growth and synthesis of photosynthetic pigments. Multispectral reflectance, absorbance and transmittance, as well as red and far red fluorescence were measured and examined for their suitability to detect differences in plant condition. Statistical analysis was performed and empirical relationships were established between Cd concentration, plant growth variables and spectral response Various spectral properties proved to be indicators of plant performance and quantitative estimators of the degree of the Cd-induced stress.

  10. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  11. Fabrication of antenna-coupled transition edge polarization-sensitive bolometer arrays

    International Nuclear Information System (INIS)

    Yun, Minhee; Bock, James; Leduc, Henry; Day, Peter; Kim, Moon J.

    2004-01-01

    We have fabricated antenna-coupled superconducting transition edge sensor (TES) arrays for far-infrared and millimeter-wave applications. The advantage of antenna coupling is that the large optical coupling structure required for far-infrared/millimeter wavelengths is not thermally active. The sensor can thus be as small as lithographic techniques permit. By eliminating large absorbers, this technology enables bolometers working at frequencies as low as 30 GHz, covering the entire spectral region of interest for future space-borne studies of cosmic microwave background polarization. We developed a focal plane architecture with dual-polarization sensitivity in a single spectral band, or single-polarization sensitivity in multiple spectral bands. We use TES layers consisting of Al/Ti/Au/Ti thin films and Nb electrical contacts on a low-stress Si 3 N 4 membrane

  12. Red giants seismology

    Science.gov (United States)

    Mosser, B.; Samadi, R.; Belkacem, K.

    2013-11-01

    The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secrets: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to paparazze the red giants according to the seismic pictures we have from their interiors.

  13. Multiplicar la red

    Directory of Open Access Journals (Sweden)

    John Young

    2015-01-01

    Full Text Available La tecnología comunicacional nos ha conducido precipitadamente a una existencia completamente nueva. En la carrera por crear una sociedad sustentable, una "red de redes mundiales" de computadoras personales que puedan ofrecer la primera esperanza real de acelerar ampliamente las comunicaciones. Las redes computacionales no solo sirven como un sistema de comunicación interactivo, rápido sino también como una herramienta de investigación de poderes insospechados.

  14. Elevated CO2 compensates for water stress in northern red oak

    Science.gov (United States)

    Patricia T. Tomlinson; Paul D. Anderson

    1996-01-01

    Global climate change models predict decreased rainfall in association with elevated CO2 in the western Lakes States region. Currently, the western edge of northern red oak (Quercus rubra L.) distribution coincides with the most xeric conditions of its ecological range. Decreased rainfall and water availability could alter...

  15. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    Science.gov (United States)

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  16. A New Developed GIHS-BT-SFIM Fusion Method Based On Edge and Class Data

    Directory of Open Access Journals (Sweden)

    S. Dehnavi

    2013-09-01

    Full Text Available The objective of image fusion (or sometimes pan sharpening is to produce a single image containing the best aspects of the source images. Some desirable aspects are high spatial resolution and high spectral resolution. With the development of space borne imaging sensors, a unified image fusion approach suitable for all employed imaging sources becomes necessary. Among various image fusion methods, intensity-hue-saturation (IHS and Brovey Transforms (BT can quickly merge huge amounts of imagery. However they often face color distortion problems with fused images. The SFIM fusion is one of the most frequently employed approaches in practice to control the tradeoff between the spatial and spectral information. In addition it preserves more spectral information but suffer more spatial information loss. Its effectiveness is heavily depends on the filter design. In this work, two modifications were tested to improve the spectral quality of the images and also investigating class-based fusion results. First, a Generalized Intensity-Hue-Saturation (GIHS, Brovey Transform (BT and smoothing-filter based intensity modulation (SFIM approach was implemented. This kind of algorithm has shown computational advantages among other fusion methods like wavelet, and can be extended to different number of bands as in literature discussed. The used IHS-BT-SFIM algorithm incorporates IHS, IHS-BT, BT, BT-SFIM and SFIM methods by two adjustable parameters. Second, a method was proposed to plus edge information in previous GIHS_BT_SFIM and edge enhancement by panchromatic image. Adding panchromatic data to images had no much improvement. Third, an edge adaptive GIHS_BT_SFIM was proposed to enforce fidelity away from the edges. Using MS image off edges has shown spectral improvement in some fusion methods. Fourth, a class based fusion was tested, which tests different coefficients for each method due to its class. The best parameters for vegetated areas was k1 = 0.6, k2

  17. AliEn - EDG Interoperability in ALICE

    CERN Document Server

    Bagnasco, S; Buncic, P; Carminati, F; Cerello, P G; Saiz, P

    2003-01-01

    AliEn (ALICE Environment) is a GRID-like system for large scale job submission and distributed data management developed and used in the context of ALICE, the CERN LHC heavy-ion experiment. With the aim of exploiting upcoming Grid resources to run AliEn-managed jobs and store the produced data, the problem of AliEn-EDG interoperability was addressed and an in-terface was designed. One or more EDG (European Data Grid) User Interface machines run the AliEn software suite (Cluster Monitor, Storage Element and Computing Element), and act as interface nodes between the systems. An EDG Resource Broker is seen by the AliEn server as a single Computing Element, while the EDG storage is seen by AliEn as a single, large Storage Element; files produced in EDG sites are registered in both the EDG Replica Catalogue and in the AliEn Data Catalogue, thus ensuring accessibility from both worlds. In fact, both registrations are required: the AliEn one is used for the data management, the EDG one to guarantee the integrity and...

  18. Multilayer Photonic Crystal for Spectral Narrowing of Emission

    Directory of Open Access Journals (Sweden)

    Zhanfang LIU

    2017-08-01

    Full Text Available Multilayer colloidal crystal has been prepared by the layer-by-layer deposition of silica microspheres on a glass slide. Each layer is a slab consisting of a fcc close-packed colloidal arrays. By properly choosing the sizes of spheres, the whole spectral feature of multilayer colloidal crystal can be tuned. Here, we engineered a multilayer superlattice structure with an effective passband between two stop bands. This gives a strong narrowing effect on emission spectrum. With the stop bands at the shortwave and longwave edges of emission spectrum, the passband in the central wavelength region can be regarded as a strong decrease of suppression effect and enhancement of a narrow wavelength region of emission. The spectral narrowing modification effect of suitably engineered colloidal crystals shows up their importance in potential application as optical filters and lasing devices.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16320

  19. Ion spectral structures observed by the Van Allen Probes

    Science.gov (United States)

    Ferradas, C.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2015-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have reported single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). These ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. The HOPE mass spectrometer onboard the Van Allen Probes measures energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of nose-like structures, using 2-years measurements from the HOPE instrument. The results provide important details about the spatial distribution (dependence on geocentric distance), spectral features of the structures (differences among species), and geomagnetic conditions under which these structures occur.

  20. Spectral characteristics of aurorae connected with high-velocity flows of the solar wind from coronal holes

    International Nuclear Information System (INIS)

    Khviyuzova, T.A.; Leont'ev, S.V.

    1997-01-01

    Bright electron aurorae almost always followed by red lower edge occur when the Earth is being passed by high-velocity flows from coronal holes within the auroral range at the night meridian. In contrast to other types of the solar wind the high-velocity flows from coronal holes do not cause the occurrence of A type red polar aurorae, that is, the spectrum of electrons pouring into the Earth atmosphere in these cases is shifted towards higher energies

  1. Edge-Disjoint Fibonacci Trees in Hypercube

    Directory of Open Access Journals (Sweden)

    Indhumathi Raman

    2014-01-01

    Full Text Available The Fibonacci tree is a rooted binary tree whose number of vertices admit a recursive definition similar to the Fibonacci numbers. In this paper, we prove that a hypercube of dimension h admits two edge-disjoint Fibonacci trees of height h, two edge-disjoint Fibonacci trees of height h-2, two edge-disjoint Fibonacci trees of height h-4 and so on, as subgraphs. The result shows that an algorithm with Fibonacci trees as underlying data structure can be implemented concurrently on a hypercube network with no communication latency.

  2. Adobe Edge Animate CC for dummies

    CERN Document Server

    Rohde, Michael

    2013-01-01

    The easy way to build HTML5 mobile and web apps using Adobe's new Edge Animate CC Edge Animate CC is an approachable WYSIWYG alternative for leveraging the power of languages like HTML5, CSS3, and JavaScript to design and develop for the web and mobile devices, even if you have no programming experience. Written by Michael Rohde, the book calls on this seasoned web developer's wealth of experience using Edge Animate CC, and a companion website includes all code from the book to help you apply what you learn as you go. Features an easy-to-use interface, with a propert

  3. Edge-Matching Problems with Rotations

    DEFF Research Database (Denmark)

    Ebbesen, Martin; Fischer, Paul; Witt, Carsten

    2011-01-01

    Edge-matching problems, also called puzzles, are abstractions of placement problems with neighborhood conditions. Pieces with colored edges have to be placed on a board such that adjacent edges have the same color. The problem has gained interest recently with the (now terminated) Eternity II...... puzzle, and new complexity results. In this paper we consider a number of settings which differ in size of the puzzles and the manipulations allowed on the pieces. We investigate the effect of allowing rotations of the pieces on the complexity of the problem, an aspect that is only marginally treated so...

  4. SPECTRAL QUALITY AFFECTS MORPHOGENESIS ON ANTHURIUM PLANTLET DURING IN VITRO CULTURE

    Directory of Open Access Journals (Sweden)

    Kurniawan Budiarto

    2010-10-01

    Full Text Available This paper elucidates the effects of LEDs spectral on callus induction, proliferation and shoot development of anthurium plantlet derived from leaf explants. The research was conducted at the Ornamental Research Station, Fukuyama, Japan from January to August 2008. Three experimental series were designed to determine the effects of LED-based spectral compositions i.e. 100% red, 75% red + 25% blue, 50% red + 50% blue, 25% red + 75% blue and 100% blue LEDs on morphogenetic process of callus formation derived from leaf explants up to plantlet formation on two anthurium cultivars, Violeta and Pink Lady. The results showed no differences among cultivars tested but interaction of factors studied were found in all parameters observed. LEDs spectral gave significant influence on the morphogenetic processes from callus induction to complete plantlet formation. Progressive initial callus was promoted with the decrease of blue LEDs portion. Conversely, to proliferate globose to torpedo callus formation, more blue light was required than red LEDs. During shoot induction and formation, hastened shoot initiation and number of shoots were achieved in higher blue LEDs portions, but not in root formations.

  5. Fundamental optical absorption edge in MnGa2Te4 single crystals

    International Nuclear Information System (INIS)

    Medvedkin, G.A.; Rud, Yu.V.; Tairov, M.A.

    1988-01-01

    A study is made of the optical properties of oriented MnGa 2 Te 4 crystals in the region of the fundamental absorption edge. The energy gap width for the temperatures 77, 300, and 370 K is determined to be E G = 1.635, 1.52, and 1.50 eV. The spectral response α(ℎω/2π) is found to follow Urbach's rule thoughout the temperature range studied, the slope of the absorption edge remaining constant (α = 10 2 cm -1 ). Crystal annealing with subsequent rapid cooling results in a shift of the absorption edge longward by 25 meV with the exponential form of α(ℎω/2π) prevailing over the range T = 77 to 370 K. An analysis shows the optical absorption in the region of the fundamental edge to be a sum of the effects coming from the density-of-states tails, local scattering centers associated with a high vacancy concentration, and electron-phonon interaction. Optical linear dichroism of the absorption edge of MnGa 2 Te 4 single crystals with pseudotetragonal structure is revealed and studied. The single crystals are established to be optically uniaxial, their optical transmission dichroism being negative. It is shown that the minimal direct optical transitions in MnGa 2 Te 4 are allowed in the E parallel c polarization in the temperature range 77 to 370 K, the crystal-field splitting of the valence band increasing with temperature. (author)

  6. Optimisation of material discrimination using spectral CT

    International Nuclear Information System (INIS)

    Nik, S.J.; Meyer, J.; Watts, R.

    2010-01-01

    Full text: Spectral computed tomography (CT) using novel X-ray photon counting detectors (PCDs) with energy resolving capabilities is capable of providing energy-selective images. This extra energy information may allow materials such as iodine and calcium, or water and fat to be distinguished. PCDs have energy thresholds, enabling the classification of photons into multiple energy bins. The inform tion content of spectral CT images depends on how the photons are grouped together. [n this work, a method is presented to optimise energy windows for maximum material discrimination. Given a combination of thicknesses, the reference number of expected photons in each energy bin is computed using the Bee Lambert equation. A similar calculation is performed for an exhaustive range of thicknesses and the number of photons in each case is com pared to the reference, allowing a statistical map of the uncertainty in thickness parameters to be constructed. The 63%-confidence region in the two-dimensional thickness space is a representation of how optimal the bins are for material separation. The model is demonstrated with 0.1 mm of iodine and 2.2 mm of calcium using two adjacent bins encompassing the entire energy range. Bins bordering at the iodine k-edge of 33.2 keY are found to be optimal. When compared to two abutted energy bins with equal incident counts as used in the literature (bordering at 54 keY), the thickness uncertainties are reduced from approximately 4% to less than I % (see Figure). This approach has been developed for two materials and is expandable to an arbitrary number of materials and bins.

  7. First-Principles Fe L 2,3 -Edge and O K-Edge XANES and XMCD Spectra for Iron Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Sassi, Michel [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Pearce, Carolyn I. [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Bagus, Paul S. [Department; Arenholz, Elke [Advanced; Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, Washington 99352, United States

    2017-10-02

    X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectroscopies are tools in widespread use for providing detailed local atomic structure, oxidation state, and magnetic structure information for materials and organometallic complexes. The analysis of these spectra for transition-metal L-edges is routinely performed on the basis of ligand-field multiplet theory because one- and two-particle mean-field ab initio methods typically cannot describe the multiplet structure. Here we show that multireference configuration interaction (MRCI) calculations can satisfactorily reproduce measured XANES spectra for a range of complex iron oxide materials including hematite and magnetite. MRCI Fe L2,3-edge XANES and XMCD spectra of Fe(II)O6, Fe(III)O6, and Fe(III)O4 in magnetite are found to be in very good qualitative agreement with experiment and multiplet calculations. Point-charge embedding and small distortions of the first-shell oxygen ligands have only small effects. Oxygen K-edge XANES/XMCD spectra for magnetite investigated by a real-space Green’s function approach complete the very good qualitative agreement with experiment. Material-specific differences in local coordination and site symmetry are well reproduced, making the approach useful for assigning spectral features to specific oxidation states and coordination environments.

  8. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status

    Science.gov (United States)

    Jongschaap, Raymond E. E.; Booij, Remmie

    2004-09-01

    Chlorophyll contents in vegetation depend on soil nitrogen availability and on crop nitrogen uptake, which are important management factors in arable farming. Crop nitrogen uptake is important, as nitrogen is needed for chlorophyll formation, which is important for photosynthesis, i.e. the conversion of absorbed radiance into plant biomass. The objective of this study was to estimate leaf and canopy nitrogen contents by near and remote sensing observations and to link observations at leaf, plant and canopy level. A theoretical base is presented for scaling-up leaf optical properties to whole plants and crops, by linking different optical recording techniques at leaf, plant and canopy levels through the integration of vertical nitrogen distribution. Field data come from potato experiments in The Netherlands in 1997 and 1998, comprising two potato varieties: Eersteling and Bintje, receiving similar nitrogen treatments (0, 100, 200 and 300 kg N ha -1) in varying application schemes to create differences in canopy nitrogen status during the growing season. Ten standard destructive field samplings were performed to follow leaf area index and crop dry weight evolution. Samples were analysed for inorganic nitrogen and total nitrogen contents. At sampling dates, spectral measurements were taken both at leaf level and at canopy level. At leaf level, an exponential relation between SPAD-502 readings and leaf organic nitrogen contents with a high correlation factor of 0.91 was found. At canopy level, an exponential relation between canopy organic nitrogen contents and red edge position ( λrep, nm) derived from reflectance measurements was found with a good correlation of 0.82. Spectral measurements (SPAD-502) at leaf level of a few square mm were related to canopy reflectance measurements (CropScan™) of approximately 0.44 m 2. Statistical regression techniques were used to optimise theoretical vertical nitrogen profiles that allowed scaling-up leaf chlorophyll measurements

  9. Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief.

    Science.gov (United States)

    Egan, John; Sharman, Rebecca J; Scott-Brown, Kenneth C; Lovell, Paul George

    2016-12-06

    Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief.

  10. Flow distortion at a dense forest edge

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Bingöl, Ferhat; Mann, Jakob

    2014-01-01

    The flow near tall forest edges is complex, yet poorly described. A field experiment using two meteorological masts equipped with sonic anemometers and a horizontally staring lidar was performed upwind and downwind of the interface between an open flat farmland and a tall (hc = 24 m) beech forest......, relative to the measurements upwind of the edge. The lidar data taken at several positions between the masts at 1.25hc show that the minimum wind speed occurred just upwind of the edge. At the 1.25hc level, at the forest mast, the momentum flux (\\documentclass...... qualitatively be explained with the concept of eddy‐blocking by the canopy top, which could also explain the observed increase in lateral variance and the decrease in the vertical variance. Despite the short distance to the edge of approximately 1.5hc, the beginning of a new internal boundary layer was visible...

  11. Floquet edge states in germanene nanoribbons

    KAUST Repository

    Tahir, Muhammad; Zhang, Qingyun; Schwingenschlö gl, Udo

    2016-01-01

    We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude

  12. Edge energies and shapes of nanoprecipitates.

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, John C.

    2006-01-01

    In this report we present a model to explain the size-dependent shapes of lead nano-precipitates in aluminum. Size-dependent shape transitions, frequently observed at nanolength scales, are commonly attributed to edge energy effects. This report resolves an ambiguity in the definition and calculation of edge energies and presents an atomistic calculation of edge energies for free clusters. We also present a theory for size-dependent shapes of Pb nanoprecipitates in Al, introducing the concept of ''magic-shapes'' defined as precipitate shapes having near zero elastic strains when inserted into similarly shaped voids in the Al matrix. An algorithm for constructing a complete set of magic-shapes is presented. The experimental observations are explained by elastic strain energies and interfacial energies; edge energies play a negligible role. We replicate the experimental observations by selecting precipitates having magic-shapes and interfacial energies less than a cutoff value.

  13. Thermal stability of the tokamak plasma edge

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1997-01-01

    The general linear, fluid, thermal instability theory for the plasma edge has been extended. An analysis of a two-dimensional fluid model of the plasma edge has identified the importance of many previously unappreciated phenomena associated with parallel and gyroviscous forces in the presence of large radial gradients, with large radial or parallel flows, with the temperature dependence of transport coefficients, and with the coupling of temperature, flow and density perturbations. The radiative condensation effect is generalized to include a further destabilizing condensation effect associated with radial heat conduction. Representative plasma edge neutral and impurity densities are found to be capable of driving thermal instabilities in the edge transport barrier and radiative mantle, respectively. (author)

  14. Folded membrane dialyzer with mechanically sealed edges

    Energy Technology Data Exchange (ETDEWEB)

    Markley, F.W.

    A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.

  15. Cover Art: River's Edge: Downward, Outward, Upward

    Directory of Open Access Journals (Sweden)

    Jonee Kulman Brigham

    2017-10-01

    Full Text Available Artist's Statement for the cover art of IJPS volume 4, issue 3: River's Edge: Downward, Outward, Upward, 2015. Mixed Media: photograph, inkjet printed on presentation matte of colored pencil over photograph.

  16. Edge and core dynamics in harness

    International Nuclear Information System (INIS)

    Ball, R.

    2007-01-01

    Resistive kink oscillations in tokamak plasmas are usually treated as core localized events, yet there there are several mechanisms by which they may interact with the edge dynamics. This suggests that we may regulate edge oscillatory behaviour, or ELMs, by harnessing the natural or contrived sawtooth period and amplitude. In this work I investigate core-edge oscillatory entrainment through direct propagation of heat pulses, inductive coupling, and global higher order resonance effects. In the core of auxiliary heated tokamak plasmas the ineluctable rhythm of slow buildup and rapid conversion of potential energy governs electron and heat radial transport. The growth phase of the sawtooth is accompanied by significant reconnection, then during the collapse the temperature and density in the core fall dramatically. There is evidence from experiments in reversed field pinch devices that ensuing energy fluxes can affect flow shear and confinement at the edge. The basis for this study is the dynamical (BDS) model for edge plasma behavior that was derived from electrostatic resistive MHD equations. The BDS model reflects the major qualitative features of edge dynamics that have been observed, such as L-H transitions and associated ELMs, hysteresis, and spontaneous reversal of poloidal shear flow. Under poorly dissipative conditions the transient behavior of the model can exhibit period-doubling, blue-sky, homoclinic, and other exotic bifurcations. Thus we might ask questions such as: Is it possible to mode-lock the edge dynamics to the core sawteeth? Can we induce, or prevent, a change in direction of shear flow? What about MHD effects? Is core-edge communication one way or is there some feedback? In the simplest prototype for coupled core-edge dynamics I model the sawtooth crash as a periodic power input to the edge potential energy reservoir. This is effected by coupling the BDS model to the dynamical system u = u(1 - u 2 - x 2 ) - ω s x, x = x(1-u 2 -x 2 ) + ω s u

  17. Monitoring leaf photosynthesis with canopy spectral reflectance in rice

    International Nuclear Information System (INIS)

    Tian, Y.; Zhu, Y.; Cao, W.

    2005-01-01

    We determined the quantitative relationships between leaf photosynthetic characteristics (LPC) and canopy spectral reflectance under different water supply and nitrogen application rates in rice plants. The responses of reflectance at red radiation (680 nm) to different water contents and N rates were parallel to those of leaf net photosynthetic rate (PN). The relationships of reflectance at 680 nm and ratio index of R(810,680) (near infrared/red) to PN of different leaf positions and layers indicated that the top two full leaves were the best positions for quantitative monitoring of PN with remote sensing technique, and the index R(810,680) was the best ratio index for evaluating LPC. Testing of the models with independent data sets indicated that R(810,680) could well estimate PN of the top two leaves and canopy leaf photosynthetic potential. Hence R(810,680) can be used to monitor LPC in rice under diverse growing conditions

  18. Solid energy calibration standards for P K-edge XANES: electronic structure analysis of PPh4Br.

    Science.gov (United States)

    Blake, Anastasia V; Wei, Haochuan; Donahue, Courtney M; Lee, Kyounghoon; Keith, Jason M; Daly, Scott R

    2018-03-01

    P K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K-edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K-edge X-ray absorption spectroscopy, which has well established energy calibration standards for Cl (Cs 2 CuCl 4 ) and S (Na 2 S 2 O 3 ·5H 2 O), but not neighboring P. This paper presents a review of common P K-edge XANES energy calibration standards and analysis of PPh 4 Br as a potential alternative. The P K-edge XANES region of commercially available PPh 4 Br revealed a single, highly resolved pre-edge feature with a maximum at 2146.96 eV. PPh 4 Br also showed no evidence of photodecomposition when repeatedly scanned over the course of several days. In contrast, we found that PPh 3 rapidly decomposes under identical conditions. Density functional theory calculations performed on PPh 3 and PPh 4 + revealed large differences in the molecular orbital energies that were ascribed to differences in the phosphorus oxidation state (III versus V) and molecular charge (neutral versus +1). Time-dependent density functional theory calculations corroborated the experimental data and allowed the spectral features to be assigned. The first pre-edge feature in the P K-edge XANES spectrum of PPh 4 Br was assigned to P 1s → P-C π* transitions, whereas those at higher energy were P 1s → P-C σ*. Overall, the analysis suggests that PPh 4 Br is an excellent alternative to other solid energy calibration standards commonly used in P K-edge XANES experiments.

  19. Numerical simulation of edge plasma in tokamak

    International Nuclear Information System (INIS)

    Chen Yiping; Qiu Lijian

    1996-02-01

    The transport process and transport property of plasma in edge layer of Tokamak are simulated by solving numerically two-dimensional and multi-fluid plasma transport equations using suitable simulation code. The simulation results can show plasma parameter distribution characteristics in the area of edge layer, especially the characteristics near the first wall and divertor target plate. The simulation results play an important role in the design of divertor and first wall of Tokamak. (2 figs)

  20. Edge on Impact Simulations and Experiments

    OpenAIRE

    Leavy, R. Brian; Clayton, John D.; Strack, O. Erik; Brannon, Rebecca M.; Strassburger, Elmar

    2013-01-01

    In the quest to understand damage and failure of ceramics in ballistic events, simplified experiments have been developed to benchmark behavior. One such experiment is known as edge on impact (EOI). In this experiment, an impactor strikes the edge of a thin square plate, and damage and cracking that occur on the free surface are captured in real time with high speed photography. If the material of interest is transparent, additional information regarding damage and wave mechanics within the s...

  1. Integrated core-edge-divertor modeling studies

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    An integrated calculation model for simulating the interaction of physics phenomena taking place in the plasma core, in the plasma edge and in the SOL and divertor of tokamaks has been developed and applied to study such interactions. The model synthesises a combination of numerical calculations (1) the power and particle balances for the core plasma, using empirical confinement scaling laws and taking into account radiation losses (2), the particle, momentum and power balances in the SOL and divertor, taking into account the effects of radiation and recycling neutrals, (3) the transport of feeling and recycling neutrals, explicitly representing divertor and pumping geometry, and (4) edge pedestal gradient scale lengths and widths, evaluation of theoretical predictions (5) confinement degradation due to thermal instabilities in the edge pedestals, (6) detachment and divertor MARFE onset, (7) core MARFE onsets leading to a H-L transition, and (8) radiative collapse leading to a disruption and evaluation of empirical fits (9) power thresholds for the L-H and H-L transitions and (10) the width of the edge pedestals. The various components of the calculation model are coupled and must be iterated to a self-consistent convergence. The model was developed over several years for the purpose of interpreting various edge phenomena observed in DIII-D experiments and thereby, to some extent, has been benchmarked against experiment. Because the model treats the interactions of various phenomena in the core, edge and divertor, yet is computationally efficient, it lends itself to the investigation of the effects of different choices of various edge plasma operating conditions on overall divertor and core plasma performance. Studies of the effect of feeling location and rate, divertor geometry, plasma shape, pumping and over 'edge parameters' on core plasma properties (line average density, confinement, density limit, etc.) have been performed for DIII-D model problems. A

  2. Presheath profiles in simulated tokamak edge plasmas

    International Nuclear Information System (INIS)

    LaBombard, B.; Conn, R.W.; Hirooka, Y.; Lehmer, R.; Leung, W.K.; Nygren, R.E.; Ra, Y.; Tynan, G.

    1988-04-01

    The PISCES plasma surface interaction facility at UCLA generates plasmas with characteristics similar to those found in the edge plasmas of tokamaks. Steady state magnetized plasmas produced by this device are used to study plasma-wall interaction phenomena which are relevant to tokamak devices. We report here progress on some detailed investigations of the presheath region that extends from a wall surface into these /open quotes/simulated tokamak/close quotes/ edge plasma discharges along magnetic field lines

  3. Light-driven movements of the trifoliate leaves of bean (Phaseolus vulgaris L.). Spectral and functional analysis

    International Nuclear Information System (INIS)

    Koller, D.; Ritter, S.; Fork, D.C.

    1996-01-01

    The light-driven responses of the terminal leaflet of bean were analyzed spectrally and functionally. Laminar elevation increases rapidly in response to continuous overhead exposure of its pulvinus to blue light. This response is enhanced in its early stages by simultaneous exposure to red light. The pulvinus responds similarly to continuous overhead unmixed red, or far-red light, albeit at much lower rates. The response to overhead red, alone, or during enhancement of the response to blue, was not affected by simultaneous far-red. However, the response to blue alone, or enhanced by mixture with red, was partially inhibited by simultaneous exposure to far-red. The results suggest that the response to blue resulted mostly from a blue-absorbing pigment system, but may involve some absorption by phytochrome, while responses to red or far-red, with and without blue, may be mediated by high-irradiance responses of phytochrome. Functional differences between the responses to red and blue become apparent when the abaxial (lower), or lateral sectors of the pulvinus are exposed to them, separately and in combination. These differences suggest that red controls the photonastic unfolding of the pulvinus, whereas blue controls its phototropic responses. These responses co-exist in the same tissue, but are separate and additive. (author)

  4. RedNemo

    DEFF Research Database (Denmark)

    Alkan, Ferhat; Erten, Cesim

    2017-01-01

    is their erroneous nature; they contain false-positive interactions and usually many more false-negatives. Recently, several computational methods have been proposed for network reconstruction based on topology, where given an input PPI network the goal is to reconstruct the network by identifying false...... material including source code, useful scripts, experimental data and the results are available at http://webprs.khas.edu.tr/∼cesim/Red Nemo. tar.gz CONTACT: cesim@khas.edu.tr Supplementary information: Supplementary data are available at Bioinformatics online....

  5. Deep Red (Profondo Rosso)

    CERN Multimedia

    Cine Club

    2015-01-01

    Wednesday 29 April 2015 at 20:00 CERN Council Chamber    Deep Red (Profondo Rosso) Directed by Dario Argento (Italy, 1975) 126 minutes A psychic who can read minds picks up the thoughts of a murderer in the audience and soon becomes a victim. An English pianist gets involved in solving the murders, but finds many of his avenues of inquiry cut off by new murders, and he begins to wonder how the murderer can track his movements so closely. Original version Italian; English subtitles

  6. Red DirCom

    Directory of Open Access Journals (Sweden)

    Joan Costa

    2007-01-01

    Full Text Available Catorce países congregados de manera activa, a través de una plataforma de encuentro donde se comparten conocimiento y experiencias en la gestión estratégica de la comunicación en las organizaciones. La red reconoce en el DirCom una figura clave del desarrollo corporativo en el nuevo contexto de los negocios, impulsa la exigencia ética a través de la formación y consolida la proyección profesional para posicionar la gestión integral del DirCom en Iberoamérica.

  7. What's happening at the edge of tokamaks

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1987-01-01

    Handling the power deposition at the walls of a plasma fusion device and controlling the particle fueling of the plasma originated the interest in the edge of the plasma by magnetic fusion scientists. Recently this interest has intensified because of clear evidence that the quality of the central plasma confinement depends in unexpected ways on details of how the edge plasma is managed. Significant efforts are being pursued to understand and exploit the improved plasma confinement observed in the 'H-mode' obtained with divertors and in the 'super-shots' obtained with low neutral particle flux from the edge of TFTR limiter plasmas. The controls, that determine whether or not these well-confined plasmas are obtained, are applied in the edge plasma where a wealth of atomic and molecular processes occur. A qualitative overview of current research related to plasma edge and desirable features is presented to guide thoughts about atomic processes to be included in modeling and interpreting the plasma edge of tokamaks. (orig.)

  8. Unsteady phenomena in the edge tone

    International Nuclear Information System (INIS)

    Paal, G.; Vaik, I.

    2007-01-01

    Despite its geometrical simplicity, the edge tone displays a remarkably complex behaviour. A plane jet oscillates around the wedge-shaped object with a relatively stable frequency and under certain circumstances emits an audible tone. This configuration plays a central role in the sound production of several wind instruments but occurs in industrial situations too. The flow exhibits various interesting nonlinear phenomena reported in the literature which are not entirely explained. In this paper, detailed high precision numerical simulations of the flow are reported under various conditions. Several phenomena are reproduced in agreement with the literature such as the existence of 'stages', the dependence of oscillation frequency on the outflow velocity and the orifice-edge distance within one stage, the pressure distribution on the edge surface, etc. A criterion for the appropriate time step for constant accuracy has been derived. The location of force action is surprisingly stable; it remains in a very narrow region of the wedge surface independently of the Reynolds number and the orifice-edge distance but it is much further behind the edge tip than reported in the literature. The various stages can coexist in different ways: jumping back and forth between stages or being superposed on each other. Regardless of the form, the first stage continues to be dominant even when the second and third stage appears. The question of disturbance propagation velocity and disturbance wavelength is also investigated. The development of higher harmonics of a single stage along the orifice-edge tip distance is presented

  9. Edge effect correction using ion beam figuring.

    Science.gov (United States)

    Yang, Bing; Xie, Xuhui; Li, Furen; Zhou, Lin

    2017-11-10

    The edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, as it can greatly reduce the key performance of the optical system. Ion beam figuring (IBF) has the advantage of no edge effect, so we can use it to remove high points on the edge and improve surface accuracy. The edge local correction method (ELCM) of IBF processes only the surface edge zone, and is very different from the current full caliber figuring method (FCFM). Therefore, it is necessary to study the ELCM of IBF. In this paper, the key factors of ELCM are analyzed, such as dwell time algorithm, edge data extension methods, and the outward dimension of the starting figuring point. At the same time, the distinctions between ELCM and FCFM are compared. Finally, a 142 mm diameter fused silica mirror is fabricated to verify the validity of the theoretical of ELCM. The experimental results indicate that the figuring precision and efficiency can be obviously improved by ELCM.

  10. Substitution dynamical systems spectral analysis

    CERN Document Server

    Queffélec, Martine

    2010-01-01

    This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...

  11. Spectral characterization of natural backgrounds

    Science.gov (United States)

    Winkelmann, Max

    2017-10-01

    As the distribution and use of hyperspectral sensors is constantly increasing, the exploitation of spectral features is a threat for camouflaged objects. To improve camouflage materials at first the spectral behavior of backgrounds has to be known to adjust and optimize the spectral reflectance of camouflage materials. In an international effort, the NATO CSO working group SCI-295 "Development of Methods for Measurements and Evaluation of Natural Background EO Signatures" is developing a method how this characterization of backgrounds has to be done. It is obvious that the spectral characterization of a background will be quite an effort. To compare and exchange data internationally the measurements will have to be done in a similar way. To test and further improve this method an international field trial has been performed in Storkow, Germany. In the following we present first impressions and lessons learned from this field campaign and describe the data that has been measured.

  12. The red supergiant population in the Perseus arm

    Science.gov (United States)

    Dorda, R.; Negueruela, I.; González-Fernández, C.

    2018-04-01

    We present a new catalogue of cool supergiants in a section of the Perseus arm, most of which had not been previously identified. To generate it, we have used a set of well-defined photometric criteria to select a large number of candidates (637) that were later observed at intermediate resolution in the infrared calcium triplet spectral range, using a long-slit spectrograph. To separate red supergiants from luminous red giants, we used a statistical method, developed in previous works and improved in the present paper. We present a method to assign probabilities of being a red supergiant to a given spectrum and use the properties of a population to generate clean samples, without contamination from lower luminosity stars. We compare our identification with a classification done using classical criteria and discuss their respective efficiencies and contaminations as identification methods. We confirm that our method is as efficient at finding supergiants as the best classical methods, but with a far lower contamination by red giants than any other method. The result is a catalogue with 197 cool supergiants, 191 of which did not appear in previous lists of red supergiants. This is the largest coherent catalogue of cool supergiants in the Galaxy.

  13. Edge subdivision and edge multisubdivision versus some domination related parameters in generalized corona graphs

    Directory of Open Access Journals (Sweden)

    Magda Dettlaff

    2016-01-01

    Full Text Available Given a graph \\(G=(V,E\\, the subdivision of an edge \\(e=uv\\in E(G\\ means the substitution of the edge \\(e\\ by a vertex \\(x\\ and the new edges \\(ux\\ and \\(xv\\. The domination subdivision number of a graph \\(G\\ is the minimum number of edges of \\(G\\ which must be subdivided (where each edge can be subdivided at most once in order to increase the domination number. Also, the domination multisubdivision number of \\(G\\ is the minimum number of subdivisions which must be done in one edge such that the domination number increases. Moreover, the concepts of paired domination and independent domination subdivision (respectively multisubdivision numbers are defined similarly. In this paper we study the domination, paired domination and independent domination (subdivision and multisubdivision numbers of the generalized corona graphs.

  14. Transaortic Alfieri Edge-to-Edge Repair for Functional Mitral Regurgitation.

    Science.gov (United States)

    Imasaka, Ken-Ichi; Tayama, Eiki; Morita, Shigeki; Toriya, Ryohei; Tomita, Yukihiro

    2018-03-01

    There is controversy about handling functional mitral regurgitation in patients undergoing aortic valve or proximal aortic operations. We describe a transaortic Alfieri edge-to-edge repair for functional mitral regurgitation that reduces operative excessive invasion and prolonged cardiopulmonary bypass time. Between May 2013 and December 2016, 10 patients underwent transaortic Alfieri edge-to-edge mitral repair. There were no operative deaths. The severity of mitral regurgitation immediately after the operation by transesophageal echocardiography was none or trivial in all patients. A transaortic Alfieri edge-to-edge repair for functional mitral regurgitation is a simple and safe approach. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  15. The spectral effects of subsolidus reduction of olivine and pyroxene

    Science.gov (United States)

    Britt, D. T.

    1993-01-01

    The surfaces of atmosphereless bodies are subjected to a variety of chemical, thermal, accretionary, and shock processes related to their regolith environment. These processes are responsible for a number of alterations that occur in regoliths. Alterations include particle size commutation, implantation of solar wind gases, formation of agglutinates, spectral darkening, and, in the lunar case, the development of the very strong red continuum slope in the visible and near infrared spectra. A great deal of work has pointed to the role of agglutinates as the principal agent for darkening and reddening the lunar soil. The measures of regolith maturity are strongly linked to the accumulation of agglutinates. Recent work has suggested that the finest fractions of agglutinitic glass are major source of the spectral red slope. In particular, the red slope is most strongly associated with the agglutinitic glasses that are rich in blebs of sub-micron sized metal particles. It is thought that these metal particles, because of their size and scattering efficiently relative to the wavelength of light, are responsible for the red continuum slope. This fine fraction of metal particles is produced primarily by reduction of Fe(+2) from silicates. One mechanism for the reduction process is the reaction of solar implanted wind protons with the regolith soil during impact events. In this case the presence of hydrogen creates a reducing environment and the thermal pulse from the impact greatly speeds the reaction kinetics. To explore other reducing and thermal environments a series of experiments were done using samples in evacuated capsules buffered by Tantalum and heated to subsolidus temperatures.

  16. Adiabatic theorem and spectral concentration

    International Nuclear Information System (INIS)

    Nenciu, G.

    1981-01-01

    The spectral concentration of arbitrary order, for the Stark effect is proved to exist for a large class of Hamiltonians appearing in nonrelativistic and relativistic quantum mechanics. The results are consequences of an abstract theorem about the spectral concentration for self-ad oint operators. A general form of the adiabatic theorem of quantum mechanics, generalizing an earlier result of the author as well as some results of Lenard, is also proved [ru

  17. Spectral radiation dependent photoprotective mechanism in the diatom Pseudo-nitzschia multistriata.

    Directory of Open Access Journals (Sweden)

    Christophe Brunet

    Full Text Available Phytoplankton, such as diatoms, experience great variations of photon flux density (PFD and light spectrum along the marine water column. Diatoms have developed some rapidly-regulated photoprotective mechanisms, such as the xanthophyll cycle activation (XC and the non-photochemical chlorophyll fluorescence quenching (NPQ, to protect themselves from photooxidative damages caused by excess PFD. In this study, we investigate the role of blue fluence rate in combination with red radiation in shaping photoacclimative and protective responses in the coastal diatom Pseudo-nitzschia multistriata. This diatom was acclimated to four spectral light conditions (blue, red, blue-red, blue-red-green, each of them provided with low and high PFD. Our results reveal that the increase in the XC pool size and the amplitude of NPQ is determined by the blue fluence rate experienced by cells, while cells require sensing red radiation to allow the development of these processes. Variations in the light spectrum and in the blue versus red radiation modulate either the photoprotective capacity, such as the activation of the diadinoxanthin-diatoxanthin xanthophyll cycle, the diadinoxanthin de-epoxidation rate and the capacity of non-photochemical quenching, or the pigment composition of this diatom. We propose that spectral composition of light has a key role on the ability of diatoms to finely balance light harvesting and photoprotective capacity.

  18. Automatic parquet block sorting using real-time spectral classification

    Science.gov (United States)

    Astrom, Anders; Astrand, Erik; Johansson, Magnus

    1999-03-01

    This paper presents a real-time spectral classification system based on the PGP spectrograph and a smart image sensor. The PGP is a spectrograph which extracts the spectral information from a scene and projects the information on an image sensor, which is a method often referred to as Imaging Spectroscopy. The classification is based on linear models and categorizes a number of pixels along a line. Previous systems adopting this method have used standard sensors, which often resulted in poor performance. The new system, however, is based on a patented near-sensor classification method, which exploits analogue features on the smart image sensor. The method reduces the enormous amount of data to be processed at an early stage, thus making true real-time spectral classification possible. The system has been evaluated on hardwood parquet boards showing very good results. The color defects considered in the experiments were blue stain, white sapwood, yellow decay and red decay. In addition to these four defect classes, a reference class was used to indicate correct surface color. The system calculates a statistical measure for each parquet block, giving the pixel defect percentage. The patented method makes it possible to run at very high speeds with a high spectral discrimination ability. Using a powerful illuminator, the system can run with a line frequency exceeding 2000 line/s. This opens up the possibility to maintain high production speed and still measure with good resolution.

  19. Further results for crack-edge mappings by ray methods

    International Nuclear Information System (INIS)

    Norris, A.N.; Achenbach, J.D.; Ahlberg, L.; Tittman, B.R.

    1984-01-01

    This chapter discusses further extensions of the local edge mapping method to the pulse-echo case and to configurations of water-immersed specimens and transducers. Crack edges are mapped by the use of arrival times of edge-diffracted signals. Topics considered include local edge mapping in a homogeneous medium, local edge mapping algorithms, local edge mapping through an interface, and edge mapping through an interface using synthetic data. Local edge mapping is iterative, with two or three iterations required for convergence

  20. LAMOST spectral survey — An overview

    International Nuclear Information System (INIS)

    Zhao Gang; Zhao Yongheng; Chu Yaoquan; Deng Licai; Jing Yipeng

    2012-01-01

    LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope) is a Chinese national scientific research facility operated by National Astronomical Observatories, Chinese Academy of Sciences (NAOC). After two years of commissioning beginning in 2009, the telescope, instruments, software systems and operations are nearly ready to begin the main science survey. Through a spectral survey of millions of objects in much of the northern sky, LAMOST will enable research in a number of contemporary cutting edge topics in astrophysics, such as discovery of the first generation stars in the Galaxy, pinning down the formation and evolution history of galaxies — especially the Milky Way and its central massive black hole, and looking for signatures of the distribution of dark matter and possible sub-structures in the Milky Way halo. To maximize the scientific potential of the facility, wide national participation and international collaboration have been emphasized. The survey has two major components: the LAMOST ExtraGAlactic Survey (LEGAS) and the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE). Until LAMOST reaches its full capability, the LEGUE portion of the survey will use the available observing time, starting in 2012. An overview of the LAMOST project and the survey that will be carried out in the next five to six years is presented in this paper. The science plan for the whole LEGUE survey, instrumental specifications, site conditions, and the descriptions of the current on-going pilot survey, including its footprints and target selection algorithm, will be presented as separate papers in this volume.

  1. Red - take a closer look.

    Directory of Open Access Journals (Sweden)

    Vanessa L Buechner

    Full Text Available Color research has shown that red is associated with avoidance of threat (e.g., failure or approach of reward (e.g., mating depending on the context in which it is perceived. In the present study we explored one central cognitive process that might be involved in the context dependency of red associations. According to our theory, red is supposed to highlight the relevance (importance of a goal-related stimulus and correspondingly intensifies the perceivers' attentional reaction to it. Angry and happy human compared to non-human facial expressions were used as goal-relevant stimuli. The data indicate that the color red leads to enhanced attentional engagement to angry and happy human facial expressions (compared to neutral ones - the use of non-human facial expressions does not bias attention. The results are discussed with regard to the idea that red induced attentional biases might explain the red-context effects on motivation.

  2. Listening to Red

    Directory of Open Access Journals (Sweden)

    Sinazo Mtshemla

    Full Text Available Following a distinction John Mowitt draws between hearing (and phonics, and listening (and sonics, this article argues that the dominant notion of listening to sound was determined by the disciplinary framework of South African history and by the deployment of a cinematic documentary apparatus, both of which have served to disable the act of listening. The conditions of this hearing, and a deafness to a reduced or bracketed listening (Chion via Schaeffer that would enable us to think the post in post-apartheid differently, is thus at the centre of our concerns here. We stage a series of screenings of expected possible soundtracks for Simon Gush's film and installation Red, simultaneously tracking the ways that sound - and particularly music and dialogue - can be shown to hold a certain way of thinking both the political history of South Africa and the politics of South African history. We conclude by listening more closely to hiss and murmur in the soundtrack to Red and suggest this has major implications for considering ways of thinking and knowing.

  3. Forests on the edge: Microenvironmental drivers of carbon cycle response to edge effects

    Science.gov (United States)

    Reinmann, A.; Hutyra, L.; Smith, I. A.; Thompson, J.

    2017-12-01

    Twenty percent of the world's forest is within 100 m of a forest edge, but much of our understanding of forest carbon (C) cycling comes from large, intact ecosystems, which creates an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest is the most heavily fragmented forest biome in the world and its growth and carbon storage responses to forest edge effects appear to be the opposite of those in the tropical and boreal regions. We used field measurements to quantify the drivers of temperate forest C cycling response to edge effects, characterizing vegetative growth, respiration, and forest structure. We find large gradients in air and soil temperature from the forest interior to edge (up to 4 and 10° C, respectively) and the magnitude of this gradient is inversely correlated to the size of the forest edge growth enhancement. Further, leaf area index increases with proximity to the forest edge. While we also find increases in soil respiration between the forest interior and edge, this flux is small relative to aboveground growth enhancement near the edge. These findings represent an important advancement in our understanding of forest C cycle response to edge effects and will greatly improve our capacity to constrain biogenic C fluxes in fragmented and heterogeneous landscapes.

  4. Coral larvae settle at a higher frequency on red surfaces

    Science.gov (United States)

    Mason, B.; Beard, M.; Miller, M. W.

    2011-09-01

    Although chemical cues serve as the primary determinants of larval settlement and metamorphosis, light is also known to influence the behavior and the settlement of coral planulae. For example, Porites astreoides planulae settle preferentially on unconditioned red substrata. In order to test whether this behavior was a response to color and whether other species also demonstrate color preference, settlement choice experiments were conducted with P. astreoides and Acropora palmata. In these experiments, larvae were offered various types of plastic substrata representing three to seven different color choices. Both species consistently settled on red (or red and orange) substrata at a higher frequency than other colors. In one experiment, P. astreoides settled on 100% of red, plastic cable ties but failed to settle on green or white substrata. In a second experiment, 24% of larvae settled on red buttons, more than settled on six other colors combined. A. palmata settled on 80% of red and of orange cables ties but failed to settle on blue in one experiment and settled on a greater proportion of red acrylic squares than on four other colors or limestone controls in a second experiment. The consistency of the response across a variety of plastic materials suggests the response is related to long-wavelength photosensitivity. Fluorescence and reflectance spectra of experimental substrata demonstrated that the preferred substrata had spectra dominated by wavelengths greater than 550 nm with little or no reflection or emission of shorter wavelengths. These results suggest that some species of coral larvae may use spectral cues for fine-scale habitat selection during settlement. This behavior may be an adaptation to promote settlement in crustose coralline algae (CCA)-dominated habitats facilitating juvenile survival.

  5. Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges

    Science.gov (United States)

    Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2018-01-01

    Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.

  6. Red Teaming: Past and Present

    National Research Council Canada - National Science Library

    Longbine, David F

    2008-01-01

    .... Key aspects of the Army red teaming definition are its emphasis on independent thinking, challenging organizational thinking, incorporating alternative perspectives, and incorporating alternative analysis...

  7. Bayesian modeling of JET Li-BES for edge electron density profiles using Gaussian processes

    Science.gov (United States)

    Kwak, Sehyun; Svensson, Jakob; Brix, Mathias; Ghim, Young-Chul; JET Contributors Collaboration

    2015-11-01

    A Bayesian model for the JET lithium beam emission spectroscopy (Li-BES) system has been developed to infer edge electron density profiles. The 26 spatial channels measure emission profiles with ~15 ms temporal resolution and ~1 cm spatial resolution. The lithium I (2p-2s) line radiation in an emission spectrum is calculated using a multi-state model, which expresses collisions between the neutral lithium beam atoms and the plasma particles as a set of differential equations. The emission spectrum is described in the model including photon and electronic noise, spectral line shapes, interference filter curves, and relative calibrations. This spectral modeling gets rid of the need of separate background measurements for calculating the intensity of the line radiation. Gaussian processes are applied to model both emission spectrum and edge electron density profile, and the electron temperature to calculate all the rate coefficients is obtained from the JET high resolution Thomson scattering (HRTS) system. The posterior distributions of the edge electron density profile are explored via the numerical technique and the Markov chain Monte Carlo (MCMC) samplings. See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.

  8. Extreme spectral richness in the eye of the Common Bluebottle butterfly, Graphium sarpedon

    Directory of Open Access Journals (Sweden)

    Pei-Ju eChen

    2016-03-01

    Full Text Available Butterfly eyes are furnished with a variety of photoreceptors of different spectral sensitivities often in species-specific manner. We have conducted an extensive comparative study to address the question of how their spectrally complex retinas evolved. Here we investigated the structure and function of the eye of the common bluebottle butterfly (Graphium sarpedon, using electrophysiological, anatomical and molecular approaches. Intracellular electrophysiology revealed that the eye contains photoreceptors of fifteen distinct spectral sensitivities. These can be divided into six spectral receptor classes: ultraviolet- (UV, violet- (V, blue- (B, blue-green- (BG, green- (G, and red- (R sensitive. The B, G and R classes respectively contain three, four and five subclasses. Fifteen is the record number of spectral receptors so far reported in a single insect eye. We localized these receptors by injecting dye into individual photoreceptors after recording their spectral sensitivities. We thus found that four of them are confined to the dorsal region, eight to the ventral, and three exist throughout the eye; the ventral eye region is spectrally richer than the dorsal region. We also identified mRNAs encoding visual pigment opsins of one ultraviolet, one blue and three long wavelength-absorbing types. Localization of these mRNAs by in situ hybridization revealed that the dorsal photoreceptors each express a single opsin mRNA, but more than half of the ventral photoreceptors coexpress two or three L opsin mRNAs. This expression pattern well explains the spectral organization of the Graphium compound eye.

  9. Edge Modeling by Two Blur Parameters in Varying Contrasts.

    Science.gov (United States)

    Seo, Suyoung

    2018-06-01

    This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.

  10. Red-light-emitting laser diodes operating CW at room temperature

    Science.gov (United States)

    Kressel, H.; Hawrylo, F. Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200-8000-A spectral range. These devices operate continuously with simple oxide-isolated stripe contacts to 7400 A, which extends CW operation into the visible (red) portion of the spectrum.

  11. Red-light-emitting laser diodes operating cw at room temperature

    International Nuclear Information System (INIS)

    Kressel, H.; Hawrylo, F.Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200 to 8000-A spectral range. These devices operate cw with simple oxide-isolated stripe contacts to 7400 A, which extends cw operation for the first time into the visible (red) portion of the spectrum

  12. International red meat trade.

    Science.gov (United States)

    Brester, Gary W; Marsh, John M; Plain, Ronald L

    2003-07-01

    The maturation of the US beef and pork markets and increasing consumer demands for convenience, safety, and nutrition suggests that the beef and pork industries must focus on product development and promotion. New marketing arrangements are developing that help coordinate production with consumer demands. The relative high levels of incomes in the United States are likely to increase the demands for branded products rather than increase total per capita consumption. Foreign markets represent the greatest opportunity for increased demand for commodity beef and pork products. Increasing incomes in developing countries will likely allow consumers to increase consumption of animal-source proteins. Real prices of beef and pork have declined substantially because of sagging domestic demand and increasing farm-level production technologies. Increasing US beef and pork exports have obviated some of the price declines. Pork attained a net export position from a quantity perspective in 1995. The United States continues to be a net importer of beef on a quantity basis but is close to becoming a net exporter in terms of value. By-products continue to play a critical role in determining the red meat trade balance and producer prices. The United States, however, must continue to become cost, price, and quality competitive with other suppliers and must secure additional market access if it is to sustain recent trade trends. Several trade tensions remain in the red meat industry. For example, mandated COOL will undoubtedly have domestic and international effects on the beef and pork sectors. Domestically, uncertainty regarding consumer demand responses or quality perceptions regarding product origin, as well as added processor-retailer costs will be nontrivial. How these factors balance out in terms of benefits versus costs to the industry is uncertain. From an international perspective, some beef and pork export suppliers to the United States could view required labeling as a

  13. Edge strength of CAD/CAM materials.

    Science.gov (United States)

    Pfeilschifter, Maria; Preis, Verena; Behr, Michael; Rosentritt, Martin

    2018-05-16

    To investigate the edge force of CAD/CAM materials as a function of (a) material, (b) thickness, and (c) distance from the margin. Materials intended for processing with CAD/CAM were investigated: eight resin composites, one resin-infiltrated ceramic, and a clinically proven lithiumdisilicate ceramic (reference). To measure edge force (that is, load to failure/crack), plates (d = 1 mm) were fixed and loaded with a Vickers diamond indenter (1 mm/min, Zwick 1446) at a distance of 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 mm from the edge. Edge force was defined as a loading force at a distance of 0.5 mm. The type of failure was determined. To investigate the influence of the thickness, all data were determined on 1-mm and 2-mm plates. To test the influence of bonding and an underlying dentin, individual 1-mm plates were bonded to a 1-mm-thick dentin-like (concerning modulus of elasticity) resin composite. For the 1-mm plates, edge force varied between 64.4 ± 24.2 N (Shofu Block HC) and 183.2 ± 63.3 N (ceramic reference), with significant (p ≤ 0.001) differences between the materials. For the 2-mm plates, values between 129.2 ± 32.5 N (Lava Ultimate) and 230.3 ± 67.5 N (Cerasmart) were found. Statistical comparison revealed no significant differences (p > 0.109) between the materials. Brilliant Crios (p = 0.023), Enamic (p = 0.000), Shofu Blocks HC (p = 0.009), and Grandio Bloc (p = 0.002) showed significantly different edge force between the 1-mm- and 2-mm-thick plates. The failure pattern was either cracking, (severe) chipping, or fracture. Material, material thickness, and distance from the edge impact the edge force of CAD/CAM materials. CAD/CAM materials should be carefully selected on the basis of their individual edge force and performance during milling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Acyclicity in edge-colored graphs

    DEFF Research Database (Denmark)

    Gutin, Gregory; Jones, Mark; Sheng, Bin

    2017-01-01

    A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type i......+1, i=1,2,3,4. The first three types are equivalent to the absence of PC cycles, PC closed trails, and PC closed walks, respectively. While graphs of types 1, 2 and 3 can be recognized in polynomial time, the problem of recognizing graphs of type 4 is, somewhat surprisingly, NP-hard even for 2-edge-colored...... graphs (i.e., when only two colors are used). The same problem with respect to type 5 is polynomial-time solvable for all edge-colored graphs. Using the five types, we investigate the border between intractability and tractability for the problems of finding the maximum number of internally vertex...

  15. High spectral resolution image of Barnacle Bill

    Science.gov (United States)

    1997-01-01

    The rover Sojourner's first target for measurement by the Alpha-Proton-Xray Spectrometer (APXS) was the rock named Barnacle Bill, located close to the ramp down which the rover made its egress from the lander. The full spectral capability of the Imager for Mars Pathfinder (IMP), consisting of 13 wavelength filters, was used to characterize the rock's surface. The measured area is relatively dark, and is shown in blue. Nearby on the rock surface, soil material is trapped in pits (shown in red).Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  16. Pulsating red variables

    International Nuclear Information System (INIS)

    Whitelock, P.A.

    1990-01-01

    The observational characteristics of pulsating red variables are reviewed with particular emphasis on the Miras. These variables represent the last stage in the evolution of stars on the Asymptotic Giant Branch (AGB). A large fraction of the IRAS sources in the Bulge are Mira variables and a subset of these are also OH/IR sources. Their periods range up to 720 days, though most are between 360 and 560 days. At a given period those stars with the highest pulsation amplitudes have the highest mass-loss rates; this is interpreted as evidence for a causal connection between mass-loss and pulsation. It is suggested that once an AGB star has become a Mira it will evolve with increasing pulsation amplitude and mass-loss, but with very little change of luminosity or logarithmic period. 26 refs

  17. Onboard spectral imager data processor

    Science.gov (United States)

    Otten, Leonard J.; Meigs, Andrew D.; Franklin, Abraham J.; Sears, Robert D.; Robison, Mark W.; Rafert, J. Bruce; Fronterhouse, Donald C.; Grotbeck, Ronald L.

    1999-10-01

    Previous papers have described the concept behind the MightySat II.1 program, the satellite's Fourier Transform imaging spectrometer's optical design, the design for the spectral imaging payload, and its initial qualification testing. This paper discusses the on board data processing designed to reduce the amount of downloaded data by an order of magnitude and provide a demonstration of a smart spaceborne spectral imaging sensor. Two custom components, a spectral imager interface 6U VME card that moves data at over 30 MByte/sec, and four TI C-40 processors mounted to a second 6U VME and daughter card, are used to adapt the sensor to the spacecraft and provide the necessary high speed processing. A system architecture that offers both on board real time image processing and high-speed post data collection analysis of the spectral data has been developed. In addition to the on board processing of the raw data into a usable spectral data volume, one feature extraction technique has been incorporated. This algorithm operates on the basic interferometric data. The algorithm is integrated within the data compression process to search for uploadable feature descriptions.

  18. Intersection numbers of spectral curves

    CERN Document Server

    Eynard, B.

    2011-01-01

    We compute the symplectic invariants of an arbitrary spectral curve with only 1 branchpoint in terms of integrals of characteristic classes in the moduli space of curves. Our formula associates to any spectral curve, a characteristic class, which is determined by the laplace transform of the spectral curve. This is a hint to the key role of Laplace transform in mirror symmetry. When the spectral curve is y=\\sqrt{x}, the formula gives Kontsevich--Witten intersection numbers, when the spectral curve is chosen to be the Lambert function \\exp{x}=y\\exp{-y}, the formula gives the ELSV formula for Hurwitz numbers, and when one chooses the mirror of C^3 with framing f, i.e. \\exp{-x}=\\exp{-yf}(1-\\exp{-y}), the formula gives the Marino-Vafa formula, i.e. the generating function of Gromov-Witten invariants of C^3. In some sense this formula generalizes ELSV, Marino-Vafa formula, and Mumford formula.

  19. Spectral filtering for plant production

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.E.; McMahon, M.J.; Rajapakse, N.C.; Becoteau, D.R.

    1994-12-31

    Research to date suggests that spectral filtering can be an effective alternative to chemical growth regulators for altering plant development. If properly implemented, it can be nonchemical and environmentally friendly. The aqueous CuSO{sub 4}, and CuCl{sub 2} solutions in channelled plastic panels have been shown to be effective filters, but they can be highly toxic if the solutions contact plants. Some studies suggest that spectral filtration limited to short EOD intervals can also alter plant development. Future research should be directed toward confirmation of the influence of spectral filters and exposure times on a broader range of plant species and cultivars. Efforts should also be made to identify non-noxious alternatives to aqueous copper solutions and/or to incorporate these chemicals permanently into plastic films and panels that can be used in greenhouse construction. It would also be informative to study the impacts of spectral filters on insect and microbal populations in plant growth facilities. The economic impacts of spectral filtering techniques should be assessed for each delivery methodology.

  20. Spectral dimension of quantum geometries

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2014-01-01

    The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)

  1. Heat loads on poloidal and toroidal edges of castellated plasma-facing components in COMPASS

    Science.gov (United States)

    Dejarnac, R.; Corre, Y.; Vondracek, P.; Gaspar, J.; Gauthier, E.; Gunn, J. P.; Komm, M.; Gardarein, J.-L.; Horacek, J.; Hron, M.; Matejicek, J.; Pitts, R. A.; Panek, R.

    2018-06-01

    Dedicated experiments have been performed in the COMPASS tokamak to thoroughly study the power deposition processes occurring on poloidal and toroidal edges of castellated plasma-facing components in tokamaks during steady-state L-mode conditions. Surface temperatures measured by a high resolution infra-red camera are compared with reconstructed synthetic data from a 2D thermal model using heat flux profiles derived from both the optical approximation and 2D particle-in-cell (PIC) simulations. In the case of poloidal leading edges, when the contribution from local radiation is taken into account, the parallel heat flux deduced from unperturbed, upstream measurements is fully consistent with the observed temperature increase at the leading edges of various heights, respecting power balance assuming simple projection of the parallel flux density. Smoothing of the heat flux deposition profile due to finite ion Larmor radius predicted by the PIC simulations is found to be weak and the power deposition on misaligned poloidal edges is better described by the optical approximation. This is consistent with an electron-dominated regime associated with a non-ambipolar parallel current flow. In the case of toroidal gap edges, the different contributions of the total incoming flux along the gap have been observed experimentally for the first time. They confirm the results of recent numerical studies performed for ITER showing that in specific cases the heat deposition does not necessarily follow the optical approximation. Indeed, ions can spiral onto the magnetically shadowed toroidal edge. Particle-in-cell simulations emphasize again the role played by local non-ambipolarity in the deposition pattern.

  2. Infective endocarditis following transcatheter edge-to-edge mitral valve repair: A systematic review.

    Science.gov (United States)

    Asmarats, Lluis; Rodriguez-Gabella, Tania; Chamandi, Chekrallah; Bernier, Mathieu; Beaudoin, Jonathan; O'Connor, Kim; Dumont, Eric; Dagenais, François; Paradis, Jean-Michel; Rodés-Cabau, Josep

    2018-05-10

    To assess the clinical characteristics, management, and outcomes of patients diagnosed with infective endocarditis (IE) after edge-to-edge mitral valve repair with the MitraClip device. Transcatheter edge-to-edge mitral valve repair has emerged as an alternative to surgery in high-risk patients. However, few data exist on IE following transcatheter mitral procedures. Four electronic databases (PubMed, Google Scholar, Embase, and Cochrane Library) were searched for original published studies on IE after edge-to-edge transcatheter mitral valve repair from 2003 to 2017. A total of 10 publications describing 12 patients with definitive IE (median age 76 years, 55% men) were found. The mean logistic EuroSCORE/EuroSCORE II were 41% and 45%, respectively. The IE episode occurred early (within 12 months post-procedure) in nine patients (75%; within the first month in five patients). Staphylococcus aureus was the most frequent (60%) causal microorganism, and severe mitral regurgitation was present in all cases but one. Surgical mitral valve replacement (SMVR) was performed in most (67%) patients, and the mortality associated with the IE episode was high (42%). IE following transcatheter edge-to-edge mitral valve repair is a rare but life-threatening complication, usually necessitating SMVR despite the high-risk profile of the patients. These results highlight the importance of adequate preventive measures and a prompt diagnosis and treatment of this serious complication. © 2018 Wiley Periodicals, Inc.

  3. Size effect model for the edge strength of glass with cut and ground edge finishing

    NARCIS (Netherlands)

    Vandebroek, M.; Louter, C.; Caspeele, R.; Ensslen, F.; Belis, J.L.I.F.

    2014-01-01

    The edge strength of glass is influenced by the size of the surface (near the edge) which is subjected to tensile stresses. To quantify this size effect, 8 series of single layer annealed glass beam specimens (as-received glass) were subjected to in-plane four-point bending with linearly increased

  4. Edge printability: techniques used to evaluate and improve extreme wafer edge printability

    Science.gov (United States)

    Roberts, Bill; Demmert, Cort; Jekauc, Igor; Tiffany, Jason P.

    2004-05-01

    The economics of semiconductor manufacturing have forced process engineers to develop techniques to increase wafer yield. Improvements in process controls and uniformities in all areas of the fab have reduced film thickness variations at the very edge of the wafer surface. This improved uniformity has provided the opportunity to consider decreasing edge exclusions, and now the outermost extents of the wafer must be considered in the yield model and expectations. These changes have increased the requirements on lithography to improve wafer edge printability in areas that previously were not even coated. This has taxed all software and hardware components used in defining the optical focal plane at the wafer edge. We have explored techniques to determine the capabilities of extreme wafer edge printability and the components of the systems that influence this printability. We will present current capabilities and new detection techniques and the influence that the individual hardware and software components have on edge printability. We will show effects of focus sensor designs, wafer layout, utilization of dummy edge fields, the use of non-zero overlay targets and chemical/optical edge bead optimization.

  5. Remote sensing of species diversity using Landsat 8 spectral variables

    Science.gov (United States)

    Madonsela, Sabelo; Cho, Moses Azong; Ramoelo, Abel; Mutanga, Onisimo

    2017-11-01

    The application of remote sensing in biodiversity estimation has largely relied on the Normalized Difference Vegetation Index (NDVI). The NDVI exploits spectral information from red and near infrared bands of Landsat images and it does not consider canopy background conditions hence it is affected by soil brightness which lowers its sensitivity to vegetation. As such NDVI may be insufficient in explaining tree species diversity. Meanwhile, the Landsat program also collects essential spectral information in the shortwave infrared (SWIR) region which is related to plant properties. The study was intended to: (i) explore the utility of spectral information across Landsat-8 spectrum using the Principal Component Analysis (PCA) and estimate alpha diversity (α-diversity) in the savannah woodland in southern Africa, and (ii) define the species diversity index (Shannon (H‧), Simpson (D2) and species richness (S) - defined as number of species in a community) that best relates to spectral variability on the Landsat-8 Operational Land Imager dataset. We designed 90 m × 90 m field plots (n = 71) and identified all trees with a diameter at breast height (DbH) above 10 cm. H‧, D2 and S were used to quantify tree species diversity within each plot and the corresponding spectral information on all Landsat-8 bands were extracted from each field plot. A stepwise linear regression was applied to determine the relationship between species diversity indices (H‧, D2 and S) and Principal Components (PCs), vegetation indices and Gray Level Co-occurrence Matrix (GLCM) texture layers with calibration (n = 46) and test (n = 23) datasets. The results of regression analysis showed that the Simple Ratio Index derivative had a higher relationship with H‧, D2 and S (r2= 0.36; r2= 0.41; r2= 0.24 respectively) compared to NDVI, EVI, SAVI or their derivatives. Moreover the Landsat-8 derived PCs also had a higher relationship with H‧ and D2 (r2 of 0.36 and 0.35 respectively) than the

  6. Topological edge modes in multilayer graphene systems

    KAUST Repository

    Ge, Lixin

    2015-08-10

    Plasmons can be supported on graphene sheets as the Dirac electrons oscillate collectively. A tight-binding model for graphene plasmons is a good description as the field confinement in the normal direction is strong. With this model, the topological properties of plasmonic bands in multilayer graphene systems are investigated. The Zak phases of periodic graphene sheet arrays are obtained for different configurations. Analogous to Su-Schrieffer-Heeger (SSH) model in electronic systems, topological edge plasmon modes emerge when two periodic graphene sheet arrays with different Zak phases are connected. Interestingly, the dispersion of these topological edge modes is the same as that in the monolayer graphene and is invariant as the geometric parameters of the structure such as the separation and period change. These plasmonic edge states in multilayer graphene systems can be further tuned by electrical gating or chemical doping. © 2015 Optical Society of America.

  7. Performance of active edge pixel sensors

    Science.gov (United States)

    Bomben, M.; Ducourthial, A.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; D'Eramo, L.; Giacomini, G.; Marchiori, G.; Zorzi, N.; Rummler, A.; Weingarten, J.

    2017-05-01

    To cope with the High Luminosity LHC harsh conditions, the ATLAS inner tracker has to be upgraded to meet requirements in terms of radiation hardness, pile up and geometrical acceptance. The active edge technology allows to reduce the insensitive area at the border of the sensor thanks to an ion etched trench which avoids the crystal damage produced by the standard mechanical dicing process. Thin planar n-on-p pixel sensors with active edge have been designed and produced by LPNHE and FBK foundry. Two detector module prototypes, consisting of pixel sensors connected to FE-I4B readout chips, have been tested with beams at CERN and DESY. In this paper the performance of these modules are reported. In particular the lateral extension of the detection volume, beyond the pixel region, is investigated and the results show high hit efficiency also at the detector edge, even in presence of guard rings.

  8. Floquet edge states in germanene nanoribbons

    KAUST Repository

    Tahir, Muhammad

    2016-08-23

    We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude of the light and by applying a static electric field. For circularly polarized light the band gap in one valley is reduced and in the other enhanced, enabling single valley edge states. For linearly polarized light spin-split states are found for both valleys, being connected by time reversal symmetry. The effects of elliptically polarized light are similar to those of circularly polarized light. The transport properties of zigzag nanoribbons in the presence of disorder confirm a nontrivial nature of the edge states under circularly and elliptically polarized light.

  9. Controllable edge feature sharpening for dental applications.

    Science.gov (United States)

    Fan, Ran; Jin, Xiaogang

    2014-01-01

    This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry.

  10. Controllable Edge Feature Sharpening for Dental Applications

    Directory of Open Access Journals (Sweden)

    Ran Fan

    2014-01-01

    Full Text Available This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry.

  11. Edge database analysis for extrapolation to ITER

    International Nuclear Information System (INIS)

    Shimada, M.; Janeschitz, G.; Stambaugh, R.D.

    1999-01-01

    An edge database has been archived to facilitate cross-machine comparisons of SOL and edge pedestal characteristics, and to enable comparison with theoretical models with an aim to extrapolate to ITER. The SOL decay lengths of power, density and temperature become broader for increasing density and q 95 . The power decay length is predicted to be 1.4-3.5 cm (L-mode) and 1.4-2.7 cm (H-mode) at the midplane in ITER. Analysis of Type I ELMs suggests that each giant ELM on ITER would exceed the ablation threshold of the divertor plates. Theoretical models are proposed for the H-mode transition, for Type I and Type III ELMs and are compared with the edge pedestal database. (author)

  12. Long coherence times for edge spins

    Science.gov (United States)

    Kemp, Jack; Yao, Norman Y.; Laumann, Christopher R.; Fendley, Paul

    2017-06-01

    We show that in certain one-dimensional spin chains with open boundary conditions, the edge spins retain memory of their initial state for very long times, even at infinite temperature. The long coherence times do not require disorder, only an ordered phase. In the integrable Ising and XYZ chains, the presence of a strong zero mode means the coherence time is infinite. When Ising is perturbed by interactions breaking the integrability, the coherence time remains exponentially long in the perturbing couplings. We show that this is a consequence of an edge ‘almost’ strong zero mode that almost commutes with the Hamiltonian. We compute this operator explicitly, allowing us to estimate accurately the plateau value of edge spin autocorrelator.

  13. Preparation of edge states by shaking boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.C. [Department of Physics, Fuzhou University, Fuzhou 350002 (China); Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024 (China); Hou, S.C. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan (China); Wang, L.C. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Yi, X.X., E-mail: yixx@nenu.edu.cn [Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024 (China)

    2016-10-15

    Preparing topological states of quantum matter, such as edge states, is one of the most important directions in condensed matter physics. In this work, we present a proposal to prepare edge states in Aubry–André–Harper (AAH) model with open boundaries, which takes advantage of Lyapunov control to design operations. We show that edge states can be obtained with almost arbitrary initial states. A numerical optimalization for the control is performed and the dependence of control process on the system size is discussed. The merit of this proposal is that the shaking exerts only on the boundaries of the model. As a by-product, a topological entangled state is achieved by elaborately designing the shaking scheme.

  14. Evolution of Edge Pedestal Profiles Between ELMs

    Science.gov (United States)

    Floyd, J. P.; Stacey, W. M.; Groebner, R. J.

    2012-10-01

    The measured edge profile evolution in DIII-D discharges is analyzed in terms of the implied thermal diffusivities, ion diffusion coefficients and pinch velocities, using the momentum-balance methodology of Ref. [1], extended to take into account ion orbit loss and X-point loss. The evolution of the density, temperature, rotation and radial electric field profiles in the edge pedestal between edge localized modes (ELMs) provides information of these diffusive and non-diffusive transport processes in the pedestal of H-mode plasmas. This methodology is incorporated in the GTEDGE code developed for DIII-D data interpretation. Using a smaller integration time for the charge exchange recombination measurements than in Ref. [1] allows a more detailed examination of the time evolution of the ion temperature and rotation profiles. 6pt [1] W.M. Stacey and R.J. Groebner, Nucl. Fusion 51, 063024 (2011).

  15. Edge effects in composites by moire interferometry

    Science.gov (United States)

    Czarnek, R.; Post, D.; Herakovich, C.

    1983-01-01

    The very high sensitivity of moire interferometry has permitted the present edge effect experiments to be conducted at a low average stress and strain level, assuring linear and elastic behavior in the composite material samples tested. Sensitivity corresponding to 2450 line/mm moire was achieved with a 0.408 micron/fringe. Simultaneous observations of the specimen face and edge displacement fields showed good fringe definition despite the 1-mm thickness of the specimens and the high gradients, and it is noted that the use of a carrier pattern and optical filtering was effective in even these conditions. Edge effects and dramatic displacement gradients were confirmed in angle-ply composite laminates.

  16. Properties of the tokamak edge plasma

    International Nuclear Information System (INIS)

    Wolff, H.

    1988-01-01

    A short review of some features of the edge plasma in limiter tokamaks is given. The limits of the simple one-dimensional scrape-off layer (SOL) model and the relation between the core plasma are discussed. Multifaceted asymmetric radiation from the edge (MARFE) phenomena and detached plasma are closely connected with the particle and energy balance of the SOL. Their occurrence is based on the relation of plasma parameters of the edge plasma to those of the core. Important problems of plasma wall interactions are the detection of the impurity sources and sinks and the study of the impurity transport and shielding. The non-uniform character of plasma wall interactions and their dependence on the discharge performance still renders difficult any theoretical forecast of impurity distribution and transport and calls for better diagnostics. (author)

  17. Leading-edge vortex lifts swifts.

    Science.gov (United States)

    Videler, J J; Stamhuis, E J; Povel, G D E

    2004-12-10

    The current understanding of how birds fly must be revised, because birds use their hand-wings in an unconventional way to generate lift and drag. Physical models of a common swift wing in gliding posture with a 60 degrees sweep of the sharp hand-wing leading edge were tested in a water tunnel. Interactions with the flow were measured quantitatively with digital particle image velocimetry at Reynolds numbers realistic for the gliding flight of a swift between 3750 and 37,500. The results show that gliding swifts can generate stable leading-edge vortices at small (5 degrees to 10 degrees) angles of attack. We suggest that the flow around the arm-wings of most birds can remain conventionally attached, whereas the swept-back hand-wings generate lift with leading-edge vortices.

  18. Edge modulation of electronics and transport properties of cliff-edge phosphorene nanoribbons

    Science.gov (United States)

    Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang

    2017-12-01

    Based on the first-principles calculations, we study the electronic structures and transport properties of cliff-like edge phosphorene nanoribbons (CPNRs), considering different types of edge passivation. The band structures of bare CPNRs possess the metallic features; while hydrogen (H), fluorine (F), chlorine (Cl) and oxygen (O) atoms-passivated CPNRs are semiconductor materials, and the band gap values monotonically decrease when the ribbon width increases. Moreover, the H and F-passivated CPNRs exhibit the direct band gap characteristics, while the Cl and O-passivated cases show the features of indirect band gap. In addition, the edge passivated CPNRs are more energetically stable than bare edge case. Meanwhile, our results also show that the transport properties of the CPNRs can be obviously influenced by the different edge passivation.

  19. Spectral downshifting in MBO{sub 3}:Nd{sup 3+} (M=Y, La) phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Omanwar, S.K.; Sawala, N.S. [Sant Gadge Baba Amravati University, Department of Physics, Amravati, MH (India)

    2017-11-15

    The spectral downshifting (DS) from ultra-violet (UV)/visible (VIS) light to near infra-red (NIR) radiation in Nd{sup 3+} doped YBO{sub 3} and LaBO{sub 3} phosphors is reported. The prepared materials were characterized by X-ray powder diffraction (XRD) and photoluminescence (PL) properties along with time-decay curves were studied which confirmed the spectral DS from VIS to NIR radiation. This can be employed to overcome the spectral mismatch of crystalline silicon (c-Si) solar cell with solar spectrum. The prepared Nd{sup 3+} doped as prepared phosphors provide NIR emission (1052 nm) at excitation of 586 nm where response of c-Si solar cell was optimum. Thus spectral modification by mentioned phosphor can be utilized to improve solar cells performance. Hence these phosphors have potential application for photovoltaic (PV) technology. (orig.)

  20. Volume tables for red alder.

    Science.gov (United States)

    Floyd A. Johnson; R. M. Kallander; Paul G. Lauterbach

    1949-01-01

    The increasing importance of red alder as a commercial species in the Pacific Northwest has prompted the three agencies listed above to pool their tree measurement data for the construction of standard regional red alder volume tables. The tables included here were based on trees from a variety of sites and form classes. Approximately one quarter of the total number of...

  1. Skeleton decay in red cedar

    Science.gov (United States)

    Kevin T. Smith; Jessie A. Glaeser

    2013-01-01

    Eastern red cedar (Juniperus virginiana) is a common tree species throughout the eastern United States and the Great Plains. Although “cedar” is in the common name, the scientifc name shows a botanical kinship to the juniper species of the American southwest. Red cedar can survive and thrive within a broad range of soil conditions, seasonal...

  2. Fine-tuning of the spectral collection efficiency in multilayer junctions

    International Nuclear Information System (INIS)

    Fernandes, M.; Fantoni, A.; Louro, P.; Lavareda, G.; Carvalho, N.; Schwarz, R.; Vieira, M.

    2006-01-01

    a-SiC:H/a-Si:H p-i-n/p-i-n tandem cells with different i-layer thickness have been produced by PECVD and tested for a proper fine-tuning of the spectral collection efficiency. The tandem structure takes advantage on the radiation wavelength selectivity due to the different light penetration depth inside the a-Si:H and a-SiC:H absorbers. The thickness and the absorption coefficient of the front p-i-n cell were optimized for blue collection and red transmittance and the thickness of the back one adjusted to achieve full absorption in the green and high collection in the red spectral ranges. Preliminary results show that device optimization for red detection can be obtained by reducing the thickness of the internal recombination junction while by increasing the intrinsic layer of the bottom a-Si:H cell, a better detection of the green color under appropriated applied voltages is foreseen. The physics behind the device functioning is explained through a numerical simulation of the internal electrical configuration of the device in dark and under different wavelength irradiations. Considerations about conduction band offsets, electrical field profiles and inversion layers will be taken into account to explain the optical and voltage bias dependence of the spectral response. Experimental results about the spectral collection efficiency are presented and discussed from the point of view of the color sensor applications

  3. A spectral measurement method for determining white OLED average junction temperatures

    Science.gov (United States)

    Zhu, Yiting; Narendran, Nadarajah

    2016-09-01

    The objective of this study was to investigate an indirect method of measuring the average junction temperature of a white organic light-emitting diode (OLED) based on temperature sensitivity differences in the radiant power emitted by individual emitter materials (i.e., "blue," "green," and "red"). The measured spectral power distributions (SPDs) of the white OLED as a function of temperature showed amplitude decrease as a function of temperature in the different spectral bands, red, green, and blue. Analyzed data showed a good linear correlation between the integrated radiance for each spectral band and the OLED panel temperature, measured at a reference point on the back surface of the panel. The integrated radiance ratio of the spectral band green compared to red, (G/R), correlates linearly with panel temperature. Assuming that the panel reference point temperature is proportional to the average junction temperature of the OLED panel, the G/R ratio can be used for estimating the average junction temperature of an OLED panel.

  4. Physics-based edge evaluation for improved color constancy

    NARCIS (Netherlands)

    Gijsenij, A.; Gevers, T.; van de Weijer, J.

    2009-01-01

    Edge-based color constancy makes use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images such as shadow, geometry, material and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant

  5. Fermi-edge superfluorescence from a quantum-degenerate electron-hole gas

    Science.gov (United States)

    Kim, Ji-Hee; , G. Timothy Noe, II; McGill, Stephen A.; Wang, Yongrui; Wójcik, Aleksander K.; Belyanin, Alexey A.; Kono, Junichiro

    2013-11-01

    Nonequilibrium can be a source of order. This rather counterintuitive statement has been proven to be true through a variety of fluctuation-driven, self-organization behaviors exhibited by out-of-equilibrium, many-body systems in nature (physical, chemical, and biological), resulting in the spontaneous appearance of macroscopic coherence. Here, we report on the observation of spontaneous bursts of coherent radiation from a quantum-degenerate gas of nonequilibrium electron-hole pairs in semiconductor quantum wells. Unlike typical spontaneous emission from semiconductors, which occurs at the band edge, the observed emission occurs at the quasi-Fermi edge of the carrier distribution. As the carriers are consumed by recombination, the quasi-Fermi energy goes down toward the band edge, and we observe a continuously red-shifting streak. We interpret this emission as cooperative spontaneous recombination of electron-hole pairs, or superfluorescence (SF), which is enhanced by Coulomb interactions near the Fermi edge. This novel many-body enhancement allows the magnitude of the spontaneously developed macroscopic polarization to exceed the maximum value for ordinary SF, making electron-hole SF even more ``super'' than atomic SF.

  6. Spectral response data for development of cool coloured tile coverings

    Science.gov (United States)

    Libbra, Antonio; Tarozzi, Luca; Muscio, Alberto; Corticelli, Mauro A.

    2011-03-01

    Most ancient or traditional buildings in Italy show steep-slope roofs covered by red clay tiles. As the rooms immediately below the roof are often inhabited in historical or densely urbanized centres, the combination of low solar reflectance of tile coverings and low thermal inertia of either wooden roof structures or sub-tile insulation panels makes summer overheating a major problem. The problem can be mitigated by using tiles coated with cool colours, that is colours with the same spectral response of clay tiles in the visible, but highly reflecting in the near infrared range, which includes more than half of solar radiation. Cool colours can yield the same visible aspect of common building surfaces, but higher solar reflectance. Studies aimed at developing cool colour tile coverings for traditional Italian buildings have been started. A few coating solutions with the typical red terracotta colour have been produced and tested in the laboratory, using easily available materials. The spectral response and the solar reflectance have been measured and compared with that of standard tiles.

  7. Plasma edge modelling with ICRF coupling

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available The physics of Radio-Frequency (RF wave heating in the Ion Cyclotron Range of Frequencies (ICRF in the core plasmas of fusion devices are relatively well understood while those in the Scrape-Off Layer (SOL remain still unresolved. This paper is dedicated to study the ICRF interactions with the plasma edge, mainly from the theoretical and numerical point of view, in particular with the 3D edge plasma fluid and neutral transport code EMC3-EIRENE and various wave codes. Here emphasis is given to the improvement of ICRF coupling with local gas puffing and to the ICRF induced density convection in the SOL.

  8. CO2 fluxes near a forest edge

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Leclerc, Monique Y.; Zhang, Gensheng

    2008-01-01

    In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts...... as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes...

  9. Edge detection techniques for iris recognition system

    International Nuclear Information System (INIS)

    Tania, U T; Motakabber, S M A; Ibrahimy, M I

    2013-01-01

    Nowadays security and authentication are the major parts of our daily life. Iris is one of the most reliable organ or part of human body which can be used for identification and authentication purpose. To develop an iris authentication algorithm for personal identification, this paper examines two edge detection techniques for iris recognition system. Between the Sobel and the Canny edge detection techniques, the experimental result shows that the Canny's technique has better ability to detect points in a digital image where image gray level changes even at slow rate

  10. Radiative edge layers in limiter tokamaks

    International Nuclear Information System (INIS)

    Monier-Garbet, P.

    1997-01-01

    The characteristics of the highly radiative edge layers produced in the limiter configuration and with an open ergodic divertor are reviewed, with emphasis on the results obtained in TEXTOR and Tore Supra. In these two experiments an impurity injection technique is used to obtain highly radiating homogeneous peripheral layers. This requires that the peripheral radiation capability be maximized, while at the same time avoiding plasma core contamination; it is also necessary to insure the stability of the radiating layer. These physics issues, governing the success of the highly radiative edge scenario, are discussed. (orig.)

  11. Wing Leading Edge Concepts for Noise Reduction

    Science.gov (United States)

    Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.

    2010-01-01

    This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.

  12. X-point effect on edge stability

    International Nuclear Information System (INIS)

    Saarelma, S; Kirk, A; Kwon, O J

    2011-01-01

    We study the effects of the X-point configuration on edge localized mode (ELM) triggering peeling and ballooning modes using fixed boundary equilibria and modifying the plasma shape to approach the limit of a true X-point. The current driven pure peeling modes are asymptotically stabilized by the X-point while the stabilizing effect on ballooning modes depends on the poloidal location of the X-point. The coupled peeling-ballooning modes experience the elimination of the peeling component as the X-point is introduced. This can significantly affect the edge stability diagrams used to analyse the ELM triggering mechanisms.

  13. Simulating Ru L3-edge X-ray absorption spectroscopy with time-dependent density functional theory: model complexes and electron localization in mixed-valence metal dimers.

    Science.gov (United States)

    Van Kuiken, Benjamin E; Valiev, Marat; Daifuku, Stephanie L; Bannan, Caitlin; Strader, Matthew L; Cho, Hana; Huse, Nils; Schoenlein, Robert W; Govind, Niranjan; Khalil, Munira

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of Ru(II) and Ru(III) complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6](4-) and Ru(II) polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5M(II)-CN-Ru(III)(NH3)5](-) (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  14. Time-Resolved K-shell Photoabsorption Edge Measurement in a Strongly Coupled Matter Driven by Laser-converted Radiation

    Science.gov (United States)

    Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu

    2013-06-01

    A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.

  15. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    John Kilgo

    2005-04-20

    The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging near gaps would find more prey per unit time than those foraging in the surrounding forest. In fact, arthropod abundance was greater >100 m from a gap edge than at 0-30 m or 30-100 m from an edge, due to their abundance on switchcane (Arundinaria gigantea); arthropods did not differ in abundance among distances from gaps on oaks (Quercus spp.) or red maple (Acer rubrum). Similarly, Hooded Warbler foraging attack rates were not higher near gap edges: when foraging for fledglings, attack rate did not differ among distances from gaps, but when foraging for themselves, attack rates actually were lower 0-30 m from gap edges than 30-100 m or >100 m from a gap edge. Foraging attack rate was positively associated with arthropod abundance. Hooded Warblers apparently encountered fewer prey and presumably foraged less efficiently where arthropods were least abundant, i.e., near gaps. That attack rates among birds foraging for fledglings were not affected by distance from gap (and hence arthropod abundance) suggests that prey availability may not be limiting at any location across the forest, despite the depressing effects of gaps on arthropod abundance.

  16. Edge Cut Domination, Irredundance, and Independence in Graphs

    OpenAIRE

    Fenstermacher, Todd; Hedetniemi, Stephen; Laskar, Renu

    2016-01-01

    An edge dominating set $F$ of a graph $G=(V,E)$ is an \\textit{edge cut dominating set} if the subgraph $\\langle V,G-F \\rangle$ is disconnected. The \\textit{edge cut domination number} $\\gamma_{ct}(G)$ of $G$ is the minimum cardinality of an edge cut dominating set of $G.$ In this paper we study the edge cut domination number and investigate its relationships with other parameters of graphs. We also introduce the properties edge cut irredundance and edge cut independence.

  17. Examination of Spectral Transformations on Spectral Mixture Analysis

    Science.gov (United States)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  18. Berlin Reflectance Spectral Library (BRSL)

    Science.gov (United States)

    Henckel, D.; Arnold, G.; Kappel, D.; Moroz, L. V.; Markus, K.

    2017-09-01

    The Berlin Reflectance Spectral Library (BRSL) provides a collection of reflectance spectra between 0.3 and 17 µm. It was originally dedicated to support space missions to small solar system bodies. Meanwhile the library includes selections of biconical reflectance spectra for spectral data analysis of other planetary bodies as well. The library provides reference spectra of well-characterized terrestrial analogue materials and meteorites for interpretation of remote sensing reflectance spectra of planetary surfaces. We introduce the BRSL, summarize the data available, and access to use them for further relevant applications.

  19. Spectral ellipsometry of nanodiamond composite

    International Nuclear Information System (INIS)

    Yastrebov, S.G.; Ivanov-Omskij, V.I.; Gordeev, S.K.; Garriga, M.; Alonso, I.A.

    2006-01-01

    Methods of spectral ellipsometry were applied for analysis of optical properties of nanodiamond based composite in spectral region 1.4-5 eV. The nanocomposite was synthesized by molding of ultradispersed nanodiamond powder in the course of heterogeneous chemical reaction of decomposition of methane, forming pyrocarbon interconnecting nanodiamond grains. The energy of σ + π plasmon of pyrocarbon component of nanodiamond composite was restored which proves to be ∼ 24 eV; using this value, an estimation was done of pyrocarbon matrix density, which occurs to be 2 g/cm 3 [ru

  20. Edge-augmented Fourier partial sums with applications to Magnetic Resonance Imaging (MRI)

    Science.gov (United States)

    Larriva-Latt, Jade; Morrison, Angela; Radgowski, Alison; Tobin, Joseph; Iwen, Mark; Viswanathan, Aditya

    2017-08-01

    Certain applications such as Magnetic Resonance Imaging (MRI) require the reconstruction of functions from Fourier spectral data. When the underlying functions are piecewise-smooth, standard Fourier approximation methods suffer from the Gibbs phenomenon - with associated oscillatory artifacts in the vicinity of edges and an overall reduced order of convergence in the approximation. This paper proposes an edge-augmented Fourier reconstruction procedure which uses only the first few Fourier coefficients of an underlying piecewise-smooth function to accurately estimate jump information and then incorporate it into a Fourier partial sum approximation. We provide both theoretical and empirical results showing the improved accuracy of the proposed method, as well as comparisons demonstrating superior performance over existing state-of-the-art sparse optimization-based methods.

  1. Ionized gas at the edge of the central molecular zone

    Science.gov (United States)

    Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.; Velusamy, T.; Requena-Torres, M. A.; Wiesemeyer, H.

    2015-04-01

    Context. The edge of the central molecular zone (CMZ) is the location where massive dense molecular clouds with large internal velocity dispersions transition to the surrounding more quiescent and lower CO emissivity region of the Galaxy. Little is known about the ionized gas surrounding the molecular clouds and in the transition region. Aims: We determine the properties of the ionized gas at the edge of the CMZ near Sgr E using observations of N+ and C+. Methods: We observed a small portion of the edge of the CMZ near Sgr E with spectrally resolved [C ii] 158 μm and [N ii] 205 μm fine structure lines at six positions with the GREAT instrument on SOFIA and in [C ii] using Herschel HIFI on-the-fly strip maps. We use the [N ii] spectra along with a radiative transfer model to calculate the electron density of the gas and the [C ii] maps to illuminate the morphology of the ionized gas and model the column density of CO-dark H2. Results: We detect two [C ii] and [N ii] velocity components, one along the line of sight to a CO molecular cloud at - 207 km s-1 associated with Sgr E and the other at -174 km s-1 outside the edge of another CO cloud. From the [N ii] emission we find that the average electron density is in the range of ~5 to 21 cm-3 for these features. This electron density is much higher than that of the disk's warm ionized medium, but is consistent with densities determined for bright diffuse H ii nebula. The column density of the CO-dark H2 layer in the -207 km s-1 cloud is ~1-2 × 1021 cm-2 in agreement with theoretical models. The CMZ extends further out in Galactic radius by ~7 to 14 pc in ionized gas than it does in molecular gas traced by CO. Conclusions: The edge of the CMZ likely contains dense hot ionized gas surrounding the neutral molecular material. The high fractional abundance of N+ and high electron density require an intense EUV field with a photon flux of order 106 to 107 photons cm-2 s-1, and/or efficient proton charge exchange with

  2. A Spatial-Spectral Approach for Visualization of Vegetation Stress Resulting from Pipeline Leakage

    Directory of Open Access Journals (Sweden)

    Gert Jan Groothuis

    2008-06-01

    Full Text Available Hydrocarbon leakage into the environment has large economic and environmental impact. Traditional methods for investigating seepages and their resulting pollution, such as drilling, are destructive, time consuming and expensive. Remote sensing is an efficient tool that offers a non-destructive investigation method. Optical remote sensing has been extensively tested for exploration of onshore hydrocarbon reservoirs and detection of hydrocarbons at the Earth’s surface. In this research, we investigate indirect manifestations of pipeline leakage by way of visualizing vegetation anomalies in airborne hyperspectral imagery. Agricultural land-use causes a heterogeneous landcover; variation in red edge position between fields was much larger than infield red edge position variation that could be related to hydrocarbon pollution. A moving and growing kernel procedure was developed to normalzie red edge values relative to values of neighbouring pixels to enhance pollution related anomalies in the image. Comparison of the spatial distribution of anomalies with geochemical data obtained by drilling showed that 8 out of 10 polluted sites were predicted correctly while 2 out of 30 sites that were predicted clean were actually polluted.

  3. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.

    Science.gov (United States)

    Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing

    2018-05-01

    The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Tangential 2-D Edge Imaging for GPI and Edge/Impurity Modeling

    International Nuclear Information System (INIS)

    Maqueda, Ricardo; Levinton, Fred M.

    2011-01-01

    Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15: Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.

  5. Edge control in CNC polishing, paper 2: simulation and validation of tool influence functions on edges.

    Science.gov (United States)

    Li, Hongyu; Walker, David; Yu, Guoyu; Sayle, Andrew; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony

    2013-01-14

    Edge mis-figure is regarded as one of the most difficult technical issues for manufacturing the segments of extremely large telescopes, which can dominate key aspects of performance. A novel edge-control technique has been developed, based on 'Precessions' polishing technique and for which accurate and stable edge tool influence functions (TIFs) are crucial. In the first paper in this series [D. Walker Opt. Express 20, 19787-19798 (2012)], multiple parameters were experimentally optimized using an extended set of experiments. The first purpose of this new work is to 'short circuit' this procedure through modeling. This also gives the prospect of optimizing local (as distinct from global) polishing for edge mis-figure, now under separate development. This paper presents a model that can predict edge TIFs based on surface-speed profiles and pressure distributions over the polishing spot at the edge of the part, the latter calculated by finite element analysis and verified by direct force measurement. This paper also presents a hybrid-measurement method for edge TIFs to verify the simulation results. Experimental and simulation results show good agreement.

  6. Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method.

    Science.gov (United States)

    Guo, Meiyuan; Sørensen, Lasse Kragh; Delcey, Mickaël G; Pinjari, Rahul V; Lundberg, Marcus

    2016-01-28

    The intensities and relative energies of metal K pre-edge features are sensitive to both geometric and electronic structures. With the possibility to collect high-resolution spectral data it is important to find theoretical methods that include all important spectral effects: ligand-field splitting, multiplet structures, 3d-4p orbital hybridization, and charge-transfer excitations. Here the restricted active space (RAS) method is used for the first time to calculate metal K pre-edge spectra of open-shell systems, and its performance is tested against on six iron complexes: [FeCl6](n-), [FeCl4](n-), and [Fe(CN)6](n-) in ferrous and ferric oxidation states. The method gives good descriptions of the spectral shapes for all six systems. The mean absolute deviation for the relative energies of different peaks is only 0.1 eV. For the two systems that lack centrosymmetry [FeCl4](2-/1-), the ratios between dipole and quadrupole intensity contributions are reproduced with an error of 10%, which leads to good descriptions of the integrated pre-edge intensities. To gain further chemical insight, the origins of the pre-edge features have been analyzed with a chemically intuitive molecular orbital picture that serves as a bridge between the spectra and the electronic structures. The pre-edges contain information about both ligand-field strengths and orbital covalencies, which can be understood by analyzing the RAS wavefunction. The RAS method can thus be used to predict and rationalize the effects of changes in both the oxidation state and ligand environment in a number of hard X-ray studies of small and medium-sized molecular systems.

  7. Edge currents in frustrated Josephson junction ladders

    Science.gov (United States)

    Marques, A. M.; Santos, F. D. R.; Dias, R. G.

    2016-09-01

    We present a numerical study of quasi-1D frustrated Josephson junction ladders with diagonal couplings and open boundary conditions, in the large capacitance limit. We derive a correspondence between the energy of this Josephson junction ladder and the expectation value of the Hamiltonian of an analogous tight-binding model, and show how the overall superconducting state of the chain is equivalent to the minimum energy state of the tight-binding model in the subspace of one-particle states with uniform density. To satisfy the constraint of uniform density, the superconducting state of the ladder is written as a linear combination of the allowed k-states of the tight-binding model with open boundaries. Above a critical value of the parameter t (ratio between the intra-rung and inter-rung Josephson couplings) the ladder spontaneously develops currents at the edges, which spread to the bulk as t is increased until complete coverage is reached. Above a certain value of t, which varies with ladder size (t = 1 for an infinite-sized ladder), the edge currents are destroyed. The value t = 1 corresponds, in the tight-binding model, to the opening of a gap between two bands. We argue that the disappearance of the edge currents with this gap opening is not coincidental, and that this points to a topological origin for these edge current states.

  8. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  9. Edge maps: Representing flow with bounded error

    KAUST Repository

    Bhatia, Harsh

    2011-03-01

    Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Many analysis techniques rely on computing streamlines, a task often hampered by numerical instabilities. Approaches that ignore the resulting errors can lead to inconsistencies that may produce unreliable visualizations and ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with linear maps defined on its boundary. This representation, called edge maps, is equivalent to computing all possible streamlines at a user defined error threshold. In spite of this error, all the streamlines computed using edge maps will be pairwise disjoint. Furthermore, our representation stores the error explicitly, and thus can be used to produce more informative visualizations. Given a piecewise-linear interpolated vector field, a recent result [15] shows that there are only 23 possible map classes for a triangle, permitting a concise description of flow behaviors. This work describes the details of computing edge maps, provides techniques to quantify and refine edge map error, and gives qualitative and visual comparisons to more traditional techniques. © 2011 IEEE.

  10. Nonlinear neoclassical transport in toroidal edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.

    2002-01-01

    Edge plasma processes play a critical role for the global confinement of the plasma in a tokamak. In the edge region, where impurity ions are abundant and the temperature and density gradients are large, the assumptions of standard neoclassical theory break down. This paper reviews recent extensions of neoclassical theory to treat this problem, in particular our own work, which focuses on the nonlinear aspects of transport in a plasma with heavy impurity ions. In this theory, the pressure and temperature gradients are allowed to be steeper than in conventional theory neoclassical theory, so that the friction force between the bulk ions and heavy impurities is comparable to the parallel impurity pressure gradient. The impurity ions are then found to undergo a spontaneous rearrangement on each flux surface. This reduces their parallel friction with the bulk ions and causes the neoclassical ion flux to become a non-monotonic function of the gradients for plasma parameters typical of the tokamak edge. Thus, the neoclassical confinement is improved in regions where the gradients are large, such as in the edge pedestal. (orig.)

  11. Nonlinear neoclassical theory for toroidal edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.; Helander, P.

    2001-01-01

    Edge plasma processes play a critical role for the global confinement of the plasma. In the edge region, where impurity ions are abundant and the temperature and density gradients are large, the assumptions of the standard neoclassical theory break down. We have extended the theory of neoclassical transport in an impure plasma with arbitrary cross section and aspect ratio to allow for steeper pressure and temperature gradients than are usually considered in the conventional theory. The gradients are allowed to be so large that the friction force between the bulk ions and heavy impurities is comparable to the parallel impurity pressure gradient. In this case the impurity ions are found to undergo a spontaneous rearrangement on each flux surface. This reduces their parallel friction with the bulk ions and causes the neoclassical ion flux to become a non-monotonic function of the gradients for plasma parameters typical of the tokamak edge. Thus, the neoclassical confinement is improved in regions where the gradients are large, such as in the edge pedestal. The theoretical predictions are compared with experimental data from several tokamaks. (orig.)

  12. The SKED: speckle knife edge detector

    International Nuclear Information System (INIS)

    Sharpies, S D; Light, R A; Achamfuo-Yeboah, S O; Clark, M; Somekh, M G

    2014-01-01

    The knife edge detector—also known as optical beam deflection—is a simple and robust method of detecting ultrasonic waves using a laser. It is particularly suitable for detection of high frequency surface acoustic waves as the response is proportional to variation of the local tilt of the surface. In the case of a specular reflection of the incident laser beam from a smooth surface, any lateral movement of the reflected beam caused by the ultrasonic waves is easily detected by a pair of photodiodes. The major disadvantage of the knife edge detector is that it does not cope well with optically rough surfaces, those that give a speckled reflection. The optical speckles from a rough surface adversely affect the efficiency of the knife edge detector, because 'dark' speckles move synchronously with 'bright' speckles, and their contributions to the ultrasonic signal cancel each other out. We have developed a new self-adapting sensor which can cope with the optical speckles reflected from a rough surface. It is inelegantly called the SKED—speckle knife edge detector—and like its smooth surface namesake it is simple, cheap, compact, and robust. We describe the theory of its operation, and present preliminary experimental results validating the overall concept and the operation of the prototype device

  13. The SKED: speckle knife edge detector

    Science.gov (United States)

    Sharpies, S. D.; Light, R. A.; Achamfuo-Yeboah, S. O.; Clark, M.; Somekh, M. G.

    2014-06-01

    The knife edge detector—also known as optical beam deflection—is a simple and robust method of detecting ultrasonic waves using a laser. It is particularly suitable for detection of high frequency surface acoustic waves as the response is proportional to variation of the local tilt of the surface. In the case of a specular reflection of the incident laser beam from a smooth surface, any lateral movement of the reflected beam caused by the ultrasonic waves is easily detected by a pair of photodiodes. The major disadvantage of the knife edge detector is that it does not cope well with optically rough surfaces, those that give a speckled reflection. The optical speckles from a rough surface adversely affect the efficiency of the knife edge detector, because 'dark' speckles move synchronously with 'bright' speckles, and their contributions to the ultrasonic signal cancel each other out. We have developed a new self-adapting sensor which can cope with the optical speckles reflected from a rough surface. It is inelegantly called the SKED—speckle knife edge detector—and like its smooth surface namesake it is simple, cheap, compact, and robust. We describe the theory of its operation, and present preliminary experimental results validating the overall concept and the operation of the prototype device.

  14. Edge Sheared Flows and Blob Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Myra, J.; D' Ippolito, D.; Russell, D., E-mail: jrmyra@lodestar.com [Lodestar Research Corporation, Boulder (United States); Davis, W. M.; Zweben, S. [Princeton Plasma Physics Laboratory, Princeton (United States); Terry, J.; LaBombard, B. [Massachusetts Institute of Technology, Cambridge (United States)

    2012-09-15

    Full text: A study of sheared flows in the edge and scrape-off layer (SOL) and their interaction with blob-filaments is presented. Edge sheared flows are believed to be important for the L-H, and H-L transitions. Blob generation and dynamics impacts both the (near-separatrix) scrape-off-layer (SOL) width critical for power handling in the divertor, and the interaction of plasma in the far SOL with plasma-facing components. These topics are critical for ITER and future devices. A fluid-based 2D curvature-interchange model embedded in the SOLT code is employed to study these issues. Sheared binormal flows both regulate the power flux crossing the separatrix and control the character of emitted turbulence structures such as blob-filaments. At a critical power level (depending on parameters) the laminar flows containing intermittent, but bound, structures give way to full-blown blob emissions signifying a transition from quasi-diffusive to convective transport. In order to diagnose sheared flows in experiments and assess their interaction with blobs, a blob-tracking algorithm has been developed and applied to both NSTX and Alcator C-Mod data. Blob motion and ellipticity can be affected by sheared flows, and are diagnosed and compared with seeded blob simulations. A picture of the interaction of blobs and sheared flows is emerging from advances in the theory and simulation of edge turbulence, combined with ever-improving capabilities for edge diagnostics and their analysis. (author)

  15. Edge Delamination of Monolayer Transition Metal Dichalcogenides.

    Science.gov (United States)

    Ly, Thuc Hue; Yun, Seok Joon; Thi, Quoc Huy; Zhao, Jiong

    2017-07-25

    Delamination of thin films from the supportive substrates is a critical issue within the thin film industry. The emergent two-dimensional, atomic layered materials, including transition metal dichalcogenides, are highly flexible; thus buckles and wrinkles can be easily generated and play vital roles in the corresponding physical properties. Here we introduce one kind of patterned buckling behavior caused by the delamination from a substrate initiated at the edges of the chemical vapor deposition synthesized monolayer transition metal dichalcogenides, led by thermal expansion mismatch. The atomic force microscopy and optical characterizations clearly showed the puckered structures associated with the strain, whereas the transmission electron microscopy revealed the special sawtooth-shaped edges, which break the geometrical symmetry for the buckling behavior of hexagonal samples. The condition of the edge delamination is in accordance with the fracture behavior of thin film interfaces. This edge delamination and buckling process is universal for most ultrathin two-dimensional materials, which requires more attention in various future applications.

  16. Evaluation of alternative snow plow cutting edges.

    Science.gov (United States)

    2009-05-01

    With approximately 450 snow plow trucks, the Maine Department of Transportation (MaineDOT) uses in : excess of 10,000 linear feet of plow cutting edges each winter season. Using the 2008-2009 cost per linear : foot of $48.32, the Departments total co...

  17. Edge diagnostics for tandem mirror machines

    International Nuclear Information System (INIS)

    Allen, S.L.

    1984-01-01

    The edge plasma in a tandem mirror machine shields the plasma core from cold neutral gas and impurities. A variety of diagnostics are used to measure the fueling, shielding, and confinement of the edge plasma in both the end plug and central cell regions. Fast ion gauges and residual gas analyzers measure the gas pressure and composition outside of the plasma. An array of Langmuir probes is used to measure the electron density and temperature. Extreme ultraviolet (euv) and visible spectroscopy are used to measure both the impurity and deuterium densities and to estimate the shielding factor for the core plasma. The linear geometry of a tandem mirror also allows direct measurements of the edge plasma by sampling the ions and electrons lost but the ends of the machine. Representative data obtained by these diagnostics during operation of the Tandem Mirror Experiment (TMX) and Tandem Mirror Experiment-Upgrade (TMX-U) experiments are presented. Diagnostics that are currently being developed to diagnose the edge plasma are also discussed

  18. Commercial Technology at the Tactical Edge

    Science.gov (United States)

    2013-06-01

    Software defined Networking ( SDN ), Autonomic Networking , and Cognitive Radios for Spectrum Sharing. Software defined ...www.opennetworking.org/. 41 Pan, P., “ Software Defined Network ( SDN ) Problem Statement and Use Cases for Data Center Applications,” IETF, 2011, http://tools.ietf.org/id...routinely at the tactical edge in the near future. These include software defined networking , autonomous networks , cognitive

  19. Acoustic streaming of a sharp edge.

    Science.gov (United States)

    Ovchinnikov, Mikhail; Zhou, Jianbo; Yalamanchili, Satish

    2014-07-01

    Anomalous acoustic streaming is observed emanating from sharp edges of solid bodies that are vibrating in fluids. The streaming velocities can be orders of magnitude higher than expected from the Rayleigh streaming at similar amplitudes of vibration. Acoustic velocity of fluid relative to a solid body diverges at a sharp edge, giving rise to a localized time-independent body force acting on the fluid. This force results in a formation of a localized jet. Two-dimensional numerical simulations are performed to predict acoustic streaming for low amplitude vibration using two methods: (1) Steady-state solution utilizing perturbation theory and (2) direct transient solution of the Navier-Stokes equations. Both analyses agree with each other and correctly predict the streaming of a sharp-edged vibrating blade measured experimentally. The origin of the streaming can be attributed to the centrifugal force of the acoustic fluid flow around a sharp edge. The dependence of this acoustic streaming on frequency and velocity is examined using dimensional analysis. The dependence law is devised and confirmed by numerical simulations.

  20. Edge-disjoint Hamiltonian cycles in hypertournaments

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2006-01-01

    We introduce a method for reducing k-tournament problems, for k >= 3, to ordinary tournaments, that is, 2-tournaments. It is applied to show that a k-tournament on n >= k + 1 + 24d vertices (when k >= 4) or on n >= 30d + 2 vertices (when k = 3) has d edge-disjoint Hamiltonian cycles if and only...

  1. Leading-Edge Vortex lifts swifts

    NARCIS (Netherlands)

    Videler, JJ; Stamhuis, EJ; Povel, GDE

    2004-01-01

    The current understanding of how birds fly must be revised, because birds use their hand-wings in an unconventional way to generate lift and drag. Physical models of a common swift wing in gliding posture with a 60degrees sweep of the sharp hand-wing leading edge were tested in a water tunnel.

  2. Zone edge effects with variable rate irrigation

    Science.gov (United States)

    Variable rate irrigation (VRI) systems may offer solutions to enhance water use efficiency by addressing variability within a field. However, the design of VRI systems should be considered to maximize application uniformity within sprinkler zones, while minimizing edge effects between such zones alo...

  3. Robotic edge machining using elastic abrasive tool

    Science.gov (United States)

    Sidorova, A. V.; Semyonov, E. N.; Belomestnykh, A. S.

    2018-03-01

    The article describes a robotic center designed for automation of finishing operations, and analyzes technological aspects of an elastic abrasive tool applied for edge machining. Based on the experimental studies, practical recommendations on the application of the robotic center for finishing operations were developed.

  4. Simultaneous embedding: edge orderings, relative positions, cutvertices

    NARCIS (Netherlands)

    Bläsius, T.; Karrer, A.; Rutter, I.

    A simultaneous embedding (with fixed edges) of two graphs (Formula presented.) and (Formula presented.) with common graph (Formula presented.) is a pair of planar drawings of (Formula presented.) and (Formula presented.) that coincide on G. It is an open question whether there is a polynomial-time

  5. Increased heat fluxes near a forest edge

    NARCIS (Netherlands)

    Klaassen, W; van Breugel, PB; Moors, EJ; Nieveen, JP

    2002-01-01

    Observations of sensible and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest. The enhancement averages to 56 W m(-2), or 16% of the net radiation, at fetches less than 400 m, equivalent to fetch to height ratios less

  6. Increased heat fluxes near a forest edge

    NARCIS (Netherlands)

    Klaassen, W.; Breugel, van P.B.; Moors, E.J.; Nieveen, J.P.

    2002-01-01

    Observations of sensible and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest. The enhancement averages to 56 W mm2, or 16 f the net radiation, at fetches less than 400 m, equivalent to fetch to height ratios less than

  7. Plasma edge cooling during RF heating

    International Nuclear Information System (INIS)

    Suckewer, S.; Hawryluk, R.J.

    1978-01-01

    A new approach to prevent the influx of high-Z impurities into the core of a tokamak discharge by using RF power to modify the edge plasma temperature profile is presented. This concept is based on spectroscopic measurements on PLT during ohmic heating and ATC during RF heating. A one dimensional impurity transport model is used to interpret the ATC results

  8. Development of a theory of the spectral reflectance of minerals, part 3

    Science.gov (United States)

    Aronson, J. R.; Emslie, A. G.; Roach, L. H.; Smith, E. M.; Vonthuena, P. C.

    1972-01-01

    Significant refinements were made in the theory of the diffuse reflectance of particulate media. The theory predicts the opposite trends of reflectance with particle size in regions of the spectrum in which the particles are semi-transparent and those in which they are opaque. Enhanced absorption caused by wave-optical effects of small surface asperities and edges was used to improve the theory. The same mechanism remedies the theory to account for the data in spectral regions of anomalous dispersion.

  9. Observed spectral features of dust

    International Nuclear Information System (INIS)

    Willner, S.P.

    1984-01-01

    The author concentrates on the observed properties of dust spectral features. Identifications, based on laboratory data, are given whenever plausible ones exist. There are a very large number of papers in the literature of even such a young field as infrared spectroscopy, and therefore the author refers only to the most recent paper on a topic or to another review. (Auth.)

  10. Rayleigh imaging in spectral mammography

    Science.gov (United States)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  11. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    Some of the history of gradual infusion of the modulation spectrum concept into Automatic recognition of speech (ASR) comes next, pointing to the relationship of modulation spectrum processing to wellaccepted ASR techniques such as dynamic speech features or RelAtive SpecTrAl (RASTA) filtering. Next, the frequency ...

  12. Spectral Diagonal Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Kasanický, Ivan; Mandel, Jan; Vejmelka, Martin

    2015-01-01

    Roč. 22, č. 4 (2015), s. 485-497 ISSN 1023-5809 R&D Projects: GA ČR GA13-34856S Grant - others:NSF(US) DMS-1216481 Institutional support: RVO:67985807 Keywords : data assimilation * ensemble Kalman filter * spectral representation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.321, year: 2015

  13. Biomarkers and Biological Spectral Imaging

    Science.gov (United States)

    2001-01-23

    G. Sowa, H. H. Mantsch, National Research Council Canada; S. L. Zhang, Unilever Research (USA) 85 Brain tissue charcterization using spectral imaging...image registration and of the expert staff of Hill Top Research in Winnipeg for hosting the hydration study. Financial assistance from Unilever Research

  14. The dispersion of the refractive index of semiconductors at the edge of their intrinsic absorption

    International Nuclear Information System (INIS)

    Kudykina, T.A.; Lisitsa, M.P.

    1986-01-01

    The authors discuss the frequency dependence of the refractive index of various semiconductors near the edge of their intrinsic absorption in both theory and experiment. Beginning with random phase approximation, equations are presented which include all possible excitations and result in values for the width of the forbidden energy gap, the oscillator strengths, and spectral functions for the absorption coefficients. Data are presented for the following materials: CdS, CdSe, CdTe, GaSb, InP, GaAs, ZnTe, PbTe, InAs, InSb, and ZnSe

  15. Extreme ultraviolet spectroscopy of G191-B2B - Direct observation of ionization edges

    Science.gov (United States)

    Wilkinson, Erik; Green, James C.; Cash, Webster

    1992-01-01

    We present the first spectrum of the hot, DA white dwarf G191-B2B (wd 0501 + 527) between 200 and 330 A. The spectrum, which has about 2 A resolution, was obtained with a sounding rocket-borne, grazing incidence spectrograph. The spectrum shows no evidence of He II, the expected primary opacity source in this wavelength region. Three ionization edges and one absorption feature were observed and are suggestive of O III existing in the photosphere of G191-B2B. Also noted is a broad spectral depression that may result from Fe VI in the photosphere.

  16. Rare Earth Doped Lanthanum Calcium Borate Polycrystalline Red Phosphors

    Directory of Open Access Journals (Sweden)

    H. H. Xiong

    2014-01-01

    Full Text Available Single-phased Sm3+ doped lanthanum calcium borate (SmxLa2−xCaB10O19, SLCB, x=0.06 polycrystalline red phosphor was prepared by solid-state reaction method. The phosphor has two main excitation peaks located at 398.5 nm and 469.0 nm, which are nicely in accordance with the emitting wavelengths of commercial near-UV and blue light emitting diode chips. Under the excitation of 398.0 nm, the dominant red emission of Sm3+ in SLCB phosphor is centered at 598.0 nm corresponding to the transition of 4G5/2 → 6H7/2. The Eu3+ fluorescence in the red spectral region is applied as a spectroscopic probe to reveal the local site symmetry in the host lattice and, hence, Judd-Ofelt parameters Ωt  (t=2, 4 of Eu3+ in the phosphor matrix are derived to be 3.62×10-20 and 1.97×10-20 cm2, indicating a high asymmetrical and strong covalent environment around rare earth luminescence centers. Herein, the red phosphors are promising good candidates employed in white light emitting diodes (LEDs illumination.

  17. The visibility of IQHE at sharp edges: experimental proposals based on interactions and edge electrostatics

    International Nuclear Information System (INIS)

    Erkarslan, U; Oylumluoglu, G; Grayson, M; Siddiki, A

    2012-01-01

    The influence of the incompressible strips on the integer quantized Hall effect (IQHE) is investigated, considering a cleaved-edge overgrown (CEO) sample as an experimentally realizable sharp edge system. We propose a set of experiments to clarify the distinction between the large-sample limit when bulk disorder defines the IQHE plateau width and the small-sample limit smaller than the disorder correlation length, when self-consistent edge electrostatics define the IQHE plateau width. The large-sample or bulk quantized Hall (QH) regime is described by the usual localization picture, whereas the small-sample or edge regime is discussed within the compressible/incompressible strips picture, known as the screening theory of QH edges. Utilizing the unusually sharp edge profiles of the CEO samples, a Hall bar design is proposed to manipulate the edge potential profile from smooth to extremely sharp. By making use of a side-gate perpendicular to the two-dimensional electron system, it is shown that the plateau widths can be changed or even eliminated altogether. Hence, the visibility of IQHE is strongly influenced when adjusting the edge potential profile and/or changing the dc current direction under high currents in the nonlinear transport regime. As a second investigation, we consider two different types of ohmic contacts, namely highly transmitting (ideal) and highly reflecting (non-ideal) contacts. We show that if the injection contacts are non-ideal, but still ohmic, it is possible to measure directly the non-quantized transport taking place at the bulk of the CEO samples. The results of the experiments we propose will clarify the influence of the edge potential profile and the quality of the contacts, under QH conditions. (paper)

  18. An Interferometric Spectral-Line and Imaging Survey of VY Canis Majoris in the 345 GHz Band

    OpenAIRE

    Kaminski, T.; Gottlieb, C. A.; Young, K. H.; Menten, K. M.; Patel, N. A.

    2013-01-01

    A spectral line survey of the oxygen-rich red supergiant VY Canis Majoris was made between 279 and 355 GHz with the Submillimeter Array. Two hundred twenty three spectral features from 19 molecules (not counting isotopic species of some of them) were observed, including the rotational spectra of TiO, TiO2, and AlCl for the first time in this source. The parameters and an atlas of all spectral features is presented. Observations of each line with a synthesized beam of ~0.9 arcsec, reveal the c...

  19. Assessing corn water stress using spectral reflectance

    Science.gov (United States)

    Mefford, Brenna S.

    Multiple remote sensing techniques have been developed to identify crop water stress, but some methods may be difficult for farmers to apply. Unlike most techniques, shortwave vegetation indices can be calculated using satellite, aerial, or ground imagery from the green (525-600 nm), red (625-700 nm), and near infrared (750-900 nm) spectral bands. If vegetation indices can be used to monitor crop water stress, growers could use this information as a quick low-cost guideline for irrigation management, thus helping save water by preventing over irrigating. This study occurred in the 2013 growing season near Greeley, CO, where pressurized drip irrigation was used to irrigate twelve corn ( Zea mays L.) treatments of varying water deficit. Multispectral data was collected and four different vegetation indices were evaluated: Normalized Difference Vegetation Index (NDVI), Optimized Soil-Adjusted Vegetation Index (OSAVI), Green Normalized Difference Vegetation Index (GNDVI), and the Wide Dynamic Range Vegetation Index (WDRVI). The four vegetation indices were compared to corn water stress as indicated by the stress coefficient (Ks) and water deficit in the root zone, calculated by using a water balance that monitors crop evapotranspiration (ET), irrigation events, precipitation events, and deep percolation. ET for the water balance was calculated using two different methods for comparison purposes: (1) calculation of the stress coefficient (Ks) using FAO-56 standard procedures; (2) use of canopy temperature ratio (Tc ratio) of a stressed crop to a non-stressed crop to calculate Ks. It was found that obtaining Ks from Tc ratio is a viable option, and requires less data to obtain than Ks from FAO-56. In order to compare the indices to Ks, vegetation ratios were developed in the process of normalization. Vegetation ratios are defined as the non-stressed vegetation index divided by the stressed vegetation index. Results showed that vegetation ratios were sensitive to water

  20. Two-way cooperative AF relaying in spectrum-sharing systems: Enhancing cell-edge performance

    KAUST Repository

    Xia, Minghua

    2012-09-01

    In this contribution, two-way cooperative amplify-and-forward (AF) relaying technique is integrated into spectrumsharing wireless systems to improve spectral efficiency of secondary users (SUs). In order to share the available spectrum resources originally dedicated to primary users (PUs), the transmit power of a SU is optimized with respect to the average tolerable interference power at primary receivers. By analyzing outage probability and achievable data rate at the base station and at a cell-edge SU, our results reveal that the uplink performance is dominated by the average tolerable interference power at primary receivers, while the downlink always behaves like conventional one-way AF relaying and its performance is dominated by the average signal-to-noise ratio (SNR). These important findings provide fresh perspectives for system designers to improve spectral efficiency of secondary users in next-generation broadband spectrum-sharing wireless systems. © 2012 IEEE.