WorldWideScience

Sample records for red sequence star

  1. The SAURON project : XV. Modes of star formation in early-type galaxies and the evolution of the red sequence

    NARCIS (Netherlands)

    Shapiro, Kristen L.; Falcon-Barroso, Jesus; van de Ven, Glenn; de Zeeuw, P. Tim; Sarzi, Marc; Bacon, Roland; Bolatto, Alberto; Cappellari, Michele; Croton, Darren; Davies, Roger L.; Emsellem, Eric; Fakhouri, Onsi; Krajnovic, Davor; Kuntschner, Harald; McDermid, Richard M.; Peletier, Reynier F.; van den Bosch, Remco C. E.; van der Wolk, Guido

    We combine SAURON integral field data of a representative sample of local early-type, red sequence galaxies with Spitzer/Infrared Array Camera imaging in order to investigate the presence of trace star formation in these systems. With the Spitzer data, we identify galaxies hosting low-level star

  2. The SAURON project - XV. Modes of star formation in early-type galaxies and the evolution of the red sequence

    NARCIS (Netherlands)

    Shapiro, Kristen L.; Falcón-Barroso, Jesús; van de Ven, Glenn; de Zeeuw, P. Tim; Sarzi, Marc; Bacon, Roland; Bolatto, Alberto; Cappellari, Michele; Croton, Darren; Davies, Roger L.; Emsellem, Eric; Fakhouri, Onsi; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Peletier, Reynier F.; van den Bosch, Remco C. E.; van der Wolk, Guido

    We combine SAURON integral field data of a representative sample of local early-type, red sequence galaxies with Spitzer/Infrared Array Camera imaging in order to investigate the presence of trace star formation in these systems. With the Spitzer data, we identify galaxies hosting low-level star

  3. Kepler Asteroseismology of Red-giant Stars

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J.

    2012-01-01

    The Kepler mission, launched in March 2009, has revolutionized asteroseismology, providing detailed observations of thousands of stars. This has allowed in-depth analyses of stars ranging from compact hot subdwarfs to red giants, and including the detection of solar-like oscillations in hundreds...... of stars on or near the main sequence. Here I mainly consider solar-like oscillations in red giants, where Kepler observations are yielding results of a perhaps unexpected richness. In addition to giving a brief overview of the observational and numerical results for these stars, I present a simple...

  4. mufasa: the assembly of the red sequence

    Science.gov (United States)

    Davé, Romeel; Rafieferantsoa, Mika H.; Thompson, Robert J.

    2017-10-01

    We examine the growth and evolution of quenched galaxies in the mufasa cosmological hydrodynamic simulations that include an evolving halo mass-based quenching prescription, with galaxy colours computed accounting for line-of-sight extinction to individual star particles. mufasa reproduces the observed present-day red sequence reasonably well, including its slope, amplitude and scatter. In mufasa, the red sequence slope is driven entirely by the steep stellar mass-stellar metallicity relation, which independently agrees with observations. High-mass star-forming galaxies blend smoothly on to the red sequence, indicating the lack of a well-defined green valley at M* ≳ 1010.5 M⊙. The most massive galaxies quench the earliest and then grow very little in mass via dry merging; they attain their high masses at earlier epochs when cold inflows more effectively penetrate hot haloes. To higher redshifts, the red sequence becomes increasingly contaminated with massive dusty star-forming (SF) galaxies; UVJ selection subtly but effectively separates these populations. We then examine the evolution of the mass functions of central and satellite galaxies split into passive and star-forming via UVJ. Massive quenched systems show good agreement with observations out to z ∼ 2, despite not including a rapid early quenching mode associated with mergers. However, low-mass quenched galaxies are far too numerous at z ≲ 1 in mufasa, indicating that mufasa strongly overquenches satellites. A challenge for hydrodynamic simulations is to devise a quenching model that produces enough early massive quenched galaxies and keeps them quenched to z = 0, while not being so strong as to overquench satellites; mufasa's current scheme fails at the latter.

  5. Surface Compositions of Red Giant Stars in Globular Clusters

    Science.gov (United States)

    Cheng, Eric; Lau, Marie; Smith, Graeme; Chen, Brian

    2018-01-01

    Globular clusters (GCs) are excellent “laboratories” to study the formation and evolution of our galaxy. In order to understand, more specifically, the chemical compositions and stellar evolution of the stars in GCs, we ask whether or not deep internal mixing occurs in red giants or if in fact the compositions come from the primordial interstellar medium or previous generations of stars. It has been discovered that as a star evolves up the red giant branch, the surface carbon abundance decreases, which is evidence of deep internal mixing. We questioned whether these processes also affect O or Na abundance as a star evolves. We collected measurement data of red giants from GCs out of academic journals and sorted the data into catalogs. Then, we plotted the catalogs into figures, comparing surface O and Na each with stellar luminosity. Statistical tests were ran to quantify the amount of correlation between the variables. Out of 27 GCs, we concluded that eight show a positive correlation between Na and luminosity, and two show a negative correlation between O and luminosity. Properties of GCs were compared to determine if chemical distribution in stars depends on GCs as the self-enrichment scenario suggests. We created histograms of sodium distribution to test for bimodality to examine if there are separate trends in each GC. In six GCs, two different sequences of red giants appear for Na versus luminosity, suggesting evidence that the depth of mixing may differ among each red giant in a GC. This study has provided new evidence that the changing chemical abundances on the surfaces of red giants can be due to stellar evolutionary effects and deep internal mixing, which may not necessarily depend on the GC and may differ in depth among each red giant. Through this study, we learn more about stellar evolution which will eventually help us understand the origins of our universe. Most of this work was carried out by high school students working under the auspices of

  6. High-resolution Spectroscopic Abundances of Red Giant Branch Stars in NGC 6681

    Science.gov (United States)

    O'Malley, Erin M.; Knaizev, Alexei; McWilliam, Andrew; Chaboyer, Brian

    2017-09-01

    We obtain high-resolution spectra of nine red giant branch stars in NGC 6681 and perform the first detailed abundance analysis of stars in this cluster. We confirm cluster membership for these stars based on consistent radial velocities of 214.5 ± 3.7 km s-1 and find a mean [Fe/H] = -1.63 ± 0.07 dex and [α/Fe] = 0.42 ± 0.11 dex. Additionally, we confirm the existence of a Na-O anti-correlation in NGC 6681 and identify two populations of stars with unique abundance trends. With the use of HST photometry from Sarajedini et al. and Piotto et al. we are able to identify these two populations as discrete sequences in the cluster CMD. Although we cannot confirm the nature of the polluter stars responsible for the abundance differences in these populations, these results do help put constraints on possible polluter candidates.

  7. Submillimeter studies of main-sequence stars

    Science.gov (United States)

    Zuckerman, B.; Becklin, E. E.

    1993-01-01

    JCMT maps of the 800-micron emission from Vega, Fomalhaut, and Beta Pictoris are interpreted to indicate that they are not ringed by large reservoirs of distant orbiting dust particles that are too cold to have been detected by IRAS. A search for 800-micron emission from stars in the Pleiades and Ursa Majoris open clusters is reported. In comparison with the mass of dust particles near T Tauri and Herbig Ae stars, the JCMT data indicate a decline in dust mass during the initial 3 x 10 exp 8 yr that a star spends on the main sequence that is at least as rapid as (time) exp -2. It is estimated that in the Kuiper belt the ratio of total mass carried by small particles to that carried by comets is orders of magnitude smaller than this ratio is 1 AU from the sun. If 800-micron opacities calculated by Pollack et al. (1993) are correct, then the particles with radii less than 100 microns that dominate the FIR fluxes measured by IRAS cannot entirely account for the measured 800-micron fluxes at Vega, Beta Pic, and Fomalhaut; larger particles must be present as well.

  8. Red Clump stars in Kepler open cluster NGC 6819

    Directory of Open Access Journals (Sweden)

    Abedigamba O.P.

    2015-01-01

    Full Text Available We measure the large frequency separation, Δν, and the frequency of maximum amplitude, νmax, for 10 Red Clump (RC single member (SM stars in the Kepler open cluster NGC 6819. We derive luminosities and masses for each individual RC star. A comparison of the observations with an isochrone of Age = 2.5 Gyr, Z = 0.017 with no mass loss using a statistical techniques is made. A fractional mass loss of 5 ± 3 percent is obtained if we assume that no correction to Δν between RC and red-giant branch (RGB is necessary. However, models suggest that an effective correction of about 1.9 percent in Δν is required to obtain the correct mass of RC stars owing to the different internal structures of stars in the two evolutionary stages. In this case we find that the mass loss in the red giant branch is not significantly different from zero. This finding confirms that of [6]. It is clear that the mass estimate obtained by asteroseismology is not sufficient to deduce the mass loss on the red giant branch. However, it is clearly only a few percent at most.

  9. Vigorous atmospheric motion in the red supergiant star Antares.

    Science.gov (United States)

    Ohnaka, K; Weigelt, G; Hofmann, K-H

    2017-08-16

    Red supergiant stars represent a late stage of the evolution of stars more massive than about nine solar masses, in which they develop complex, multi-component atmospheres. Bright spots have been detected in the atmosphere of red supergiants using interferometric imaging. Above the photosphere of a red supergiant, the molecular outer atmosphere extends up to about two stellar radii. Furthermore, the hot chromosphere (5,000 to 8,000 kelvin) and cool gas (less than 3,500 kelvin) of a red supergiant coexist at about three stellar radii. The dynamics of such complex atmospheres has been probed by ultraviolet and optical spectroscopy. The most direct approach, however, is to measure the velocity of gas at each position over the image of stars as in observations of the Sun. Here we report the mapping of the velocity field over the surface and atmosphere of the nearby red supergiant Antares. The two-dimensional velocity field map obtained from our near-infrared spectro-interferometric imaging reveals vigorous upwelling and downdrafting motions of several huge gas clumps at velocities ranging from about -20 to +20 kilometres per second in the atmosphere, which extends out to about 1.7 stellar radii. Convection alone cannot explain the observed turbulent motions and atmospheric extension, suggesting that an unidentified process is operating in the extended atmosphere.

  10. STAR-TO-STAR IRON ABUNDANCE VARIATIONS IN RED GIANT BRANCH STARS IN THE GALACTIC GLOBULAR CLUSTER NGC 3201

    Energy Technology Data Exchange (ETDEWEB)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Francois, Patrick [Paris-Meudon Observatory, France and Universite de Picardie Jules Verne, F-80080 Amiens (France); Charbonnel, Corinne [Geneva Observatory, University of Geneva, Chemin des Maillettes 51, CH-1290 Versoix (Switzerland); Monier, Richard [Laboratoire Hippolyte Fizeau, Universite Nice Sophia Antipolis, Parc Valrose, F-06000 Nice (France); James, Gaeel, E-mail: jennifer@physics.utah.edu, E-mail: iii@physics.utah.edu, E-mail: dan.filler@utah.edu, E-mail: patrick.francois@obspm.fr, E-mail: corinne.charbonnel@unige.ch, E-mail: richard.monier@unice.fr, E-mail: gjames@eso.org [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Munchen (Germany)

    2013-02-10

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  11. Enormous Li Enhancement Preceding Red Giant Phases in Low-mass Stars in the Milky Way Halo

    Science.gov (United States)

    Li, Haining; Aoki, Wako; Matsuno, Tadafumi; Bharat Kumar, Yerra; Shi, Jianrong; Suda, Takuma; Zhao, Gang

    2018-01-01

    Li abundances in the bulk of low-mass metal-poor stars are well reproduced by stellar evolution models adopting a constant initial abundance. However, a small number of stars have exceptionally high Li abundances, for which no convincing models have been established. We report on the discovery of 12 very metal-poor stars that have large excesses of Li, including an object having more than 100 times higher Li abundance than the values found in usual objects, which is the largest excess in metal-poor stars known to date. The sample is distributed over a wide range of evolutionary stages, including five unevolved stars, showing no clear abundance anomaly in other elements. The results indicate the existence of an efficient process to enrich Li in a small fraction of low-mass stars at the main-sequence or subgiant phase. The wide distribution of Li-rich stars along the red giant branch could be explained by the dilution of surface Li by mixing that occurs when the stars evolve into red giants. Our study narrows down the problem to be solved in order to understand the origins of Li excess found in low-mass stars, suggesting the presence of an unknown process that affects the surface abundances preceding red giant phases. This work is based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  12. New Light on Dark Stars Red Dwarfs, Low-Mass Stars, Brown Dwarfs

    CERN Document Server

    Reid, I. Neill

    2005-01-01

    There has been very considerable progress in research into low-mass stars, brown dwarfs and extrasolar planets during the past few years, particularly since the fist edtion of this book was published in 2000. In this new edtion the authors present a comprehensive review of both the astrophysical nature of individual red dwarf and brown dwarf stars and their collective statistical properties as an important Galactic stellar population. Chapters dealing with the observational properies of low-mass dwarfs, the stellar mass function and extrasolar planets have been completely revised. Other chapters have been significantly revised and updated as appropriate, including important new material on observational techniques, stellar acivity, the Galactic halo and field star surveys. The authors detail the many discoveries of new brown dwarfs and extrasolar planets made since publication of the first edition of the book and provide a state-of-the-art review of our current knowledge of very low-mass stars, brown dwarfs a...

  13. EVIDENCE FOR THE UNIVERSALITY OF PROPERTIES OF RED-SEQUENCE GALAXIES IN X-RAY- AND RED-SEQUENCE-SELECTED CLUSTERS AT z ∼ 1

    Energy Technology Data Exchange (ETDEWEB)

    Foltz, R.; Wilson, G.; DeGroot, A. [Department of Physics and Astronomy, University of California Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Rettura, A. [Infrared Processing and Analysis Center, California Institute of Technology, KS 314-6, Pasadena, CA 91125 (United States); Van der Burg, R. F. J. [Laboratoire AIM, IRFU/Service d’Astrophysique—CEA/DSM—CNRS—Université Paris Diderot, Bât. 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Muzzin, A. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Lidman, C. [Australian Astronomical Observatory, P.O. Box 915, North Ryde NSW 1670 (Australia); Demarco, R. [Department of Astronomy, Universidad de Concepcion, Barrio Universitario. Casilla 160-C, Concepcion (Chile); Nantais, Julie [Grupo Astronomi´a, Departamento de Ciencias Fi´sicas, Universidad Andrés Bello, República 220, Santiago (Chile); Yee, H., E-mail: ryan.foltz@email.ucr.edu, E-mail: gillian.wilson@ucr.edu, E-mail: adegr001@ucr.edu, E-mail: arettura@astro.caltech.edu, E-mail: remco.van-der-burg@cea.fr, E-mail: avmuzzin@ast.cam.ac.uk, E-mail: clidman@aao.gov.au, E-mail: rdemarco@astro-udec.cl, E-mail: julie.nantais@unab.cl, E-mail: hyee@astro.utoronto.ca [Dept of Astronomy and Astrophysics, University of Toronto, 50 Saint George Street, Toronto, ON M5S 3H4 (Canada)

    2015-10-20

    We study the slope, intercept, and scatter of the color–magnitude and color–mass relations for a sample of 10 infrared red-sequence-selected clusters at z ∼ 1. The quiescent galaxies in these clusters formed the bulk of their stars above z ≳ 3 with an age spread Δt ≳ 1 Gyr. We compare UVJ color–color and spectroscopic-based galaxy selection techniques, and find a 15% difference in the galaxy populations classified as quiescent by these methods. We compare the color–magnitude relations from our red-sequence selected sample with X-ray- and photometric-redshift-selected cluster samples of similar mass and redshift. Within uncertainties, we are unable to detect any difference in the ages and star formation histories of quiescent cluster members in clusters selected by different methods, suggesting that the dominant quenching mechanism is insensitive to cluster baryon partitioning at z ∼ 1.

  14. THE HABITABLE ZONES OF PRE-MAIN-SEQUENCE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ramses M.; Kaltenegger, Lisa [Institute for Pale Blue Dots, Cornell University, Ithaca, NY (United States)

    2014-12-20

    We calculate the pre-main-sequence habitable zone (HZ) for stars of spectral classes F-M. The spatial distribution of liquid water and its change during the pre-main-sequence phase of protoplanetary systems is important for understanding how planets become habitable. Such worlds are interesting targets for future missions because the coolest stars could provide habitable conditions for up to 2.5 billion years post-accretion. Moreover, for a given star type, planetary systems are more easily resolved because of higher pre-main-sequence stellar luminosities, resulting in larger planet-star separation for cool stars than is the case for the traditional main-sequence (MS) HZ. We use one-dimensional radiative-convective climate and stellar evolutionary models to calculate pre-main-sequence HZ distances for F1-M8 stellar types. We also show that accreting planets that are later located in the traditional MS HZ orbiting stars cooler than a K5 (including the full range of M stars) receive stellar fluxes that exceed the runaway greenhouse threshold, and thus may lose substantial amounts of water initially delivered to them. We predict that M-star planets need to initially accrete more water than Earth did, or, alternatively, have additional water delivered later during the long pre-MS phase to remain habitable. Our findings are also consistent with recent claims that Venus lost its water during accretion.

  15. Tracing Star Formation and Molecular Cloud Evolution with Pre-main Sequence Stars in the SMC

    Science.gov (United States)

    Johnson, L. Clifton; SMIDGE Team

    2018-01-01

    The Southwest Bar region in the Small Magellanic Cloud (SMC) contains star-forming molecular clouds sampling a wide range of evolutionary states: from quiescent pre-star-forming regions to evolved HII region hosts. We use deep, panchromatic, high spatial resolution Hubble Space Telescope imaging obtained as part of the SMIDGE survey (PI: K. Sandstrom) to identify young, pre-main sequence stars that trace recent and ongoing star formation within these clouds. We characterize a color-selected sample (and Hα line-emitting subsample) of pre-main sequence stars via SED fitting and analyze their association with the local ISM, inferred from observations of CO and dust emission. These low-mass stars serve as robust star formation tracers not tied to massive stars (e.g., Hα-based star formation rate estimates) in SMC star-forming regions, where low dust-to-gas ratios allow optical detections even in gas-rich embedded regions. We demonstrate pre-main sequence stars' ability to trace molecular cloud evolution within the Southwest Bar and across the SMC, and discuss future synergies between optical Hubble Space Telescope observations and near/mid-IR James Webb Space Telescope observations.

  16. On the Explosion Geometry of Red Supergiant Stars

    Science.gov (United States)

    Leonard, Douglas C.; Supernova Spectropolarimetry Project (SNSPOL)

    2017-06-01

    We know that it happens, but we don't know how Nature does it. Roughly once per second in the observable universe, a red supergiant's inner core implodes under its own weight and then explodes as a supernova, announcing its demise with an optical display that for months rivals the combined brilliance of all of the other stars in its parent galaxy. And yet we must acknowledge basic ignorance: The physical process that successfully turns implosion into explosion still eludes us. Conventional wisdom posited a spherically symmetric explosion mechanism -- one that expels the massive star's envelope equally in all directions -- but both theoretical and observational discoveries have upended this Platonic ideal. In this talk I will provide a ``status report'' on our understanding of core-collapse supernova explosion geometry, with a particular focus on the unique ability of polarization measurements to reveal the early-time shape of the expanding, but unresolvable, photospheres of extragalactic supernovae.

  17. Planetary Systems Associated with Main-Sequence Stars.

    Science.gov (United States)

    Brown, H

    1964-09-11

    The luminosity function is used to estimate the number of invisible planet-like objects in the neighborhood of the sun, taking into account the likely chemical composition of planets in relation to the composition of main-sequence stars. There may be about 60 objects more massive than Mars for every visible star. An attempt is made to estimate the distribution of these planet-like cold bodies in relation to stars. It is suggested that stars, together with cold objects, were formed in clusters of bodies of random size distribution. Clusters averaging about 50 bodies each account for the observed distribution of frequencies of double and triple star systems relative to single stars. On this basis, virtually every star should have a planetary system associated with it. As a corollary, systems of cold bodies in which there are no luminous stars should be abundant. The possible distribution of planets around such stars has been studied, making use of the observed orbital characteristics of double star systems. It is concluded that favorable conditions for life processes may be far more abundant than has generally been thought possible.

  18. Hey There Edgar Snow, What Happened to the Red Star over Yan'an?

    Science.gov (United States)

    Boshier, Roger; Huang, Yan

    2008-01-01

    Edgar Snow scored an extraordinary scoop in 1936 when he persuaded Mao Zedong to tell his story. The resulting book--"Red Star Over China"--was a best-seller in the West and translated editions caused a sensation in China. Adult education was the centrepiece of Communist revolution and featured prominently in Red Star. It is now the…

  19. The Rose-red Glow of Star Formation

    Science.gov (United States)

    2011-03-01

    The vivid red cloud in this new image from ESO's Very Large Telescope is a region of glowing hydrogen surrounding the star cluster NGC 371. This stellar nursery lies in our neighbouring galaxy, the Small Magellanic Cloud. The object dominating this image may resemble a pool of spilled blood, but rather than being associated with death, such regions of ionised hydrogen - known as HII regions - are sites of creation with high rates of recent star birth. NGC 371 is an example of this; it is an open cluster surrounded by a nebula. The stars in open clusters all originate from the same diffuse HII region, and over time the majority of the hydrogen is used up by star formation, leaving behind a shell of hydrogen such as the one in this image, along with a cluster of hot young stars. The host galaxy to NGC 371, the Small Magellanic Cloud, is a dwarf galaxy a mere 200 000 light-years away, which makes it one of the closest galaxies to the Milky Way. In addition, the Small Magellanic Cloud contains stars at all stages of their evolution; from the highly luminous young stars found in NGC 371 to supernova remnants of dead stars. These energetic youngsters emit copious amounts of ultraviolet radiation causing surrounding gas, such as leftover hydrogen from their parent nebula, to light up with a colourful glow that extends for hundreds of light-years in every direction. The phenomenon is depicted beautifully in this image, taken using the FORS1 instrument on ESO's Very Large Telescope (VLT). Open clusters are by no means rare; there are numerous fine examples in our own Milky Way. However, NGC 371 is of particular interest due to the unexpectedly large number of variable stars it contains. These are stars that change in brightness over time. A particularly interesting type of variable star, known as slowly pulsating B stars, can also be used to study the interior of stars through asteroseismology [1], and several of these have been confirmed in this cluster. Variable stars

  20. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    DEFF Research Database (Denmark)

    Bedding, Timothy R.; Mosser, Benoit; Huber, Daniel

    2011-01-01

    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertaint...

  1. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    NARCIS (Netherlands)

    Bedding, T.R.; Mosser, B.; Huber, D.; Montalbán, J.; Beck, P.; Christensen-Dalsgaard, J.; Elsworth, Y.P.; García, R.A.; Miglio, A.; Stello, D.; White, T.R.; de Ridder, J.; Hekker, S.; Aerts, C.; Barban, C.; Belkacem, K.; Broomhall, A.M.; Brown, T.M.; Buzasi, D.L.; Carrier, F.; Chaplin, W.J.; Di Mauro, M.P.; Dupret, M.-A.; Frandsen, S.; Gilliland, R.L.; Goupil, M.J.; Jenkins, J.M.; Kallinger, T.; Kawaler, S.; Kjeldsen, H.; Mathur, S.; Noels, A.; Silva Aguirre, V.; Ventura, P.

    2011-01-01

    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties

  2. Solar-Type Activity in Main-Sequence Stars

    CERN Document Server

    Gershberg, Roald E

    2005-01-01

    Solar-type activity over the whole range of the electromagnetic spectrum is a phenomenon inherent in the majority of low- and moderate-mass main sequence stars. In this monograph observational results are summarized in a systematic and comprehensive fashion. The analysis of the various manifestations of such stellar activity leads to the identification of these phenomena with macroscopic non-linear processes in a magnetized plasma. Comparative study of flare stars and the Sun has become increasingly fruitful and is presently an active field of research involving stellar and solar physicists, experts in plasma physics and high-energy astrophysicists. This book will provide them with both an introduction and overview of observational results from the first optical photometry and spectroscopy, from the satellite telescopes International Ultraviolet Explorer to Hubble Space Telescope, XMM-Newton and Chandra, as well as with the present physical interpretation of solar-type activity in main sequence stars. Gershbe...

  3. What Causes Extended Main Sequence Turn-offs in Intermediate-Age Star Clusters?

    Science.gov (United States)

    Goudfrooij, Paul

    2012-10-01

    Recently, deep images from the ACS camera aboard HST provided conclusive evidence that several massive intermediate-age star clusters in the Magellanic Clouds present extended main-sequence turn-off regions {eMSTOs}, and in some cases also dual red clumps. These observations challenge the notion that star clusters are simple stellar populations, and pose serious questions regarding the mechanisms responsible for star cluster formation. We propose to collect HST imaging that should lead to an understanding of the nature of the eMSTO phenomenon. We will perform deep WFC3 imaging in F438W and F814W for 3 Magellanic Cloud star clusters whose ages and dynamical properties {mass, radius} will allow a critical study of the physical conditions that cause the eMSTO phenomenon. The data will allow us to derive detailed star formation histories via CMD reconstruction methods. The underlying field population will be characterized by means of ACS images of nearby areas obtained in parallel. Without high-quality HST imaging data for these three pivotal clusters, the discussion regarding the onset of multiple stellar populations in star clusters may persist for years.

  4. The spectroscopic indistinguishability of red giant branch and red clump stars

    Science.gov (United States)

    Masseron, T.; Hawkins, K.

    2017-01-01

    Context. Stellar spectroscopy provides useful information on the physical properties of stars such as effective temperature, metallicity and surface gravity. However, those photospheric characteristics are often hampered by systematic uncertainties. The joint spectro-sismo project (APOGEE+Kepler, aka APOKASC) of field red giants has revealed a puzzling offset between the surface gravities (log g) determined spectroscopically and those determined using asteroseismology, which is largely dependent on the stellar evolutionary status. Aims: Therefore, in this letter, we aim to shed light on the spectroscopic source of the offset. Methods: We used the APOKASC sample to analyse the dependencies of the log g discrepancy as a function of stellar mass and stellar evolutionary status. We discuss and study the impact of some neglected abundances on spectral analysis of red giants, such as He and carbon isotopic ratio. Results: We first show that, for stars at the bottom of the red giant branch where the first dredge-up had occurred, the discrepancy between spectroscopic log g and asteroseismic log g depends on stellar mass. This seems to indicate that the log g discrepancy is related to CN cycling. Among the CN-cycled elements, we demonstrate that the carbon isotopic ratio (12C /13C) has the largest impact on stellar spectrum. In parallel, we observe that this log g discrepancy shows a similar trend as the 12C /13C ratios as expected by stellar evolution theory. Although we did not detect a direct spectroscopic signature of 13C, other corroborating evidences suggest that the discrepancy in log g is tightly correlated to the production of 13C in red giants. Moreover, by running the data-driven algorithm (the Cannon) on a synthetic grid trained on the APOGEE data, we try to evaluate more quantitatively the impact of various 12C /13C ratios. Conclusions: While we have demonstrated that 13C indeed impacts all parameters, the size of the impact is smaller than the observed offset

  5. Massive pre-main-sequence stars in M17

    Science.gov (United States)

    Ramírez-Tannus, M. C.; Kaper, L.; de Koter, A.; Tramper, F.; Bik, A.; Ellerbroek, L. E.; Ochsendorf, B. B.; Ramírez-Agudelo, O. H.; Sana, H.

    2017-08-01

    The formation process of massive stars is still poorly understood. Massive young stellar objects (mYSOs) are deeply embedded in their parental clouds; these objects are rare, and thus typically distant, and their reddened spectra usually preclude the determination of their photospheric parameters. M17 is one of the best-studied H ii regions in the sky, is relatively nearby, and hosts a young stellar population. We have obtained optical to near-infrared spectra of previously identified candidate mYSOs and a few OB stars in this region with X-shooter on the ESO Very Large Telescope. The large wavelength coverage enables a detailed spectroscopic analysis of the photospheres and circumstellar disks of these candidate mYSOs. We confirm the pre-main-sequence (PMS) nature of six of the stars and characterise the O stars. The PMS stars have radii that are consistent with being contracting towards the main sequence and are surrounded by a remnant accretion disk. The observed infrared excess and the double-peaked emission lines provide an opportunity to measure structured velocity profiles in the disks. We compare the observed properties of this unique sample of young massive stars with evolutionary tracks of massive protostars and propose that these mYSOs near the western edge of the H ii region are on their way to become main-sequence stars ( 6-20 M⊙) after having undergone high mass accretion rates (Ṁacc 10-4-10-3M⊙yr-1). Their spin distribution upon arrival at the zero age main-sequence is consistent with that observed for young B stars, assuming conservation of angular momentum and homologous contraction. Based on observations collected at the European Southern Observatory at Paranal, Chile (ESO programmes 60.A-9404(A), 085.D-0741, 089.C-0874(A), and 091.C-0934(B)).The full normalised X-shooter spectra are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A78

  6. Testing Scaling Relations for Solar-like Oscillations from the Main Sequence to Red Giants Using Kepler Data

    DEFF Research Database (Denmark)

    Huber, D.; Bedding, T.R.; Stello, D.

    2011-01-01

    for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.......We have analyzed solar-like oscillations in ~1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power (νmax), the large frequency separation (Δν...

  7. Insertion sequences enrichment in extreme Red sea brine pool vent

    KAUST Repository

    Elbehery, Ali H. A.

    2016-12-03

    Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world’s largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.

  8. Are pre-main-sequence stars older than we thought?

    Science.gov (United States)

    Naylor, Tim

    2009-10-01

    We fit the colour-magnitude diagrams of stars between the zero-age main-sequence and terminal-age main sequence in young clusters and associations. The ages we derive are a factor of 1.5-2 longer than the commonly used ages for these regions, which are derived from the positions of pre-main-sequence stars in colour-magnitude diagrams. From an examination of the uncertainties in the main-sequence and pre-main-sequence models, we conclude that the longer age scale is probably the correct one, which implies that we must revise upwards the commonly used ages for young clusters and associations. Such a revision would explain the discrepancy between the observational lifetimes of protoplanetary discs and theoretical calculations of the time to form planets. It would also explain the absence of clusters with ages between 5 and 30Myr. We use the τ2 statistic to fit the main-sequence data, but find that we must make significant modifications if we are to fit sequences which have vertical segments in the colour-magnitude diagram. We present this modification along with improvements to the methods of calculating the goodness-of-fit statistic and parameter uncertainties. Software implementing the methods described in this paper is available from http://www.astro.ex.ac.uk/people/timn/tau-squared/.

  9. Lifestyles of the Stars.

    Science.gov (United States)

    National Aeronautics and Space Administration, Cocoa Beach, FL. John F. Kennedy Space Center.

    Some general information on stars is provided in this National Aeronautics and Space Administration pamphlet. Topic areas briefly discussed are: (1) the birth of a star; (2) main sequence stars; (3) red giants; (4) white dwarfs; (5) neutron stars; (6) supernovae; (7) pulsars; and (8) black holes. (JN)

  10. VizieR Online Data Catalog: Surface rotation of Kepler red giant stars (Ceillier+, 2017)

    Science.gov (United States)

    Ceillier, T.; Tayar, J.; Mathur, S.; Salabert, D.; Garcia, R. A.; Stello, D.; Pinsonneault, M. H.; van Saders, J.; Beck, P. G.; Bloemen, S.

    2017-07-01

    As only a few red giants are supposed to exhibit light curve modulations due to star spots, we use for this work the largest sample of identified red giants observed by the Kepler satellite so far. It is composed of 17,377 pulsating stars including those already known from previous works (e.g. Huber et al. 2010ApJ...723.1607H; Hekker et al. 2011MNRAS.414.2594H; Mosser et al. 2012A&A...537A..30M; Stello et al. 2013, Cat. J/ApJ/765/L41; Mathur et al. 2016, Cat. J/ApJ/827/50). Table 1 is giving the stars with validated rotation periods. Table 2 is giving the stars showing rotational modulation in their light curve, but probably due to pollution from a nearby star. (2 data files).

  11. Common Warm Dust Temperatures Around Main Sequence Stars

    Science.gov (United States)

    Morales, Farisa; Rieke, George; Werner, Michael; Stapelfeldt, Karl; Bryden, Geoffrey; Su, Kate

    2011-01-01

    We compare the properties of warm dust emission from a sample of main-sequence A-type stars (B8-A7) to those of dust around solar-type stars (F5-KO) with similar Spitzer Space Telescope Infrared Spectrograph/MIPS data and similar ages. Both samples include stars with sources with infrared spectral energy distributions that show evidence of multiple components. Over the range of stellar types considered, we obtain nearly the same characteristic dust temperatures (∼ 190 K and ∼60 K for the inner and outer dust components, respectively)-slightly above the ice evaporation temperature for the inner belts. The warm inner dust temperature is readily explained if populations of small grains are being released by sublimation of ice from icy planetesimals. Evaporation of low-eccentricity icy bodies at ∼ 150 K can deposit particles into an inner/warm belt, where the small grains are heated to dust Temperatures of -190 K. Alternatively, enhanced collisional processing of an asteroid belt-like system of parent planetesimals just interior to the snow line may account for the observed uniformity in dust temperature. The similarity in temperature of the warmer dust across our B8-KO stellar sample strongly suggests that dust-producing planetesimals are not found at similar radial locations around all stars, but that dust production is favored at a characteristic temperature horizon.

  12. Main-Sequence Star Populations in the Virgo Overdensity Region

    Science.gov (United States)

    Jerjen, H.; Da Costa, G. S.; Willman, B.; Tisserand, P.; Arimoto, N.; Okamoto, S.; Mateo, M.; Saviane, I.; Walsh, S.; Geha, M.; Jordán, A.; Olszewski, E.; Walker, M.; Zoccali, M.; Kroupa, P.

    2013-05-01

    We present deep color-magnitude diagrams (CMDs) for two Subaru Suprime-Cam fields in the Virgo Stellar Stream (VSS)/Virgo Overdensity (VOD) and compare them to a field centered on the highest concentration of Sagittarius (Sgr) Tidal Stream stars in the leading arm, Branch A of the bifurcation. A prominent population of main-sequence stars is detected in all three fields and can be traced as faint as g ≈ 24 mag. Using theoretical isochrone fitting, we derive an age of 9.1^{+1.0}_{-1.1} Gyr, a median abundance of [Fe/H] = -0.70^{+0.15}_{-0.20} dex, and a heliocentric distance of 30.9 ± 3.0 kpc for the main sequence of the Sgr Stream Branch A. The dominant main-sequence populations in the two VSS/VOD fields (Λ⊙ ≈ 265°, B ⊙ ≈ 13°) are located at a mean distance of 23.3 ± 1.6 kpc and have an age of ~8.2 Gyr, and an abundance of [Fe/H] = -0.67^{+0.16}_{-0.12} dex, similar to the Sgr Stream stars. These statistically robust parameters, derived from the photometry of 260 main-sequence stars, are also in good agreement with the age of the main population in the Sgr dwarf galaxy (8.0 ± 1.5 Gyr). They also agree with the peak in the metallicity distribution of 2-3 Gyr old M giants, [Fe/H] ≈-0.6 dex, in the Sgr north leading arm. We then compare the results from the VSS/VOD fields with the Sgr Tidal Stream model by Law & Majewski based on a triaxial Galactic halo shape that is empirically calibrated with Sloan Digital Sky Survey Sgr A-branch and Two Micron All Sky Survey M-giant stars. We find that the most prominent feature in the CMDs, the main-sequence population at 23 kpc, is not explained by the model. Instead the model predicts in these directions a low-density filamentary structure of Sgr debris stars at ~9 kpc and a slightly higher concentration of Sgr stars spread over a heliocentric distance range of 42-53 kpc. At best there is only marginal evidence for the presence of these populations in our data. Our findings then suggest that while there are

  13. THE RED SEQUENCE AT BIRTH IN THE GALAXY CLUSTER Cl J1449+0856 AT z = 2

    Energy Technology Data Exchange (ETDEWEB)

    Strazzullo, V.; Pannella, M. [Department of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 München (Germany); Daddi, E.; Valentino, F. [Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif sur Yvette (France); Gobat, R. [School of Physics, Korea Institute for Advanced Study, Hoegiro 85, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Renzini, A. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova (Italy); Brammer, G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Onodera, M.; Arimoto, N. [Subaru Telescope, National Astronomical Observatory of Japan, National Institutes of Natural Sciences (NINS), 650 North A’ohoku Place, Hilo, HI, 96720 (United States); Finoguenov, A. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Cimatti, A. [Dipartimento di Fisica e Astronomia, Universitá di Bologna, Viale Berti Pichat 6/2, I-30127, Bologna (Italy); Carollo, C. M., E-mail: vstrazz@usm.lmu.de [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland)

    2016-12-20

    We use Hubble Space Telescope /WFC3 imaging to study the red population in the IR-selected, X-ray detected, low-mass cluster Cl J1449+0856 at z = 2, one of the few bona fide established clusters discovered at this redshift, and likely a typical progenitor of an average massive cluster today. This study explores the presence and significance of an early red sequence in the core of this structure, investigating the nature of red-sequence galaxies, highlighting environmental effects on cluster galaxy populations at high redshift, and at the same time underlining similarities and differences with other distant dense environments. Our results suggest that the red population in the core of Cl J1449+0856 is made of a mixture of quiescent and dusty star-forming galaxies, with a seedling of the future red sequence already growing in the very central cluster region, and already characterizing the inner cluster core with respect to lower-density environments. On the other hand, the color–magnitude diagram of this cluster is definitely different from that of lower-redshift z ≲ 1 clusters, as well as of some rare particularly evolved massive clusters at similar redshift, and it is suggestive of a transition phase between active star formation and passive evolution occurring in the protocluster and established lower-redshift cluster regimes.

  14. Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone.

    Science.gov (United States)

    Joshi, Manoj M; Haberle, Robert M

    2012-01-01

    M stars comprise 80% of main sequence stars, so their planetary systems provide the best chance for finding habitable planets, that is, those with surface liquid water. We have modeled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M stars), using spectrally resolved data of Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 μm, combined with M stars emitting a significant fraction of their radiation at these same longer wavelengths, means that the albedos of ice and snow on planets orbiting M stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of cryospheric albedo is considered, which in turn implies that the outer edge of the habitable zone around M stars may be 10-30% farther away from the parent star than previously thought.

  15. The Potential of Planets Orbiting Red Dwarf Stars to Support Oxygenic Photosynthesis and Complex Life

    OpenAIRE

    Gale, Joseph; Wandel, Amri

    2015-01-01

    We review the latest findings on extra-solar planets and their potential to support Earth-like life. Focusing on planets orbiting Red Dwarf (RD) stars, the most abundant stellar type, we show that including RDs as potential host stars could increase the probability of finding biotic planets by a factor of up to a thousand, and reduce the estimate of the distance to our nearest biotic neighbor by up to 10. We argue that binary and multiple star systems need to be taken into account when discus...

  16. Modelling of Red Giant Stars: The state-of-the-art

    Directory of Open Access Journals (Sweden)

    Cassisi Santi

    2017-01-01

    Full Text Available The seismic data obtained by the CoRoT and Kepler space missions have provided inferences of the global and structural properties of thousands of red giants. When compared with stellar model predictions, these inferences can significantly improve our understanding of stellar evolution. We present a brief review of the structure and evolution of red giant stars, devoting some emphasis on the major, still open problems.

  17. Habitable zone lifetimes of exoplanets around main sequence stars.

    Science.gov (United States)

    Rushby, Andrew J; Claire, Mark W; Osborn, Hugh; Watson, Andrew J

    2013-09-01

    The potential habitability of newly discovered exoplanets is initially assessed by determining whether their orbits fall within the circumstellar habitable zone of their star. However, the habitable zone (HZ) is not static in time or space, and its boundaries migrate outward at a rate proportional to the increase in luminosity of a star undergoing stellar evolution, possibly including or excluding planets over the course of the star's main sequence lifetime. We describe the time that a planet spends within the HZ as its "habitable zone lifetime." The HZ lifetime of a planet has strong astrobiological implications and is especially important when considering the evolution of complex life, which is likely to require a longer residence time within the HZ. Here, we present results from a simple model built to investigate the evolution of the "classic" HZ over time, while also providing estimates for the evolution of stellar luminosity over time in order to develop a "hybrid" HZ model. These models return estimates for the HZ lifetimes of Earth and 7 confirmed HZ exoplanets and 27 unconfirmed Kepler candidates. The HZ lifetime for Earth ranges between 6.29 and 7.79×10⁹ years (Gyr). The 7 exoplanets fall in a range between ∼1 and 54.72 Gyr, while the 27 Kepler candidate planets' HZ lifetimes range between 0.43 and 18.8 Gyr. Our results show that exoplanet HD 85512b is no longer within the HZ, assuming it has an Earth analog atmosphere. The HZ lifetime should be considered in future models of planetary habitability as setting an upper limit on the lifetime of any potential exoplanetary biosphere, and also for identifying planets of high astrobiological potential for continued observational or modeling campaigns.

  18. Detailed Study of the Internal Structure of a Red-giant Star Observed with Kepler

    NARCIS (Netherlands)

    Di Mauro, M.P.; Ventura, R.; Cardini, D.; Catanzaro, G.; Barban, C.; Bedding, T.R.; Christensen-Dalsgaard, J.; De Ridder, J.; Hekker, S.; Huber, D.; Kallinger, T.; Kinemuchi, K.; Kjeldsen, H.; Miglio, A.; Montalbán, J.; Mosser, B.; Mullally, F.; Stello, D.; Still, M.; Uytterhoeven, K.

    2012-01-01

    We study the internal structure and evolutionary state of KIC 4351319, a red-giant star observed with the Kepler satellite. The use of 25 individual oscillation frequencies, together with the accurate atmospheric data provided by ground-based spectroscopic observations, allowed us to estimate the

  19. VLT/FLAMES spectroscopy of red giant branch stars in the Carina dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; Hill, V.; Tolstoy, E.; Venn, K. A.; Shetrone, M. D.; Irwin, M. J.; de Boer, T. J. L.; Starkenburg, E.; Salvadori, S.

    Context. The ages of individual red giant branch stars can range from 1 Gyr old to the age of the Universe, and it is believed that the abundances of most chemical elements in their photospheres remain unchanged with time (those that are not affected by the first dredge-up). This means that they

  20. Detailed Study of the Internal Structure of a Red-giant Star Observed with Kepler

    DEFF Research Database (Denmark)

    Di Mauro, M. P.; Ventura, R.; Cardini, D.

    2012-01-01

    We study the internal structure and evolutionary state of KIC 4351319, a red-giant star observed with the Kepler satellite. The use of 25 individual oscillation frequencies, together with the accurate atmospheric data provided by ground-based spectroscopic observations, allowed us to estimate the...

  1. A Herschel view of IC 1396 A: Unveiling the different sequences of star formation

    NARCIS (Netherlands)

    Sicilia-Aguilar, Aurora; Roccatagliata, Veronica; Getman, Konstantin; Henning, Thomas; Merín, Bruno; Eiroa, Carlos; Rivière-Marichalar, Pablo; Currie, Thayne

    Context. The IC 1396 A globule, located to the west of the young cluster Tr 37, is known to host many very young stars and protostars, and is also assumed to be a site of triggered star formation. Aims: Our aim is to test the triggering mechanisms and sequences leading to star formation in Tr 37 and

  2. VizieR Online Data Catalog: Motion Verified Red Stars (MoVeRS) (Theissen+, 2016)

    Science.gov (United States)

    Theissen, C. A.; West, A. A.; Dhital, S.

    2015-09-01

    We present a photometric catalog of 8,735,004 proper motion selected low-mass stars (KML-spectral types) within the Sloan Digital Sky Survey (SDSS) footprint, from the combined SDSS-DR10, Two-Micron All-Sky Survey (2MASS) Point Source Catalog (PSC), and Wide-field Infrared Survey Explorer (WISE) AllWISE catalog. Stars were selected using r-i, i-z, r-z, z-J, and z-W1 colors, and SDSS, WISE, and 2MASS astrometry was combined to compute proper motions. The resulting 3,518,150 stars were augmented with proper motions for 5,216,854 earlier type stars from the combined SDSS and United States Naval Observatory B1.0 catalog (USNO-B). We used SDSS+USNO-B proper motions to determine the best criteria for selecting a clean sample of stars. Only stars whose proper motions were greater than their 2-sigma uncertainty were included. Our Motion Verified Red Stars (MoVeRS) catalog is available through SDSS CasJobs and VizieR. (2 data files).

  3. Red horizontal branch stars in the Galactic field: A chemical abundance survey

    Directory of Open Access Journals (Sweden)

    Fo B.-Q.

    2013-03-01

    Full Text Available A large sample survey of Galactic red horizontal-branch (RHB stars was conducted to investigate their atmospheric parameters and elemental abundances. High-resolution spectra of 76 Galactic field stars were obtained with the 2.7 m Smith Telescope at McDonald Observatory. Only the color and the parallax were considered during the selection of the field stars. Equivalent width or synthetic spectrum analyses were used in order to determine the relative abundances of the following elements: proton-capture elements C, N, O and Li, alpha-elements Ca and Si, and neutron-capture elements Eu and La. Additionally, 12C/13C isotopic ratios were derived by using the CN features mainly located in the 7995 − 8040 Å spectral region. The evaluation of effective temperatures, surface gravities and 12C/13C isotopic ratios together with evolutionary stages of the candidates revealed that 18 out of 76 stars in our sample are probable RHBs. Including both kinematic and evolutionary status information, we conclude that we have five thick disk and 13 thin disk RHB stars in our sample. Although RHB stars have been regarded as thick disk members of the Galaxy, the low-velocity RHBs with a solar metallicity in our sample suggests the existence of a large number of thin disk RHBs, which cannot be easily explained by standard stellar evolutionary models.

  4. New light on dark stars red dwarfs, low-mass stars, brown dwarfs

    CERN Document Server

    Reid, I Neill

    2000-01-01

    Perhaps the most common question that a child asks when he or she sees the night sky from a dark site for the first time is: 'How many stars are there?' This happens to be a question which has exercised the intellectual skills of many astronomers over the course of most of the last century, including, for the last two decades, one of the authors of this text. Until recently, the most accurate answer was 'We are not certain, but there is a good chance that almost all of them are M dwarfs. ' Within the last three years, results from new sky-surveys - particularly the first deep surveys at near­ infrared wavelengths - have provided a breakthrough in this subject, solidifying our census of the lowest-mass stars and identifying large numbers of the hitherto almost mythical substellar-mass brown dwarfs. These extremely low-luminosity objects are the central subjects of this book, and the subtitle should be interpreted accordingly. The expression 'low-mass stars' carries a wide range of meanings in the astronomical...

  5. Living with an Old Red Dwarf: X-ray-UV Emissions of Kapteyn’s Star - Effects of X-UV radiation on Habitable Zone Planets hosted by old Red Dwarf Stars

    Science.gov (United States)

    Guinan, Edward F.; Durbin, Allyn J.; Engle, Scott G.

    2015-01-01

    Red dwarfs (dM) stars make up over 75% of the local stellar population and a significant fraction (~40-50%) are older than the Sun. Because of the high frequency of red dwarfs and their longevity (> 50 Gyr), there is a greater possibility of more advanced life in red dwarf-exoplanet systems. MEarths, UVES, SDSS-III, and the upcoming TESS mission are some surveys that are targeting red dwarfs in the search for hosted potentially habitalble planets. As part of Villanova's 'Living with a Red Dwarf' program, we have obtained HST-COS Ultraviolet spectra (1150-3000A) and Chandra X-ray observations of Kapteyn's star (GJ 191; M1 V, V = 8.85 mag , d = 12.76 +/- 0.05 ly). Kapyteyn's Star is important for the study of old red dwarfs because it is the nearest (Pop II) halo star with a radial velocity of +245.2 km/s and an estimated age of 11.2 +/-0.9 Gyrs. Recently Kapteyn's Star was found to host two super-Earth mass planets - one of these is orbiting inside the star's Habitable Zone (Anglada-Escude' 2014: MNRAS 443, L89). In our program, Kapteyn's star is the oldest red dwarf and as such serves as an anchor for our age, rotation, and activity relations. The spectra obtained from HST/COS provide one of the cleanest measurements of the important HI Lyman-alpha 1215.6 A emission flux for red dwarfs. This is due to the large Doppler shift from the high radial velocity, separating the stellar Ly-alpha emission from by the Ly-alpha ISM and local geo-coronal sources. These observations further provide calibrations at the old age/low rotation/low activity extremes for our relations. As the nearest and brightest old red dwarf star, Kapteyn's Star also provides insights into its magnetic properties to investigae coronal x-ray and UV emission for the large population of old, slowly rotating red dwarf stars. Kapteyn's star also serves as a proxy for the numerous metal-poor old disk - Pop II M dwarfs by providing information about X-UV emissions. This information is crucial for

  6. Submillimeter Imaging of Dust Around Main Sequence Stars

    Science.gov (United States)

    Jewitt, David

    1998-01-01

    This grant was to image circumstellar dust disks surrounding main-sequence stars. The delivery of the SCUBA detector we had planned to use for this work was delayed repeatedly, leading us to undertake a majority of the observations with the UKT14 submillimeter detector at the JCMT (James Clerk Maxwell Telescope) and optical imagers and a coronagraph at the University of Hawaii 2.2-m telescope. Major findings under this grant include: (1) We discovered 5 asymmetries in the beta Pictoris regenerated dust disk. The discovery of these asymmetries was a surprise, since smearing due to Keplerian shear should eliminate most such features on timescales of a few thousand years. One exception is the "wing tilt" asymmetry, which we interpret as due to the scattering phase function of dust disk particles. From the wing tilt and a model of the phase function, we find a disk plane inclination to the line of sight of JCMT). It is possible, for instance, that the main 850 micro-m blob is merely a galaxy or other high-z source projected onto the beta Pic mid-plane.

  7. SDSS-IV MaNGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence

    Science.gov (United States)

    Hsieh, B. C.; Lin, Lihwai; Lin, J. H.; Pan, H. A.; Hsu, C. H.; Sánchez, S. F.; Cano-Díaz, M.; Zhang, K.; Yan, R.; Barrera-Ballesteros, J. K.; Boquien, M.; Riffel, R.; Brownstein, J.; Cruz-González, I.; Hagen, A.; Ibarra, H.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.

    2017-12-01

    We present our study on the spatially resolved Hα and M * relation for 536 star-forming and 424 quiescent galaxies taken from the MaNGA survey. We show that the star formation rate surface density ({{{Σ }}}{SFR}), derived based on the Hα emissions, is strongly correlated with the M * surface density ({{{Σ }}}* ) on kiloparsec scales for star-forming galaxies and can be directly connected to the global star-forming sequence. This suggests that the global main sequence may be a consequence of a more fundamental relation on small scales. On the other hand, our result suggests that ∼20% of quiescent galaxies in our sample still have star formation activities in the outer region with lower specific star formation rate (SSFR) than typical star-forming galaxies. Meanwhile, we also find a tight correlation between {{{Σ }}}{{H}α } and {{{Σ }}}* for LI(N)ER regions, named the resolved “LI(N)ER” sequence, in quiescent galaxies, which is consistent with the scenario that LI(N)ER emissions are primarily powered by the hot, evolved stars as suggested in the literature.

  8. Lithium Inventory of 2 Solar Mass Red Clump Stars in Open Clusters: A Test of the Helium Flash Mechanism

    Science.gov (United States)

    Carlberg, Joleen K.; Cunha, Katia; Smith, Verne V.

    2016-01-01

    The temperature distribution of field Li-rich red giants suggests the presence of a population of Li-rich red clump (RC) stars. One proposed explanation for this population is that all stars with masses near 2 solar mass experience a shortlived phase of Li-richness at the onset of core He-burning. Many of these stars have low C-12/C-13, a signature of deep mixing that is presumably associated with the Li regeneration. To test this purported mechanism of Li enrichment, we measured abundances in 38 RC stars and 6 red giant branch (RGB) stars in four open clusters selected to have RC masses near 2 solar mass. We find six Li-rich stars (A(Li) greater than or equal to 1.50 dex) of which only two may be RC stars. None of the RC stars have Li exceeding the levels observed in the RGB stars, but given the brevity of the suggested Li-rich phase and the modest sample size, it is probable that stars with larger Li-enrichments were missed simply by chance. However, we find very few stars in our sample with low C-12/C-13. Such low C-12/C-13, seen in many field Li-rich stars, should persist even after lithium has returned to normal low levels. Thus, if Li synthesis during the He flash occurs, it is a rare, but potentially long-lived occurrence rather than a short-lived phase for all stars. We estimate a conservative upper limit of the fraction of stars going through a Li-rich phase to be less than 47%, based on stars that have low C-12/C-13 for their observed A(Li).

  9. The Dustiest Post-Main Sequence Stars in the Magellanic Clouds

    Science.gov (United States)

    Jones, Olivia C.; Meixner, Margaret; Sargent, Benjamin A.; Boyer, Martha L.; Sewiło, Marta; Hony, Sacha; Roman-Duval, Julia

    2015-10-01

    Using observations from the Herschel Inventory of The Agents of Galaxy Evolution (HERITAGE) survey of the Magellanic Clouds (MC), we have found 35 evolved stars and stellar end products that are bright in the far-infrared. These 28 (LMC) and 7 (SMC) sources were selected from the 529 evolved star candidates in the HERITAGE far-infrared point source catalogs. Our source identification method is based on spectral confirmation, spectral energy distribution characteristics, careful examination of the multiwavelength images and includes constraints on the luminosity, resulting in a thoroughly vetted list of evolved stars. These sources span a wide range in luminosity and hence initial mass. We found 13 low- to intermediate-mass evolved stars, including asymptotic giant branch (AGB) stars, post-AGB stars, planetary nebulae, and a symbiotic star. We also identify 10 high mass stars, including 4 of the 15 known B[e] stars in the MC, 3 extreme red supergiants that are highly enshrouded by dust, a Luminous Blue Variable, a Wolf-Rayet star, and two supernova remnants. Further, we report the detection of 9 probable evolved objects which were previously undescribed in the literature. These sources are likely to be among the dustiest evolved objects in the MC. The Herschel emission may either be due to dust produced by the evolved star or it may arise from swept-up interstellar medium material.

  10. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive red galaxies

    Science.gov (United States)

    Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.

    2017-01-01

    Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4 history of passive red galaxies. We compare the results with a grid of synthetic spectra to constrain the star formation epochs of these galaxies. We characterize the formation redshift-stellar mass relation for intermediate-redshift passive red galaxies. Results: We find that at z 1 stellar populations in low-mass passive red galaxies are younger than in high-mass passive red galaxies, similar to what is observed at the present epoch. Over the full analyzed redshift range 0.4 time passes, I.e., what has become known as the downsizing picture. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/

  11. On the asymptotic acoustic-mode phase in red giant stars and its dependence on evolutionary state

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jørgen; Silva Aguirre, Victor; Elsworth, Yvonne

    2014-01-01

    their determination of the asymptotic phase of radial oscillations in evolved stars and the evolutionary state, separating ascending-branch red giants from helium-burning stars in the ‘red clump’. Here, we provide a detailed analysis of this relation, which is found to derive from differences between these two...... classes of stars in the thermodynamic state of the convective envelope. There is potential for distinguishing red giants and clump stars based on the phase determined from observations that are too short to allow distinction based on determination of the period spacing for mixed modes. The analysis...... of the phase may also point to a better understanding of the potential for using the helium-ionization-induced acoustic glitch to determine the helium abundance in the envelopes of these stars....

  12. Michael T. Westrate. Living Soviet in Ukraine from Stalin to Maidan: Under the Falling Red Star in Kharkiv.

    Directory of Open Access Journals (Sweden)

    Charitie V. Hyman

    2017-09-01

    Full Text Available Book review of Michael T. Westrate. Living Soviet in Ukraine from Stalin to Maidan: Under the Falling Red Star in Kharkiv. Rowman & Littlefield, 2016. xx, 232 pp. Illustrations. Appendices. Bibliography. Index. $85.00, cloth.

  13. The SAMI Galaxy Survey: Spatially Resolving the Main Sequence of Star Formation

    Science.gov (United States)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-01-01

    We present the ˜800 star formation rate maps for the SAMI Galaxy Survey based on Hα emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/Hβ, [N II]/Hα, [S II]/Hα, and [O I]/Hα line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main sequence population has centrally-concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  14. The evolved slowly pulsating B star 18 Peg: A testbed for upper main sequence stellar evolution

    Science.gov (United States)

    Irrgang, A.; De Cat, P.; Tkachenko, A.; Deshpande, A.; Moehler, S.; Mugrauer, M.; Janousch, D.

    2017-09-01

    The bright B3 III giant star 18 Peg turns out to be a slowly pulsating B star in a long period binary with a main-sequence star or a neutron star as companion. Given that it is one of the most evolved members of this class of massive pulsating stars, an accurate determination of the location of 18 Peg in the Hertzsprung-Russell (H-R) diagram would provide a lower limit on the width of the upper main sequence and hence would reveal information about the efficiency of the convective overshooting. We explain why long-term space-based observations are needed and how BRITE could play a crucial role in the gathering of the mandatory ingredients to test the models of the upper main sequence evolution.

  15. Physical Properties of Wolf-Rayet Stars at Infra-red Wavelengths

    Science.gov (United States)

    Rosslowe, Christopher

    2016-10-01

    Wolf-Rayet (WR) stars represent the ultimate phase of evolution for the most massive stars in the Universe. Hot and luminous - they drive dense outflows, giving rise to rich emission-line spectra featuring nitrogen, carbon, and/or oxygen, as deeper layers of nuclear-processed material are revealed. This stripped nature implicates them as Type Ib/c supernovae progenitors, yet how the majority reach this state is unclear. The standard view of line-driven mass-loss producing WR stars is seceding to binary processes. The goal of this thesis is to combine statistics for the Galactic WR population, with physical properties of specific objects, to assess how well these can be explained by stellar models - of single and multiple massive stars. This has been achieved through observations in the infra-red - an increasingly important wavelength regime, abetted by low interstellar extinction and rapidly advancing instrumentation. I present a map of 356 Galactic WR stars, created using calibrated (1-8μm) absolute magnitudes by spectral subtype, and a refined near-IR classification scheme. I compare WR subtype variations with metallicity to population synthesis outputs, finding little evidence for ubiquitous fast stellar rotation. I produce a toy model of the total Galactic WR population using spatial information gleaned. Oxygen abundances in 7 WC and WO stars are determined using Herschel PACS scans of [OIII]88.36μm. These are combined with other recent analyses to argue for a reduction in the 12C(α,γ)16O reaction rate in stellar models. I present a spectroscopic analysis of the largest coeval population of WR stars in the Galaxy - that of the Westerlund 1 cluster. The youth of this cluster prohibits <40 Msun progenitors, hence the physical properties derived - particularly low luminosity - suggest a binary origin for most.

  16. Red but not dead: unveiling the star-forming far-infrared spectral energy distribution of SpARCS brightest cluster galaxies at 0 < z < 1.8

    Science.gov (United States)

    Bonaventura, N. R.; Webb, T. M. A.; Muzzin, A.; Noble, A.; Lidman, C.; Wilson, G.; Yee, H. K. C.; Geach, J.; Hezaveh, Y.; Shupe, D.; Surace, J.

    2017-08-01

    We present the results of a Spitzer/Herschel infrared photometric analysis of the largest (716) and the highest-redshift (z = 1.8) sample of brightest cluster galaxies (BCGs), those from the Spitzer Adaptation of the Red-Sequence Cluster Survey Given the tension that exists between model predictions and recent observations of BCGs at z series of gas-poor, minor mergers since z ˜ 4, but agrees with an improved semi-analytic model of hierarchical structure formation that predicts star-forming BCGs throughout the epoch considered. We attribute the star formation inferred from the stacked infrared SEDs to both major and minor 'wet' (gas-rich) mergers, based on a lack of key signatures (to date) of cooling-flow-induced star formation, as well as a number of observational and simulation-based studies that support this scenario.

  17. Oscillation mode linewidths of main-sequence and subgiant stars observed by Kepler

    DEFF Research Database (Denmark)

    Appourchaux, T.; Benomar, O.; Gruberbauer, M.

    2012-01-01

    Solar-like oscillations have been observed by {{\\it Kepler}} and CoRoT in several solar-type stars. We study the variations of stellar p-mode linewidth as a function of effective temperature. Time series of 9 months of Kepler data have been used. The power spectra of 42 cool main-sequence stars a...

  18. Magnetic fields in O-, B- and A-type stars on the main sequence

    Directory of Open Access Journals (Sweden)

    Briquet Maryline

    2015-01-01

    Full Text Available In this review, the latest observational results on magnetic fields in main-sequence stars with radiative envelopes are summarised together with the theoretical works aimed at explaining them.

  19. Atomic Diffusion, Mixing, and Element Abundances in Main Sequence Stars

    Science.gov (United States)

    Vauclair, S.

    2013-12-01

    Atomic diffusion is now recognized as a standard process working in stars, and gravitational settling is introduced in most stellar evolution codes. Helioseismology proved the importance of the downward diffusion of helium and heavy elements below the solar convective zone. However, in more massive stars, the effect of selective radiative accelerations cannot be neglected. It has been known for a long time that the resulting atomic levitation may, in some cases, lead to abundance variations in stellar atmospheres, as observed in the so-called chemically peculiar stars. But this was only part of the story. We have now discovered that, when acting on important elements like iron or nickel, radiative levitation may also lead to global macroscopic effects inside stars, like extra convective zones, wave excitation by the κ-mechanism, and double-diffusive mixing processes like fingering (thermohaline) convection. This paper presents some links between these processes and their consequences.

  20. PRECISION MEASUREMENTS OF THE CLUSTER RED SEQUENCE USING AN ERROR-CORRECTED GAUSSIAN MIXTURE MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hao, J.; Sheldon, E.

    2009-08-14

    The red sequence is an important feature of galaxy clusters and plays a crucial role in optical cluster detection. Measurement of the slope and scatter of the red sequence are affected both by selection of red sequence galaxies and measurement errors. In this paper, we describe a new error-corrected Gaussian Mixture Model for red sequence galaxy identification. Using this technique, we can remove the effects of measurement error and extract unbiased information about the intrinsic properties of the red sequence. We use this method to select red sequence galaxies in each of the 13,823 clusters in the maxBCG catalog, and measure the red sequence ridgeline location and scatter of each. These measurements provide precise constraints on the variation of the average red galaxy populations in the observed frame with redshift. We find that the scatter of the red sequence ridgeline increases mildly with redshift, and that the slope decreases with redshift. We also observe that the slope does not strongly depend on cluster richness. Using similar methods, we show that this behavior is mirrored in a spectroscopic sample of field galaxies, further emphasizing that ridgeline properties are independent of environment. These precise measurements serve as an important observational check on simulations and mock galaxy catalogs. The observed trends in the slope and scatter of the red sequence ridgeline with redshift are clues to possible intrinsic evolution of the cluster red sequence itself. Most importantly, the methods presented in this work lay the groundwork for further improvements in optically based cluster cosmology.

  1. Precision Measurements of the Cluster Red Sequence using an Error Corrected Gaussian Mixture Model

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiangang; /Fermilab /Michigan U.; Koester, Benjamin P.; /Chicago U.; Mckay, Timothy A.; /Michigan U.; Rykoff, Eli S.; /UC, Santa Barbara; Rozo, Eduardo; /Ohio State U.; Evrard, August; /Michigan U.; Annis, James; /Fermilab; Becker, Matthew; /Chicago U.; Busha, Michael; /KIPAC, Menlo Park /SLAC; Gerdes, David; /Michigan U.; Johnston, David E.; /Northwestern U. /Brookhaven

    2009-07-01

    The red sequence is an important feature of galaxy clusters and plays a crucial role in optical cluster detection. Measurement of the slope and scatter of the red sequence are affected both by selection of red sequence galaxies and measurement errors. In this paper, we describe a new error corrected Gaussian Mixture Model for red sequence galaxy identification. Using this technique, we can remove the effects of measurement error and extract unbiased information about the intrinsic properties of the red sequence. We use this method to select red sequence galaxies in each of the 13,823 clusters in the maxBCG catalog, and measure the red sequence ridgeline location and scatter of each. These measurements provide precise constraints on the variation of the average red galaxy populations in the observed frame with redshift. We find that the scatter of the red sequence ridgeline increases mildly with redshift, and that the slope decreases with redshift. We also observe that the slope does not strongly depend on cluster richness. Using similar methods, we show that this behavior is mirrored in a spectroscopic sample of field galaxies, further emphasizing that ridgeline properties are independent of environment. These precise measurements serve as an important observational check on simulations and mock galaxy catalogs. The observed trends in the slope and scatter of the red sequence ridgeline with redshift are clues to possible intrinsic evolution of the cluster red-sequence itself. Most importantly, the methods presented in this work lay the groundwork for further improvements in optically-based cluster cosmology.

  2. Abundances of the light elements from UV (HST) and red (ESO) spectra in the very old star HD 84937

    Science.gov (United States)

    Spite, M.; Peterson, R. C.; Gallagher, A. J.; Barbuy, B.; Spite, F.

    2017-04-01

    Aims: In order to provide a better basis for the study of mechanisms of nucleosynthesis of the light elements beyond hydrogen and helium in the oldest stars, the abundances of C, O, Mg, Si, P, S, K, and Ca have been derived from UV-HST and visible-ESO high resolution spectra in the old, very metal-poor star HD 84937, at a metallicity that is 1/200 that of the Sun's. For this halo main-sequence turnoff star, the abundance determination of P and S are the first published determinations. Methods: The LTE profiles of the lines were computed and fitted to the observed spectra. Wherever possible, we compared the abundances derived from the UV spectrum to abundances derived from the visible or near-infrared spectra, and also corrected the derived abundances for non-LTE effects. Three-dimensional (3D) CO5BOLD model atmospheres have been used to determine the abundances of C and O from molecular CH and OH bands. Results: The abundances of these light elements relative to iron in HD 84937 are found to agree well with the abundances of these elements in classical metal-poor stars. Our HD 84937 carbon abundance determination points toward a solar (or mildly enhanced above solar) value of [C/Fe]. The modest overabundance of the α elements of even atomic number Z, typical of halo turnoff stars, is confirmed in this example. The odd-Z element P is found to be somewhat deficient in HD 84937, at [P/Fe] = -0.32, which is again consistent with the handful of existing determinations for turnoff stars of such low metallicity. We show that the abundance of oxygen, deduced from the OH band from 3D computations, is not compatible with the abundance deduced from the red oxygen triplet. This incompatibility is explained by the existence of a chromosphere heating the shallow layers of the atmosphere where the OH band, in 3D computations, is mainly formed. Conclusions: The abundance ratios are compared to the predictions of models of galactic nucleosynthesis and evolution. Based on

  3. PRE-MAIN SEQUENCE EVOLUTIONS OF SOLAR ABUNDANCE LOW MASS STARS

    Directory of Open Access Journals (Sweden)

    Youn Kil Jung

    2007-03-01

    Full Text Available We present the Pre-Main Sequence (PMS evolutionary tracks of stars with 0.065~5.0M_⨀. The models were evolved from the PMS stellar birthline to the onset of hydrogen burning in the core. The convective turnover timescales which enables an observational test of theoretical model, particulary in the stellar dynamic activity, are also calculated. All models have Sun-like metal abundance, typically considered as the stars in the Galactic disk and the star formation region of Population I star. The convection phenomenon is treated by the usual mixing length approximation. All evolutionary tracks are available upon request.

  4. Red clump stars and Gaia: calibration of the standard candle using a hierarchical probabilistic model

    Science.gov (United States)

    Hawkins, Keith; Leistedt, Boris; Bovy, Jo; Hogg, David W.

    2017-10-01

    Distances to individual stars in our own Galaxy are critical in order to piece together the nature of its velocity and spatial structure. Core helium burning red clump (RC) stars have similar luminosities, are abundant throughout the Galaxy and thus constitute good standard candles. We build a hierarchical probabilistic model to quantify the quality of RC stars as standard candles using parallax measurements from the first Gaia data release. A unique aspect of our methodology is to fully account for (and marginalize over) parallax, photometry and dust correction uncertainties, which lead to more robust results than standard approaches. We determine the absolute magnitude and intrinsic dispersion of the RC in 2MASS bands J, H, Ks, Gaia G band and WISE bands W1, W2, W3 and W4. We find that the absolute magnitude of the RC is -1.61 ± 0.01 (in Ks), +0.44 ± 0.01 (in G), -0.93 ± 0.01 (in J), -1.46 ± 0.01 (in H), -1.68 ± 0.02 (in W1), -1.69 ± 0.02 (in W2), -1.67 ± 0.02 (in W3) and -1.76 ± 0.01 mag (in W4). The mean intrinsic dispersion is ˜0.17 ± 0.03 mag across all bands (yielding a typical distance precision of ˜8 per cent). Thus RC stars are reliable and precise standard candles. In addition, we have also re-calibrated the zero-point of the absolute magnitude of the RC in each band, which provides a benchmark for future studies to estimate distances to RC stars. Finally, the parallax error shrinkage in the hierarchical model outlined in this work can be used to obtain more precise parallaxes than Gaia for the most distant RC stars across the Galaxy.

  5. Star-planet interactions. IV. Possibility of detecting the orbit-shrinking of a planet around a red giant

    Science.gov (United States)

    Meynet, Georges; Eggenberger, Patrick; Privitera, Giovanni; Georgy, Cyril; Ekström, Sylvia; Alibert, Yann; Lovis, Christophe

    2017-06-01

    The surface rotations of some red giants are so fast that they must have been spun up by tidal interaction with a close companion, either another star, a brown dwarf, or a planet. We focus here on the case of red giants that are spun up by tidal interaction with a planet. When the distance between the planet and the star decreases, the spin period of the star decreases, the orbital period of the planet decreases, and the reflex motion of the star increases. We study the change rate of these three quantities when the circular orbit of a planet of 15 MJ that initially orbits a 2 M⊙ star at 1 au shrinks under the action of tidal forces during the red giant phase. We use stellar evolution models coupled with computations of the orbital evolution of the planet, which allows us to follow the exchanges of angular momentum between the star and the orbit in a consistent way. We obtain that the reflex motion of the red giant star increases by more than 1 m s-1 per year in the last 40 yr before the planet engulfment. During this phase, the reflex motion of the star is between 660 and 710 m s-1. The spin period of the star increases by more than about 10 min per year in the last 3000 yr before engulfment. During this period, the spin period of the star is shorter than 0.7 yr. During this same period, the variation in orbital period, which is shorter than 0.18 yr, is on the same order of magnitude. Changes in reflex-motion and spin velocities are very small and thus most likely out of reach of being observed. The most promising way of detecting this effect is through observations of transiting planets, that is, through changes of the beginning or end of the transit. For the relatively long orbital periods expected around red giants, long observing runs of typically a few years are needed. Interesting star-planet systems that currently are in this stage of orbit-shrinking would be red giants with fast rotation (above typically 4-5 km s-1), a low surface gravity (log g lower

  6. Cyanogen in NGC 1851 Red Giant Branch and Asymptotic Giant Branch Stars: Quadrimodal Distributions

    DEFF Research Database (Denmark)

    Campbell, S. W.; Yong, D.; Wylie-de Boer, E. C.

    2012-01-01

    The Galactic globular cluster NGC 1851 has raised much interest since Hubble Space Telescope photometry revealed that it hosts a double subgiant branch. Here we report on our homogeneous study into the cyanogen (CN) band strengths in the red giant branch (RGB) population (17 stars) and asymptotic...... giant branch (AGB) population (21 stars) using AAOmega/2dF spectra with R ~ 3000. We discover that NGC 1851 hosts a quadrimodal distribution of CN band strengths in its RGB and AGB populations. This result supports the merger formation scenario proposed for this cluster, such that the CN quadrimodality...... found that the four CN peaks may be paired—the two CN-weaker populations being associated with low Ba and the two CN-stronger populations with high Ba. If true, then s-process abundances would be a good diagnostic for disentangling the two original clusters in the merger scenario. More observations...

  7. The potential of planets orbiting red dwarf stars to support oxygenic photosynthesis and complex life

    Science.gov (United States)

    Gale, Joseph; Wandel, Amri

    2017-01-01

    We review the latest findings on extra-solar planets and their potential of having environmental conditions that could support Earth-like life. Focusing on planets orbiting red dwarf (RD) stars, the most abundant stellar type in the Milky Way, we show that including RDs as potential life supporting host stars could increase the probability of finding biotic planets by a factor of up to a thousand, and reduce the estimate of the distance to our nearest biotic neighbour by up to 10. We argue that binary and multiple star systems need to be taken into account when discussing habitability and the abundance of biotic exoplanets, in particular RDs in such systems. Early considerations indicated that conditions on RD planets would be inimical to life, as their habitable zones would be so close to the host star as to make planets tidally locked. This was thought to cause an erratic climate and expose life forms to flares of ionizing radiation. Recent calculations show that these negative factors are less severe than originally thought. It has also been argued that the lesser photon energy of the radiation of the relatively cool RDs would not suffice for oxygenic photosynthesis (OP) and other related energy expending reactions. Numerous authors suggest that OP on RD planets may evolve to utilize photons in the infrared. We however argue, by analogy to the evolution of OP and the environmental physiology and distribution of land-based vegetation on Earth, that the evolutionary pressure to utilize infrared radiation would be small. This is because vegetation on RD planets could enjoy continuous illumination of moderate intensity, containing a significant component of photosynthetic 400-700 nm radiation. We conclude that conditions for OP could exist on RD planets and consequently the evolution of complex life might be possible. Furthermore, the huge number and the long lifetime of RDs make it more likely to find planets with photosynthesis and life around RDs than around

  8. Red giant stars from Sloan Digital Sky Survey. I. The general field

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. Q.; Zhao, G.; Carrell, K.; Zhao, J. K.; Tan, K. F.; Nissen, P. E.; Wei, P., E-mail: cyq@bao.ac.cn, E-mail: pen@phys.au.dk [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-11-01

    We have obtained a sample of ∼22,000 red giant branch (RGB) stars based on stellar parameters, provided by the ninth data release of the Sloan Digital Sky Survey, and the CH(G)/MgH indices, measured from the included spectra. The Galactic rest-frame velocity of V {sub gsr} versus longitude for the sample shows the existence of several groups of stars from globular clusters and known streams. Excluding these substructures, a sample of ∼16,000 RGB stars from the general field is used to investigate the properties of the thick disk, the inner halo, and the outer halo of our Galaxy. The metallicity and rotational velocity distributions are investigated for stars at 0 kpc < |Z| < 10 kpc. It is found that the canonical thick disk dominates at 0 kpc < |Z| < 2 kpc and its contribution becomes negligible at |Z| > 3 kpc. The MWTD is present and overlaps with the inner halo at 1 kpc < |Z| < 3 kpc. The inner halo starts at 2 kpc < |Z| < 3 kpc and becomes the dominated population for 4 kpc < |Z| < 10 kpc. For halo stars with |Z| > 5 kpc, bimodal metallicity distributions are found for 20 kpc < |Z| < 25 kpc and 35 kpc < RR < 45 kpc, which suggests a dual halo, the inner and the outer halo, as reported in Carollo et al. at low |Z| values. The peak of metallicity for the inner halo is at [Fe/H] ∼ –1.6 and appears to be at [Fe/H] ∼ –2.3 for the outer halo. The transition point from the inner to the outer halo is located at |Z| ∼ 20 kpc and RR ∼ 35 kpc.

  9. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Kopparapu, Ravi Kumar; Ramirez, Ramses; Kasting, James F. [Department of Geosciences, Penn State University, 443 Deike Building, University Park, PA 16802 (United States); Eymet, Vincent [Laboratoire d' Astrophysique de Bordeaux, Universite de Bordeaux 1, UMR 5804, F-33270 Floirac (France); Robinson, Tyler D.; Domagal-Goldman, Shawn; Meadows, Victoria [NASA Astrobiology Institute' s Virtual Planetary Laboratory (United States); Mahadevan, Suvrath; Terrien, Ryan C.; Deshpande, Rohit [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States)

    2013-03-10

    Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO{sub 2} atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95-1.67 AU. Here an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H{sub 2}O and CO{sub 2} absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70 AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200 K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with T{sub eff} {approx}< 5000 K, which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. This removes the dependence on planetary (Bond) albedo, which varies depending on the host star's spectral type. We suggest

  10. Infrared excess around nearby red giant branch stars and Reimers law

    Science.gov (United States)

    Groenewegen, M. A. T.

    2012-04-01

    Context. Mass loss is one of the fundamental properties of asymptotic giant branch (AGB) stars, but for stars with initial masses below ~1 M⊙, the mass loss on the first red giant branch (RGB) actually dominates mass loss on the AGB. Nevertheless, mass loss on the RGB is still often parameterised by a simple Reimers law in stellar evolution models. Aims: We study the infrared excess and mass loss of a sample of nearby RGB stars with reliably measured Hipparcos parallaxes and compare the mass loss to that derived for luminous stars in clusters. Methods: The spectral energy distributions of a well-defined sample of 54 RGB stars are constructed, and fitted with the dust radiative transfer model DUSTY. The central stars are modelled by MARCS model atmospheres. In a first step, the best-fit MARCS model is derived, basically determining the effective temperature. In a second step, models with a finite dust optical depth are fitted and it is determined whether the reduction in χ2 in such models with one additional free parameter is statistically significant. Results: Among the 54 stars, 23 stars are found to have a significant infrared excess, which is interpreted as mass loss. The most luminous star with L = 1860 L⊙ is found to undergo mass loss, while none of the 5 stars with L translated into mass-loss rates assuming a typical expansion velocity of 10 km s-1 and a dust-to-gas ratio of 0.005. In this case, fits to the stars with an excess result in log Ṁ (M⊙ yr-1) = (1.4 ± 0.4)log L + (-13.2 ± 1.2) and log Ṁ (M⊙ yr-1) = (0.9 ± 0.3)log (LR/M) + (-13.4 ± 1.3) assuming a mass of 1.1 M⊙ for all objects. We caution that if the expansion velocity and dust-to-gas ratio have different values from those assumed, the constants in the fit will change. If these parameters are also functions of luminosity, then this would affect both the slopes and the offsets. The mass-loss rates are compared to those derived for luminous stars in globular clusters, by fitting

  11. Discovery of magnetic A supergiants: the descendants of magnetic main-sequence B stars

    Science.gov (United States)

    Neiner, Coralie; Oksala, Mary E.; Georgy, Cyril; Przybilla, Norbert; Mathis, Stéphane; Wade, Gregg; Kondrak, Matthias; Fossati, Luca; Blazère, Aurore; Buysschaert, Bram; Grunhut, Jason

    2017-10-01

    In the context of the high resolution, high signal-to-noise ratio, high sensitivity, spectropolarimetric survey BritePol, which complements observations by the BRITE constellation of nanosatellites for asteroseismology, we are looking for and measuring the magnetic field of all stars brighter than V = 4. In this paper, we present circularly polarized spectra obtained with HarpsPol at ESO in La Silla (Chile) and ESPaDOnS at CFHT (Hawaii) for three hot evolved stars: ι Car, HR 3890 and ɛ CMa. We detected a magnetic field in all three stars. Each star has been observed several times to confirm the magnetic detections and check for variability. The stellar parameters of the three objects were determined and their evolutionary status was ascertained employing evolution models computed with the Geneva code. ɛ CMa was already known and is confirmed to be magnetic, but our modelling indicates that it is located near the end of the main sequence, I.e. it is still in a core hydrogen burning phase. ι Car and HR 3890 are the first discoveries of magnetic hot supergiants located well after the end of the main sequence on the Hertzsprung-Russell diagram. These stars are probably the descendants of main-sequence magnetic massive stars. Their current field strength (a few G) is compatible with magnetic flux conservation during stellar evolution. These results provide observational constraints for the development of future evolutionary models of hot stars including a fossil magnetic field.

  12. EXPORT : Optical photometry and polarimetry of Vega-type and pre-main sequence stars

    NARCIS (Netherlands)

    Oudmaijer, RD; Palacios, J; Eiroa, C; de Winter, D; Ferlet, R; Garzon, F; Grady, CA; Cameron, A; Deeg, HJ; Harris, AW; Horne, K; Merin, B; Miranda, LF; Montesinos, B; Mora, A; Penny, A; Quirrenbach, A; Rauer, H; Schneider, J; Solano, E; Tsapras, Y; Wesselius, PR

    2001-01-01

    This paper presents optical UBVRI broadband photo-polarimetry of the EXPORT sample obtained at the 2.5 m Nordic Optical Telescope. The database consists of multi-epoch photo-polarimetry of 68 pre-main-sequence and main-sequence stars. An investigation of the polarization variability indicates that

  13. Red supergiant stars in NGC 4449, NGC 5055, and NGC 5457

    Science.gov (United States)

    Chun, Sang-Hyun; Sohn, Yong-Jong; Asplund, Martin; Casagrande, Luca

    2017-11-01

    Nearby galaxies are ideal objects for the study of the mechanisms of galaxy formation and evolution, and massive stars in nearby galaxies are useful sources to investigate the structures and formation of the galaxies. It is important to gather the contents of massive stars for a number of galaxies spanning various metallicities. We focus on the red supergiants (RSGs) in nearby galaxies NGC 4449, NGC 5055, and NGC 5457, and the photometric properties of RSGs of three galaxies were investigated using near-infrared (JHK) imaging data obtained from WFCAM UKIRT. The (J - K, K)0 CMDs are investigated and compared with theoretical isochrones (Figure 1). The majority of RSGs in three galaxies have common age ranges from log(t yr ) = 6.9 to log(t yr ) = 7.3, and this indicates that these galaxies have experienced recent star formation within 20 Myr. Spatial correlation of RSGs with H II regions and their colour distribution were also investigated. For NGC 4449 and NGC 5457, the RSGs are spatially correlated with the H II regions, which however is not the case for NGC 5055. We found a similar colour distribution and a constant peak magnitude of M K = -11.9 for the RSGs in the three galaxies.

  14. VizieR Online Data Catalog: Red giant star sample from SDSS (Chen+, 2014)

    Science.gov (United States)

    Chen, Y. Q.; Zhao, G.; Carrell, K.; Zhao, J. K.; Tan, K. F.; Nissen, P. E.; Wei, P.

    2017-05-01

    Based on the SDSS DR9 database, we selected stars with (g-r)0 color in the range of 0.1 to 1.0 mag, and log g less than 3.5 dex for each metallicity bin ranging from [Fe/H]AJ....136.2022L, 2008, J/AJ/136/2050, 2011, J/AJ/141/90; Allende Prieto et al. 2008AJ....136.2070A; Smolinski et al. 2011, J/AJ/141/89). As described in Ahn et al. (2012ApJS..203...21A), the updated SSPP adopts a much-improved color-temperature relation from the InfraRed Flux Method Casagrande et al. (2010, J/A+A/512/A54), and the estimates of surface gravity and metallicity have been thoroughly recalibrated based on results from high-resolution observations. An estimate of the internal uncertainties of the SSPP is ~50 K for Teff, ~0.12 dex for log g, and ~0.10 dex for [Fe/H]. In order to avoid early-type stars, we limit the stars to have SSPP temperatures from 3000 K to 10000 K and a signal-to-noise ratio larger than 10. (1 data file).

  15. Formation history of open clusters constrained by detailed asteroseismology of red giant stars observed by Kepler

    Science.gov (United States)

    Corsaro, Enrico; Lee, Yueh-Ning; García, Rafael A.; Hennebelle, Patrick; Mathur, Savita; Beck, Paul G.; Mathis, Stephane; Stello, Dennis; Bouvier, Jérôme

    2017-10-01

    Stars originate by the gravitational collapse of a turbulent molecular cloud of a diffuse medium, and are often observed to form clusters. Stellar clusters therefore play an important role in our understanding of star formation and of the dynamical processes at play. However, investigating the cluster formation is diffcult because the density of the molecular cloud undergoes a change of many orders of magnitude. Hierarchical-step approaches to decompose the problem into different stages are therefore required, as well as reliable assumptions on the initial conditions in the clouds. We report for the first time the use of the full potential of NASA Kepler asteroseismic observations coupled with 3D numerical simulations, to put strong constraints on the early formation stages of open clusters. Thanks to a Bayesian peak bagging analysis of about 50 red giant members of NGC 6791 and NGC 6819, the two most populated open clusters observed in the nominal Kepler mission, we derive a complete set of detailed oscillation mode properties for each star, with thousands of oscillation modes characterized. We therefore show how these asteroseismic properties lead us to a discovery about the rotation history of stellar clusters. Finally, our observational findings will be compared with hydrodynamical simulations for stellar cluster formation to constrain the physical processes of turbulence, rotation, and magnetic fields that are in action during the collapse of the progenitor cloud into a proto-cluster.

  16. Massive pre-main-sequence stars in M17

    Science.gov (United States)

    Ramírez-Tannus, M. C.; Kaper, L.; de Koter, A.; Tramper, F.; Sana, H.; Ramírez-Agudelo, O. H.; Bik, A.; Ellerbroek, L. E.; Ochsendorf, B. B.

    2017-11-01

    We obtained VLT/X-shooter spectra of twelve candidate young massive stars previously selected by Hanson et al. (1997) in the giant Hii region M17. An analysis of their spectra using FASTWIND models (Puls et al. 2005) shows that they span a mass range of 6 - 20 M⊙. We identify the presence of gaseous and dusty disks around six sources based on emission lines in the spectrum and infrared continuum excess.

  17. Luminous pre-main sequence stars in the LMC?

    NARCIS (Netherlands)

    Lamers, HJGLM; Beaulieu, JP

    We report the serendipitous discovery of seven luminous irregular variables in the LMC by the EROS project. The stars have V similar or equal to 15(m) to 17(m), (B(E) - R(E)) similar or equal to 0(m), and vary by about 0.4(m) on timescales of 10 to 40 days. The variations in B(E) and R(E) are about

  18. Radiative hydrodynamics simulations of red supergiant stars. IV. Gray versus non-gray opacities

    Science.gov (United States)

    Chiavassa, A.; Freytag, B.; Masseron, T.; Plez, B.

    2011-11-01

    Context. Red supergiants are massive evolved stars that contribute extensively to the chemical enrichment of our Galaxy. It has been shown that convection in those stars produces large granules that cause surface inhomogeneities and shock waves in the photosphere. The understanding of their dynamics is crucial for unveiling the unknown mass-loss mechanism, their chemical composition, and their stellar parameters. Aims: We present a new generation of red supergiant simulations with a more sophisticated opacity treatment performed with 3D radiative-hydrodynamics code CO5BOLD. Methods: In the code the coupled equations of compressible hydrodynamics and non-local radiation transport are solved in the presence of a spherical potential. The stellar core is replaced by a special spherical inner boundary condition, where the gravitational potential is smoothed and the energy production by fusion is mimicked by a simply producing heat corresponding to the stellar luminosity. All outer boundaries are transmitting for matter and light. The post-processing radiative transfer code OPTIM3D is used to extract spectroscopic and interferometric observables. Results: We show that if one relaxes the assumption of frequency-independent opacities, this leads to a steeper mean thermal gradient in the optical thin region that strongly affects the atomic strengths and the spectral energy distribution. Moreover, the weaker temperature fluctuations reduce the incertitude on the radius determination with interferometry. We show that 1D models of red supergiants must include a turbulent velocity that is calibrated on 3D simulations to obtain the effective surface gravity that mimics the effect of turbulent pressure on the stellar atmosphere. We provide an empirical calibration of the ad hoc micro- and macroturbulence parameters for 1D models using the 3D simulations: we find that there is no clear distinction between the different macroturbulent profiles needed in 1D models to fit 3D

  19. Hiding in plain sight - red supergiant imposters? Super-AGB stars - bridging the divide between low/intermediate-mass and high-mass stars

    Science.gov (United States)

    Doherty, Carolyn Louise; Gil-Pons, Pilar; Lattanzio, John; Siess, Lionel

    2015-08-01

    Super Asymptotic Giant Branch (Super-AGB) stars reside in the mass range ~ 6.5-10 M⊙ and bridge the divide between low/intermediate-mass and massive stars. They are characterised by off-centre carbon ignition prior to a thermally pulsing phase which can consist of many tens to even thousands of thermal pulses. With their high luminosities and very large, cool, red stellar envelopes, these stars appear seemingly identical to their slightly more massive red supergiant counterparts. Due to their similarities, super-AGB stars may therefore act as stellar imposters and contaminate red supergiant surveys. Super-AGB stars undergo relatively extreme nucleosynthetic conditions, with very efficient proton-capture nucleosynthesis occurring at the base of the convective envelope and also heavy element (s-process) production during the thermal pulse to be later mixed to the surface during third dredge-up events. The surface enrichment from these two processes may result in a clear nucleosynthetic signature to differentiate these two classes of star.The final fate of super-AGB stars is also quite uncertain and depends primarily on the competition between the core growth and mass-loss rates. If the stellar envelope is removed prior to the core reaching the Chandrasekhar mass, an O-Ne white dwarf will remain, otherwise the star will undergo an electron-capture supernova leaving behind a neutron star. We describe the factors which influence these different final fate channels, such as the efficiency of convection, the mass-loss rates, the third dredge-up efficiency and the Fe-peak opacity instability which may lead to expulsion of the entire remaining stellar envelope. We determine the relative fraction of super-AGB stars that end life as either an O-Ne white dwarf or as a neutron star, and provide a mass limit for the lowest mass supernova over a broad range of metallicities from the earliest time (Z=0) right through until today (Z~0.04).

  20. MOTION VERIFIED RED STARS (MoVeRS): A CATALOG OF PROPER MOTION SELECTED LOW-MASS STARS FROM WISE, SDSS, AND 2MASS

    Energy Technology Data Exchange (ETDEWEB)

    Theissen, Christopher A.; West, Andrew A. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Dhital, Saurav, E-mail: ctheisse@bu.edu [Department of Physical Sciences, Embry-Riddle Aeronautical University, 600 South Clyde Morris Blvd., Daytona Beach, FL 32114 (United States)

    2016-02-15

    We present a photometric catalog of 8,735,004 proper motion selected low-mass stars (KML-spectral types) within the Sloan Digital Sky Survey (SDSS) footprint, from the combined SDSS Data Release 10 (DR10), Two Micron All-Sky Survey (2MASS) point-source catalog (PSC), and Wide-field Infrared Survey Explorer (WISE) AllWISE catalog. Stars were selected using r − i, i − z, r − z, z − J, and z − W1 colors, and SDSS, WISE, and 2MASS astrometry was combined to compute proper motions. The resulting 3,518,150 stars were augmented with proper motions for 5,216,854 earlier type stars from the combined SDSS and United States Naval Observatory B1.0 catalog (USNO-B). We used SDSS+USNO-B proper motions to determine the best criteria for selecting a clean sample of stars. Only stars whose proper motions were greater than their 2σ uncertainty were included. Our Motion Verified Red Stars catalog is available through SDSS CasJobs and VizieR.

  1. X-ray Emission Properties of Intermediate-Mass, Pre-Main-Sequence Stars

    Science.gov (United States)

    Povich, Matthew S.; Binder, Breanna; Townsley, Leisa K.; Broos, Patrick S.

    2017-08-01

    Intermediate-mass (2-8 M⊙) main-sequence stars with A to mid-B spectral types occupy an X-ray "desert" of weak intrinsic emission between low- and high-mass stars. Lacking the wind-shock driven emission of massive, O and early B stars or the convectively-driven magnetic reconnection flaring activity of later-type stars, X-ray detections of (non-peculiar) main-sequence AB stars are typically ascribed to the presence of unresolved, lower-mass binary companions. There is mounting evidence, however, that intermediate-mass, pre-main sequence stars (IMPS) with GK spectral types produce intrinsic X-ray emission that rapidly decays with time following the development of a radiative zone as IMPS approach the ZAMS as AB stars. This suggests that X-ray emission from IMPS may be a more luminous analog of the well-studied coronal X-ray emission from lower-mass, T Tauri stars. Statistical studies of young IMPS have been hampered by their scarcety in nearby, unobscured star-forming regions. We present the first results from a spectral-fitting study to measure absorption-corrected X-ray luminosities and plasma temperatures for hundreds of candidate X-ray emitting IMPS found in the MYStIX and MAGiX surveys of massive Galactic star forming regions. Candidate IMPS are placed on the HR diagram via a novel infrared spectral energy distribution modeling technique designed for highly-obscured, young massive star-forming regions. The rapid decay of X-ray emission from these objects has the potential to provide an independent chronometer to constrain star formation rates, and may produce an age-dependent bias in the relationship between the stellar X-ray luminosity function and mass function in distant (>2 kpc) regions observed with relatively shallow X-ray observations.This work is supported by the National Science Foundation under grant CAREER-1454334 and by NASA through Chandra Award 18200040.

  2. Pulsating red giant stars in eccentric binary systems discovered from Kepler space-based photometry. A sample study and the analysis of KIC 5006817

    NARCIS (Netherlands)

    Beck, P.G.; Hambleton, K.; Vos, J.; Kallinger, T.; Bloemen, S.; Tkachenko, A.; García, R.A.; Østensen, R.H.; Aerts, C.; Kurtz, D.W.; De Ridder, J.; Hekker, S.; Pavlovski, K.; Mathur, S.; De Smedt, K.; Derekas, A.; Corsaro, E.; Mosser, B.; Van Winckel, H.; Huber, D.; Degroote, P.; Davies, G.R.; Prša, A.; Debosscher, J.; Elsworth, Y.; Nemeth, P.; Siess, L.; Schmid, V.S.; Pápics, P.I.; de Vries, B.L.; van Marle, A.J.; Marcos-Arenal, P.; Lobel, A.

    2014-01-01

    Context. The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to improved understanding of red giant stars and binary stars. Seismology allows us to constrain the properties of red giants. In addition to eclipsing binaries, eccentric non-eclipsing binaries that exhibit

  3. Analysis and calibration of CaII triplet spectroscopy of red giant branch stars from VLT/FLAMES observations

    NARCIS (Netherlands)

    Battaglia, G.; Irwin, M.; Tolstoy, E.; Hill, V.; Helmi, A.; Letarte, B.; Jablonka, P.

    2008-01-01

    We demonstrate that low-resolution Ca II triplet (CaT) spectroscopic estimates of the overall metallicity ([Fe/H]) of individual red giant branch (RGB) stars in two nearby dwarf spheroidal galaxies (dSphs) agree to +/- 0.1-0.2 dex with detailed high-resolution spectroscopic determinations for the

  4. High resolution spectroscopy of Red Giant Branch stars and the chemical evolution of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T. J. L.; Hill, V.; Tolstoy, E.; Irwin, M. J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; Francois, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.; Ballet, J.; Martins, F.; Bournaud, F.; Monier, R.; Reylé, C.

    2014-01-01

    From VLT-FLAMES high-resolution spectra, we determine the abundances of several α, iron-peak and neutron-capture elements in 47 Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We confirm that SNe Ia started to contribute to the chemical enrichment of Fornax at [Fe/H] between --2.0 and

  5. High resolution spectroscopy of Red Giant Branch stars and the chemical evolution of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T.J.L.; Hill, V.; Tolstoy, E.; Irwin, M.J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; Francois, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.; Ballet, J.; Bournaud, F.; Martins, F.; Monier, R.; Reyle, C.

    2014-01-01

    From VLT-FLAMES high-resolution spectra, we determine the abundances of several α, iron-peak and neutron-capture elements in 47 Red Giant Branch stars in the Fornax dwarf speroidal galaxy. We confirm that SNe Ia started to contribute to the chemical enrichment of Fornax at [Fe/H] between -2.0 and -

  6. OCCASO - II. Physical parameters and Fe abundances of red clump stars in 18 open clusters

    Science.gov (United States)

    Casamiquela, L.; Carrera, R.; Blanco-Cuaresma, S.; Jordi, C.; Balaguer-Núñez, L.; Pancino, E.; Anders, F.; Chiappini, C.; Díaz-Pérez, L.; Aguado, D. S.; Aparicio, A.; Garcia-Dias, R.; Heiter, U.; Martínez-Vázquez, C. E.; Murabito, S.; del Pino, A.

    2017-10-01

    Open clusters have long been used to study the chemodynamical evolution of the Galactic disc. This requires a homogeneously analysed sample covering a wide range of ages and distances. In this paper, we present the Open Clusters Chemical Abundances from Spanish Observatories (OCCASO) second data release. This comprises a sample of high-resolution (R > 65 000) and high signal-to-noise spectra of 115 red clump stars in 18 open clusters. We derive atmospheric parameters (Teff, log g, ξ), and [Fe/H] abundances using two analysis techniques: equivalent widths and spectral synthesis. A detailed comparison and a critical review of the results of the two methods are made. Both methods are carefully tested between them, with the Gaia FGK benchmark stars, and with an extensive sample of literature values. We perform a membership study using radial velocities and the resulting abundances. Finally, we compare our results with a chemodynamical model of the Milky Way thin disc concluding that the oldest open clusters are consistent with the models only when dynamical effects are taken into account.

  7. Period Changes in Pulsating Red Supergiant Stars: A Science and Education Project

    Science.gov (United States)

    Percy, J. R.; Favaro, E.; Glasheen, J.; Ho, B.; Sato, H.

    2008-12-01

    We describe research done as part of the University of Toronto Mentorship Program, which enables outstanding senior high school students to work on research projects at the university. The students began with extensive background reading on variable stars, and became familiar with various forms of time-series analysis by applying them to a few red supergiant variables in the AAVSO International Database; we report on the results. They also prepared a useful manual for our publicly-available self-correlation analysis software. They undertook an intensive analysis of the period changes in BC Cyg, using the AAVSO and Turner data and the (O-C) method, in the hope that evolutionary period changes could be observed. The (O-C) diagram, however, is dominated by errors in determining the times of maximum, and by the effects of cycle-to-cycle period fluctuations. As a result, the (O-C) method is generally not effective for these stars. We also describe the Mentorship Program and its elements, and reflect on the students' experience.

  8. Mitigating the mass dependence in the Δν scaling relation of red giant stars

    Science.gov (United States)

    Guggenberger, Elisabeth; Hekker, Saskia; Angelou, George C.; Basu, Sarbani; Bellinger, Earl P.

    2017-09-01

    The masses and radii of solar-like oscillators can be estimated through the asteroseismic scaling relations. These relations provide a direct link between observables, I.e. effective temperature and characteristics of the oscillation spectra, and stellar properties, I.e. mean density and surface gravity (thus mass and radius). These scaling relations are commonly used to characterize large samples of stars. Usually, the Sun is used as a reference from which the structure is scaled. However, for stars that do not have a similar structure as the Sun, using the Sun as a reference introduces systematic errors as large as 10 per cent in mass and 5 per cent in radius. Several alternatives for the reference of the scaling relation involving the large frequency separation (typical frequency difference between modes of the same degree and consecutive radial order) have been suggested in the literature. In a previous paper, we presented a reference function with a dependence on both effective temperature and metallicity. The accuracy of predicted masses and radii improved considerably when using reference values calculated from our reference function. However, the residuals indicated that stars on the red giant branch possess a mass dependence that was not accounted for. Here, we present a reference function for the scaling relation involving the large frequency separation that includes the mass dependence. This new reference function improves the derived masses and radii significantly by removing the systematic differences and mitigates the trend with νmax (frequency of maximum oscillation power) that exists when using the solar value as a reference.

  9. Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2).

    OpenAIRE

    Narva, K E; Feitelson, J S

    1990-01-01

    Previous genetic evidence suggested that the redD gene product might be involved in the regulation of undecylprodigiosin (Red) biosynthesis in Streptomyces coelicolor. The redD+ gene was subcloned on a 2.2-kilobase-pair restriction fragment from the S. coelicolor redCD region by complementation of S. coelicolor JF1 (redD42). The DNA sequence of the 2.2-kilobase-pair redD-complementing region was determined, and the redD coding sequence was identified by computer analysis and deletion subcloni...

  10. Spectroscopic and asteroseismic analysis of the remarkable main-sequence A star KIC 11145123

    DEFF Research Database (Denmark)

    Takada-Hidai, Masahide; Kurtz, Donald W.; Shibahashi, Hiromoto

    2017-01-01

    A spectroscopic analysis was carried out to clarify the properties of KIC 11145123 - the first main-sequence star with a directly measured core-to-surface rotation profile - based on spectra observed with the High Dispersion Spectrograph (HDS) of the Subaru telescope. The atmospheric parameters (...

  11. On the observational characteristics of lithium-enhanced giant stars in comparison with normal red giants†

    Science.gov (United States)

    Takeda, Yoichi; Tajitsu, Akito

    2017-08-01

    While lithium is generally deficient in the atmosphere of evolved giant stars because of the efficient mixing-induced dilution, a small fraction of red giants show unusually strong Li lines indicative of conspicuous abundance excess. With the aim of shedding light on the origin of these peculiar stars, we carried out a spectroscopic study on the observational characteristics of 20 selected bright giants already known to be Li-rich from past studies, in comparison with the reference sample of a large number of normal late G-early K giants. Special attention was paid to clarifying any difference between the two samples from a comprehensive point of view (i.e., with respect to stellar parameters, rotation, activity, kinematic properties, 6Li/7Li ratio, and the abundances of Li, Be, C, O, Na, S, and Zn). Our sample stars are roughly divided into a “bump/clump group” and a “luminous group” according to their positions on the HR diagram. Regarding the former group [1.5 ≲ log (L/L⊙) ≲ 2 and M ∼ 1.5-3 M⊙], Li-enriched giants and normal giants appear practically similar in almost all respects except for Li, suggesting that surface Li enhancement in this group may be a transient episode which normal giants undergo at certain evolutionary stages in their lifetime. Meanwhile, those Li-rich giants belonging to the latter group [log (L/L⊙) ∼ 3 and M ∼ 3-5 M⊙] appear more anomalous in the sense that they tend to show higher rotation as well as higher activity, and that their elemental abundances (especially those derived from high-excitation lines) are apt to show apparent overabundances, though this might be due to a spurious effect reflecting the difficulty of abundance derivation in stars of higher rotation and activity. Our analysis confirmed considerable Be deficiency as well as absence of 6Li as the general characteristics of Li-rich giants under study, which implies that engulfment of planets is rather unlikely for the origin of Li-enrichment.

  12. Impacts of WIMP dark matter upon stellar evolution: main-sequence stars

    CERN Document Server

    Scott, Pat; Edsjo, Joakim

    2008-01-01

    The presence of large amounts of WIMP dark matter in stellar cores has been shown to have significant effects upon models of stellar evolution. We present a series of detailed grids of WIMP-influenced stellar models for main sequence stars, computed using the DarkStars code. We describe the changes in stellar structure and main sequence evolution which occur for masses ranging from 0.3 to 2.0 solar masses and metallicities from Z = 0.0003-0.02, as a function of the rate of energy injection by WIMPs. We then go on to show what rates of energy injection can be obtained using realistic orbital parameters for stars near supermassive black holes, including detailed considerations of dark matter halo velocity and density profiles. Capture and annihilation rates are strongly boosted when stars follow elliptical rather than circular orbits, causing WIMP annihilation to provide up to 100 times the energy of hydrogen fusion in stars at the Galactic centre.

  13. A new method to disentangle the rotational velocities of stars: Application to main-sequence field Stars

    Science.gov (United States)

    Curé, M.; Rial, D. F.; Cassetti, J.; Christen, A.

    2014-10-01

    The projected rotational velocity v sin i is a fundamental observable quantity. In order to obtain the rotational velocity distribution of a sample of v sin i, Chandrasekhar & Münch (1950) developed a formalism to obtain this distribution under the assumption that rotational axes are uniformly distributed, but this method is not usually applied due to an intrinsic numerical problem associated to the derivative of an Abel's integral. An alternative iterative method was developed by Lucy (1974) to disentangle the distribution function of this kind of inverse problem, but this method has no convergence criteria. Here we present a new method to disentangle the distribution of rotational velocities, based on Chandrasekhar & Münch (1950) formalism. We obtain the cumulative distribution function (CDF) of the rotational velocities from projected velocities (v sin i) under the standard assumption of uniform distributed rotational axes. Through simulations the method is tested using a) theoretical Maxwellian distribution functions for the rotational velocity distribution and b) with a sample of about 12.500 main-sequence field stars. Our main results are: The method is robust and in just one step gives the cumulative distribution function of rotational velocities. When applied to theoretical distributions it recovers the CDF with very high confidence. When applied to real data, we recover the results from Carvalho et al. (2009) proving that the velocity distribution function of main-sequence field stars is non-Maxwellian and are better described by Tsallis or Kaniadakis distribution functions.

  14. Verifying reddening and extinction for Gaia DR1 TGAS main sequence stars

    Science.gov (United States)

    Gontcharov, George A.; Mosenkov, Aleksandr V.

    2017-12-01

    We compare eight sources of reddening and extinction estimates for approximately 60 000 Gaia DR1 Tycho-Gaia Astrometric Solution (TGAS) main sequence stars younger than 3 Gyr with a relative error of the Gaia parallax less than 0.1. For the majority of the stars, the best 2D dust emission-based reddening maps show considerable differences between the reddening to infinity and the one calculated to the stellar distance using the barometric law of the dust distribution. This proves that the majority of the TGAS stars are embedded in the Galactic dust layer and a proper 3D treatment of the reddening/extinction is required to calculate their dereddened colours and absolute magnitudes reliably. Sources with 3D estimates of reddening are tested in their ability to put the stars among the PARSEC and MIST theoretical isochrones in the Hertzsprung-Russell diagram based on the precise Gaia, Tycho-2, 2MASS and WISE photometry. Only the reddening/extinction estimates by Arenou et al. and Gontcharov, being appropriate for nearby stars within 280 pc, provide both the minimal number of outliers bluer than any reasonable isochrone and the correct number of stars younger than 3 Gyr in agreement with the Besançon Galaxy model.

  15. An Einstein Observatory X-ray survey of main-sequence stars with shallow convection zones

    Science.gov (United States)

    Schmitt, J. H. M. M.; Golub, L.; Harnden, F. R., Jr.; Maxson, C. W.; Rosner, R.; Vaiana, G. S.

    1985-01-01

    The results of an X-ray survey of bright late A and early F stars on the main B-V sequence between 0.1 and 0.5 are presented. All the stars were observed with the Einstein Observatory for a period of at least 500 seconds. The survey results show significantly larger X-ray luminosities for the sample binaries than for the single stars. It is suggested that the difference is due to the presence of multiple X-ray sources in binaries. It is shown that the X-ray luminosities for single stars increase rapidly with increasing color, and that the relation Lx/Lbol is equal to about 10 to the -7th does not hold for A stars. No correlation was found between X-ray luminosity and projected equatorial rotation velocity. It is argued on the basis of the observations that X-ray emission in the sample stars originated from coronae. The available observational evidence supporting this view is discussed.

  16. B335: protostar or embedded pre-main-sequence star

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, C.J. (Edinburgh Univ. (UK). Dept. of Astronomy); Gear, W.K. (Royal Observatory, Edinburgh (UK)); Sandell, G.; Hayashi, S.; Duncan, W.D. (Joint Astronomy Centre, Hilo, Hawaii (USA)); Griffin, M.J.; Hazell, A.S. (Queen Mary Coll., London (UK). Dept. of Physics)

    1990-03-15

    High-resolution submillimetre continuum observations of the far-infrared source in the isolated Bok globule B335 have been made using the JCMT. The continuum source is resolved perpendicular to the axis of the accompanying outflow in an 8 arcsec beam, but unresolved parallel to it. We conclude that it is a very dense core of dust and gas surrounding a central protostellar or pre-main-sequence object. We find that this core is able to collimate an initially isotropic wind into its observed bipolar structure. The central object does not appear to fit the currently popular models for protostellar evolution, because of its high A{sub V}, low luminosity, and the presence of an outflow. (author).

  17. Carbon Biochemistry and the Ultraviolet Radiation Environments of F, G, and K Main Sequence Stars

    Science.gov (United States)

    Cockell, Charles S.

    1999-10-01

    The ultraviolet radiation environment of main sequence stars might be a factor in determining the suitability of extrasolar planets for biological evolution and the subsequent radiation of life in exposed habitats. Assuming the validity of the carbon-water chauvinism, the absorbance of DNA in the UV region of the spectrum is used as a theoretical biological dosimeter to elucidate in more detail the photobiological parameter space of anoxic planets orbiting F, G, and K main sequence stars. Planets within the habitable zones of K main sequence stars have particularly favorable UV environments, with biochemically effective irradiances an order of magnitude lower than those believed to have existed on the surface of Archean Earth. Even using the UV shielding and repair habits of present-day terrestrial organisms, the survivability of the photobiological environment of anoxic K star planets can be demonstrated. The biochemically effective irradiances received in the F star radiation environment are more severe, being 6 to 27 times higher than on Archean Earth. Nevertheless, a combination of UV mitigation strategies seen on the present-day Earth suggest that UV radiation is not a constraint on life even in the inner region of the habitable zone. Life in an ocean on an F-star planet could experience a UV radiation regime similar even to that for present-day Earth. These calculations, although limited by our assumptions on the course of biochemical evolution and the UV absorbance of complex extraterrestrial molecules, suggest that life can survive the UV radiation environments of most extrasolar planets.

  18. X-rays, pre-main sequence stars and planet formation

    OpenAIRE

    Feigelson, E. D.

    2005-01-01

    The study of magnetic activity of pre-main sequence (PMS) stars through their X-ray emission is entering a mature phase. We review here two recent developments. First, we present some early findings from the Chandra Orion Ultradeep Project (COUP) relating to the age-activity-rotation relations of PMS stars. COUP is a nearly continuous exposure of the Orion Nebula Cluster over 13 days and gives the most comprehensive view to date of X-ray emission from the PMS population. We find that the acti...

  19. The dynamic atmospheres of red giant stars. Spectral synthesis in high resolution

    Science.gov (United States)

    Nowotny, W.

    2005-11-01

    Light is the only source of information we have to study distant stars. Our knowledge about the state of the matter inside stars has been gathered by analysing star light (photometry, spectroscopy, interferometry, polarimetry, etc.). Of central importance in this context are stellar atmospheres, which are the transition regions from the optically thick stellar interiors where the electromagnetic radiation is generated to the optically thin outer layers from where the photons can leave the star. However, the atmosphere of a star is not only the region where most of the observable radiation is emitted or in other words the layers which are "visible from outside". The atmosphere also leaves an imprint on the stellar spectrum as the radiation passes through, most of the line spectrum is formed there. Thus, the light serves as a probe for the physical processes within stellar atmospheres, especially spectroscopy is one of the major tools in stellar astrophysics. Applying the underlying physical principles in numerical simulations (model atmospheres, synthetic spectra) is the second -- complementary and necessary -- step towards a deeper understanding of stellar atmospheres and for deriving stellar parameters (e.g. T_eff, L, log g, chemical composition) of observed objects. This thesis is dedicated to the outer layers of Asymptotic Giant Branch (AGB) stars, which have rather remarkable properties compared to atmospheres of most other types of stars. AGB stars represent low- to intermediate mass stars at a late stage of their evolution. Forming a sub-group among all red giants, they exhibit large extensions, low effective temperatures and high luminosities. The evolutionary phase of the AGB -- complex but decisive for stellar evolution -- is characterised by several important phenomena as for example nucleo-synthesis in explosively burning shells (thermal pulses), convective processes (dredge up), large-amplitude pulsations with long periods or a pronounced mass loss. Red

  20. Satellite DNA Sequences in Canidae and Their Chromosome Distribution in Dog and Red Fox.

    Science.gov (United States)

    Vozdova, Miluse; Kubickova, Svatava; Cernohorska, Halina; Fröhlich, Jan; Rubes, Jiri

    2016-01-01

    Satellite DNA is a characteristic component of mammalian centromeric heterochromatin, and a comparative analysis of its evolutionary dynamics can be used for phylogenetic studies. We analysed satellite and satellite-like DNA sequences available in NCBI for 4 species of the family Canidae (red fox, Vulpes vulpes, VVU; domestic dog, Canis familiaris, CFA; arctic fox, Vulpes lagopus, VLA; raccoon dog, Nyctereutes procyonoides procyonoides, NPR) by comparative sequence analysis, which revealed 86-90% intraspecies and 76-79% interspecies similarity. Comparative fluorescence in situ hybridisation in the red fox and dog showed signals of the red fox satellite probe in canine and vulpine autosomal centromeres, on VVUY, B chromosomes, and in the distal parts of VVU9q and VVU10p which were shown to contain nucleolus organiser regions. The CFA satellite probe stained autosomal centromeres only in the dog. The CFA satellite-like DNA did not show any significant sequence similarity with the satellite DNA of any species analysed and was localised to the centromeres of 9 canine chromosome pairs. No significant heterochromatin block was detected on the B chromosomes of the red fox. Our results show extensive heterogeneity of satellite sequences among Canidae and prove close evolutionary relationships between the red and arctic fox. © 2017 S. Karger AG, Basel.

  1. The complete mitochondrial genome sequence of the Tibetan red fox (Vulpes vulpes montana).

    Science.gov (United States)

    Zhang, Jin; Zhang, Honghai; Zhao, Chao; Chen, Lei; Sha, Weilai; Liu, Guangshuai

    2015-01-01

    In this study, the complete mitochondrial genome of the Tibetan red fox (Vulpes Vulpes montana) was sequenced for the first time using blood samples obtained from a wild female red fox captured from Lhasa in Tibet, China. Qinghai--Tibet Plateau is the highest plateau in the world with an average elevation above 3500 m. Sequence analysis showed it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes and 1 control region (CR). The variable tandem repeats in CR is the main reason of the length variability of mitochondrial genome among canide animals.

  2. The stellar initial mass function in red-sequence galaxies: 1-μm spectroscopy of Coma cluster galaxies with Subaru/FMOS

    Science.gov (United States)

    Smith, Russell J.; Lucey, John R.; Carter, David

    2012-11-01

    To investigate possible variations in the stellar initial mass function (IMF) in red-sequence galaxies, we have obtained infrared spectroscopy with Subaru/Fibre Multi-Object Spectrograph (FMOS) for a sample of 92 red-sequence galaxies in the Coma cluster. Velocity dispersions, ages and element abundances for these galaxies have been previously determined from optical data. The full range of velocity dispersions covered by the sample is σ = 50-300 km s-1. By stacking the FMOS spectra in the rest frame and removing sky-subtraction residuals and other artefacts fixed in the observed frame, we derive composite spectra in the 9600-10500 Å range for galaxies grouped according to their velocity dispersion or Mg/Fe ratio. We measure the Wing-Ford band of FeH and a new index centred on a Ca I line at 10345 Å; these features are strong in cool dwarf stars, and hence reflect the form of the IMF at low mass ( 250 km s-1). Binning the observed galaxies instead by Mg/Fe ratio, the behaviour of both indices implies a trend of IMF from Chabrier-like, at abundance ratios close to solar, to Salpeter or heavier for highly α-enhanced populations. At face value, this suggests that the IMF depends on the mode of star formation, with intense rapid starbursts generating a larger population of low-mass stars. Based on data collected at Subaru Telescope, which is operated by the National Observatory of Japan.

  3. Population synthesis to constrain Galactic and stellar physics. I. Determining age and mass of thin-disc red-giant stars

    Science.gov (United States)

    Lagarde, N.; Robin, A. C.; Reylé, C.; Nasello, G.

    2017-05-01

    Context. The cornerstone mission of the European Space Agency, Gaia, together with forthcoming complementary surveys (CoRoT, Kepler, K2, APOGEE, and Gaia-ESO), will revolutionize our understanding of the formation and history of our Galaxy, providing accurate stellar masses, radii, ages, distances, as well as chemical properties for a very large sample of stars across different Galactic stellar populations. Aims: Using an improved population synthesis approach and new stellar evolution models we attempt to evaluate the possibility of deriving ages and masses of clump stars from their chemical properties. Methods: A new version of the Besançon Galaxy models (BGM) is used in which new stellar evolutionary tracks are computed from the stellar evolution code STAREVOL. These provide global, chemical, and seismic properties of stars from the pre-main sequence to the early-AGB. For the first time, the BGM can explore the effects of an extra-mixing occurring in red-giant stars. In particular we focus on the effects of thermohaline instability on chemical properties as well as on the determination of stellar ages and masses using the surface [C/N] abundance ratio. Results: The impact of extra-mixing on 3He, 12C/13C, nitrogen, and [C/N] abundances along the giant branch is quantified. We underline the crucial contribution of asteroseismology to discriminate between evolutionary states of field giants belonging to the Galactic disc. The inclusion of thermohaline instability has a significant impact on 12C/13C, 3He as well as on the [C/N] values. We clearly show the efficiency of thermohaline mixing at different metallicities and its influence on the determined stellar mass and age from the observed [C/N] ratio. We then propose simple relations to determine ages and masses from chemical abundances according to these models. Conclusions: We emphasize the usefulness of population synthesis tools to test stellar models and transport processes inside stars. We show that transport

  4. THE ORIGIN OF HVS17, AN UNBOUND MAIN SEQUENCE B STAR AT 50 kpc

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Cohen, Judith G., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: jlc@astro.caltech.edu [Palomar Observatory, Mail Stop 249-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-09-20

    We analyze Keck Echellette Spectrograph and Imager spectroscopy of HVS17, a B-type star traveling with a Galactic rest frame radial velocity of +445 km s{sup –1} in the outer halo of the Milky Way. HVS17 has the projected rotation of a main sequence B star and is chemically peculiar, with solar iron abundance and sub-solar alpha abundance. Comparing measured T{sub eff} and log g with stellar evolution tracks implies that HVS17 is a 3.91 ± 0.09 M{sub ☉}, 153 ± 9 Myr old star at a Galactocentric distance of r = 48.5 ± 4.6 kpc. The time between its formation and ejection significantly exceeds 10 Myr and thus is difficult to reconcile with any Galactic disk runaway scenario involving massive stars. The observations are consistent, on the other hand, with a hypervelocity star ejection from the Galactic center. We show that Gaia proper motion measurements will easily discriminate between a disk and Galactic center origin, thus allowing us to use HVS17 as a test particle to probe the shape of the Milky Way's dark matter halo.

  5. The Main Sequences of Star-forming Galaxies and Active Galactic Nuclei at High Redshift

    Science.gov (United States)

    Mancuso, C.; Lapi, A.; Shi, J.; Cai, Z.-Y.; Gonzalez-Nuevo, J.; Béthermin, M.; Danese, L.

    2016-12-01

    We provide a novel, unifying physical interpretation on the origin, average shape, scatter, and cosmic evolution for the main sequences of star-forming galaxies and active galactic nuclei (AGNs) at high redshift z≳ 1. We achieve this goal in a model-independent way by exploiting: (i) the redshift-dependent star formation rate functions based on the latest UV/far-IR data from HST/Herschel, and related statistics of strong gravitationally lensed sources; (ii) deterministic evolutionary tracks for the history of star formation and black hole accretion, gauged on a wealth of multiwavelength observations including the observed Eddington ratio distribution. We further validate these ingredients by showing their consistency with the observed galaxy stellar mass functions and AGN bolometric luminosity functions at different redshifts via the continuity equation approach. Our analysis of the main sequence for high-redshift galaxies and AGNs highlights that the present data are consistently interpreted in terms of an in situ coevolution scenario for star formation and black hole accretion, envisaging these as local, time-coordinated processes.

  6. The morphological transformation of red sequence galaxies in clusters since z ˜ 1

    Science.gov (United States)

    Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R.

    2017-11-01

    The study of galaxy morphology is fundamental to understand the physical processes driving the structural evolution of galaxies. It has long been known that dense environments host high fractions of early-type galaxies and low fractions of late-type galaxies, indicating that the environment affects the structural evolution of galaxies. In this paper, we present an analysis of the morphological composition of red sequence galaxies in a sample of nine galaxy clusters at 0.8 WINGS) and ESO Distant Cluster Survey (EDisCS). We find that, while the HCS red sequence is dominated by elliptical galaxies at all luminosities and stellar masses, the WINGS red sequence is dominated by elliptical galaxies only at its bright end (MV WINGS) and high (HCS) redshift samples, although their fraction increases up to 40 per cent at 0.4 < z < 0.8 (EDisCS). We find a 20 per cent increase in the fraction of S0 galaxies from z ∼ 1.5 to 0.05 on the red sequence. These results suggest that elliptical and S0 galaxies follow different evolutionary histories and, in particular, that S0 galaxies result, at least at intermediate luminosities (-22.0 < MV < -20.0), from the morphological transformation of quiescent spiral galaxies.

  7. STELLAR METALLICITIES AND KINEMATICS IN A GAS-RICH DWARF GALAXY : FIRST CALCIUM TRIPLET SPECTROSCOPY OF RED GIANT BRANCH STARS IN WLM

    NARCIS (Netherlands)

    Leaman, Ryan; Cole, Andrew A.; Venn, Kim A.; Tolstoy, Eline; Irwin, Mike J.; Szeifert, Thomas; Skillman, Evan D.; McConnachie, Alan W.

    2009-01-01

    We present the first determination of the radial velocities and metallicities of 78 red giant stars in the isolated dwarf irregular galaxy WLM. Observations of the calcium II triplet in these stars were made with FORS2 at the VLT-UT2 in two separated fields of view in WLM, and the [Fe/H] values were

  8. EVOLUTION OF GROUP GALAXIES FROM THE FIRST RED-SEQUENCE CLUSTER SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Li, I. H. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122 (Australia); Yee, H. K. C. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Hsieh, B. C. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Gladders, M., E-mail: tli@astro.swin.edu.au, E-mail: hyee@astro.utoronto.ca, E-mail: bchsieh@asiaa.sinica.edu.tw, E-mail: gladders@oddjob.uchicago.edu [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave, Chicago, IL 60637 (United States)

    2012-04-20

    We study the evolution of the red-galaxy fraction (f{sub red}) in 905 galaxy groups with 0.15 {<=} z < 0.52. The galaxy groups are identified by the 'probability friends-of-friends' algorithm from the first Red-Sequence Cluster Survey (RCS1) photometric-redshift sample. There is a high degree of uniformity in the properties of the red sequence of the group galaxies, indicating that the luminous red-sequence galaxies in the groups are already in place by z {approx} 0.5 and that they have a formation epoch of z {approx}> 2. In general, groups at lower redshifts exhibit larger f{sub red} than those at higher redshifts, showing a group Butcher-Oemler effect. We investigate the evolution of f{sub red} by examining its dependence on four parameters, one of which can be classified as intrinsic and three of which can be classified as environmental: galaxy stellar mass (M{sub *}), total group stellar mass (M{sub *,grp}, a proxy for group halo mass), normalized group-centric radius (r{sub grp}), and local galaxy density ({Sigma}{sub 5}). We find that M{sub *} is the dominant parameter such that there is a strong correlation between f{sub red} and galaxy stellar mass. Furthermore, the dependence of f{sub red} on the environmental parameters is also a strong function of M{sub *}. Massive galaxies (M{sub *} {approx}> 10{sup 11} M{sub Sun }) show little dependence of f{sub red} on r{sub grp}, M{sub *,grp}, and {Sigma}{sub 5} over the redshift range. The dependence of f{sub red} on these parameters is primarily seen for galaxies with lower masses, especially for M{sub *} {approx}< 10{sup 10.6} M{sub Sun }. We observe an apparent 'group down-sizing' effect, in that galaxies in lower-mass halos, after controlling for galaxy stellar mass, have lower f{sub red}. We find a dependence of f{sub red} on both r{sub grp} and {Sigma}{sub 5} after the other parameters are controlled. At a fixed r{sub grp}, there is a significant dependence of f{sub red} on {Sigma}{sub 5

  9. Theory and evidence of global Rossby waves in upper main-sequence stars: r-mode oscillations in many Kepler stars

    Science.gov (United States)

    Saio, Hideyuki; Kurtz, Donald W.; Murphy, Simon J.; Antoci, Victoria L.; Lee, Umin

    2018-02-01

    Asteroseismic inference from pressure modes (p modes) and buoyancy, or gravity, modes (g modes) is ubiquitous for stars across the Hertzsprung-Russell diagram. Until now, however, discussion of r modes (global Rossby waves) has been rare. Here we derive the expected frequency ranges of r modes in the observational frame by considering the visibility of these modes. We find that the frequencies of r modes of azimuthal order m appear as groups at slightly lower frequency than m times the rotation frequency. Comparing the visibility curves for r modes with Fourier amplitude spectra of Kepler light curves of upper main-sequence B, A, and F stars, we find that r modes are present in many γ Dor stars (as first discovered by Van Reeth et al.), spotted stars, and so-called heartbeat stars, which are highly eccentric binary stars. We also find a signature of r modes in a frequently bursting Be star observed by Kepler. In the amplitude spectra of moderately to rapidly rotating γ Dor stars, r-mode frequency groups appear at lower frequency than prograde g-mode frequency groups, while in the amplitude spectra of spotted early A to B stars, groups of symmetric (with respect to the equator) r-mode frequencies appear just below the frequency of a structured peak that we suggest represents an approximate stellar rotation rate. In many heartbeat stars, a group of frequencies can be fitted with symmetric m = 1 r modes, which can be used to obtain rotation frequencies of these stars.

  10. Characterizing Intermediate-Mass, Pre-Main-Sequence Stars via X-Ray Emision

    Science.gov (United States)

    Haze Nunez, Evan; Povich, Matthew Samuel; Binder, Breanna Arlene; Broos, Patrick; Townsley, Leisa K.

    2018-01-01

    The X-ray emission from intermediate-mass, pre-main-sequence stars (IMPS) can provide useful constraints on the ages of very young (${evolution, before the development and rapid growth of a radiation zone. We present our prime candidates for intrinsic, coronal X-ray emission from IMPS identified in the Chandra Carina Complex Project. The Carina massive star-forming complex is of special interest due to the wide variation of star formation stages within the region. Candidate IMPS were identified using infrared spectral energy distribution (SED) models. X-ray properties, including thermal plasma temperatures and absorption-corrected fluxes, were derived from XSPEC fits performed using absorption ($N_{H}$) constrained by the extinction values returned by the infrared SED fits. We find that IMPS have systematically higher X-ray luminosities compared to their lower-mass cousins, the TTauri stars.This work is supported by the National Science Foundation under grant CAREER-1454334 and by NASA through Chandra Award 18200040.

  11. The appearance of magnetic flux on the surfaces of the early main-sequence F stars

    Science.gov (United States)

    Giampapa, M. S.; Rosner, R.

    1984-01-01

    Available chromospheric, transition region, and coronal observations of the early main-sequence F stars are examined in order to find that while these objects exhibit enhanced levels of magnetic field-related radiative emissions, significant inhomogeneities in surface activity are not present. This phenomenon is discussed within the context of the calculations published by Schmitt and Rosner (1983) for the production of flux ropes of various spatial scales at a given rotation rate at the bottom of a stellar convection zone. It is found that the spatial scales and area contrast of emergent magnetic flux in these stars that, as a class, are characterized by rapid rotation and thin convection zones are substantially reduced relative to that of the sun.

  12. Dissecting the extended main-sequence turn-off of the young star cluster NGC 1850

    Science.gov (United States)

    Correnti, Matteo; Goudfrooij, Paul; Bellini, Andrea; Kalirai, Jason S.; Puzia, Thomas H.

    2017-05-01

    We use the Wide Field Camera 3 onboard the Hubble Space Telescope to obtain deep, high-resolution photometry of the young (˜100 Myr) star cluster NGC 1850 in the Large Magellanic Cloud. We analyse the cluster colour-magnitude diagram (CMD) and find that it hosts an extended main-sequence turn-off (MSTO) and a double main sequence (MS). We demonstrate that these features cannot be due to photometric errors, field star contamination or differential reddening. From a comparison with theoretical models and Monte Carlo simulations, we show that a coeval stellar population featuring a distribution of stellar rotation rates can reproduce the MS split quite well. However, it cannot reproduce the observed MSTO region, which is significantly wider than the simulated ones. Exploiting narrow-band Hα imaging, we find that the MSTO hosts a population of Hα-emitting stars that are interpreted as rapidly rotating Be-type stars. We explore the possibility that the discrepancy between the observed MSTO morphology and that of the simulated simple stellar population (SSP) is caused by the fraction of these objects that are highly reddened, but we rule out this hypothesis. We demonstrate that the global CMD morphology is well reproduced by a combination of SSPs that covers an age range of ˜35 Myr as well as a wide variety of rotation rates. We derive the cluster mass and escape velocity, and use dynamical evolution models to predict their evolution starting at an age of 10 Myr. We discuss these results and their implications in the context of the extended MSTO phenomenon.

  13. A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT z ∼ 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, J. D.; Rujopakarn, W. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Daddi, E.; Liu, D. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay (France); Rodighiero, G. [Dipartimento di Fisica e Astronomia, Universita di Padova, vicolo Osservatorio, 3, I-35122 Padova (Italy); Sargent, M. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Renzini, A. [Instituto Nazionale de Astrofisica, Osservatorio Astronomico di Padova, v.co dell’Osservatorio 5, I-35122 Padova (Italy); Feruglio, C. [IRAM—Institut de RadioAstronomie Millimétrique, 300 rue de la Piscine, F-38406 Saint Martin d’Hères (France); Kashino, D. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Sanders, D. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Kartaltepe, J. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Nagao, T. [Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan); Arimoto, N. [Subaru Telescope, 650 North A’ohoku Place, Hilo, HI-96720 (United States); Berta, S.; Lutz, D. [Max-Planck-Institut für extraterrestrische Physik, D-84571 Garching (Germany); Béthermin, M. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Koekemoer, A., E-mail: john.silverman@ipmu.jp [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); and others

    2015-10-20

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ∼ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxies having star formation rates (∼300–800 M{sub ⊙} yr{sup −1}) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ∼ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (∼30%–50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.

  14. Sequence analysis of a canine parvovirus isolated from a red panda (Ailurus fulgens) in China.

    Science.gov (United States)

    Qin, Qin; Loeffler, I Kati; Li, Ming; Tian, Kegong; Wei, Fuwen

    2007-06-01

    Canine parvovirus (CPV) was first recognized in the late 1970 s in dogs and has mutated and spread throughout the world in canid and felid species since then. In this study, a novel CPV was isolated from the endangered red panda (Ailurus fulgens) in China. Nucleotide and phylogenetic analysis of the capsid protein VP2 gene classified the red panda parvovirus (RPPV) as a CPV-2a type. Substitution of Val for Gly at the conserved 300 residue in RPPV presents an unusual variation in the CPV-2a amino acid sequence and is further evidence for the continuing evolution of the virus. The 300 residue is important in distinguishing the antigenicity and host range of CPVs. The clinical significance and population impact of RPPV infection in captive red pandas in China is unknown and is an important topic for future research.

  15. Kepler red-clump stars in the field and in open clusters

    DEFF Research Database (Denmark)

    Bossini, D.; Miglio, A.; Salaris, M.

    2017-01-01

    Convective mixing in helium-core-burning (HeCB) stars is one of the outstanding issues in stellar modelling. The precise asteroseismic measurements of gravity-mode period spacing (Delta Pi(1)) have opened the door to detailed studies of the near-core structure of such stars, which had not been po...

  16. Draft Genome Sequence of Uncultured SAR324 Bacterium lautmerah10, Binned from a Red Sea Metagenome

    KAUST Repository

    Haroon, Mohamed

    2016-02-11

    A draft genome of SAR324 bacterium lautmerah10 was assembled from a metagenome of a surface water sample from the Red Sea, Saudi Arabia. The genome is more complete and has a higher G+C content than that of previously sequenced SAR324 representatives. Its genomic information shows a versatile metabolism that confers an advantage to SAR324, which is reflected in its distribution throughout different depths of the marine water column.

  17. The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis.

    Directory of Open Access Journals (Sweden)

    Yoji Nakamura

    Full Text Available Nori, a marine red alga, is one of the most profitable mariculture crops in the world. However, the biological properties of this macroalga are poorly understood at the molecular level. In this study, we determined the draft genome sequence of susabi-nori (Pyropia yezoensis using next-generation sequencing platforms. For sequencing, thalli of P. yezoensis were washed to remove bacteria attached on the cell surface and enzymatically prepared as purified protoplasts. The assembled contig size of the P. yezoensis nuclear genome was approximately 43 megabases (Mb, which is an order of magnitude smaller than the previously estimated genome size. A total of 10,327 gene models were predicted and about 60% of the genes validated lack introns and the other genes have shorter introns compared to large-genome algae, which is consistent with the compact size of the P. yezoensis genome. A sequence homology search showed that 3,611 genes (35% are functionally unknown and only 2,069 gene groups are in common with those of the unicellular red alga, Cyanidioschyzon merolae. As color trait determinants of red algae, light-harvesting genes involved in the phycobilisome were predicted from the P. yezoensis nuclear genome. In particular, we found a second homolog of phycobilisome-degradation gene, which is usually chloroplast-encoded, possibly providing a novel target for color fading of susabi-nori in aquaculture. These findings shed light on unexplained features of macroalgal genes and genomes, and suggest that the genome of P. yezoensis is a promising model genome of marine red algae.

  18. The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis).

    Science.gov (United States)

    Nakamura, Yoji; Sasaki, Naobumi; Kobayashi, Masahiro; Ojima, Nobuhiko; Yasuike, Motoshige; Shigenobu, Yuya; Satomi, Masataka; Fukuma, Yoshiya; Shiwaku, Koji; Tsujimoto, Atsumi; Kobayashi, Takanori; Nakayama, Ichiro; Ito, Fuminari; Nakajima, Kazuhiro; Sano, Motohiko; Wada, Tokio; Kuhara, Satoru; Inouye, Kiyoshi; Gojobori, Takashi; Ikeo, Kazuho

    2013-01-01

    Nori, a marine red alga, is one of the most profitable mariculture crops in the world. However, the biological properties of this macroalga are poorly understood at the molecular level. In this study, we determined the draft genome sequence of susabi-nori (Pyropia yezoensis) using next-generation sequencing platforms. For sequencing, thalli of P. yezoensis were washed to remove bacteria attached on the cell surface and enzymatically prepared as purified protoplasts. The assembled contig size of the P. yezoensis nuclear genome was approximately 43 megabases (Mb), which is an order of magnitude smaller than the previously estimated genome size. A total of 10,327 gene models were predicted and about 60% of the genes validated lack introns and the other genes have shorter introns compared to large-genome algae, which is consistent with the compact size of the P. yezoensis genome. A sequence homology search showed that 3,611 genes (35%) are functionally unknown and only 2,069 gene groups are in common with those of the unicellular red alga, Cyanidioschyzon merolae. As color trait determinants of red algae, light-harvesting genes involved in the phycobilisome were predicted from the P. yezoensis nuclear genome. In particular, we found a second homolog of phycobilisome-degradation gene, which is usually chloroplast-encoded, possibly providing a novel target for color fading of susabi-nori in aquaculture. These findings shed light on unexplained features of macroalgal genes and genomes, and suggest that the genome of P. yezoensis is a promising model genome of marine red algae.

  19. Age-Determination Method of Pre-Main Sequence Stars with High-Resolution I-Band Spectroscopy

    Science.gov (United States)

    Takagi, Yuhei; Itoh, Yoichi; Oasa, Yumiko

    2010-04-01

    We present a new method for determining the age of late-K type pre-main sequence (PMS) stars by deriving their surface gravity from high-resolution I-band spectroscopy. Since PMS stars contract as they evolve, their age can be estimated by the surface gravity. We used the equivalent width ratio (EWR) of nearby absorption lines that are free of uncertainties due to veiling, to make a surface-gravity diagnostic of PMS stars. The ratios of Fe (8186.7 Å and 8204.9 Å) and Na (8183.3 Å and 8194.8 Å) absorption lines were calculated for giants, main-sequence stars, and weak-line T Tauri stars. The samples were nearly equal in effective temperature. The EWR of Fe and Na, Fe/Na, decreases significantly with increasing surface gravity, indicating that Fe/Na is a desirable diagnostic tool for deriving the surface gravity of PMS stars. The surface gravity of PMS stars with 0.8M⊙ can be determined with accuracies of 0.1-0.2, which estimates the age of PMS stars within a factor of 1.5, on average.

  20. Linkage Mapping and Comparative Genomics of Red Drum (Sciaenops ocellatus Using Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Christopher M. Hollenbeck

    2017-03-01

    Full Text Available Developments in next-generation sequencing allow genotyping of thousands of genetic markers across hundreds of individuals in a cost-effective manner. Because of this, it is now possible to rapidly produce dense genetic linkage maps for nonmodel species. Here, we report a dense genetic linkage map for red drum, a marine fish species of considerable economic importance in the southeastern United States and elsewhere. We used a prior microsatellite-based linkage map as a framework and incorporated 1794 haplotyped contigs derived from high-throughput, reduced representation DNA sequencing to produce a linkage map containing 1794 haplotyped restriction-site associated DNA (RAD contigs, 437 anonymous microsatellites, and 44 expressed sequence-tag-linked microsatellites (EST-SSRs. A total of 274 candidate genes, identified from transcripts from a preliminary hydrocarbon exposure study, were localized to specific chromosomes, using a shared synteny approach. The linkage map will be a useful resource for red drum commercial and restoration aquaculture, and for better understanding and managing populations of red drum in the wild.

  1. Constraining the shaping mechanism of the Red Rectangle through the spectro-polarimetry of its central star

    Science.gov (United States)

    Martínez González, M. J.; Asensio Ramos, A.; Manso Sainz, R.; Corradi, R. L. M.; Leone, F.

    2015-02-01

    We carried out high-sensitivity spectro-polarimetric observations of the central star of the Red Rectangle protoplanetary nebula with the aim of constraining the mechanism that gives its biconical shape. The stellar light of the central binary system is linearly polarised since it is scattered on the dust particles of the nebula. Surprisingly, the linear polarisation in the continuum is aligned with one of the spikes of the biconical outflow. Also, the observed Balmer lines, as well as the Ca ii K lines, are polarised. These observational constraints are used to confirm or reject current theoretical models for the shaping mechanism of the Red Rectangle. We propose that the observed polarisation is not very likely to be generated by a uniform biconical stellar wind. Also, the hypothesis of a precessing jet does not completely match observations since it requires a larger aperture jet than for the nebula.

  2. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes.

    Science.gov (United States)

    Kumar, Vikas; Kutschera, Verena E; Nilsson, Maria A; Janke, Axel

    2015-08-07

    The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated and analyzed for signatures of positive selection. In addition, the data allowed for a phylogenetic analysis and divergence time estimate between the two fox species. The de novo assembly of reads resulted in more than 160,000 contigs/transcripts per individual. Approximately 17,000 homologous genes were identified using human and the non-redundant databases. Positive selection analyses revealed several genes involved in various metabolic and molecular processes such as energy metabolism, cardiac gene regulation, apoptosis and blood coagulation to be under positive selection in foxes. Branch site tests identified four genes to be under positive selection in the Arctic fox transcriptome, two of which are fat metabolism genes. In the red fox transcriptome eight genes are under positive selection, including molecular process genes, notably genes involved in ATP metabolism. Analysis of the three transcriptomes and five Sanger re-sequenced genes in additional individuals identified a lower genetic variability within Arctic foxes compared to red foxes, which is consistent with distribution range differences and demographic responses to past climatic fluctuations. A phylogenomic analysis estimated that the Arctic and red fox lineages diverged about three million years ago. Transcriptome data are an economic way to generate genomic resources for evolutionary studies. Despite not representing an entire genome, this transcriptome analysis identified numerous genes that are relevant to arctic

  3. Generation of a Near Infra-Red Guide Star Catalog for Thirty-Meter ...

    Indian Academy of Sciences (India)

    IRGSC) for Thirty Meter Telescope (TMT) observations are identified and presented. ... Energy Distribution (SED) template fitting for optimal classification of stars in the fainter end, incorporating spectral libraries in the model, to reduce the scatter, ...

  4. Models for circumstellar nebulae around red and blue supergiants

    NARCIS (Netherlands)

    Chita, S.M.|info:eu-repo/dai/nl/304832146

    2011-01-01

    In this thesis, we model the circumstellar medium of stars with initial masses of 8, 12, 18 and 20 solar masses, over their entire life from the main sequence until their supernova explosion. During the post-main-sequence stages, stars can evolve through several blue and red supergiant stages

  5. Peak Bagging of red giant stars observed by Kepler: first results with a new method based on Bayesian nested sampling

    Directory of Open Access Journals (Sweden)

    Corsaro Enrico

    2015-01-01

    Full Text Available The peak bagging analysis, namely the fitting and identification of single oscillation modes in stars’ power spectra, coupled to the very high-quality light curves of red giant stars observed by Kepler, can play a crucial role for studying stellar oscillations of different flavor with an unprecedented level of detail. A thorough study of stellar oscillations would thus allow for deeper testing of stellar structure models and new insights in stellar evolution theory. However, peak bagging inferences are in general very challenging problems due to the large number of observed oscillation modes, hence of free parameters that can be involved in the fitting models. Efficiency and robustness in performing the analysis is what may be needed to proceed further. For this purpose, we developed a new code implementing the Nested Sampling Monte Carlo (NSMC algorithm, a powerful statistical method well suited for Bayesian analyses of complex problems. In this talk we show the peak bagging of a sample of high signal-to-noise red giant stars by exploiting recent Kepler datasets and a new criterion for the detection of an oscillation mode based on the computation of the Bayesian evidence. Preliminary results for frequencies and lifetimes for single oscillation modes, together with acoustic glitches, are therefore presented.

  6. A long-term UBVRI photometric study of the pre-main sequence star V350 Cep

    OpenAIRE

    Ibryamov, Sunay; Semkov, Evgeni; Peneva, Stoyanka

    2014-01-01

    Results from UBVRI optical photometric observations of the pre-main sequence star V350 Cep during the period 2004-2014 are presented. The star was discovered in 1977 due to its remarkable increase in brightness by more than 5 mag (R). In previous studies, V350 Cep was considered a to be a potential FUor or EXor eruptive variables. Our data suggest that during the period of observations the star maintains its maximum brightness with low amplitude photometric variations. Our conclusion is that ...

  7. Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii

    Directory of Open Access Journals (Sweden)

    Vaughn Roy

    2012-09-01

    Full Text Available Abstract Background The gastrula stage represents the point in development at which the three primary germ layers diverge. At this point the gene regulatory networks that specify the germ layers are established and the genes that define the differentiated states of the tissues have begun to be activated. These networks have been well-characterized in sea urchins, but not in other echinoderms. Embryos of the brittle star Ophiocoma wendtii share a number of developmental features with sea urchin embryos, including the ingression of mesenchyme cells that give rise to an embryonic skeleton. Notable differences are that no micromeres are formed during cleavage divisions and no pigment cells are formed during development to the pluteus larval stage. More subtle changes in timing of developmental events also occur. To explore the molecular basis for the similarities and differences between these two echinoderms, we have sequenced and characterized the gastrula transcriptome of O. wendtii. Methods Development of Ophiocoma wendtii embryos was characterized and RNA was isolated from the gastrula stage. A transcriptome data base was generated from this RNA and was analyzed using a variety of methods to identify transcripts expressed and to compare those transcripts to those expressed at the gastrula stage in other organisms. Results Using existing databases, we identified brittle star transcripts that correspond to 3,385 genes, including 1,863 genes shared with the sea urchin Strongylocentrotus purpuratus gastrula transcriptome. We characterized the functional classes of genes present in the transcriptome and compared them to those found in this sea urchin. We then examined those members of the germ-layer specific gene regulatory networks (GRNs of S. purpuratus that are expressed in the O. wendtii gastrula. Our results indicate that there is a shared ‘genetic toolkit’ central to the echinoderm gastrula, a key stage in embryonic development, though

  8. Sequencing of red wine proanthocyanidins by UHPLC-ESI-Q-ToF

    Directory of Open Access Journals (Sweden)

    Adéline Delcambre

    2015-04-01

    Full Text Available Dimers of proanthocyanidins with four monomeric units and two distinct linkages are detected and tentatively identified for the first time in Merlot red wine variety without sample preparation. These compounds were characterized by electrospray ionization quadrupole time of flight mass spectrometry in negative mode. Fragments ions derived from retro-Diels Alder, heterocyclic ring fission and quinone methide were detected in targeted MS/MS mode and then assigned by using well-known theoretical fragmentation pathways. The sequencing of these compounds was correlated with the theoretical numbers of oligomers established by mathematical relationship taking in consideration the four monomeric units, the interflavan bond and the ether bond. Our analytical method allows the identification of twenty B-type dimers and twelve A-type dimers in red wine.

  9. The Star Formation Main Sequence in the Hubble Space Telescope Frontier Fields

    Science.gov (United States)

    Santini, Paola; Fontana, Adriano; Castellano, Marco; Di Criscienzo, Marcella; Merlin, Emiliano; Amorin, Ricardo; Cullen, Fergus; Daddi, Emanuele; Dickinson, Mark; Dunlop, James S.; Grazian, Andrea; Lamastra, Alessandra; McLure, Ross J.; Michałowski, Michał. J.; Pentericci, Laura; Shu, Xinwen

    2017-09-01

    We investigate the relation between star formation rate (SFR) and stellar mass (M), I.e., the main sequence (MS) relation of star-forming galaxies, at 1.3≤slant zframe UV observations. Gravitational lensing combined with deep HST observations allows us to extend the analysis of the MS down to {log} M/{M}⊙ ˜ 7.5 at z≲ 4 and {log} M/{M}⊙ ˜ 8 at higher redshifts, a factor of ˜10 below most previous results. We perform an accurate simulation to take into account the effect of observational uncertainties and correct for the Eddington bias. This step allows us to reliably measure the MS and in particular its slope. While the normalization increases with redshift, we fit an unevolving and approximately linear slope. We nicely extend to lower masses the results of brighter surveys. Thanks to the large dynamic range in mass and by making use of the simulation, we analyzed any possible mass dependence of the dispersion around the MS. We find tentative evidence that the scatter decreases with increasing mass, suggesting a larger variety of star formation histories in low-mass galaxies. This trend agrees with theoretical predictions and is explained as either a consequence of the smaller number of progenitors of low-mass galaxies in a hierarchical scenario and/or of the efficient but intermittent stellar feedback processes in low-mass halos. Finally, we observe an increase in the SFR per unit stellar mass with redshift milder than predicted by theoretical models, implying a still incomplete understanding of the processes responsible for galaxy growth.

  10. Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass

    Science.gov (United States)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  11. HAlign: Fast multiple similar DNA/RNA sequence alignment based on the centre star strategy.

    Science.gov (United States)

    Zou, Quan; Hu, Qinghua; Guo, Maozu; Wang, Guohua

    2015-08-01

    Multiple sequence alignment (MSA) is important work, but bottlenecks arise in the massive MSA of homologous DNA or genome sequences. Most of the available state-of-the-art software tools cannot address large-scale datasets, or they run rather slowly. The similarity of homologous DNA sequences is often ignored. Lack of parallelization is still a challenge for MSA research. We developed two software tools to address the DNA MSA problem. The first employed trie trees to accelerate the centre star MSA strategy. The expected time complexity was decreased to linear time from square time. To address large-scale data, parallelism was applied using the hadoop platform. Experiments demonstrated the performance of our proposed methods, including their running time, sum-of-pairs scores and scalability. Moreover, we supplied two massive DNA/RNA MSA datasets for further testing and research. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. An Objective Definition for the Main Sequence of Star-forming Galaxies

    Science.gov (United States)

    Renzini, Alvio; Peng, Ying-jie

    2015-03-01

    The main sequence (MS) of star-forming (SF) galaxies plays a fundamental role in driving galaxy evolution and our efforts to understand it. However, different studies find significant differences in the normalization, slope, and shape of the MS. These discrepancies arise mainly from the different selection criteria adopted to isolate SF galaxies, which may include or exclude galaxies with a specific star formation rate (SFR) substantially below the MS value. To obviate this limitation of all current criteria, we propose an objective definition of the MS that does not rely at all on a pre-selection of SF galaxies. Constructing the 3D SFR-mass-number plot, the MS is then defined as the ridge line of the SF peak, as illustrated with various figures. The advantages of such a definition are manifold. If generally adopted, it will facilitate the inter-comparison of results from different groups using the same SFR and stellar mass diagnostics, or it will highlight the relative systematics of different diagnostics. All of this could help to understand MS galaxies as systems in a quasi-steady state equilibrium and would also provide a more objective criterion for identifying quenching galaxies.

  13. Dynamics and Stellar Content of the Giant Southern Stream in M31. I. Keck Spectroscopy of Red Giant Stars

    Science.gov (United States)

    Guhathakurta, Puragra; Rich, R. Michael; Reitzel, David B.; Cooper, Michael C.; Gilbert, Karoline M.; Majewski, Steven R.; Ostheimer, James C.; Geha, Marla C.; Johnston, Kathryn V.; Patterson, Richard J.

    2006-05-01

    This paper presents the first results from a large spectroscopic survey of red giant branch (RGB) stars in M31 using DEIMOS on the Keck 10 m telescope. A photometric prescreening method, based on the intermediate-width DDO51 band centered on the Mg b/MgH absorption feature, was used to select spectroscopic targets. RGB candidates were targeted in a small section of M31's giant southern tidal stream at a projected distance of 31 kpc from the galaxy's center. We isolate a clean sample of 68 RGB stars by removing contaminants (foreground Milky Way dwarf stars and background galaxies) using a combination of spectroscopic, imaging, and photometric methods: radial velocity and the surface gravity-sensitive Na I doublet are particularly useful in this regard. About 65% of the M31 stars are found to be members of the giant southern stream, while the rest appear to be members of the general spheroid population. The mean (heliocentric) radial velocity of the stream in our field is -458 km s-1, blueshifted by -158 km s-1 relative to M31's systemic velocity, in good agreement with recent velocity measurements at other points along the stream. The intrinsic velocity dispersion of the stream is found to be 15+8-15 km s-1 (90% confidence limit). A companion paper by Font and coworkers discusses possible orbits, implications of the coldness of the stream, and properties of the progenitor satellite galaxy. The kinematics, and possibly the metallicity distribution, of the general spheroid (i.e., nonstream) population in this region of M31 indicate that it is significantly different from samples drawn from other parts of the M31 spheroid; this is probably an indication of substructure in the bulge and halo. The stream appears to have a higher mean metallicity than the general spheroid, ~-0.54 versus -0.74, and a smaller metallicity spread. The relatively high metallicity of the stream implies that its progenitor must have been a luminous dwarf galaxy. The Ca II triplet line strengths

  14. Explosion of red-supergiant stars: Influence of the atmospheric structure on shock breakout and early-time supernova radiation

    Science.gov (United States)

    Dessart, Luc; John Hillier, D.; Audit, Edouard

    2017-09-01

    Early-time observations of Type II supernovae (SNe) 2013cu and 2013fs have revealed an interaction of ejecta with material near the star surface. Unlike Type IIn SN 2010jl, which interacts with a dense wind for 1 yr, the interaction ebbs after 2-3 d, suggesting a dense and compact circumstellar envelope. Here, we use multi-group radiation hydrodynamics and non-local-thermodynamic-equilibrium radiative transfer to explore the properties of red-supergiant (RSG) star explosions embedded in a variety of dense envelopes. We consider the cases of an extended static atmosphere or a steady-state wind, adopting a range of mass loss rates. The shock breakout signal, luminosity and color evolution up to 10 d, and ejecta dynamics are strongly influenced by the properties of this nearby environment. This compromises the use of early-time observations to constrain R⋆. For dense circumstellar envelopes, the time-integrated luminosity over the first 10-15 d can be boosted by a factor of a few. The presence of narrow lines for 2-3 d in 2013fs and 2013cu require a cocoon of material of 0.01 M⊙ out to 5-10 R⋆. Spectral lines evolve from electron scattering to Doppler broadened with a growing blueshift of their emission peaks. Recent studies propose a super-wind phase with a mass loss rate from 0.001 up to 1 M⊙ yr-1 in the last months or years of the life of a RSG, although there is no observational constraint that this external material is a steady-state outflow. Alternatively, observations may be explained by the explosion of a RSG star inside its complex atmosphere. Indeed, spatially resolved observations reveal that RSG stars have extended atmospheres, with the presence of downflows and upflows out to several R⋆, even in a standard RSG such as Betelgeuse. Mass loading in the region intermediate between star and wind can accommodate the 0.01 M⊙ needed to explain the observations of 2013fs. Signatures of interaction in early-time spectra of RSG star explosions may

  15. Effect of Generalized Uncertainty Principle on Main-Sequence Stars and White Dwarfs

    Directory of Open Access Journals (Sweden)

    Mohamed Moussa

    2015-01-01

    Full Text Available This paper addresses the effect of generalized uncertainty principle, emerged from different approaches of quantum gravity within Planck scale, on thermodynamic properties of photon, nonrelativistic ideal gases, and degenerate fermions. A modification in pressure, particle number, and energy density are calculated. Astrophysical objects such as main-sequence stars and white dwarfs are examined and discussed as an application. A modification in Lane-Emden equation due to a change in a polytropic relation caused by the presence of quantum gravity is investigated. The applicable range of quantum gravity parameters is estimated. The bounds in the perturbed parameters are relatively large but they may be considered reasonable values in the astrophysical regime.

  16. Detection of the Red Giant Branch Stars in the M82 Using the Hubble Space Telescope

    Science.gov (United States)

    Madore, B.; Sakai, S.

    1999-01-01

    We present color-magnitude diagrams and luminosity functions or stars in two halo regions of the irregular galaxy in M82, based on F555W and F814W photometry taken with the Hubble Space Telescope and Wide Field Planetary Camera 2.

  17. X-ray and Hubble/COS UV Measures of Kapteyn's Star: A Crucial Proxy of X-UV Irradiances for Old Red Dwarf Stars that May Host Habitable Zone Planets

    Science.gov (United States)

    Durbin, Allyn J.; Guinan, E. F.; Engle, S. G.

    2014-01-01

    Red dwarfs (dM) stars make up over 80% of the local stellar population and a significant fraction of them are old (age > 4 Gyr). Because of the high frequency of red dwarfs and their longevity, there is a greater possibility of more advanced life in red dwarf planet systems. MEarths, UVES, SDSS-III, and the upcoming TESS mission are some surveys that are targeting these objects. As part of Villanova’s Living with a Red Dwarf program, we have obtained HST/COS spectra and Chandra X-ray observations of Kapteyn's star (M1V, V = 8.853, d = 12.76 +/- 0.05 ly, P_rot = 195 days). This star is crucial to the study of old red dwarfs as it is the nearest halo star with a radial velocity of +245.2 km/s and an estimated age of 10-12 Gyr. In our program, Kapteyn's star is the oldest red dwarf and as such serves as an anchor for our age, rotation, and activity relations. The spectra obtained from HST/COS provide one of the cleanest measurements of Lyman-alpha emission for red dwarfs. This is due to Doppler shift from the high radial velocity, separating the Lyman-alpha line from emission produced by the ISM and geocoronal sources. These observations further provide calibration at the old age/low rotation/low activity extremes for our relations. They also provide insights into the magnetic properties as investigating coronal x-ray and UV emission in very old, slowly rotating dM stars. Kapteyn’s star also serves as a proxy for metal-poor old disk/Pop II M dwarfs by providing information about X-UV emissions. This information is crucial for determining X-UV irradiances of possible habitable zone planets hosted by old red dwarfs. We gratefully acknowledge the support from NSF/RUI Grant AST-1009903, NASA/Chandra Grants GO1-12124X and GO2-13020X, and HST-GO-13020.

  18. Insights into Korean red fox (Vulpes vulpes) based on mitochondrial cytochrome b sequence variation in East Asia.

    Science.gov (United States)

    Yu, Jeong-Nam; Han, Sang-Hoon; Kim, Bang-Hwan; Kryukov, Alexey P; Kim, Soonok; Lee, Byoung-Yoon; Kwak, Myounghai

    2012-11-01

    The red fox (Vulpes vulpes) is the most widely distributed terrestrial carnivore in the world, occurring throughout most of North America, Europe, Asia, and North Africa. In South Korea, however, this species has been drastically reduced due to habitat loss and poaching. Consequently, it is classified as an endangered species in Korea. As a first step of a planned red fox restoration project, preserved red fox museum specimens were used to determine the genetic status of red foxes that had previously inhabited South Korea against red foxes from neighboring countries. Total eighty three mtDNA cytochrome b sequences, including 22 newly obtained East Asian red fox sequences and worldwide red fox sequences from NCBI, were clustered into three clades (i.e., I, II, and III) based on haplotype network and neighbor-joining trees. The mean genetic distance between clades was 2.0%. Clade III contained South Korean and other East Asian samples in addition to Eurasian and North Pacific individuals. In clade III, South Korean individuals were separated into two lineages of Eurasian and North Pacific groups, showing unclear phylogeographic structuring and admixture. This suggests that South Korean red fox populations may have been composed of individuals from these two different genetic lineages.

  19. Luminosities and mass-loss rates of Local Group AGB stars and red supergiants

    Science.gov (United States)

    Groenewegen, M. A. T.; Sloan, G. C.

    2018-01-01

    Context. Mass loss is one of the fundamental properties of asymptotic giant branch (AGB) stars, and through the enrichment of the interstellar medium, AGB stars are key players in the life cycle of dust and gas in the universe. However, a quantitative understanding of the mass-loss process is still largely lacking. Aims: We aim to investigate mass loss and luminosity in a large sample of evolved stars in several Local Group galaxies with a variety of metalliticies and star-formation histories: the Small and Large Magellanic Cloud, and the Fornax, Carina, and Sculptor dwarf spheroidal galaxies (dSphs). Methods: Dust radiative transfer models are presented for 225 carbon stars and 171 oxygen-rich evolved stars in several Local Group galaxies for which spectra from the Infrared Spectrograph on Spitzer are available. The spectra are complemented with available optical and infrared photometry to construct spectral energy distributions. A minimization procedure was used to determine luminosity and mass-loss rate (MLR). Pulsation periods were derived for a large fraction of the sample based on a re-analysis of existing data. Results: New deep K-band photometry from the VMC survey and multi-epoch data from IRAC (at 4.5 μm) and AllWISE and NEOWISE have allowed us to derive pulsation periods longer than 1000 days for some of the most heavily obscured and reddened objects. We derive (dust) MLRs and luminosities for the entire sample. The estimated MLRs can differ significantly from estimates for the same objects in the literature due to differences in adopted optical constants (up to factors of several) and details in the radiative transfer modelling. Updated parameters for the super-AGB candidate MSX SMC 055 (IRAS 00483-7347) are presented. Its current mass is estimated to be 8.5 ± 1.6 M⊙, suggesting an initial mass well above 8 M⊙ in agreement with estimates based on its large Rubidium abundance. Using synthetic photometry, we present and discuss colour-colour and

  20. Solar-like oscillations from the depths of the red-giant star KIC4351319 observed with Kepler

    DEFF Research Database (Denmark)

    di Mauro, M.P.; Cardini, D.; Catanzaro, G.

    2011-01-01

    -mode pattern due to radial acoustic modes and non-radial nearly pure p modes. In addition, several non-radial mixed modes have been identified. Theoretical models well reproduce the observed oscillation frequencies and indicate that this star, located at the base of the ascending red-giant branch......Hz, respectively, and the frequency of maximum oscillation power, inline imageHz. The high signal-to-noise ratio of the observations allowed us to identify 25 independent pulsation modes whose frequencies range approximately from 300 to inline imageHz. The observed oscillation frequencies together...... with the accurate determination of the atmospheric parameters (effective temperature, gravity and metallicity), provided by additional ground-based spectroscopic observations, enabled us to theoretically interpret the observed oscillation spectrum. KIC 4351319 appears to oscillate with a well-defined solar-type p...

  1. GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4

    Energy Technology Data Exchange (ETDEWEB)

    Pannella, M.; Elbaz, D.; Daddi, E.; Hwang, H. S.; Schreiber, C.; Strazzullo, V.; Aussel, H.; Bethermin, M.; Cibinel, A.; Juneau, S.; Floc’h, E. Le; Leiton, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu—CNRS—Université Paris Diderot, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Buat, V. [Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR7326, F-13388, Marseille (France); Charmandaris, V.; Magdis, G. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236, Penteli (Greece); Ivison, R. J. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Borgne, D. Le [Institut d’Astrophysique de Paris, UMR 7095, CNRS, 98bis boulevard Arago, F-75005 Paris (France); Lin, L. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Morrison, G. E. [Institute for Astronomy, University of Hawaii, Honolulu, Hawaii, HI-96822 (United States); and others

    2015-07-10

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.

  2. The shock-induced star formation sequence resulting from a constant spiral pattern speed

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-García, Eric E.; Puerari, Ivânio, E-mail: ericmartinez@inaoep.mx, E-mail: puerari@inaoep.mx [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Aptdo. Postal 51 y 216, 72000 Puebla, Puebla (Mexico)

    2014-08-01

    We utilize a suite of multiwavelength data of nine nearby spirals to analyze the shock-induced star formation sequence that may result from a constant spiral pattern speed. The sequence involves tracers as the H I, CO 24 μm, and FUV, where the spiral arms were analyzed with Fourier techniques in order to obtain their azimuthal phases as a function of radius. It was found that only two of the objects, NGC 628 and NGC 5194, present coherent phases resembling the theoretical expectations, as indicated by the phase shifts of CO- 24 μm. The evidence is more clear for NGC 5194 and moderate for NGC 628. It was also found that the phase shifts are different for the two spiral arms. With the exception on NGC 3627, a two-dimensional Fourier analysis showed that the rest of the objects do not exhibit bi-symmetric spiral structures of stellar mass, i.e., grand-design spirals. A phase order inversion indicates a corotation radius of ∼89'' for NGC 628 and ∼202'' for NGC 5194. For these two objects, the CO-Hα phase shifts corroborate the CO-24 μm azimuthal offsets. Also for NGC 5194, the CO-70 μm, CO-140 μm, and CO-250 μm phase shifts indicate a corotation region.

  3. Soviet News and Propaganda Highlights from Red Star (The Official Newspaper of the Soviet Defense Establishment) for the Period 1-30 April 1981.

    Science.gov (United States)

    1981-04-01

    policy of disuasion - isolation of the USSR. Now, Soviet propagandists insist that NATO (and the U.S.) are trying to .embarrass and discredi t communist...34 Red Star emphasized that in the 1970s the United States and NATO conducted a policy of disuasion - isolation of the USSR. Now, according to the Soviet

  4. ADIABATIC MASS LOSS IN BINARY STARS. II. FROM ZERO-AGE MAIN SEQUENCE TO THE BASE OF THE GIANT BRANCH

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Hongwei; Chen, Xuefei; Han, Zhanwen [Yunnan Observatories, The Chinese Academy of Sciences, Kunming 650011 (China); Webbink, Ronald F., E-mail: hongwei.ge@gmail.com, E-mail: rwebbink@illinois.edu [Department of Astronomy, University of Illinois, 1002 W. Green St., Urbana, IL 61801 (United States)

    2015-10-10

    In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z = 0.02) of mass 0.10 M{sub ⊙}–100 M{sub ⊙} from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio q{sub ad} (throughout this paper, we follow the convention of defining the binary mass ratio as q ≡ M{sub donor}/M{sub accretor}) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, q{sub ad} plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with q{sub ad} declining with decreasing mass, and asymptotically approaching q{sub ad} = 2/3, appropriate to a classical isentropic n = 3/2 polytrope. Our calculated q{sub ad} values agree well with the behavior of time-dependent models by Chen and Han of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems

  5. Constraining stellar physics from red-giant stars in binaries - stellar rotation, mixing processes and stellar activity

    Science.gov (United States)

    Beck, P. G.; Kallinger, T.; Pavlovski, K.; Palacios, A.; Tkachenko, A.; García, R. A.; Mathis, S.; Corsaro, E.; Johnston, C.; Mosser, B.; Ceillier, T.; do Nascimento, J.-D.; Raskin, G.

    2017-10-01

    The unparalleled photometric data obtained by NASA's Kepler Space Telescope has led to an improved understanding of stellar structure and evolution - in particular for solar-like oscillators in this context. Binary stars are fascinating objects. Because they were formed together, binary systems provide a set of two stars with very well constrained parameters. Those can be used to study properties and physical processes, such as the stellar rotation, dynamics and rotational mixing of elements and allows us to learn from the differences we find between the two components. In this work, we discussed a detailed study of the binary system KIC 9163796, discovered through Kepler photometry. The ground-based follow-up spectroscopy showed that this system is a double-lined spectroscopic binary, with a mass ratio close to unity. However, the fundamental parameters of the components of this system as well as their lithium abundances differ substantially. Kepler photometry of this system allows to perform a detailed seismic analysis as well as to derive the orbital period and the surface rotation rate of the primary component of the system. Indications of the seismic signature of the secondary are found. The differing parameters are best explained with both components located in the early and the late phase of the first dredge up at the bottom of the red-giant branch. Observed lithium abundances in both components are in good agreement with prediction of stellar models including rotational mixing. By combining observations and theory, a comprehensive picture of the system can be drawn.

  6. Oscillation mode frequencies of 61 main-sequence and subgiant stars observed by Kepler

    DEFF Research Database (Denmark)

    Appourchaux, T.; Chaplin, W. J.; García, R. A.

    2012-01-01

    Solar-like oscillations have been observed by Kepler and CoRoT in several solar-type stars, thereby providing a way to probe the stars using asteroseismology Aims. We provide the mode frequencies of the oscillations of various stars required to perform a comparison with those obtained from stella...

  7. Kepler Detected Gravity-Mode Period Spacings in a Red Giant Star

    DEFF Research Database (Denmark)

    Beck, P.G.; Bedding, Timothy R.; Mosser, Benoit

    2011-01-01

    Stellar interiors are inaccessible through direct observations. For this reason, helioseismologists made use of the Sun’s acoustic oscillation modes to tune models of its structure. The quest to detect modes that probe the solar core has been ongoing for decades. We report the detection of mixed...... modes penetrating all the way to the core of an evolved star from 320 days of observations with the Kepler satellite. The period spacings of these mixed modes are directly dependent on the density gradient between the core region and the convective envelope....

  8. The Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE): The Dust Extinction Curve from Red Clump Stars

    Science.gov (United States)

    Yanchulova Merica-Jones, Petia; Sandstrom, Karin M.; Johnson, L. Clifton; Dalcanton, Julianne; Dolphin, Andrew E.; Gordon, Karl; Roman-Duval, Julia; Weisz, Daniel R.; Williams, Benjamin F.

    2017-10-01

    We use Hubble Space Telescope (HST) observations of red clump stars taken as part of the Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE) program to measure the average dust extinction curve in a ˜200 pc × 100 pc region in the southwest bar of the Small Magellanic Cloud (SMC). The rich information provided by our eight-band ultraviolet through near-infrared photometry allows us to model the color-magnitude diagram of the red clump accounting for the extinction curve shape, a log-normal distribution of A V , and the depth of the stellar distribution along the line of sight. We measure an extinction curve with {R}475 ={A}475/({A}475{--}{A}814)=2.65+/- 0.11. This measurement is significantly larger than the equivalent values of published Milky Way (MW) R V = 3.1 ({R}475=1.83) and SMC Bar R V = 2.74 ({R}475=1.86) extinction curves. Similar extinction curve offsets in the Large Magellanic Cloud (LMC) have been interpreted as the effect of large dust grains. We demonstrate that the line-of-sight depth of the SMC (and LMC) introduces an apparent “gray” contribution to the extinction curve inferred from the morphology of the red clump. We show that no gray dust component is needed to explain extinction curve measurements when FWHM depth of 10 ± 2 kpc in the stellar distribution of the SMC (5 ± 1 kpc for the LMC) is considered, which agrees with recent studies of Magellanic Cloud stellar structure. The results of our work demonstrate the power of broadband HST imaging for simultaneously constraining dust and galactic structure outside the MW.

  9. First ancient DNA sequences from the Late Pleistocene red deer (Cervus elaphus) in the Crimea, Ukraine

    Science.gov (United States)

    Stanković, Ana; Nadachowski, Adam; Doan, Karolina; Stefaniak, Krzysztof; Baca, Mateusz; Socha, Paweł; Wegleński, Piotr; Ridush, Bogdan

    2010-05-01

    The Late Pleistocene has been a period of significant population and species turnover and extinctions among the large mammal fauna. Massive climatic and environmental changes during Pleistocene significantly influenced the distribution and also genetic diversity of plants and animals. The model of glacial refugia and habitat contraction to southern peninsulas in Europe as areas for the survival of temperate animal species during unfavourable Pleistocene glaciations is at present widely accepted. However, both molecular data and the fossil record indicate the presence of northern and perhaps north-eastern refugia in Europe. In recent years, much new palaeontological data have been obtained in the Crimean Peninsula, Ukraine, following extensive investigations. The red deer (Cervus elaphus) samples for aDNA studies were collected in Emine-Bair-Khosar Cave, situated on the north edge of Lower Plateau of the Chatyrdag Massif (Crimean Mountains). The cave is a vertical shaft, which functioned as a huge mega-trap over a long period of time (probably most of the Pleistocene). The bone assemblages provided about 5000 bones belonging to more than 40 species. The C. elaphus bones were collected from three different stratigraphical levels, radiocarbon dated by accelerator mass spectrometry (AMS) method. The bone fragments of four specimens of red deer were used for the DNA isolation and analysis. The mtDNA (Cytochome b) was successfully isolated from three bone fragments and the cytochrome b sequences were amplified by multiplex PCR. The sequences obtained so far allowed for the reconstruction of only preliminary phylogenetic trees. A fragment of metatarsus from level dated to ca. 48,500±2,000 years BP, yielded a sequence of 513 bp, allowing to locate the specimen on the phylogenetic tree within modern C. elaphus specimens from southern and middle Europe. The second bone fragment, a fragment of mandible, collected from level dated approximately to ca. 33,500±400 years BP

  10. New proper motions of pre-main sequence stars in Taurus-Auriga

    OpenAIRE

    Frink, S.; Roeser, S.; Neuhaeuser, R.; Sterzik, M. F.

    1997-01-01

    We present proper motions of 72 T Tauri stars located in the central region of Taurus-Auriga. These proper motions are taken from a new proper motion catalogue called STARNET. Our sample comprises 17 classical T Tauri stars and 55 weak-line T Tauri stars, most of the latter discovered by ROSAT. 53 stars had no proper motion measurement before. Kinematically, 62 of these stars are members of the association. A velocity dispersion of less than 2-3 km/s is found which is dominated by the errors ...

  11. Link between benthic oxygen isotopes and magnetic susceptibility in the red-clay sequence on the Chinese Loess Plateau

    Science.gov (United States)

    Nie, Junsheng; King, John W.; Fang, Xiaomin

    2008-02-01

    Recent rock magnetic work on the red-clay sequence on the Chinese Loess Plateau (CLP) convincingly demonstrates that the enhancement mechanisms of low-frequency magnetic susceptibility (i.e., measured at 470 Hz; χ lf) in the red-clay sequence are similar to those in the loess-paleosol sequence. Therefore, χ lf in the red-clay sequence should indicate precipitation intensity received by the CLP, as is the case in the overlying loess-paleosol sequence. Based on this result, we compared χ lf in the red-clay sequence with benthic oxygen isotope records. We infer that the primary precipitation source on the CLP varies over time in three phases: during 8.1-4.5 Ma, the East Asian summer monsoon dominates; during 4.5-4 Ma, the Polar Westerlies dominate; during 4-0 Ma, the East Asian summer monsoon dominates. We attribute these precipitation source shifts on the CLP to the closure of the Panama Seaway around 4.5 Ma and the Tibetan uplift during the interval 4-2.6 Ma.

  12. A Photometric redshift galaxy catalog from the Red-Sequence Cluster Survey

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Bau-Ching; /Taiwan, Natl. Central U. /Taipei, Inst. Astron. Astrophys.; Yee, H.K.C.; /Toronto U., Astron. Dept.; Lin, H.; /Fermilab; Gladders, M.D.; /Carnegie Inst.

    2005-02-01

    The Red-Sequence Cluster Survey (RCS) provides a large and deep photometric catalog of galaxies in the z' and R{sub c} bands for 90 square degrees of sky, and supplemental V and B data have been obtained for 33.6 deg{sup 2}. They compile a photometric redshift catalog from these 4-band data by utilizing the empirical quadratic polynomial photometric redshift fitting technique in combination with CNOC2 and GOODS/HDF-N redshift data. The training set includes 4924 spectral redshifts. The resulting catalog contains more than one million galaxies with photometric redshifts < 1.5 and R{sub c} < 24, giving an rms scatter {delta}({Delta}z) < 0.06 within the redshift range 0.2 < z < 0.5 and {sigma}({Delta}z) < 0.11 for galaxies at 0.0 < z < 1.5. They describe the empirical quadratic polynomial photometric redshift fitting technique which they use to determine the relation between red-shift and photometry. A kd-tree algorithm is used to divide up the sample to improve the accuracy of the catalog. They also present a method for estimating the photometric redshift error for individual galaxies. They show that the redshift distribution of the sample is in excellent agreement with smaller and much deeper photometric and spectroscopic redshift surveys.

  13. Which of Kepler's Stars Flare?

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a

  14. Constraining stellar physics from red-giant stars in binaries – stellar rotation, mixing processes and stellar activity

    Directory of Open Access Journals (Sweden)

    Beck P. G.

    2017-01-01

    Full Text Available The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to an improved understanding of stellar structure and evolution - in particular for solar-like oscillators in this context. Binary stars are fascinating objects. Because they were formed together, binary systems provide a set of two stars with very well constrained parameters. Those can be used to study properties and physical processes, such as the stellar rotation, dynamics and rotational mixing of elements and allows us to learn from the differences we find between the two components. In this work, we discussed a detailed study of the binary system KIC 9163796, discovered through Kepler photometry. The ground-based follow-up spectroscopy showed that this system is a double-lined spectroscopic binary, with a mass ratio close to unity. However, the fundamental parameters of the components of this system as well as their lithium abundances differ substantially. Kepler photometry of this system allows to perform a detailed seismic analysis as well as to derive the orbital period and the surface rotation rate of the primary component of the system. Indications of the seismic signature of the secondary are found. The differing parameters are best explained with both components located in the early and the late phase of the first dredge up at the bottom of the red-giant branch. Observed lithium abundances in both components are in good agreement with prediction of stellar models including rotational mixing. By combining observations and theory, a comprehensive picture of the system can be drawn.

  15. Extracellular DNA amplicon sequencing reveals high levels of benthic eukaryotic diversity in the central Red Sea

    KAUST Repository

    Pearman, John K.

    2015-11-01

    The present study aims to characterize the benthic eukaryotic biodiversity patterns at a coarse taxonomic level in three areas of the central Red Sea (a lagoon, an offshore area in Thuwal and a shallow coastal area near Jeddah) based on extracellular DNA. High-throughput amplicon sequencing targeting the V9 region of the 18S rRNA gene was undertaken for 32 sediment samples. High levels of alpha-diversity were detected with 16,089 operational taxonomic units (OTUs) being identified. The majority of the OTUs were assigned to Metazoa (29.2%), Alveolata (22.4%) and Stramenopiles (17.8%). Stramenopiles (Diatomea) and Alveolata (Ciliophora) were frequent in a lagoon and in shallower coastal stations, whereas metazoans (Arthropoda: Maxillopoda) were dominant in deeper offshore stations. Only 24.6% of total OTUs were shared among all areas. Beta-diversity was generally lower between the lagoon and Jeddah (nearshore) than between either of those and the offshore area, suggesting a nearshore–offshore biodiversity gradient. The current approach allowed for a broad-range of benthic eukaryotic biodiversity to be analysed with significantly less labour than would be required by other traditional taxonomic approaches. Our findings suggest that next generation sequencing techniques have the potential to provide a fast and standardised screening of benthic biodiversity at large spatial and temporal scales.

  16. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. V. Asteroseismology of ELMV white dwarf stars

    Science.gov (United States)

    Calcaferro, Leila M.; Córsico, Alejandro H.; Althaus, Leandro G.

    2017-11-01

    Context. Many pulsating low-mass white dwarf stars have been detected in the past years in the field of our Galaxy. Some of them exhibit multiperiodic brightness variation, therefore it is possible to probe their interiors through asteroseismology. Aims: We present a detailed asteroseismological study of all the known low-mass variable white dwarf stars based on a complete set of fully evolutionary models that are representative of low-mass He-core white dwarf stars. Methods: We employed adiabatic radial and nonradial pulsation periods for low-mass white dwarf models with stellar masses ranging from 0.1554 to 0.4352 M⊙ that were derived by simulating the nonconservative evolution of a binary system consisting of an initially 1 M⊙ zero-age main-sequence (ZAMS) star and a 1.4 M⊙ neutron star companion. We estimated the mean period spacing for the stars under study (where this was possible), and then we constrained the stellar mass by comparing the observed period spacing with the average of the computed period spacings for our grid of models. We also employed the individual observed periods of every known pulsating low-mass white dwarf star to search for a representative seismological model. Results: We found that even though the stars under analysis exhibit few periods and the period fits show multiplicity of solutions, it is possible to find seismological models whose mass and effective temperature are in agreement with the values given by spectroscopy for most of the cases. Unfortunately, we were not able to constrain the stellar masses by employing the observed period spacing because, in general, only few periods are exhibited by these stars. In the two cases where we were able to extract the period spacing from the set of observed periods, this method led to stellar mass values that were substantially higher than expected for this type of stars. Conclusions: The results presented in this work show the need for further photometric searches, on the one hand

  17. The SFR-M∗ main sequence archetypal star-formation history and analytical models

    Science.gov (United States)

    Ciesla, L.; Elbaz, D.; Fensch, J.

    2017-12-01

    The star-formation history (SFH) of galaxies is a key assumption to derive their physical properties and can lead to strong biases. In this work, we derive the SFH of main sequence (MS) galaxies and show how the peak SFH of a galaxy depends on its seed mass at, for example, z = 5. This seed mass reflects the galaxy's underlying dark matter (DM) halo environment. We show that, following the MS, galaxies undergo a drastic slow down of their stellar mass growth after reaching the peak of their SFH. According to abundance matching, these masses correspond to hot and massive DM halos which state could result in less efficient gas inflows on the galaxies and thus could be the origin of limited stellar mass growth. As a result, we show that galaxies, still on the MS, can enter the passive region of the UVJ diagram while still forming stars. The best fit to the MS SFH is provided by a right skew peak function for which we provide parameters depending on the seed mass of the galaxy. The ability of the classical analytical SFHs to retrieve the star-formation rate (SFR) of galaxies from spectral energy distribution (SED) fitting is studied. Due to mathematical limitations, the exponentially declining and delayed SFH struggle to model high SFR, which starts to be problematic at z > 2. The exponentially rising and log-normal SFHs exhibit the opposite behavior with the ability to reach very high SFR, and thus model starburst galaxies, but they are not able to model low values such as those expected at low redshift for massive galaxies. By simulating galaxies SED from the MS SFH, we show that these four analytical forms recover the SFR of MS galaxies with an error dependent on the model and the redshift. They are, however, sensitive enough to probe small variations of SFR within the MS, with an error ranging from 5 to 40% depending on the SFH assumption and redshift; but all the four fail to recover the SFR of rapidly quenched galaxies. However, these SFHs lead to an artificial

  18. The road to the red sequence via secular and environmental processes: insights from the local Universe

    Science.gov (United States)

    Consolandi, Guido

    2017-04-01

    The evolution of galaxies can be thought as the result of the cumulative effects of two broad classes of processes: (i) secular (internal) processes determined by the very nature of the galaxy, and (ii) external processes that are determined by the environment in which the object is embedded. In this thesis I face both aspects of galaxy evolution. Among secular processes, I investigated the effects of stellar bars on the gaseous components of galaxies and their consequences on their evolution. In particular I show how bars affect both the ionized and cold gas in two different samples: the sample of the Halpha3 survey, an Halpha imaging survey of galaxies selected from ALFALFA in the Local and Coma superclusters; the Herschel Reference Sample, a representative sample of 323 local galaxies observed with the space-based Herschel observatory sensitive to the far-infrared emission of dust, a good tracer of cold gas. Owing to the Halpha3 data I demonstrate that main sequence barred galaxies have specific star formation rate suppressed with respect to pure disks. Here I propose a simple model in which bars drive the evolution of disk galaxies. Hydrodynamical simulations indeed show that a barred potential funnels the gas inside the corotation radius toward the center of the galaxy where it reaches high densities, cools and can be consumed by a burst of star formation. At the same time the dynamical torque of the bar keeps the gas outside the corotation radius in place, cutting the gas supply to the central region that consequently stops its star formation activity. Taking advantage of the images of the HRS sample, we show the evidences of such quenching. The aforementioned model is further tested by studying the stellar population properties of galaxies belonging to a sample of 6000 galaxies extracted from SDSS. To this aim, I designed in-house IDL codes that automatically perform aperture photometry and isophotal fitting recovering reliable magnitudes, colors

  19. Pre-supernova outbursts via wave heating in massive stars - I. Red supergiants

    Science.gov (United States)

    Fuller, Jim

    2017-09-01

    Early observations of supernovae (SNe) indicate that enhanced mass-loss and pre-SN outbursts may occur in progenitors of many types of SNe. We investigate the role of energy transport via waves driven by vigorous convection during late-stage nuclear burning of otherwise typical 15 M⊙ red supergiant SN progenitors. Using mesa stellar evolution models including 1D hydrodynamics, we find that waves carry ˜107 L⊙ of power from the core to the envelope during core neon/oxygen burning in the final years before core collapse. The waves damp via shocks and radiative diffusion at the base of the hydrogen envelope, which heats up fast enough to launch a pressure wave into the overlying envelope that steepens into a weak shock near the stellar surface, causing a mild stellar outburst and ejecting a small (≲1 M⊙) amount of mass at low speed (≲50 km s-1) roughly one year before the SN. The wave heating inflates the stellar envelope but does not completely unbind it, producing a non-hydrostatic pre-SN envelope density structure different from prior expectations. In our models, wave heating is unlikely to lead to luminous Type IIn SNe, but it may contribute to flash-ionized SNe and some of the diversity seen in II-P/II-L SNe.

  20. Genome Sequence of Acidovorax avenae Strain T10_61 Associated with Sugarcane Red Stripe in Argentina

    OpenAIRE

    Fontana, Paola D.; Fontana, Cecilia A.; Bassi, Daniela; Puglisi, Edoardo; Salazar, Sergio M.; Vignolo, Graciela M.; Coccocelli, Pier S.

    2016-01-01

    Red stripe of sugarcane in Argentina is a bacterial disease caused by Acidovorax avenae. The genome sequence from the first isolate of this bacterium in Argentina is presented here. The draft genome of the A.?avenae T10_61 strain contains 5,646,552?bp and has a G+C content of 68.6?mol%.

  1. PermVeg: A model to design crop sequences for permanent vegetable production systems in the Red River Delta, Vietnam

    NARCIS (Netherlands)

    Pham Thi Thu Huong, Huong; Everaarts, A.P.; Berg, van den W.; Neeteson, J.J.; Struik, P.C.

    2014-01-01

    The constraints in current vegetable production systems in the Red River Delta, Vietnam, in which vegetables are rotated with flooded rice, called for the design of alternative systems of permanent vegetable production. The practical model, PermVeg, was developed to generate vegetable crop sequences

  2. CONSTRAINING THE EXOZODIACAL LUMINOSITY FUNCTION OF MAIN-SEQUENCE STARS: COMPLETE RESULTS FROM THE KECK NULLER MID-INFRARED SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Mennesson, B.; Serabyn, E.; Colavita, M. M.; Bryden, G.; Doré, O.; Traub, W. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Millan-Gabet, R. [NASA Exoplanet Science Center, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Absil, O. [Département d' Astrophysique, Géophysique et Océanographie, Université de Liège, 17 Allée du Six Août, 4000 Liège (Belgium); Wyatt, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Danchi, W.; Kuchner, M.; Stapelfeldt, K. [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Defrère, D.; Hinz, P. [Steward Observatory, Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Ragland, S. [Keck Observatory, 65-1120 Mamalahoa Highway, Kamuela, HI 96743 (United States); Scott, N. [Center for High Angular Resolution Astronomy, Georgia State University, Mount Wilson, CA 91023 (United States); Woillez, J., E-mail: Bertrand.Mennesson@jpl.nasa.gov [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Munchen (Germany)

    2014-12-20

    Forty-seven nearby main-sequence stars were surveyed with the Keck Interferometer mid-infrared Nulling instrument (KIN) between 2008 and 2011, searching for faint resolved emission from exozodiacal dust. Observations of a subset of the sample have already been reported, focusing essentially on stars with no previously known dust. Here we extend this previous analysis to the whole KIN sample, including 22 more stars with known near- and/or far-infrared excesses. In addition to an analysis similar to that of the first paper of this series, which was restricted to the 8-9 μm spectral region, we present measurements obtained in all 10 spectral channels covering the 8-13 μm instrumental bandwidth. Based on the 8-9 μm data alone, which provide the highest signal-to-noise measurements, only one star shows a large excess imputable to dust emission (η Crv), while four more show a significant (>3σ) excess: β Leo, β UMa, ζ Lep, and γ Oph. Overall, excesses detected by KIN are more frequent around A-type stars than later spectral types. A statistical analysis of the measurements further indicates that stars with known far-infrared (λ ≥ 70 μm) excesses have higher exozodiacal emission levels than stars with no previous indication of a cold outer disk. This statistical trend is observed regardless of spectral type and points to a dynamical connection between the inner (zodi-like) and outer (Kuiper-Belt-like) dust populations. The measured levels for such stars are clustering close to the KIN detection limit of a few hundred zodis and are indeed consistent with those expected from a population of dust that migrated in from the outer belt by Poynting-Robertson drag. Conversely, no significant mid-infrared excess is found around sources with previously reported near-infrared resolved excesses, which typically have levels of the order of 1% over the photospheric flux. If dust emission is really at play in these near-infrared detections, the absence of a strong mid

  3. Soviet News and Propaganda Highlights from RED STAR (The Official Newspaper of the Soviet Defense Establishment) for the Period 1-31 March 1981.

    Science.gov (United States)

    1981-03-01

    They are true to the traditions of the military fraternity." "Solidarity continues to increase tension and disorder in Poland. In spite of promise for 90...to the Solidarity movement. The scope of Red -16- Star’s content emphasized four major themes: (1) Soviet and Polish military forces are loyal to the ... traditions of the military fraternity and socialism ------------------------ 56% (2) The United Workers’ Party will solve its problems ------------19

  4. Tidal Disruptions of Main Sequence Stars: Inferences from the Composition of the Fallback Material

    Science.gov (United States)

    Gallegos, Monica; Law-Smith, Jamie; Ramírez-Ruiz, Enrico

    2018-01-01

    We study black holes within galactic nuclei by analyzing the motions of stars swarming around them. When the conditions are right we can observe and analyze characteristics of the black hole’s destructive power. In this paper we analyze the case when a star lurks close enough to these gravity giants to be ripped apart. After disruption, material that is bound to the supermassive black hole accretes onto it and creates a powerful flare. The standard light curve of these flares is classically described by a t-5/3 power law in time. In this paper we adopt an analytical method to calculate the fallback rate and use Modules for Experiments in Stellar Astrophysics (MESA) to study the disruption of stars with masses between 0.8-3 M⊙ at various evolutionary stages. We move beyond the analysis of the light curve and peer into the interiors of the disrupted stars by studying the compositional features of the fallback material. With this work we can begin to constrain the nature of the stars that are tidally disrupted. We find that most stars develop nitrogen (14N) enhancements with carbon (12C) and oxygen (16O) depletion relative to solar abundance and find that these features are more pronounced for higher mass stars. We also find that these features become prominent only after the time of maximum fallback rate, tpeak, and are observed to appear at earlier times for stars of increasing mass. This work provides a clear spectral method to help classify the transient events we observe at the centers of galaxies.

  5. Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available BACKGROUND: Pyropia haitanensis and P. yezoensis are two economically important marine crops that are also considered to be research models to study the physiological ecology of intertidal seaweed communities, evolutionary biology of plastids, and the origins of sexual reproduction. This plastid genome information will facilitate study of breeding, population genetics and phylogenetics. PRINCIPAL FINDINGS: We have fully sequenced using next-generation sequencing the circular plastid genomes of P. hatanensis (195,597 bp and P. yezoensis (191,975 bp, the largest of all the plastid genomes of the red lineage sequenced to date. Organization and gene contents of the two plastids were similar, with 211-213 protein-coding genes (including 29-31 unknown-function ORFs, 37 tRNA genes, and 6 ribosomal RNA genes, suggesting a largest coding capacity in the red lineage. In each genome, 14 protein genes overlapped and no interrupted genes were found, indicating a high degree of genomic condensation. Pyropia maintain an ancient gene content and conserved gene clusters in their plastid genomes, containing nearly complete repertoires of the plastid genes known in photosynthetic eukaryotes. Similarity analysis based on the whole plastid genome sequences showed the distance between P. haitanensis and P. yezoensis (0.146 was much smaller than that of Porphyra purpurea and P. haitanensis (0.250, and P. yezoensis (0.251; this supports re-grouping the two species in a resurrected genus Pyropia while maintaining P. purpurea in genus Porphyra. Phylogenetic analysis supports a sister relationship between Bangiophyceae and Florideophyceae, though precise phylogenetic relationships between multicellular red alage and chromists were not fully resolved. CONCLUSIONS: These results indicate that Pyropia have compact plastid genomes. Large coding capacity and long intergenic regions contribute to the size of the largest plastid genomes reported for the red lineage. Possessing

  6. Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis.

    Science.gov (United States)

    Wang, Li; Mao, Yunxiang; Kong, Fanna; Li, Guiyang; Ma, Fei; Zhang, Baolong; Sun, Peipei; Bi, Guiqi; Zhang, Fangfang; Xue, Hongfan; Cao, Min

    2013-01-01

    Pyropia haitanensis and P. yezoensis are two economically important marine crops that are also considered to be research models to study the physiological ecology of intertidal seaweed communities, evolutionary biology of plastids, and the origins of sexual reproduction. This plastid genome information will facilitate study of breeding, population genetics and phylogenetics. We have fully sequenced using next-generation sequencing the circular plastid genomes of P. hatanensis (195,597 bp) and P. yezoensis (191,975 bp), the largest of all the plastid genomes of the red lineage sequenced to date. Organization and gene contents of the two plastids were similar, with 211-213 protein-coding genes (including 29-31 unknown-function ORFs), 37 tRNA genes, and 6 ribosomal RNA genes, suggesting a largest coding capacity in the red lineage. In each genome, 14 protein genes overlapped and no interrupted genes were found, indicating a high degree of genomic condensation. Pyropia maintain an ancient gene content and conserved gene clusters in their plastid genomes, containing nearly complete repertoires of the plastid genes known in photosynthetic eukaryotes. Similarity analysis based on the whole plastid genome sequences showed the distance between P. haitanensis and P. yezoensis (0.146) was much smaller than that of Porphyra purpurea and P. haitanensis (0.250), and P. yezoensis (0.251); this supports re-grouping the two species in a resurrected genus Pyropia while maintaining P. purpurea in genus Porphyra. Phylogenetic analysis supports a sister relationship between Bangiophyceae and Florideophyceae, though precise phylogenetic relationships between multicellular red alage and chromists were not fully resolved. These results indicate that Pyropia have compact plastid genomes. Large coding capacity and long intergenic regions contribute to the size of the largest plastid genomes reported for the red lineage. Possessing the largest coding capacity and ancient gene content yet

  7. UVI colour gradients of 0.4 star-forming main-sequence galaxies in CANDELS: dust extinction and star formation profiles

    Science.gov (United States)

    Wang, Weichen; Faber, S. M.; Liu, F. S.; Guo, Yicheng; Pacifici, Camilla; Koo, David C.; Kassin, Susan A.; Mao, Shude; Fang, Jerome J.; Chen, Zhu; Koekemoer, Anton M.; Kocevski, Dale D.; Ashby, M. L. N.

    2017-08-01

    This paper uses radial colour profiles to infer the distributions of dust, gas and star formation in z = 0.4-1.4 star-forming main-sequence galaxies. We start with the standard UVJ-based method to estimate dust extinction and specific star formation rate (sSFR). By replacing J with I band, a new calibration method suitable for use with ACS+WFC3 data is created (I.e. UVI diagram). Using a multi-wavelength multi-aperture photometry catalogue based on CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey), UVI colour profiles of 1328 galaxies are stacked in stellar mass and redshift bins. The resulting colour gradients, covering a radial range of 0.2-2.0 effective radii, increase strongly with galaxy mass and with global AV. Colour gradient directions are nearly parallel to the Calzetti extinction vector, indicating that dust plays a more important role than stellar population variations. With our calibration, the resulting AV profiles fall much more slowly than stellar mass profiles over the measured radial range. sSFR gradients are nearly flat without central quenching signatures, except for M⋆ > 1010.5 M⊙, where central declines of 20-25 per cent are observed. Both sets of profiles agree well with previous radial sSFR and (continuum) AV measurements. They are also consistent with the sSFR profiles and, if assuming a radially constant gas-to-dust ratio, gas profiles in recent hydrodynamic models. We finally discuss the striking findings that SFR scales with stellar mass density in the inner parts of galaxies, and that dust content is high in the outer parts despite low stellar mass surface densities there.

  8. Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. VI. First chromosphere model of a late-type giant

    Science.gov (United States)

    Wedemeyer, Sven; Kučinskas, Arūnas; Klevas, Jonas; Ludwig, Hans-Günter

    2017-10-01

    Aims: Although observational data unequivocally point to the presence of chromospheres in red giant stars, no attempts have been made so far to model them using 3D hydrodynamical model atmospheres. We therefore compute an exploratory 3D hydrodynamical model atmosphere for a cool red giant in order to study the dynamical and thermodynamic properties of its chromosphere, as well as the influence of the chromosphere on its observable properties. Methods: Three-dimensional radiation hydrodynamics simulations are carried out with the CO5BOLD model atmosphere code for a star with the atmospheric parameters (Teff ≈ 4010 K, log g = 1.5, [ M / H ] = 0.0), which are similar to those of the K-type giant star Aldebaran (α Tau). The computational domain extends from the upper convection zone into the chromosphere (7.4 ≥ log τRoss ≥ - 12.8) and covers several granules in each horizontal direction. Using this model atmosphere, we compute the emergent continuum intensity maps at different wavelengths, spectral line profiles of Ca II K, the Ca II infrared triplet line at 854.2 nm, and Hα, as well as the spectral energy distribution (SED) of the emergent radiative flux. Results: The initial model quickly develops a dynamical chromosphere that is characterised by propagating and interacting shock waves. The peak temperatures in the chromospheric shock fronts reach values of up to 5000 K, although the shock fronts remain quite narrow. Similar to the Sun, the gas temperature distribution in the upper layers of red giant stars is composed of a cool component due to adiabatic cooling in the expanding post-shock regions and a hot component due to shock waves. For this red giant model, the hot component is a rather flat high-temperature tail, which nevertheless affects the resulting average temperatures significantly. Conclusions: The simulations show that the atmospheres of red giant stars are dynamic and intermittent. Consequently, many observable properties cannot be reproduced

  9. Binary star influence on post-main-sequence multi-planet stability

    Science.gov (United States)

    Veras, Dimitri; Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Gänsicke, Boris T.

    2017-02-01

    Nearly every star known to host planets will become a white dwarf, and nearly 100 planet-hosts are now known to be accompanied by binary stellar companions. Here, we determine how a binary companion triggers instability in otherwise unconditionally stable single-star two-planet systems during the giant branch and white dwarf phases of the planet host. We perform about 700 full-lifetime (14 Gyr) simulations with A0 and F0 primary stars and secondary K2 companions, and identify the critical binary distance within which instability is triggered at any point during stellar evolution. We estimate this distance to be about seven times the outer planet separation for circular binaries. Our results help characterize the fates of planetary systems, and in particular which ones might yield architectures which are conducive to generating observable metal pollution in white dwarf atmospheres.

  10. Non-Gaussian Statistics and Stellar Rotational Velocities of Main-Sequence Field Stars

    Science.gov (United States)

    Carvalho, J. C.; do Nascimento, J. D.; Silva, R.; DeMedeiros, J. R.

    2009-05-01

    In this Letter, we study the observed distributions of rotational velocity in a sample of more than 16,000 nearby F and G dwarf stars, magnitude complete, and presenting high-precision Vsin i measurements. We show that the velocity distributions cannot be fitted by a Maxwellian. In addition, an analysis based on both Tsallis and Kaniadakis power-law statistics is by far the most appropriate statistics and gives a very good fit. It is also shown that single and binary stars have similar rotational distributions. This is the first time, to our knowledge, that these two new statistics have been tested for the rotation of such a large sample of stars, pointing solidly to a solution of the puzzling problem of the function governing the distribution of stellar rotational velocity.

  11. Quality of red blood cells washed using a second wash sequence on an automated cell processor.

    Science.gov (United States)

    Hansen, Adele L; Turner, Tracey R; Kurach, Jayme D R; Acker, Jason P

    2015-10-01

    Washed red blood cells (RBCs) are indicated for immunoglobulin (Ig)A-deficient recipients when RBCs from IgA-deficient donors are not available. Canadian Blood Services recently began using the automated ACP 215 cell processor (Haemonetics Corporation) for RBC washing, and its suitability to produce IgA-deficient RBCs was investigated. RBCs produced from whole blood donations by the buffy coat (BC) and whole blood filtration (WBF) methods were washed using the ACP 215 or the COBE 2991 cell processors and IgA and total protein levels were assessed. A double-wash procedure using the ACP 215 was developed, tested, and validated by assessing hemolysis, hematocrit, recovery, and other in vitro quality variables in RBCs stored after washing, with and without irradiation. A single wash using the ACP 215 did not meet Canadian Standards Association recommendations for washing with more than 2 L of solution and could not consistently reduce IgA to levels suitable for IgA-deficient recipients (24/26 BC RBCs and 0/9 WBF RBCs had IgA levels < 0.05 mg/dL). Using a second wash sequence, all BC and WBF units were washed with more than 2 L and had levels of IgA of less than 0.05 mg/dL. During 7 days' postwash storage, with and without irradiation, double-washed RBCs met quality control criteria, except for the failure of one RBC unit for inadequate (69%) postwash recovery. Using the ACP 215, a double-wash procedure for the production of components for IgA-deficient recipients from either BC or WBF RBCs was developed and validated. © 2015 AABB.

  12. Classification, naming and evolutionary history of glycosyltransferases from sequenced green and red algal genomes.

    Directory of Open Access Journals (Sweden)

    Peter Ulvskov

    Full Text Available The Archaeplastida consists of three lineages, Rhodophyta, Virideplantae and Glaucophyta. The extracellular matrix of most members of the Rhodophyta and Viridiplantae consists of carbohydrate-based or a highly glycosylated protein-based cell wall while the Glaucophyte covering is poorly resolved. In order to elucidate possible evolutionary links between the three advanced lineages in Archaeplastida, a genomic analysis was initiated. Fully sequenced genomes from the Rhodophyta and Virideplantae and the well-defined CAZy database on glycosyltransferases were included in the analysis. The number of glycosyltransferases found in the Rhodophyta and Chlorophyta are generally much lower then in land plants (Embryophyta. Three specific features exhibited by land plants increase the number of glycosyltransferases in their genomes: (1 cell wall biosynthesis, the more complex land plant cell walls require a larger number of glycosyltransferases for biosynthesis, (2 a richer set of protein glycosylation, and (3 glycosylation of secondary metabolites, demonstrated by a large proportion of family GT1 being involved in secondary metabolite biosynthesis. In a comparative analysis of polysaccharide biosynthesis amongst the taxa of this study, clear distinctions or similarities were observed in (1 N-linked protein glycosylation, i.e., Chlorophyta has different mannosylation and glucosylation patterns, (2 GPI anchor biosynthesis, which is apparently missing in the Rhodophyta and truncated in the Chlorophyta, (3 cell wall biosynthesis, where the land plants have unique cell wall related polymers not found in green and red algae, and (4 O-linked glycosylation where comprehensive orthology was observed in glycosylation between the Chlorophyta and land plants but not between the target proteins.

  13. Limit on overshooting from the convective core in upper main-sequence stars

    Science.gov (United States)

    Stothers, Richard B.; Chin, Chao-Wen

    1990-01-01

    Overshooting of convective elements far beyond the classical Schwarzschild convective core boundary in theoretical models of massive ZAMS stars is found to lead to significant reductions of stellar luminosity and radius, provided that the temperature gradient in the overshoot region can be approximated by the adiabatic gradient. Comparison of these theoretical models with binary star data for the range of 5-15 solar masses indicates that the ratio of overshoot distance to pressure scale height is probably less than 1.5. This result apparently excludes any overshooting theories that predict very extended adiabatic convective cores.

  14. Analysis of flares in the chromosphere and corona of main- and pre-main-sequence M-type stars

    Science.gov (United States)

    Crespo-Chacón, I.

    2015-11-01

    This Ph.D. Thesis revolves around flares on main- and pre-main-sequence M-type stars. We use observations in different wavelength ranges with the aim of analysing the effects of flares at different layers of stellar atmospheres. In particular, optical and X-ray observations are used so that we can study how flares affect, respectively, the chromosphere and the corona of stars. In the optical range we carry out a high temporal resolution spectroscopic monitoring of UV Ceti-type stars aimed at detecting non-white-light flares (the most typical kind of solar flares) in stars other than the Sun. With these data we confirm that non-white-light flares are a frequent phenomenon in UV Ceti-type stars, as observed in the Sun. We study and interpret the behaviour of different chromospheric lines during the flares detected on AD Leo. By using a simplified slab model of flares (Jevremović et al. 1998), we are able to determine the physical parameters of the chromospheric flaring plasma (electron density and electron temperature), the temperature of the underlying source, and the surface area covered by the flaring plasma. We also search for possible relationships between the physical parameters of the flaring plasma and other properties such as the flare duration, area, maximum flux and released energy. This work considerably extends the existing sample of stellar flares analysed with good quality spectroscopy in the optical range. In X-rays we take advantage of the great sensitivity, wide energy range, high energy resolution, and continuous time coverage of the EPIC detectors - on-board the XMMNewton satellite - in order to perform time-resolved spectral analysis of coronal flares. In particular, in the UV Ceti-type star CC Eri we study two flares that are weaker than those typically reported in the literature (allowing us to speculate about the role of flares as heating agents of stellar atmospheres); while in the pre-main-sequence M-type star TWA 11B (with no signatures of

  15. NHE-1 sequence and expression in toad, snake and fish red blood cells

    DEFF Research Database (Denmark)

    Thomsen, Steffen Nyegaard; Wang, Tobias; Kristensen, Torsten

    Red blood cells (RBC) from reptiles appear not to express regulatory volume increase (RVI) upon shrinkage (Kristensen et al., 2008). In other vertebrates, the RVI response is primarily mediated by activation of the Na+/H+ exchanger (NHE-1) and we, therefore decided to investigate whether red cell...

  16. Neutron Stars

    Science.gov (United States)

    Cottam, J.

    2007-01-01

    Neutron stars were discovered almost 40 years ago, and yet many of their most fundamental properties remain mysteries. There have been many attempts to measure the mass and radius of a neutron star and thereby constrain the equation of state of the dense nuclear matter at their cores. These have been complicated by unknown parameters such as the source distance and burning fractions. A clean, straightforward way to access the neutron star parameters is with high-resolution spectroscopy. I will present the results of searches for gravitationally red-shifted absorption lines from the neutron star atmosphere using XMM-Newton and Chandra.

  17. Genome Sequence of Acidovorax avenae Strain T10_61 Associated with Sugarcane Red Stripe in Argentina

    Science.gov (United States)

    Fontana, Cecilia A.; Bassi, Daniela; Puglisi, Edoardo; Salazar, Sergio M.; Vignolo, Graciela M.; Coccocelli, Pier S.

    2016-01-01

    Red stripe of sugarcane in Argentina is a bacterial disease caused by Acidovorax avenae. The genome sequence from the first isolate of this bacterium in Argentina is presented here. The draft genome of the A. avenae T10_61 strain contains 5,646,552 bp and has a G+C content of 68.6 mol%. PMID:26847889

  18. Important consequences of atomic diffusion inside main-sequence stars: opacities, extra-mixing, oscillations

    Directory of Open Access Journals (Sweden)

    Deal M.

    2017-01-01

    Full Text Available Atomic diffusion, including the effects of radiative accelerations on individual elements, leads to important variations of the chemical composition inside stars. The accumulation of important elements in specific layers leads to a local increase of the average opacity and to hydrodynamic instabilities that modify the internal stellar structure. This can also have important consequences for asteroseismology.

  19. Post-main-sequence Evolution of Icy Minor Planets. II. Water Retention and White Dwarf Pollution around Massive Progenitor Stars

    Science.gov (United States)

    Malamud, Uri; Perets, Hagai B.

    2017-06-01

    Most studies suggest that the pollution of white dwarf (WD) atmospheres arises from the accretion of minor planets, but the exact properties of polluting material, and in particular the evidence for water in some cases, are not yet understood. Here we study the water retention of small icy bodies in exo-solar planetary systems, as their respective host stars evolve through and off the main sequence and eventually become WDs. We explore, for the first time, a wide range of star masses and metallicities. We find that the mass of the WD progenitor star is of crucial importance for the retention of water, while its metallicity is relatively unimportant. We predict that minor planets around lower-mass WD progenitors would generally retain more water and would do so at closer distances from the WD than compared with high-mass progenitors. The dependence of water retention on progenitor mass and other parameters has direct implications for the origin of observed WD pollution, and we discuss how our results and predictions might be tested in the future as more observations of WDs with long cooling ages become available.

  20. Hot Jupiters and cool stars

    Energy Technology Data Exchange (ETDEWEB)

    Villaver, Eva; Mustill, Alexander J. [Department of Theoretical Physics, Universidad Autónoma de Madrid, Módulo 8, 28049 Madrid (Spain); Livio, Mario [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Siess, Lionel, E-mail: eva.villaver@uam.es [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles, B-1050 Bruxelles (Belgium)

    2014-10-10

    Close-in planets are in jeopardy, as their host stars evolve off the main sequence (MS) to the subgiant and red giant phases. In this paper, we explore the influences of the stellar mass (in the range 1.5-2 M {sub ☉}), mass-loss prescription, planet mass (from Neptune up to 10 Jupiter masses), and eccentricity on the orbital evolution of planets as their parent stars evolve to become subgiants and red giants. We find that planet engulfment along the red giant branch is not very sensitive to the stellar mass or mass-loss rates adopted in the calculations, but quite sensitive to the planetary mass. The range of initial separations for planet engulfment increases with decreasing mass-loss rates or stellar masses and increasing planetary masses. Regarding the planet's orbital eccentricity, we find that as the star evolves into the red giant phase, stellar tides start to dominate over planetary tides. As a consequence, a transient population of moderately eccentric close-in Jovian planets is created that otherwise would have been expected to be absent from MS stars. We find that very eccentric and distant planets do not experience much eccentricity decay, and that planet engulfment is primarily determined by the pericenter distance and the maximum stellar radius.

  1. Red Supergiants as Cosmic Abundance Probes: Massive Star Clusters in M83 and the Mass-Metallicity Relation of Nearby Galaxies

    Science.gov (United States)

    Davies, Ben; Kudritzki, Rolf-Peter; Lardo, Carmela; Bergemann, Maria; Beasor, Emma; Plez, Bertrand; Evans, Chris; Bastian, Nate; Patrick, Lee R.

    2017-10-01

    We present an abundance analysis of seven super star clusters in the disk of M83. The near-infrared spectra of these clusters are dominated by red supergiants, and the spectral similarity in the J-band of such stars at uniform metallicity means that the integrated light from the clusters may be analyzed using the same tools as those applied to single stars. Using data from VLT/KMOS, we estimate metallicities for each cluster in the sample. We find that the abundance gradient in the inner regions of M83 is flat, with a central metallicity of [Z]=0.21+/- 0.11 relative to a solar value of Z ⊙ = 0.014, which is in excellent agreement with the results from an analysis of luminous hot stars in the same regions. Compiling this latest study with our other recent work, we construct a mass-metallicity relation for nearby galaxies based entirely on the analysis of RSGs. We find excellent agreement with the other stellar-based technique—that of blue supergiants—as well as with temperature-sensitive (“auroral” or “direct”) H ii-region studies. Of all the H ii-region strong-line calibrations, those that are empirically calibrated to direct-method studies (N2 and O3N2) provide the most consistent results.

  2. The star formation and chemical evolution history of the sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    de Boer, T. J. L.; Tolstoy, E.; Hill, V.; Saha, A.; Olsen, K.; Starkenburg, E.; Lemasle, B.; Irwin, M. J.; Battaglia, G.

    We have combined deep photometry in the B, V and I bands from CTIO/MOSAIC of the Sculptor dwarf spheroidal galaxy, going down to the oldest main sequence turn-offs, with spectroscopic metallicity distributions of red giant branch stars. This allows us to obtain the most detailed and complete star

  3. Age Determinations of Early-M Type Pre-Main Sequence Stars Using a High-Resolution Near-Infrared Spectroscopic Method

    Science.gov (United States)

    Takagi, Yuhei; Itoh, Yoichi; Oasa, Yumiko; Sugitani, Koji

    2011-06-01

    We present a method for determining the age of early-M type pre-main sequence (PMS) stars based on estimations of the surface gravity. The surface gravity was measured using high-resolution near-infrared K-band spectroscopy. The age of the PMS stars can be determined from the surface gravity, which correlates with the photospheric contraction. To estimate the surface gravity while avoiding veiling contamination, we developed a surface gravity indicator using equivalent width ratios (EWRs) of nearby absorption lines. We derived a relationship between the ratios of the Sc (22057.8 Å and 22071.3 Å) and Na (22062.4 Å and 22089.7 Å) absorption lines and the surface gravity by observing giants and main-sequence stars. The surface gravities of early-M type stars were determined with an accuracy of 0.1 in logg. The ages of target PMS stars were estimated within a factor of 1.5 by comparing the surface gravity with the evolution model of Baraffe et al. (1998, A&A, 337, 403). The ages of 4 PMS stars were estimated to be older than indicated by previous age determinations made using the photometric method. The EWR method allows estimating the age of PMS stars without contaminating the uncertainty of the distance, extinction, and veiling.

  4. CSI 2264: Simultaneous optical and X-ray variability in pre-main sequence stars. I. Time resolved X-ray spectral analysis during optical dips and accretion bursts in stars with disks

    Science.gov (United States)

    Guarcello, M. G.; Flaccomio, E.; Micela, G.; Argiroffi, C.; Sciortino, S.; Venuti, L.; Stauffer, J.; Rebull, L.; Cody, A. M.

    2017-06-01

    Context. Pre-main sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray-active regions. In stars with disks, this variability is related to the morphology of the inner circumstellar region (≤0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present-day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264, a set of simultaneous observations of NGC 2264 with 15 different telescopes. Aims: In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars without disks are studied in a companion paper. Methods: We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results: We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9 of the 24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5 of the 20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are

  5. Massive Stars

    Science.gov (United States)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  6. Deep COI sequencing of standardized benthic samples unveils overlooked diversity of Jordanian coral reefs in the northern Red Sea.

    Science.gov (United States)

    Al-Rshaidat, Mamoon M D; Snider, Allison; Rosebraugh, Sydney; Devine, Amanda M; Devine, Thomas D; Plaisance, Laetitia; Knowlton, Nancy; Leray, Matthieu

    2016-09-01

    High-throughput sequencing (HTS) of DNA barcodes (metabarcoding), particularly when combined with standardized sampling protocols, is one of the most promising approaches for censusing overlooked cryptic invertebrate communities. We present biodiversity estimates based on sequencing of the cytochrome c oxidase subunit 1 (COI) gene for coral reefs of the Gulf of Aqaba, a semi-enclosed system in the northern Red Sea. Samples were obtained from standardized sampling devices (Autonomous Reef Monitoring Structures (ARMS)) deployed for 18 months. DNA barcoding of non-sessile specimens >2 mm revealed 83 OTUs in six phyla, of which only 25% matched a reference sequence in public databases. Metabarcoding of the 2 mm - 500 μm and sessile bulk fractions revealed 1197 OTUs in 15 animal phyla, of which only 4.9% matched reference barcodes. These results highlight the scarcity of COI data for cryptobenthic organisms of the Red Sea. Compared with data obtained using similar methods, our results suggest that Gulf of Aqaba reefs are less diverse than two Pacific coral reefs but much more diverse than an Atlantic oyster reef at a similar latitude. The standardized approaches used here show promise for establishing baseline data on biodiversity, monitoring the impacts of environmental change, and quantifying patterns of diversity at regional and global scales.

  7. RNA deep sequencing reveals differential microRNA expression during development of sea urchin and sea star.

    Science.gov (United States)

    Kadri, Sabah; Hinman, Veronica F; Benos, Panayiotis V

    2011-01-01

    microRNAs (miRNAs) are small (20-23 nt), non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin) and Patiria miniata (sea star) are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc.) to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads). Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common). We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html. © 2011 Kadri et al.

  8. RNA deep sequencing reveals differential microRNA expression during development of sea urchin and sea star.

    Directory of Open Access Journals (Sweden)

    Sabah Kadri

    Full Text Available microRNAs (miRNAs are small (20-23 nt, non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin and Patiria miniata (sea star are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc. to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads. Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common. We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html.

  9. RNA Deep Sequencing Reveals Differential MicroRNA Expression during Development of Sea Urchin and Sea Star

    Science.gov (United States)

    Kadri, Sabah; Hinman, Veronica F.; Benos, Panayiotis V.

    2011-01-01

    microRNAs (miRNAs) are small (20–23 nt), non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin) and Patiria miniata (sea star) are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc.) to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads). Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common). We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html. PMID:22216218

  10. A planet in an 840-d orbit around a Kepler main-sequence A star found from phase modulation of its pulsations

    OpenAIRE

    Murphy, Simon J.; Bedding, Timothy R.; Shibahashi, Hiromoto

    2016-01-01

    We have detected a 12 M$_{\\rm Jup}$ planet orbiting in or near the habitable zone of a main-sequence A star via the pulsational phase shifts induced by orbital motion. The planet has an orbital period of $840\\pm20$ d and an eccentricity of 0.15. All known planets orbiting main-sequence A stars have been found via the transit method or by direct imaging. The absence of astrometric or radial-velocity detections of planets around these hosts makes ours the first discovery using the orbital motio...

  11. Distribution of Prochlorococcus Ecotypes in the Red Sea Basin Based on Analyses of rpoC1 Sequences

    KAUST Repository

    Shibl, Ahmed A.

    2016-06-25

    The marine picocyanobacteria Prochlorococcus represent a significant fraction of the global pelagic bacterioplankton community. Specifically, in the surface waters of the Red Sea, they account for around 91% of the phylum Cyanobacteria. Previous work suggested a widespread presence of high-light (HL)-adapted ecotypes in the Red Sea with the occurrence of low-light (LL)-adapted ecotypes at intermediate depths in the water column. To obtain a more comprehensive dataset over a wider biogeographical scope, we used a 454-pyrosequencing approach to analyze the diversity of the Prochlorococcus rpoC1 gene from a total of 113 samples at various depths (up to 500 m) from 45 stations spanning the Red Sea basin from north to south. In addition, we analyzed 45 metagenomes from eight stations using hidden Markov models based on a set of reference Prochlorococcus genomes to (1) estimate the relative abundance of Prochlorococcus based on 16S rRNA gene sequences, and (2) identify and classify rpoC1 sequences as an assessment of the community structure of Prochlorococcus in the northern, central and southern regions of the basin without amplification bias. Analyses of metagenomic data indicated that Prochlorococcus occurs at a relative abundance of around 9% in samples from surface waters (25, 50, 75 m), 3% in intermediate waters (100 m) and around 0.5% in deep-water samples (200–500 m). Results based on rpoC1 sequences using both methods showed that HL II cells dominate surface waters and were also present in deep-water samples. Prochlorococcus communities in intermediate waters (100 m) showed a higher diversity and co-occurrence of low-light and high-light ecotypes. Prochlorococcus communities at each depth range (surface, intermediate, deep sea) did not change significantly over the sampled transects spanning most of the Saudi waters in the Red Sea. Statistical analyses of rpoC1 sequences from metagenomes indicated that the vertical distribution of Prochlorococcus in the water

  12. Local stellar kinematics from RAVE data—VIII. Effects of the Galactic disc perturbations on stellar orbits of red clump stars

    Science.gov (United States)

    Önal Taş, Ö.; Bilir, S.; Plevne, O.

    2018-02-01

    We aim to probe the dynamic structure of the extended Solar neighborhood by calculating the radial metallicity gradients from orbit properties, which are obtained for axisymmetric and non-axisymmetric potential models, of red clump (RC) stars selected from the RAdial Velocity Experiment's Fourth Data Release. Distances are obtained by assuming a single absolute magnitude value in near-infrared, i.e. M_{Ks}=-1.54±0.04 mag, for each RC star. Stellar orbit parameters are calculated by using the potential functions: (i) for the MWPotential2014 potential, (ii) for the same potential with perturbation functions of the Galactic bar and transient spiral arms. The stellar age is calculated with a method based on Bayesian statistics. The radial metallicity gradients are evaluated based on the maximum vertical distance (z_{max}) from the Galactic plane and the planar eccentricity (ep) of RC stars for both of the potential models. The largest radial metallicity gradient in the 01 kpc, the radial metallicity gradients have zero or positive values and they do not depend on ep subsamples. There is a large radial metallicity gradient for thin disc, but no radial gradient found for thick disc. Moreover, the largest radial metallicity gradients are obtained where the outer Lindblad resonance region is effective. We claim that this apparent change in radial metallicity gradients in the thin disc is a result of orbital perturbation originating from the existing resonance regions.

  13. GLOBAL STAR FORMATION RATES AND DUST EMISSION OVER THE GALAXY INTERACTION SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Brassington, Nicola [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); Da Cunha, Elisabete [Max Planck Institute for Astronomy (MPIA), Koenigstuhl 17, D-69117, Heidelberg (Germany); Hayward, Christopher C. [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118, Heidelberg (Germany); Jonsson, Patrik, E-mail: llanz@head.cfa.harvard.edu [Space Exploration Technologies, 1 Rocket Road, Hawthorne, CA 90250 (United States)

    2013-05-01

    We measured and modeled spectral energy distributions (SEDs) in 28 bands from the ultraviolet to the far-infrared (FIR) for 31 interacting galaxies in 14 systems. The sample is drawn from the Spitzer Interacting Galaxy Survey, which probes a range of galaxy interaction parameters at multiple wavelengths with an emphasis on the infrared bands. The subset presented in this paper consists of all galaxies for which FIR Herschel SPIRE observations are publicly available. Our SEDs combine the Herschel photometry with multi-wavelength data from Spitzer, GALEX, Swift UVOT, and 2MASS. While the shapes of the SEDs are broadly similar across our sample, strongly interacting galaxies typically have more mid-infrared emission relative to their near-infrared and FIR emission than weakly or moderately interacting galaxies. We modeled the full SEDs to derive host galaxy star formation rates (SFRs), specific star formation rates (sSFRs), stellar masses, dust temperatures, dust luminosities, and dust masses. We find increases in the dust luminosity and mass, SFR, and cold (15-25 K) dust temperature as the interaction progresses from moderately to strongly interacting and between non-interacting and strongly interacting galaxies. We also find increases in the SFR between weakly and strongly interacting galaxies. In contrast, the sSFR remains unchanged across all the interaction stages. The ultraviolet photometry is crucial for constraining the age of the stellar population and the SFR, while dust mass is primarily determined by SPIRE photometry. The SFR derived from the SED modeling agrees well with rates estimated by proportionality relations that depend on infrared emission.

  14. Volumetric MRI thermometry using a three-dimensional stack-of-stars echo-planar imaging pulse sequence.

    Science.gov (United States)

    Jonathan, Sumeeth V; Grissom, William A

    2017-08-07

    To measure temperature over a large brain volume with fine spatiotemporal resolution. A three-dimensional stack-of-stars echo-planar imaging sequence combining echo-planar imaging and radial sampling with golden angle spacing was implemented at 3T for proton resonance frequency-shift temperature imaging. The sequence acquires a 188x188x43 image matrix with 1.5x1.5x2.75 mm3 spatial resolution. Temperature maps were reconstructed using sensitivity encoding (SENSE) image reconstruction followed by the image domain hybrid method, and using the k-space hybrid method. In vivo temperature maps were acquired without heating to measure temperature precision in the brain, and in a phantom during high-intensity focused ultrasound sonication. In vivo temperature standard deviation was less than 1°C at dynamic scan times down to 0.75 s. For a given frame rate, scanning at a minimum repetition time (TR) with minimum acceleration yielded the lowest standard deviation. With frame rates around 3 s, the scan was tolerant to a small number of receive coils, and temperature standard deviation was 48% higher than a standard two-dimensional Fourier transform temperature mapping scan, but provided whole-brain coverage. Phantom temperature maps with no visible aliasing were produced for dynamic scan times as short as 0.38 s. k-Space hybrid reconstructions were more tolerant to acceleration. Three-dimensional stack-of-stars echo-planar imaging temperature mapping provides volumetric brain coverage and fine spatiotemporal resolution. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Effect of accretion on the pre-main-sequence evolution of low-mass stars and brown dwarfs

    Science.gov (United States)

    Vorobyov, Eduard I.; Elbakyan, Vardan; Hosokawa, Takashi; Sakurai, Yuya; Guedel, Manuel; Yorke, Harold

    2017-09-01

    Aims: The pre-main-sequence evolution of low-mass stars and brown dwarfs is studied numerically starting from the formation of a protostellar or proto-brown dwarf seed and taking into account the mass accretion onto the central object during the initial several Myr of evolution. Methods: The stellar evolution was computed using the STELLAR evolution code with recent modifications. The mass accretion rates were taken from numerical hydrodynamics models by computing the circumstellar disk evolution starting from the gravitational collapse of prestellar cloud cores of various mass and angular momentum. The resulting stellar evolution tracks were compared with the isochrones and isomasses calculated using non-accreting models. Results: We find that mass accretion in the initial several Myr of protostellar evolution can have a strong effect on the subsequent evolution of young stars and brown dwarfs. The disagreement between accreting and non-accreting models in terms of the total stellar luminosity L∗, stellar radius R∗, and effective temperature Teff depends on the thermal efficiency of accretion, that is, on the fraction of accretion energy that is absorbed by the central object. The largest mismatch is found for the cold accretion case, in which essentially all accretion energy is radiated away. The relative deviations in L∗ and R∗ in this case can reach 50% for objects 1.0 Myr old, and they remain notable even for objects 10 Myr old. In the hot and hybrid accretion cases, in which a constant fraction of accretion energy is absorbed, the disagreement between accreting and non-accreting models becomes less pronounced, but still remains notable for objects 1.0 Myr old. These disagreements may lead to an incorrect age estimate for objects of (sub-)solar mass when using the isochrones that are based on non-accreting models, as has also been noted previously. We find that objects with strong luminosity bursts exhibit notable excursions in the L∗-Teff diagram

  16. Genetic diversity and population history of the red panda (Ailurus fulgens) as inferred from mitochondrial DNA sequence variations.

    Science.gov (United States)

    Su, B; Fu, Y; Wang, Y; Jin, L; Chakraborty, R

    2001-06-01

    The red panda (Ailurus fulgens) is one of the flagship species in worldwide conservation and is of special interest in evolutionary studies due to its taxonomic uniqueness. We sequenced a 236-bp fragment of the mitochondrial D-loop region in a sample of 53 red pandas from two populations in southwestern China. Seventeen polymorphic sites were found, together with a total of 25 haplotypes, indicating a high level of genetic diversity in the red panda. However, no obvious genetic divergence was detected between the Sichuan and Yunnan populations. The consensus phylogenetic tree of the 25 haplotypes was starlike. The pairwise mismatch distribution fitted into a pattern of populations undergoing expansion. Furthermore, Fu's F(S) test of neutrality was significant for the total population (F(S) = -7.573), which also suggests a recent population expansion. Interestingly, the effective population size in the Sichuan population was both larger and more stable than that in the Yunnan population, implying a southward expansion from Sichuan to Yunnan.

  17. The Gaia-ESO Survey: lithium depletion in the Gamma Velorum cluster and inflated radii in low-mass pre-main-sequence stars

    Science.gov (United States)

    Jeffries, R. D.; Jackson, R. J.; Franciosini, E.; Randich, S.; Barrado, D.; Frasca, A.; Klutsch, A.; Lanzafame, A. C.; Prisinzano, L.; Sacco, G. G.; Gilmore, G.; Vallenari, A.; Alfaro, E. J.; Koposov, S. E.; Pancino, E.; Bayo, A.; Casey, A. R.; Costado, M. T.; Damiani, F.; Hourihane, A.; Lewis, J.; Jofre, P.; Magrini, L.; Monaco, L.; Morbidelli, L.; Worley, C. C.; Zaggia, S.; Zwitter, T.

    2017-01-01

    We show that non-magnetic models for the evolution of pre-main-sequence (PMS) stars cannot simultaneously describe the colour-magnitude diagram (CMD) and the pattern of lithium depletion seen in the cluster of young, low-mass stars surrounding γ2 Velorum. The age of 7.5 ± 1 Myr inferred from the CMD is much younger than that implied by the strong Li depletion seen in the cluster M-dwarfs, and the Li depletion occurs at much redder colours than predicted. The epoch at which a star of a given mass depletes its Li and the surface temperature of that star are both dependent on its radius. We demonstrate that if the low-mass stars have radii ˜10 per cent larger at a given mass and age, then both the CMD and the Li-depletion pattern of the Gamma Velorum cluster are explained at a common age of ≃18-21 Myr. This radius inflation could be produced by some combination of magnetic suppression of convection and extensive cool starspots. Models that incorporate radius inflation suggest that PMS stars, similar to those in the Gamma Velorum cluster, in the range 0.2 30 per cent) than inferred from conventional, non-magnetic models in the Hertzsprung-Russell diagram. Systematic changes of this size may be of great importance in understanding the evolution of young stars, disc lifetimes and the formation of planetary systems.

  18. The Carina project. VII. Toward the breaking of the age-metallicity degeneracy of red giant branch stars using the C {sub U,} {sub B,} {sub I} index

    Energy Technology Data Exchange (ETDEWEB)

    Monelli, M.; Milone, A. P.; Gallart, C.; Aparicio, A. [Instituto de Astrofísica de Canarias, Calle Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Fabrizio, M.; Cassisi, S.; Buonanno, R. [Istituto Nazionale di Astrofisica-Osservatorio Astronomico Collurania, Via M. Maggini, I-64100 Teramo (Italy); Bono, G. [Dipartimento di Fisica, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); Stetson, P. B. [Dominion Astrophysical Observatory, NRC-Herzberg, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Walker, A. R. [Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena (Chile); Nonino, M. [Istituto Nazionale di Astrofisica-Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-40131 Trieste (Italy); Dall' Ora, M. [INAF—Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); Ferraro, I.; Iannicola, G.; Pulone, L. [Istituto Nazionale di Astrofisica-Osservatorio Astronomico di Roma, Via Frascati 33, Monte Porzio Catone, I-00044 Rome (Italy); Thévenin, F., E-mail: monelli@iac.es [Université de Nice Sophia-antipolis, CNRS, Observatoire de la Côte d' Azur, Laboratoire Lagrange, BP 4229, F-06304 Nice (France)

    2014-12-01

    We present an analysis of photometric and spectroscopic data of the Carina dSph galaxy, testing a new approach similar to that used to disentangle multiple populations in Galactic globular clusters (GCs). We show that a proper color combination is able to separate a significant fraction of the red giant branch (RGB) of the two main Carina populations (the old one, ∼12 Gyr, and the intermediate-age one, 4-8 Gyr). In particular, the c {sub U,} {sub B,} {sub I} = (U – B) – (B – I) pseudo-color allows us to follow the RGB of both populations along a relevant portion of the RGB. We find that the oldest stars have a more negative c {sub U,} {sub B,} {sub I} pseudo-color than intermediate-age ones. We correlate the pseudo-color of RGB stars with their chemical properties, finding a significant trend between the iron content and the c {sub U,} {sub B,} {sub I}. Stars belonging to the old population are systematically more metal-poor ([Fe/H] =–2.32 ± 0.08 dex) than the intermediate-age ones ([Fe/H] =–1.82 ± 0.03 dex). This gives solid evidence of the chemical evolution history of this galaxy, and we have a new diagnostic that can allow us to break the age-metallicity degeneracy of H-burning advanced evolutionary phases. We compared the distribution of stars in the c {sub U,} {sub B,} {sub I} plane with theoretical isochrones, finding that no satisfactory agreement can be reached with models developed in a theoretical framework based on standard heavy element distributions. Finally, we discuss possible systematic differences when compared with multiple populations in GCs.

  19. Extreme value statistics for two-dimensional convective penetration in a pre-main sequence star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Constantino, T.; Viallet, M.; Popov, M. V.; Walder, R.; Folini, D.

    2017-08-01

    Context. In the interior of stars, a convectively unstable zone typically borders a zone that is stable to convection. Convective motions can penetrate the boundary between these zones, creating a layer characterized by intermittent convective mixing, and gradual erosion of the density and temperature stratification. Aims: We examine a penetration layer formed between a central radiative zone and a large convection zone in the deep interior of a young low-mass star. Using the Multidimensional Stellar Implicit Code (MUSIC) to simulate two-dimensional compressible stellar convection in a spherical geometry over long times, we produce statistics that characterize the extent and impact of convective penetration in this layer. Methods: We apply extreme value theory to the maximal extent of convective penetration at any time. We compare statistical results from simulations which treat non-local convection, throughout a large portion of the stellar radius, with simulations designed to treat local convection in a small region surrounding the penetration layer. For each of these situations, we compare simulations of different resolution, which have different velocity magnitudes. We also compare statistical results between simulations that radiate energy at a constant rate to those that allow energy to radiate from the stellar surface according to the local surface temperature. Results: Based on the frequency and depth of penetrating convective structures, we observe two distinct layers that form between the convection zone and the stable radiative zone. We show that the probability density function of the maximal depth of convective penetration at any time corresponds closely in space with the radial position where internal waves are excited. We find that the maximal penetration depth can be modeled by a Weibull distribution with a small shape parameter. Using these results, and building on established scalings for diffusion enhanced by large-scale convective motions, we

  20. Ichthyolith strontium isotope stratigraphy of a Neogene red clay sequence: calibrating eolian dust accumulation rates in the central North Pacific

    Science.gov (United States)

    Gleason, James D.; Moore, Theodore C.; Rea, David K.; Johnson, Tina M.; Owen, Robert M.; Blum, Joel D.; Hovan, Steven A.; Jones, Charles E.

    2002-09-01

    Cenozoic pelagic ('red') clays of predominantly eolian and hydrogenous origin blanket much of the central North Pacific ocean basin. The eolian component is a key indicator of past paleoclimatic conditions; thus, Cenozoic atmospheric circulation can potentially be reconstructed through provenance studies of Pacific red clays, provided there are precise age controls. Methods commonly employed in the past to date red clay cores have included cobalt accumulation rates, ichthyolith biostratigraphy, magnetostratigraphy, and ichthyolith strontium isotope stratigraphy. The first two dating methods yield ages with large uncertainties, while magnetostratigraphy is only relevant to cores with accumulation rates in excess of 1 mm/kyr. Ichthyolith strontium isotope stratigraphy has shown promise as a chronological tool in marine studies, but has been only sparingly employed in the dating of marine red clay sequences. In this study, we present a complete age-depth profile for a large diameter piston core from the central North Pacific Ocean (EW9709 PC-01, 32.5°N, 141.2°W), consisting of 11 m of primarily wind-deposited dust. To generate this age-depth profile, strontium isotopic compositions were determined on fish teeth ichthyoliths previously cleaned of contaminants using a newly modified reductive cleaning procedure. Ages were determined by reference to the recently refined Sr isotope curve for Neogene seawater. Comparison with nearby giant piston core LL44-GPC3 reinforces the accuracy of our methods. The data for EW9709 PC-01 indicate a fairly constant sediment accumulation rate of ∼0.45 mm/kyr over most of the 24 Myr time period represented by this core.

  1. Evaluation of sequence variation and selection in the bindin locus of the red sea urchin, Strongylocentrotus franciscanus.

    Science.gov (United States)

    Debenham, P; Brzezinski, M A; Foltz, K R

    2000-11-01

    Recent evidence suggests that gamete recognition proteins may be subjected to directed evolutionary pressure that enhances sequence variability. We evaluated whether diversity enhancing selection is operating on a marine invertebrate fertilization protein by examining the intraspecific DNA sequence variation of a 273-base pair region located at the 5' end of the sperm bindin locus in 134 adult red sea urchins (Strongylocentrotus franciscanus). Bindin is a sperm recognition protein that mediates species-specific gamete interactions in sea urchins. The region of the bindin locus examined was found to be polymorphic with 14 alleles. Mean pairwise comparison of the 14 alleles indicates moderate sequence diversity (p-distance = 1.06). No evidence of diversity enhancing selection was found. It was not possible to reject the null hypothesis that the sequence variation observed in S. franciscanus bindin is a result of neutral evolution. Statistical evaluation of expected proportions of replacement and silent nucleotide substitutions, observed versus expected proportions of radical replacement substitutions, and conformance to the McDonald and Kreitman test of neutral evolution all indicate that random mutation followed by genetic drift created the polymorphisms observed in bindin. Observed frequencies were also highly similar to results expected for a neutrally evolving locus, suggesting that the polymorphism observed in the 5' region of S. franciscanus bindin is a result of neutral evolution.

  2. Is main-sequence galaxy star formation controlled by halo mass accretion?

    Science.gov (United States)

    Rodríguez-Puebla, Aldo; Primack, Joel R.; Behroozi, Peter; Faber, S. M.

    2016-01-01

    The galaxy stellar-to-halo mass relation (SHMR) is nearly time-independent for z dependent constraints on the relation between SFR and MAR. Despite its simplicity and the simplified treatment of mass growth from mergers, the SHARC model is likely to be a good approximation for central galaxies with M* = 109-1010.5 M⊙ that are on the MS, representing most of the star formation in the Universe. SHARC predictions agree with observed SFRs for galaxies on the MS at low redshifts, agree fairly well at z ˜ 4, but exceed observations at z ≳ 4. Assuming that the interstellar gas mass is constant for each galaxy (the `equilibrium condition' in bathtub models), the SHARC model allows calculation of net mass loading factors for inflowing and outflowing gas. With assumptions about preventive feedback based on simulations, SHARC allows calculation of galaxy metallicity evolution. If galaxy SFRs indeed track halo MARs, especially at low redshifts, that may help explain the success of models linking galaxy properties to haloes (including age-matching) and the similarities between two-halo galaxy conformity and halo mass accretion conformity.

  3. Understanding the scatter in the spatially resolved star formation main sequence of local massive spiral galaxies

    Science.gov (United States)

    Abdurro'uf, Akiyama, Masayuki

    2017-08-01

    We investigate the relation between star formation rate (SFR) and stellar mass (M*) at the sub-galactic scale (∼1 kpc) of 93 local (0.01 1010.5 M⊙) spiral galaxies. To derive a spatially resolved SFR and stellar mass, we perform the so-called pixel-to-pixel spectral energy distribution (SED) fitting, which fits an observed spatially resolved multiband SED with a library of model SEDs using Bayesian statistics. We use two bands (far-ultraviolet or FUV and near-ultraviolet or NUV) and five bands (u, g, r, i and z) of imaging data from Galaxy Evolution Explorer (GALEX) and Sloan Digital Sky Survey (SDSS), respectively. We find a tight nearly linear relation between the local surface density of SFR (ΣSFR) and stellar mass (Σ*), which is flattened at high Σ*. The near linear relation between Σ* and ΣSFR suggests a constant specific SFR (sSFR) throughout the galaxies, and the scatter of the relation is directly related to that of the sSFR. Therefore, we analyse the variation of the sSFR in various scales. More massive galaxies on average have lower sSFR throughout them than less massive galaxies. We also find that barred galaxies have a lower sSFR in the core region than non-barred galaxies. However, in the outer region, the sSFRs of barred and non-barred galaxies are similar and lead to a similar total sSFR.

  4. Understanding the scatter in the spatially resolved star formation main sequence of local massive spiral galaxies

    Science.gov (United States)

    Abdurro'uf; Akiyama, Masayuki

    2017-08-01

    We investigate the relation between star formation rate (SFR) and stellar mass (M*) at the sub-galactic scale (˜1 kpc) of 93 local (0.01 1010.5 M⊙) spiral galaxies. To derive a spatially resolved SFR and stellar mass, we perform the so-called pixel-to-pixel spectral energy distribution (SED) fitting, which fits an observed spatially resolved multiband SED with a library of model SEDs using Bayesian statistics. We use two bands (far-ultraviolet or FUV and near-ultraviolet or NUV) and five bands (u, g, r, I and z) of imaging data from Galaxy Evolution Explorer (GALEX) and Sloan Digital Sky Survey (SDSS), respectively. We find a tight nearly linear relation between the local surface density of SFR (ΣSFR) and stellar mass (Σ*), which is flattened at high Σ*. The near linear relation between Σ* and ΣSFR suggests a constant specific SFR (sSFR) throughout the galaxies, and the scatter of the relation is directly related to that of the sSFR. Therefore, we analyse the variation of the sSFR in various scales. More massive galaxies on average have lower sSFR throughout them than less massive galaxies. We also find that barred galaxies have a lower sSFR in the core region than non-barred galaxies. However, in the outer region, the sSFRs of barred and non-barred galaxies are similar and lead to a similar total sSFR.

  5. Using the CaII triplet to trace abundance variations in individual red giant branch stars in three nearby galaxies

    NARCIS (Netherlands)

    Tolstoy, E; Irwin, MJ; Cole, AA; Pasquini, L; Gilmozzi, R; Gallagher, JS

    2001-01-01

    Spectroscopic abundance determinations for stars spanning a Hubble time in age are necessary in order to determine unambiguously the evolutionary histories of galaxies. Using FORS I in multi-object spectroscopy mode on ANTU (UT1) at the ESO VLT on Paranal, we have obtained near-infrared spectra from

  6. Fundamental Properties of Stars Using Asteroseismology from Kepler and CoRoT and Interferometry from the CHARA Array

    NARCIS (Netherlands)

    Huber, D.; Ireland, M.J.; Bedding, T.R.; Brandão, I.M.; Piau, L.; Maestro, V.; White, T.R.; Bruntt, H.; Casagrande, L.; Molenda-Żakowicz, J.; Silva Aguirre, V.; Sousa, S.G.; Barclay, T.; Burke, C.J.; Chaplin, W.J.; Christensen-Dalsgaard, J.; Cunha, M.S.; De Ridder, J.; Farrington, C.D.; Frasca, A.; García, R.A.; Gilliland, R.L.; Goldfinger, P.J.; Hekker, S.; Kawaler, S.D.; Kjeldsen, H.; McAlister, H.A.; Metcalfe, T.S.; Miglio, A.; Monteiro, M.J.P.F.G.; Pinsonneault, M.H.; Schaeffer, G.H.; Stello, D.; Stumpe, M.C.; Sturmann, J.; Sturmann, L.; ten Brummelaar, T.A.; Thompson, M.J.; Turner, N.; Uytterhoeven, K.

    2012-01-01

    We present results of a long-baseline interferometry campaign using the PAVO beam combiner at the CHARA Array to measure the angular sizes of five main-sequence stars, one subgiant and four red giant stars for which solar-like oscillations have been detected by either Kepler or CoRoT. By combining

  7. The first magnetic maps of a pre-main sequence binary star system - HD 155555

    OpenAIRE

    Dunstone, N. J.; Hussain, G. A. J.; Cameron, A. Collier; Marsden, S. C.; Jardine, M.; Stempels, H. C.; Vlex, J. C. Ramirez; Donati, J. -F.

    2008-01-01

    We present the first maps of the surface magnetic fields of a pre-main sequence binary system. Spectropolarimetric observations of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) system were obtained at the Anglo-Australian Telescope in 2004 and 2007. Both datasets are analysed using a new binary Zeeman Doppler imaging (ZDI) code. This allows us to simultaneously model the contribution of each component to the observed circularly polarised spectra. Stellar brightness maps are also produc...

  8. Evidence for ubiquitous collimated galactic-scale outflows along the star-forming sequence at z ∼ 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Kate H. R.; Prochaska, J. Xavier [Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg (Germany); Koo, David C.; Phillips, Andrew C. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Martin, Crystal L. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Winstrom, Lucas O., E-mail: krubin@cfa.harvard.edu [Newman Laboratory of Elementary Particle Physics, Cornell University, Ithaca, NY 14853 (United States)

    2014-10-20

    We analyze Mg II λλ2796, 2803 and Fe II λλ2586, 2600 absorption profiles in individual spectra of 105 galaxies at 0.3 < z < 1.4. The galaxies, drawn from redshift surveys of the GOODS fields and the Extended Groth Strip, sample the range in star formation rates (SFRs) occupied by the star-forming sequence with stellar masses log M {sub *}/M {sub ☉} ≳ 9.6 down to SFR ≳ 2 M {sub ☉} yr{sup –1} at 0.3 < z < 0.7. Using the Doppler shifts of Mg II and Fe II absorption as tracers of cool gas kinematics, we detect large-scale winds in 66 ± 5% of the galaxies. Hubble Space Telescope Advanced Camera for Surveys imaging and our spectral analysis indicate that the outflow detection rate depends primarily on galaxy orientation: winds are detected in ∼89% of galaxies having inclinations (i) <30° (face-on), while the wind detection rate is ∼45% in objects having i > 50° (edge-on). Combined with the comparatively weak dependence of wind detection rate on intrinsic galaxy properties, this implies that biconical outflows are ubiquitous in normal, star-forming galaxies at z ∼ 0.5. We find that wind velocity is correlated with galaxy M {sub *} at 3.4σ significance, while outflow equivalent width is correlated with SFR at 3.5σ significance, suggesting hosts with higher SFR launch more material and/or generate a larger velocity spread for the absorbing clouds. Assuming the gas is driven into halos with isothermal density profiles, the wind velocities (∼200-400 km s{sup –1}) permit escape from the halo potentials only for the lowest-M {sub *} systems in the sample. However, the gas carries sufficient energy to reach distances ≳ 50 kpc, and may therefore be a viable source of material for the massive, cool circumgalactic medium around bright galaxies at z ∼ 0.

  9. IN-SYNC. II. VIRIAL STARS FROM SUBVIRIAL CORES—THE VELOCITY DISPERSION OF EMBEDDED PRE-MAIN-SEQUENCE STARS IN NGC 1333

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Jonathan B. [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06520 (United States); Cottaar, Michiel; Meyer, Michael R. [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Covey, Kevin R. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Arce, Héctor G. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, VU Station B 1807, Nashville, TN 37235 (United States); Tan, Jonathan C.; Da Rio, Nicola [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Chojnowski, S. Drew; Majewski, Steven R.; Skrutskie, Michael; Wilson, John C. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Flaherty, Kevin M. [Astronomy Department, Wesleyan University, Middletown, CT 06459 (United States); Rebull, Luisa [Spitzer Science Center/Caltech, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States); Zasowski, Gail, E-mail: jonathan.b.foster@yale.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2015-02-01

    The initial velocity dispersion of newborn stars is a major unconstrained aspect of star formation theory. Using near-infrared spectra obtained with the APOGEE spectrograph, we show that the velocity dispersion of young (1-2 Myr) stars in NGC 1333 is 0.92 ± 0.12 km s{sup –1} after correcting for measurement uncertainties and the effect of binaries. This velocity dispersion is consistent with the virial velocity of the region and the diffuse gas velocity dispersion, but significantly larger than the velocity dispersion of the dense, star-forming cores, which have a subvirial velocity dispersion of 0.5 km s{sup –1}. Since the NGC 1333 cluster is dynamically young and deeply embedded, this measurement provides a strong constraint on the initial velocity dispersion of newly formed stars. We propose that the difference in velocity dispersion between stars and dense cores may be due to the influence of a 70 μG magnetic field acting on the dense cores or be the signature of a cluster with initial substructure undergoing global collapse.

  10. Classification, Naming and Evolutionary History of Glycosyltransferases from Sequenced Green and Red Algal Genomes

    DEFF Research Database (Denmark)

    Ulvskov, Peter; Paiva, Dionisio Soares; Domozych, David

    2013-01-01

    of glycosyltransferases found in the Rhodophyta and Chlorophyta are generally much lower then in land plants (Embryophyta). Three specific features exhibited by land plants increase the number of glycosyltransferases in their genomes: (1) cell wall biosynthesis, the more complex land plant cell walls require a larger...... amongst the taxa of this study, clear distinctions or similarities were observed in (1) N-linked protein glycosylation, i.e., Chlorophyta has different mannosylation and glucosylation patterns, (2) GPI anchor biosynthesis, which is apparently missing in the Rhodophyta and truncated in the Chlorophyta, (3......) cell wall biosynthesis, where the land plants have unique cell wall related polymers not found in green and red algae, and (4) O-linked glycosylation where comprehensive orthology was observed in glycosylation between the Chlorophyta and land plants but not between the target proteins....

  11. Comprehensive analysis of expressed sequence tags from the pulp of the red mutant 'Cara Cara' navel orange (Citrus sinensis Osbeck).

    Science.gov (United States)

    Ye, Jun-Li; Zhu, An-Dan; Tao, Neng-Guo; Xu, Qiang; Xu, Juan; Deng, Xiu-Xin

    2010-10-01

    Expressed sequence tag (EST) analysis of the pulp of the red-fleshed mutant 'Cara Cara' navel orange provided a starting point for gene discovery and transcriptome survey during citrus fruit maturation. Interpretation of the EST datasets revealed that the mutant pulp transcriptome held a high section of stress responses related genes, such as the type III metallothionein-like gene (6.0%), heat shock protein (2.8%), Cu/Zn superoxide dismutase (0.8%), late embryogenesis abundant protein 5 (0.8%), etc. 133 transcripts were detected to be differentially expressed between the red mutant and its orange-color wild genotype 'Washington' via digital expression analysis. Among them, genes involved in metabolism, defense/stress and signal transduction were statistical overrepresented. Fifteen transcription factors, composed of NAM, ATAF, and CUC transcription factor (NAC); myeloblastosis (MYB); myelocytomatosis (MYC); basic helix-loop-helix (bHLH); basic leucine zipper (bZIP) domain members, were also included. The data reflected the distinct expression profile and the unique regulatory module associated with these two genotypes. Eight differently expressed genes analyzed in digital were validated by quantitative real-time polymerase chain reaction. For structural polymorphism, both simple sequence repeats and single nucleotide polymorphisms (SNP) loci were surveyed; dinucleotide presentation revealed a bias toward AG/GA/TC/CT repeats (52.5%), against GC/CG repeats (0%). SNPs analysis found that transitions (73%) outnumbered transversions (27%). Seventeen potential cultivar-specific and 387 heterozygous SNP loci were detected from 'Cara Cara' and 'Washington' EST pool. © 2010 Institute of Botany, Chinese Academy of Sciences.

  12. Analysis of rbcL sequences reveals the global biodiversity, community structure, and biogeographical pattern of thermoacidophilic red algae (Cyanidiales).

    Science.gov (United States)

    Hsieh, Chia-Jung; Zhan, Shing Hei; Lin, Yiching; Tang, Sen-Lin; Liu, Shao-Lun

    2015-08-01

    Thermoacidophilic cyanidia (Cyanidiales) are the primary photosynthetic eukaryotes in volcanic areas. These red algae also serve as important model organisms for studying life in extreme habitats. The global biodiversity and community structure of Cyanidiales remain unclear despite previous sampling efforts. Here, we surveyed the Cyanidiales biodiversity in the Tatun Volcano Group (TVG) area in Taiwan using environmental DNA sequencing. We generated 174 rbcL sequences from eight samples from four regions in the TVG area, and combined them with 239 publicly available rbcL sequences collected worldwide. Species delimita-tion using this large rbcL data set suggested at least 20 Cyanidiales OTUs (operational taxono-mic units) worldwide, almost three times the presently recognized seven species. Results from environmental DNA showed that OTUs in the TVG area were divided into three groups: (i) dominant in hot springs with 92%-99% sequence identity to Galdieria maxima; (ii) largely distributed in drier and more acidic microhabitats with 99% identity to G. partita; and (iii) primarily distributed in cooler microhabitats and lacking identity to known cyanidia species (a novel Cyanidiales lineage). In both global and individual area analyses, we observed greater species diversity in non-aquatic than aquatic habitats. Community structure analysis showed high similarity between the TVG community and West Pacific-Iceland communities, reflecting their geographic proximity to each other. Our study is the first examination of the global species diversity and biogeographic affinity of cyanidia. Additionally, our data illuminate the influence of microhabitat type on Cyanidiales diversity and highlight intriguing questions for future ecological research. © 2015 Phycological Society of America.

  13. Complete genome sequence of the orange-red pigmented, radioresistant Deinococcus proteolyticus type strain (MRPT)

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, A [U.S. Department of Energy, Joint Genome Institute; Zeytun, Ahmet [Los Alamos National Laboratory (LANL); Yasawong, Montri [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute

    2012-01-01

    Deinococcus proteolyticus (ex Kobatake et al. 1973) Brook and Murray 1981 is one of currently 47 species in the genus Deinococcus within the family Deinococcaceae. Strain MRPTT was isolated from faeces of Lama glama; it shares with various other species of the genus the extreme radiation resistance, with D. proteolyticus being resistant up to 1.5 Mrad of gamma radiation. Strain MRPT{sup T} is of further interest for its carotenoid pigment. The genome presented here is only the fifth completed genome sequence of a member of the genus Deinococcus (and the forth type strain) to be published, and will hopefully contribute to a better understanding of how members of this genus adapted to high gamma- or UV ionizing-radiation. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,886,836 bp long genome with its four large plasmids of 97 kbp, 132 kbp, 196 kbp and 315 kbp harbours 2,741 protein-coding and 58 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  14. Complete mitochondrial genome sequence of red-tailed knobby newt (Tylototriton kweichowensis).

    Science.gov (United States)

    Li, Xue; Jiang, Ye; Li, Yan; Ni, Qingyong; Yao, Yongfang; Xu, Huailiang; Zhang, Mingwang

    2016-11-01

    The entire mitogenome of Tylototriton kweichowensis is 16 727 bp in length. It consists of 13 protein-coding genes (PCGS), 2 ribosomal RNA genes (rRNA), 22 transfer RNA genes (tRNA), and 1 control region (CR). Except for ND6 subunit and 8 tRNA genes are distributed on the L-strand, all the other PCGs and tRNA genes are located on the H-strand. "ATG" and "GTG" are the start codons of the PCGs, "TAA", "AGA", "TA-" and "T--" are the stop codons. Most of the tRNA genes can be folded into typical clover-leaf secondary structure. The genome of T. kweichowensis has two repeat sequences in the cob-noncoding region. Mitogenomic phylogenetic analysis (NJ tree) robustly resolved the genus-level relationship among the three genera Tylototriton, Echinotriton, and Pleurodeles, and which is congruent with the previous molecular phylogeny results.

  15. Complete Genome Sequence of Vibrio campbellii LMB 29 Isolated from Red Drum with Four Native Megaplasmids

    Directory of Open Access Journals (Sweden)

    Jinxin Liu

    2017-10-01

    Full Text Available Vibrio spp. are the most common pathogens for animals reared in aquaculture. Vibrio campbellii, which is often involved in shrimp, fish and mollusks diseases, is widely distributed in the marine environment worldwide, but our knowledge about its pathogenesis and antimicrobial resistance is very limited. The existence of this knowledge gap is at least partially because that V. campbellii was originally classified as Vibrio harveyi, and the detailed information of its comparative genome analysis to other Vibrio spp. is currently lacking. In this study, the complete genome of a V. campbellii predominant strain, LMB29, was determined by MiSeq in conjunction with PacBio SMRT sequencing. This genome consists of two circular DNA chromosomes and four megaplasmids. Comparative genome analysis indicates that LMB29 shares a 96.66% similarity (average nucleotide identity with the V. campbellii ATCC strain BAA-1116 based on a 75% AF (average fraction calculations, and its functional profile is very similar to V. campbellii E1 and V. campbellii CAIM115. Both type III secretion system (T3SS and type VI secretion system (T6SS, along with the tlh gene which encodes a thermolabile hemolysin, are present in LMB29 which may contribute to the bacterial pathogenesis. The virulence of this strain was experimental confirmed by performing a LDH assay on a fish cell infection model, and cell death was observed as early as within 3 h post infection. Thirty-seven antimicrobial resistance genes (>45% identity were predicted in LMB29 which includes a novel rifampicin ADP ribosyltransferase, arr-9, in plasmid pLMB157. The gene arr-9 was predicted on a genomic island with horizontal transferable potentials which may facilitate the rifampicin resistance dissemination. Future researches are needed to explore the pathogenesis of V. campbellii LMB29, but the availability of this genome sequence will certainly aid as a basis for further analysis.

  16. Genome Sequence of “Candidatus Mycoplasma haemolamae” Strain Purdue, a Red Blood Cell Pathogen of Alpacas (Vicugna pacos) and Llamas (Lama glama)

    Science.gov (United States)

    Toth, Balazs; Santos, Andrea P.; do Nascimento, Naíla C.; Kritchevsky, Janice E.

    2012-01-01

    We report the complete genome sequence of “Candidatus Mycoplasma haemolamae,” an endemic red-cell pathogen of camelids. The single, circular chromosome has 756,845 bp, a 39.3% G+C content, and 925 coding sequences (CDSs). A great proportion (49.1%) of these CDSs are organized into paralogous gene families, which can now be further explored with regard to antigenic variation. PMID:23105057

  17. The complete mitochondrial genome sequence of Red knobby newt Tylototriton shanjing (Amphibia: Caudata).

    Science.gov (United States)

    Jiang, Ye; Yang, Mingxian; Han, Fuyao; Li, Yan; Ni, Qingyong; Yao, Yongfang; Xu, Huailiang; Li, Ying; Zhang, Mingwang

    2016-07-01

    The complete mitogenome of Tylototriton shanjing is 16,661 bp in length with GenBank accession number KR154461, which contains 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNA), 2 ribosomal RNA genes (rRNA), and 1 control region (CR). The overall base composition of this mitogenome is biased toward AT content at 59.45%. Most of the PCGs and tRNA genes are located on the H-strand, except for ND6 subunit gene and eight tRNA genes, which were distributed on the L-strand. The PCGs used "ATG" and "GTG" as the start codons, while "TAA", "TAG", "AGA", and "T-" are used as stop codons. Almost all tRNA genes were folded into typical cloverleaf secondary structures. The T. shanjing genome had two tandem repeat sequences in the cob-noncoding region. The mitogenomic phylogenetic analyses shows that the genera Echinotriton and Tylototriton were clustered into a strong supported monophyletic clade, which is a sister clade to the genus Pleurodeles, this confirms the previous phylogenetic results.

  18. Draft Genome Sequences of TwoThiomicrospiraStrains Isolated from the Brine-Seawater Interface of Kebrit Deep in the Red Sea

    KAUST Repository

    Zhang, Guishan

    2016-03-11

    Two Thiomicrospira strains, WB1 and XS5, were isolated from the Kebrit Deep brine-seawater interface in the Red Sea, Saudi Arabia. Here, we present the draft genome sequences of these gammaproteobacteria, which both produce sulfuric acid from thiosulfate in culture.

  19. Draft Genome Sequence of Pseudoalteromonas sp. Strain XI10 Isolated from the Brine-Seawater Interface of Erba Deep in the Red Sea

    KAUST Repository

    Zhang, Guishan

    2016-03-10

    Pseudoalteromonas sp. strain XI10 was isolated from the brine-seawater interface of Erba Deep in the Red Sea, Saudi Arabia. Here, we present the draft genome sequence of strain XI10, a gammaproteobacterium that synthesizes polysaccharides for biofilm formation when grown in liquid culture.

  20. Extended Star-formation and Disk-like Kinematics in a z~3 Massive ``Main-Sequence'' Galaxy through [CII] Imaging and Multi-J CO Line Observations

    Science.gov (United States)

    Leung, Tsz Kuk Daisy; Riechers, Dominik A.; Clements, David; Cooray, Asantha; Ivison, Rob; Perez-Fournon, Ismael; Wardlow, Julie

    2018-01-01

    Dusty star-forming galaxies (SFG) at high redshifts are the main contributors to the comoving star formation rate (SFR) density, which peaks between the redshift of z=1-3 (``Cosmic Noon''). Yet, new insights into their gas dynamics, and thus, structural evolution are awaiting spatially resolved observations. I will present the latest results from our kpc-scale [CII] imaging and multi-J CO line observations obtained with ALMA, CARMA, PdBI, and the VLA in one of the most massive ``main-sequence'' disk galaxy known. XMM03 (z=2.9850) is an extremely IR-luminous galaxy with a SFR of ~3000 Msun/yr, but its molecular gas excitation is surprisingly similar to the Milky Way up to J=5, which is in stark contrast with most high-z galaxies studied to date. The monotonic velocity gradient seen in the [CII] line emission suggest that it is a rotating disk galaxy. Based on the molecular gas surface density and the far-UV radiation flux determined from photo-dissociation region (PDR) modeling, the star-forming environment of XMM03 is similar to nearby SFGs. These findings together with the ~1100 km/s wide CO(1-0) line across the entire disk of ~8 kpc in radius showcase the different interstellar medium (ISM) environment that we are probing at the most massive end of galaxies in the early Universe. With a stellar mass of M*~10^12, its specific SFR is consistent with an extrapolation of the ``star-forming main-sequence'' up to M*~10^12 Msun at z~3. Our findings therefore confirm the prevalence of disk-wide star formation responsible for assembling most of the stellar masses toward the ``Cosmic Noon''.

  1. Inferring Invasion History of Red Swamp Crayfish (Procambarus clarkii in China from Mitochondrial Control Region and Nuclear Intron Sequences

    Directory of Open Access Journals (Sweden)

    Yanhe Li

    2015-06-01

    Full Text Available Identifying the dispersal pathways of an invasive species is useful for adopting the appropriate strategies to prevent and control its spread. However, these processes are exceedingly complex. So, it is necessary to apply new technology and collect representative samples for analysis. This study used Approximate Bayesian Computation (ABC in combination with traditional genetic tools to examine extensive sample data and historical records to infer the invasion history of the red swamp crayfish, Procambarus clarkii, in China. The sequences of the mitochondrial control region and the proPOx intron in the nuclear genome of samples from 37 sites (35 in China and one each in Japan and the USA were analyzed. The results of combined scenarios testing and historical records revealed a much more complex invasion history in China than previously believed. P. clarkii was most likely originally introduced into China from Japan from an unsampled source, and the species then expanded its range primarily into the middle and lower reaches and, to a lesser extent, into the upper reaches of the Changjiang River in China. No transfer was observed from the upper reaches to the middle and lower reaches of the Changjiang River. Human-mediated jump dispersal was an important dispersal pathway for P. clarkii. The results provide a better understanding of the evolutionary scenarios involved in the rapid invasion of P. clarkii in China.

  2. Identification of sequence-related amplified polymorphism markers linked to the red leaf trait in ornamental kale (Brassica oleracea L. var. acephala).

    Science.gov (United States)

    Wang, Y S; Liu, Z Y; Li, Y F; Zhang, Y; Yang, X F; Feng, H

    2013-04-02

    Artistic diversiform leaf color is an important agronomic trait that affects the market value of ornamental kale. In the present study, genetic analysis showed that a single-dominant gene, Re (red leaf), determines the red leaf trait in ornamental kale. An F2 population consisting of 500 individuals from the cross of a red leaf double-haploid line 'D05' with a white leaf double-haploid line 'D10' was analyzed for the red leaf trait. By combining bulked segregant analysis and sequence-related amplified polymorphism technology, we identified 3 markers linked to the Re/re locus. A genetic map of the Re locus was constructed using these sequence-related amplified polymorphism markers. Two of the markers, Me8Em4 and Me8Em17, were located on one side of Re/re at distances of 2.2 and 6.4 cM, whereas the other marker, Me9Em11, was located on the other side of Re/re at a distance of 3.7 cM. These markers could be helpful for the subsequent cloning of the red trait gene and marker-assisted selection in ornamental kale breeding programs.

  3. Surprising Rapid Collapse of Sirius B from Red Giant to White Dwarf Through Mass Transfer to Sirius a

    Science.gov (United States)

    Yousef, Shahinaz; Ali, Ola

    2013-03-01

    Sirius was observed in antiquity as a red star. In his famous astronomy textbook the Almagest written 140 AD, Ptolemy described the star Sirius as fiery red. He curiously depicted it as one of six red-colored stars. The other five are class M and K stars, such as Arcturus and Betelgeuse. Apparent confirmation in ancient Greek and Roman sources are found and Sirius was also reported red in Europe about 1400 years ago. Sirius must have changed to a white dwarf in the night of Ascension. The star chapter in the Quran started with "by the star as it collapsed (1) your companion have not gone astray nor being misled (2), and in verse 49 which is the rotation period of the companion Sirius B around Sirius A, it is said" He is the Lord of Sirius (49). If Sirius actually was red what could have caused it to change into the brilliant bluish-white star we see today? What the naked eye perceives as a single star is actually a binary star system, consisting of a white main sequence star of spectral type A1V, termed Sirius A, and a faint white dwarf companion of spectral type DA2, termed Sirius B. The red color indicates that the star seen then was a red giant. It looks that what they have seen in antiquity was Sirius B which was then a red giant and it collapsed to form a white dwarf. Since there is no evidence of a planetary nebula, then the red Sirius paradox can be solved in terms of stellar evolution with mass transfer. Sirius B was the most massive star which evolved to a red giant and filled the Roche lobe. Mass transfer to Sirius A occurred through the Lagrangian point. Sirius A then became more massive while Sirius B lost mass and shrank. Sirius B then collapsed abruptly into a white dwarf. In the case of Algol, Ptolmy observed it as white star but it was red at the time of El sufi. At present it is white. The rate of mass transfer from Sirius B to Sirius A, and from Algol B to A is estimated from observational data of colour change from red to bullish white to be 0

  4. Variable Red Giants--The MACHO View

    Energy Technology Data Exchange (ETDEWEB)

    Keller, S C; Cook, K H

    2003-01-03

    The authors present a study of the MACHO red variable population in the Large Magellanic Cloud. This study reveals six period-luminosity relations among the red variable population. Only two of these were known prior to MACHO. The results are consistent with Mira pulsation in the fundamental mode. A sequence comprising 26% of the red variable population can not be explained by pulsation. They propose a dust {kappa}-mechanism in the circumstellar environment is responsible for the long period variation of these objects. The luminosity function of the variables shows a sharp edge at the tip of the red giant branch (TRGB). This is the first clear indication of a population of variable stars within the immediate vicinity of the TRGB. The results indicate this population amounts to 8% of the RGB population near the TRGB.

  5. Cannibals in the thick disk: the young α-rich stars as evolved blue stragglers

    Science.gov (United States)

    Jofré, P.; Jorissen, A.; Van Eck, S.; Izzard, R. G.; Masseron, T.; Hawkins, K.; Gilmore, G.; Paladini, C.; Escorza, A.; Blanco-Cuaresma, S.; Manick, R.

    2016-10-01

    Spectro-seismic measurements of red giants enabled the recent discovery of stars in the thick disk that are more massive than 1.4 M⊙. While it has been claimed that most of these stars are younger than the rest of the typical thick disk stars, we show evidence that they might be products of mass transfer in binary evolution, notably evolved blue stragglers. We took new measurements of the radial velocities in a sample of 26 stars from APOKASC, including 13 "young" stars and 13 "old" stars with similar stellar parameters but with masses below 1.2 M⊙ and found that more of the young starsappear to be in binary systems with respect to the old stars.Furthermore, we show that the young stars do not follow the expected trend of [C/H] ratios versus mass for individual stars. However, with a population synthesis of low-mass stars including binary evolution and mass transfer, we can reproduce the observed [C/N] ratios versus mass. Our study shows how asteroseismology of solar-type red giants provides us with a unique opportunity to study the evolution of field blue stragglers after they have left the main-sequence.

  6. Complete genome sequence of Coriobacterium glomerans type strain (PW2T) from the midgut of Pyrrhocoris apterus L. (red soldier bug)

    Energy Technology Data Exchange (ETDEWEB)

    Stackebrandt, Erko [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Zeytun, Ahmet [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Chang, Yun-Juan [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2013-01-01

    Coriobacterium glomerans Haas and Ko nig 1988, is the only species of the genus Coriobacterium, family Coriobacteriaceae, order Coriobacteriales, phylum Actinobacteria. The bacterium thrives as an endosymbiont of pyrrhocorid bugs, i.e. the red fire bug Pyrrhocoris apterus L. The rationale for sequencing the genome of strain PW2T is its endosymbiotic life style which is rare among members of Actinobacteria. Here we describe the features of this symbiont, together with the complete genome sequence and its annotation. This is the first complete genome sequence of a member of the genus Coriobacterium and the sixth member of the order Coriobacteriales for which complete genome sequences are now available. The 2,115,681 bp long single replicon genome with its 1,804 protein-coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. Complete genome sequence of Coriobacterium glomerans type strain (PW2(T)) from the midgut of Pyrrhocoris apterus L. (red soldier bug).

    Science.gov (United States)

    Stackebrandt, Erko; Zeytun, Ahmet; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Huntemann, Marcel; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Chang, Yun-Juan; Land, Miriam; Hauser, Loren; Rohde, Manfred; Pukall, Rüdiger; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2013-04-15

    Coriobacterium glomerans Haas and König 1988, is the only species of the genus Coriobacterium, family Coriobacteriaceae, order Coriobacteriales, phylum Actinobacteria. The bacterium thrives as an endosymbiont of pyrrhocorid bugs, i.e. the red fire bug Pyrrhocoris apterus L. The rationale for sequencing the genome of strain PW2(T) is its endosymbiotic life style which is rare among members of Actinobacteria. Here we describe the features of this symbiont, together with the complete genome sequence and its annotation. This is the first complete genome sequence of a member of the genus Coriobacterium and the sixth member of the order Coriobacteriales for which complete genome sequences are now available. The 2,115,681 bp long single replicon genome with its 1,804 protein-coding and 54 RNA genes is part of the G enomic E ncyclopedia of Bacteria and Archaea project.

  8. Complete nucleotide sequence and organization of the mitogenome of the red-spotted apollo butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) and comparison with other lepidopteran insects.

    Science.gov (United States)

    Kim, Man Il; Baek, Jee Yeon; Kim, Min Jee; Jeong, Heon Cheon; Kim, Ki-Gyoung; Bae, Chang Hwan; Han, Yeon Soo; Jin, Byung Rae; Kim, Iksoo

    2009-10-31

    The 15,389-bp long complete mitogenome of the endangered red-spotted apollo butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) was determined in this study. The start codon for the COI gene in insects has been extensively discussed, and has long remained a matter of some controversy. Herein, we propose that the CGA (arginine) sequence functions as the start codon for the COI gene in lepidopteran insects, on the basis of complete mitogenome sequences of lepidopteran insects, including P. bremeri, as well as additional sequences of the COI start region from a diverse taxonomic range of lepidopteran species (a total of 53 species from 15 families). In our extensive search for a tRNA-like structure in the A+T-rich region, one tRNA(Trp)-like sequence and one tRNA(Leu) (UUR)-like sequence were detected in the P. bremeri A+T-rich region, and one or more tRNA-like structures were detected in the A+T-rich region of the majority of other sequenced lepidopteran insects, thereby indicating that such features occur frequently in the lepidopteran mitogenomes. Phylogenetic analysis using the concatenated 13 amino acid sequences and nucleotide sequences of PCGs of the four macrolepidopteran superfamilies together with the Tortricoidea and Pyraloidea resulted in the successful recovery of a monophyly of Papilionoidea and a monophyly of Bombycoidea. However, the Geometroidea were unexpectedly identified as a sister group of the Bombycoidea, rather than the Papilionoidea.

  9. About Exobiology: The Case for Dwarf K Stars

    Science.gov (United States)

    Cuntz, M.; Guinan, E. F.

    2016-08-01

    One of the most fundamental topics of exobiology concerns the identification of stars with environments consistent with life. Although it is believed that most types of main-sequence stars might be able to support life, particularly extremophiles, special requirements appear to be necessary for the development and sustainability of advanced life forms. From our study, orange main-sequence stars, ranging from spectral type late-G to mid-K (with a maximum at early K), are most promising. Our analysis considers a variety of aspects, including (1) the frequency of the various types of stars, (2) the speed of stellar evolution in their lifetimes, (3) the size of the stellar climatological habitable zones (CLI-HZs), (4) the strengths and persistence of their magnetic-dynamo-generated X-ray-UV emissions, and (5) the frequency and severity of flares, including superflares; both (4) and (5) greatly reduce the suitability of red dwarfs to host life-bearing planets. The various phenomena show pronounced dependencies on the stellar key parameters such as effective temperature and mass, permitting the assessment of the astrobiological significance of various types of stars. Thus, we developed a “Habitable-Planetary-Real-Estate Parameter” (HabPREP) that provides a measure for stars that are most suitable for planets with life. Early K stars are found to have the highest HabPREP values, indicating that they may be “Goldilocks” stars for life-hosting planets. Red dwarfs are numerous, with long lifetimes, but their narrow CLI-HZs and hazards from magnetic activity make them less suitable for hosting exolife. Moreover, we provide X-ray-far-UV irradiances for G0 V-M5 V stars over a wide range of ages.

  10. Spectrophotometry of Symbiotic Stars

    Science.gov (United States)

    Boyd, David

    2017-06-01

    Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionises the nebula producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  11. Feasibility of free-breathing dynamic contrast-enhanced MRI of gastric cancer using a golden-angle radial stack-of-stars VIBE sequence: comparison with the conventional contrast-enhanced breath-hold 3D VIBE sequence.

    Science.gov (United States)

    Li, Huan-Huan; Zhu, Hui; Yue, Lei; Fu, Yi; Grimm, Robert; Stemmer, Alto; Fu, Cai-Xia; Peng, Wei-Jun

    2017-12-19

    To investigate the feasibility and diagnostic value of free-breathing, radial, stack-of-stars three-dimensional (3D) gradient echo (GRE) sequence ("golden angle") on dynamic contrast-enhanced (DCE) MRI of gastric cancer. Forty-three gastric cancer patients were divided into cooperative and uncooperative groups. Respiratory fluctuation was observed using an abdominal respiratory gating sensor. Those who breath-held for more than 15 s were placed in the cooperative group and the remainder in the uncooperative group. The 3-T MRI scanning protocol included 3D GRE and conventional breath-hold VIBE (volume-interpolated breath-hold examination) sequences, comparing images quantitatively and qualitatively. DCE-MRI parameters from VIBE images of normal gastric wall and malignant lesions were compared. For uncooperative patients, 3D GRE scored higher qualitatively, and had higher SNRs (signal-to-noise ratios) and CNRs (contrast-to-noise ratios) than conventional VIBE quantitatively. Though 3D GRE images scored lower in qualitative parameters compared with conventional VIBE for cooperative patients, it provided images with fewer artefacts. DCE parameters differed significantly between normal gastric wall and lesions, with higher Ve (extracellular volume) and lower Kep (reflux constant) in gastric cancer. The free-breathing, golden-angle, radial stack-of-stars 3D GRE technique is feasible for DCE-MRI of gastric cancer. Dynamic enhanced images can be used for quantitative analysis of this malignancy. • Golden-angle radial stack-of-stars VIBE aids gastric cancer MRI diagnosis. • The 3D GRE technique is suitable for patients unable to suspend respiration. • Method scored higher in the qualitative evaluation for uncooperative patients. • The technique produced images with fewer artefacts than conventional VIBE sequence. • Dynamic enhanced images can be used for quantitative analysis of gastric cancer.

  12. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  13. Melanocortin 1 receptor (MC1R) gene sequence variation and melanism in the gray (Sciurus carolinensis), fox (Sciurus niger), and red (Sciurus vulgaris) squirrel.

    Science.gov (United States)

    McRobie, Helen R; King, Linda M; Fanutti, Cristina; Coussons, Peter J; Moncrief, Nancy D; Thomas, Alison P M

    2014-01-01

    Sequence variations in the melanocortin 1 receptor (MC1R) gene are associated with melanism in many different species of mammals, birds, and reptiles. The gray squirrel (Sciurus carolinensis), found in the British Isles, was introduced from North America in the late 19th century. Melanism in the British gray squirrel is associated with a 24-bp deletion in the MC1R. To investigate the origin of this mutation, we sequenced the MC1R of 95 individuals including 44 melanic gray squirrels from both the British Isles and North America. Melanic gray squirrels of both populations had the same 24-bp deletion associated with melanism. Given the significant deletion associated with melanism in the gray squirrel, we sequenced the MC1R of both wild-type and melanic fox squirrels (Sciurus niger) (9 individuals) and red squirrels (Sciurus vulgaris) (39 individuals). Unlike the gray squirrel, no association between sequence variation in the MC1R and melanism was found in these 2 species. We conclude that the melanic gray squirrel found in the British Isles originated from one or more introductions of melanic gray squirrels from North America. We also conclude that variations in the MC1R are not associated with melanism in the fox and red squirrels.

  14. Stripped Red Giants - Helium Core White Dwarf Progenitors and their sdB Siblings

    Science.gov (United States)

    Heber, U.

    2017-03-01

    Some gaps in the mosaic of binary star evolution have recently been filled by the discoveries of helium-core white dwarf progenitors (often called extremely low mass (ELM) white dwarfs) as stripped cores of first-giant branch objects. Two varieties can be distinguished. One class is made up by SB1 binaries, companions being white dwarfs as well. Another class, the so-called EL CVn stars, are composite spectrum binaries, with A-Type companions. Pulsating stars are found among both classes. A riddle is posed by the apparently single objects. There is a one-to-one correspondence of the phenomena found for these new classes of star to those observed for sdB stars. In fact, standard evolutionary scenarios explain the origin of sdB stars as red giants that have been stripped close to the tip of first red giant branch. A subgroup of subluminous B stars can also be identified as stripped helium-cores of red giants. They form an extension of the ELM sequence to higher temperatures. Hence low mass white dwarfs of helium cores and sdB stars in binaries are close relatives in terms of stellar evolution.

  15. INNOCENT BYSTANDERS: CARBON STARS FROM THE SLOAN DIGITAL SKY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Green, Paul [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-03-01

    Among stars showing carbon molecular bands (C stars), the main-sequence dwarfs, likely in post-mass transfer binaries, are numerically dominant in the Galaxy. Via spectroscopic selection from the Sloan Digital Sky Survey, we retrieve 1220 high galactic latitude C stars, {approx}5 times more than previously known, including a wider variety than past techniques such as color or grism selection have netted, and additionally yielding 167 DQ white dwarfs. Of the C stars with proper motion measurements, we identify 69% clearly as dwarfs (dCs), while {approx}7% are giants. The dCs likely span absolute magnitudes M{sub i} from {approx}6.5 to 10.5. 'G-type' dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C{sub 2} bands. We report Balmer emission in 22 dCs, none of which are G-types. We find 8 new DA/dC stars in composite spectrum binaries, quadrupling the total sample of these 'smoking guns' for AGB binary mass transfer. Eleven very red C stars with strong red CN bands appear to be 'N'-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Leo A. Two such stars within 30' of each other may trace a previously unidentified dwarf galaxy or tidal stream at {approx}40 kpc. We explore the multiwavelength properties of the sample and report the first X-ray detection of a dC star, which shows strong Balmer emission. Our own spectroscopic survey additionally provides the dC surface density from a complete sample of dwarfs limited by magnitude, color, and proper motion.

  16. Variability of Disk Emission in Pre-Main Sequence and Related Stars. II. Variability in the Gas and Dust Emission of the Herbig Fe Star SAO 206462

    Science.gov (United States)

    Sitko, Michael L.; Day, Amanda N.; Kimes, Robin L.; Beerman, Lori C.; Martus, Cameron; Lynch, David K.; Russell, Ray W.; Grady, Carol A.; Schneider, Glenn; Lisse, Carey M.; hide

    2011-01-01

    We present thirteen epochs of near-infrared (0.8-5 microns) spectroscopic observations of the pre-transitional, "gapped" disk system in SAO 206462 (=HD 135344B). In all, six gas emission lines (Br(alpha) , Br(gamma), Pa(beta), Pa(delta), Pa(epsilon), and the 0.8446 microns line of O I) along with continuum measurements made near the standard J, H, K, and L photometric bands were measured. A mass accretion rate of approximately 2 x 10(exp 8)Solar Mass/yr was derived from the Br(gamma) and Pa(beta) lines. However, the fluxes of these lines varied by a factor of over two during the course of a few months. The continuum also varied, but by only approx.30%, and even decreased at a time when the gas emission was increasing. The H I line at 1.083 microns was also found to vary in a manner inconsistent with that of either the hydrogen lines or the dust. Both the gas and dust variabilities indicate significant changes in the region of the inner gas and the inner dust belt that may be common to many young disk systems. If planets are responsible for defining the inner edge of the gap, they could interact with the material on time scales commensurate with what is observed for the variations in the dust, while other disk instabilities (thermal, magneto-rotational) would operate there on longer time scales than we observe for the inner dust belt. For SAO 206462, the orbital period would likely be 1-3 years. If the changes are being induced in the disk material closer to the star than the gap, a variety of mechanisms (disk instabilities, interactions via planets) might be responsible for the changes seen. The He I feature is most likely due to a wind whose orientation changes with respect to the observer on time scales of a day or less. To further constrain the origin of the gas and dust emission will require multiple spectroscopic and interferometric observations on both shorter and longer time scales that have been sampled so far.

  17. Non-radial modes in AGB stars

    Directory of Open Access Journals (Sweden)

    Montalbán Josefina

    2017-01-01

    Full Text Available The success of asteroseismology in characterising G-K giants has motivated the extension of the same techniques to stars after the central He-burning and M-giants. The latter have been usually studied only as radial pulsators; the presence, however, of fine-structure in the period-luminosity diagram of red variables in the Magellanic Clouds could result from the presence of non-radial oscillations, offering the potential of observational indexes based on non-radial oscillations also for luminous red giants. We present here the results of a first approach aiming to identify the origin of the sub-ridges in the sequence A of the LMC red variables.

  18. Multigene panel next generation sequencing in a patient with cherry red macular spot: Identification of two novel mutations in NEU1 gene causing sialidosis type I associated with mild to unspecific biochemical and enzymatic findings

    Directory of Open Access Journals (Sweden)

    Ulrike Mütze

    2017-03-01

    Discussion: Sialidosis should be suspected in patients with cherry red macular spots, even with non-significant urinary sialic acid excretion. Multigene panel next generation sequencing can establish a definite diagnosis, allowing for counseling of the patient and family.

  19. New Asteroseismic Scaling Relations Based on the Hayashi Track Relation Applied to Red Giant Branch Stars in NGC 6791 and NGC 6819

    NARCIS (Netherlands)

    Wu, T.; Li, Y.; Hekker, S.

    2014-01-01

    Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the

  20. UBV Light Curves of ζ AUR Star 32 Cygni

    Directory of Open Access Journals (Sweden)

    Il-Seong Nha

    1992-12-01

    Full Text Available UBV ovservation of ζ Aur star 32 Cyg have been at the Yonsei University Observatory suing the 60-cm Goto reflector and five years, 1988-1992. Observations made during these years cover outside of eclipse phase only. No significant light variation which would represent the secondary eclipse of red supergiant by a hot main sequence star is found. The light levels in three passbands do not show any evidence of the proximate effect of this binary system. Some strong light variations, particularly in U, are discussed with no successful explanation.

  1. DK UMa: A Star on the Ascent

    Science.gov (United States)

    Simon, Theodore

    1999-01-01

    DK UMa (= 24 UMa = HD 82210) is a G4 IV-III star. According to its M(sub v) and B - V color, it is located at the base of the red giant branch, having recently exited from the Hertzsprung Gap. Now poised to start its first ascent along the giant branch, DK UMa is at a significant juncture in its post-main-sequence evolution, offering an important evolutionary comparison for magnetic activity with stars like 31 Comae, which is just entering the Hertzsprung Gap, and older stars like the Hyades giants or P Ceti, which have passed the tip of the giant branch and lie in the so-called 'clump'. As part of a major survey of the ultraviolet and X ray properties of a well-defined sample of evolved giant stars, DK UMa was observed with the Extreme Ultraviolet Explorer (EUVE) spacecraft in March 1997, for a total exposure time of 230 kiloseconds. A plot of the extracted short-wavelength (SW) spectrum of this star is shown, where it is compared with similar EUVE exposures for other yellow and red giant stars in the activity survey. In terms of the spectral lines of different ionization stages present in these spectra, the transition region and coronal temperature of DK UMa appears to be intermediate between those of 31 Com and P Ceti. Combining the relative strengths of the EUVE lines with Hubble Space Telescope (HST) data at near UV wavelengths and with ROSAT X-ray fluxes, the differential emission measure (DEM) distributions of these stars form a sequence in coronal temperature, which peaks at 10(exp 7.2) K for 31 Com, at 10(exp 6.8) K for B Ceti, and at intermediate temperatures for DK UMa - consistent with the evolutionary stages represented by the three stars. The integrated fluxes of the strongest emission lines found in the EUVE spectrum of DK UMa are listed, again compared with similar measurements for other giant stars that were observed in the course of other EUVE Guest Observer programs.

  2. The faint end of the red sequence galaxy luminosity function: unveiling surface brightness selection effects with the CLASH clusters

    Science.gov (United States)

    Martinet, Nicolas; Durret, Florence; Adami, Christophe; Rudnick, Gregory

    2017-08-01

    Characterizing the evolution of the faint end of the cluster red sequence (RS) galaxy luminosity function (GLF) with redshift is a milestone in understanding galaxy evolution. However, the community is still divided in that respect, hesitating between an enrichment of the RS due to efficient quenching of blue galaxies from z 1 to present-day or a scenario in which the RS is built at a higher redshift and does not evolve afterwards. Recently, it has been proposed that surface brightness (SB) selection effects could possibly solve the literature disagreement, accounting for the diminishing RS faint population in ground-based observations. We investigate this hypothesis by comparing the RS GLFs of 16 CLASH clusters computed independently from ground-based Subaru/Suprime-Cam V and Ip or Ic images and space-based HST/ACS F606W and F814W images in the redshift range 0.187 ≤ z ≤ 0.686. We stack individual cluster GLFs in two redshift bins (0.187 ≤ z ≤ 0.399 and 0.400 ≤ z ≤ 0.686) and two mass (6 × 1014M⊙ ≤ M200space- and ground-based data, with a difference of 0.2σ in the faint end parameter α when stacking all clusters together and a maximum difference of 0.9σ in the case of the high-redshift stack, demonstrating a weak dependence on the type of observation in the probed range of redshift and mass. When considering the full sample, we estimate α = - 0.76 ± 0.07 and α = - 0.78 ± 0.06 with HST and Subaru, respectively. We note a mild variation of the faint end between the high- and low-redshift subsamples at a 1.7σ and 2.6σ significance. We investigate the effect of SB dimming by simulating our low-redshift galaxies at high redshift. We measure an evolution in the faint end slope of less than 1σ in this case, implying that the observed signature is larger than one would expect from SB dimming alone, and indicating a true evolution in the faint end slope. Finally, we find no variation with mass or radius in the probed range of these two parameters

  3. Soviet News and Propaganda Analysis Based on RED STAR (The Official Newspaper of the Soviet Defense Establishment) for the Period 1-31 January 1983. Volume 3, Number 1, 1983.

    Science.gov (United States)

    1983-01-01

    Pentagon’s use of chemicals against the people of Vietnam is con- demned as an act of genocide and is a war crime. Also in January 1983, a major Red Star...States Air Force during the war in Vietnam. This operation cannot be called anything else than a war crime and genocide ." "Symposium on the effects of...Japan increase its military forces and assume a larger military role in the Pacific. e The Pentagon increases military aid to the Guatemalan dictatorship

  4. Soviet News and Propaganda Analysis Based on RED STAR (The Official Newspaper of the Soviet Defense Establishment) for the Period 1-31 October 1983. Volume 3, Number 10.

    Science.gov (United States)

    1983-01-01

    142 232 20% 042 24% • 20% 24% 04% 3. Europe/RATO ........ 10Z 142 46% 45% 2M"w ’ 29% 08% 11% 4. China .............. 03% 28% 00% 03% 01% 5...Chinese defense officials (in China ). -18- -*.,..k =* >: 9 The U.S. will help the Israeli military aircraft industry to build a new advance war plane...for good comunist to perform. As in the past, ten percent of Red Star’s space, allocated to Soviet military topics was critical and/or negative in tone

  5. Space Science in Action: Stars [Videotape].

    Science.gov (United States)

    1999

    This videotape recording shows students the many ways scientists look at the stars and how they can use what they see to answer questions such as What are stars made of?, How far away are they?, and How old are the stars? Students learn about the life span of stars and the various stages they pass through from protostar to main sequence star to…

  6. Development of a genotype-by-sequencing immunogenetic assay as exemplified by screening for variation in red fox with and without endemic rabies exposure.

    Science.gov (United States)

    Donaldson, Michael E; Rico, Yessica; Hueffer, Karsten; Rando, Halie M; Kukekova, Anna V; Kyle, Christopher J

    2018-01-01

    Pathogens are recognized as major drivers of local adaptation in wildlife systems. By determining which gene variants are favored in local interactions among populations with and without disease, spatially explicit adaptive responses to pathogens can be elucidated. Much of our current understanding of host responses to disease comes from a small number of genes associated with an immune response. High-throughput sequencing (HTS) technologies, such as genotype-by-sequencing (GBS), facilitate expanded explorations of genomic variation among populations. Hybridization-based GBS techniques can be leveraged in systems not well characterized for specific variants associated with disease outcome to "capture" specific genes and regulatory regions known to influence expression and disease outcome. We developed a multiplexed, sequence capture assay for red foxes to simultaneously assess ~300-kbp of genomic sequence from 116 adaptive, intrinsic, and innate immunity genes of predicted adaptive significance and their putative upstream regulatory regions along with 23 neutral microsatellite regions to control for demographic effects. The assay was applied to 45 fox DNA samples from Alaska, where three arctic rabies strains are geographically restricted and endemic to coastal tundra regions, yet absent from the boreal interior. The assay provided 61.5% on-target enrichment with relatively even sequence coverage across all targeted loci and samples (mean = 50×), which allowed us to elucidate genetic variation across introns, exons, and potential regulatory regions (4,819 SNPs). Challenges remained in accurately describing microsatellite variation using this technique; however, longer-read HTS technologies should overcome these issues. We used these data to conduct preliminary analyses and detected genetic structure in a subset of red fox immune-related genes between regions with and without endemic arctic rabies. This assay provides a template to assess immunogenetic variation

  7. MULTIPLE TRANS-ARCTIC PASSAGES IN THE RED ALGA PHYCODRYS RUBENS - EVIDENCE FROM NUCLEAR RDNA ITS SEQUENCES

    NARCIS (Netherlands)

    VANOPPEN, MJH; DRAISMA, SGA; OLSEN, JL; STAM, WT

    In order to investigate how episodes of geological and climatic change have influenced the distribution and evolutionary diversification of Arctic to cold temperate-North Atlantic seaweed species, intraspecific genetic variation was analyzed among isolates of the sublittoral, benthic red alga

  8. Star Masses and Star-Planet Distances for Earth-like Habitability.

    Science.gov (United States)

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M ⊙ planets with at least simple life is 0.57 M ⊙  < M < 1.64 M ⊙ . Key Words: Habitability-Habitable zone-Anthropic-Red dwarfs-Initial mass function. Astrobiology 17, 61-77.

  9. Galaxy-galaxy lensing constraints on the relation between baryons and dark matter in galaxies in the Red Sequence Cluster Survey 2

    OpenAIRE

    van Uitert, Edo; Hoekstra, Henk; Velander, Malin; Gilbank, David G.; Gladders, Michael D.; Yee, H. K. C.

    2011-01-01

    We present the results of a study of weak gravitational lensing by galaxies using imaging data that were obtained as part of the second Red Sequence Cluster Survey (RCS2). In order to compare to the baryonic properties of the lenses we focus here on the ~300 square degrees that overlap with the DR7 of the SDSS. The depth and image quality of the RCS2 enables us to significantly improve upon earlier work for luminous galaxies at z>=0.3. Comparison with dynamical masses from the SDSS shows a go...

  10. THE ROAD TO THE RED SEQUENCE: A DETAILED VIEW OF THE FORMATION OF A MASSIVE GALAXY AT z {approx} 2

    Energy Technology Data Exchange (ETDEWEB)

    Ferreras, Ignacio [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Pasquali, Anna [Astronomisches Rechen Institut, Zentrum fuer Astronomie der Universitaet Heidelberg, Moenchhofstrasse 12-14, 69120 Heidelberg (Germany); Khochfar, Sadegh [Theoretical Modelling of Cosmic Structures Group, Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstr., D-85748 Garching (Germany); Kuntschner, Harald; Kuemmel, Martin [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Pirzkal, Nor [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Windhorst, Rogier; Malhotra, Sangeeta; Rhoads, James; Cohen, Seth [Department of Physics and Astronomy, Arizona State University, P.O. Box 871504, Tempe, AZ 85287-1504 (United States); O' Connell, Robert W. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Hathi, Nimish P. [Observatories of the Carnegie Institute of Washington, Pasadena, CA 91101 (United States); Ryan, Russell E. [Physics Department, University of California, Davis, CA 95616 (United States); Yan Haojing, E-mail: ferreras@star.ucl.ac.uk [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2012-08-15

    Over half of the census of massive galaxies at z {approx} 2 are dominated by quiescent stellar populations. The formation mechanism for these galaxies is still under debate, with models relying either on massive and early mergers or cold accretion. It is therefore imperative to understand in detail the properties of these galaxies. We present here a detailed analysis of the star formation history (SFH) of FW4871, a massive galaxy at z = 1.893 {+-} 0.002. We compare rest-frame optical and NUV slitless grism spectra from the Hubble Space Telescope with a large set of composite stellar populations to constrain the underlying SFH. Even though the morphology features prominent tidal tails, indicative of a recent merger, there is no sign of ongoing star formation within an aperture encircling one effective radius, which corresponds to a physical extent of 2.6 kpc. A model assuming truncation of an otherwise constant SFH gives a formation epoch z{sub F} {approx} 10 with a truncation after 2.7 Gyr, giving a mass-weighted age of 1.5 Gyr and a stellar mass of (0.8-3) Multiplication-Sign 10{sup 11} M{sub Sun} (the intervals representing the output from different population synthesis models), implying star formation rates of 30-110 M{sub Sun} yr{sup -1}. A more complex model including a recent burst of star formation places the age of the youngest component at 145{sup +450}{sub -70} Myr, with a mass contribution lower than 20%, and a maximum amount of dust reddening of E(B - V) < 0.4 mag (95% confidence levels). This low level of dust reddening is consistent with the low emission observed at 24 {mu}m, corresponding to rest-frame 8 {mu}m, where polycyclic aromatic hydrocarbon emission should contribute significantly if a strong formation episode were present. The color profile of FW4871 does not suggest a significant radial trend in the properties of the stellar populations out to 3 R{sub e}. We suggest that the recent merger that formed FW4871 is responsible for the quenching

  11. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    Science.gov (United States)

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  12. Giant star seismology

    Science.gov (United States)

    Hekker, S.; Christensen-Dalsgaard, J.

    2017-06-01

    The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-uninterrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.

  13. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuka [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550 (Japan); Spiegel, David S. [Analytics and Algorithms, Stitch Fix, San Francisco, CA 94103 (United States); Mroczkowski, Tony [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Nordhaus, Jason [Department of Science and Mathematics, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Zimmerman, Neil T. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Parsons, Aaron R. [Astronomy Department, University of California, Berkeley, CA (United States); Mirbabayi, Mehrdad [Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540 (United States); Madhusudhan, Nikku, E-mail: yuka.fujii@elsi.jp [Astronomy Department, University of Cambridge (United Kingdom)

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  14. Radio Emission from Red-Giant Hot Jupiters

    Science.gov (United States)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  15. On the Origin of Sub-subgiant Stars. I. Demographics

    Energy Technology Data Exchange (ETDEWEB)

    Geller, Aaron M. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60201 (United States); Leiner, Emily M.; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States); Bellini, Andrea; Watkins, Laura L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gleisinger, Robert; Haggard, Daryl [Department of Physics, McGill University, McGill Space Institute, 3550 University Street, Montreal, QC H3A 2A7 (Canada); Kamann, Sebastian [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Leigh, Nathan W. C.; Zurek, David [Department of Astrophysics, American Museum of Natural History, Central Park West and 79th Street, New York, NY 10024 (United States); Sills, Alison, E-mail: a-geller@northwestern.edu [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2017-05-10

    Sub-subgiants are stars that are observed to be redder than normal main-sequence stars and fainter than normal subgiant (and giant) stars in an optical color–magnitude diagram (CMD). The red straggler stars, which lie redward of the red giant branch, may be related and are often grouped together with the sub-subgiants in the literature. These stars defy our standard theory of single-star evolution and are important tests for binary evolution and stellar collision models. In total, we identify 65 sub-subgiants (SSG) and red stragglers (RS) in 16 open and globular star clusters from the literature; 50 of these, including 43 sub-subgiants, pass our strict membership selection criteria (though the remaining sources may also be cluster members). In addition to their unique location on the CMD, we find that at least 58% (25/43) of sub-subgiants in this sample are X-ray sources with typical 0.5–2.5 keV luminosities of order 10{sup 30}–10{sup 31} erg s{sup −1}. Their X-ray luminosities and optical–to–X-ray flux ratios are similar to those of RS CVn active binaries. At least 65% (28/43) of the sub-subgiants in our sample are variables, 21 of which are known to be radial-velocity binaries. Typical variability periods are ≲15 days. At least 33% (14/43) of the sub-subgiants are H α emitters. These observational demographics provide strong evidence that binarity is important for sub-subgiant formation. Finally, we find that the number of sub-subgiants per unit mass increases toward lower-mass clusters, such that the open clusters in our sample have the highest specific frequencies of sub-subgiants.

  16. On the Origin of Sub-subgiant Stars. I. Demographics

    Science.gov (United States)

    Geller, Aaron M.; Leiner, Emily M.; Bellini, Andrea; Gleisinger, Robert; Haggard, Daryl; Kamann, Sebastian; Leigh, Nathan W. C.; Mathieu, Robert D.; Sills, Alison; Watkins, Laura L.; Zurek, David

    2017-05-01

    Sub-subgiants are stars that are observed to be redder than normal main-sequence stars and fainter than normal subgiant (and giant) stars in an optical color-magnitude diagram (CMD). The red straggler stars, which lie redward of the red giant branch, may be related and are often grouped together with the sub-subgiants in the literature. These stars defy our standard theory of single-star evolution and are important tests for binary evolution and stellar collision models. In total, we identify 65 sub-subgiants (SSG) and red stragglers (RS) in 16 open and globular star clusters from the literature; 50 of these, including 43 sub-subgiants, pass our strict membership selection criteria (though the remaining sources may also be cluster members). In addition to their unique location on the CMD, we find that at least 58% (25/43) of sub-subgiants in this sample are X-ray sources with typical 0.5-2.5 keV luminosities of order 1030-1031 erg s-1. Their X-ray luminosities and optical-to-X-ray flux ratios are similar to those of RS CVn active binaries. At least 65% (28/43) of the sub-subgiants in our sample are variables, 21 of which are known to be radial-velocity binaries. Typical variability periods are ≲15 days. At least 33% (14/43) of the sub-subgiants are Hα emitters. These observational demographics provide strong evidence that binarity is important for sub-subgiant formation. Finally, we find that the number of sub-subgiants per unit mass increases toward lower-mass clusters, such that the open clusters in our sample have the highest specific frequencies of sub-subgiants.

  17. The dark nemesis of galaxy formation: why hot haloes trigger black hole growth and bring star formation to an end

    Science.gov (United States)

    Bower, Richard G.; Schaye, Joop; Frenk, Carlos S.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; McAlpine, Stuart

    2017-02-01

    Galaxies fall into two clearly distinct types: `blue-sequence' galaxies which are rapidly forming young stars, and `red-sequence' galaxies in which star formation has almost completely ceased. Most galaxies more massive than 3 × 1010 M⊙ follow the red sequence, while less massive central galaxies lie on the blue sequence. We show that these sequences are created by a competition between star formation-driven outflows and gas accretion on to the supermassive black hole at the galaxy's centre. We develop a simple analytic model for this interaction. In galaxies less massive than 3 × 1010 M⊙, young stars and supernovae drive a high-entropy outflow which is more buoyant than any tenuous corona. The outflow balances the rate of gas inflow, preventing high gas densities building up in the central regions. More massive galaxies, however, are surrounded by an increasingly hot corona. Above a halo mass of ˜1012 M⊙, the outflow ceases to be buoyant and star formation is unable to prevent the build-up of gas in the central regions. This triggers a strongly non-linear response from the black hole. Its accretion rate rises rapidly, heating the galaxy's corona, disrupting the incoming supply of cool gas and starving the galaxy of the fuel for star formation. The host galaxy makes a transition to the red sequence, and further growth predominantly occurs through galaxy mergers. We show that the analytic model provides a good description of galaxy evolution in the EAGLE hydrodynamic simulations. So long as star formation-driven outflows are present, the transition mass scale is almost independent of subgrid parameter choice.

  18. Orbital Decay in Binaries with Evolved Stars

    Science.gov (United States)

    Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.

    2018-01-01

    Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.

  19. The Astrophysics of Emission-Line Stars

    CERN Document Server

    Kogure, Tomokazu

    2007-01-01

    Many types of stars show conspicuous emission lines in their optical spectra. These stars are broadly referred to as emission line stars. Emission line stars are attractive to many people because of their spectacular phenomena and their variability. The Astrophysics of Emission Line Stars offers general information on emission line stars, starting from a brief introduction to stellar astrophysics, and then moving toward a broad overview of emission line stars including early and late type stars as well as pre-main sequence stars. Detailed references have been prepared along with an index for further reading.

  20. Looks like a duck, moves like a duck, but does it quack like a duck? Asteroseismology of red-giant stars in clusters

    DEFF Research Database (Denmark)

    Miglio, Andrea; Brogaard, Karsten Frank; Handberg, Rasmus

    to Helium ionisation, properties of near-core mixing in the He-core-burning phase).Finally, we will discuss the prospects for seismic analyses of other clusters, in particular the globular cluster M4 which could reveal new insights into mass-loss dispersion and its effect on the horizontal-branch morphology.......Undoubtedly one the highlights of the Kepler asteroseismology programme has been the detection of solar-like oscillations in giants belonging to the open clusters NGC 6791, NGC 6819, and NGC 6811. The availability of such constraints has made it possible to infer precise stellar properties (e.......g. radius, mass, evolutionary state, age) on a star-by-star basis.These constraints give us a “new pair of eyes” to look at clusters, and they open several exciting opportunities. Based on a detailed analysis of the complete set of 4-years-long Kepler data, we present clear evidence for stars that have...

  1. Identification and characterization of a novel legume-like lectin cDNA sequence from the red marine algae Gracilaria fisheri.

    Science.gov (United States)

    Suttisrisung, Sukanya; Senapin, Saengchan; Withyachumnarnkul, Boonsirm; Wongprasert, Kanokpan

    2011-12-01

    A legume-type lectin (L-Lectin) gene of the red algae Gracilaria fisheri (GFL) was cloned by rapid amplification of cDNA ends (RACE). The full-length cDNA of GFL was 1714 bp and contained a 1542 bp open reading frame encoding 513 amino acids with a predicted molecular mass of 56.5 kDa. Analysis of the putative amino acid sequence with NCBI-BLAST revealed a high homology (30-68%) with legume-type lectins (L-lectin) from Griffithsia japonica, Clavispora lusitaniae, Acyrthosiphon pisum, Tetraodon nigroviridis and Xenopus tropicalis. Phylogenetic relationship analysis showed the highest sequence identity to a glycoprotein of the red algae Griffithsia japonica (68%) (GenBank number AAM93989). Conserved Domain Database analysis detected an N-terminal carbohydrate recognition domain (CRD), the characteristic of L-lectins, which contained two sugar binding sites and a metal binding site. The secondary structure prediction of GFL showed a beta-sheet structure, connected with turn and coil. The most abundant structural element of GFL was the random coil, while the alpha-helixes were distributed at the N- and C-termini, and 21 beta-sheets were distributed in the CRD. Computer analysis of three-dimensional structure showed a common feature of L-lectins of GFL, which included an overall globular shape that was composed of a beta-sandwich of two anti-parallel beta-sheets, monosaccharide binding sites, were on the top of the structure and in proximity with a metal binding site. Northern blot analysis using a DIG-labelled probe derived from a partial GFL sequence revealed a hybridization signal of (approx.) 1.7 kb consistent with the length of the full-length GFL cDNA identified by RACE. No detectable band was observed from control total RNA extracted from filamentous green algae.

  2. End of the Line for a Star like Ours

    Science.gov (United States)

    Riddle, Bob

    2010-01-01

    Stars of different masses have varying life spans, with the more massive stars "burning out" more quickly than stars of lower masses. How or what they do when they burn out also varies, depending on the mass of the star. All stars are called "main sequence stars" as they continue fusing hydrogen and staying in a state of equilibrium--a balance…

  3. The hot γ Doradus and Maia stars

    Science.gov (United States)

    Balona, L. A.; Engelbrecht, C. A.; Joshi, Y. C.; Joshi, S.; Sharma, K.; Semenko, E.; Pandey, G.; Chakradhari, N. K.; Mkrtichian, David; Hema, B. P.; Nemec, J. M.

    2016-08-01

    The hot γ Doradus stars have multiple low frequencies characteristic of γ Dor or SPB variables, but are located between the red edge of the SPB and the blue edge of the γ Dor instability strips where all low-frequency modes are stable in current models of these stars. Though δ Sct stars also have low frequencies, there is no sign of high frequencies in hot γ Dor stars. We obtained spectra to refine the locations of some of these stars in the H-R diagram and conclude that these are, indeed, anomalous pulsating stars. The Maia variables have multiple high frequencies characteristic of β Cep and δ Sct stars, but lie between the red edge of the β Cep and the blue edge of the δ Sct instability strips. We compile a list of all Maia candidates and obtain spectra of two of these stars. Again, it seems likely that these are anomalous pulsating stars which are currently not understood.

  4. Entropy Production of Stars

    Directory of Open Access Journals (Sweden)

    Leonid M. Martyushev

    2015-06-01

    Full Text Available The entropy production (inside the volume bounded by a photosphere of main-sequence stars, subgiants, giants, and supergiants is calculated based on B–V photometry data. A non-linear inverse relationship of thermodynamic fluxes and forces as well as an almost constant specific (per volume entropy production of main-sequence stars (for 95% of stars, this quantity lies within 0.5 to 2.2 of the corresponding solar magnitude is found. The obtained results are discussed from the perspective of known extreme principles related to entropy production.

  5. Complete mitogenome sequences of the pacific red snapper (Lutjanus peru) and the spotted rose snapper (Lutjanus gutattus).

    Science.gov (United States)

    Bayona-Vásquez, Natalia Juliana; Hernández-Álvarez, Cristóbal Alejandro; Glenn, Travis; Domínguez-Domínguez, Omar; Uribe-Alcocer, Manuel; Díaz-Jaimes, Píndaro

    2017-03-01

    The structure of the mitochondrial genome for the Pacific red snapper, Lutjanus peru, and the spotted rose snapper, Lutjanus gutattus, of specimens collected in the eastern Pacific is similar to the reported for other teleosts and shares the same configuration with other members of the family Lutjanidae. It has a total length of 16 502 and 16 508 base pairs (bp) for Lutjanus peru and L. gutattus, respectively; on average the base composition was A (27.9%), T (24.8%) C (30.9%), and G (16.4%), containing 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes; and the leucine (Leu) tRNA is duplicated.

  6. Seismic strain tensor in the area to the South of Ras Mohamed region during the November–December, 2012 seismic sequence, Northern Red Sea, Egypt

    Directory of Open Access Journals (Sweden)

    Gad-Elkareem A. Mohamed

    2014-06-01

    Full Text Available We calculated the strain tensor for a sequence of earthquakes that occurred in front of Ras Mohamed, Northern Red Sea within the period from 19th November up to 31st of December 2011. The value and the direction of the strain are evaluated based on a reliable number of focal mechanism solutions. Most of the solutions indicate the dominance of normal faulting. The principal strain axis shows that the deformation is taken up mainly as an extension in the NE–SW direction with a very small crustal thinning rate. The orientation of the principal strain axes deduced from the eigenvectors is in good agreement with the main trend of the focal mechanisms of the selected events (normal type faulting.

  7. Technological Analysis of the World's Earliest Shamanic Costume: A Multi-Scalar, Experimental Study of a Red Deer Headdress from the Early Holocene Site of Star Carr, North Yorkshire, UK.

    Directory of Open Access Journals (Sweden)

    Aimée Little

    Full Text Available Shamanic belief systems represent the first form of religious practice visible within the global archaeological record. Here we report on the earliest known evidence of shamanic costume: modified red deer crania headdresses from the Early Holocene site of Star Carr (c. 11 kya. More than 90% of the examples from prehistoric Europe come from this one site, establishing it as a place of outstanding shamanistic/cosmological significance. Our work, involving a programme of experimental replication, analysis of macroscopic traces, organic residue analysis and 3D image acquisition, metrology and visualisation, represents the first attempt to understand the manufacturing processes used to create these artefacts. The results produced were unexpected--rather than being carefully crafted objects, elements of their production can only be described as expedient.

  8. Helium-abundance and other composition effects on the properties of stellar surface convection in solar-like main-sequence stars

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

    2013-12-01

    We investigate the effect of helium abundance and α-element enhancement on the properties of convection in envelopes of solar-like main-sequence stars using a grid of three-dimensional radiation hydrodynamic simulations. Helium abundance increases the mean molecular weight of the gas and alters opacity by displacing hydrogen. Since the scale of the effect of helium may depend on the metallicity, the grid consists of simulations with three helium abundances (Y = 0.1, 0.2, 0.3), each with two metallicities (Z = 0.001, 0.020). We find that changing the helium mass fraction generally affects structure and convective dynamics in a way opposite to that of metallicity. Furthermore, the effect is considerably smaller than that of metallicity. The signature of helium differs from that of metallicity in the manner in which the photospheric velocity distribution is affected. We also find that helium abundance and surface gravity behave largely in similar ways, but differ in the way they affect the mean molecular weight. A simple model for spectral line formation suggests that the bisectors and absolute Doppler shifts of spectral lines depend on the helium abundance. We look at the effect of α-element enhancement and find that it has a considerably smaller effect on the convective dynamics in the superadiabatic layer compared to that of helium abundance.

  9. Complete genome sequence of the orange-red pigmented, radioresistant Deinococcus proteolyticus type strain (MRP(T)).

    Science.gov (United States)

    Copeland, Alex; Zeytun, Ahmet; Yassawong, Montri; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Mavromatis, Konstantinos; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Jeffries, Cynthia D; Brambilla, Evelyne-Marie; Rohde, Manfred; Sikorski, Johannes; Pukall, Rüdiger; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla

    2012-05-25

    Deinococcus proteolyticus (ex Kobatake et al. 1973) Brook and Murray 1981 is one of currently 47 species in the genus Deinococcus within the family Deinococcaceae. Strain MRP(T) was isolated from feces of Lama glama and possesses extreme radiation resistance, a trait is shares with various other species of the genus Deinococcus, with D. proteolyticus being resistant up to 1.5 Mrad of gamma radiation. Strain MRP(T) is of further interest for its carotenoid pigment. The genome presented here is only the fifth completed genome sequence of a member of the genus Deinococcus (and the forth type strain) to be published, and will hopefully contribute to a better understanding of how members of this genus adapted to high gamma- or UV ionizing-radiation. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,886,836 bp long genome with its four large plasmids of lengths 97 kbp, 132 kbp, 196 kbp and 315 kbp harbors 2,741 protein-coding and 58 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  10. Spectrophotometry of Symbiotic Stars (Abstract)

    Science.gov (United States)

    Boyd, D.

    2017-12-01

    (Abstract only) Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionizes the nebula, producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  11. Fundamental properties of stars using asteroseismology from Kepler and CoRoT and interferometry from the CHARA Array

    DEFF Research Database (Denmark)

    Huber, D.; Ireland, M.J.; Bedding, T.R.

    2012-01-01

    We present results of a long-baseline interferometry campaign using the PAVO beam combiner at the CHARA Array to measure the angular sizes of five main-sequence stars, one subgiant and four red giant stars for which solar-like oscillations have been detected by either Kepler or CoRoT. By combining...... of maximum power (νmax) and the large frequency separation (Δν). We find excellent agreement within the observational uncertainties, and empirically show that simple estimates of asteroseismic radii for main-sequence stars are accurate to lsim 4%. We furthermore find good agreement of our measured effective...... temperatures with spectroscopic and photometric estimates with mean deviations for stars between T eff = 4600-6200 K of –22 ± 32 K (with a scatter of 97 K) and –58 ± 31 K (with a scatter of 93 K), respectively. Finally, we present a first comparison with evolutionary models, and find differences between...

  12. A Real Shooting Star

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of A Real Shooting Star This artist's animation illustrates a star flying through our galaxy at supersonic speeds, leaving a 13-light-year-long trail of glowing material in its wake. The star, named Mira (pronounced my-rah) after the latin word for 'wonderful,' sheds material that will be recycled into new stars, planets and possibly even life. NASA's Galaxy Evolution Explorer discovered the long trail of material behind Mira during its survey of the entire sky in ultraviolet light. The animation begins by showing a close-up of Mira -- a red-giant star near the end of its life. Red giants are red in color and extremely bloated; for example, if a red giant were to replace our sun, it would engulf everything out to the orbit of Mars. They constantly blow off gas and dust in the form of stellar winds, supplying the galaxy with molecules, such as oxygen and carbon, that will make their way into new solar systems. Our sun will mature into a red giant in about 5 billion years. As the animation pulls out, we can see the enormous trail of material deposited behind Mira as it hurls along between the stars. Like a boat traveling through water, a bow shock, or build up of gas, forms ahead of the star in the direction of its motion. Gas in the bow shock is heated and then mixes with the cool hydrogen gas in the wind that is blowing off Mira. This heated hydrogen gas then flows around behind the star, forming a turbulent wake. Why does the trailing hydrogen gas glow in ultraviolet light? When it is heated, it transitions into a higher-energy state, which then loses energy by emitting ultraviolet light - a process known as fluorescence. Finally, the artist's rendering gives way to the actual ultraviolet image taken by the Galaxy Evolution Explorer Mira is located 350 light-years from Earth in the constellation Cetus, otherwise known as the whale. Coincidentally, Mira and its 'whale of a tail' can be

  13. Gene expression in Florida red tide dinoflagellate Karenia brevis: analysis of an expressed sequence tag library and development of DNA microarray.

    Science.gov (United States)

    Lidie, Kristy B; Ryan, James C; Barbier, Michele; Van Dolah, Frances M

    2005-01-01

    Karenia brevis (Davis) is the dinoflagellate responsible for nearly annual red tides in the Gulf of Mexico. Although the mechanisms regulating the growth and toxicity of this problematic organism are of considerable interest, little information is available on its molecular biology. We therefore constructed a complementary DNA library from which to gain insight into its expressed genome and to develop tools for studying its gene expression. Large-scale sequencing yielded 7001 high-quality expressed sequence tags (ESTs), which clustered into 5280 unique gene groups. The vast majority of genes expressed fell into a low-abundance class, with the highest expressed gene accounting for only 1% of the total ESTs. Approximately 29% of genes were found to have similarity to known sequences in other organisms after BLAST similarity comparisons to the GenBank public protein database using a cutoff of P < 10e(-4). We identified for the first time in a dinoflagellate a suite of conserved eukaryotic genes involved in cell cycle control, intracellular signaling, and the transcription and translation machinery. At least 40% of gene clusters displayed single nucleotide polymorphisms, suggesting the presence of multiple gene copies. The average GC content of ESTs was 51%, with a slight preference for G or C in the third codon position (53.5%). The ESTs were used to develop an oligonucleotide microarray containing 4629 unique features and 3462 replicate probes. Microarray labeling has been optimized, and the microarray has been validated for probe specificity and reproducibility. This is the first information to be developed on the expressed genome of K. brevis and provides the basis from which to begin functional genomic studies on this harmful algal bloom species.

  14. Discovery of a Red Giant with Solar-like Oscillations in an Eclipsing Binary System from Kepler Space-based Photometry

    DEFF Research Database (Denmark)

    Hekker, S.; Debosscher, J.; Huber, D.

    2010-01-01

    satellite. We compute stellar parameters of the red giant from spectra and the asteroseismic mass and radius from the oscillations. Although only one eclipse has been observed so far, we can already determine that the secondary is a main-sequence F star in an eccentric orbit with a semi-major axis larger...

  15. Variable stars with the Kepler space telescope

    OpenAIRE

    Molnár, László; Szabó, Róbert; Plachy, Emese

    2016-01-01

    The Kepler space telescope has revolutionised our knowledge about exoplanets and stars and is continuing to do so in the K2 mission. The exquisite photometric precision, together with the long, uninterrupted observations opened up a new way to investigate the structure and evolution of stars. Asteroseismology, the study of stellar oscillations, allowed us to investigate solar-like stars and to peer into the insides of red giants and massive stars. But many discoveries have been made about cla...

  16. Physics of star formation in galaxies

    CERN Document Server

    Palla, F

    2002-01-01

    Begining with a historical introduction, ""Star Formation: The Early History"", this text then presents two long articles on ""Pre-Main-Sequence Evolution of Stars and Young Clusters"" and ""Observations of Young Stellar Objects"".

  17. Do menopausal status and use of hormone therapy affect antidepressant treatment response? Findings from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study.

    Science.gov (United States)

    Kornstein, Susan G; Toups, Marisa; Rush, A John; Wisniewski, Stephen R; Thase, Michael E; Luther, James; Warden, Diane; Fava, Maurizio; Trivedi, Madhukar H

    2013-02-01

    Menopausal status and use of hormonal contraception or menopausal hormone therapy (HT) may affect treatment response to selective serotonin reuptake inhibitors (SSRIs). This report evaluates whether menopausal status and use of hormonal contraceptives or menopausal HT affect outcome in women treated with citalopram. In the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, 896 premenopausal and 544 postmenopausal women were treated with citalopram for 12-14 weeks. Baseline demographic and clinical characteristics were used in adjusted analysis of the effect of menopausal status and use of hormonal contraceptives or menopausal HT on outcomes. Remission was defined as final Hamilton Rating Scale for Depression-17 (HRSD(17)) ≤7 or Quick Inventory of Depressive Symptomatology-Self-Report (QIDS-SR(16)) score ≤5 and response as ≥50% decrease from the baseline QIDS-SR(16) score. Premenopausal and postmenopausal women differed in multiple clinical and demographic baseline variables but did not differ in response or remission rates. Premenopausal women taking hormonal contraceptives had significantly greater unadjusted remission rates on the HRSD(17) and the QIDS-SR(16) than women not taking contraception. Response and remission rates were not different between postmenopausal women taking vs. not taking HT. Adjusted results showed no significant difference in any outcome measure across menopause status in women who were not taking contraception/HT. There were no significant differences in adjusted results across HT status in premenopausal or postmenopausal women. In this study, citalopram treatment outcome was not affected by menopausal status. Hormonal contraceptives and HT also did not affect probability of good outcome.

  18. Challenging sequential approach to treatment resistant depression: cost-utility analysis based on the Sequenced Treatment Alternatives to Relieve Depression (STAR(⁎)D) trial.

    Science.gov (United States)

    Olgiati, Paolo; Bajo, Emanuele; Bigelli, Marco; Montgomery, Stuart; Serretti, Alessandro

    2013-12-01

    In major depression, when a first antidepressant does not cause remission of symptoms (60%-75%), there are several options for continuing treatment in the next step. This study is a cost-utility analysis (CUA) of different second-line approaches. In a simulated trial outpatients with MDD were treated with citalopram for 13 weeks (level 1), then based on two alternative algorithms implemented from the Sequenced Treatment Alternatives to Relieve Depression (STAR(*)D) study. Algorithm A: citalopram was continued until study endpoint (week 26). Algorithm B: patients who remitted during level 1 continued citalopram. Those who did not remit could opt for switching to another antidepressant (venlafaxine; sertraline) (b1) or adding bupropion to citalopram treatment (augmentation; b2). Algorithm B increased remission rate by 10.6% over Algorithm A (number needed to treat: 9.9; sensitivity range: 9.1-12.5). As a comparison, differences between active antidepressants and placebo are associated with NNT values of 6 to 8. In CUA Algorithm B was dominant with an ICER of $11,813 (sensitivity range=$1783 - $21,784), which is cost-effectiveness threshold (USA=$47,193). Among Algorithm B options, switching (b1) dominated Algorithm A with a smaller number of responders than augmentation approach (b2) (NNT 11 vs. 7.7), whereas ICER values were similar (b1: $14,738; b2: $15,458). However we cannot exclude a bias in selecting second treatment. This cost-utility analysis shows (in line with current guidelines) a benefit in modifying antidepressant treatment if response to first-line agent does not occur within 3 months, but not a clear-cut evidence in terms of NNT. © 2013 Elsevier B.V. and ECNP. All rights reserved.

  19. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  20. The evolution of stars paired with supermassive black holes

    Science.gov (United States)

    Tutukov, A. V.; Fedorova, A. V.

    2017-08-01

    A star located in the close vicinity of a supermassive black hole (SMBH) in a galactic nucleus or a globular-cluster core could form a close binary with the SMBH, with the star possibly filling its Roche lobe. The evolution of such binary systems is studied assuming that the SMBH mainly accretes matter from the companion star and that the presence of gas in the vicinity of the SMBH does not appreciably influence variations in the star's orbit. The evolution of the star-SMBH system is mainly determined by the same processes as those determining the evolution of ordinary binaries. The main differences are that the star is subject to an incident flux of hard radiation arising during the accretion of matter by the SMBH, and, in detached systems, the SMBH captures virtually all the wind emitted by its stellar companion, which appreciably influences the evolution of the major axis of the orbit. Moreover, the exchange between the orbital angular momentum and the angular momentum of the overflowing matter may not be entirely standard in such systems. The computations assume that there will be no such exchange of angular momentum if the characteristic timescale for mass transfer is shorter than the thermal time scale of the star. The absorption of external radiation in the stellar envelope was computed using the same formalism applied when computing the opacity of the stellar matter. The numerical simulations show that, with the adopted assumptions, three types of evolution are possible for such a binary system, depending on the masses and the initial separation of the SMBH and star. Type I evolution leads to the complete destruction of the star. Only this type of evolution is realized for low-mass main-sequence (MS) stars, even those with large initial separations from their SMBHs. Massive MS stars will also be destroyed if the initial separation is sufficiently small. However, two other types of evolution are possible for massive stars, with a determining role in the time

  1. H i in Virgo’s “Red and Dead” Dwarf Ellipticals—A Tidal Tail and Central Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, Gregory; Koopmann, Rebecca [Union College, Department of Physics and Astronomy, 807 Union Street, Schenectady NY 12308 (United States); Giovanelli, Riccardo; Haynes, Martha P.; Leisman, Lukas [Cornell Center for Astrophysics and Planetary Science (CCAPS), Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Huang, Shan [CCPP, New York University, 4 Washington Place, New York, NY 10003 (United States); Papastergis, Emmanouil, E-mail: hallenbg@union.edu, E-mail: koopmanr@union.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: leisman@astro.cornell.edu, E-mail: shan.huang@nyu.edu, E-mail: papastergis@astro.rug.nl [Kapteyn Astronomical Institute, University of Groningen, Landleven 12, Groningen NL-9747AD (Netherlands)

    2017-08-01

    We investigate a sample of three dwarf elliptical galaxies in the Virgo Cluster that have significant reservoirs of H i. We present deep optical imaging (from CFHT and KPNO), H i spectra (Arecibo), and resolved H i imaging (VLA) of this sample. These observations confirm their H i content and optical morphologies, and indicate that the gas is unlikely to be recently accreted. The sample has more in common with dwarf transitionals, though dwarf transitionals are generally lower in stellar mass and gas fraction. VCC 190 has an H i tidal tail from a recent encounter with the massive spiral galaxy NGC 4224. In VCC 611, blue star-forming features are observed that were not seen by shallower SDSS imaging.

  2. Characterization of microRNAs by deep sequencing in red claw crayfish Cherax quadricarinatus haematopoietic tissue cells after white spot syndrome virus infection.

    Science.gov (United States)

    Zhao, Meng-Ru; Meng, Chuang; Xie, Xiao-Lu; Li, Cheng-Hua; Liu, Hai-Peng

    2016-12-01

    White spot syndrome virus (WSSV) is one of the most prevalent and widespread viruses in both shrimp and crayfish aquaculture. MicroRNAs (miRNAs) are crucial post-transcriptional regulators and play critical roles in cell differentiation and proliferation, apoptosis, signal transduction and immunity. In this study, miRNA expression profiles were identified via deep sequencing in red claw crayfish Cherax quadricarinatus haematopoietic tissue (Hpt) cell cultures infected with WSSV at both early (i.e., 1 hpi) and late (i.e., 12 hpi) infection stages. The results showed that 2 known miRNAs, namely, miR-7 and miR-184 play key roles in immunity. Meanwhile, 106 novel miRNA candidates were predicted by software in these combined miRNA transcriptomes. Compared with two control groups, 36 miRNAs showed significantly different expression levels after WSSV challenge. Furthermore, 10 differentially expressed miRNAs in WSSV-exposed Hpt cells were randomly selected for expression analysis by quantitative real-time RT-PCR. Consistent with the expression profiles identified by deep sequencing, RT-PCR showed a significant increase or decrease in miRNA expression in Hpt cells after WSSV infection. Prediction of targets of miRNAs such as miR-7, cqu-miR-52, cqu-miR-126 and cqu-miR-141 revealed that their target genes have diverse biological roles, including not only immunity but also transcriptional regulation, energy metabolism, cell communication, cell differentiation, cell death, autophagy, endocytosis and apoptosis. These results provide insight into the molecular mechanism of WSSV infection and highlight the function of miRNAs in the regulation of the immune response against WSSV infection in crustaceans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Variability of Disk Emission in Pre-main Sequence and Related Stars. IV. Occultation Events from the Innermost Disk Region of the Herbig AE Star HD 163296 = MWC 275

    Science.gov (United States)

    Pikhartova, Monika; Long, Zachary; Fernandes, Rachel; Sitko, Michael; Grady, Carol; Rich, Evan; Wisniewski, John

    2018-01-01

    We studied the structure and the dynamics of the innermost region of the circumstellar disk around the star HD 163296, MWC 275. We extracted the emission line strengths of Pa beta and Br gamma and calculated the line fluxes, from which we then computed the mass accretion rates onto the star. We investigated the brightness drop at visible wavelengths in 2001 using the Monte Carlo Radiative Transfer Code, hochunk3d. Since the star has bipolar outflows, we looked at whether changes in the outflow, with dust entrained with the gas, could produce such a drop in brightness. We fitted data from 2001 and 2005 onto SED and temperaturedensity models of the disk and generated JHK disk images, then noted the changes in image brightness and in SED plots. Our models succesfully produce the drop in brightness.

  4. THE RECENT STELLAR ARCHEOLOGY OF M31-THE NEAREST RED DISK GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Davidge, T. J.; McConnachie, A. W. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Fardal, M. A. [Department of Astronomy, University of Massachusetts, LGRT 619-E, Amherst, MA 01003-9305 (United States); Fliri, J.; Valls-Gabaud, D. [LERMA, UMR CNRS 8112, Observatoire de Paris, 61 Avenue de l' Observatoire, 75014 Paris (France); Chapman, S. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Lewis, G. F. [Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney, NSW 2006 (Australia); Rich, R. M. [Division of Astronomy and Astrophysics, University of California, Los Angeles, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States)

    2012-05-20

    We examine the star-forming history of the M31 disk during the past few hundred Myr. The luminosity functions (LFs) of main-sequence stars at distances R{sub GC} > 21 kpc (i.e., >4 disk scale lengths) are matched by models that assume a constant star formation rate (SFR). However, at smaller R{sub GC} the LFs suggest that during the past {approx}10 Myr the SFR was 2-3 times higher than during the preceding {approx}100 Myr. The rings of cool gas that harbor a significant fraction of the current star-forming activity are traced by stars with ages {approx}100 Myr, indicating that (1) these structures have ages of at least 100 Myr and (2) stars in these structures do not follow the same relation between age and random velocity as their counterparts throughout the disks of other spiral galaxies, probably due to the inherently narrow orbital angular momentum distribution of the giant molecular clouds in these structures. The distribution of evolved red stars is not azimuthally symmetric, in the sense that the projected density along the northeast segment of the major axis is roughly twice that on the opposite side of the galaxy. The northeast arm of the major axis thus appears to be a fossil star-forming area that dates to intermediate epochs. Such a structure may be the consequence of interactions with a companion galaxy.

  5. Spot evolution on the red giant star XX Triangulum. A starspot-decay analysis based on time-series Doppler imaging

    Science.gov (United States)

    Künstler, A.; Carroll, T. A.; Strassmeier, K. G.

    2015-06-01

    Context. Solar spots appear to decay linearly proportional to their size. The decay rate of solar spots is directly related to magnetic diffusivity, which itself is a key quantity for the length of a magnetic-activity cycle. Is a linear spot decay also seen on other stars, and is this in agreement with the large range of solar and stellar activity cycle lengths? Aims: We investigate the evolution of starspots on the rapidly-rotating (Prot≈24 d) K0 giant XX Tri, using consecutive time-series Doppler images. Our aim is to obtain a well-sampled movie of the stellar surface over many years, and thereby detect and quantify a starspot decay law for further comparison with the Sun. Methods: We obtained continuous high-resolution and phase-resolved spectroscopy with the 1.2-m robotic STELLA telescope on Tenerife over six years, and these observations are ongoing. For each observing season, we obtained between 5 to 7 independent Doppler images, one per stellar rotation, making up a total of 36 maps. All images were reconstructed with our line-profile inversion code iMap. A wavelet analysis was implemented for denoising the line profiles. To quantify starspot area decay and growth, we match the observed images with simplified spot models based on a Monte Carlo approach. Results: It is shown that the surface of XX Tri is covered with large high-latitude and even polar spots and with occasional small equatorial spots. Just over the course of six years, we see a systematically changing spot distribution with various timescales and morphology, such as spot fragmentation and spot merging as well as spot decay and formation. An average linear decay of D = -0.022 ± 0.002 SH/day is inferred. We found evidence of an active longitude in phase toward the (unseen) companion star. Furthermore, we detect a weak solar-like differential rotation with a surface shear of α = 0.016 ± 0.003. From the decay rate, we determine a turbulent diffusivity of ηT = (6.3 ± 0.5) × 1014 cm2/s and

  6. IN-SYNC I: Homogeneous stellar parameters from high-resolution apogee spectra for thousands of pre-main sequence stars

    Energy Technology Data Exchange (ETDEWEB)

    Cottaar, Michiel; Meyer, Michael R. [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich (Switzerland); Covey, Kevin R. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, VU Station B 1807, Nashville, TN 37235 (United States); Foster, Jonathan B. [Yale Center for Astronomy and Astrophysics, Yale University New Haven, CT 06520 (United States); Tan, Jonathan C.; Da Rio, Nicola [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Chojnowski, S. Drew; Skrutskie, Michael; Majewski, Steven R.; Wilson, John C.; Zasowski, Gail [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Flaherty, Kevin M. [Astronomy Department, Wesleyan University, Middletown, CT 06459 (United States); Frinchaboy, Peter M., E-mail: MCottaar@phys.ethz.ch [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States)

    2014-10-20

    Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J – H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, we identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.

  7. The 10830 Å Helium Line Among Evolved Stars in the Globular Cluster M4

    Science.gov (United States)

    Strader, Jay; Dupree, A. K.; Smith, Graeme H.

    2015-08-01

    Helium is a pivotal element in understanding the multiple main sequences and extended horizontal branches observed in some globular clusters. Here we present a spectroscopic study of helium in the nearby globular cluster Messier 4 (M4). We have obtained spectra of the chromospheric He i 10830 Å line in 16 red horizontal branch (RHB), red giant branch, and asymptotic giant branch stars. Clear He i absorption or emission is present in most of the stars. Effective temperature is the principal parameter that correlates with 10830 Å line strength. Stars with {T}{eff}\\lt 4450 K do not exhibit the helium line. RHB stars, which are the hottest stars in our sample, all have strong He i line absorption. A number of these stars show very broad 10830 Å lines with shortward extensions indicating outflows as high as 80-100 km s-1 and the possibility of mass loss. We have also derived [Na/Fe] and [Al/Fe] abundances to see whether these standard tracers of “second generation” cluster stars are correlated with He i line strength. Unlike the case for our previous study of ω Cen, no clear correlation is observed. This may be because the sample does not cover the full range of abundance variations found in M4, or simply because the physical conditions in the chromosphere, rather than the helium abundance, primarily determine the He i 10830 Å line strength. A larger sample of high-quality He i spectra of both “first” and “second” generation red giants within a narrow range of {T}{eff} and luminosity is needed to test for the subtle spectroscopic variations in He i expected in M4.

  8. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  9. Magnetic Dynamos and Stars

    Energy Technology Data Exchange (ETDEWEB)

    Eggleton, P P

    2007-02-15

    Djehuty is a code that has been developed over the last five years by the Lawrence Livermore National Laboratory (LLNL), from earlier code designed for programmatic efforts. Operating in a massively parallel environment, Djehuty is able to model entire stars in 3D. The object of this proposal was to continue the effort to introduce magneto-hydrodynamics (MHD) into Djehuty, and investigate new classes of inherently 3D problems involving the structure, evolution and interaction of stars and planets. However, towards the end of the second year we discovered an unexpected physical process of great importance in the evolution of stars. Consequently for the third year we changed direction and concentrated on this process rather than on magnetic fields. Our new process was discovered while testing the code on red-giant stars, at the 'helium flash'. We found that a thin layer was regularly formed which contained a molecular-weight inversion, and which led therefore to Rayleigh-Taylor instability. This in turn led to some deeper-than-expected mixing, which has the property that (a) much {sup 3}He is consumed, and (b) some {sup 13}C is produced. These two properties are closely in accord with what has been observed over the last thirty years in red giants, whereas what was observed was largely in contradiction to what earlier theoretical models predicted. Thus our new 3D models with Djehuty explain a previously-unexplained problem of some thirty years standing.

  10. Variability in stellar granulation and convective blueshift with spectral type and magnetic activity . II. From young to old main-sequence K-G-F stars

    Science.gov (United States)

    Meunier, N.; Mignon, L.; Lagrange, A.-M.

    2017-11-01

    Context. The inhibition of small-scale convection in the Sun dominates the long-term radial velocity (RV) variability: it therefore has a critical effect on light exoplanet detectability using RV techniques. Aims: We here extend our previous analysis of stellar convective blueshift and its dependence on magnetic activity to a larger sample of stars in order to extend the Teff range, to study the impact of other stellar properties, and finally to improve the comparison between observed RV jitter and expected RV variations. Methods: We estimate a differential velocity shift for Fe and Ti lines of different depths and derive an absolute convective blueshift using the Sun as a reference for a sample of 360 F7-K4 stars with different properties (age, Teff, metallicity). Results: We confirm the strong variation in convective blueshift with Teff and its dependence on (as shown in the line list in Paper I) activity level. Although we do not observe a significant effect of age or cyclic activity, stars with a higher metallicity tend to have a lower convective blueshift, with a larger effect than expected from numerical simulations. Finally, we estimate that for 71% of the stars in our sample the RV and Log R' _HK variations are compatible with the effect of activity on convection, as observed in the solar case, while for the other stars, other sources (such as binarity or companions) must be invoked to explain the large RV variations. We also confirm a relationship between Log R' _HK and metallicity, which may affect discussions of the possible relationship between metallicity and exoplanets, as RV surveys are biased toward low Log R' _HK and possibly toward high-metallicity stars. Conclusions: We conclude that activity and metallicity strongly affect the small-scale convection levels in stars in the F7-K4 range, with a lower amplitude for the lower mass stars and a larger amplitude for low-metallicity stars. Full Table A.1 is only available at the CDS via anonymous ftp to

  11. Star clusters

    NARCIS (Netherlands)

    Gieles, M.

    2006-01-01

    Star clusters are observed in almost every galaxy. In this thesis we address several fundamental problems concerning the formation, evolution and disruption of star clusters. From observations of (young) star clusters in the interacting galaxy M51, we found that clusters are formed in complexes of

  12. Hybrid stars

    Indian Academy of Sciences (India)

    from two classes of EOS's and discuss their implications. Keywords. Neutron stars; phase transition. It is generally believed that the evolutionary journey of a star after it has exhausted all its fuel culminates into the formation of a compact object in the form of a white dwarf, a neutron star or a black hole depending on its mass.

  13. The historical demography and genetic variation of the endangered Cycas multipinnata (Cycadaceae in the red river region, examined by chloroplast DNA sequences and microsatellite markers.

    Directory of Open Access Journals (Sweden)

    Yi-Qing Gong

    Full Text Available Cycas multipinnata C.J. Chen & S.Y. Yang is a cycad endemic to the Red River drainage region that occurs under evergreen forest on steep limestone slopes in Southwest China and northern Vietnam. It is listed as endangered due to habitat loss and over-collecting for the ornamental plant trade, and only several populations remain. In this study, we assess the genetic variation, population structure, and phylogeography of C. multipinnata populations to help develop strategies for the conservation of the species. 60 individuals from six populations were used for chloroplast DNA (cpDNA sequencing and 100 individuals from five populations were genotyped using 17 nuclear microsatellites. High genetic differentiation among populations was detected, suggesting that pollen or seed dispersal was restricted within populations. Two main genetic clusters were observed in both the cpDNA and microsatellite loci, corresponding to Yunnan China and northern Vietnam. These clusters indicated low levels of gene flow between the regions since their divergence in the late Pleistocene, which was inferred from both Bayesian and coalescent analysis. In addition, the result of a Bayesian skyline plot based on cpDNA portrayed a long history of constant population size followed by a decline in the last 50,000 years of C. multipinnata that was perhaps affected by the Quaternary glaciations, a finding that was also supported by the Garza-Williamson index calculated from the microsatellite data. The genetic consequences produced by climatic oscillations and anthropogenic disturbances are considered key pressures on C. multipinnata. To establish a conservation management plan, each population of C. multipinnata should be recognized as a Management Unit (MU. In situ and ex situ actions, such as controlling overexploitation and creating a germplasm bank with high genetic diversity, should be urgently implemented to preserve this species.

  14. Genetic effects of hatchery fish on wild populations in red sea bream Pagrus major (Perciformes, Sparidae) inferred from a partial sequence of mitochondrial DNA.

    Science.gov (United States)

    Hamasaki, K; Toriya, S; Shishidou, H; Sugaya, T; Kitada, S

    2010-12-01

    Variation in the mitochondrial DNA transcriptional control region sequence was investigated in wild and hatchery-released red sea bream Pagrus major from Kagoshima Bay, where an extensive hatchery-release programme has been conducted for >30 years. The programme has successfully augmented commercial catches in the bay (released juveniles have been produced from the captive broodstock, repeatedly used over multiple generations). Samples were also obtained from outside the bay, where limited stocking has occurred. Genetic diversity indices measured as number of haplotypes, haplotype richness, haplotype diversity and nucleotide diversity were lower in hatchery-released fish than in wild fish. Genetic differences in wild fish from the bay, especially in the inner bay, compared with fish from outside the bay were detected in terms of decreased genetic diversity indices and changed haplotype frequencies. Unbiased population pair-wise F(ST) estimates based on an empirical Bayesian method, however, revealed low genetic differentiation between samples from the bay and its vicinity. Mixed stock identification analyses estimated the proportion of hatchery-released fish in wild populations in the inner and central bays at 39·0 and 8·7%, respectively, although the precision of the estimates was very low because of the small genetic differentiation between populations and relatively small sample sizes. Hence, the long-term extensive hatchery release programme has affected the genetic diversity of wild populations in the bay; however, the genetic effects were low and appeared to remain within the bay. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.

  15. Constraining the Final Fates of Massive Stars by Oxygen and Iron Enrichment History in the Galaxy

    Science.gov (United States)

    Suzuki, Akihiro; Maeda, Keiichi

    2018-01-01

    Recent observational studies of core-collapse supernovae suggest that only stars with zero-age main-sequence masses smaller than 16–18 {M}ȯ explode when they are red supergiants, producing Type IIP supernovae. This may imply that more massive stars produce other types of supernovae or they simply collapse to black holes without giving rise to bright supernovae. This failed supernova hypothesis can lead to significantly inefficient oxygen production because oxygen abundantly produced in inner layers of massive stars with zero-age main-sequence masses around 20–30 {M}ȯ might not be ejected into the surrounding interstellar space. We first assume an unspecified population of oxygen injection events related to massive stars and obtain a model-independent constraint on how much oxygen should be released in a single event and how frequently such events should happen. We further carry out one-box galactic chemical enrichment calculations with different mass ranges of massive stars exploding as core-collapse supernovae. Our results suggest that the model assuming that all massive stars with 9–100 {M}ȯ explode as core-collapse supernovae is still most appropriate in explaining the solar abundances of oxygen and iron and their enrichment history in the Galaxy. The oxygen mass in the Galaxy is not explained when assuming that only massive stars with zero-age main-sequence masses in the range of 9–17 {M}ȯ contribute to the galactic oxygen enrichment. This finding implies that a good fraction of stars more massive than 17 {M}ȯ should eject their oxygen layers in either supernova explosions or some other mass-loss processes.

  16. Phylogeny of geminivirus coat protein sequences and digital PCR aid in identifying Spissistilus festinus (Say) as a vector of Grapevine red blotch-associated virus

    Science.gov (United States)

    Grapevine red blotch-associated virus (GRBaV) is a newly identified virus of grapevines, and a putative member of a new genus within the family Geminiviridae. This virus is associated with red blotch disease that was first reported in California in 2008. It affects the profitability of vineyards by ...

  17. Rapidly rotating red giants

    Science.gov (United States)

    Gehan, Charlotte; Mosser, Benoît; Michel, Eric

    2017-10-01

    Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, wich behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the identification of mode crossings is precise and efficient. The determination of the mean core rotation directly derives from the precise measurement of the asymptotic period spacing ΔΠ1 and of the frequency at which the crossing of the rotational components is observed.

  18. How Small are Small Stars Really?

    Science.gov (United States)

    2002-11-01

    measured and the results are in excellent agreement with stellar theory, indicating that our present understanding of the structure and composition of very small stars is reasonably correct . More VLTI observations are soon to follow, eventually also of even smaller objects, like Brown Dwarfs. PR Photo 27a/02 : Proxima Centauri , the nearest star known. PR Photo 27b/02 : The "Hertzsprung-Russell (HR)" diagram of stars PR Photo 27c/02 : Diameters and masses of small stars. PR Photo 27d/02 : Interferometric fringes at VLTI/VINCI of the small star GJ 887. Proxima Centauri - barely a real star ESO PR Photo 27a/02 ESO PR Photo 27a/02 [Preview - JPEG: 656 x 400 pix - 456k] [Normal - JPEG: 1312 x 800 pix - 968k] ESO PR Photo 27b/02 ESO PR Photo 27b/02 [Preview - JPEG: 400 x 478 pix - 288k] [Normal - JPEG: 800 x 956 pix - 992k] Caption : PR Photo 27a/02 shows a small sky field with the nearest known star, Proxima Centauri , close to the centre. This object is cool and red and it is brighter on the near-infrared image (in the I-filter at 900 nm) to the left than on the red image (in the R-filter at 600 nm) to the right. The rapid motion is easy to perceive. The field measures 10 x 10 arcmin 2 ; North is up and East is left. Reproduced from the Digital Sky Survey (STScI Digitized Sky Survey, (C) 1993, 1994, AURA, Inc. all rights reserved - cf. http://archive.eso.org/dss/dss). PR Photo 27b/02 is a colourful rendering of the basic Hertzsprung-Russell diagram for stars [3]. Very-low-mass stars (also known as "M dwarfs") are faint and cool and are located to the lower right of the diagonal line (the "main sequence") on which most stars lie and which corresponds to where (and when) stars burn hydrogen into helium. The present location of the Sun is also indicated. From its spectrum, Proxima Centauri ( PR Photo 27a/02 ) is classified as a "late M-dwarf star". Such stars are among the smallest and faintest, but also the most numerous in our Milky Way galaxy. PR Photo 27b/02 displays their

  19. SOLiD SAGE sequencing shows differential gene expression in jejunal lymph node samples of resistant and susceptible red deer (Cervus elaphus) challenged with Mycobacterium avium subsp. paratuberculosis.

    Science.gov (United States)

    Mackintosh, C G; Griffin, J F T; Scott, I C; O'Brien, R; Stanton, J L; MacLean, P; Brauning, R

    2016-01-01

    This study compared in vivo lymph node gene expression levels between six young red deer that were either relatively resistant (R) or susceptible (S) to paratuberculosis following experimental challenge with Mycobacterium avium subsp. paratuberculosis. Intestinal lymph nodes were biopsied at 4, 12 and 50 weeks post challenge (pc) and parallel changes in histopathology, immunology and bacterial load monitored. SOLiD SAGE (serial analysis of gene expression) next generation sequencing of biopsied lymph node samples generated a total of 373 million transcript tags 26-28bp in length after filtering. A total of 36,632 unique transcripts were identified and 14,325 of these were able to be annotated. The copy number of each transcript was counted, averaged and compared for R and S animals (R-S). P values and False Discovery Rates (FDR) were calculated for each transcript. Genes differentially upregulated ≥2 fold (FDR<0.5) totalled 9, 40 and 32 in R animals (+ values) and 23, 164 and 47 in S animals (- values) at weeks 4, 12, and 50pc, respectively. Transcripts displaying greatest differential expression between R and S animals at each time point were IFIT2 (189 fold) and S100A8 (-32.7 fold) at week 4, LRR1 (52.7 fold), SERPINF2 (-214.6 fold) at week 12 and CEACAM8 (84.6 fold), and STK31 (-129.5 fold) at week 50, respectively. All 9 genes significantly upregulated at week 4 in R animals relate specifically to host defence and all involve Type I interferon stimulated genes. By contrast genes upregulated in S animals at week 4, relate predominantly to inflammation, but also involve adaptive immune responses, mitochondrial function and apoptosis regulation. At week 12, the genes differentially upregulated in R animals are linked predominantly to regulation of adaptive immunity and mucosal immunity, while many of the genes in S animals are associated with pro-inflammatory interleukins involved with innate and adaptive immunity. These correlated with greater lesion severity

  20. Star Wreck

    CERN Document Server

    Kusenko, A; Tinyakov, Peter G; Tkachev, Igor I; Kusenko, Alexander; Shaposhnikov, Mikhail; Tkachev, Igor I.

    1998-01-01

    Electroweak models with low-energy supersymmetry breaking predict the existence of stable non-topological solitons, Q-balls, that can be produced in the early universe. The relic Q-balls can accumulate inside a neutron star and gradually absorb the baryons into the scalar condensate. This causes a slow reduction in the mass of the star. When the mass reaches a critical value, the neutron star becomes unstable and explodes. The cataclysmic destruction of the distant neutron stars may be the origin of the gamma-ray bursts.

  1. Topics in Galaxy Evolution: Early Star Formation and Quenching

    Science.gov (United States)

    Goncalves, Thiago Signorini

    In this thesis, we present three projects designed to shed light on yet unanswered questions on galaxy formation and evolution. The first two concern a sample of UV-bright starburst galaxies in the local universe (z ˜0.2). These objects are remarkably similar to star-forming galaxies that were abundant at high redshifts (2 manipulating our observations to mimic our objects at greater distances, we show how low resolution and signal-to-noise ratios can lead to erroneous conclusions, in particular when attempting to diagnose mergers as the origin of the starburst. Then, we present results from a pilot survey to study the cold, molecular gas reservoir in such objects. Again, we show that the observed properties are analogous to those observed at high redshift, in particular with respect to baryonic gas fractions in the galaxy, higher than normally found in low-extinction objects in the local universe. Furthermore, we show how gas surface density and star-formation surface density follow the same relation as local galaxies, albeit at much higher values. Finally, we discuss an observational project designed to measure the mass flux density from the blue sequence to the red sequence across the so-called green valley. We obtain the deepest spectra ever observed of green valley galaxies at intermediate redshifts (z˜0.8) in order to measure spectral features from which we can measure the star formation histories of individual galaxies. We measure a mass flux ratio that is higher than observed in the local universe, indicating the red sequence was growing faster when the universe was half its present age than today.

  2. Thermohaline mixing in evolved low-mass stars

    OpenAIRE

    Cantiello, M.; Langer, N.

    2010-01-01

    Thermohaline mixing has recently been proposed to occur in low-mass red giants, with large consequence for the chemical yields of low-mass stars. We investigate the role of thermohaline mixing during the evolution of stars between 1Msun and 3Msun, in comparison to other mixing processes acting in these stars. We use a stellar evolution code which includes rotational mixing, internal magnetic fields and thermohaline mixing. We confirm that during the red giant stage, thermohaline mixing has th...

  3. A Wide-Field Study of the z ~ 0.8 Cluster RX J0152.7-1357: The Role of Environment in the Formation of the Red Sequence

    Science.gov (United States)

    Patel, Shannon G.; Kelson, Daniel D.; Holden, Bradford P.; Illingworth, Garth D.; Franx, Marijn; van der Wel, Arjen; Ford, Holland

    2009-04-01

    We present the first results from the largest spectroscopic survey to date of an intermediate redshift galaxy cluster, the z = 0.834 cluster RX J0152.7-1357. We use the colors of galaxies, assembled from a D ~ 12 Mpc region centered on the cluster, to investigate the properties of the red sequence as a function of density and clustercentric radius. Our wide-field multislit survey with a low-dispersion prism in the Inamori Magellan Areal Camera and Spectrograph at the 6.5 m Baade telescope allowed us to identify 475 new members of the cluster and its surrounding large-scale structure with a redshift accuracy of σ z /(1 + z) ≈ 1% and a contamination rate of ~2% for galaxies with i' 4 × 1010 M sun (log M/M sun>10.6). We find that the red galaxy fraction is 93 ± 3% in the two merging cores of the cluster and declines to a level of 64 ± 3% at projected clustercentric radii R gsim 3 Mpc. At these large projected distances, the correlation between clustercentric radius and local density is nonexistent. This allows an assessment of the influence of the local environment on galaxy evolution, as opposed to mechanisms that operate on cluster scales (e.g., harassment, ram-pressure stripping). Even beyond R>3 Mpc we find an increasing fraction of red galaxies with increasing local density. The red galaxy fraction at the highest local densities in two large groups at R>3 Mpc matches the red galaxy fraction found in the two cores. Strikingly, galaxies at intermediate densities at R>3 Mpc, that are not obvious members of groups, also show signs of an enhanced red galaxy fraction. Our results point to such intermediate-density regions and the groups in the outskirts of the cluster, as sites where the local environment influences the transition of galaxies onto the red sequence. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California

  4. Evidence for a solar companion star

    Energy Technology Data Exchange (ETDEWEB)

    Muller, R.A.

    1984-08-01

    Periodicity seen in both the mass extinctions and large impact cratering on earth can be explained if one postulates that the sun has a companion star, orbiting in a moderately eccentric orbit with a major axis of 2.8 light-years. No other explanations that have been suggested are compatible with known facts of physics and astronomy. If the companion is a red dwarf star, the most common kind in the galaxy, then no previous astronomical observations would have found it. A search for red objects with large parallax is now underway at Berkeley, and has a good chance of identifying the star in the near future.

  5. Differentiation between focal malignant marrow-replacing lesions and benign red marrow deposition of the spine with T2*-corrected fat-signal fraction map using a three-echo volume interpolated breath-hold gradient echo Dixon sequence.

    Science.gov (United States)

    Kim, Yong Pyo; Kannengiesser, Stephan; Paek, Mun-Young; Kim, Sungjun; Chung, Tae-Sub; Yoo, Yeon Hwa; Yoon, Choon-Sik; Song, Ho-Taek; Lee, Young Han; Suh, Jin-Suck

    2014-01-01

    To assess the feasibility of T2*-corrected fat-signal fraction (FF) map by using the three-echo volume interpolated breath-hold gradient echo (VIBE) Dixon sequence to differentiate between malignant marrow-replacing lesions and benign red marrow deposition of vertebrae. We assessed 32 lesions from 32 patients who underwent magnetic resonance imaging after being referred for assessment of a known or possible vertebral marrow abnormality. The lesions were divided into 21 malignant marrow-replacing lesions and 11 benign red marrow depositions. Three sequences for the parameter measurements were obtained by using a 1.5-T MR imaging scanner as follows: three-echo VIBE Dixon sequence for FF; conventional T1-weighted imaging for the lesion-disc ratio (LDR); pre- and post-gadolinium enhanced fat-suppressed T1-weighted images for the contrast-enhancement ratio (CER). A region of interest was drawn for each lesion for parameter measurements. The areas under the curve (AUC) of the parameters and their sensitivities and specificities at the most ideal cutoff values from receiver operating characteristic curve analysis were obtained. AUC, sensitivity, and specificity were respectively compared between FF and CER. The AUCs of FF, LDR, and CER were 0.96, 0.80, and 0.72, respectively. In the comparison of diagnostic performance between the FF and CER, the FF showed a significantly larger AUC as compared to the CER (p = 0.030), although the difference of sensitivity (p = 0.157) and specificity (p = 0.157) were not significant. Fat-signal fraction measurement using T2*-corrected three-echo VIBE Dixon sequence is feasible and has a more accurate diagnostic performance, than the CER, in distinguishing benign red marrow deposition from malignant bone marrow-replacing lesions.

  6. Populations of Be stars: stellar evolution of extreme stars

    Science.gov (United States)

    Martayan, Christophe; Rivinius, Thomas; Baade, Dietrich; Hubert, Anne-Marie; Zorec, Jean

    2011-07-01

    Among the emission-line stars, the classical Be stars known for their extreme properties are remarkable. The Be stars are B-type main sequence stars that have displayed at least once in their life emission lines in their spectrum. Beyond this phenomenological approach some progresses were made on the understanding of this class of stars. With high-technology techniques (interferometry, adaptive optics, multi-objects spectroscopy, spectropolarimetry, high-resolution photometry, etc) from different instruments and space mission such as the VLTI, CHARA, FLAMES, ESPADONS-NARVAL, COROT, MOST, SPITZER, etc, some discoveries were performed allowing to constrain the modeling of the Be stars stellar evolution but also their circumstellar decretion disks. In particular, the confrontation between theory and observations about the effects of the stellar formation and evolution on the main sequence, the metallicity, the magnetic fields, the stellar pulsations, the rotational velocity, and the binarity (including the X-rays binaries) on the Be phenomenon appearance is discussed. The disks observations and the efforts made on their modeling is mentioned. As the life of a star does not finish at the end of the main sequence, we also mention their stellar evolution post main sequence including the gamma-ray bursts. Finally, the different new results and remaining questions about the main physical properties of the Be stars are summarized and possible ways of investigations proposed. The recent and future facilities (XSHOOTER, ALMA, E-ELT, TMT, GMT, JWST, GAIA, etc) and their instruments that may help to improve the knowledge of Be stars are also briefly introduced.

  7. Tidal Interaction among Red Giants Close Binary Systems in APOGEE Database

    Science.gov (United States)

    Sun, Meng; Arras, Phil; Majewski, Steven R.; Troup, Nicholas William; Weinberg, Nevin N.

    2017-01-01

    Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), the tidal evolution of binaries containing a red giant branch (RGB) star with a stellar or substellar companion was investigated. The tide raised by the companion in the RGB star leads to exchange of angular momentum between the orbit and the stellar spin, causing the orbit to contract. The tidal dissipation rate is computed using turbulent viscosity acting on the equilibrium tidal flow, where careful attention is paid to the effects of reduced viscosity for close-in companions. Evolutionary models for the RGB stars, from the zero-age main sequence to the present, were acquired from the MESA code. "Standard" turbulent viscosity gives rise to such a large orbital decay that many observed systems have decay times much shorter than the RGB evolution time. Several theories for "reduced" turbulent viscosity are investigated, and reduce the number of systems with uncomfortably short decay times.

  8. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  9. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  10. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  11. An outburst powered by the merging of two stars inside the envelope of a giant

    Science.gov (United States)

    Hillel, Shlomi; Schreier, Ron; Soker, Noam

    2017-11-01

    We conduct 3D hydrodynamical simulations of energy deposition into the envelope of a red giant star as a result of the merger of two close main sequence stars or brown dwarfs, and show that the outcome is a highly non-spherical outflow. Such a violent interaction of a triple stellar system can explain the formation of `messy', I.e. lacking any kind of symmetry, planetary nebulae and similar nebulae around evolved stars. We do not simulate the merging process, but simply assume that after the tight binary system enters the envelope of the giant star the interaction with the envelope causes the two components, stars or brown dwarfs, to merge and liberate gravitational energy. We deposit the energy over a time period of about 9 h, which is about 1 per cent of the the orbital period of the merger product around the centre of the giant star. The ejection of the fast hot gas and its collision with previously ejected mass are very likely to lead to a transient event, I.e. an intermediate luminosity optical transient.

  12. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  13. Be Stars in M31

    Science.gov (United States)

    Peters, Matthew L.; Wisniewski, John; Choi, Yumi; Williams, Ben; Lomax, Jamie; Bjorkman, Karen; Durbin, Meredith; Johnson, Lent Cliff; Lewis, Alexia; Lutz, Julie; Sigut, Aaron; Wallach, Aislynn; Dalcanton, Julianne

    2018-01-01

    We identify Be candidate stars in M31 using two-epoch F625W + F658N photometry from HST/ACS+WFC3 combined with the Panchromatic Hubble Andromeda Treasury (PHAT) Catalog. Using the PHAT catalog allows us to extract stellar parameters such as surface temperature and gravity, thereby allowing us to identify the main sequence B type stars in the field of view. Be candidate stars are identified by comparing their HST narrow-band Hα excess magnitudes with that predicted by Kurucz spectra. We find 314 Be candidate stars out of 5699 B + Be candidate stars (5.51%) in our first epoch and 301 Be candidate stars out of 5769 B + Be candidate stars (5.22%) in our second epoch. Our Be fraction, while lower than that of the SMC, LMC, and MW, is possibly consistent with the fact the M31 has a higher metallicity than the other galaxies because Be fraction varies inversely with metallicity. We note that earlier spectral types have the largest Be fraction, and that the Be fraction strictly declines as the spectral type increases to later types. We then match our Be candidate stars with clusters, establishing that 39 of 314 are cluster stars in epoch one and 36 of 301 stars are cluster stars in epoch two. We assign ages, using the cluster age to characterize cluster Be candidate stars and star formation histories to characterize field Be candidate stars. Finally, we determine which Be candidate stars exhibited disk loss or disk growth between epochs, finding that, of the Be stars that did not show source confusion or low SNR in one of the epochs, 65 / 265 (24.5%) showed disk loss or renewal, while 200 / 265 (75.5%) showed only small changes in Hα excess. Our research provides context for the parameters of candidate Be stars in M31, which will be useful in further determining the nature of Be stars. This paper was supported by a grant from STScI via GO-13857.

  14. Multigene panel next generation sequencing in a patient with cherry red macular spot: Identification of two novel mutations in NEU1 gene causing sialidosis type I associated with mild to unspecific biochemical and enzymatic findings.

    Science.gov (United States)

    Mütze, Ulrike; Bürger, Friederike; Hoffmann, Jessica; Tegetmeyer, Helmut; Heichel, Jens; Nickel, Petra; Lemke, Johannes R; Syrbe, Steffen; Beblo, Skadi

    2017-03-01

    Lysosomal storage diseases (LSD) often manifest with cherry red macular spots. Diagnosis is based on clinical features and specific biochemical and enzymatic patterns. In uncertain cases, genetic testing with next generation sequencing can establish a diagnosis, especially in milder or atypical phenotypes. We report on the diagnostic work-up in a boy with sialidosis type I, presenting initially with marked cherry red macular spots but non-specific urinary oligosaccharide patterns and unusually mild excretion of bound sialic acid. Biochemical, enzymatic and genetic tests were performed in the patient. The clinical and electrophysiological data was reviewed and a genotype-phenotype analysis was performed. In addition a systematic literature review was carried out. Cherry red macular spots were first noted at 6 years of age after routine screening myopia. Physical examination, psychometric testing, laboratory investigations as well as cerebral MRI were unremarkable at 9 years of age. So far no clinical myoclonic seizures occurred, but EEG displays generalized epileptic discharges and visual evoked potentials are prolonged bilaterally. Urine thin layer chromatography showed an oligosaccharide pattern compatible with different LSD including sialidosis, galactosialidosis, GM1 gangliosidosis or mucopolysaccharidosis type IV B. Urinary bound sialic acid excretion was mildly elevated in spontaneous and 24 h urine samples. In cultured fibroblasts, α-sialidase activity was markedly decreased to  A, p.S233R in exon 4 and c.803A > G; p.Y268C in Exon 5 in NEU1 transcript NM_000434.3), leading to amino acid changes predicted to impair protein function. Sialidosis should be suspected in patients with cherry red macular spots, even with non-significant urinary sialic acid excretion. Multigene panel next generation sequencing can establish a definite diagnosis, allowing for counseling of the patient and family.

  15. Sulfur and zinc abundances of red giant stars†

    Science.gov (United States)

    Takeda, Yoichi; Omiya, Masashi; Harakawa, Hiroki; Sato, Bun'ei

    2016-10-01

    Sulfur and zinc are chemically volatile elements, which play significant roles as depletion-free tracers in studying galactic chemical evolution. However, regarding red giants having evolved off the main sequence, reliable abundance determinations of S and Zn seem to be difficult, despite the several studies that have been reported so far. Given this situation, we tried to establish the abundances of these elements for an extensive sample of 239 field GK giants ( - 0.8 ≲ [Fe/H] ≲ +0.2), by applying the spectrum-fitting technique to S I 8694-5, S I 6757, and Zn I 6362 lines and by taking into account the non-LTE effect. Besides, similar abundance analysis was done for 160 FGK dwarfs to be used for comparison. The non-LTE corrections for the S and Zn abundances derived from these lines turned out to be ≲ 0.1(-0.2) dex for most cases and not very significant. It revealed that the S I 6757 feature is more reliable as an abundance indicator than S I 8694-5 for the case of red giants, because the latter suffers blending of unidentified lines. The finally resulting [S/Fe]-[Fe/H] and [Zn/Fe]-[Fe/H] relations for GK giants were confirmed to be in good agreement with those for FGK dwarfs, indicating that S and Zn abundances of red giants are reliably determinable from the S I 6757 and Zn I 6362 lines. Accordingly, not only main-sequence stars but also evolved red giant stars are usable for tracing the chemical evolution history of S and Zn in the regime of disk metallicity by using these lines.

  16. Diet analysis by next-generation sequencing indicates the frequent consumption of introduced plants by the critically endangered red-headed wood pigeon (Columba janthina nitens) in oceanic island habitats.

    Science.gov (United States)

    Ando, Haruko; Setsuko, Suzuki; Horikoshi, Kazuo; Suzuki, Hajime; Umehara, Shoko; Inoue-Murayama, Miho; Isagi, Yuji

    2013-10-01

    Oceanic island ecosystems are vulnerable to the introduction of alien species, and they provide a habitat for many endangered species. Knowing the diet of an endangered animal is important for appropriate nature restoration efforts on oceanic islands because introduced species may be a major component of the diets of some endangered species. DNA barcoding techniques together with next-generation sequencing may provide more detailed information on animal diets than other traditional methods. We performed a diet analysis using 48 fecal samples from the critically endangered red-headed wood pigeon that is endemic to the Ogasawara Islands based on chloroplast trnL P6 loop sequences. The frequency of each detected plant taxa was compared with a microhistological analysis of the same sample set. The DNA barcoding approach detected a much larger number of plants than the microhistological analysis. Plants that were difficult to identify by microhistological analysis after being digested in the pigeon stomachs were frequently identified only by DNA barcoding. The results of the barcoding analysis indicated the frequent consumption of introduced species, in addition to several native species, by the red-headed wood pigeon. The rapid eradication of specific introduced species may reduce the food resources available to this endangered bird; thus, balancing eradication efforts with the restoration of native food plants should be considered. Although some technical problems still exist, the trnL approach to next-generation sequencing may contribute to a better understanding of oceanic island ecosystems and their conservation.

  17. Nitrogen depletion in field red giants

    DEFF Research Database (Denmark)

    Masseron, T.; Lagarde, N.; Miglio, A.

    2017-01-01

    , the behaviour of nitrogen data along the evolution confirms the existence of non-canonical extramixing on the red giant branch (RGB) for all low-mass stars in the field. But more surprisingly, the data indicate that nitrogen has been depleted between the RGB tip and the red clump. This may suggest that some...

  18. Sounds of a Star

    Science.gov (United States)

    2001-06-01

    Acoustic Oscillations in Solar-Twin "Alpha Cen A" Observed from La Silla by Swiss Team Summary Sound waves running through a star can help astronomers reveal its inner properties. This particular branch of modern astrophysics is known as "asteroseismology" . In the case of our Sun, the brightest star in the sky, such waves have been observed since some time, and have greatly improved our knowledge about what is going on inside. However, because they are much fainter, it has turned out to be very difficult to detect similar waves in other stars. Nevertheless, tiny oscillations in a solar-twin star have now been unambiguously detected by Swiss astronomers François Bouchy and Fabien Carrier from the Geneva Observatory, using the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory. This telescope is mostly used for discovering exoplanets (see ESO PR 07/01 ). The star Alpha Centauri A is the nearest star visible to the naked eye, at a distance of a little more than 4 light-years. The new measurements show that it pulsates with a 7-minute cycle, very similar to what is observed in the Sun . Asteroseismology for Sun-like stars is likely to become an important probe of stellar theory in the near future. The state-of-the-art HARPS spectrograph , to be mounted on the ESO 3.6-m telescope at La Silla, will be able to search for oscillations in stars that are 100 times fainter than those for which such demanding observations are possible with CORALIE. PR Photo 23a/01 : Oscillations in a solar-like star (schematic picture). PR Photo 23b/01 : Acoustic spectrum of Alpha Centauri A , as observed with CORALIE. Asteroseismology: listening to the stars ESO PR Photo 23a/01 ESO PR Photo 23a/01 [Preview - JPEG: 357 x 400 pix - 96k] [Normal - JPEG: 713 x 800 pix - 256k] [HiRes - JPEG: 2673 x 3000 pix - 2.1Mb Caption : PR Photo 23a/01 is a graphical representation of resonating acoustic waves in the interior of a solar-like star. Red and blue

  19. Star formation in the lagoon nebula & low-mass stars and brown dwarfs

    Science.gov (United States)

    Castro, Philip J.

    Topic I of this thesis reports on star formation in the Lagoon Nebula. We report on deep Chandra X-Ray Observatory observations of the Lagoon Nebula (NGC 6530 and the Hourglass Nebula) totaling 233 ks. We find 1482 X-ray sources, 1130 associated with catalogued near-infrared or optical stars. These X-ray sources are mainly concentrated in the young Hourglass Nebula Cluster (HNC), the older NGC 6530 cluster, and the young M8E cluster in the southern rim. The clustering of X-ray sources near 850mum emission along the central ridge of NGC 6530, M8E, the southern ridge, and coincident with the Hourglass Nebula, provides evidence of triggered star formation. Chandra point-source density contours show a ridge of increased density between NGC 6530 and the HNC, 9 Sgr and the HNC, and class III/II contours stretching from 9 Sgr to the HNC, respectively, provide support for a proposed sequence of star formation in the Lagoon Nebula. Topic II of this thesis reports on low-mass stars and brown dwarfs (BDs). We report on Chandra X-Ray Observatory observations of the TW Hydrae BD 2MASSW J1139511-315921 (2M1139). In the combined 31 ks ACIS-S exposure, 2M1139 is detected at the 3sigma confidence level. This object is similar to another TW Hydrae BD member, CD-33 7795B (TWA 5B), previously detected in X-rays an order of magnitude more luminous than 2M1139. We find the discrepancy between their X-ray luminosities is consistent with BDs of similar spectral type in the Orion Nebula Cluster. Though rotation may play a role in the X-ray activity of ultracool dwarfs like 2M1139 and TWA 5B, the discrepancy cannot be explained by rotation alone. We discover five high proper motion spectroscopically confirmed L dwarfs by comparing WISE to 2MASS. Two of these are L dwarfs at the L/T transition within 10 pc, and three are early L dwarfs within 25 pc. Of the early L dwarfs, one is a member of the class of unusually red L dwarfs whose red spectra can not be easily attributed to youth.

  20. Family history of completed suicide and characteristics of major depressive disorder: a STAR*D (sequenced treatment alternatives to relieve depression) study.

    Science.gov (United States)

    Nierenberg, Andrew A; Alpert, Jonathan E; Gaynes, Bradley N; Warden, Diane; Wisniewski, Stephen R; Biggs, Melanie M; Trivedi, Madhukar H; Barkin, Jennifer L; Rush, A John

    2008-05-01

    Clinicians routinely ask patients with non-psychotic major depressive disorder (MDD) about their family history of suicide. It is unknown, however, whether patients with a family member who committed suicide differ from those without such a history. Patients were recruited for the STAR*D multicenter trial. At baseline, patients were asked to report first-degree relatives who had died from suicide. Differences in demographic and clinical features for patients with and without a family history of suicide were assessed. Patients with a family history of suicide (n=142/4001; 3.5%) were more likely to have a family history of MDD, bipolar disorder, or any mood disorder, and familial substance abuse disorder, but not suicidal thoughts as compared to those without such a history. The group with familial suicide had a more pessimistic view of the future and an earlier age of onset of MDD. No other meaningful differences were found in depressive symptoms, severity, recurrence, depressive subtype, or daily function. A history of completed suicide in a family member was associated with minimal clinical differences in the cross-sectional presentation of outpatients with MDD. Limitations of the study include lack of information about family members who had attempted suicide and the age of the probands when their family member died. STAR*D assessments were limited to those needed to ascertain diagnosis and treatment response and did not include a broader range of psychological measures.

  1. First stars evolution and nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bahena, D. [Institute of Astronomy of the Academy of Sciences, Bocni II 1401, 14131 Praha 4, (Czech Republic); Klapp, J. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Dehnen, H. [Fachbereich Physik, Universitat Konstanz, 78457 Konstanz (Germany)]. e-mail: bahen@hotmail.com

    2007-12-15

    The first stars in the universe were massive and luminous with typical masses M {>=} 100M. Metal-free stars have unique physical characteristics and exhibit high effective temperatures and small radii. These so called Population III stars were responsible for the initial enrichment of the intergalactic medium with heavy elements. In this work, we study the structure, evolution and nucleosynthesis of 100, 200, 250 and 300M galactic and pregalactic Population III mass losing stars with metallicities Z 10{sup -6} and Z = 10{sup -9}, during the hydrogen and helium burning phases. Using a stellar evolution code, a system of 10 structure and evolution equations together with boundary conditions, and a set of 30 nuclear reactions, are solved simultaneously, obtaining the star's structure, evolution, isotopic abundances and their ratios. Motivated by recent stability analysis, almost all very massive star (VMS) calculations during the past few years have been performed with no mass loss. However, it has recently been claimed that VMS should have strong mass loss. We present in this work new VMS calculations that includes mass loss. The main difference between zero-metal and metal-enriched stars lies in the nuclear energy generation mechanism. For the first stars, nuclear burning proceeds in a non-standard way. Since Population III stars can reach high central temperatures, this leads to the first synthesis of primary carbon through the 3 {alpha} reaction activating the CNO-cycles. Zero-metal stars produce light elements, such as He, C, N and O. Thus, very massive pregalactic Population III stars experienced self-production of C, either at the zero-age main sequence or in later phases of central hydrogen burning. In advanced evolutionary phases, these stars contribute to the chemical enrichment of the intergalactic medium through supernova explosions. (Author)

  2. Eye redness

    Science.gov (United States)

    Bloodshot eyes; Red eyes; Scleral injection; Conjunctival injection ... There are many causes of a red eye or eyes. Some are medical emergencies. Others are a cause for concern, but not an emergency. Many are nothing to worry about. Eye ...

  3. Red Clover

    Science.gov (United States)

    ... R S T U V W X Y Z Red Clover Share: On This Page Background How Much ... Foster This fact sheet provides basic information about red clover—common names, usefulness and safety, and resources ...

  4. "Krüppeling" erythropoiesis : An unexpected broad spectrum of human red blood cell disorders due to KLF1 variants unveiled by genomic sequencing

    NARCIS (Netherlands)

    A. Perkins (Andrew); X. Xu (Xiangmin); D.R. Higgs (Douglas); G.P. Patrinos (George); A. Lionel, A. (Arnaud); J. Bieker (James); J.N.J. Philipsen (Sjaak)

    2016-01-01

    textabstractUntil recently our approach to the analysis of human genetic diseases has been to accurately phenotype patients and sequence the genes known to be associated with those phenotypes; for example, analysing the globin loci in cases of thalassemia. As sequencing has become increasingly

  5. Which Stars Go BOOM?

    Science.gov (United States)

    Kalirai, Jason

    2014-10-01

    Intermediate mass stars with M = 6 to 10 Msun will end their lives by either losing mass quiescently and forming massive white dwarfs or by exploding as core collapse type II supernovae. The critical mass separating these two stellar evolution channels is not only a fundamental threshold of stellar astrophysics, but is a crucial ingredient to generate reliable galaxy evolution simulations. Given the steepness of the stellar IMF, small changes in the critical mass directly affects chemical evolution scenarios, energetics, and feedback relations. Although most astronomers reference the critical mass at M = 8 Msun, there is a lack of robust theoretical or observational confirmation of this number. We propose to measure the critical mass directly by verifying the end products of stellar evolution in four rich, young, co-eval stellar populations. With ages of 25 to 60 Myr and total stellar masses >10,000 Msun, the Magellanic Cloud globular clusters NGC 1818, NGC 330, NGC 1805, and NGC 2164 have present-day main-sequence turnoff masses of M = 6.2, 7.2, 8.5, and 9.8 Msun, respectively. Existing photometry verifies that each cluster has a rich upper main sequence of massive stars, and therefore would have formed dozen(s) of stars above the present day turnoff. If those stars did not explode as core collapse supernovae, they will populate a clear blue white dwarf cooling sequence. Our experiment uses the full power, wavelength coverage, and resolution of HST/WFC3 to detect these cooling sequences in high-precision, UV-sensitive color-magnitude diagrams.

  6. Delta Scuti and related stars - Review

    Science.gov (United States)

    Breger, M.; Stockenhuber, H.

    Present knowledge on Delta Scuti stars, short-period pulsators of spectral types A and F situated on or above the main sequence, is reviewed. The topics discussed include: pulsation periods, pulsational mode-typing through line profiles, cluster stars, and SX Phe-type variables. The position of Delta Scuti stars in the H-R diagram is shown along with the observed period-luminosity-color relation for the stars. Correlations of average pulsation period and M(v) with cluster age are given, showing that the observed correlations can be explained by the PLC relation and main sequence evolution of the clusters.

  7. On Helium-Dominated Stellar Evolution: The Mysterious Role of the O(He)-Type Stars

    Science.gov (United States)

    Reindl, N.; Rauch, T.; Werner, K.; Kruk, J. W.; Todt, H.

    2014-01-01

    Context. About a quarter of all post-asymptotic giant branch (AGB) stars are hydrogen-deficient. Stellar evolutionary models explain the carbon-dominated H-deficient stars by a (very) late thermal pulse scenario where the hydrogen-rich envelope is mixed with the helium-rich intershell layer. Depending on the particular time at which the final flash occurs, the entire hydrogen envelope may be burned. In contrast, helium-dominated post-AGB stars and their evolution are not yet understood. Aims. A small group of very hot, helium-dominated stars is formed by O(He)-type stars. A precise analysis of their photospheric abundances will establish constraints to their evolution. Methods. We performed a detailed spectral analysis of ultraviolet and optical spectra of four O(He) stars by means of state-of-the-art non-LTE model-atmosphere techniques. Results. We determined effective temperatures, surface gravities, and the abundances of H, He, C, N, O, F, Ne, Si, P, S, Ar, and Fe. By deriving upper limits for the mass-loss rates of the O(He) stars, we found that they do not exhibit enhanced mass-loss. The comparison with evolutionary models shows that the status of the O(He) stars remains uncertain. Their abundances match predictions of a double helium white dwarf (WD) merger scenario, suggesting that they might be the progeny of the compact and of the luminous helium-rich sdO-type stars. The existence of planetary nebulae that do not show helium enrichment around every other O(He) star precludes a merger origin for these stars. These stars must have formed in a different way, for instance via enhanced mass-loss during their post-AGB evolution or a merger within a common-envelope (CE) of a CO-WD and a red giant or AGB star. Conclusions. A helium-dominated stellar evolutionary sequence exists that may be fed by different types of mergers or CE scenarios. It appears likely that all these pass through the O(He) phase just before they become WDs.

  8. Really Hot Stars

    Science.gov (United States)

    2003-04-01

    -2 in the LMC. PR Photo 09c/03: Nebula near the hot binary star BAT99-49 in the LMC. PR Photo 09d/03: The N44C Nebula in the LMC. Four unique images of highly excited nebulae in the Magellanic Clouds ESO PR Photo 09a/03 ESO PR Photo 09a/03 [Preview - JPEG: 400 x 472 pix - 74k [Normal - JPEG: 800 x 943 pix - 720k] [Full-Res - JPEG: 1200 x 1414 pix - 1.2M] ESO PR Photo 09b/03 ESO PR Photo 09b/03 [Preview - JPEG: 400 x 466 pix - 70k [Normal - JPEG: 800 x 931 pix - 928k] [Full-Res - JPEG: 1200 x 1397 pix - 1.8M] ESO PR Photo 09c/03 ESO PR Photo 09c/03 [Preview - JPEG: 400 x 469 pix - 74k [Normal - JPEG: 800 x 937 pix - 1.1M] [Full-Res - JPEG: 1200 x 1405 pix - 2.2M] ESO PR Photo 09d/03 ESO PR Photo 09d/03 [Preview - JPEG: 400 x 473 pix - 28k [Normal - JPEG: 800 x 945 pix - 368k] [Full-Res - JPEG: 1200 x 1418 pix - 600k] Captions: PR Photo 09a/03 is a reproduction of a "near-true" three-colour composite image of the highly excited nebula around the hot double star AB7 in the Small Magellanic Cloud (SMC), obtained in January 2002 with the FORS1 multi-mode instrument at the 8.2-m VLT MELIPAL telescope at the Paranal Observatory (Chile). It is based on three exposures through narrow-band optical (interference) filters that isolate the light from specific atoms and ions. In this rendering, the blue colour represents the light from singly ionized Helium (He II; wavelength 468.6 nm; exposure time 30 min), green corresponds to doubly ionized oxygen ([O III]; 495.7 + 500.7 nm; 5 min) and red to hydrogen atoms (H; H-alpha line at 656.2 nm; 5 min). Of these three ions, He II is the tracer of high excitation, i.e. the bluest areas of the nebula are the hottest. The sky field measures 400 x 400 arcsec2; the original pixel size on the 2k x 2k CCD is 0.23 arcsec. North is up and east to the left. Before combination, the CCD frames were flat-fielded and cleaned of cosmic-rays. Moreover, the stars in the blue (He II) image were removed in order to provide a clearer view of the surrounding

  9. Carbon Stars

    Indian Academy of Sciences (India)

    Abstract. In this paper, the present state of knowledge of the carbon stars is discussed. Particular attention is given to issues of classification, evolution, variability, populations in our own and other galaxies, and circumstellar material.

  10. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  11. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  12. Whence the red panda?

    Science.gov (United States)

    Flynn, J J; Nedbal, M A; Dragoo, J W; Honeycutt, R L

    2000-11-01

    The evolutionary history of the red panda (Ailurus fulgens) plays a pivotal role in the higher-level phylogeny of the "bear-like" arctoid carnivoran mammals. Characters from morphology and molecules have provided inconsistent evidence for placement of the red panda. Whereas it certainly is an arctoid, there has been major controversy about whether it should be placed with the bears (ursids), ursids plus pinnipeds (seals, sea lions, walrus), raccoons (procyonids), musteloids (raccoons plus weasels, skunks, otters, and badgers [mustelids]), or as a monotypic lineage of uncertain phylogenetic affinities. Nucleotide sequence data from three mitochondrial genes and one nuclear intron were analyzed, with more complete taxonomic sampling of relevant taxa (arctoids) than previously available in analyses of primary molecular data, to clarify the phylogenetic relationships of the red panda to other arctoid carnivorans. This study provides detailed phylogenetic analyses (both parsimony and maximum-likelihood) of primary character data for arctoid carnivorans, including bootstrap and decay indices for all arctoid nodes, and three statistical tests of alternative phylogenetic hypotheses for the placement of the red panda. Combined phylogenetic analyses reject the hypotheses that the red panda is most closely related to the bears (ursids) or to the raccoons (procyonids). Rather, evidence from nucleotide sequences strongly support placement of the red panda within a broad Musteloidea (sensu lato) clade, including three major lineages (the red panda, the skunks [mephitids], and a clearly monophyletic clade of procyonids plus mustelids [sensu stricto, excluding skunks]). Within the Musteloidea, interrelationships of the three major lineages are unclear and probably are best considered an unresolved trichotomy. These data provide compelling evidence for the relationships of the red panda and demonstrate that small taxonomic sample sizes can result in misleading or possibly erroneous

  13. A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host.

    Science.gov (United States)

    Gaudi, B Scott; Stassun, Keivan G; Collins, Karen A; Beatty, Thomas G; Zhou, George; Latham, David W; Bieryla, Allyson; Eastman, Jason D; Siverd, Robert J; Crepp, Justin R; Gonzales, Erica J; Stevens, Daniel J; Buchhave, Lars A; Pepper, Joshua; Johnson, Marshall C; Colon, Knicole D; Jensen, Eric L N; Rodriguez, Joseph E; Bozza, Valerio; Novati, Sebastiano Calchi; D'Ago, Giuseppe; Dumont, Mary T; Ellis, Tyler; Gaillard, Clement; Jang-Condell, Hannah; Kasper, David H; Fukui, Akihiko; Gregorio, Joao; Ito, Ayaka; Kielkopf, John F; Manner, Mark; Matt, Kyle; Narita, Norio; Oberst, Thomas E; Reed, Phillip A; Scarpetta, Gaetano; Stephens, Denice C; Yeigh, Rex R; Zambelli, Roberto; Fulton, B J; Howard, Andrew W; James, David J; Penny, Matthew; Bayliss, Daniel; Curtis, Ivan A; DePoy, D L; Esquerdo, Gilbert A; Gould, Andrew; Joner, Michael D; Kuhn, Rudolf B; Labadie-Bartz, Jonathan; Lund, Michael B; Marshall, Jennifer L; McLeod, Kim K; Pogge, Richard W; Relles, Howard; Stockdale, Christopher; Tan, T G; Trueblood, Mark; Trueblood, Patricia

    2017-06-22

    The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly on the temperature of its host star. Of the thousands of extrasolar planets now known, only six have been found that transit hot, A-type stars (with temperatures of 7,300-10,000 kelvin), and no planets are known to transit the even hotter B-type stars. For example, WASP-33 is an A-type star with a temperature of about 7,430 kelvin, which hosts the hottest known transiting planet, WASP-33b (ref. 1); the planet is itself as hot as a red dwarf star of type M (ref. 2). WASP-33b displays a large heat differential between its dayside and nightside, and is highly inflated-traits that have been linked to high insolation. However, even at the temperature of its dayside, its atmosphere probably resembles the molecule-dominated atmospheres of other planets and, given the level of ultraviolet irradiation it experiences, its atmosphere is unlikely to be substantially ablated over the lifetime of its star. Here we report observations of the bright star HD 195689 (also known as KELT-9), which reveal a close-in (orbital period of about 1.48 days) transiting giant planet, KELT-9b. At approximately 10,170 kelvin, the host star is at the dividing line between stars of type A and B, and we measure the dayside temperature of KELT-9b to be about 4,600 kelvin. This is as hot as stars of stellar type K4 (ref. 5). The molecules in K stars are entirely dissociated, and so the primary sources of opacity in the dayside atmosphere of KELT-9b are probably atomic metals. Furthermore, KELT-9b receives 700 times more extreme-ultraviolet radiation (that is, with wavelengths shorter than 91.2 nanometres) than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet largely stripped of its envelope during the main-sequence lifetime of the host star.

  14. The space distribution of AGB stars

    Science.gov (United States)

    Jura, M.

    1990-01-01

    The AGB stars can be classified into three main types on the basis of their atmospheric composition: carbon-rich, oxygen-rich, and S-type. The carbon-rich stars typically have 1.5-solar-mass main sequence stars as progenitors. There are about 40 of these stars per sq kpc projected onto the plane of the Milky Way galaxy in the neighborhood of the sun with an exponential scale height above the galactic disk of about 200 pc. Contrary to the general distribution of mass, there is no decrease with galactocentric radius of the surface density of these stars for at least 3 kpc beyond the solar circle. The S-type stars appear to have the same spatial distribution as the carbon stars; there are about 1/3 as many 'pure' S stars as there are luminous carbon stars. One major class of oxygen-rich AGB stars is the Mira variables. There are approximately between 1 and 2 times as many of these stars per sq kpc projected onto the galactic plane of the Milky Way as there are carbon stars.

  15. Field guide to the binary stars

    Energy Technology Data Exchange (ETDEWEB)

    Trimble, V. (Maryland Univ., College Park (USA). Astronomy Program; California Univ., Irvine (USA). Dept. of Physics)

    1983-05-12

    For most of the history of binary star astronomy, systems have been classified largely on the basis of how they were discovered and qualitative appearance of their spectra and light curves. Present understanding of single and double star evolution has now progressed to the point where most of the classes previously identified, and some new ones, can be arranged into evolutionary sequences, depending primarily on the initial masses and separation of the component stars.

  16. Testing stellar evolution models with the retired A star HD 185351

    DEFF Research Database (Denmark)

    Hjørringgaard, J. G.; Silva Aguirre, V.; White, T. R.

    2017-01-01

    in agreement with all observational constraints on the physical parameters of HD 185351. The effects of varying input physics are examined as well as the additional constraint of the observed g-mode period spacing is considered. This quantity is found to be sensitive to the inclusion of additional mixing from...... the convective core during the main sequence, and can be used to calibrate the overshooting efficiency using low-luminosity red giant stars. A theoretical model with metallicity [Fe/H] = 0.16 dex, mixing-length parameter αMLT = 2.00, and convective overshooting efficiency parameter f = 0.030 is found...

  17. Evolution models of red supergiants

    Science.gov (United States)

    Georgy, Cyril

    2017-11-01

    The red supergiant (RSG) phase is a key stage for the evolution of massive stars. The current uncertainties about the mass-loss rates of these objects make their evolution far to be fully understood. In this paper, we discuss some of the physical processes that determine the duration of the RSG phase. We also show how the mass loss affect their evolution, and can allow for some RSGs to evolve towards the blue side of the Hertzsprung-Russell diagram. We also propose observational tests that can help in better understanding the evolution of these stars.

  18. [WN] central stars of planetary nebulae

    Science.gov (United States)

    Todt, H.; Miszalski, B.; Toalá, J. A.; Guerrero, M. A.

    2017-10-01

    While most of the low-mass stars stay hydrogen-rich on their surface throughout their evolution, a considerable fraction of white dwarfs as well as central stars of planetary nebulae have a hydrogen-deficient surface composition. The majority of these H-deficient central stars exhibit spectra very similar to massive Wolf-Rayet stars of the carbon sequence, i.e. with broad emission lines of carbon, helium, and oxygen. In analogy to the massive Wolf-Rayet stars, they are classified as [WC] stars. Their formation, which is relatively well understood, is thought to be the result of a (very) late thermal pulse of the helium burning shell. It is therefore surprising that some H-deficient central stars which have been found recently, e.g. IC 4663 and Abell 48, exhibit spectra that resemble those of the massive Wolf-Rayet stars of the nitrogen sequence, i.e. with strong emission lines of nitrogen instead of carbon. This new type of central stars is therefore labelled [WN]. We present spectral analyses of these objects and discuss the status of further candidates as well as the evolutionary status and origin of the [WN] stars.

  19. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  20. Stars Underground

    CERN Multimedia

    Jean Leyder

    1996-01-01

    An imaginary voyage in time where we were witness of the birth of the universe itself, the time of the Big-Bang 15 billion years ago. Particules from the very first moments of time : protons, neutrons and electrons, and also much more energetic one. These particules are preparing to interact collider and generating others which will be the birth to the stars ........

  1. Heavy Metal Stars

    Science.gov (United States)

    2001-08-01

    that the CH-stars all belong to binary systems and that they therefore have a companion star [5]. That companion is now a white dwarf star and was therefore at some earlier moment an AGB star ! During its AGB-phase, the companion star expelled much of its material, eventually producing the "planetary nebula" phenomenon, referred to above. In this process, a lot of its material, enriched with heavy elements produced by the "s-process" during the AGB phase, was deposited in the atmosphere of the CH-star that is now observed. The former AGB-star, now a slowly cooling, dim white-dwarf star, still orbits the CH-star. For this reason, the atmospheric composition of a CH-star actually carries the signature of the nucleosynthesis that took place deep inside the companion AGB star at an earlier epoch. Spectroscopic observations of CH-stars thus provide the opportunity to probe the predicted s-process in low-metallicity stars. Three stars with Lead ESO PR Photo 26b/01 ESO PR Photo 26b/01 [Preview - JPEG: 400 x 371 pix - 95k] [Normal - JPEG: 800 x 741 pix - 240k] Caption : A high-resolution spectrum of the CH-star HD 196944, obtained with the CES instrument on the ESO 3.6-m telescope in September 2000. The observed spectrum (dots) shows many absorption lines from elements that are usually seen in stars. The red line shows a model in which elements (in particular those produced by the s-process) are present in normal quantities, compared to Iron. The blue line instead shows a model where s-processing has occured. It is obvious that the red line does not fit, only the blue line reproduces the observed absorption line at wavelength 405.781 nm caused by Lead (Pb) atoms in the atmosphere of this star. A subsequent, detailed analysis demonstrated that HD 196944 is a true "Lead star". Technical information about this photo is available below. A necessary condition for these observations to succeed is a very high spectral resolution in order to detect the spectral line of Lead (Pb), in

  2. SDSS-IV MaNGA - the spatially resolved transition from star formation to quiescence

    Science.gov (United States)

    Belfiore, Francesco; Maiolino, Roberto; Maraston, Claudia; Emsellem, Eric; Bershady, Matthew A.; Masters, Karen L.; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Bundy, Kevin; Diamond-Stanic, Aleksandar M.; Drory, Niv; Heckman, Timothy M.; Law, David R.; Malanushenko, Olena; Oravetz, Audrey; Pan, Kaike; Roman-Lopes, Alexandre; Thomas, Daniel; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2017-04-01

    Using spatially resolved spectroscopy from SDSS-IV MaNGA we have demonstrated that low ionization emission-line regions (LIERs) in local galaxies result from photoionization by hot evolved stars, not active galactic nuclei, hence tracing galactic region hosting old stellar population where, despite the presence of ionized gas, star formation is no longer occurring. LIERs are ubiquitous in both quiescent galaxies and in the central regions of galaxies where star formation takes place at larger radii. We refer to these two classes of galaxies as extended LIER (eLIER) and central LIER (cLIER) galaxies, respectively. cLIERs are late-type galaxies primarily spread across the green valley, in the transition region between the star formation main sequence and quiescent galaxies. These galaxies display regular disc rotation in both stars and gas, although featuring a higher central stellar velocity dispersion than star-forming galaxies of the same mass. cLIERs are consistent with being slowly quenched inside-out; the transformation is associated with massive bulges, pointing towards the importance of bulge growth via secular evolution. eLIERs are morphologically early types and are indistinguishable from passive galaxies devoid of line emission in terms of their stellar populations, morphology and central stellar velocity dispersion. Ionized gas in eLIERs shows both disturbed and disc-like kinematics. When a large-scale flow/rotation is observed in the gas, it is often misaligned relative to the stellar component. These features indicate that eLIERs are passive galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Importantly, quiescent galaxies devoid of line emission reside in denser environments and have significantly higher satellite fraction than eLIERs. Environmental effects thus represent the likely cause for the existence of line-less galaxies on the red sequence.

  3. Abundance patterns of evolved stars with Hipparcos parallaxes and ages based on the APOGEE data base

    Science.gov (United States)

    Jia, Y. P.; Chen, Y. Q.; Zhao, G.; Bari, M. A.; Zhao, J. K.; Tan, K. F.

    2018-01-01

    We investigate the abundance patterns for four groups of stars at evolutionary phases from sub-giant to red clump (RC) and trace the chemical evolution of the disc by taking 21 individual elemental abundances from APOGEE and ages from evolutionary models with the aid of Hipparcos distances. We find that the abundances of six elements (Si, S, K, Ca, Mn and Ni) are similar from the sub-giant phase to the RC phase. In particular, we find that a group of stars with low [C/N] ratios, mainly from the second sequence of RC stars, show that there is a difference in the transfer efficiency of the C-N-O cycle between the main and the secondary RC sequences. We also compare the abundance patterns of C-N, Mg-Al and Na-O with giant stars in globular clusters from APOGEE and find that field stars follow similar patterns as M107, a metal-rich globular cluster with [M/H] ∼- 1.0, which shows that the self-enrichment mechanism represented by strong C-N, Mg-Al and Na-O anti-correlations may not be important as the metallicity reaches [M/H] > -1.0 dex. Based on the abundances of above-mentioned six elements and [Fe/H], we investigate age versus abundance relations and find some old super-metal-rich stars in our sample. Their properties of old age and being rich in metal are evidence for stellar migration. The age versus metallicity relations in low-[α/M] bins show unexpectedly positive slopes. We propose that the fresh metal-poor gas infalling on to the Galactic disc may be the precursor for this unexpected finding.

  4. Tidal Dissipation In Rotating Low Mass Stars: Implications For The Orbital Evolution Of Close In Planets

    Science.gov (United States)

    Gallet, Florian; Bolmont, Emeline; Mathis, Stéphane; Charbonnel, Corinne; Amard, Louis; Alibert, Yann

    2017-10-01

    Close-in planets represent a large fraction of the population of confirmed exoplanets. To understand the dynamical evolution of these planets, star-planet interactions must be taken into account. In particular, the dependence of the tidal interactions on the structural parameters of the star, its rotation, and its metallicity should be treated in the models. We quantify how the tidal dissipation in the convective envelope of rotating low-mass stars evolves in time. We also investigate the possible consequences of this evolution on planetary orbital evolution. In Gallet et al. (2017) and Bolmont et al. (2017) we generalized the work of Bolmont & Mathis (2016) by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution and non-solar metallicity. We find that during the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the star through the stellar contraction. On the main-sequence tidal dissipation is strongly driven by the evolution of the surface rotation that is impacted by magnetized stellar winds braking. Finally, during the more evolved phases, the tidal dissipation sharply decreases as radiative core retreats in mass and radius towards the red-giant branch. Using an orbital evolution model, we also show that changing the metallicity leads to diUerent orbital evolutions (e.g., planets migrate farther out from an initially fast rotating metal rich star). By using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more work still remain to be do so as to be able to quantitatively fit our results to the observations.

  5. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    Science.gov (United States)

    2010-07-01

    raises the challenge to theorists still further. "Either they were born so big or smaller stars merged together to produce them," explains Crowther. Stars between about 8 and 150 solar masses explode at the end of their short lives as supernovae, leaving behind exotic remnants, either neutron stars or black holes. Having now established the existence of stars weighing between 150 and 300 solar masses, the astronomers' findings raise the prospect of the existence of exceptionally bright, "pair instability supernovae" that completely blow themselves apart, failing to leave behind any remnant and dispersing up to ten solar masses of iron into their surroundings. A few candidates for such explosions have already been proposed in recent years. Not only is R136a1 the most massive star ever found, but it also has the highest luminosity too, close to 10 million times greater than the Sun. "Owing to the rarity of these monsters, I think it is unlikely that this new record will be broken any time soon," concludes Crowther. Notes [1] The star A1 in NGC 3603 is a double star, with an orbital period of 3.77 days. The two stars in the system have, respectively, 120 and 92 times the mass of the Sun, which means that they have formed as stars weighing, respectively, 148 and 106 solar masses. [2] The team used the SINFONI, ISAAC and MAD instruments, all attached to ESO's Very Large Telescope at Paranal, Chile. [3] (note added on 26 July 2010) The "bigger" in the title does not imply that these stars are the biggest observed. Such stars, called red supergiants, can have radii up to about a thousand solar radii, while R136a1, which is blue, is about 35 times as large as the Sun. However, R136a1 is the star with the greatest mass known to date. More information This work is presented in an article published in the Monthly Notices of the Royal Astronomical Society ("The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 Msun stellar mass limit", by

  6. Star Products and Applications

    OpenAIRE

    Iida, Mari; Yoshioka, Akira

    2010-01-01

    Star products parametrized by complex matrices are defined. Especially commutative associative star products are treated, and star exponentials with respect to these star products are considered. Jacobi's theta functions are given as infinite sums of star exponentials. As application, several concrete identities are obtained by properties of the star exponentials.

  7. Revisiting the concept of behavior patterns in animal behavior with an example from food-caching sequences in wolves (Canis lupus), coyotes (Canis latrans), and red foxes (Vulpes vulpes).

    Science.gov (United States)

    Gadbois, Simon; Sievert, Olivia; Reeve, Catherine; Harrington, F H; Fentress, J C

    2015-01-01

    We discuss the history, conceptualization, and relevance of behavior patterns in modern ethology by explaining the evolution of the concepts of fixed action patterns and modal action patterns. We present the movement toward a more flexible concept of natural action sequences with significant degrees of (production and expressive) freedom. An example is presented with the food caching behavior of three Canidae species: red fox (Vulpes vulpes), coyote (Canis latrans) and gray wolf (Canis lupus). Evolutionary, ecological, and neuroecological/neuroethological arguments are presented to explain the difference in levels of complexity and stereotypy between Canis and Vulpes. This article is part of a Special Issue entitled: Canine Behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Post main sequence evolution of icy minor planets: water retention and white dwarf pollution

    Science.gov (United States)

    Malamud, Uri; Perets, Hagai

    2017-06-01

    We investigate the evolution of icy minor planets from the moment of their birth and through the all evolutionary stages of their host stars, including the main sequence, red giant branch and asymptotic giant branch phases. We then asses the degree of water retention in planetary systems around white dwarf, as a function of various parameters. We consider progenitor stars of different masses and metallicities. We also consider minor planets of various sizes, initial orbital distances, compositions and formation times. Our results indicate that water can survive to the white dwarf stage in a variety of circumstances, especially around G, F, A and even some B type stars. We discuss the significance of water retention with respect to white dwarf pollution and also for planet habitability.

  9. A COMPACT DEGENERATE PRIMARY-STAR PROGENITOR OF SN 2011fe

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Joshua S.; Kasen, Daniel; Shen, Ken J.; Nugent, Peter E. [Department of Astronomy, University of California, Berkeley, Berkeley CA, 94720-3411 (United States); Butler, Nathaniel R. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Graham, Melissa L.; Andrew Howell, D. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117 (United States); Kolb, Ulrich; Holmes, Stefan; Haswell, Carole A. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Burwitz, Vadim [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Rodriguez, Juan [Observatori Astronomic de Mallorca, Cami de l' Observatori, 07144 Costitx, Mallorca (Spain); Sullivan, Mark, E-mail: jbloom@astro.berkeley.edu [Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2012-01-10

    While a white dwarf (WD) is, from a theoretical perspective, the most plausible primary star of a Type Ia supernova (SN Ia), many other candidates have not been formally ruled out. Shock energy deposited in the envelope of any exploding primary contributes to the early SN brightness and, since this radiation energy is degraded by expansion after the explosion, the diffusive luminosity depends on the initial primary radius. We present a new non-detection limit of the nearby SN Ia 2011fe, obtained at a time that appears to be just 4 hr after explosion, allowing us to directly constrain the initial primary radius (R{sub p} ). Coupled with the non-detection of a quiescent X-ray counterpart and the inferred synthesized {sup 56}Ni mass, we show that R{sub p} {approx}< 0.02 R{sub Sun} (a factor of five smaller than previously inferred), that the average density of the primary must be {rho}{sub p} > 10{sup 4} g cm{sup -3}, and that the effective temperature must be less than a few Multiplication-Sign 10{sup 5} K. This rules out hydrogen-burning main-sequence stars and giants. Constructing the helium-burning and carbon-burning main sequences, we find that such objects are also excluded. By process of elimination, we find that only degeneracy-supported compact objects-WDs and neutron stars-are viable as the primary star of SN 2011fe. With few caveats, we also restrict the companion (secondary) star radius to R{sub c} {approx}< 0.1 R{sub Sun }, excluding Roche-lobe overflowing red giant and main-sequence companions to high significance.

  10. Pulsations of intermediate-mass stars on the asymptotic giant branch

    Science.gov (United States)

    Fadeyev, Yu. A.

    2017-09-01

    Evolutionary tracks from the zero age main sequence to the asymptotic giant branch were computed for stars with initial masses 2 M ⊙ ≤ M ZAMS ≤ 5 M ⊙ and metallicity Z = 0.02. Some models of evolutionary sequences were used as initial conditions for equations of radiation hydrodynamics and turbulent convection describing radial stellar pulsations. The early asymptotic giant branch stars are shown to pulsate in the fundamental mode with periods 30 day ≲ Π ≲ 400day. The rate of period change gradually increases as the star evolves but is too small to be detected (Π˙/Π < 10-5 yr-1). Pulsation properties of thermally pulsing AGB stars are investigated on time intervals comprising 17 thermal pulses for evolutionary sequences with initial masses M ZAMS = 2 M ⊙ and 3 M ⊙ and 6 thermal pulses for M ZAMS = 4 M ⊙ and 5 M ⊙. Stars with initial masses M ZAMS ≤ 3 M ⊙ pulsate either in the fundamental mode or in the first overtone, whereas more massive red giants ( M ZAMS ≥ 4 M ⊙) pulsate in the fundamental mode with periods Π ≲ 103 day. Most rapid pulsation period change with rate -0.02 yr-1 ≲ Π˙/Π ≲ -0.01 yr-1 occurs during decrease of the surface luminosity after the maximum of the luminosity in the helium shell source. The rate of subsequent increase of the period is Π˙/Π ≲ 5 × 10-3 yr-1.

  11. Kuiper belts around nearby stars

    NARCIS (Netherlands)

    Nilsson, R.; Liseau, R.; Brandeker, A.; Olofsson, G.; Pilbratt, G. L.; Risacher, C.; Rodmann, J.; Augereau, J-C.; Bergman, P.; Eiroa, C.; Fridlund, M.; Thebault, P.; White, G. J.

    2010-01-01

    Context. The existence of dusty debris disks around a large fraction of solar type main-sequence stars, inferred from excess far-IR and submillimetre emission compared to that expected from stellar photospheres, suggests that leftover planetesimal belts analogous to the asteroid-and comet reservoirs

  12. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. I. BRIGHT UV STARS IN THE BULGE OF M31

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfield, Philip; Johnson, L. Clifton; Dalcanton, Julianne J.; Williams, Benjamin F.; Gilbert, Karoline M. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Girardi, Leo [Osservatorio Astronomico di Padova-INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Bressan, Alessandro [SISSA, Via Bonomea 265, 34136 Trieste (Italy); Lang, Dustin [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Guhathakurta, Puragra; Dorman, Claire E. [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Howley, Kirsten M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Lauer, Tod R.; Olsen, Knut A. G. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Bianchi, Luciana [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138 (United States); Dolphin, Andrew [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Kalirai, Jason [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larsen, Soren S. [Astronomical Institute, University of Utrecht, Princetonplein 5, 3584 CC Utrecht (Netherlands); Rix, Hans-Walter [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); and others

    2012-08-20

    As part of the Panchromatic Hubble Andromeda Treasury multi-cycle program, we observed a 12' Multiplication-Sign 6.'5 area of the bulge of M31 with the WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample of {approx}4000 UV-bright, old stars, vastly larger than previously available. We use updated Padova stellar evolutionary tracks to classify these hot stars into three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars, and AGB-manque stars. P-AGB stars are the end result of the asymptotic giant branch (AGB) phase and are expected in a wide range of stellar populations, whereas PE-AGB and AGB-manque (together referred to as the hot post-horizontal branch; HP-HB) stars are the result of insufficient envelope masses to allow a full AGB phase, and are expected to be particularly prominent at high helium or {alpha} abundances when the mass loss on the red giant branch is high. Our data support previous claims that most UV-bright sources in the bulge are likely hot (extreme) horizontal branch (EHB) stars and their progeny. We construct the first radial profiles of these stellar populations and show that they are highly centrally concentrated, even more so than the integrated UV or optical light. However, we find that this UV-bright population does not dominate the total UV luminosity at any radius, as we are detecting only the progeny of the EHB stars that are the likely source of the UV excess. We calculate that only a few percent of main-sequence stars in the central bulge can have gone through the HP-HB phase and that this percentage decreases strongly with distance from the center. We also find that the surface density of hot UV-bright stars has the same radial variation as that of low-mass X-ray binaries. We discuss age, metallicity, and abundance variations as possible explanations for the observed radial variation in the UV-bright population.

  13. Globular cluster photometry with the Hubble Space Telescope. 3: Blue stragglers and variable stars in the core of M3

    Science.gov (United States)

    Guhathakurta, Puragra; Yanny, Brian; Bahcall, John N.; Schneider, Donald P.

    1994-01-01

    This paper describes Hubble Space Telescope (HST)/Planetary Camera-I images of the core of the dense globular cluster M3 (NGC 5272). Stellar photometry in the F555W (V) and F785LP (I) bands, with a 1-sigma photometric accuracy of about 0.1 mag, has been used to construct color-magnitude diagrams of about 4700 stars above the main-sequence turnoff within r less than or approximately equal to 1 min of the cluster center. We have also analyzed archival HST F336W (U) images of M3 obtained by the Wide Field/Planetary Camera-I Instrument Definition Team. The UVI data are used to identify 28 blue straggler (BS) stars within the central 0.29 sq. arcmin. The specific frequency of BSs in this region of M3, N(sub BS)/N(sub V less than (V(HB)+2)) = 0.094 +/- 0.019, is about a factor of 2 - 3 higher than that found by Bolte et al. in a recent ground-based study of the same region, but comparable to that seen in the sparse outer parts of the same cluster and in HST observations of the core of the higher density cluster 47 Tuc. The BSs in M3 are slightly more centrally concentrated than red giant branch stars while horizontal branch stars are somewhat less concentrated red giants. The radial distribution of V-selected subgiant and turnoff stars is well fit by a King model with a core radius r(sub core) = 28 arcmin +/- 2 arcmin (90% confidence limits), which corresponds to 1.4 pc. Red giant and horizontal branch stars selected in the ultraviolet data (U less than 18) have a somewhat more compact distribution (r(sub core) = 22.5 arcmin). The HST U data consist of 17 exposures acquired over a span of three days. We have used these data to isolate 40 variable stars for which relative astrometry, brightnesses, colors, and light curves are presented. A Kolmogorov-Smirnov test indicates that, typically, the variability for each star is significant at the 95% level. We identify two variable BS candidates (probably of the SX Phe type), out of a sample of approximately 25 BSs in which

  14. Population genetic structure and molecular diversity of the red swamp crayfish in China based on mtDNA COI gene sequences.

    Science.gov (United States)

    Liu, Gang; Zhou, Lizhi

    2017-11-01

    Population genetic structure and molecular diversity are closely related to adaptability, potential and evolutionary of a species, which also reflects its population history. We analyzed the molecular variability and genetic structure among 24 populations of the red swamp crayfish in China based on the COI region. The COI of 687 bp aligned across 44 haplotypes, the average AT content (68.1%) was slightly higher than the AT content (31.9%). AMOVA indicated that a high proportion of the total genetic variance was attributable to variations within populations (87.57%), whereas only 12.43% occurred among populations. The Fst values were between 0.016 and 0.585, and the Nm values were between 0.178 and 15.182 in each population. All of the AMOVA, Fst statistics and Nm values suggested low genetic differentiation, but a high level genetic diversity existed in Chinese populations of Procambarus clarkii. The phylogenetic trees showed that some geographical populations were irregularly distributed according to the river systems while others were matched well, suggesting that genetic differentiation is created largely by geographic isolation.

  15. Identification and Analysis of Red Sea Mangrove (Avicennia marina) microRNAs by High-Throughput Sequencing and Their Association with Stress Responses

    KAUST Repository

    Khraiwesh, Basel

    2013-04-08

    Although RNA silencing has been studied primarily in model plants, advances in high-throughput sequencing technologies have enabled profiling of the small RNA components of many more plant species, providing insights into the ubiquity and conservatism of some miRNA-based regulatory mechanisms. Small RNAs of 20 to 24 nucleotides (nt) are important regulators of gene transcript levels by either transcriptional or by posttranscriptional gene silencing, contributing to genome maintenance and controlling a variety of developmental and physiological processes. Here, we used deep sequencing and molecular methods to create an inventory of the small RNAs in the mangrove species, Avicennia marina. We identified 26 novel mangrove miRNAs and 193 conserved miRNAs belonging to 36 families. We determined that 2 of the novel miRNAs were produced from known miRNA precursors and 4 were likely to be species-specific by the criterion that we found no homologs in other plant species. We used qRT-PCR to analyze the expression of miRNAs and their target genes in different tissue sets and some demonstrated tissue-specific expression. Furthermore, we predicted potential targets of these putative miRNAs based on a sequence homology and experimentally validated through endonucleolytic cleavage assays. Our results suggested that expression profiles of miRNAs and their predicted targets could be useful in exploring the significance of the conservation patterns of plants, particularly in response to abiotic stress. Because of their well-developed abilities in this regard, mangroves and other extremophiles are excellent models for such exploration. © 2013 Khraiwesh et al.

  16. Identification and analysis of red sea mangrove (Avicennia marina microRNAs by high-throughput sequencing and their association with stress responses.

    Directory of Open Access Journals (Sweden)

    Basel Khraiwesh

    Full Text Available Although RNA silencing has been studied primarily in model plants, advances in high-throughput sequencing technologies have enabled profiling of the small RNA components of many more plant species, providing insights into the ubiquity and conservatism of some miRNA-based regulatory mechanisms. Small RNAs of 20 to 24 nucleotides (nt are important regulators of gene transcript levels by either transcriptional or by posttranscriptional gene silencing, contributing to genome maintenance and controlling a variety of developmental and physiological processes. Here, we used deep sequencing and molecular methods to create an inventory of the small RNAs in the mangrove species, Avicennia marina. We identified 26 novel mangrove miRNAs and 193 conserved miRNAs belonging to 36 families. We determined that 2 of the novel miRNAs were produced from known miRNA precursors and 4 were likely to be species-specific by the criterion that we found no homologs in other plant species. We used qRT-PCR to analyze the expression of miRNAs and their target genes in different tissue sets and some demonstrated tissue-specific expression. Furthermore, we predicted potential targets of these putative miRNAs based on a sequence homology and experimentally validated through endonucleolytic cleavage assays. Our results suggested that expression profiles of miRNAs and their predicted targets could be useful in exploring the significance of the conservation patterns of plants, particularly in response to abiotic stress. Because of their well-developed abilities in this regard, mangroves and other extremophiles are excellent models for such exploration.

  17. Red Capes, Red Herrings, and Red Flags.

    Science.gov (United States)

    Fiske, Donald W.

    The argument that the personality structures obtained from retrospective ratings reflect semantic similarity structures has been as provocative as a red cape in the bull ring. High congruence between those two kinds of structures seems well established. What is less clear is how and why those structures differ from that for immediate judgments of…

  18. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  19. The masses of retired A stars with asteroseismology

    DEFF Research Database (Denmark)

    North, Thomas S. H.; Campante, Tiago L.; Miglio, Andrea

    2017-01-01

    We investigate the masses of 'retired A stars' using asteroseismic detections on seven low-luminosity red-giant and sub-giant stars observed by the NASA Kepler and K2 missions. Our aim is to explore whether masses derived from spectroscopy and isochrone fitting may have been systematically...

  20. Millimetre observations of infrared carbon stars - I. The data

    NARCIS (Netherlands)

    Sevenster, M; Spoon, HWW; Perez, [No Value

    Millimetre observations of IRAS selected red carbon stars are presented. About 260 stars have been observed with SEST and IRAM in the CO (1-0) and CO (2-1) lines and partially in HCN (1-0) and SiO (3-2). An overall detection rate, in at least one line, of about 80% is achieved. The survey represents

  1. Thermohaline mixing in evolved low-mass stars

    NARCIS (Netherlands)

    Cantiello, M.|info:eu-repo/dai/nl/304840866; Langer, N.|info:eu-repo/dai/nl/304829498

    2010-01-01

    Context. Thermohaline mixing has recently been proposed to occur in low-mass red giants, with large consequence for the chemical yields of low-mass stars. Aims. We investigate the role of thermohaline mixing during the evolution of stars between 1 M and 3 M , in comparison with other mixing

  2. Photospheric Diagnostics of Core Helium Burning in Giant Stars

    Science.gov (United States)

    Hawkins, Keith; Ting, Yuan-Sen; Walter-Rix, Hans

    2018-01-01

    Core helium burning primary red clump (RC) stars are evolved red giant stars that are excellent standard candles. As such, these stars are routinely used to map the Milky Way or determine the distance to other galaxies, among other things. However, distinguishing RC stars from their less evolved precursors, namely red giant branch (RGB) stars, is still a difficult challenge and has been deemed the domain of asteroseismology. In this paper, we use a sample of 1676 RGB and RC stars that have both single epoch infrared spectra from the APOGEE survey and asteroseismic parameters and classification to show that the spectra alone can be used to (1) predict asteroseismic parameters with precision high enough to (2) distinguish core helium burning RC from other giant stars with less than 2% contamination. This will not only allow for a clean selection of a large number of standard candles across our own and other galaxies from spectroscopic surveys, but also will remove one of the primary roadblocks for stellar evolution studies of mixing and mass loss in red giant stars.

  3. Rainbow's Stars

    OpenAIRE

    Garattini, Remo; Mandanici, Gianluca

    2016-01-01

    In recent years, a growing interest in the equilibrium of compact astrophysical objects like white dwarf and neutron stars has been manifested. In particular, various modifications due to Planck-scale energy effects have been considered. In this paper we analyze the modification induced by gravity’s rainbow on the equilibrium configurations described by the Tolman–Oppenheimer–Volkoff (TOV) equation. Our purpose is to explore the possibility that the rainbow Planck-scale deformation of space-t...

  4. Star Formation Quenching, How Fast And How Frequently? Inside-Out Or Not?

    Science.gov (United States)

    Lian, Jianhui; Yan, Renbin; Blanton, Michael; Zhang, Kai; Kong, Xu

    2017-06-01

    Star formation quenching is a critical process that drive galaxies evolving from blue star-forming to red passive stage. This rapid quenching process is necessary in galaxy evolution models to explain the galaxy distribution in NUV-optical colour-colour diagrams1,2 and the buildup of red-sequence from z = 1 to z = 03,4,5. Yet, the mechanism of this quenching process is not fully understood and is of hot debate. Many candidate scenarios, such as strangulation due to shock heating in massive halos, AGN feedback or gas stripping due to environmental effect, have been proposed. To differentiate these scenarios, more constraints on the quenching process and thus the potential physical mechanism are badly needed. The first result we show in this poster is the properties of quenching process we obtained from the galaxy distribution in NUV-optical colour-colour diagrams. Aside from the unclear integrated star formation history (SFH) of galaxies, how the SFH of galaxies varies internally is still poorly understood. One direct probe of the internal variation of SFH is the spatial distribution of colours, i.e. the colour gradient. In the second part of the results of this poster, we explicitly illustrate the definition of 'inside-out growth' and 'inside-out quenching' scenarios and utilize the galaxy distribution in the u-I colour gradients to see which one is more observationally favoured.

  5. The Ancient Stars of M32

    Science.gov (United States)

    Mateo, Mario

    2002-07-01

    The question of whether the dwarf elliptical galaxy M32 contains a population of truly ancient stars has remained unsettled for decades. We recently used HST/WFPC2 to identify for the first time a population of RR Lyr stars in this galaxy. Since these stars are known only to be present in stellar populations older than 8-10 Gyr, we contend that M32 does possess an old stellar component and certainly cannot be comprised of only intermediate-age { 5 Gyr} stars as has been frequently suggested in the literature. Our earlier observations were insufficient to determine even the most basic photometric properties of these stars. Nor could we use the data to identify independent evidence of the old population that could help constrain just what fraction of the galaxy's stars are ancient. We propose new HST/ACS observations to {a} get periods and luminosities of the previously observed RR Lyr stars, {b} search for additional RR Lyr stars in a significantly larger volume of M32, and {c} obtain ultra-deep 2-color photometry to study the ancient main-sequence turnoff region of that galaxy directly, {d} look for radial population gradients in M32, both among the RR Lyr/Horizontal Branch and main-sequence populations, {e} compare the M31/M32 old populations in terms of metallicity spread, and {f} use the RR Lyr stars to precisely determine the relative and possibly the absolute distances of M32 and M31's halo.

  6. Properties of relativistically rotating quark stars

    Science.gov (United States)

    Zhou, Enping

    2017-06-01

    In this work, quasi-equilibrium models of rapidly rotating triaxially deformed quark stars are computed in general relativistic gravity, assuming a conformally flat spatial geometry (Isenberg-Wilson-Mathews formulation) and a polynomial equation of state. Especially, since we are using a full 3-D numerical relativity initial data code, we are able to consider the triaxially deformed rotating quark stars at very high spins. Such triaxially deformed stars are possible gravitational radiation sources detectable by ground based gravitational wave observatories. Additionally, the bifurcation from axisymmetric rotating sequence to triaxially rotating sequence hints a more realistic spin up limit for rotating compact stars compared with the mass-shedding limit. With future observations such as sub-millisecond pulsars, we could possibly distinguish between equation of states of compact stars, thus better understanding strong interaction in the low energy regime.

  7. Multiple stellar populations in Magellanic Cloud clusters - V. The split main sequence of the young cluster NGC 1866

    Science.gov (United States)

    Milone, A. P.; Marino, A. F.; D'Antona, F.; Bedin, L. R.; Piotto, G.; Jerjen, H.; Anderson, J.; Dotter, A.; di Criscienzo, M.; Lagioia, E. P.

    2017-03-01

    One of the most unexpected results in the field of stellar populations of the last few years is the discovery that some Magellanic Cloud globular clusters younger than ˜400 Myr exhibit bimodal main sequences (MSs) in their colour-magnitude diagrams (CMDs). Moreover, these young clusters host an extended main-sequence turn-off (eMSTO) in close analogy with what is observed in most ˜1-2 Gyr old clusters of both Magellanic Clouds. We use high-precision Hubble Space Telescope photometry to study the young star cluster NGC 1866 in the Large Magellanic Cloud. We discover an eMSTO and a split MS. The analysis of the CMD reveals that (I) the blue MS is the less populous one, hosting about one-third of the total number of MS stars; (II) red MS stars are more centrally concentrated than blue MS stars; (III) the fraction of blue MS stars with respect to the total number of MS stars drops by a factor of ˜2 in the upper MS with mF814W ≲ 19.7. The comparison between the observed CMDs and stellar models reveals that the observations are consistent with ˜200 Myr old highly rotating stars on the red MS, with rotation close to critical value, plus a non-rotating stellar population spanning an age interval between ˜140 and 220 Myr, on the blue MS. Noticeable, neither stellar populations with different ages only, nor coeval stellar models with different rotation rates, properly reproduce the observed split MS and eMSTO. We discuss these results in the context of the eMSTO and multiple MS phenomenon.

  8. Asteroseismology of Red Giants and Galactic Archaeology

    Science.gov (United States)

    Hekker, Saskia

    From the oscillations in red-giant stars measured in time-series data it is possible to derive more accurate stellar parameters (e.g., mass, radius and age) as can be done using only single-epoch spectroscopy or photometry. These stellar parameters combined with chemical composition and the position, distance and velocity of the stars play an important role in studying the formation and evolution of the Milky Way. In this chapter we discuss some key physical phenomena that are at play in (red-giant) stars as well as some important phases in red-giant evolution. Subsequently, oscillation characteristics that are of importance for the determination of stellar parameters (as indicated above) of red-giant stars are introduced followed by a description of the main components of the Milky Way. Finally, the role red giants can play in creating a detailed observational picture of the Milky Way and deciphering the formation and evolution of the Milky Way is discussed.

  9. Ultrabass Sounds of the Giant Star xi Hya

    Science.gov (United States)

    2002-05-01

    times larger. The new observations demonstrate that xi Hya oscillates with several periods of around 3 hours. xi Hya is now approaching the end of its life - it is about to expand its outer envelope and to become a "red giant star" . It is quite different from stars like the Sun, which are only halfway through their active life. xi Hya is considerably more massive than any other star in which solar-like oscillations have so far been detected. This observational feat allows to study for the first time with seismic techniques the interior of such a highly evolved star. It paves the way for similar studies of different types of stars. A new chapter of stellar astrophysics is now opening as asteroseismology establishes itself as an ingenious method that is able to revolutionise our detailed understanding of stellar interiors and the overall evolution of stars . PR Photo 13a/02 : Oscillation frequencies in the Giant Star xi Hya PR Photo 13b/02 : Non-radial oscillations of xi Hya (computer graphics) PR Audio Clip 01/02 : Listen to the sound of xi Hya (RealMedia and MP3) The difficult art of asteroseismology Helioseismology (seismology of the Sun) is based on measurements of the changing radial velocity of the solar upper atmospheric layers (the "surface") by means of the well-known Doppler effect, as this surface moves up and down during acoustic oscillations. The corresponding amplitudes are very small, with velocities of up to 15 - 20 cm/sec, and the typical period is around 5 minutes. Therefore the phenomenon was first known as the "five-minute oscillations". Intensity measurements have also been tried, but the noise level is larger than for velocity data due to the presence of "granulation" (moving cells of hot gas) on the solar surface. In the case of larger and brighter stars like the giant stars, the corresponding amplitudes and periods increase. For instance, theoretical predictions for the giant star xi Hya have indicated that velocity amplitudes of about 7 m/sec and

  10. Red Eye

    Science.gov (United States)

    ... AskMayoExpert. Conjunctivitis. Rochester, Minn.: Mayo Foundation for Medical Education and Research; 2014. Jan. 11, 2018 Original article: http://www.mayoclinic.org/symptoms/red-eye/basics/definition/SYM-20050748 . Mayo Clinic Footer Legal Conditions and ...

  11. Red Hill

    Science.gov (United States)

    Information about the Red Hill Bulk Fuel Storage Facility in Hawaii Administrative Order on Consent (AOC), an enforceable agreement of the Hawaii Department of Health, the Environmental Protection Agency, and the U.S. Navy -- Defense Logistics Agency.

  12. Product (RED)

    DEFF Research Database (Denmark)

    Ponte, Stefano

    2011-01-01

    of complex social, economic, and environmental processes. At the same time, we argue that there are important distinctions as well—labels and certifications are ultimately about improving the conditions of production, whereas RED is about accepting existing production and trade systems and donating......(PRODUCT)RED™ (hereafter RED) is a cobranding initiative launched in 2006 by the aid celebrity Bono to raise money from product sales to support The Global Fund to Fight AIDS, Tuberculosis and Malaria. In this paper we argue that RED is shifting the boundaries of ‘causumerism’ (shopping...... for a better world) by enrolling consumers in ways that do not rely on accurate knowledge of the products or specific understanding of the cause that The Global Fund engages but, instead, rely on a system of more general, affective affinity between the ‘aid celebrities’ who are behind RED (such as Bono...

  13. Kepler Full-Frame Image Variable Star Catalog

    Science.gov (United States)

    Kinemuchi, Karen; Still, M.; Fanelli, M.; Kepler Science Team

    2011-01-01

    Kepler, NASA's discovery mission to find Earth-sized planets within the habitable zone of nearby stars, provides an unique and powerful resource to perform serendipitous time-domain astrophysics. There are 107 sources brighter than the 21st magnitude Kepler confusion limit within the Kepler field. Thirty minute cadence relative photometry is good to 2% accuracy at 19th magnitude. However, telemetry bandwidth limits the data collection to only 170,000 targets per quarter, of which 96% are reserved for the primary, brighter than 16th magnitude, red-dominated exoplanet program. Through Guest Observer and open consortium avenues, the onus is upon the astrophysics community to choose their 4% share of the targets carefully so that serendipitous science opportunities with Kepler are optimized. One method for identifying potential targets of high astrophysical interest is to locate the variable objects in the Kepler field using the publicly available, 30-min exposure, Full-Frame Images (FFIs). These images are stored and transmitted by the spacecraft at one-month intervals, principally for engineering purposes. Here we describe a pilot study using eight FFIs obtained in rapid sequence over 1.5 days during the spacecraft commissioning phase. We present a catalog and light curves of variable objects mined from these "Golden" FFIs. Many of these objects will be eclipsing binaries, pulsators, eruptive stars, and other exotic variable stars exhibiting large brightness changes. This variable star catalog will provide an excellent stepping stone for Kepler astrophysics projects through the Kepler Asteroseismic Science Consortium (KASC), the Guest Observer Program, or Guest Observer Director's Discretionary Time. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  14. P-MaNGA: GRADIENTS IN RECENT STAR FORMATION HISTORIES AS DIAGNOSTICS FOR GALAXY GROWTH AND DEATH

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng; Wang, Enci; Lin, Lin; Xiao, Ting [Partner Group of Max-Planck Institute for Astrophysics, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Bershady, Matthew A.; Tremonti, Christy A. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI 53706 (United States); Bundy, Kevin; Cheung, Edmond [Kavli Institute for the Physics and Mathematics of the universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583 (Japan); Yan, Renbin [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Bizyaev, Dmitry [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); Blanton, Michael; Gelfand, Joseph [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Cales, Sabrina [Yale Center for Astronomy and Astrophysics, Physics Department, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States); Cherinka, Brian; Law, David R. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Drory, Niv [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Emsellem, Eric [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Lin, Lihwai [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); MacDonald, Nick, E-mail: leech@shao.ac.cn [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); and others

    2015-05-10

    We present an analysis of the data produced by the MaNGA prototype run (P-MaNGA), aiming to test how the radial gradients in recent star formation histories, as indicated by the 4000 Å break (D{sub n}(4000)), Hδ absorption (EW(Hδ{sub A})), and Hα emission (EW(Hα)) indices, can be useful for understanding disk growth and star formation cessation in local galaxies. We classify 12 galaxies observed on two P-MaNGA plates as either centrally quiescent (CQ) or centrally star-forming (CSF), according to whether D{sub n}(4000) measured in the central spaxel of each datacube exceeds 1.6. For each spaxel we generate both 2D maps and radial profiles of D{sub n}(4000), EW(Hδ{sub A}), and EW(Hα). We find that CSF galaxies generally show very weak or no radial variation in these diagnostics. In contrast, CQ galaxies present significant radial gradients, in the sense that D{sub n}(4000) decreases, while both EW(Hδ{sub A}) and EW(Hα) increase from the galactic center outward. The outer regions of the galaxies show greater scatter on diagrams relating the three parameters than their central parts. In particular, the clear separation between centrally measured quiescent and star-forming galaxies in these diagnostic planes is largely filled in by the outer parts of galaxies whose global colors place them in the green valley, supporting the idea that the green valley represents a transition between blue-cloud and red-sequence phases, at least in our small sample. These results are consistent with a picture in which the cessation of star formation propagates from the center of a galaxy outward as it moves to the red sequence.

  15. KEPLER RAPIDLY ROTATING GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.; Paz-Chinchón, F.; Chagas, M. L. das; Leão, I. C.; Oliveira, G. Pereira de; Silva, R. Rodrigues da; Roque, S.; Oliveira, L. L. A. de; Silva, D. Freire da; De Medeiros, J. R., E-mail: renan@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal RN (Brazil)

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surface rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  16. THE STAR FORMATION HISTORY OF BCGs TO z = 1.8 FROM THE SpARCS/SWIRE SURVEY: EVIDENCE FOR SIGNIFICANT IN SITU STAR FORMATION AT HIGH REDSHIFT

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Tracy M. A.; Bonaventura, Nina [McGill University, 3600 rue University, Montreal, QC H3A 2T8 (Canada); Muzzin, Adam [Leiden Observatory, University of Leiden, P.O. Box 9514, 2300 RA Leiden (Netherlands); Noble, Allison; Yee, H. K. C. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Geach, James [Centre for Astrophysics Research, University of Hertfordshire, Hatfield, Hertfordshire AL109AB (United Kingdom); Hezevah, Yashar [Kavli Institue for Particle Physics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Lidman, Chris [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Wilson, Gillian [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Shupe, David [NASA Herschel Science Center, IPAC, 770 South Wilson Avenue, Pasadena, CA 91125 (United States)

    2015-12-01

    We present the results of an MIPS-24 μm study of the brightest cluster galaxies (BCGs) of 535 high-redshift galaxy clusters. The clusters are drawn from the Spitzer Adaptation of the Red-Sequence Cluster Survey, which effectively provides a sample selected on total stellar mass, over 0.2 < z < 1.8 within the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Survey fields. Twenty percent, or 106 clusters, have spectroscopically confirmed redshifts, and the rest have redshifts estimated from the color of their red sequence. A comparison with the public SWIRE images detects 125 individual BCGs at 24 μm ≳ 100 μJy, or 23%. The luminosity-limited detection rate of BCGs in similar richness clusters (N{sub gal} > 12) increases rapidly with redshift. Above z ∼ 1, an average of ∼20% of the sample have 24 μm inferred infrared luminosities of L{sub IR} > 10{sup 12} L{sub ⊙}, while the fraction below z ∼ 1 exhibiting such luminosities is <1%. The Spitzer-IRAC colors indicate the bulk of the 24 μm detected population is predominantly powered by star formation, with only 7/125 galaxies lying within the color region inhabited by active galactic nuclei (AGNs). Simple arguments limit the star formation activity to several hundred million years and this may therefore be indicative of the timescale for AGN feedback to halt the star formation. Below redshift z ∼ 1, there is not enough star formation to significantly contribute to the overall stellar mass of the BCG population, and therefore BCG growth is likely dominated by dry mergers. Above z ∼ 1, however, the inferred star formation would double the stellar mass of the BCGs and is comparable to the mass assembly predicted by simulations through dry mergers. We cannot yet constrain the process driving the star formation for the overall sample, though a single object studied in detail is consistent with a gas-rich merger.

  17. Star Formation in Merging Clusters of Galaxies

    Science.gov (United States)

    Mansheim, Alison Seiler

    abstracts of each paper. The Chapter 1 contains an introduction to the topic and motivation to fill a vacuum in knowledge using our hypothesis. Chapter 4, following the meat of the thesis in Chapters 2 and 3, gives closure and looks to the future. In Chapter 2, we investigate star formation in DLSCL J0916.2+2953, a dissociative merger of two clusters at z = 0.53 that has progressed 1.1 +1.3-0.4 Gyr since first pass-through. We attempt to reveal the effects a collision may have had on the evolution of the cluster galaxies by tracing their star formation history. We probe current and recent activity to identify a possible star formation event at the time of the merger using EW(Hdelta), EW(OII) and Dn(4000) measured from the composite spectra of 64 cluster and 153 coeval field galaxies. We supplement Keck DEIMOS spectra with DLS and HST imaging to determine the color, stellar mass, and morphology of each galaxy and conduct a comprehensive study of the populations in this complex structure. Spectral results indicate the average cluster and cluster red sequence galaxies experienced no enhanced star formation relative to the surrounding field during the merger, ruling out a predominantly merger-quenched population. We find that the average blue galaxy in the North cluster is currently active and in the South cluster is currently post-starburst having undergone a recent star formation event. While the North activity could be latent or long-term merger effects, a young blue stellar population and irregular geometry suggest the cluster was still forming prior the collision. While the South activity coincides with the time of the merger, the blue early-type population could be a result of secular cluster processes. The evidence suggests that the dearth or surfeit of activity is indiscernible from normal cluster galaxy evolution. In Chapter 3, we examine the effects of an impending cluster merger on galaxies in the large scale structure (LSS) RX Cl J0910 at z =1.105. Using multi

  18. When stars collide

    NARCIS (Netherlands)

    Glebbeek, E.; Pols, O.R.

    2007-01-01

    When two stars collide and merge they form a new star that can stand out against the background population in a star cluster as a blue straggler. In so called collision runaways many stars can merge and may form a very massive star that eventually forms an intermediate mass blackhole. We have

  19. Rotational mixing in carbon-enhanced metal-poor stars with s-process enrichment

    Science.gov (United States)

    Matrozis, E.; Stancliffe, R. J.

    2017-10-01

    Carbon-enhanced metal-poor (CEMP) stars with s-process enrichment (CEMP-s) are believed to be the products of mass transfer from an asymptotic giant branch (AGB) companion, which has long since become a white dwarf. The surface abundances of CEMP-s stars are thus commonly assumed to reflect the nucleosynthesis output of the first AGB stars. We have previously shown that, for this to be the case, some physical mechanism must counter atomic diffusion (gravitational settling and radiative levitation) in these nearly fully radiative stars, which otherwise leads to surface abundance anomalies clearly inconsistent with observations. Here we take into account angular momentum accretion by these stars. We compute in detail the evolution of typical CEMP-s stars from the zero-age main sequence, through the mass accretion, and up the red giant branch for a wide range of specific angular momentum ja of the accreted material, corresponding to surface rotation velocities, vrot, between about 0.3 and 300 kms-1. We find that only for ja ≳ 1017 cm2s-1 (vrot > 20 kms-1, depending on mass accreted) angular momentum accretion directly causes chemical dilution of the accreted material. This could nevertheless be relevant to CEMP-s stars, which are observed to rotate more slowly, if they undergo continuous angular momentum loss akin to solar-like stars. In models with rotation velocities characteristic of CEMP-s stars, rotational mixing primarily serves to inhibit atomic diffusion, such that the maximal surface abundance variations (with respect to the composition of the accreted material) prior to first dredge-up remain within about 0.4 dex without thermohaline mixing or about 0.5-1.5 dex with thermohaline mixing. Even in models with the lowest rotation velocities (vrot ≲ 1 kms-1), rotational mixing is able to severely inhibit atomic diffusion, compared to non-rotating models. We thus conclude that it offers a natural solution to the problem posed by atomic diffusion and cannot be

  20. Spectropolarimetry of Giant stars: Probing the influence of magnetic field on evolved stars Spectropolarimetry of Giant stars: Probing the influence of magnetic field on evolved stars

    Science.gov (United States)

    da Costa, Jefferson; Castro, Matthieu; Petit, Pascal; do Nascimento, José-Dias, Jr.

    2015-08-01

    It is know that lithium is element easily destroyed in stellar interior, the existence of lithium rich stars means a great challenge in stellar evolution. In this context our observations ravels the serendipitous discovery of an unusually high lithium abundance star. This is a K0III HD 150050, which has strong deepening on lithium line (6707.8 Å) this means lithium abundance of 2.81 0.2 dex, therefore this star belong a rare group called super Li-Rich stars. A possible source of the non-standard episodes required to produce Li-rich stars were identified in magneto-thermohaline mixing accounted by models of extra-mixing induced by magnetic buoyancy. However to better understand this is necessary more observational data. In last three decades several studies has showed that late type red giant stars presents a remarkable modifications in these outer atmosphere layers when they become late type star in HR diagram. These changes are founded through X-ray, Ultraviolet, and Chromospheric activity analyses, and then we can establish the called “Dividing lines”. We made spectropalarimetric observations with ESPaDOnS@CFHT to achieve two main objectives: analyze the influence of magnetic field in the Li-rich giant stars, and understand how works the magnetic field in late type giants and supergiants across the “dividing line”.

  1. Limb-effect of rapidly rotating stars

    Directory of Open Access Journals (Sweden)

    A.B. Morcos

    2013-06-01

    Full Text Available Kerr metric is used to study the limb-effect phenomenon for axially rotating massive stars. The limb-effect phenomenon is concerned by the variation of the red-shift from the center to the limb of star. This phenomenon has been studied before for the sun. The solar gravitational field is assumed to be given by Schwarzschild and Lense-Thirring fields. In this trial, a study of the limb-effect for a massive axially symmetric rotating star is done. The line of site of inclination and the motion of the observer are taken into consideration to interpret a formula for this phenomenon using a general relativistic red-shift formula. A comparison between the obtained formula and previous formulae is given.

  2. The dynamics of post-main sequence planetary systems

    Science.gov (United States)

    Mustill, Alexander James

    2017-06-01

    The study of planetary systems after their host stars have left the main sequence is of fundamental importance for exoplanet science, as the most direct determination of the compositions of extra-Solar planets, asteroids and comets is in fact made by an analysis of the elemental abundances of the remnants of these bodies accreted into the atmospheres of white dwarfs.To understand how the accreted bodies relate to the source populations in the planetary system, and to model their dynamical delivery to the white dwarf, it is necessary to understand the effects of stellar evolution on bodies' orbits. On the red giant branch (RGB) and asymptotic giant branch (AGB) prior to becoming a white dwarf, stars expand to a large size (>1 au) and are easily deformed by orbiting planets, leading to tidal energy dissipation and orbital decay. They also lose half or more of their mass, causing the expansion of bodies' orbits. This mass loss increases the planet:star mass ratio, so planetary systems orbiting white dwarfs can be much less stable than those orbiting their main-sequence progenitors. Finally, small bodies in the system experience strong non-gravitational forces during the RGB and AGB: aerodynamic drag from the mass shed by the star, and strong radiation forces as the stellar luminosity reaches several thousand Solar luminosities.I will review these effects, focusing on planet--star tidal interactions and planet--asteroid interactions, and I will discuss some of the numerical challenges in modelling systems over their entire lifetimes of multiple Gyr.

  3. The thermohaline, Richardson, Rayleigh-Taylor, Solberg-Høiland, and GSF criteria in rotating stars

    Science.gov (United States)

    Maeder, A.; Meynet, G.; Lagarde, N.; Charbonnel, C.

    2013-05-01

    Aims: We examine the interactions of various instabilities in rotating stars, which usually are considered as independent. Methods: An analytical study of the problem is performed accounting for radiative losses, μ-gradients, and horizontal turbulence. Results: The diffusion coefficient for an ensemble of instabilities is not given by the sum of the specific coefficients for each instability, but by the solution of a general equation. We find that thermohaline mixing is possible in low-mass red giants only if the horizontal turbulence is very weak. In rotating stars the Rayleigh-Taylor and the shear instabilities need simultaneous treating. This leads to rotation laws of the form 1/rα being predicted to be unstable for α > 1.6568, while the usual Rayleigh criterion only predicts instability for α > 2. Also, the shear instabilities are somehow reduced in main sequence stars by the effect of the Rayleigh-Taylor criterion. Various instability criteria should be expressed differently in rotating stars than in simplified geometries.

  4. A simple model to describe intrinsic stellar noise for exoplanet detection around red giants

    DEFF Research Database (Denmark)

    North, Thomas S. H.; Chaplin, William J.; Gilliland, Ronald L.

    2017-01-01

    In spite of the huge advances in exoplanet research provided by the NASA Kepler Mission, there remain only a small number of transit detections around evolved stars. Here, we present a reformulation of the noise properties of red-giant stars, where the intrinsic stellar granulation and the stellar...... of stellar noise for these missions. As an application of our noise model, we explore the minimum detectable planet radii for red giant stars, and find that Neptune-sized planets should be detectable around low-luminosity red giant branch stars....

  5. The Wolf-Rayet stars in the Large Magellanic Cloud. A comprehensive analysis of the WN class

    Science.gov (United States)

    Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W.-R.

    2014-05-01

    Context. Massive stars, although being important building blocks of galaxies, are still not fully understood. This especially holds true for Wolf-Rayet (WR) stars with their strong mass loss, whose spectral analysis requires adequate model atmospheres. Aims: Following our comprehensive studies of the WR stars in the Milky Way, we now present spectroscopic analyses of almost all known WN stars in the LMC. Methods: For the quantitative analysis of the wind-dominated emission-line spectra, we employ the Potsdam Wolf-Rayet (PoWR) model atmosphere code. By fitting synthetic spectra to the observed spectral energy distribution and the available spectra (ultraviolet and optical), we obtain the physical properties of 107 stars. Results: We present the fundamental stellar and wind parameters for an almost complete sample of WN stars in the LMC. Among those stars that are putatively single, two different groups can be clearly distinguished. While 12% of our sample are more luminous than 106L⊙ and contain a significant amount of hydrogen, 88% of the WN stars, with little or no hydrogen, populate the luminosity range between log (L/L⊙) = 5.3 ... 5.8. Conclusions: While the few extremely luminous stars (log (L/L⊙) > 6), if indeed single stars, descended directly from the main sequence at very high initial masses, the bulk of WN stars have gone through the red-supergiant phase. According to their luminosities in the range of log (L/L⊙) = 5.3 ... 5.8, these stars originate from initial masses between 20 and 40 M⊙. This mass range is similar to the one found in the Galaxy, i.e. the expected metallicity dependence of the evolution is not seen. Current stellar evolution tracks, even when accounting for rotationally induced mixing, still partly fail to reproduce the observed ranges of luminosities and initial masses. Moreover, stellar radii are generally larger and effective temperatures correspondingly lower than predicted from stellar evolution models, probably due to

  6. De novo sequencing and comparative transcriptome analysis of white petals and red labella in Phalaenopsis for discovery of genes related to flower color and floral differentation

    Directory of Open Access Journals (Sweden)

    Yuxia Yang

    2014-09-01

    Full Text Available Phalaenopsis is one of the world’s most popular and important epiphytic monopodial orchids. The extraordinary floral diversity of Phalaenopsis is a reflection of its evolutionary success. As a consequence of this diversity, and of the complexity of flower color development in Phalaenopsis, this species is a valuable research material for developmental biology studies. Nevertheless, research on the molecular mechanisms underlying flower color and floral organ formation in Phalaenopsis is still in the early phases. In this study, we generated large amounts of data from Phalaenopsis flowers by combining Illumina sequencing with differentially expressed gene (DEG analysis. We obtained 37 723 and 34 020 unigenes from petals and labella, respectively. A total of 2736 DEGs were identified, and the functions of many DEGs were annotated by BLAST-searching against several public databases. We mapped 837 up-regulated DEGs (432 from petals and 405 from labella to 102 Kyoto Encyclopedia of Genes and Genomes pathways. Almost all pathways were represented in both petals (102 pathways and labella (99 pathways. DEGs involved in energy metabolism were significantly differentially distributed between labella and petals, and various DEGs related to flower color and floral differentiation were found in the two organs. Interestingly, we also identified genes encoding several key enzymes involved in carotenoid synthesis. These genes were differentially expressed between petals and labella, suggesting that carotenoids may influence Phalaenopsis flower color. We thus conclude that a combination of anthocyanins and/or carotenoids determine flower color formation in Phalaenopsis. These results broaden our understanding of the mechanisms controlling flower color and floral organ differentiation in Phalaenopsis and other orchids.

  7. Kinematics of Hα Emitting Stars in Andromeda

    Science.gov (United States)

    Ilango, Megha; Ilango, Anita; Damon, Gabriel; Prichard, Laura; Guhathakurta, Puragra; PHAT Collaboration; SPLASH Collaboration

    2017-01-01

    Studying emission line stars helps improve our understanding of stellar evolution, types of stars, and their environments. In this study, we analyzed stars exhibiting Hα emission (Hα stars) in the Andromeda Galaxy. We used a combination of spectroscopic and photometric diagnostic methods to remove a population of foreground Milky Way (MW) star contaminants from our data set. The Hα stars were selected from a sample of 5295 spectra from the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo (SPLASH) survey and accompanying photometric data from the Panchromatic Hubble Andromeda Treasury (PHAT) survey. Velocities of two classes of Hα stars, main sequence (MS) stars and asymptotic giant branch (AGB) stars, were analyzed through a novel Age-Velocity Difference Correlation (AVDC) method, which utilizes line-of-sight velocity differences (LOSVDs) in order to estimate the age of a rare stellar population. Histograms, weighted means, and weighted standard deviations of the LOSVDs were used to conclude that MS stars are more kinematically coherent than AGB stars, and that Hα stars are kinematically comparable and thus close in age to their non-Hα counterparts. With these results, it can definitively be inferred that mass loss is important in two stages of stellar evolution: massive MS and intermediate mass AGB. We hypothesized that this mass loss could either occur as a normal part of MS and AGB evolution, or that it could be emitted by only a subpopulation of MS and AGB stars throughout their life cycle. Our use of the novel AVDC method sets a precedent for the use of similar methods in predicting the ages of rare stellar subgroups.This research was supported by NASA and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.

  8. USPIO-enhanced 3D-cine self-gated cardiac MRI based on a stack-of-stars golden angle short echo time sequence: Application on mice with acute myocardial infarction.

    Science.gov (United States)

    Trotier, Aurélien J; Castets, Charles R; Lefrançois, William; Ribot, Emeline J; Franconi, Jean-Michel; Thiaudière, Eric; Miraux, Sylvain

    2016-08-01

    To develop and assess a 3D-cine self-gated method for cardiac imaging of murine models. A 3D stack-of-stars (SOS) short echo time (STE) sequence with a navigator echo was performed at 7T on healthy mice (n = 4) and mice with acute myocardial infarction (MI) (n = 4) injected with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. In all, 402 spokes were acquired per stack with the incremental or the golden angle method using an angle increment of (360/402)° or 222.48°, respectively. A cylindrical k-space was filled and repeated with a maximum number of repetitions (NR) of 10. 3D cine cardiac images at 156 μm resolution were reconstructed retrospectively and compared for the two methods in terms of contrast-to-noise ratio (CNR). The golden angle images were also reconstructed with NR = 10, 6, and 3, to assess cardiac functional parameters (ejection fraction, EF) on both animal models. The combination of 3D SOS-STE and USPIO injection allowed us to optimize the identification of cardiac peaks on navigator signal and generate high CNR between blood and myocardium (15.3 ± 1.0). The golden angle method resulted in a more homogeneous distribution of the spokes inside a stack (P cine images could be obtained without electrocardiogram or respiratory gating in mice. It allows precise measurement of cardiac functional parameters even on MI mice. J. Magn. Reson. Imaging 2016;44:355-365. © 2016 Wiley Periodicals, Inc.

  9. THE EFFECTS OF DIFFERENTIAL REDDENING AND STELLAR ROTATION ON THE APPEARANCE OF MULTIPLE POPULATIONS IN STAR CLUSTERS: THE CASE OF TRUMPLER 20

    Energy Technology Data Exchange (ETDEWEB)

    Platais, I. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218 (United States); Melo, C. [European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei Muenchen (Germany); Quinn, S. N.; Latham, D. W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Clem, J. L. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); De Mink, S. E.; Dotter, A.; Kozhurina-Platais, V. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bellini, A., E-mail: imants@pha.jhu.edu [Dipartimento di Astronomia, Universita di Padova, Vicolo dell' Osservatorio 3, Padova, I-35122 (Italy)

    2012-05-20

    We present a detailed analysis of the upper main sequence of the {approx}1.3 Gyr old open cluster Trumpler 20. High-accuracy BVI photometry combined with the Very Large Telescope/FLAMES medium-resolution spectroscopy of 954 stars is essential to understanding the unusual appearance of the color-magnitude diagram (CMD), initially suggesting multiple populations in Trumpler 20. We show that differential reddening is a dominant contributor to the apparent splitting/widening of the main-sequence turnoff region. At its extreme, the excess differential reddening reaches {Delta}(B - V) {approx} 0.1 while the adopted minimum reddening for the cluster is E(B - V) = 0.36. A unique sample of measured projected rotational velocities indicates that stellar rotation is high near the main-sequence turnoff, reaching vsin i {approx} 180 km s{sup -1}. By dividing the upper main-sequence stars into two equal groups of slow and fast rotators, we find that fast rotators have a marginal blueshift of {delta}(V - I) {approx} -0.01, corresponding to a difference in the median vsin i of {approx}60 km s{sup -1} between these subsamples. We conclude that stellar rotation has an insignificant effect on the morphology of the upper main sequence of this intermediate-age open cluster. Trumpler 20 appears to contain a single coeval population of stars but there is evidence that the red clump is extended.

  10. Soviet News and Propaganda Analysis Based on RED STAR (The Official Newspaper of the Soviet Defense Establishment) for the Period 1-30 September 1984. Volume 4, Number 9.

    Science.gov (United States)

    1984-09-30

    Red Stares new and feature stories are carefully selected and orchestrated to satisfy the propaganda goals and objectives of the Comunist Party and...02% 011 03% 8. China .......................... 011 031 051 It is apparent from the data in Table 2 that Moscov’s rhetoric and propaganda about...121 571 052 092 012 331 162 2. Middle last ........ 28 011 102 011 411 341 231 062 3. China .............. 131 112 071 251 342 271 021 -- 4. Asia

  11. Soviet News and Propaganda Analysis Based on Red Star (The Official Newspaper of the Soviet Defense Establishment) for the Period 1-31 July 1983. Volume 3, Number 7.

    Science.gov (United States)

    1983-01-01

    military exercises in Egypt and work out U.S. desert strategy. e Bright Star 83. The Pentagon plans to rehearse a large-scale Middle East war. The military...acquires its first thermonuclear warhead for its M-4 missiles. * The Somalian defense minister visits Paris to discuss the sale of modern weapons to Somalia...After the searing-hot desert , this small green island in the orange-grey immensity of sand and dunes covered with a cruel blanket of camel thorns

  12. Star Formation in IC 348

    Science.gov (United States)

    Herbst, W.

    2008-12-01

    A review of work on the small, compact, nearby young cluster IC 348 is given. This region is particularly important because it is well surveyed at a variety of wavelengths and intermediate in nature between dense clusters and loose associations. Its earliest type star is B5 and it contains a few hundred stellar members as well as some brown dwarfs, protostars, Herbig-Haro objects and starless sub-mm cores. The total mass of its components is ˜90 M_⊙, most of which is in the form of pre-main sequence stars. Perhaps the biggest challenge to work on the cluster is the relatively high and variable extinction (A_v=3D1-7 mag). Studies to date have provided particularly valuable insights into the initial mass function, disk lifetimes, stellar rotation properties, X-ray properties, outflows and substructure of the cluster. Results on the stellar component include the following: 1) the initial mass function matches that for field stars in the stellar and brown dwarf regimes, 2) the fraction of stars with disks is probably normal for the cluster's age, 3) the rotation properties match those of the Orion Nebula Cluster and are significantly different, in the sense of slower rotation, than NGC 2264, 4) the X-ray properties of the stars appear normal for T Tauri stars. There is a ridge of high extinction that lies ˜10 arcmin (0.9 pc in projection) to the southwest of IC 348 and contains about a dozen Class 0 and I protostars as well as some Herbig Haro objects and sub-mm cores. This region, which also contains the "Flying Ghost Nebula" and the well-studied object HH 211, clearly signals that star formation in this part of the Perseus dark clouds is not yet finished. An extensive kinematical study involving both proper motions and radial velocities for the 400 members of the cluster would be most desirable.

  13. Nuclear Masses and Neutron Stars

    CERN Document Server

    Kreim, Susanne; Lunney, David; Schaffner-Bielich, Jürgen

    2013-01-01

    Precision mass spectrometry of neutron-rich nuclei is of great relevance for astrophysics. Masses of exotic nuclides impose constraints on models for the nuclear interaction and thus affect the description of the equation of state of nuclear matter, which can be extended to describe neutron-star matter. With knowledge of the masses of nuclides near shell closures, one can also derive the neutron-star crustal composition. The Penning-trap mass spectrometer ISOLTRAP at CERN-ISOLDE has recently achieved a breakthrough measuring the mass of 82Zn, which allowed constraining neutron-star crust composition to deeper layers (Wolf et al., PRL 110, 2013). We perform a more detailed study on the sequence of nuclei in the outer crust of neutron stars with input from different nuclear models to illustrate the sensitivity to masses and the robustness of neutron-star models. The dominant role of the N=50 and N=82 closed neutron shells for the crustal composition is confirmed.

  14. Multiple Stars Across the H-R Diagram

    CERN Document Server

    Hubrig, Swetlana; Tokovinin, Andrei; Proceedings of the ESO Workshop held in Garching, Germany, 12-15 July 2005

    2008-01-01

    Stars show a marked tendency to be in systems of different multiplicity, ranging from simple binaries and triples to globular clusters with several 10,000's of stars. The formation and evolution of multiple systems remains a challenging part of astrophysics, and the contributions in this book report on the significant progress that had been made in this research field in the last years. The reader will find a variety of research topics addressed, such as the dynamical evolution in multiple stars, the effects of the environment on multiple system parameters, stellar evolution within multiple stars, multiplicity of massive stars, pre-main sequence and intermediate mass stars, multiplicity of low-mass stars from embedded protostars to open clusters, and brown dwarfs and extrasolar planets in multiples. This book presents the proceedings of the ESO Workshop on Multiple Stars across the H-R Diagram held in the summer of 2005.

  15. On the Evolution of O(He)-Type Stars

    Science.gov (United States)

    Kruk, Jeffrey W.; Reindl, N.; Rauch, T.; Werner, K.

    2012-01-01

    O(He) stars represent a small group of four very hot post-AGB stars whose atmospheres are composed of almost pure helium. Their evolution deviates from the hydrogen-deficient post-AGO evolutionary sequence of carbon-dominated stars like e.g. PG 1159 or Wolf- Rayet stars. While (very) late thermal pulse evolutionary models can explain the observed He/C/O abundances in these objects, they do not reproduce He-dominated surface abundances. Currently it seems most likely that the O(He) stars originate from a double helium white dwarf merger and so they could be the successors of the luminous helium-rich sdO-stars. An other possibility is that O(He)-stars could be successors of RCB or EHe stars.

  16. Unexplained Brightening of Unusual Star

    Science.gov (United States)

    1997-01-01

    particular, with just two exceptions, its orbital period is longer than those of all 150 such systems known. Yet another possibility would be the nova phenomenon which is due to a sudden nuclear explosion in the atmosphere of the white dwarf. But in such cases, the brightness increase is much larger than observed here. Future investigations Consequently, it is at this moment not yet possible to understand the nature of the observed brightening of the AKO 9 binary system. Although it is one of the best observed close binary systems within any globular cluster, the available observations will have to be complemented during future investigations before the responsible mechanism may be identified. More information about this research project A provisional report about this work will be presented on January 15, 1997, at the semi-annual meeting of the American Astronomical Association in Toronto, Canada. Notes: [1] The group consists of Georges Meylan (ESO, Garching, Germany), Dante Minniti (Lawrence Livermore National Laboratory, Livermore, USA), Carlton Pryor (Rutgers Univ., Piscataway, USA), E. Sterl Phinney (Caltech, Pasadena, USA), Bruce Sams (Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany), Chris G. Tinney (Anglo-Australian Observatory, Epping, Australia). [2] The phenomenon of core collapse is reminiscent of the `red-giant phase' of stellar evolution when - towards the end of its life - the outer layers of a star begin to expand while its central regions contract. [3] This corresponds to 10 6 stars/pc 3 and 0.1 stars/pc 3 , respectively. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  17. First supernova companion star found

    Science.gov (United States)

    2004-01-01

    Supernova 1993J exploding hi-res Size hi-res: 222 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Supernova 1993J exploding (artist’s impression) New observations with the Hubble Space Telescope allow a look into a supernova explosion under development. In this artist’s view the red supergiant supernova progenitor star (left) is exploding after having transferred about 10 solar masses of hydrogen gas to the blue companion star (right). This interaction process happened over about 250 years and affected the supernova explosion to such an extent that SN 1993J was later known as one of the most peculiar supernovae ever seen. Supernova 1993J exploding hi-res Size hi-res: 4200 kb Credits: ESA and Justyn R. Maund (University of Cambridge) The site of the Supernova 1993J explosion A virtual journey into one of the spiral arms of the grand spiral Messier 81 (imaged with the Isaac Newton Telescope on La Palma, left) reveals the superb razor-sharp imaging power of the NASA/ESA Hubble Space Telescope (Hubble’s WFPC2 instrument, below). The close-up (with Hubble’s ACS, to the right) is centred on the newly discovered companion star to Supernova 1993J that itself is no longer visible. The quarter-circle around the supernova companion is a so-called light echo originating from sheets of dust in the galaxy reflecting light from the original supernova explosion. Supernova 1993J explosing site hi-res Size hi-res: 1502 kb Credits: ESA and Justyn R. Maund (University of Cambridge) Close-up of the Supernova 1993J explosion site (ACS/HRC image) This NASA/ESA Hubble Space Telescope image shows the area in Messier 81 where Supernova 1993J exploded. The companion to the supernova ‘mother star’ that remains after the explosion is seen in the centre of the image. The image is taken with Hubble’s Advanced Camera for Surveys and is a combination of four exposures taken with ACS’ High Resolution Camera. The exposures were taken through two near-UV filters (250W

  18. Rotation of Giant Stars

    Science.gov (United States)

    Kissin, Yevgeni; Thompson, Christopher

    2015-07-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  19. Egyptian "Star Clocks"

    Science.gov (United States)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  20. OT2_gwilson_3: Constraining the star-formation activity in 10 SpARCS clusters: star-formation in the densest regions at z =1

    Science.gov (United States)

    Wilson, G.

    2011-09-01

    We propose deep PACS imaging at 110/160 microns of a unique sample of ten high-redshift galaxy clusters spanning 0.87clusters are drawn from the homogeneously selected Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS), and have impressive spectroscopic coverage (a total of 457 confirmed members) and extensive multi-wavelength follow-up data (UV-MIR). These clusters bridge a pivotal epoch when star formation shifts toward higher densities and when substantial cluster mass is assembled. Moreover, MIPS imaging has already identified 55 cluster members, confirming that dust enshrouded star formation is occurring in these dense fields. We will use the PACS/MIPS data, in combination with the extensive optical spectroscopy and photometry, to characterize the nature of IR-luminous galaxies in clusters at z~1. We will also measure the total star formation rate in these clusters, which will be used to study the effect of environment on galaxy formation.

  1. 'Peony Nebula' Star Settles for Silver Medal

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way. Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina. If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity. The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle. The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope. This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array

  2. Are star formation rates of galaxies bimodal?

    Science.gov (United States)

    Feldmann, Robert

    2017-09-01

    Star formation rate (SFR) distributions of galaxies are often assumed to be bimodal with modes corresponding to star-forming and quiescent galaxies, respectively. Both classes of galaxies are typically studied separately, and SFR distributions of star-forming galaxies are commonly modelled as lognormals. Using both observational data and results from numerical simulations, I argue that this division into star-forming and quiescent galaxies is unnecessary from a theoretical point of view and that the SFR distributions of the whole population can be well fitted by zero-inflated negative binomial distributions. This family of distributions has three parameters that determine the average SFR of the galaxies in the sample, the scatter relative to the star-forming sequence and the fraction of galaxies with zero SFRs, respectively. The proposed distributions naturally account for (i) the discrete nature of star formation, (ii) the presence of 'dead' galaxies with zero SFRs and (iii) asymmetric scatter. Excluding 'dead' galaxies, the distribution of log SFR is unimodal with a peak at the star-forming sequence and an extended tail towards low SFRs. However, uncertainties and biases in the SFR measurements can create the appearance of a bimodal distribution.

  3. The optical gravitational lensing experiment. Variable stars in globular clusters. IV. Fields 104A-E in 47 Tucanae

    Science.gov (United States)

    Kaluzny, J.; Kubiak, M.; Szymanski, M.; Udalski, A.; Krzeminski, W.; Mateo, M.; Stanek, K. Z.

    1998-02-01

    Five fields located close to the center of the globular cluster NGC 104=47 Tuc were surveyed in a search for variable stars. We present V-band light curves for 42 variables. This sample includes 13 RR Lyr stars - 12 of them belong to the Small Magellanic Cloud (SMC) and 1 is a background object from the galactic halo. Twelve eclipsing binaries were identified - 9 contact systems and 3 detached/semi-detached systems. Seven eclipsing binaries are located in the blue straggler region on the cluster color-magnitude diagram (CMD) and four binaries can be considered main-sequence systems. One binary is probably a member of the SMC. Eight contact binaries are likely members of the cluster and one is most probably a foreground star. We show that for the surveyed region of 47 Tuc, the relative frequency of contact binaries is very low as compared with other recently surveyed globular clusters. The sample of identified variables also includes 15 red variables with periods ranging from about 2 days to several weeks. A large fraction of these 15 variables probably belong to the SMC but a few stars are likely to be red giants in 47 Tuc. VI photometry for about 50 000 stars from the cluster fields was obtained as a by product of our survey The photometric data presented in this paper are available in electronic form at the CDS, via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html}. Based on observations collected at the Las Campanas Observatory of the Carnegie Institution of Washington.

  4. On the Origin of Sub-subgiant Stars. II. Binary Mass Transfer, Envelope Stripping, and Magnetic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Leiner, Emily; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Geller, Aaron M., E-mail: leiner@astro.wisc.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2017-05-10

    Sub-subgiant stars (SSGs) lie to the red of the main sequence and fainter than the red giant branch in cluster color–magnitude diagrams (CMDs), a region not easily populated by standard stellar evolution pathways. While there has been speculation on what mechanisms may create these unusual stars, no well-developed theory exists to explain their origins. Here we discuss three hypotheses of SSG formation: (1) mass transfer in a binary system, (2) stripping of a subgiant’s envelope, perhaps during a dynamical encounter, and (3) reduced luminosity due to magnetic fields that lower convective efficiency and produce large starspots. Using the stellar evolution code MESA, we develop evolutionary tracks for each of these hypotheses, and compare the expected stellar and orbital properties of these models with six known SSGs in the two open clusters M67 and NGC 6791. All three of these mechanisms can create stars or binary systems in the SSG CMD domain. We also calculate the frequency with which each of these mechanisms may create SSG systems, and find that the magnetic field hypothesis is expected to create SSGs with the highest frequency in open clusters. Mass transfer and envelope stripping have lower expected formation frequencies, but may nevertheless create occasional SSGs in open clusters. They may also be important mechanisms to create SSGs in higher mass globular clusters.

  5. On the Origin of Sub-subgiant Stars. II. Binary Mass Transfer, Envelope Stripping, and Magnetic Activity

    Science.gov (United States)

    Leiner, Emily; Mathieu, Robert D.; Geller, Aaron M.

    2017-05-01

    Sub-subgiant stars (SSGs) lie to the red of the main sequence and fainter than the red giant branch in cluster color-magnitude diagrams (CMDs), a region not easily populated by standard stellar evolution pathways. While there has been speculation on what mechanisms may create these unusual stars, no well-developed theory exists to explain their origins. Here we discuss three hypotheses of SSG formation: (1) mass transfer in a binary system, (2) stripping of a subgiant’s envelope, perhaps during a dynamical encounter, and (3) reduced luminosity due to magnetic fields that lower convective efficiency and produce large starspots. Using the stellar evolution code MESA, we develop evolutionary tracks for each of these hypotheses, and compare the expected stellar and orbital properties of these models with six known SSGs in the two open clusters M67 and NGC 6791. All three of these mechanisms can create stars or binary systems in the SSG CMD domain. We also calculate the frequency with which each of these mechanisms may create SSG systems, and find that the magnetic field hypothesis is expected to create SSGs with the highest frequency in open clusters. Mass transfer and envelope stripping have lower expected formation frequencies, but may nevertheless create occasional SSGs in open clusters. They may also be important mechanisms to create SSGs in higher mass globular clusters. This is paper number 74 in the WIYN Open Cluster Study.

  6. Spherical conformal models for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Takisa, P.M.; Maharaj, S.D.; Manjonjo, A.M.; Moopanar, S. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2017-10-15

    We consider spherical exact models for compact stars with anisotropic pressures and a conformal symmetry. The conformal symmetry condition generates an integral relationship between the gravitational potentials. We solve this condition to find a new anisotropic solution to the Einstein field equations. We demonstrate that the exact solution produces a relativistic model of a compact star. The model generates stellar radii and masses consistent with PSR J1614-2230, Vela X1, PSR J1903+327 and Cen X-3. A detailed physical examination shows that the model is regular, well behaved and stable. The mass-radius limit and the surface red shift are consistent with observational constraints. (orig.)

  7. Observational signatures of hot-star magnetospheres

    Science.gov (United States)

    Oksala, Mary E.

    2017-11-01

    Magnetic fields play an important role in shaping the circumstellar environment of hot, massive stars. Observational diagnostics give clues to the presence of magnetism across the entire electromagnetic spectrum. Infrared features can show more complex structure, indicating they may probe deeper opacities than optical features. Optical and infrared features mimic each other, with identical blue and red peak variations and identical peak velocity of material. These comparisons indicate the location of the infrared and optical emitting material is similar. Longer wavelength diagnostics are currently being developed and tested. IR spectroscopy is a viable tool to detect magnetic candidates in the Galactic center and star forming regions.

  8. Red supergiants as supernova progenitors

    Science.gov (United States)

    Davies, Ben

    2017-09-01

    It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  9. The Birth of Massive Stars and Star Clusters

    OpenAIRE

    Tan, Jonathan C.

    2005-01-01

    In the present-day universe, it appears that most, and perhaps all, massive stars are born in star clusters. It also appears that all star clusters contain stars drawn from an approximately universal initial mass function, so that almost all rich young star clusters contain massive stars. In this review I discuss the physical processes associated with both massive star formation and with star cluster formation. First I summarize the observed properties of star-forming gas clumps, then address...

  10. HD 46487 is Now a Classical Be Star

    Science.gov (United States)

    Whelan, D. G.; Baker, R. D.

    2017-06-01

    We present the first observations of hydrogen line emission detected around the B-type star HD 46487, a well-studied star in the CoRoT field of view. The emission is only evident in the H-alpha line, for which the observed violet-red peak separation (Delta v_{p}) is typical of a Be star with a circumstellar disk. The absence of dust emission from the infrared spectral energy distribution excludes the possibility of a very young star. The star's magnitude (V=5.079) and regular use in the literature for a variety of studies suggests that the line emission had a high probability of being found previously, had it been evident; since such was not the case, we believe that the Be phenomenon for HD 46487 has only very recently "turned on." We therefore recommend that this star be spectroscopically and photometrically monitored to track continued changes to its circumstellar morphology.

  11. Undercover Stars Among Exoplanet Candidates

    Science.gov (United States)

    2005-03-01

    in solar units. The newly determined, precise values of the mass and radius of OGLE-TR-122b are indicated as the red dot. The blue symbols are values for low-mass stars, while the black symbols on the left represent exoplanets. Note that the "hot Jupiters" - exoplanets orbiting very close to their host star - are larger than OGLE-TR-122b. The various lines represent theoretical models from G. Chabrier, I. Baraffe and colleagues, showing a good agreement between theory and observations. The newly found stellar gnome is the companion of OGLE-TR-122, a rather remote star in the Milky Way galaxy, seen in the direction of the southern constellation Carina. The OGLE programme revealed that OGLE-TR-122 experiences a 1.5 per cent brightness dip once every 7 days 6 hours and 27 minutes, each time lasting just over 3 hours (about 188 min). The FLAMES/UVES measurements, made during 6 nights in March 2004, reveal radial velocity variations of this period with an amplitude of about 20 km/s. This is the clear signature of a very low-mass star, close to the Hydrogen-burning limit, orbiting OGLE-TR-122. This companion received the name OGLE-TR-122b. As François Bouchy of the Observatoire Astronomique Marseille Provence (France) explains: "Combined with the information collected by OGLE, our spectroscopic data now allow us to determine the nature of the more massive star in the system, which appears to be solar-like". This information can then be used to determine the mass and radius of the much smaller companion OGLE-TR-122b. Indeed, the depth (brightness decrease) of the transit gives a direct estimate of the ratio between the radii of the two stars, and the spectroscopic orbit provides a unique value of the mass of the companion, once the mass of the larger star is known. The astronomers find that OGLE-TR-122b weighs one-eleventh of the mass of the Sun and has a diameter that is only one-eighth of the solar one. Thus, although the star is still 96 times as massive as Jupiter, it

  12. Do Low Luminosity Stars Matter?

    Science.gov (United States)

    Ruiz, María Teresa

    2010-11-01

    Historically, low luminosity stars have attracted very little attention, in part because they are difficult to see except with large telescopes, however, by neglecting to study them we are leaving out the vast majority of stars in the Universe. Low mass stars evolve very slowly, it takes them trillions of years to burn their hydrogen, after which, they just turn into a He white dwarf, without ever going through the red giant phase. This lack of observable evolution partly explains the lack of interest in them. The search for the “missing mass” in the galactic plane turned things around and during the 60s and 70s the search for large M/L objects placed M-dwarfs and cool WDs among objects of astrophysical interest. New fields of astronomical research, like BDs and exoplanets appeared as spin-offs from efforts to find the “missing mass”. The search for halo white dwarfs, believed to be responsible for the observed microlensing events, is pursued by several groups. The progress in these last few years has been tremendous, here I present highlights some of the great successes in the field and point to some of the still unsolved issues.

  13. A Near-Infrared Surface Compositional Analysis of Blue Straggler Stars in Open Cluster M67

    Science.gov (United States)

    Seifert, Richard; Gosnell, Natalie M.; Sneden, Chris

    2017-06-01

    Blue straggler stars (BSSs) are stars whose evolutions have been directly impacted by binary system interactions. By obtaining additional mass from a companion, BSSs are able to live prolonged lives on the main sequence. BSSs bring confusions to studies that rely on a standard stellar evolutionary track when modeling stellar populations, since the presence of BSSs can make a population appear younger than it actually is. It is important to have a better understanding of the mechanisms that drive BSS formation so that BSSs may be correctly accounted for in future studies.Blue stagglers in clusters primarily form in one of two ways; either from a close binary system in which one star accretes mass from its companion star or from a hierarchical trinary system in which a close inner binary merges as a result of perturbations from a farther-orbiting third star. In order to investigate the nature of this mass transfer, We obtained IGRINS H-band high resolution spectra of 6 BSSs and 12 red giant stars in open cluster M67. Using a grid of synthetic spectra obtained from the line analysis code MOOG, we identified and fit abundances for absorption lines of iron, silicon, and carbon. Depending on the evolutionary stage of the donor star, the abundance of carbon in the resulting BSS can be affected by mixing during the mass transfer. By analyzing the abundance of carbon in our targets, we find that [Fe/H] ~= 0 and [C/H] ~= 0. We see no evidence of depletion of carbon from RGB-phase mass transfer or enhancement of carbon from AGB-phase mass transfer, implying that the mass transfer occured earlier in the donar star's evolution.Funding for this research comes from the John W. Cox endowment for the Advanced Studies in Astronomy. For support of this work we acknowledge NSF grants AST-1211585 and AST-1616040 to CS. The successful development of the IGRINS spectrograph has resulted from the combined efforts of teams at the University of Texas at Austin and the Korea Astronomy and

  14. The origin and evolution of short-period Miras in the solar neighborhood: Constraints on the life cycle of old stars

    Science.gov (United States)

    Jura, M.

    1994-01-01

    The spatial distribution of the short-period (P less than 300 days) oxygen-rich Miras in the solar neighborhood can be fitted with an exponential scale height above the Galactic plane of about 600 pc. Using the Gliese catalog of local main-sequence stars, we estimate that the density of suitable G-type progenitor dwarfs within 20 pc of the Sun for these short-period Miras is 6 x 10(exp -4)/cu pc. The portion of the H-R diagram near the main-sequence turnoff of these velocity-selected Gliese stars is intermediate between that of the old open cluster NGC 188 and that of the metal-rich globular cluster, 47 Tuc. We infer that the main-sequence progenitors of the short-period Miras have masses near 1.0 solar mass, and we estimate that these Miras have ages approximately 9 x 10(exp 9). We also identify a few old disk red giants in the neighborhood of the Sun. On the basis of very limited information, we estimate that the total amount of mass lost from these stars during their first ascent up the red giant branch is less than or equal to 0.1 solar mass. We derive a duration of the short-period Mira phase of close to 5 x 10(exp 5) yr. This estimate for the duration of the short period Mira phase is longer than our estimate of 2 x 10(exp 5) yr for the duration of the Mira phase for stars with periods longer than 300 days. From their infrared colors, we estimate a typical mass-loss rate from the short-period Miras of approximately 1 x 10(exp -7) solar mass/yr.

  15. Computational Study of White Dwarf Stars

    Science.gov (United States)

    Pacheco, Jose; Hira, Ajit; Jaramillo, Danelle

    2014-03-01

    We begin our interest in the computational simulation of the astrophysical phenomena with a study of white dwarf stars. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. First, we set up the equations of equilibrium for the star of interest. Then we derived the appropriate equation of state. Next, a FORTRAN computer program was developed to implement our model for white dwarfs. This code allows for different sizes and masses of stars. Simulations were done in the mass interval from 0.4 to 0.8 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We hope to extend our computational studies to red giant stars in the future.

  16. The elusive nature of the R stars .

    Science.gov (United States)

    Domínguez, I.; Piersanti, L.; Cabezón, R.; Zamora, O.; García-Senz, D.; Abia, C.; Straniero, O.

    R stars are carbon stars, less luminous and hotter than the carbon stars evolving along the AGB phase. Thus, their carbon enrichment cannot be a consequence of the third dredge-up, a fact also in agreement with the lack of s-element enhancements in their envelopes. Since their discovery the absence of binaries has lead to the conclusion that a previous merger might play a fundamental role in the observed chemical composition, likely through non-standard mixing at the time of the He-flash. On the other hand numerical simulations, in which the He-flash is artificially located close to the edge of a degenerate He core, have successfully induced mixing of carbon into the envelope. In this context it has been suggested that the merger of a degenerate He core with that of a normal red giant star could lead to the formation of a rapidly rotating core undergoing off-centre He ignition in highly degenerate conditions. This scenario is also supported by statistical analysis of the potential mergers that could explain the number, and location in the Galaxy, of observed R stars. Basing on detailed stellar models we will show the evolution of these mergers, that are very common in nature, and do not seem to be the progenitors of (hot) R stars.

  17. The geometry and dynamics of mass-loss at milli-arcsecond scales of massive stars in transition

    Science.gov (United States)

    de Wit, W. J.; Wheelwright, H.; Oudmaijer, R. D.; Mehner, A.

    2013-06-01

    The dynamics, geometry and abundances of circumstellar material provide the crucial information necessary to reconstruct the post-main sequence evolution and final fate of high-mass stars. In this context, we will present recent discoveries made by means of infra-red high spectral and spatial resolution observations using VLTI/AMBER, VLTI/PIONIER and VLT/CRIRES. The observations shed new light on the ongoing mass-loss of high-mass stars transiting the HR-diagram. In particular, we discuss new results on the milli-arcsecond (mas) scale mass-loss geometry of the yellow hypergiant IRC+10420. They indicate an hour-glass wind geometry and a high mass-loss rate that results in a pseudo-photosphere (Oudmaijer & de Wit 2013). Whether the wind is shaped because of a secondary component or because of slow/fast wind interactions is discussed. In the case of supergiant B[e] stars, binarity may have an important effect on the dynamics and geometry of the mass loss on masscales (Wheelwright et al. 2012a, 2012b, 2013). Our studies of the circumstellar environment of sgB[e] stars have discovered several circumbinary discs that exhibit Keplerian rotation, contrary to expectations based on the dual outflow model. We raise the question of whether binarity is responsible for the Galactic sgB[e] phenomenon or whether the blue supergiant component's mass loss is intrinsically peculiar in sgB[e]s.

  18. Sequential star formation in IRAS 06084-0611 (GGD 12-15): from intermediate-mass to high-mass stars

    NARCIS (Netherlands)

    Maaskant, K.M.; Bik, A.; Waters, L.B.F.M.; Kaper, L.; Henning, T.; Puga, E.; Horrobin, M.; Kainulainen, J.

    2011-01-01

    Context. The formation and early evolution of high- and intermediate-mass stars towards the main sequence involves the interplay of stars in a clustered and highly complex environment. To obtain a full census of this interaction, the Formation and Early evolution of Massive Stars (FEMS)

  19. The redMaPPer Galaxy Cluster Catalog From DES Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Rykoff, E. S. [et al.

    2016-04-29

    We describe updates to the redMaPPer algorithm, a photometric red-sequence cluster finder specifically designed for large photometric surveys. The updated algorithm is applied to $150\\,\\mathrm{deg}^2$ of Science Verification (SV) data from the Dark Energy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set. The DES SV catalog is locally volume limited, and contains 786 clusters with richness $\\lambda>20$ (roughly equivalent to $M_{\\mathrm{500c}}\\gtrsim10^{14}\\,h_{70}^{-1}\\,M_{\\odot}$) and 0.2 < $z$ <0.9. The DR8 catalog consists of 26311 clusters with 0.08 < $z$ < 0.6, with a sharply increasing richness threshold as a function of redshift for $z\\gtrsim 0.35$. The photometric redshift performance of both catalogs is shown to be excellent, with photometric redshift uncertainties controlled at the $\\sigma_z/(1+z)\\sim 0.01$ level for $z\\lesssim0.7$, rising to $\\sim0.02$ at $z\\sim0.9$ in DES SV. We make use of $Chandra$ and $XMM$ X-ray and South Pole Telescope Sunyaev-Zeldovich data to show that the centering performance and mass--richness scatter are consistent with expectations based on prior runs of redMaPPer on SDSS data. We also show how the redMaPPer photo-$z$ and richness estimates are relatively insensitive to imperfect star/galaxy separation and small-scale star masks.

  20. X-shooting Herbig Ae/Be stars: Accretion probed by near-infrared He I emission

    NARCIS (Netherlands)

    Oudmaijer, R.D.; Van Den Ancker, M. E.; Baines, D.; Caselli, P.; Drew, J.E.; Hoare, M.G.; Lumsden, S.L.; Montesinos, B.; Sim, S.; Vink, J.S.|info:eu-repo/dai/nl/212372971; Wheelwright, H.E.; de Wit, W.J.M.|info:eu-repo/dai/nl/41234694X

    2011-01-01

    The Herbig Ae/Be stars are intermediate mass pre-main sequence stars that bridge the gap between the low mass T Tauri stars and the Massive Young Stellar Objects. In this mass range, the acting star forming mechanism switches from magnetically controlled accretion to an as yet unknown mechanism, but

  1. RE-INFLATED WARM JUPITERS AROUND RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D. [Institute for Astronomy, Royal Observatory Edinburgh, University of Edinburgh, Blackford Hill, Edinburgh (United Kingdom); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-02-10

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.

  2. The Search for Hot Jupiters using Red Buttes Observatory

    Science.gov (United States)

    Sorber, Rebecca L.; Kar, Aman; Hancock, Daniel A.; Leuquire, Jacob D.; Suhaimi, Afiq; Kasper, David; Jang-Condell, Hannah

    2018-01-01

    The goal of this research is to use the University of Wyoming’s Red Buttes Observatory (RBO) to perform manual, remote, or automated observations of transiting exoplanet candidates. The data contributes to discovery of star systems that include never before identified exoplanets. RBO houses a 0.6-meter telescope and is located approximately 10 miles south of the University of Wyoming’s campus. Our targets are catalogued by the KELT (Kilodegree Extremely Little Telescope) Survey, a photometric search for transiting exoplanets around bright main sequence stars. The KELT Follow-up Network (KELT-FUN), a collaboration of small-aperture telescope users located all over the world, confirms new exoplanet candidates. As part of KELT-FUN, students use the RBO to monitor candidates identified by the KELT team. RBO typically detects transits around stars that are 8-12 in V magnitude, with transit durations of ~1-4 hours and full depth relative changes in brightness above 2 mmags. Using AstroImageJ, we process the data and we look for any indication of a transit occurrence in the processed lightcurve which might confirm the presence of the potential exoplanet. Our team has contributed over 50 light curves to KELT-FUN to date. We are able to compare our data with simultaneous observations by other members of KELT-FUN to maximize the utility of our observations. This project gives undergraduates an authentic scientific research experience, learning how to operate an observatory, process data, and participate in a scientific collaboration.

  3. Modelling of anisotropic compact stars of embedding class one

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali [Government General Degree College, Department of Mathematics, Singur, Hooghly, West Bengal (India); Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, U.P. (India); Manna, Tuhina [St. Xavier' s College, Department of Commerce (Evening), Kolkata, West Bengal (India)

    2016-10-15

    In the present article, we have constructed static anisotropic compact star models of Einstein field equations for the spherical symmetric metric of embedding class one. By assuming the particular form of the metric function ν, we have solved the Einstein field equations for anisotropic matter distribution. The anisotropic models represent the realistic compact objects such as SAX J 1808.4-3658 (SS1), Her X-1, Vela X-12, PSR J1614-2230 and Cen X-3. We have reported our results in details for the compact star Her X-1 on the ground of physical properties such as pressure, density, velocity of sound, energy conditions, TOV equation and red-shift etc. Along with these, we have also discussed about the stability of the compact star models. Finally we made a comparison between our anisotropic stars with the realistic objects on the key aspects as central density, central pressure, compactness and surface red-shift. (orig.)

  4. Star Cluster Buzzing With Pulsars

    Science.gov (United States)

    2005-01-01

    University of British Columbia in Vancouver. The processor, named, appropriately, the Pulsar Spigot, was built in a collaboration between the NRAO and the California Institute of Technology. The processor, which generates almost 100 GigaBytes of data per hour, allowed the astronomers to gather and analyze radio waves over a wide range of frequencies (1650-2250 MegaHertz), adding to the sensitivity of their system. Eight more observations between July and November of 2004 discovered seven additional pulsars in Terzan 5. In addition, the astronomers' data show evidence for several more pulsars that still need to be confirmed. Future studies of the pulsars in Terzan 5 will help scientists understand the nature of the cluster and the complex interactions of the stars at its dense core. Also, several of the pulsars offer a rich yield of new scientific information. The scientists suspect that one pulsar, which shows strange eclipses of its radio emission, has recently traded its original binary companion for another, and two others have white-dwarf companions that they believe may have been produced by the collision of a neutron star and a red-giant star. Subtle effects seen in these two systems can be explained by Einstein's general relativistic theory of gravity, and indicate that the neutron stars are more massive than some theories allow. The material in a neutron star is as dense as that in an atomic nucleus, so that fact has implications for nuclear physics as well as astrophysics. "Finding all these pulsars has been extremely exciting, but the excitement really has just begun," Ransom said. "Now we can start to use them as a rich and valuable cosmic laboratory," he added. In addition to Ransom, Hessels and Stairs, the research team included Paulo Freire of Arecibo Observatory in Puerto Rico, Fernando Camilo of Columbia University, Victoria Kaspi of McGill University, and David Kaplan of the Massachusetts Institute of Technology. The National Radio Astronomy Observatory is a

  5. A new model for charged anisotropic compact star

    Science.gov (United States)

    Maurya, S. K.; Jasim, M. K.; Gupta, Y. K.; Smitha, T. T.

    2016-05-01

    In this paper, we have obtained a new singularity free charged anisotropic fluid solution of Einstein's field equations. The physical parameters as radial pressure, tangential pressure, energy density, charge density, electric field intensity, velocity of sound and red-shift are well behaved everywhere inside the star. The obtained compact star models can represent the observational compact objects as PSR 1937{+}21 and PSR J1614-2230.

  6. Seeing Red

    Directory of Open Access Journals (Sweden)

    Glenn

    2017-11-01

    Full Text Available It is an invasion, of sorts: a legion of vases, each about five feet high, made of porcelain. Floridly patterned and scarlet red, they are placed throughout the Yale Center for British Art (YCBA, on every floor, in the galleries, in the library court, on the stairs. The installation, Made in China, is by the artist Clare Twomey. Its effect is most improbable, with a surreal, larger-than-life quality. It is as if caterers were about to deliver a banquet for thousands of people; or a factory floor had been teleported into the galleries; or as if ceramics were finally being recognized as a dominant genre in British art.

  7. 'Polaris, Mark Kummerfeldt's Star, and My Star.'

    Science.gov (United States)

    McLure, John W.

    1984-01-01

    In most astronomy courses, descriptions of stars and constellations reveal the western European origins of the astronomers who named them. However, it is suggested that a study of non-western views be incorporated into astronomy curricula. Descriptions of various stars and constellations from different cultures and instructional strategies are…

  8. Galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z = 1.58. Red-sequence formation, massive galaxy assembly, and central star formation activity

    National Research Council Canada - National Science Library

    Fassbender, R; Nastasi, A; Santos, J. S; Lidman, C; Verdugo, M; Koyama, Y; Rosati, P; Pierini, D; Padilla, N; Romeo, A. D; Menci, N; Bongiorno, A; Castellano, M; Cerulo, P; Fontana, A; Galametz, A; Grazian, A; Lamastra, A; Pentericci, L; Sommariva, V; Strazzullo, V; Šuhada, R; Tozzi, P

    2014-01-01

    Context. Recent observational progress has enabled the detection of galaxy clusters and groups out to very high redshifts and for the first time allows detailed studies of galaxy population properties...

  9. ENERGY STAR Certified Computers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 6.1 ENERGY STAR Program Requirements for Computers that are effective as of June 2, 2014....

  10. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  11. ENERGY STAR Certified Dehumidifiers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Dehumidifiers that are effective as of October...

  12. ENERGY STAR Certified Displays

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Displays that are effective as of July 1, 2016....

  13. The evolution of circumstellar medium around rotating massive stars

    NARCIS (Netherlands)

    Chita, S.M.; Marle, A.J.; Langer, N.; García-Segura, G.

    2007-01-01

    A rotating 12Mȯ star, after its main-sequence evolution, becomes a redsupergiant when it starts core He burning. During core helium burning, as consequence of a variation of the hydrogen shell burning efficiency, the star undergoes a so called ``blue loop'', i.e. it evolves into a blue supergiant

  14. Lithium abundances in high- and low-alpha halo stars

    DEFF Research Database (Denmark)

    Nissen, P. E.; Schuster, W. J.

    2012-01-01

    A previous study of F and G main-sequence stars in the solar neighborhood has revealed the existence of two distinct halo populations with a clear separation in [alpha /Fe] for the metallicity range -1.4 < [Fe/H] < -0.7. The kinematics of the stars and models of galaxy formation suggest that the ...

  15. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  16. Star operations and Pullbacks

    OpenAIRE

    Fontana, Marco; Park, Mi Hee

    2003-01-01

    In this paper we study the star operations on a pullback of integral domains. In particular, we characterize the star operations of a domain arising from a pullback of ``a general type'' by introducing new techniques for ``projecting'' and ``lifting'' star operations under surjective homomorphisms of integral domains. We study the transfer in a pullback (or with respect to a surjective homomorphism) of some relevant classes or distinguished properties of star operations such as $v-, t-, w-, b...

  17. Celestial Fireworks from Dying Stars

    Science.gov (United States)

    2011-04-01

    This image of the nebula NGC 3582, which was captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile, shows giant loops of gas bearing a striking resemblance to solar prominences. These loops are thought to have been ejected by dying stars, but new stars are also being born within this stellar nursery. These energetic youngsters emit intense ultraviolet radiation that makes the gas in the nebula glow, producing the fiery display shown here. NGC 3582 is part of a large star-forming region in the Milky Way, called RCW 57. It lies close to the central plane of the Milky Way in the southern constellation of Carina (The Keel of Jason's ship, the Argo). John Herschel first saw this complex region of glowing gas and dark dust clouds in 1834, during his stay in South Africa. Some of the stars forming in regions like NGC 3582 are much heavier than the Sun. These monster stars emit energy at prodigious rates and have very short lives that end in explosions as supernovae. The material ejected from these dramatic events creates bubbles in the surrounding gas and dust. This is the probable cause of the loops visible in this picture. This image was taken through multiple filters. From the Wide Field Imager, data taken through a red filter are shown in green and red, and data taken through a filter that isolates the red glow characteristic of hydrogen are also shown in red. Additional infrared data from the Digitized Sky Survey are shown in blue. The image was processed by ESO using the observational data identified by Joe DePasquale, from the United States [1], who participated in ESO's Hidden Treasures 2010 astrophotography competition [2]. The competition was organised by ESO in October-November 2010, for everyone who enjoys making beautiful images of the night sky using astronomical data obtained using professional telescopes. Notes [1] Joe searched through ESO's archive and identified datasets that he used to compose his

  18. On Double-Star Decomposition of Graphs

    Directory of Open Access Journals (Sweden)

    Akbari Saieed

    2017-08-01

    Full Text Available A tree containing exactly two non-pendant vertices is called a double-star. A double-star with degree sequence (k1 + 1, k2 + 1, 1, . . . , 1 is denoted by Sk1,k2. We study the edge-decomposition of graphs into double-stars. It was proved that every double-star of size k decomposes every 2k-regular graph. In this paper, we extend this result by showing that every graph in which every vertex has degree 2k + 1 or 2k + 2 and containing a 2-factor is decomposed into Sk1,k2 and Sk1−1,k2, for all positive integers k1 and k2 such that k1 + k2 = k.

  19. Dynamical investigations of the multiple stars

    Science.gov (United States)

    Kiyaeva, Olga V.; Zhuchkov, Roman Ya.

    2017-11-01

    Two multiple stars - the quadruple star - Bootis (ADS 9173) and the triple star T Taury were investigated. The visual double star - Bootiswas studied on the basis of the Pulkovo 26-inch refractor observations 1982-2013. An invisible satellite of the component A was discovered due to long-term uniform series of observations. Its orbital period is 20 ± 2 years. The known invisible satellite of the component B with near 5 years period was confirmed due to high precision CCD observations. The astrometric orbits of the both components were calculated. The orbits of inner and outer pairs of the pre-main sequence binary T Taury were calculated on the basis of high precision observations by the VLT and on the Keck II Telescope. This weakly hierarchical triple system is stable with probability more than 70%.

  20. MASSIVE INFANT STARS ROCK THEIR CRADLE

    Science.gov (United States)

    2002-01-01

    Extremely intense radiation from newly born, ultra-bright stars has blown a glowing spherical bubble in the nebula N83B, also known as NGC 1748. A new NASA Hubble Space Telescope image has helped to decipher the complex interplay of gas and radiation of a star-forming region in a nearby galaxy. The image graphically illustrates just how these massive stars sculpt their environment by generating powerful winds that alter the shape of the parent gaseous nebula. These processes are also seen in our Milky Way in regions like the Orion Nebula. The Hubble telescope is famous for its contribution to our knowledge about star formation in very distant galaxies. Although most of the stars in the Universe were born several billions of years ago, when the Universe was young, star formation still continues today. This new Hubble image shows a very compact star-forming region in a small part of one of our neighboring galaxies - the Large Magellanic Cloud. This galaxy lies only 165,000 light-years from our Milky Way and can easily be seen with the naked eye from the Southern Hemisphere. Young, massive, ultra-bright stars are seen here just as they are born and emerge from the shelter of their pre-natal molecular cloud. Catching these hefty stars at their birthplace is not as easy as it may seem. Their high mass means that the young stars evolve very rapidly and are hard to find at this critical stage. Furthermore, they spend a good fraction of their youth hidden from view, shrouded by large quantities of dust in a molecular cloud. The only chance is to observe them just as they start to emerge from their cocoon - and then only with very high-resolution telescopes. Astronomers from France, the U.S., and Germany have used Hubble to study the fascinating interplay between gas, dust, and radiation from the newly born stars in this nebula. Its peculiar and turbulent structure has been revealed for the first time. This high-resolution study has also uncovered several individual stars

  1. America's Star Libraries

    Science.gov (United States)

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  2. Superfluid neutron stars

    OpenAIRE

    Langlois, David

    2001-01-01

    Neutron stars are believed to contain (neutron and proton) superfluids. I will give a summary of a macroscopic description of the interior of neutron stars, in a formulation which is general relativistic. I will also present recent results on the oscillations of neutron stars, with superfluidity explicitly taken into account, which leads in particular to the existence of a new class of modes.

  3. A DYING STAR IN GLOBULAR CLUSTER

    Science.gov (United States)

    2002-01-01

    A DYING STAR IN GLOBULAR CLUSTER M15 The globular cluster Messier 15 is shown in this color image obtained with the NASA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2). Lying some 40,000 light-years from Earth in the direction of the constellation Pegasus, M15 is one of nearly 150 known globular clusters that form a vast halo surrounding our Milky Way galaxy. Each of these clusters is a spherical association of hundreds of thousands of ancient stars. The image, prepared by the Hubble Heritage team, attempts to show the stars in M15 in their true colors. The brightest cluster stars are red giants, with an orange color due to surface temperatures lower than our Sun's. Most of the fainter stars are hotter, giving them a bluish-white color. If we lived in the core of M15, our sky would blaze with tens of thousands of brilliant stars both day and night! Nestled among the myriads of stars visible in the Hubble image is an astronomical oddity. The pinkish object to the upper left of the cluster's core is a gas cloud surrounding a dying star. Known as Kuestner 648, this was the first planetary nebula to be identified in a globular cluster. In 1928, F. G. Pease, working at the 100-inch telescope of California's Mount Wilson Observatory, photographed the spectrum of K 648 and discovered the telltale bright emission of a nebular gas cloud rather than a normal star. In the ensuing 70 years, only three more planetary nebulae have been discovered in globular clusters. The stars in M15 and other globular clusters are estimated to be about 12 billion years old. They were among the first generations of stars to form in the Milky Way. Our Sun, by comparison, is a youthful 4.6 billion years old. As a star like the Sun ages, it exhausts the hydrogen that fuels its nuclear fusion, and increases in size to become a red giant. Then it ejects its outer layers into space, producing a planetary nebula. The remnant star at the center of the nebula gradually dies away as a

  4. ADONIS Discovers Dust Disk around a Star with a Planet

    Science.gov (United States)

    2000-10-01

    , HD 210277 and epsilon Eridani . 55 Cancri is another possible candidate under investigation. [3]: Several arguments speak in favour of a disk structure, rather than a (near-)spherical dust halo. A disk is a more stable configuration than a halo. It is also rather unlikely that there would be a dust halo around an otherwise seemingly normal G0 zero-age-main-sequence star like iota Horologii . Moreover, mid-infrared observations with the Infrared Space Observatory (ISO) show an excess of infrared radiation. In the case of a star like iota Horologii , this is indicative of a circumstellar dust disk (the dust emits thermal radiation in the infrared part of the spectrum - hence the radiation from a star with a dust disk is usually relatively stronger in the infrared, as compared to stars without circumstellar dust). Furthermore, radio observations with the SEST at La Silla did not find any molecular carbon monoxide (CO) emission; thus the star did not retain a part of its parent cloud. It is also not located in the proximity of a star-forming region and it is extremely unlikely that there would be material along the line-of-sight that may mimic a halo. The circumstellar dust around iota Horologii is therefore most likely to be arranged in a disk. Technical information about the photo PR Photo 27/00 : The intensity scale ranges from 0.1 (deep red) to 100 (white) mJy/arcsec 2 (surface brightness). The diameter of the mask is 1.0 arcsec, corresponding to 17 AU (2550 million km) at the distance of iota Horologii (56 light-years). The images are based on 150 integrations of 4 seconds each, i.e. a total exposure time of 10 min. The observing conditions were excellent (0.6 arcsec seeing) and the achieved image resolution by the adaptive optics system (approx. 0.11 arcsec) is near the best possible (the "diffraction limit") at this wavelength (H-band at 1.64 µm).

  5. RCW 108: Massive Young Stars Trigger Stellar Birth

    Science.gov (United States)

    2008-01-01

    RCW 108 is a region where stars are actively forming within the Milky Way galaxy about 4,000 light years from Earth. This is a complicated region that contains young star clusters, including one that is deeply embedded in a cloud of molecular hydrogen. By using data from different telescopes, astronomers determined that star birth in this region is being triggered by the effect of nearby, massive young stars. This image is a composite of X-ray data from NASA's Chandra X-ray Observatory (blue) and infrared emission detected by NASA's Spitzer Space Telescope (red and orange). More than 400 X-ray sources were identified in Chandra's observations of RCW 108. About 90 percent of these X-ray sources are thought to be part of the cluster and not stars that lie in the field-of-view either behind or in front of it. Many of the stars in RCW 108 are experiencing the violent flaring seen in other young star-forming regions such as the Orion nebula. Gas and dust blocks much of the X-rays from the juvenile stars located in the center of the image, explaining the relative dearth of Chandra sources in this part of the image. The Spitzer data show the location of the embedded star cluster, which appears as the bright knot of red and orange just to the left of the center of the image. Some stars from a larger cluster, known as NGC 6193, are also visible on the left side of the image. Astronomers think that the dense clouds within RCW 108 are in the process of being destroyed by intense radiation emanating from hot and massive stars in NGC 6193. Taken together, the Chandra and Spitzer data indicate that there are more massive star candidates than expected in several areas of this image. This suggests that pockets within RCW 108 underwent localized episodes of star formation. Scientists predict that this type of star formation is triggered by the effects of radiation from bright, massive stars such as those in NGC 6193. This radiation may cause the interior of gas clouds in RCW 108 to

  6. Presence of mixed modes in red giants in binary systems

    Science.gov (United States)

    Themeßl, Nathalie; Hekker, Saskia; Elsworth, Yvonne

    2017-10-01

    The frequencies of oscillation modes in stars contain valueable information about the stellar properties. In red giants the frequency spectrum also contains mixed modes, with both pressure (p) and gravity (g) as restoring force, which are key to understanding the physical conditions in the stellar core. We observe a high fraction of red giants in binary systems, for which g-dominated mixed modes are not pronounced. This trend leads us to investigate whether this is specific for binary systems or a more general feature. We do so by comparing the fraction of stars with only p-dominated mixed modes in binaries and in a larger set of stars from the APOKASC sample. We find only p-dominated mixed modes in about 50% of red giants in detached eclipsing binaries compared to about 4% in the large sample. This could indicate that this phenomenon is tightly related to binarity and that the binary fraction in the APOKASC sample is about 8%.

  7. THE OVERLOOKED ROLE OF STELLAR VARIABILITY IN THE EXTENDED MAIN SEQUENCE OF LMC INTERMEDIATE-AGE CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Salinas, R. [Gemini Observatory, Casilla 603, La Serena (Chile); Pajkos, M. A. [Department of Physics and Astronomy, Butler University, Indianapolis, IN 46208 (United States); Strader, J. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Vivas, A. K. [Cerro Tololo Interamerican Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena (Chile); Ramos, R. Contreras, E-mail: rsalinas@gemini.edu [Millennium Institute of Astrophysics, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago (Chile)

    2016-11-20

    Intermediate-age star clusters in the Large Magellanic Cloud show extended main sequence turnoffs (MSTOs) that are not consistent with a canonical single stellar population. These broad turnoffs have been interpreted as evidence for extended star formation and/or stellar rotation. Since most of these studies use single frames per filter to do the photometry, the presence of variable stars near the MSTO in these clusters has remained unnoticed and their impact has been totally ignored. We model the influence of Delta Scuti using synthetic CMDs, adding variable stars following different levels of incidence and amplitude distributions. We show that Delta Scuti observed at a single phase will produce a broadening of the MSTO without affecting other areas of a CMD such as the upper MS or the red clump; furthermore, the amount of spread introduced correlates with cluster age, as observed. This broadening is constrained to ages ∼1–3 Gyr when the MSTO area crosses the instability strip, which is also consistent with observations. Variable stars cannot explain bifurcarted MSTOs or the extended MSTOs seen in some young clusters, but they can make an important contribution to the extended MSTOs in intermediate-age clusters.

  8. Massive star evolution: Luminous Blue Variables as unexpected Supernova progenitors

    OpenAIRE

    Groh, Jose H.; Meynet, Georges; Ekström, Sylvia

    2013-01-01

    Stars more massive than about 8 Msun end their lives as a Supernova (SN), an event of fundamental importance Universe-wide. Theoretically, these stars have been expected to be either at the red supergiant, blue supergiant, or Wolf-Rayet stage before the explosion. We performed coupled stellar evolution and atmospheric modeling of stars with initial masses between 20 Msun and 120 Msun. We found that the 20 Msun and 25 Msun rotating models, before exploding as SN, have spectra that do not resem...

  9. Stars Too Old to be Trusted?

    Science.gov (United States)

    2006-08-01

    different stages of evolution in the metal-poor globular cluster NGC 6397. Globular clusters [4] are useful laboratories in this respect, as all the stars they contain have identical age and initial chemical composition. The diffusion effects are predicted to vary with evolutionary stage. Therefore, measured atmospheric abundance trends with evolutionary stage are a signature of diffusion. Eighteen stars were observed for between 2 and 12 hours with the multi-object spectrograph FLAMES-UVES on ESO's Very Large Telescope. The FLAMES spectrograph is ideally suited as it allows astronomers to obtain spectra of many stars at a time. Even in a nearby globular cluster like NGC 6397, the unevolved stars are very faint and require rather long exposure times. The observations clearly show systematic abundance trends along the evolutionary sequence of NGC 6397, as predicted by diffusion models with extra mixing. Thus, the abundances measured in the atmospheres of old stars are not, strictly speaking, representative of the gas the stars originally formed from. "Once this effect is corrected for, the abundance of lithium measured in old, unevolved stars agrees with the cosmologically predicted value", said Korn. "The cosmological lithium discrepancy is thus largely removed." "The ball is now in the camp of the theoreticians," he added. "They have to identify the physical mechanism that is at the origin of the extra mixing."

  10. On star-C-menger spaces | Song | Quaestiones Mathematicae

    African Journals Online (AJOL)

    A space X is star-C-Menger if for each sequence (Un : n ∈ N) of open covers of X there exists a sequence (Ksub>n : n ∈ N) of countably compact subsets of X such that {St(Kn; Un) : n ∈ N} is an open cover of X. In this paper, we investigate the relationship between star-C-Menger spaces and related spaces, and study ...

  11. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos

    2003-01-01

    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  12. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Nikolaos Stergioulas

    1998-06-01

    Full Text Available Because of the information they can yield about the equation of state of matter at extremely high densities and because they are one of the more possible sources of detectable gravitational waves, rotating relativistic stars have been receiving significant attention in recentyears. We review the latest theoretical and numerical methods for modeling rotating relativistic stars, including stars with a strong magnetic field and hot proto-neutron stars. We also review nonaxisymmetric oscillations and instabilities in rotating stars and summarize the latest developments regarding the gravitational wave-driven (CFS instability in both polar and axial quasi-normal modes.

  13. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2015-01-01

    Most elements are synthesized, or ""cooked"", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book

  14. HD 38452 - J. R. Hind's star that changed colour

    Science.gov (United States)

    Warner, Brian; Sneden, Christopher

    1988-01-01

    In 1851, John Russell Hind announced that a star previously observed by him to be very red had become bluish white in color. It is shown that this star, HD 38451, is a ninth magnitude shell star which presumably was ejecting a shell when Hind first observed it. From high dispersion coude spectra, low dispersion IUE spectra, and ground-based photometry, HD 38451 is found to be a normal A21V shell star. Its current values of E(B-V) of about 0.14 is probably caused by interstellar rather than circumstellar reddening. There remains a problem to reconcile the large amount of reddening present when Hind first observed the star with its evidently small diminution in visual brightness at that time.

  15. The Fundamental Properties of Young Stars

    Science.gov (United States)

    Czekala, Ian

    Accurate knowledge of the fundamental properties of stars--mass, temperature, and luminosity--is key to our understanding of stellar evolution. In particular, empirical measurements of stellar mass are difficult to make and are generally limited to stars that dynamically interact with a companion (e.g., eclipsing or astrometric binaries), a precious but ultimately small sample. We developed a technique that uses the rotation of the protoplanetary disk--a consequence of the star formation process still present around many pre-main sequence stars--to measure the stellar mass. To establish the absolute accuracy of this technique, in ALMA Cycle 1/2 we observed the few circumbinary disks around double-lined spectroscopic binary stars, enabling an independent confirmation of the total stellar mass. This comparison with radial-velocity results demonstrates that the disk-based dynamical mass technique can reliably achieve precise measurements of stellar mass on the order of 2-5%, clearing the way for widespread application of this technique to measure the masses of single stars. We discuss our calibration in the context of two sources, AK Sco and DQ Tau. Second, we developed novel statistical techniques for spectroscopic inference. Young stars exhibit rich and variable spectra; although interesting phenomena in their own right, accretion veiling and star spots complicate the retrieval of accurate photospheric properties. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high signal-to-noise data with large spectral range that is commonly employed in stellar astrophysics, that covariant structure can lead to dramatically underestimated parameter uncertainties (and, in some cases, biases). We construct a likelihood function that accounts for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. This framework

  16. Variable Stars in the Globular Cluster M 80

    Science.gov (United States)

    Kopacki, G.

    2013-03-01

    We present results of a search for variable stars in the globular cluster M 80. Application of the image subtraction method to the ground-based times-series of CCD frames resulted in finding nine new RR Lyr stars, six of the RRc and three of the RRab type, and four SX Phe variables. Revised mean period of RRab stars, ab=0.68 d, and relative percentage of RRc stars, Nc/(Nab+Nc)=53%, strongly confirm that M 80 belongs to the Oosterhoff II group of globular clusters. The mean V magnitude of the horizontal branch of M 80 based on the ten RR Lyr stars has been estimated to be VHB=RR=16.14±0.03 mag. In two pulsating stars, one of the RR Lyr type and the other of the SX Phe type, oscillations with two close frequencies were detected, indicating excitation of nonradial modes in these stars. Moreover, we discovered two W UMa or ellipsoidal systems, two periodic stars of unknown type, one of which is probably a field star, and detected light variations in three red giants of the cluster.

  17. Estimating the Binary Fraction of Central Stars of Planetary Nebulae

    Science.gov (United States)

    Douchin, Dimitri

    2015-01-01

    Planetary nebulae are the end-products of intermediate-mass stars evolution, following a phase of expansion of their atmospheres at the end of their lives. Observationally, it has been estimated that 80% of them have non-spherical shapes. Such a high fraction is puzzling and has occupied the planetary nebula community for more than 30 years. One scenario that would allow to justify the observed shapes is that a comparable fraction of the progenitors of central stars of planetary nebula (CSPN) are not single, but possess a companion. The shape of the nebulae would then be the result of an interaction with this companion. The high fraction of non-spherical planetary nebulae would thus imply a high fraction of binary central stars of planetary nebulae, making binarity a preferred channel for planetary nebula formation. After presenting the current state of knowledge regarding planetary nebula formation and shaping and reviewing the diverse efforts to find binaries in planetary nebulae, I present my work to detect a near-infrared excess that would be the signature of the presence of cool companions. The first part of the project consists in the analysis of data and photometry acquired and conducted by myself. The second part details an attempt to make use of archived datasets: the Sloan Digital Sky Survey Data Release 7 optical survey and the extended database assembled by Frew (2008). I also present results from a radial velocity analysis of VLT/UVES spectra for 14 objects aiming to the detection of spectroscopic companions. Finally I give details of the analysis of optical photometry data from our observations associated to the detection of companions around central stars of planetary nebulae using the photometric variability technique. The main result of this thesis is from the near-infrared excess studies which I combine with previously published data. I conclude that if the detected red and NIR flux excess is indicative of a stellar companion then the binary

  18. Stellar parameters for stars of the CoRoT exoplanet field

    Science.gov (United States)

    Cortés, C.; Maciel, S. C.; Vieira, S.; Ferreira Lopes, C. E.; Leão, I. C.; de Oliveira, G. P.; Correia, C.; Canto Martins, B. L.; Catelan, M.; De Medeiros, J. R.

    2015-09-01

    sample are located in different evolutionary stages, ranging from the main sequence to the red giant branch, and range in spectral type from F to K. The physical and chemical properties for the stellar sample are in agreement with typical values reported for FGK stars. However, we report three stars presenting abnormal lithium behavior in the CoRoT fields. These parameters allow us to properly characterize the intrinsic properties of the stars in these fields. Our results reveal important differences in the distributions of metallicity, Teff, and evolutionary status for stars belonging to different CoRoT fields, in agreement with results obtained independently from ground-based photometric surveys. Conclusions: Our spectroscopic catalog, by providing much-needed spectroscopic information for a large sample of CoRoT targets, will be of key importance for the successful accomplishment of several different programs related to the CoRoT mission, thus it will help further boost the scientific return associated with this space mission. Based on observations obtained with the UVES (VLT/UT2 ESO program 077.D-0446A) and Hydra/Blanco 4m (CTIO-NOAO program P#9005) spectrographs.

  19. The evolution of red supergiants to supernovae

    Science.gov (United States)

    Beasor, Emma R.; Davies, Ben

    2017-11-01

    With red supergiants (RSGs) predicted to end their lives as Type IIP core collapse supernova (CCSN), their behaviour before explosion needs to be fully understood. Mass loss rates govern RSG evolution towards SN and have strong implications on the appearance of the resulting explosion. To study how the mass-loss rates change with the evolution of the star, we have measured the amount of circumstellar material around 19 RSGs in a coeval cluster. Our study has shown that mass loss rates ramp up throughout the lifetime of an RSG, with more evolved stars having mass loss rates a factor of 40 higher than early stage RSGs. Interestingly, we have also found evidence for an increase in circumstellar extinction throughout the RSG lifetime, meaning the most evolved stars are most severely affected. We find that, were the most evolved RSGs in NGC2100 to go SN, this extra extinction would cause the progenitor's initial mass to be underestimated by up to 9M⊙.

  20. Amplitudes of solar-like oscillations in red giants: Departures from the quasi-adiabatic approximation

    Directory of Open Access Journals (Sweden)

    Barban C.

    2013-03-01

    Full Text Available CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not yet fully understood but constitutes potentially a powerful diagnostic about mode physics. Quasi-adiabatic theoretical scaling relations in terms of mode amplitudes result in systematic and large differences with the measurements performed for red giant stars. The use of a non-adiabatic intensity-velocity relation derived from a non-adiabatic pulsation code significantly reduces the discrepancy with the CoRoT measurements. The origin of the remaining difference is still unknown. Departure from adiabatic eigenfunction is a very likely explanation that is investigated in the present work using a 3D hydrodynamical model of the surface layers of a representative red giant star.

  1. Star Formation, Quenching And Chemical Enrichment In Local Galaxies From Integral Field Spectroscopy

    Science.gov (United States)

    Belfiore, Francesco

    2017-08-01

    Within the currently well-established ΛCDM cosmological framework we still lack a satisfactory understanding of the processes that trigger, regulate and eventually quench star formation on galactic scales. Gas flows (including inflows from the cosmic web and supernovae-driven outflows) are considered to act as self-regulatory mechanisms, generating the scaling relations between stellar mass, star formation rate and metallicity observed in the local Universe by large spectroscopic surveys. These surveys, however, have so far been limited by the availability of only one spectrum per galaxy. The aim of this dissertation is to expand the study of star formation and chemical abundances to resolved scales within galaxies by using integral field spectroscopy (IFS) data, mostly from the ongoing SDSS-IV MaNGA survey. In the first part of this thesis I demonstrate the ubiquitous presence of extended low ionisation emission-line regions (LIERs) in both late- and early-type galaxies. By studying the Hα equivalent width and diagnostic line ratios radial profiles, together with tracers of the underlying stellar population, I show that LIERs are not due to a central point source but to hot evolved (post-asymptotic giant branch) stars. In light of this, I suggest a new classification scheme for galaxies based on their line emission. By analysing the colours, star formation rates, morphologies, gas and stellar kinematics and environmental properties of galaxies with substantial LIER emission, I identify two distinct populations. Galaxies where the central regions are LIER-like, but show star formation at larger radii are late types in which star formation is slowly quenched inside-out. This transformation is associated with massive bulges. Galaxies dominated by LIER emission at all radii, on the other hand, are red-sequence galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Quiescent galaxies devoid of line emission reside in denser

  2. The evolution of massive stars: bridging the gap in the Local Group.

    Science.gov (United States)

    Massey, Philip; Neugent, Kathryn F; Levesque, Emily M

    2017-10-28

    The nearby galaxies of the Local Group can act as our laboratories in helping to bridge the gap between theory and observations. In this review, we will describe the complications of identifying samples of OB stars, yellow and red supergiants, and Wolf-Rayet stars, and what we have so far learned from these studies.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  3. CHARACTERIZATION OF THE MOST LUMINOUS STAR IN M33: A SUPER SYMBIOTIC BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Mikołajewska, Joanna; Iłkiewicz, Krystian [N. Copernicus Astronomical Center, Bartycka 18, PL 00-716 Warsaw (Poland); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Shara, Michael M., E-mail: mikolaj@camk.edu.pl [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States)

    2015-01-30

    We present the first spectrum of the most luminous infrared star in M33, and use it to demonstrate that the object is almost certainly a binary composed of a massive O star and a dust-enshrouded red hypergiant. This is the most luminous symbiotic binary ever discovered. Its radial velocity is an excellent match to that of the hydrogen gas in the disk of M33, supporting our interpretation that it is a very young and massive binary star.

  4. Massive Star and Star Cluster Formation

    OpenAIRE

    Tan, Jonathan C.

    2006-01-01

    I review the status of massive star formation theories: accretion from collapsing, massive, turbulent cores; competitive accretion; and stellar collisions. I conclude the observational and theoretical evidence favors the first of these models. I then discuss: the initial conditions of star cluster formation as traced by infrared dark clouds; the cluster formation timescale; and comparison of the initial cluster mass function in different galactic environments.

  5. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira

    2015-09-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic development of miktoarm star polymers since 2000. At the present time, the almost all types of multiarmed and multicomponent miktoarm star polymers have become feasible by using recently developed iterative strategy. For example, the following well-defined stars have been successfully synthesized: 3-arm ABC, 4-arm ABCD, 5-arm ABCDE, 6-arm ABCDEF, 7-arm ABCDEFG, 6-arm ABC, 9-arm ABC, 12-arm ABC, 13-arm ABCD, 9-arm AB, 17-arm AB, 33-arm AB, 7-arm ABC, 15-arm ABCD, and 31-arm ABCDE miktoarm star polymers, most of which are quite new and difficult to synthesize by the end of the 1990s. Several new specialty functional star polymers composed of vinyl polymer segments and rigid rodlike poly(acetylene) arms, helical polypeptide, or helical poly(hexyl isocyanate) arms are introduced.

  6. Dark stars: a review.

    Science.gov (United States)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  7. T-ReX Spies the Stars of 30 Doradus

    Science.gov (United States)

    Broos, Patrick; Townsley, Leisa K.; Pollock, Andrew; Crowther, Paul

    2017-08-01

    30 Doradus (the Tarantula Nebula) is the Local Group's most massive young star-forming complex. At its heart is R136, the most massive resolved stellar cluster; R136 contains, in turn, the most massive stars known. The Chandra X-ray Observatory has recently observed 30 Dor for the 2-megasecond X-ray Visionary Project ``The Tarantula -- Revealed by X-rays'' (T-ReX). This deep observation exploits Chandra's fine spatial resolution to study the full complement of massive stars and the brightest pre-main sequence stars that trace 25 Myrs of star formation in this incomparable nearby starburst. Here we give preliminary results from the ongoing analyses of the data, focusing on the massive stars. While many remain undetected even in this deep ACIS-I observation, a few show dramatic X-ray lightcurves and/or high luminosities befitting this amazing starburst cluster.

  8. On the mass distribution of stars in the solar neighborhood

    Directory of Open Access Journals (Sweden)

    Ninković S.

    2006-01-01

    Full Text Available The present authors analyze samples consisting of Hipparcos stars. Based on the corresponding HR diagrams they estimate masses of Main-Sequence stars from their visual magnitudes. They find that already beyond the heliocentric radius of 10 pc the effects of observational selection against K and M dwarfs become rather strong. For this reason the authors are inclined to think that the results concerning this heliocentric sphere appear as realistic, i. e. the fraction of low-mass stars (under half solar mass is about 50% and, as a consequence, the mean star mass should be about 0.6 solar masses and Agekyan's factor about 1.2. That stars with masses higher than 5 M○ are very rare is confirmed also from the data concerning more remote stars. It seems that white dwarfs near the Sun are not too frequent so that their presence cannot affect the main results of the present work significantly.

  9. The Chemical Composition Contrast between M3 and M13 Revisited: New Abundances for 28 Giant Stars in M3

    Science.gov (United States)

    Sneden, Christopher; Kraft, Robert P.; Guhathakurta, Puragra; Peterson, Ruth C.; Fulbright, Jon P.

    2004-04-01

    We report new chemical abundances of 23 bright red giant members of the globular cluster M3, based on high-resolution (R~45,000) spectra obtained with the Keck I telescope. The observations, which involve the use of multislits in the HIRES Keck I spectrograph, are described in detail. Combining these data with a previously reported small sample of M3 giants obtained with the Lick 3 m telescope, we compare metallicities and [X/Fe] ratios for 28 M3 giants with a 35-star sample in the similar-metallicity cluster M13, and with Galactic halo field stars having [Fe/H]=A(Si), we derive little difference in [X/Fe] ratios in the M3, M13, or halo field samples. All three groups exhibit C depletion with advancing evolutionary state beginning at the level of the red giant branch ``bump,'' but the overall depletion of about 0.7-0.9 dex seen in the clusters is larger than that associated with the field stars. The behaviors of O, Na, Mg, and Al are distinctively different among the three stellar samples. Field halo giants and subdwarfs have a positive correlation of Na with Mg, as predicted from explosive or hydrostatic carbon burning in Type II supernova sites. Both M3 and M13 show evidence of high-temperature proton-capture synthesis from the ON, NeNa, and MgAl cycles, while there is no evidence for such synthesis among halo field stars. But the degree of such extreme proton-capture synthesis in M3 is smaller than it is in M13: the M3 giants exhibit only modest deficiencies of O and corresponding enhancements of Na, less extreme overabundances of Al, fewer stars with low Mg and correspondingly high Na, and no indication that O depletions are a function of advancing evolutionary state, as has been claimed for M13. We have also considered NGC 6752, for which Mg isotopic abundances have been reported by Yong et al. Giants in NGC 6752 and M13 satisfy the same anticorrelation of O abundances with the ratio (25Mg+26Mg)/24Mg, which measures the relative contribution of rare to

  10. Star formation is boosted (and quenched) from the inside-out: radial star formation profiles from MaNGA

    Science.gov (United States)

    Ellison, Sara L.; Sánchez, Sebastian F.; Ibarra-Medel, Hector; Antonio, Braulio; Mendel, J. Trevor; Barrera-Ballesteros, Jorge

    2018-02-01

    The tight correlation between total galaxy stellar mass and star formation rate (SFR) has become known as the star-forming main sequence. Using ˜487 000 spaxels from galaxies observed as part of the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we confirm previous results that a correlation also exists between the surface densities of star formation (ΣSFR) and stellar mass (Σ⋆) on kpc scales, representing a `resolved' main sequence. Using a new metric (ΔΣSFR), which measures the relative enhancement or deficit of star formation on a spaxel-by-spaxel basis relative to the resolved main sequence, we investigate the SFR profiles of 864 galaxies as a function of their position relative to the global star-forming main sequence (ΔSFR). For galaxies above the global main sequence (positive ΔSFR) ΔΣSFR is elevated throughout the galaxy, but the greatest enhancement in star formation occurs at small radii (<3 kpc, or 0.5Re). Moreover, galaxies that are at least a factor of 3 above the main sequence show diluted gas phase metallicities out to 2Re, indicative of metal-poor gas inflows accompanying the starbursts. For quiescent/passive galaxies that lie at least a factor of 10 below the star-forming main sequence, there is an analogous deficit of star formation throughout the galaxy with the lowest values of ΔΣSFR in the central 3 kpc. Our results are in qualitative agreement with the `compaction' scenario in which a central starburst leads to mass growth in the bulge and may ultimately precede galactic quenching from the inside-out.

  11. Röntgen spheres around active stars

    Science.gov (United States)

    Locci, Daniele; Cecchi-Pestellini, Cesare; Micela, Giuseppina; Ciaravella, Angela; Aresu, Giambattista

    2018-01-01

    X-rays are an important ingredient of the radiation environment of a variety of stars of different spectral types and age. We have modelled the X-ray transfer and energy deposition into a gas with solar composition, through an accurate description of the electron cascade following the history of the primary photoelectron energy deposition. We test and validate this description studying the possible formation of regions in which X-rays are the major ionization channel. Such regions, called Röntgen spheres may have considerable importance in the chemical and physical evolution of the gas embedding the emitting star. Around massive stars the concept of Röntgen sphere appears to be of limited use, as the formation of extended volumes with relevant levels of ionization is efficient just in a narrow range of gas volume densities. In clouds embedding low-mass pre-main-sequence stars significant volumes of gas are affected by ionization levels exceeding largely the cosmic-ray background ionization. In clusters arising in regions of vigorous star formation X-rays create an ionization network pervading densely the interstellar medium, and providing a natural feedback mechanism, which may affect planet and star formation processes.

  12. Why is the Main Sequence of NGC 2482 So Fat?

    Science.gov (United States)

    Krisciunas, Kevin; Suntzeff, Nicholas B.; Nagasawa, Daniel Q.; Johnson, Marshall C.; Cochran, William; Endl, Michael

    2017-12-01

    We present the results of high resolution spectra of seven stars in the field of NGC 2482, an open star cluster of age 447 Myr. We confirm the previously published values of the radial velocity and metallicity of one giant star. This gives us confidence that another giant star is a bona fide cluster member, and that three stars significantly above the main sequence in a color-magnitude diagram are not members, on the basis of discordant radial velocities. Another star ~1.7 mag above the main sequence may or may not be a member. Its [Fe/H] value is ~0.1 dex more positive than two giant stars studied, and its radial velocity is 3-4 km/s less than that of the two giant stars, which is a significant difference if the velocity dispersion of the cluster is less than +/-1 km/s. To a large extent the width of the main sequence seems to be due to the presence of foreground and background stars in the same general direction, stars that masquerade as main sequence stars in the cluster.

  13. Isolated Neutron Stars

    Directory of Open Access Journals (Sweden)

    Popov S.

    2010-10-01

    Full Text Available Several aspects related to astrophysics of isolated neutron stars are discussed. We start with an introduction into the “new zoo” of young isolated neutron stars. In addition to classical radio pulsars, now we know several species (soft gamma-ray repeators, anomalous X-ray pulsars, central compact objects in supernova remnants, close-by cooling neutron stars - aka “Magnificent seven”, - RRATs, and some others. All these types are briefly discussed. In the second lecture a description of magneto-rotational evolution of neutron stars is given. Finally, in the third lecture we discuss population synthesis of isolated neutron stars. In some details we discuss population synthesis of young isolated radio pulsars and young close-by cooling neutron stars.

  14. Do all barium stars have a white dwarf companion?

    Science.gov (United States)

    Dominy, J. F.; Lambert, D. L.

    1983-01-01

    International Ultraviolet Explorer short-wavelength, low-dispersion spectra were analyzed for four barium, two mild barium, and one R-type carbon star in order to test the hypothesis that the barium and related giants are produced by mass transfer from a companion now present as a white dwarf. An earlier tentative identification of a white dwarf companion to the mild barium star Zeta Cyg is confirmed. For the other stars, no ultraviolet excess attributable to a white dwarf is seen. Limits are set on the bolometric magnitude and age of a possible white dwarf companion. Since the barium stars do not have obvious progenitors among main-sequence and subgiant stars, mass transfer must be presumed to occur when the mass-gaining star is already on the giant branch. This restriction, and the white dwarf's minimum age, which is greater than 8 x 10 to the 8th yr, determined for several stars, effectively eliminates the hypothesis that mass transfer from an asymptotic giant branch star creates a barium star. Speculations are presented on alternative methods of producing a barium star in a binary system.

  15. Chemical Analysis of Asymptotic Giant Branch Stars in M62

    NARCIS (Netherlands)

    Lapenna, E.; Mucciarelli, A.; Ferraro, F. R.; Origlia, L.; Lanzoni, B.; Massari, D.; Dalessandro, E.

    2015-01-01

    We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster (GC) M62 (NGC 6266). Here we present the detailed abundance analysis of iron, titanium, and light elements (O, Na, Mg, and Al).

  16. The Theatre of stars

    Science.gov (United States)

    Cavedon, M.; Peri, F.

    Planetariums are special instruments in education and didactics of Astronomy and Astrophysics. Since 1930 the Planetarium of Milan, the most important planetarium in Italy, has played a fundamental role in outreach to the public. Italian tradition always preferred didactics in ``live'' lessons. Now technology expands the potential of the star projector and the theatre of stars is a real window on the universe, where you can travel among the stars and galaxies, to reach the boundaries of space and time.

  17. Why Stars Matter

    OpenAIRE

    Ajay K. Agrawal; John McHale; Alex Oettl

    2014-01-01

    The growing peer effects literature pays particular attention to the role of stars. We decompose the causal effect of hiring a star in terms of the productivity impact on: 1) co-located incumbents and 2) new recruits. Using longitudinal university department-level data we report that hiring a star does not increase overall incumbent productivity, although this aggregate effect hides offsetting effects on related (positive) versus unrelated (negative) colleagues. However, the primary impact co...

  18. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  19. ALMA observations of the nearby AGB star L2 Puppis. I. Mass of the central star and detection of a candidate planet

    Science.gov (United States)

    Kervella, P.; Homan, W.; Richards, A. M. S.; Decin, L.; McDonald, I.; Montargès, M.; Ohnaka, K.

    2016-12-01

    Six billion years from now, while evolving on the asymptotic giant branch (AGB), the Sun will metamorphose from a red giant into a beautiful planetary nebula. This spectacular evolution will impact the solar system planets, but observational confirmations of the predictions of evolution models are still elusive as no planet orbiting an AGB star has yet been discovered. The nearby AGB red giant L2 Puppis (d = 64 pc) is surrounded by an almost edge-on circumstellar dust disk. We report new observations with ALMA at very high angular resolution (18 × 15 mas) in band 7 (ν ≈ 350 GHz) that allow us to resolve the velocity profile of the molecular disk. We establish that the gas velocity profile is Keplerian within the central cavity of the dust disk, allowing us to derive the mass of the central star L2 Pup A, mA = 0.659 ± 0.011 ± 0.041 M⊙ (± 6.6%). From evolutionary models, we determine that L2 Pup A had a near-solar main-sequence mass, and is therefore a close analog of the future Sun in 5 to 6 Gyr. The continuum map reveals a secondary source (B) at a radius of 2 AU contributing fB/fA = 1.3 ± 0.1% of the flux of the AGB star. L2 Pup B is also detected in CO emission lines at a radial velocity of vB = 12.2 ± 1.0 km s-1. The close coincidence of the center of rotation of the gaseous disk with the position of the continuum emission from the AGB star allows us to constrain the mass of the companion to mB = 12 ± 16 MJup. L2 Pup B is most likely a planet or low-mass brown dwarf with an orbital period of about five years. Its continuum brightness and molecular emission suggest that it may be surrounded by an extended molecular atmosphere or an accretion disk. L2 Pup therefore emerges as a promising vantage point on the distant future of our solar system.

  20. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  1. Strange Nonchaotic Stars

    Science.gov (United States)

    Lindner, John F.; Kohar, Vivek; Kia, Behnam; Hippke, Michael; Learned, John G.; Ditto, William L.

    2015-08-01

    Exploiting the unprecedented capabilities of the planet-hunting Kepler space telescope, which stared at 150 000 stars for four years, we discuss recent evidence that certain stars dim and brighten in complex patterns with fractal features. Such stars pulsate at primary and secondary frequencies whose ratios are near the famous golden mean, the most irrational number. A nonlinear system driven by an irrational ratio of frequencies is generically attracted toward a “strange” behavior that is geometrically fractal without displaying the “butterfly effect” of chaos. Strange nonchaotic attractors have been observed in laboratory experiments and have been hypothesized to describe the electrochemical activity of the brain, but a bluish white star 16 000 light years from Earth in the constellation Lyra may manifest, in the scale-free distribution of its minor frequency components, the first strange nonchaotic attractor observed in the wild. The recognition of stellar strange nonchaotic dynamics may improve the classification of these stars and refine the physical modeling of their interiors. We also discuss nonlinear analysis of other RR Lyrae stars in Kepler field of view and discuss some toy models for modeling these stars.References: 1) Hippke, Michael, et al. "Pulsation period variations in the RRc Lyrae star KIC 5520878." The Astrophysical Journal 798.1 (2015): 42.2) Lindner, John F., et al. "Strange nonchaotic stars." Phys. Rev. Lett. 114, 054101 (2015)

  2. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jian-Ying; Ibragimov, Rashid

    2013-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting...... tree is isomorphic to T? We prove that in the general setting, CST is NP-complete, which implies that the tree edit distance considered here is also NP-hard, even when both input trees having diameters bounded by 10. We also show that, when the number of distinct stars is bounded by a constant k, CTS...

  3. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jiong; Ibragimov, Rashid

    2015-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting...... tree is isomorphic to T? We prove that in the general setting, CST is NP-complete, which implies that the tree edit distance considered here is also NP-hard, even when both input trees having diameters bounded by 10. We also show that, when the number of distinct stars is bounded by a constant k, CTS...

  4. ENERGY STAR Unit Reports

    Data.gov (United States)

    Department of Housing and Urban Development — These quarterly Federal Fiscal Year performance reports track the ENERGY STAR qualified HOME units that