WorldWideScience

Sample records for red algal genus

  1. Are all red algal parasites cut from the same cloth?

    Directory of Open Access Journals (Sweden)

    Eric D. Salomaki

    2014-12-01

    Full Text Available Parasitism is a common life strategy throughout the eukaryotic tree of life. Many devastating human pathogens, including the causative agents of malaria and toxoplasmosis, have evolved from a photosynthetic ancestor. However, how an organism transitions from a photosynthetic to a parasitic life history strategy remains mostly unknown. This is largely because few systems present the opportunity to make meaningful comparisons between a parasite and a close free-living relative. Parasites have independently evolved dozens of times throughout the Florideophyceae (Rhodophyta, and often infect close relatives. The accepted evolutionary paradigm proposes that red algal parasites arise by first infecting a close relative and over time diversify and infect more distantly related species. This provides a natural evolutionary gradient of relationships between hosts and parasites that share a photosynthetic common ancestor. Elegant microscopic work in the late 20th century provided detailed insight into the infection cycle of red algal parasites and the cellular interactions between parasites and their hosts. Those studies led to the use of molecular work to further investigate the origins of the parasite organelles and reveal the evolutionary relationships between hosts and their parasites. Here we synthesize the research detailing the infection methods and cellular interactions between red algal parasites and their hosts. We offer an alternative hypothesis to the current dogma of red algal parasite evolution and propose that red algae can adopt a parasitic life strategy through multiple evolutionary pathways, including direct infection of distant relatives. Furthermore, we highlight potential directions for future research to further evaluate parasite evolution in red algae.

  2. Molecular markers from three organellar genomes unravel complex taxonomic relationships within the coralline algal genus Chiharaea (Corallinales, Rhodophyta).

    Science.gov (United States)

    Hind, Katharine R; Saunders, Gary W

    2013-05-01

    The use of molecular markers in taxonomic studies has become a standard practice in biology. However, consensus on which markers to use at the species level is lacking because evolutionary lineages show differences in divergence rates between organellar genomes. Ideally, researchers use multiple lines of evidence when first describing a species, such as the incorporation of several molecular markers from varied genomes (mitochondrion, plastid and nucleus). This study examined species boundaries in the red algal genus Chiharaea. We used five molecular markers, with at least one marker from each genome, coupled with thorough morphological analyses. We recognized three species in Chiharaea (C.americana, C. rhododactyla sp. nov., C. silvae) and two forms (C. americana f. americana and C. americana f. bodegensis (H.W. Johansen) stat. nov.). For C. americana f. americana and C. americana f. bodegensis differentiation based on morphological data was reflected in the plastid-encoded large subunit of RuBisCO (rbcL), but was not concordant with either the mitochondrial cytochrome c oxidase subunit 1 (COI-5P) or nuclear internal transcribed spacer (ITS) sequence data. We suggest that this discordance is indicative of ongoing hybridization and introgression between populations of C. americana f. americana and C. americana f. bodegensis. In addition, we used a PCR assay with ITS specific primers to amplify multiple ITS variants for collections assignable to C. americana indicating that there is genetic variability within ITS copies most likely due to introgression, crossing over and/or the retention of ancestral variants. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin

    KAUST Repository

    Burki, Fabien

    2012-05-16

    The transition from endosymbiont to organelle in eukaryotic cells involves the transfer of significant numbers of genes to the host genomes, a process known as endosymbiotic gene transfer (EGT). In the case of plastid organelles, EGTs have been shown to leave a footprint in the nuclear genome that can be indicative of ancient photosynthetic activity in present-day plastid-lacking organisms, or even hint at the existence of cryptic plastids. Here,we evaluated the impact of EGTon eukaryote genomes by reanalyzing the recently published EST dataset for Chromera velia, an interesting test case of a photosynthetic alga closely related to apicomplexan parasites. Previously, 513 genes were reported to originate from red and green algae in a 1:1 ratio. In contrast, by manually inspecting newly generated trees indicating putative algal ancestry, we recovered only 51 genes congruent with EGT, of which 23 and 9 were of red and green algal origin, respectively,whereas 19 were ambiguous regarding the algal provenance.Our approach also uncovered 109 genes that branched within a monocot angiosperm clade, most likely representing a contamination. We emphasize the lack of congruence and the subjectivity resulting from independent phylogenomic screens for EGT, which appear to call for extreme caution when drawing conclusions for major evolutionary events. 2012 The Author(s).

  4. Printing of cotton with eco-friendly, red algal pigment from Gracilaria sp.

    Science.gov (United States)

    Moldovan, S.; Ferrandiz, M.; Franco, E.; Mira, E.; Capablanca, L.; Bonet, Mª

    2017-10-01

    Natural dyes represent an emerging trend in the textile industry and eco-fashion due to the increasing awareness of the sustainability concept, which must be applied to the surrounding environment. In the light of the stated problem, the search for alternative sources of dyes, revealed the new, eco-friendly, biodegradable, non-carcinogenic and sustainable colorant matter, the algal biomass. In the present work, the suitability and viability of printing cotton fabrics with pigments obtained from the red macroalgae Gracilaria sp., has been investigated. For this aim, phycoerythrin, the red pigment, was extracted from fresh algal biomass, and used in a laboratory pigment-printing process, employing a natural and synthetic printing paste, for process efficiency comparison. The color values and the rubbing and laundering fastness of the printed substrates were evaluated. Results show that a light pink color can be obtained when applying both tested printing processes, and in terms of color fastness, both printing pastes show good behavior. In conclusion, the algal pigments show a high printing capacity on cotton substrates, either when employing the synthetic conventional paste and; moreover, when applying the more sustainable and eco-friendly natural paste.

  5. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers.

    Directory of Open Access Journals (Sweden)

    Jan Janouškovec

    Full Text Available Red algae have the most gene-rich plastid genomes known, but despite their evolutionary importance these genomes remain poorly sampled. Here we characterize three complete and one partial plastid genome from a diverse range of florideophytes. By unifying annotations across all available red algal plastid genomes we show they all share a highly compact and slowly-evolving architecture and uniquely rich gene complements. Both chromosome structure and gene content have changed very little during red algal diversification, and suggest that plastid-to nucleus gene transfers have been rare. Despite their ancient character, however, the red algal plastids also contain several unprecedented features, including a group II intron in a tRNA-Met gene that encodes the first example of red algal plastid intron maturase - a feature uniquely shared among florideophytes. We also identify a rare case of a horizontally-acquired proteobacterial operon, and propose this operon may have been recruited for plastid function and potentially replaced a nucleus-encoded plastid-targeted paralogue. Plastid genome phylogenies yield a fully resolved tree and suggest that plastid DNA is a useful tool for resolving red algal relationships. Lastly, we estimate the evolutionary rates among more than 200 plastid genes, and assess their usefulness for species and subspecies taxonomy by comparison to well-established barcoding markers such as cox1 and rbcL. Overall, these data demonstrates that red algal plastid genomes are easily obtainable using high-throughput sequencing of total genomic DNA, interesting from evolutionary perspectives, and promising in resolving red algal relationships at evolutionarily-deep and species/subspecies levels.

  6. Seasonal variation in the growth responses of some chlorophytic algal flora of the Red Sea

    Directory of Open Access Journals (Sweden)

    Abid Ali Ansari

    2017-06-01

    Full Text Available Seasonal variation in growth responses and antioxidant activities of four chlorophytic algal species, namely Ulva lactuca, Enteromorpha flexuoca, Cladophora prolifera, Chaetomorpha linum was investigated. Seasonal variation in the physico-chemical characteristics of water at the study site of the Red Sea was also determined. A significant variation was observed in water quality parameters in different seasons. All the algal species show higher accumulation of photosynthetic and accessory pigments in July and October and a significant decrease in January. Higher NPK content in all the four algal species was recorded in July, however, the contents were low in other months. Total protein contents were higher in July and October. Total carbohydrates in U. lactuca and E. flexuoca were significantly higher in July but in the other two species, C. prolifera and C. linum, maximum accumulation was observed in October. Antioxidant activities in all the species were most significant in January as compared to the other months. All the chlorphytic algae show prominent growth responses and antioxidant activities and are better adapted to changing climatic conditions. Due to their prompt responses even to minor changes in aquatic environment, they can be used as ecological indicators in coastal marine ecosystems.

  7. Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution.

    Directory of Open Access Journals (Sweden)

    Cheong Xin Chan

    Full Text Available Membrane transporters (MTs facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT. Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%. Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely

  8. Coeloseira compressa Hollenb. (Champiaceae, Rhodophyta) - a new marine algal species from Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Deshmukhe, G.V.; Untawale, A.G.

    Occurrence of a red algal species Coeloseira is recorded from Bambolim coast, Goa along the central west coast of India. The genus is characterised by the presence of polysporangia, stoloniferous pattern branching, separate secondary branches and a...

  9. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes

    Science.gov (United States)

    Lee, JunMo; Kim, Kyeong Mi; Yang, Eun Chan; Miller, Kathy Ann; Boo, Sung Min; Bhattacharya, Debashish; Yoon, Hwan Su

    2016-01-01

    The integration of foreign DNA into algal and plant plastid genomes is a rare event, with only a few known examples of horizontal gene transfer (HGT). Plasmids, which are well-studied drivers of HGT in prokaryotes, have been reported previously in red algae (Rhodophyta). However, the distribution of these mobile DNA elements and their sites of integration into the plastid (ptDNA), mitochondrial (mtDNA), and nuclear genomes of Rhodophyta remain unknown. Here we reconstructed the complex evolutionary history of plasmid-derived DNAs in red algae. Comparative analysis of 21 rhodophyte ptDNAs, including new genome data for 5 species, turned up 22 plasmid-derived open reading frames (ORFs) that showed syntenic and copy number variation among species, but were conserved within different individuals in three lineages. Several plasmid-derived homologs were found not only in ptDNA but also in mtDNA and in the nuclear genome of green plants, stramenopiles, and rhizarians. Phylogenetic and plasmid-derived ORF analyses showed that the majority of plasmid DNAs originated within red algae, whereas others were derived from cyanobacteria, other bacteria, and viruses. Our results elucidate the evolution of plasmid DNAs in red algae and suggest that they spread as parasitic genetic elements. This hypothesis is consistent with their sporadic distribution within Rhodophyta. PMID:27030297

  10. Organization of plastid genomes in the freshwater red algal order Batrachospermales (Rhodophyta).

    Science.gov (United States)

    Paiano, Monica Orlandi; Del Cortona, Andrea; Costa, Joana F; Liu, Shao-Lun; Verbruggen, Heroen; De Clerck, Olivier; Necchi, Orlando

    2018-02-01

    Little is known about genome organization in members of the order Batrachospermales, and the infra-ordinal relationship remains unresolved. Plastid (cp) genomes of seven members of the freshwater red algal order Batrachospermales were sequenced, with the following aims: (i) to describe the characteristics of cp genomes and compare these with other red algal groups; (ii) to infer the phylogenetic relationships among these members to better understand the infra-ordinal classification. Cp genomes of Batrachospermales are large, with several cases of gene loss, they are gene-dense (high gene content for the genome size and short intergenic regions) and have highly conserved gene order. Phylogenetic analyses based on concatenated nucleotide genome data roughly supports the current taxonomic system for the order. Comparative analyses confirm data for members of the class Florideophyceae that cp genomes in Batrachospermales is highly conserved, with little variation in gene composition. However, relevant new features were revealed in our study: genome sizes in members of Batrachospermales are close to the lowest values reported for Florideophyceae; differences in cp genome size within the order are large in comparison with other orders (Ceramiales, Gelidiales, Gracilariales, Hildenbrandiales, and Nemaliales); and members of Batrachospermales have the lowest number of protein-coding genes among the Florideophyceae. In terms of gene loss, apcF, which encodes the allophycocyanin beta subunit, is absent in all sequenced taxa of Batrachospermales. We reinforce that the interordinal relationships between the freshwater orders Batrachospermales and Thoreales within the Nemaliophycidae is not well resolved due to limited taxon sampling. © 2017 Phycological Society of America.

  11. Biomonitoring of Heavy Metals in some Brown Algal Species in the Red Sea Area (Saudi Arabia and Egypt)

    International Nuclear Information System (INIS)

    Mohamed, Sahera Fathallah

    2005-01-01

    The concentration of iron (Fe), Zinc (Zn), Cobalt (Co), Lead (Pb), Cadmium (Cd) and Copper (Cu) were determined in specimens of four marine brown algae, Turbinaria decurrense, Sargassum dentifolium, Sargassum latifolium and Padinapavonia. The four algal species were collected from two sites: the Red Sea coasts at Hurghada in Egypt, an area slightly influenced by anthropogenic activities, and Gizan in the Kingdom of Saudi Arabia, an area which requires intensive study, especially in ecological terms. In order to gain a complete picture of the quality of the aquatic environment in both studied sites, heavy metals concentrations were determined in the selected algal species. The picture of bio-available metal loads in the different sites of the selected areas provided by the four algal species was rather univocal. An overall trend of increased all-determined metal concentrations in Gizan was clear. Lead (Pb) was considered to be the influenced pollutant in Gizan, where its concentration in (T). Decurrense, (S). Dentifolium, (S). latifolium and (P). pavonia was (54.5), (45.17), (55.28) and (56.8) fold than that in the same species in Hurghada. On the other hand, the metal concentrations recorded at Hurghada, a site expected to be uncontaminated, generally fall in the lowest values available in the literature and may be considered as a useful reference for intraspecific comparison within the red Sea area. (author)

  12. Photoinhibition of photosynthesis in a sun and a shade species of the red algal genus Porphyra

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, S.K.; Waaland, J.R.

    1988-01-01

    Gametophytes of two species of Porphyra collected around San Juan Island, Washington in 1986 and acclimated to low light conditions in culture showed different resistances to photoinhibition of photosynthesis. The intertidal species P. perforata J. Agardh exhibited photoinhibition at onethird the rate exhibited by the subtidal species P. nereocystis Anderson following treatments at 2000 ..mu..mol photons m/sup -2/ s/sup -1/ under conditions of full hydration and optimal temperature. The greater resistance of P. perforata to photoinhibition could not be attributed to reduced photosynthetic pigment concentration, higher photosynthetic capacity, avoidance of light by chloroplast movement or to enhanced rates of photorespiration. Total carotenoid concentrations were similar in the two species. It is probable that the mechanisms of this resistance are operating at the level of the thylakoid membranes. Resistance to photoinhibition represents an adaption of photosynthesis in P. perforata which may contribute to its persistance in the extreme environment of its intertidal habitat.

  13. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Ping; Fang, Shaoxi; Li, Zhe; Tang, Peng; Gao, Xia; Guo, Jinsong; Tlili, Chaker; Wang, Deqiang

    2018-02-01

    The analysis of algae and dominant alga plays important roles in ecological and environmental fields since it can be used to forecast water bloom and control its potential deleterious effects. Herein, we combine in vivo confocal resonance Raman spectroscopy with multivariate analysis methods to preliminary identify the three algal genera in water blooms at unicellular scale. Statistical analysis of characteristic Raman peaks demonstrates that certain shifts and different normalized intensities, resulting from composition of different carotenoids, exist in Raman spectra of three algal cells. Principal component analysis (PCA) scores and corresponding loading weights show some differences from Raman spectral characteristics which are caused by vibrations of carotenoids in unicellular algae. Then, discriminant partial least squares (DPLS) classification method is used to verify the effectiveness of algal identification with confocal resonance Raman spectroscopy. Our results show that confocal resonance Raman spectroscopy combined with PCA and DPLS could handle the preliminary identification of dominant alga for forecasting and controlling of water blooms.

  14. Morphological diagnosis and geographic distribution of Atlantic Forest red-rumped mice of the genus Juliomys (Rodentia: Sigmodontinae)

    OpenAIRE

    Pavan,Silvia E; Leite,Yuri L. R

    2011-01-01

    Recognition and identification of red-rumped mice of the genus Juliomys González, 2000 has been a problem among many mammalogists, and specimens of this genus are commonly confused with other Atlantic Forest sigmodontine rodents. Herein we provide an expanded diagnosis for the genus based on the analyses of the three living species of Juliomys, and provide morphological comparisons to the small bodied and bright colored rodents Rhagomys rufescens (Thomas, 1886) and Oligoryzomys flavescens (Wa...

  15. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin

    KAUST Repository

    Burki, Fabien; Flegontov, Pavel; Oborní k, Miroslav; Cihlá ř, Jaromí r; Pain, Arnab; Lukeš, Julius; Keeling, Patrick J.

    2012-01-01

    genomes by reanalyzing the recently published EST dataset for Chromera velia, an interesting test case of a photosynthetic alga closely related to apicomplexan parasites. Previously, 513 genes were reported to originate from red and green algae in a 1

  16. Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol.

    Science.gov (United States)

    Lee, Hye-Jin; Kim, Soo-Jung; Yoon, Jeong-Jun; Kim, Kyoung Heon; Seo, Jin-Ho; Park, Yong-Cheol

    2015-09-01

    The aim of this work was to apply the evolutionary engineering to construct a mutant Saccharomyces cerevisiae HJ7-14 resistant on 2-deoxy-D-glucose and with an enhanced ability of bioethanol production from galactose, a mono-sugar in red algae. In batch and repeated-batch fermentations, HJ7-14 metabolized 5-fold more galactose and produced ethanol 2.1-fold faster than the parental D452-2 strain. Transcriptional analysis of genes involved in the galactose metabolism revealed that moderate relief from the glucose-mediated repression of the transcription of the GAL genes might enable HJ7-14 to metabolize galactose rapidly. HJ7-14 produced 7.4 g/L ethanol from hydrolysates of the red alga Gelidium amansii within 12 h, which was 1.5-times faster than that observed with D452-2. We demonstrate conclusively that evolutionary engineering is a promising tool to manipulate the complex galactose metabolism in S. cerevisiae to produce bioethanol from red alga. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Harmful algal blooms

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.R.; PrabhaDevi; DeSouza, L.; Verlecar, X.N.; Naik, C.G.

    as harmful algal bloom. Bloom formation is a natural process and it enhances biological productivity, but turns worrisome when caused by toxic species, leading to massive fish mortalities and hazards to human health. Incidences of'red tide' are increasing...

  18. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids

    Directory of Open Access Journals (Sweden)

    Corre Erwan

    2009-10-01

    Full Text Available Abstract Background Heterokont algae, together with cryptophytes, haptophytes and some alveolates, possess red-algal derived plastids. The chromalveolate hypothesis proposes that the red-algal derived plastids of all four groups have a monophyletic origin resulting from a single secondary endosymbiotic event. However, due to incongruence between nuclear and plastid phylogenies, this controversial hypothesis remains under debate. Large-scale genomic analyses have shown to be a powerful tool for phylogenetic reconstruction but insufficient sequence data have been available for red-algal derived plastid genomes. Results The chloroplast genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus, have been fully sequenced. These species represent two distinct orders of the Phaeophyceae, which is a major group within the heterokont lineage. The sizes of the circular plastid genomes are 139,954 and 124,986 base pairs, respectively, the size difference being due principally to the presence of longer inverted repeat and intergenic regions in E. siliculosus. Gene contents of the two plastids are similar with 139-148 protein-coding genes, 28-31 tRNA genes, and 3 ribosomal RNA genes. The two genomes also exhibit very similar rearrangements compared to other sequenced plastid genomes. The tRNA-Leu gene of E. siliculosus lacks an intron, in contrast to the F. vesiculosus and other heterokont plastid homologues, suggesting its recent loss in the Ectocarpales. Most of the brown algal plastid genes are shared with other red-algal derived plastid genomes, but a few are absent from raphidophyte or diatom plastid genomes. One of these regions is most similar to an apicomplexan nuclear sequence. The phylogenetic relationship between heterokonts, cryptophytes and haptophytes (collectively referred to as chromists plastids was investigated using several datasets of concatenated proteins from two cyanobacterial genomes and 18 plastid genomes, including

  19. Maribacter thermophilus sp. nov., isolated from an algal bloom in an intertidal zone, and emended description of the genus Maribacter.

    Science.gov (United States)

    Hu, Jing; Yang, Qi-Qi; Ren, Yi; Zhang, Wen-Wu; Zheng, Gang; Sun, Cong; Pan, Jie; Zhu, Xu-Fen; Zhang, Xin-Qi; Wu, Min

    2015-01-01

    A novel facultatively anaerobic, Gram-stain-negative bacterium, designated strain HT7-2(T), was isolated from Ulva prolifera collected from the intertidal zone of Qingdao sea area, China, during its bloom. Cells were rod-shaped (1.9-3.5×0.4-0.6 µm), non-sporulating and motile by gliding. Strain HT7-2(T) was able to grow at 4-50 °C (optimum 40-42 °C), pH 5.5-8.5 (optimum pH 7.0), 0-8 % (w/v) NaCl (optimum 2-3 %) and 0.5-10 % (w/v) sea salts (optimum 2.5 %). The genomic DNA G+C content was 38.8 mol%. The phylogenetic analysis based on 16S rRNA gene sequences revealed that strain HT7-2(T) belonged to the genus Maribacter with sequence similarity values of 94.5-96.6 %, and was most closely related to Maribacter aestuarii GY20(T) (96.6%). Chemotaxonomic analysis showed that the main isoprenoid quinone was MK-6 and the major fatty acids were iso-C15:0 and unknown equivalent chain-length 13.565. The polar lipids of strain HT7-2(T) consisted of one phosphatidylethanolamine, four unidentified lipids and one unidentified aminolipid. On the basis of the phenotypic, phylogenetic and chemotaxonomic characteristics, strain HT7-2(T) ( =CGMCC 1.12207(T) =JCM 18466(T)) is concluded to represent a novel species of the genus Maribacter, for which the name Maribacter thermophilus sp. nov. is proposed. An emended description of the genus Maribacter is also proposed. © 2015 IUMS.

  20. A new species of squat lobster of the genus Munida (Galatheoidea, Munididae) from the Red Sea

    KAUST Repository

    Macpherson, E.

    2017-08-30

    During a deep-water expedition to the Red Sea in 2013, an unusual specimen of squat lobster belonging to the genus Munida was collected off Thuwal, Saudi Arabia, at a depth of 320 m. This specimen is unique in having the pterygostomial flap visible from the dorsal side, the feature linking it to two eastern Pacific species, M. bapensis Hendrickx, 2000 and M. macrobrachia Hendrickx, 2003. The new species (M. tuerkayi) is readily distinguished from the eastern Pacific species by having the gastric region with numerous instead of less numerous spines, by having sternite 7 with three distinct carinae on each side, and by having the antennular basal article with two distal spines subequal instead of different in size. Munida tuerkayi was found associated with live colonies of the scleractinian coral Eguchipsammia fistula (Alcock, 1902).

  1. Radiation of the red algal parasite Congracilaria babae onto a secondary host species, Hydropuntia sp. (Gracilariaceae, Rhodophyta).

    Science.gov (United States)

    Ng, Poh-Kheng; Lim, Phaik-Eem; Phang, Siew-Moi

    2014-01-01

    Congracilaria babae was first reported as a red alga parasitic on the thallus of Gracilaria salicornia based on Japanese materials. It was circumscribed to have deep spermatangial cavities, coloration similar to its host and the absence of rhizoids. We observed a parasitic red alga with morphological and anatomical features suggestive of C. babae on a Hydropuntia species collected from Sabah, East Malaysia. We addressed the taxonomic affinities of the parasite growing on Hydropuntia sp. based on the DNA sequence of molecular markers from the nuclear, mitochondrial and plastid genomes (nuclear ITS region, mitochondrial cox1 gene and plastid rbcL gene). Phylogenetic analyses based on all genetic markers also implied the monophyly of the parasite from Hydropuntia sp. and C. babae, suggesting their conspecificity. The parasite from Hydropuntia sp. has a DNA signature characteristic to C. babae in having plastid rbcL gene sequence identical to G. salicornia. C. babae is likely to have evolved directly from G. salicornia and subsequently radiated onto a secondary host Hydropuntia sp. We also recommend the transfer of C. babae to the genus Gracilaria and propose a new combination, G. babae, based on the anatomical observations and molecular data.

  2. Radiation of the red algal parasite Congracilaria babae onto a secondary host species, Hydropuntia sp. (Gracilariaceae, Rhodophyta.

    Directory of Open Access Journals (Sweden)

    Poh-Kheng Ng

    Full Text Available Congracilaria babae was first reported as a red alga parasitic on the thallus of Gracilaria salicornia based on Japanese materials. It was circumscribed to have deep spermatangial cavities, coloration similar to its host and the absence of rhizoids. We observed a parasitic red alga with morphological and anatomical features suggestive of C. babae on a Hydropuntia species collected from Sabah, East Malaysia. We addressed the taxonomic affinities of the parasite growing on Hydropuntia sp. based on the DNA sequence of molecular markers from the nuclear, mitochondrial and plastid genomes (nuclear ITS region, mitochondrial cox1 gene and plastid rbcL gene. Phylogenetic analyses based on all genetic markers also implied the monophyly of the parasite from Hydropuntia sp. and C. babae, suggesting their conspecificity. The parasite from Hydropuntia sp. has a DNA signature characteristic to C. babae in having plastid rbcL gene sequence identical to G. salicornia. C. babae is likely to have evolved directly from G. salicornia and subsequently radiated onto a secondary host Hydropuntia sp. We also recommend the transfer of C. babae to the genus Gracilaria and propose a new combination, G. babae, based on the anatomical observations and molecular data.

  3. Classification, Naming and Evolutionary History of Glycosyltransferases from Sequenced Green and Red Algal Genomes

    Science.gov (United States)

    Ulvskov, Peter; Paiva, Dionisio Soares; Domozych, David; Harholt, Jesper

    2013-01-01

    The Archaeplastida consists of three lineages, Rhodophyta, Virideplantae and Glaucophyta. The extracellular matrix of most members of the Rhodophyta and Viridiplantae consists of carbohydrate-based or a highly glycosylated protein-based cell wall while the Glaucophyte covering is poorly resolved. In order to elucidate possible evolutionary links between the three advanced lineages in Archaeplastida, a genomic analysis was initiated. Fully sequenced genomes from the Rhodophyta and Virideplantae and the well-defined CAZy database on glycosyltransferases were included in the analysis. The number of glycosyltransferases found in the Rhodophyta and Chlorophyta are generally much lower then in land plants (Embryophyta). Three specific features exhibited by land plants increase the number of glycosyltransferases in their genomes: (1) cell wall biosynthesis, the more complex land plant cell walls require a larger number of glycosyltransferases for biosynthesis, (2) a richer set of protein glycosylation, and (3) glycosylation of secondary metabolites, demonstrated by a large proportion of family GT1 being involved in secondary metabolite biosynthesis. In a comparative analysis of polysaccharide biosynthesis amongst the taxa of this study, clear distinctions or similarities were observed in (1) N-linked protein glycosylation, i.e., Chlorophyta has different mannosylation and glucosylation patterns, (2) GPI anchor biosynthesis, which is apparently missing in the Rhodophyta and truncated in the Chlorophyta, (3) cell wall biosynthesis, where the land plants have unique cell wall related polymers not found in green and red algae, and (4) O-linked glycosylation where comprehensive orthology was observed in glycosylation between the Chlorophyta and land plants but not between the target proteins. PMID:24146880

  4. Rebuttal to Koeda et al. (2014) on the Red Sea fishes of the perciform genus Pempheris.

    Science.gov (United States)

    Randall, John E; Victor, Benjamin C; Alpermann, Tilman J; Bogorodsky, Sergey V; Mal, Ahmad O; Satapoomin, Ukkrit; Bineesh, K K

    2014-11-25

    Koeda et al. (2014) published a review of fishes of the genus Pempheris of the Red Sea. They concluded that there are four species: P. adusta Bleeker, P. mangula Cuvier, P. nesogallica Cuvier, and a new species, P. tominagai. We show that the first three species they cite are not present in the Red Sea, as follows. 1) P. adusta is a western Pacific species (type locality Ambon), described only from the holotype, and without a dark border on the anal fin. Koeda et al. (2014) mistakenly apply that name to P. flavicycla which is a widespread Indian Ocean species characterized by a prominent broad black border along the anal fin. Koeda et al. (2014) also redescribe P. adusta, using Indian Ocean specimens of P. flavicycla, despite the coloration difference and a 2.5% difference in the mtDNA sequence (COI) between Indian Ocean and W. Pacific populations. 2) P. mangula is a species from the east coast of India (type locality Visakhapatnam), clearly distinct in both gill-raker counts and a 1.1% sequence divergence in COI from its Red Sea relative P. rhomboidea. Pempheris mangula is not found west of India, and Koeda et al. (2014) mistakenly use DNA from Oman and Madagascar to represent P. mangula, instead of genetic material available from the type locality. 3) Pempheris nesogallica (type locality Mauritius) is unknown from the Red Sea. Koeda et al. (2014) separate P. nesogallica from P. rhomboidea (their "P. mangula") by eye size; we fail to find any difference (and they use their purported eye-size difference to erroneously rename one of the two syntypes of P. nesogallica as "P. mangula"). 4) Their new species P. tominagai is referred to as the Indian Ocean sister species of "P. schwenkii of the Pacific"; however, the type locality of P. schwenkii is the Batu Islands off the SW coast of Sumatra in the Indian Ocean. They mistakenly include specimens of a distant South African species as paratypes of P. tominagai. We have determined that P. tominagai is a valid species

  5. Species delimitation in the coral genus Goniopora (Scleractinia, Poritidae) from the Saudi Arabian Red Sea

    KAUST Repository

    Terraneo, Tullia Isotta; Benzoni, Francesca; Arrigoni, Roberto; Berumen, Michael L.

    2016-01-01

    Variable skeletal morphology, genotype induced plasticity, and homoplasy of skeletal structures have presented major challenges for scleractinian coral taxonomy and systematics since the 18th century. Although the recent integration of genetic and micromorphological data is helping to clarify the taxonomic confusion within the order, phylogenetic relationships and species delimitation within most coral genera are still far from settled. In the present study, the species boundaries in the scleractinian coral genus Goniopora were investigated using 199 colonies from the Saudi Arabian Red Sea and sequencing of four molecular markers: the mitochondrial intergenic spacer between CytB and NAD2, the nuclear ribosomal ITS region, and two single-copy nuclear genes (ATPsβ and CalM). DNA sequence data were analyzed using a variety of methods and exploratory species-delimitation tools. The results were broadly congruent in identifying five distinct molecular lineages within the sequenced Goniopora samples: G. somaliensis/G. savignyi, G. djiboutiensis/G. lobata, G. stokesi, G. albiconus/G. tenuidens, and G. minor/G. gracilis. Although the traditional macromorphological characters used to identify these nine morphospecies were not able to discriminate the obtained molecular clades, informative micromorphological and microstructural features (such as the micro-ornamentation and the arrangement of the columella) were recovered among the five lineages. Moreover, unique in vivo morphologies were associated with the genetic-delimited lineages, further supporting the molecular findings. This study represents the first attempt to identify species boundaries within Goniopora using a combined morpho-molecular approach. The obtained data establish a basis for future taxonomic revision of the genus, which should include colonies across its entire geographical distribution in the Indo-Pacific.

  6. Species delimitation in the coral genus Goniopora (Scleractinia, Poritidae) from the Saudi Arabian Red Sea

    KAUST Repository

    Terraneo, Tullia Isotta

    2016-06-16

    Variable skeletal morphology, genotype induced plasticity, and homoplasy of skeletal structures have presented major challenges for scleractinian coral taxonomy and systematics since the 18th century. Although the recent integration of genetic and micromorphological data is helping to clarify the taxonomic confusion within the order, phylogenetic relationships and species delimitation within most coral genera are still far from settled. In the present study, the species boundaries in the scleractinian coral genus Goniopora were investigated using 199 colonies from the Saudi Arabian Red Sea and sequencing of four molecular markers: the mitochondrial intergenic spacer between CytB and NAD2, the nuclear ribosomal ITS region, and two single-copy nuclear genes (ATPsβ and CalM). DNA sequence data were analyzed using a variety of methods and exploratory species-delimitation tools. The results were broadly congruent in identifying five distinct molecular lineages within the sequenced Goniopora samples: G. somaliensis/G. savignyi, G. djiboutiensis/G. lobata, G. stokesi, G. albiconus/G. tenuidens, and G. minor/G. gracilis. Although the traditional macromorphological characters used to identify these nine morphospecies were not able to discriminate the obtained molecular clades, informative micromorphological and microstructural features (such as the micro-ornamentation and the arrangement of the columella) were recovered among the five lineages. Moreover, unique in vivo morphologies were associated with the genetic-delimited lineages, further supporting the molecular findings. This study represents the first attempt to identify species boundaries within Goniopora using a combined morpho-molecular approach. The obtained data establish a basis for future taxonomic revision of the genus, which should include colonies across its entire geographical distribution in the Indo-Pacific.

  7. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66T Encoded in a Sizeable Polysaccharide Utilization Locus

    Directory of Open Access Journals (Sweden)

    Mikkel Schultz-Johansen

    2018-05-01

    Full Text Available Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/β-type carrageenan by P. hydrolytica S66T. The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.

  8. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66T Encoded in a Sizeable Polysaccharide Utilization Locus.

    Science.gov (United States)

    Schultz-Johansen, Mikkel; Bech, Pernille K; Hennessy, Rosanna C; Glaring, Mikkel A; Barbeyron, Tristan; Czjzek, Mirjam; Stougaard, Peter

    2018-01-01

    Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66 T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66 T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes) notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/β-type carrageenan by P. hydrolytica S66 T . The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.

  9. A novel enzyme portfolio for red algal polysaccharide degradation in the marine bacterium Paraglaciecola hydrolytica S66T encoded in a sizeable polysaccharide utilization locus

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel; Bech, Pernille Kjersgaard; Hennessy, Rosanna Catherine

    2018-01-01

    with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes) notably agarases...... and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme...

  10. Direct and indirect effects of high pCO2 on algal grazing by coral reef herbivores from the Gulf of Aqaba (Red Sea)

    Science.gov (United States)

    Borell, E. M.; Steinke, M.; Fine, M.

    2013-12-01

    Grazing on marine macroalgae is a key structuring process for coral reef communities. However, ocean acidification from rising atmospheric CO2 concentrations is predicted to adversely affect many marine animals, while seaweed communities may benefit and prosper. We tested how exposure to different pCO2 (400, 1,800 and 4,000 μatm) may affect grazing on the green alga Ulva lactuca by herbivorous fish and sea urchins from the coral reefs in the northern Gulf of Aqaba (Red Sea), either directly, by changing herbivore behaviour, or indirectly via changes in algal palatability. We also determined the effects of pCO2 on algal tissue concentrations of protein and the grazing-deterrent secondary metabolite dimethylsulfoniopropionate (DMSP). Grazing preferences and overall consumption were tested in a series of multiple-choice feeding experiments in the laboratory and in situ following exposure for 14 d (algae) and 28 d (herbivores). 4,000 μatm had a significant effect on the biochemical composition and palatability of U. lactuca. No effects were observed at 1,800 relative to 400 μatm (control). Exposure of U. lactuca to 4,000 μatm resulted in a significant decrease in protein and increase in DMSP concentration. This coincided with a reduced preference for these algae by the sea urchin Tripneustes gratilla and different herbivorous fish species in situ (Acanthuridae, Siganidae and Pomacanthidae). No feeding preferences were observed for the rabbitfish Siganus rivulatus under laboratory conditions. Exposure to elevated pCO2 had no direct effect on the overall algal consumption by T. gratilla and S. rivulatus. Our results show that CO2 has the potential to alter algal palatability to different herbivores which could have important implications for algal abundance and coral community structure. The fact that pCO2 effects were observed only at a pCO2 of 4,000 μatm, however, indicates that algal-grazer interactions may be resistant to predicted pCO2 concentrations in the

  11. The genus Litophyton Forskål, 1775 (Octocorallia, Alcyonacea, Nephtheidae) in the Red Sea and the western Indian Ocean

    Science.gov (United States)

    van Ofwegen, Leen P.

    2016-01-01

    Abstract The Litophyton species of the Red Sea and the western Indian Ocean are revised, which includes species previously belonging to the genus Nephthea, which is synonymized with Litophyton. A neotype for both Litophyton arboreum, the type species of Litophyton, and Nephthea chabrolii, the type species of Nephthea, are designated. The new species Litophyton curvum sp. n. is described and depicted, and a key to all Litophyton species is provided. Of the 26 species previously described from the western Indian Ocean and Red Sea, 13 species are considered valid and 13 have been synonymized or placed in other genera. PMID:27103869

  12. Investigating Species Boundaries within the Hard Coral Genus Goniopora (Cnidaria, Scleractinia) from the Red Sea Using an Integrative Morphomolecular Approach

    KAUST Repository

    Terraneo, Tullia Isotta

    2015-12-01

    In the present study the species boundaries of the scleractinian coral genus Goniopora from the Saudi Arabian Red Sea were investigated. An integrated morpho-molecular approach was used to better clarify the complex scenario derived from traditional classification efforts based on skeletal morphology. Traditional taxonomy of this genus considers skeletal morphology first and polyp morphology as a secondary discriminating character. This leads to potential complication due to plasticity in skeletal features within a species. To address this issue, molecular analyses of evolutionary relationships between nine traditional morphospecies of Goniopora from the Red Sea were performed and were used to re-evaluate the informativeness of macromorphological and micromorphological features. Between four and six putative molecular lineages were identified within Goniopora samples from the Saudi Arabian Red Sea on the basis of four molecular markers: the mitochondrial intergenic spacer between Cytochrome b and the NADH dehydrogenase subunit 2, the entire nuclear ribosomal internal transcribed spacer region, the ATP synthase subunit β gene, and a portion of the Calmodulin gene. The results were strongly corroborated by three distinct analyses of species delimitation. Subsequent analyses of micromorphological and microstructural skeletal features identified the presence of distinctive characters in each of the molecular clades. Unique in vivo morphologies were associated with the genetic-delimited lineages, further supporting the molecular findings. The proposed re-organization of Goniopora will resolve several taxonomic problems in this genus while reconciling molecular and morphological evidence. Reliable species-level identification of Goniopora spp. can be achieved with polyp morphology under the proposed revision.

  13. Overview of coralline red algal crusts and rhodolith beds (Corallinales, Rhodophyta) and their possible ecological importance in Greenland

    DEFF Research Database (Denmark)

    Jørgensbye, Helle; Halfar, Jochen

    2017-01-01

    Coralline red algae are a globally distributed and abundant group of shallow marine benthic calcifiers. They can form important ecosystems that provide a three-dimensional habitat to a large variety of marine organisms. While the study of coralline red algae has traditionally been focused on warm...... compiled to develop a distribution map of coralline genera and rhodolith communities. The depth range of coralline red algae in Greenland has been extended by 27 m, from 50 to 77 m depth. In addition, rhodoliths of the normally crust-forming species Clathromorphum compactum are described for the first time...... from a sheltered Greenland fjord. Based on the data compiled here, it becomes clear that rhodolith communities are a widespread feature of the Greenland shallow shelf areas. Gaining a better understanding of the distribution of these hitherto poorly understood high-latitude ecosystems is essential due...

  14. A review of the genus Pempheris (Perciformes, Pempheridae) of the Red Sea, with description of a new species.

    Science.gov (United States)

    Koeda, Keita; Yoshino, Tetsuo; Imai, Hideyuki; Tachihara, Katsunori

    2014-04-30

    Four species of the fish genus Pempheris are recognized for the Red Sea: P. adusta Bleeker, 1877; P. mangula Cuvier, 1829; P. nesogallica Cuvier in Cuvier & Valenciennes, 1831; and a new species P. tominagai. All are wide-ranging in the western Indian Ocean, and P. mangula has migrated via the Suez Canal to the eastern Mediterranean Sea. Morphological and genetic analysis of 15 species in this genus show that P. adusta, a widely distributed species, that can't be divided into different species, because of the continuity of morphologies and distribution, and lack of variance in genetics between Indian Ocean, Red Sea, and Pacific Ocean populations. This confirms that the two subspecies described by Randall et al. (2013) are both synonyms of P. adusta. Pempheris adusta is distinguished from other species by a blackish spot on pectoral fin base, pored lateral-line scales 56-64, scale rows above lateral line 4 1/2-6 1/2, distinct blackish band on outer edge of anal fin, and blackish band on posterior edge of caudal fin. Pempheris mangula was named by Cuvier (1829) in a footnote making reference to a drawing and short description in Russell (1803) of a Pempheris from southeast India, giving only the native name ''Mangula-Kutti'', and listing no specimen. The wide distribution of this species, from the Indian Ocean to the Red Sea is also demonstrated by morphological and genetic analysis. Thus, the specimen collected from southern India is herein designated as the neotype. This species is distinguished from other species by its huge eye, deep body, blackish tip of the dorsal fin, pored lateral-line scales 49-60, and scale rows above lateral line 4 1/2-5 1/2. The extant syntype of Kossmann & Räuber's P. rhomboidea is designated as the lectotype of the species; however, P. rhomboidea is a synonym of P. mangula. In addition, Kossmann & Räuber's Pempheris erythraea and P. russellii Day, 1888 are also synonyms of P. mangula. Of two existing syntypes of P. nesogallica from

  15. Lower Oligocene non-geniculate coralline red algal (Corallinales, Rhodophyta assemblage from Poljšica pri Podnartu (Upper Carniola, Slovenia

    Directory of Open Access Journals (Sweden)

    Luka Gale

    2008-12-01

    Full Text Available The Lower Oligocene Gornji Grad beds from Polj{ica pri Podnartu consist of marly limestone, mudstone, several layers of limestones and two layers of sandstones, and were deposited on a mixed carbonate-siliciclastic ramp.Especially the limestones contain rich fossil fauna and non-geniculate coralline red algae. These were systematicallycollected from four horizons and researched in thin sections under an optical microscope. Genera Lithoporella,Neogoniolithon, Spongites, Lithothamnion, Mesophyllum and Spongites were recognized. Surface area for each genus was calculated and the differences in the coralline assemblages in the four horizons were analysed. Thecorallines originate from two source areas: sandy-muddy bottom of a shallow marine environment, and small coral bioherms with its encrusters.

  16. Satellite remote sensing of harmful algal blooms: A new multi-algorithm method for detecting the Florida Red Tide (Karenia brevis)

    Science.gov (United States)

    Carvalho, Gustavo A.; Minnett, Peter J.; Fleming, Lora E.; Banzon, Viva F.; Baringer, Warner

    2010-01-01

    In a continuing effort to develop suitable methods for the surveillance of Harmful Algal Blooms (HABs) of Karenia brevis using satellite radiometers, a new multi-algorithm method was developed to explore whether improvements in the remote sensing detection of the Florida Red Tide was possible. A Hybrid Scheme was introduced that sequentially applies the optimized versions of two pre-existing satellite-based algorithms: an Empirical Approach (using water-leaving radiance as a function of chlorophyll concentration) and a Bio-optical Technique (using particulate backscatter along with chlorophyll concentration). The long-term evaluation of the new multi-algorithm method was performed using a multi-year MODIS dataset (2002 to 2006; during the boreal Summer-Fall periods – July to December) along the Central West Florida Shelf between 25.75°N and 28.25°N. Algorithm validation was done with in situ measurements of the abundances of K. brevis; cell counts ≥1.5×104 cells l−1 defined a detectable HAB. Encouraging statistical results were derived when either or both algorithms correctly flagged known samples. The majority of the valid match-ups were correctly identified (~80% of both HABs and non-blooming conditions) and few false negatives or false positives were produced (~20% of each). Additionally, most of the HAB-positive identifications in the satellite data were indeed HAB samples (positive predictive value: ~70%) and those classified as HAB-negative were almost all non-bloom cases (negative predictive value: ~86%). These results demonstrate an excellent detection capability, on average ~10% more accurate than the individual algorithms used separately. Thus, the new Hybrid Scheme could become a powerful tool for environmental monitoring of K. brevis blooms, with valuable consequences including leading to the more rapid and efficient use of ships to make in situ measurements of HABs. PMID:21037979

  17. Molluscs associated with the macroalgae of the genus Gracilaria (Rhodophyta): importance of algal fronds as microhabitat in a hypersaline mangrove in Northeastern Brazil.

    Science.gov (United States)

    Queiroz, R N M; Dias, T L P

    2014-08-01

    The fronds of marine macroalgae play an important role in coastal ecosystems because the algae banks are utilized as a microhabitat by different taxa, including molluscs, one of the most abundant and diverse animals of marine ecosystems. In this study, we characterized the malacofauna associated with the macroalgae Gracilaria domingensis (Kützing) Sonder ex Dickie 1874 and Gracilaria cuneata Areschoug 1854 of a hypersaline mangrove on the northern coast of the state of Rio Grande do Norte, Northeastern Brazil. The first alga dominates in the rainy season and it is substituted by second one in the dry period. A total of 1,490 molluscs were surveyed, representing 56 species in 29 families: 1,081 were associated with G. domingensis and 409 with G. cuneata, the latter showing the greater diversity (H'=1.25). Columbellidae, Neritidae, Pyramidellidae and Cerithiidae were among the most representative families in the number of species and individuals. The micromolluscs were dominant in the algal microhabitat, constituting 74.63% of the malacofauna recorded. The columbellid Parvanachis obesa (C. B. Adams, 1845) was the dominant species followed by the neritid Neritina virginea (Linnaeus, 1758) in both algae. In spite of the annual alternated succession of the algae species, at least 15 mollusc species are common for these algae. Furthermore, juveniles of P. obesa were recorded in both seasons, indicating a continuous reproduction. Possible reasons for difference in abundance, diversity and dominance of molluscs living on these algae are discussed. Both species of substrate-algae represent an important microhabitat for refuge, feeding and the reproduction of small-sized mollusc species during rainy and dry seasons.

  18. Molluscs associated with the macroalgae of the genus Gracilaria (Rhodophyta: importance of algal fronds as microhabitat in a hypersaline mangrove in Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    RNM Queiroz

    Full Text Available The fronds of marine macroalgae play an important role in coastal ecosystems because the algae banks are utilized as a microhabitat by different taxa, including molluscs, one of the most abundant and diverse animals of marine ecosystems. In this study, we characterized the malacofauna associated with the macroalgae Gracilaria domingensis (Kützing Sonder ex Dickie 1874 and Gracilaria cuneata Areschoug 1854 of a hypersaline mangrove on the northern coast of the state of Rio Grande do Norte, Northeastern Brazil. The first alga dominates in the rainy season and it is substituted by second one in the dry period. A total of 1,490 molluscs were surveyed, representing 56 species in 29 families: 1,081 were associated with G. domingensis and 409 with G. cuneata, the latter showing the greater diversity (H′=1.25. Columbellidae, Neritidae, Pyramidellidae and Cerithiidae were among the most representative families in the number of species and individuals. The micromolluscs were dominant in the algal microhabitat, constituting 74.63% of the malacofauna recorded. The columbellid Parvanachis obesa(C. B. Adams, 1845 was the dominant species followed by the neritid Neritina virginea (Linnaeus, 1758 in both algae. In spite of the annual alternated succession of the algae species, at least 15 mollusc species are common for these algae. Furthermore, juveniles of P. obesa were recorded in both seasons, indicating a continuous reproduction. Possible reasons for difference in abundance, diversity and dominance of molluscs living on these algae are discussed. Both species of substrate-algae represent an important microhabitat for refuge, feeding and the reproduction of small-sized mollusc species during rainy and dry seasons.

  19. Algal biofuels.

    Science.gov (United States)

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  20. Algal Biofuels | Bioenergy | NREL

    Science.gov (United States)

    biofuels and bioproducts, Algal Research (2016) Process Design and Economics for the Production of Algal cyanobacteria, Nature Plants (2015) Acid-catalyzed algal biomass pretreatment for integrated lipid and nitrogen, we can indefinitely maintain the genetic state of the sample for future research in biofuels

  1. Recent origin and semi-permeable species boundaries in the scleractinian coral genus Stylophora from the Red Sea.

    Science.gov (United States)

    Arrigoni, Roberto; Benzoni, Francesca; Terraneo, Tullia I; Caragnano, Annalisa; Berumen, Michael L

    2016-10-07

    Reticulate evolution, introgressive hybridisation, and phenotypic plasticity have been documented in scleractinian corals and have challenged our ability to interpret speciation processes. Stylophora is a key model system in coral biology and physiology, but genetic analyses have revealed that cryptic lineages concealed by morphological stasis exist in the Stylophora pistillata species complex. The Red Sea represents a hotspot for Stylophora biodiversity with six morphospecies described, two of which are regionally endemic. We investigated Stylophora species boundaries from the Red Sea and the associated Symbiodinium by sequencing seven DNA loci. Stylophora morphospecies from the Red Sea were not resolved based on mitochondrial phylogenies and showed nuclear allele sharing. Low genetic differentiation, weak isolation, and strong gene flow were found among morphospecies although no signals of genetic recombination were evident among them. Stylophora mamillata harboured Symbiodinium clade C whereas the other two Stylophora morphospecies hosted either Symbiodinium clade A or C. These evolutionary patterns suggest that either gene exchange occurs through reticulate evolution or that multiple ecomorphs of a phenotypically plastic species occur in the Red Sea. The recent origin of the lineage leading to the Red Sea Stylophora may indicate an ongoing speciation driven by environmental changes and incomplete lineage sorting.

  2. Recent origin and semi-permeable species boundaries in the scleractinian coral genus Stylophora from the Red Sea

    KAUST Repository

    Arrigoni, Roberto; Benzoni, Francesca; Terraneo, Tullia Isotta; Caragnano, Annalisa; Berumen, Michael L.

    2016-01-01

    Reticulate evolution, introgressive hybridisation, and phenotypic plasticity have been documented in scleractinian corals and have challenged our ability to interpret speciation processes. Stylophora is a key model system in coral biology and physiology, but genetic analyses have revealed that cryptic lineages concealed by morphological stasis exist in the Stylophora pistillata species complex. The Red Sea represents a hotspot for Stylophora biodiversity with six morphospecies described, two of which are regionally endemic. We investigated Stylophora species boundaries from the Red Sea and the associated Symbiodinium by sequencing seven DNA loci. Stylophora morphospecies from the Red Sea were not resolved based on mitochondrial phylogenies and showed nuclear allele sharing. Low genetic differentiation, weak isolation, and strong gene flow were found among morphospecies although no signals of genetic recombination were evident among them. Stylophora mamillata harboured Symbiodinium clade C whereas the other two Stylophora morphospecies hosted either Symbiodinium clade A or C. These evolutionary patterns suggest that either gene exchange occurs through reticulate evolution or that multiple ecomorphs of a phenotypically plastic species occur in the Red Sea. The recent origin of the lineage leading to the Red Sea Stylophora may indicate an ongoing speciation driven by environmental changes and incomplete lineage sorting.

  3. Recent origin and semi-permeable species boundaries in the scleractinian coral genus Stylophora from the Red Sea

    KAUST Repository

    Arrigoni, Roberto

    2016-10-07

    Reticulate evolution, introgressive hybridisation, and phenotypic plasticity have been documented in scleractinian corals and have challenged our ability to interpret speciation processes. Stylophora is a key model system in coral biology and physiology, but genetic analyses have revealed that cryptic lineages concealed by morphological stasis exist in the Stylophora pistillata species complex. The Red Sea represents a hotspot for Stylophora biodiversity with six morphospecies described, two of which are regionally endemic. We investigated Stylophora species boundaries from the Red Sea and the associated Symbiodinium by sequencing seven DNA loci. Stylophora morphospecies from the Red Sea were not resolved based on mitochondrial phylogenies and showed nuclear allele sharing. Low genetic differentiation, weak isolation, and strong gene flow were found among morphospecies although no signals of genetic recombination were evident among them. Stylophora mamillata harboured Symbiodinium clade C whereas the other two Stylophora morphospecies hosted either Symbiodinium clade A or C. These evolutionary patterns suggest that either gene exchange occurs through reticulate evolution or that multiple ecomorphs of a phenotypically plastic species occur in the Red Sea. The recent origin of the lineage leading to the Red Sea Stylophora may indicate an ongoing speciation driven by environmental changes and incomplete lineage sorting.

  4. Search for mesophotic octocorals (Cnidaria, Anthozoa and their phylogeny: I. A new sclerite-free genus from Eilat, northern Red Sea

    Directory of Open Access Journals (Sweden)

    Yehuda Benayahu

    2017-06-01

    Full Text Available This communication describes a new octocoral, Altumia delicata gen. n. & sp. n. (Octocorallia: Clavulariidae, from mesophotic reefs of Eilat (northern Gulf of Aqaba, Red Sea. This species lives on dead antipatharian colonies and on artificial substrates. It has been recorded from deeper than 60 m down to 140 m and is thus considered to be a lower mesophotic octocoral. It has no sclerites and features no symbiotic zooxanthellae. The new genus is compared to other known sclerite-free octocorals. Molecular phylogenetic analyses place it in a clade with members of families Clavulariidae and Acanthoaxiidae, and for now we assign it to the former, based on colony morphology. The polyphyletic family Clavulariidae is, however, in need of a thorough revision once the morphological distinctions among its phylogenetically distinct clades are better understood.

  5. NOAA NCCOS: New England Red Tide Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Alexandrium blooms are one of several algal bloom types often called "red tides," but more correctly referred to as Harmful Algal Blooms (HABs). Alexandrium produces...

  6. Harmful Algal Blooms

    Science.gov (United States)

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  7. The first complete organellar genomes of an Antarctic red alga, Pyropia endiviifolia: insights into its genome architecture and phylogenetic position within genus Pyropia (Bangiales, Rhodophyta)

    Science.gov (United States)

    Xu, Kuipeng; Tang, Xianghai; Bi, Guiqi; Cao, Min; Wang, Lu; Mao, Yunxiang

    2017-08-01

    Pyropia species grow in the intertidal zone and are cold-water adapted. To date, most of the information about the whole plastid and mitochondrial genomes (ptDNA and mtDNA) of this genus is limited to Northern Hemisphere species. Here, we report the sequencing of the ptDNA and mtDNA of the Antarctic red alga Pyropia endiviifolia using the Illumina platform. The plastid genome (195 784 bp, 33.28% GC content) contains 210 protein-coding genes, 37 tRNA genes and 6 rRNA genes. The mitochondrial genome (34 603 bp, 30.5% GC content) contains 26 protein-coding genes, 25 tRNA genes and 2 rRNA genes. Our results suggest that the organellar genomes of Py. endiviifolia have a compact organization. Although the collinearity of these genomes is conserved compared with other Pyropia species, the genome sizes show significant differences, mainly because of the different copy numbers of rDNA operons in the ptDNA and group II introns in the mtDNA. The other Pyropia species have 2u20133 distinct intronic ORFs in their cox 1 genes, but Py. endiviifolia has no introns in its cox 1 gene. This has led to a smaller mtDNA than in other Pyropia species. The phylogenetic relationships within Pyropia were examined using concatenated gene sets from most of the available organellar genomes with both the maximum likelihood and Bayesian methods. The analysis revealed a sister taxa affiliation between the Antarctic species Py. endiviifolia and the North American species Py. kanakaensis.

  8. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI)

    Science.gov (United States)

    Alawadi, Fahad

    2010-10-01

    Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HABs involved and the environmental conditions, if their concentration rises above a critical threshold, it can impact the flora and fauna of the aquatic habitat through the introduction of the so called "red tide" phenomenon. The estimation of chlorophyll concentration is derived from quantifying the spectral relationship between the blue and the green bands reflected from the water column. This spectral relationship is employed in the standard ocean colour chlorophyll-a (Chlor-a) product, but is incapable of detecting certain macro-algal species that float near to or at the water surface in the form of dense filaments or mats. The ability to accurately identify algal formations that sometimes appear as oil spill look-alikes in satellite imagery, contributes towards the reduction of false-positive incidents arising from oil spill monitoring operations. Such algal formations that occur in relatively high concentrations may experience, as in land vegetation, what is known as the "red-edge" effect. This phenomena occurs at the highest reflectance slope between the maximum absorption in the red due to the surrounding ocean water and the maximum reflectance in the infra-red due to the photosynthetic pigments present in the surface algae. A new algorithm termed the surface algal bloom index (SABI), has been proposed to delineate the spatial distributions of floating micro-algal species like for example cyanobacteria or exposed inter-tidal vegetation like seagrass. This algorithm was

  9. Fish Kill Incidents and Harmful Algal Blooms in Omani Waters

    Directory of Open Access Journals (Sweden)

    Hamed Mohammed Al Gheilani

    2011-01-01

    Full Text Available Red tide, one of the harmful algal blooms (HABs is a natural ecological phenomenon and often this event is accompanied by severe impacts on coastal resources, local economies, and public health. The occurrence of red tides has become more frequent in Omani waters in recent years. Some of them caused fish kill, damaged fishery resources and mariculture, threatened the marine environment and the osmosis membranes of desalination plants. However, a number of them have been harmless. The most common dinoflagellate Noctiluca scintillans is associated with the red tide events in Omani waters. Toxic species like Karenia selliformis, Prorocentrum arabianum, and Trichodesmium erythraeum have also been reported recently. Although red tides in Oman have been considered a consequence of upwelling in the summer season (May to September, recent phytoplankton outbreaks in Oman are not restricted to summer. Frequent algal blooms have been reported during winter (December to March. HABs may have contributed to hypoxia and/or other negative ecological impacts.

  10. Harmful algal blooms of the Southern Benguela current: A review ...

    African Journals Online (AJOL)

    Harmful algal blooms of the Southern Benguela current: A review and appraisal of monitoring from 1989 to 1997. ... The Benguela upwelling system is subjected to blooms of harmful and toxic algae, the incidence and consequences of which are documented here. Red tides are common and usually attributed to members of ...

  11. National Algal Biofuels Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Dept. of Energy (DOE), Washington DC (United States); Sarisky-Reed, Valerie [Dept. of Energy (DOE), Washington DC (United States)

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  12. Short communication: Algal leaf spot associated with Cephaleuros virescens (Trentepohliales, Ulvophyceae on Nephelium lappaceum in Thailand

    Directory of Open Access Journals (Sweden)

    ANURAG SUNPAPAO

    2016-05-01

    Full Text Available Abstract. Sunpapao A, Pitaloka MK, Arikit S. 2015. Algal leaf spot associated with Cephaleuros virescens (Trentepohliales, Ulvophyceae on Nephelium lappaceum in Thailand. Biodiversitas 17: 31-35. Algal leaf spot disease of Nephelium lappaceum (rambutan was observed in southern Thailand. The algae were isolated on Bold’s basal medium (BBM and identified based on appearance of the lesions, algal morphology and molecular properties. Characteristics of the filamentous thallus cells, sporangiophores, sporangia, gametes and zoospores were clarified. A portion of the 18S small subunit rRNA was amplified to validate the morphological identification by sequence similarity. To summarize the main results, the plant parasite causing algal leaf spot was identified as Cephaleuros virescens, and in sequencing-based phylogenetic analysis the Cephaleuros PSU-R5.1 isolate from rambutan grouped with the algae in genus Cephaleuros. This confirms C. virescens as a causal organism of algal leaf spot disease on rambutan in southern Thailand.

  13. Advanced Algal Systems Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  14. Ceramic Ultrafiltration of Marine Algal Solutions: A Comprehensive Study

    KAUST Repository

    Dramas, Laure

    2014-09-01

    Algal bloom can significantly impact reverse osmosis desalination process and reduce the drinking water production. In 2008, a major bloom event forced several UAE reverse osmosis plants to stop their production, and in this context, a better understanding of UF membrane fouling caused by algal organic matter (AOM) is needed, in order to adjust the filtration conditions during algal bloom events. Polymeric MF/UF membranes are already widely used for RO pretreatment, but ceramic UF membranes can also be an alternative for the filtration of marine algal solutions. The fouling potential of the Red Sea and the Arabian Sea, sampled at different seasons, along with four algal monocultures grown in laboratory, and one mesocosm experiment in the Red Sea was investigated. Algal solutions induce a stronger and more irreversible fouling than terrestrial humic solution, toward ceramic membrane. During algal bloom events, this fouling is enhanced and becomes even more problematic at the decline phase of the bloom, for a similar initial DOC. Three main mechanisms are involved: the formation of a cake layer at the membrane surface; the penetration of the algal organic matter (AOM) in the pore network of the membrane; the strong adhesion of AOM with the membrane surface. The last mechanism is species-specific and metal-oxide specific. In order to understand the stronger ceramic UF fouling at the decline phase, AOM quality was analyzed every two days. During growth, AOM is getting enriched in High Molecular Weight (HMW) structures (> 200 kDa), which are mainly composed by proteins and polysaccharides, and these compounds seem to be responsible for the stronger fouling at decline phase. In order to prevent the fouling of ceramic membrane, coagulation-flocculation (CF) using ferric chloride was implemented prior to filtration. It permits a high removal of HMW compounds and greatly reduces the fouling potential of the algal solution. During brief algal bloom events, CF should be

  15. Fungal farmers or algal escorts: lichen adaptation from the algal perspective.

    Science.gov (United States)

    Piercey-Normore, Michele D; Deduke, Christopher

    2011-09-01

    Domestication of algae by lichen-forming fungi describes the symbiotic relationship between the photosynthetic (green alga or cyanobacterium; photobiont) and fungal (mycobiont) partnership in lichen associations (Goward 1992). The algal domestication implies that the mycobiont cultivates the alga as a monoculture within its thallus, analogous to a farmer cultivating a food crop. However, the initial photobiont 'selection' by the mycobiont may be predetermined by the habitat rather than by the farmer. When the mycobiont selects a photobiont from the available photobionts within a habitat, the mycobiont may influence photobiont growth and reproduction (Ahmadjian & Jacobs 1981) only after the interaction has been initiated. The theory of ecological guilds (Rikkinen et al. 2002) proposes that habitat limits the variety of photobionts available to the fungal partner. While some studies provide evidence to support the theory of ecological guilds in cyanobacterial lichens (Rikkinen et al. 2002), other studies propose models to explain variation in symbiont combinations in green algal lichens (Ohmura et al. 2006; Piercey-Normore 2006; Yahr et al. 2006) hypothesizing the existence of such guilds. In this issue of Molecular Ecology, Peksa & Škaloud (2011) test the theory of ecological guilds and suggest a relationship between algal habitat requirements and lichen adaptation in green algal lichens of the genus Lepraria. The environmental parameters examined in this study, exposure to rainfall, altitude and substratum type, are integral to lichen biology. Lichens have a poikilohydric nature, relying on the availability of atmospheric moisture for metabolic processes. Having no known active mechanism to preserve metabolic thallus moisture in times of drought, one would expect a strong influence of the environment on symbiont adaptation to specific habitats. Adaptation to changes in substrata and its properties would be expected with the intimate contact between crustose

  16. Algal dermatitis in cichlids.

    Science.gov (United States)

    Yanong, Roy P E; Francis-Floyd, Ruth; Curtis, Eric; Klinger, Ruth Ellen; Cichra, Mary E; Berzins, Ilze K

    2002-05-01

    Three varieties of a popular African cichlid aquarium species, Pseudotropheus zebra, from 2 tropical fish farms in east central Florida were submitted for diagnostic evaluation because of the development of multifocal green lesions. The percentage of infected fish in these populations varied from 5 to 60%. Fish were otherwise clinically normal. Microscopic examination of fresh and fixed lesions confirmed algal dermatitis, with light invasion of several internal organs in each group. A different alga was identified from each farm. Fish from farm A were infected with Chlorochytrium spp, whereas fish from farm B were infected with Scenedesmus spp. Because of the numbers of fish involved, bath treatments to remove the algae from affected fish from farm B were attempted, with different dosages of several common algaecides including copper sulfate pentahydrate, diuron, and sodium chloride. However, none of these treatments were successful, possibly because of the location of the algae under the scales and within the dermis, and also because of the sequestering effect of the granulomatous response. To our knowledge, this is the first report of algal dermatitis in ornamental cichlids, as well as the first report of Scenedesmus spp infection in any fish.

  17. THE EVOLUTION OF PARASITES FROM THEIR HOSTS: A CASE STUDY IN THE PARASITIC RED ALGAE.

    Science.gov (United States)

    Goff, Lynda J; Ashen, Jon; Moon, Debra

    1997-08-01

    Morphological similarities of many parasites and their hosts have led to speculation that some groups of plant, animal, fungal, and algal parasites may have evolved directly from their hosts. These parasites, which have been termed adelphoparasites in the botanical literature, and more recently, agastoparasites in the insect literature, may evolve monophyletically from one host and radiate secondarily to other hosts or, these parasites may arise polyphyletically, each arising from its own host. In this study we compare the internal transcribed spacer regions of the nuclear ribosomal repeats of species and formae specialis (host races) included in the red algal parasite genus Asterocolax with its hosts, which all belong to the Phycodrys group of the Delesseriaceae and with closely related nonhost taxa of the Delesseriaceae. These analyses reveal that species of Asterocolax have evolved polyphyletically. Asterocolax erythroglossi from the North Atlantic host Erythroglossum laciniatum appears to have evolved from its host, whereas taxa included in the north Pacific species Asterocolax gardneri have had two independent origins. Asterocolax gardneri from the host Polyneura latissima probably arose directly from this host. In contrast, all other A. gardneri formae specialis appear to have originated from either Phycodrys setchellii or P. isabelliae and radiated secondarily onto other closely related taxa of the Phycodrys group, including Nienburgia andersoniana and Anisocladella pacifica. Gamete crossing experiments confirm that A. gardneri from each host is genetically isolated from both its host, and from other A. gardneri and their hosts. Cross-infection experiments reveal that A. gardneri develops normally only on its natural host, although some abberrant growth may occur on alternate hosts. The ability of red algal parasites to radiate secondarily to other red algal taxa, where they may become isolated genetically and speciate, suggests that this process of

  18. Climate Change and Algal Blooms =

    Science.gov (United States)

    Lin, Shengpan

    Algal blooms are new emerging hazards that have had important social impacts in recent years. However, it was not very clear whether future climate change causing warming waters and stronger storm events would exacerbate the algal bloom problem. The goal of this dissertation was to evaluate the sensitivity of algal biomass to climate change in the continental United States. Long-term large-scale observations of algal biomass in inland lakes are challenging, but are necessary to relate climate change to algal blooms. To get observations at this scale, this dissertation applied machine-learning algorithms including boosted regression trees (BRT) in remote sensing of chlorophyll-a with Landsat TM/ETM+. The results show that the BRT algorithm improved model accuracy by 15%, compared to traditional linear regression. The remote sensing model explained 46% of the total variance of the ground-measured chlorophyll- a in the first National Lake Assessment conducted by the US Environmental Protection Agency. That accuracy was ecologically meaningful to study climate change impacts on algal blooms. Moreover, the BRT algorithm for chlorophyll- a would not have systematic bias that is introduced by sediments and colored dissolved organic matter, both of which might change concurrently with climate change and algal blooms. This dissertation shows that the existing atmospheric corrections for Landsat TM/ETM+ imagery might not be good enough to improve the remote sensing of chlorophyll-a in inland lakes. After deriving long-term algal biomass estimates from Landsat TM/ETM+, time series analysis was used to study the relations of climate change and algal biomass in four Missouri reservoirs. The results show that neither temperature nor precipitation was the only factor that controlled temporal variation of algal biomass. Different reservoirs, even different zones within the same reservoir, responded differently to temperature and precipitation changes. These findings were further

  19. Genus vesiculoviruses

    Science.gov (United States)

    The vesiculovirus genus of the family Rhabdoviridae contains a numbers of viruses that have been taxonomically classified using a combination of serological relatedness, host range, genome organization, pathobiology and phylogenetic analysis of sequence data. There are 11 viruses assigned to the gen...

  20. Algal Bloom: Boon or Bane?

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Algal blooms occur in response to nutrient deplete or replete conditions. Nitrogen fixing forms proliferate under oligotrophic conditions when nutrient levels are low. Replete conditions in response to upwelling creates the most biologically...

  1. Juvenile corals can acquire more carbon from high-performance algal symbionts

    NARCIS (Netherlands)

    Cantin, N. E.; van Oppen, M. J. H.; Willis, B. L.; Mieog, J. C.; Negri, A. P.

    Algal endosymbionts of the genus Symbiodinium play a key role in the nutrition of reef building corals and strongly affect the thermal tolerance and growth rate of the animal host. This study reports that (14)C photosynthate incorporation into juvenile coral tissues was doubled in Acropora millepora

  2. The Stable Concordance Genus

    OpenAIRE

    Kearney, M. Kate

    2013-01-01

    The concordance genus of a knot is the least genus of any knot in its concordance class. Although difficult to compute, it is a useful invariant that highlights the distinction between the three-genus and four-genus. In this paper we define and discuss the stable concordance genus of a knot, which describes the behavior of the concordance genus under connected sum.

  3. Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu SP. nov. from the East China Sea

    Science.gov (United States)

    Lu, Dou-Ding; Goebel, Jeanette

    2001-12-01

    A new planktonic dinoflagellate, Prorocentrum donghaiense Lu sp. nov., is described in the present paper. The water sample was collected from the Changjiang Estuary, the East China Sea. The species identification is based on shape, size, surface micro-morphology, ornamentation of thecal plates and the architecture of the periflagellar area and the intercalary bands as seen by light and scanning electron microscope. Prorocentrum donghaiense Lu sp. nov. is compared with other prorocentrum species with respect to morphological characteristics and bloom behavior. It is not known whether Prorocentrum donghaiense Lu sp. nov produces phycotoxins like some other Prorocentrum species. Four other red tide species in the family Prorocentraceae (Dinophyceae), namely P. balticum, P. minimum, P. micans, P. triestinum, were examined and identified by light and scanning electron microscope. They have been recorded as bloom-forming species. Some aggregates of Prorocentrum are observed at the end of blooms. An event of strong discoloration caused by P. donghaiense could be detected by satellite sensor in the East China Sea in the late spring of 1995.

  4. Morphological and molecular characterization of a new genus and new species of parazoanthid (Anthozoa: Hexacorallia: Zoantharia) associated with Japanese Red Coral

    Science.gov (United States)

    Reimer, J. D.; Nonaka, M.; Sinniger, F.; Iwase, F.

    2008-12-01

    The Order Zoantharia has long been taxonomically neglected primarily due to difficulty in examining the internal morphology of sand-encrusted zoanthids. However, recent work using molecular markers has shown an unexpectedly high diversity of previously “hidden” taxa (families and genera) within Zoantharia (=Zoanthidea, Zoanthiniaria). In this study, unidentified sediment-encrusting zoanthid specimens ( n = 8) were collected from living Japanese Red Coral Paracorallium japonicum (Family Coralliidae) during precious coral harvesting by Remotely Operated Vehicle (ROV) and manned submersible (February 2004-January 2006) at depths of 194-250 m at six locations between Ishigaki-jima Island and Kikai-jima Island, southern Japan. DNA sequences (mitochondrial 16S ribosomal DNA [mt 16S rDNA], cytochrome oxidase subunit I [COI], nuclear internal transcribed spacer of ribosomal DNA [ITS-rDNA]) unambiguously place these specimens in a previously undescribed, new monophyletic lineage within the family Parazoanthidae. Corallizoanthus tsukaharai, gen. n. et sp. n. is the first reported zoanthid species associated with the family Coralliidae and unlike other described gorgonian-associated zoanthids ( Savalia spp .) does not secrete its own hard axis. Morphologically, C. tsukaharai sp. n. is characterized by generally unitary polyps and bright yellow external coloration.

  5. Algal stabilisation of estuarine sediments

    International Nuclear Information System (INIS)

    1992-01-01

    The presence of benthic microalgae can increase the stability of intertidal sediments and influence sediment fluxes within an estuarine environment. Therefore the relative importance of algal stabilisation needs to be understood to help predict the effects of a tidal barrage. The objectives of this study are: to assess the significance of stabilisation of sediments by algae, in relation to the changes in hydrodynamic and sedimentological regimes arising from the construction of tidal power barrages; to identify a reliable and meaningful method of measuring the effectiveness, including duration, of algal binding on sediment stability, and to relate this method to other methods of measuring critical erosion velocity and sediment shear strength; to undertake a series of field experiments investigating the effect of algae on binding sediments and the parameters which could potentially influence such binding and to develop a predictive method for the assessment of sediment stabilisation by algal binding. This report contains plates, figures and tables. (author)

  6. Algal stabilisation of estuarine sediments

    International Nuclear Information System (INIS)

    1992-01-01

    The presence of benthic microalgae can increase the stability of intertidal sediments and influence sediment fluxes within an estuarine environment. Therefore the relative importance of algal stabilisation needs to be understood to help predict the effects of a tidal barrage. The biogenic stabilisation of intertidal estuarine sediments by epipelic diatom films and the macrophyte Vaucheria was studied at three sites on the Severn Estuary. The cohesive strength meter (CSM) was developed to measure surface critical shear stress with varied algal density. A number of techniques have been used to determine the general in situ erodibility of cohesive estuarine sediments. The measurements of sediment shear strength and critical erosion velocity were investigated. Field experiments were undertaken to investigate the effect of algae on binding sediments, and a predictive method for the assessment of sediment stabilisation by algal binding was developed. (author)

  7. Sapphire Energy - Integrated Algal Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    White, Rebecca L. [Sapphire Energy, Inc., Columbus, NM (United States). Columbus Algal Biomass Farm; Tyler, Mike [Sapphire Energy, Inc., San Diego, CA (United States)

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass production facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR

  8. Benthic algal vegetation in Isfjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    Stein Fredriksen

    2015-08-01

    Full Text Available Benthic algal vegetation was investigated at 10 sites in Isfjorden, Svalbard. Five sites were visited during summer 2010 and five during summer 2012. Both the littoral and sublittoral vegetation were sampled, the littoral by hand-picking and use of a throwable rake and the sublittoral using a triangular dredge. A total of 88 different taxa were registered, comprising 17 Chlorophyta, 40 Ochrophyta, 30 Rhodophyta and the Xantophyceae Vaucheria sp. The green algae Ulvaria splendens (Ruprecht Vinogradova was recorded in Svalbard for the first time. Most of the sites consisted of hard bottom substrate, but one site, Kapp Wijk, consisted of loose-lying calcareous red algae (rhodoliths and had species not recorded elsewhere. The sublittoral at the other sites was dominated by kelp. Molecular analysis confirmed the presence of the red alga Ceramium virgatum and a dwarf form of the brown alga Fucus vesiculosus. This study provides a baseline for future studies investigating changes in the vegetation due to environmental changes.

  9. Algal Systems for Hydrogen Photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Ghirardi, Maria L [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-08

    The National Renewable Energy Laboratory (NREL), under the guidance of Drs. Michael Seibert (retired, Fellow Emeritus) and Maria Ghirardi (Fellow), led 15 years of research addressing the issue of algal H2 photoproduction. This project resulted in greatly increased rates and yields of algal hydrogen production; increased understanding of the H2 metabolism in the green alga, Chlamydomonas reinhardtii; expanded our knowledge of other physiological aspects relevant to sustained algal photosynthetic H2 production; led to the genetic identification, cloning and manipulation of algal hydrogenase genes; and contributed to a broader, fundamental understanding of the technical and scientific challenges to improving the conversion efficiencies in order to reach the U.S. Department of Energy’s Fuel Cell Technologies Office’s targets. Some of the tangible results are: (i) 64 publications and 6 patents, (ii) international visibility to NREL, (iii) reinvigoration of national and international biohydrogen research, and (iv) research progress that helped stimulate new funding from other DOE and non-DOE programs, including the AFOSR and the DOE Office of Science.

  10. Phenolic Content and Antioxidant Capacity in Algal Food Products

    Directory of Open Access Journals (Sweden)

    Ludmila Machu

    2015-01-01

    Full Text Available The study objective was to investigate total phenolic content using Folin-Ciocalteu’s method, to assess nine phenols by HPLC, to determine antioxidant capacity of the water soluble compounds (ACW by a photochemiluminescence method, and to calculate the correlation coefficients in commercial algal food products from brown (Laminaria japonica, Eisenia bicyclis, Hizikia fusiformis, Undaria pinnatifida and red (Porphyra tenera, Palmaria palmata seaweed, green freshwater algae (Chlorella pyrenoidosa, and cyanobacteria (Spirulina platensis. HPLC analysis showed that the most abundant phenolic compound was epicatechin. From spectrophotometry and ACW determination it was evident that brown seaweed Eisenia bicyclis was the sample with the highest phenolic and ACW values (193 mg·g−1 GAE; 7.53 µmol AA·g−1, respectively. A linear relationship existed between ACW and phenolic contents (r = 0.99. Some algal products seem to be promising functional foods rich in polyphenols.

  11. Selective algicidal action of peptides against harmful algal bloom species.

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Park

    Full Text Available Recently, harmful algal bloom (HAB, also termed "red tide", has been recognized as a serious problem in marine environments according to climate changes worldwide. Many novel materials or methods to prevent HAB have not yet been employed except for clay dispersion, in which can the resulting sedimentation on the seafloor can also cause alteration in marine ecology or secondary environmental pollution. In the current study, we investigated that antimicrobial peptide have a potential in controlling HAB without cytotoxicity to harmless marine organisms. Here, antimicrobial peptides are proposed as new algicidal compounds in combating HAB cells. HPA3 and HPA3NT3 peptides which exert potent antimicrobial activity via pore forming action in plasma membrane showed that HPA3NT3 reduced the motility of algal cells, disrupted their plasma membrane, and induced the efflux of intracellular components. Against raphidoflagellate such as Heterosigma akashiwo, Chattonella sp., and C. marina, it displayed a rapid lysing action in cell membranes at 1~4 µM within 2 min. Comparatively, its lysing effects occurred at 8 µM within 1 h in dinoflagellate such as Cochlodium polykrikoides, Prorocentrum micans, and P. minimum. Moreover, its lysing action induced the lysis of chloroplasts and loss of chlorophyll a. In the contrary, this peptide was not effective against Skeletonema costatum, harmless algal cell, even at 256 µM, moreover, it killed only H. akashiwo or C. marina in co-cultivation with S. costatum, indicating to its selective algicidal activity between harmful and harmless algal cells. The peptide was non-hemolytic against red blood cells of Sebastes schlegeli, the black rockfish, at 120 µM. HAB cells were quickly and selectively lysed following treatment of antimicrobial peptides without cytotoxicity to harmless marine organisms. Thus, the antibiotic peptides examined in our study appear to have much potential in effectively controlling HAB with minimal

  12. Herbivory on macro-algae affects colonization of beach-cast algal wrack by detritivores but not its decomposition

    Directory of Open Access Journals (Sweden)

    Philip Eereveld

    2013-05-01

    Full Text Available Spatial subsidies have increasingly been considered significant sources of matter and energy to unproductive ecosystems. However, subsidy quality may both differ between subsidizing sources and vary over time. In our studies, sub-littoral herbivory by snails or isopods on red or brown macro-algae induced changes in algal tissues that affected colonization of beach-cast algal wrack by supra-littoral detritivores (amphipods. However, microbial decay and decomposition through the joint action of detritivores and microbes of algal wrack in the supra-littoral remained unaffected by whether or not red or brown algae had been fed upon by snails or isopods. Thus, herbivory on marine macro-algae affects the cross-system connection of sub-littoral and supra-littoral food webs transiently, but these effects diminish upon ageing of macro-algal wrack in the supra-littoral zone.

  13. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event : field evidence of acclimatization

    NARCIS (Netherlands)

    Jones, A. M.; Berkelmans, R.; van Oppen, M. J. H.; Mieog, J. C.; Sinclair, W.

    2008-01-01

    The symbiosis between reef-building corals and their algal endosymbionts (zooxanthellae of the genus Symbiodinium) is highly sensitive to temperature stress, which makes coral reefs vulnerable to climate change. Thermal tolerance in corals is known to be substantially linked to the type of

  14. Algal biofuels: challenges and opportunities.

    Science.gov (United States)

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Dinoflagellate community structure from the stratified environment of the Bay of Bengal, with special emphasis on harmful algal bloom species

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, R.K.; Hegde, S.; Anil, A.C.

    the total marine phytoplankton species, approximately 7% are capable of forming algal blooms (red tides) (Sournia 1995); dinoflagellates are the most important group producing toxic and harmful algal blooms (Steidinger 1983, 1993; Anderson 1989... Taxonomic identification revealed 134 species of dinoflagellates in surface waters of the BOB during the observation period (Table 2). Further grouping of these identified species based on their nutritional mode, revealed 40 autotrophic, 50 mixotrophic...

  16. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir.

    Science.gov (United States)

    Zhang, Haihan; Jia, Jingyu; Chen, Shengnan; Huang, Tinglin; Wang, Yue; Zhao, Zhenfang; Feng, Ji; Hao, Huiyan; Li, Sulin; Ma, Xinxin

    2018-02-18

    The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS) gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP) from the outbreak to the decline period (p Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA) also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of algal bloom in Zhoucun drinking water reservoir. Our study highlights the potential role of microbial diversity as a driving force for the algal bloom and biogeochemical cycling of reservoir ecology.

  17. The coralline red alga Lithophyllum kotschyanum f. affine as proxy of climate variability in the Yemen coast, Gulf of Aden (NW Indian Ocean)

    Science.gov (United States)

    Caragnano, A.; Basso, D.; Jacob, D. E.; Storz, D.; Rodondi, G.; Benzoni, F.; Dutrieux, E.

    2014-01-01

    Recent investigations have shown the potential of red coralline algae as paleoclimatic archive. A previously unexplored subfamily of coralline algae, the Lithophylloideae, was investigated from the Gulf of Aden (Balhaf, Yemen). Seasonal changes in Mg/Ca, Li/Ca and Ba/Ca composition of Lithophyllum kotschyanum f. affine were investigated by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). For the first time in coralline algae, the Li/Ca composition was analyzed and showed a highly significant and positive correlation with Mg/Ca and SST. Monthly algal Mg/Ca and Li/Ca variations indicate a positive correlation with sea surface temperature (SST), and sea surface salinity (SSS), although low growth rates decrease the resolution of the algal record. Albeit no or weak positive correlation between monthly algal Ba/Ca and local SST was found, fluctuations in Ba/Ca suggest the seasonal influence of nutrient-rich deep waters introduced by upwelling, and record an increase of sedimentation at the sampling site likely due to an intensified land use in the area. The Mg/Ca age model shows an average algal extension rate of 1.15 mm yr-1, and reveals multiple intra-annual banding (previously unreported in the genus Lithophyllum) together with carposporangia formation in late February-early March, when temperature begins to increase. The concentration of MgCO3 in the thallus of L. kotschyanum f. affine is 20 mol% (1 SE), confirming that within the genus, the species sampled in warmer regions contain higher mol% MgCO3. The concentrations of LiCO3 and BaCO3 are 8 μmol% (0.7 SE) and 0.5 μmol% (0.03 SE), respectively. Despite the limitations from low-growth rate and species-specific vital effect, coralline algae confirm their utility in climate and oceanographic reconstruction.

  18. Antibacterial Compounds from Red Seaweeds (Rhodophyta)

    OpenAIRE

    Noer Kasanah; Triyanto Triyanto; Drajad Sarwo Seto; Windi Amelia; Alim Isnansetyo

    2015-01-01

    Seaweeds produce great variety of metabolites benefit for human. Red seaweeds (Rhodophyta) are well known as producer of phycocolloids such agar, agarose, carragenan and great variety of secondary metabolites. This review discusses the red algal secondary metabolites with antibacterial activity. The chemical constituents of red algae are steroid, terpenoid, acetogenin and dominated by halogenated compounds mainly brominated compounds. Novel compounds with intriguing skeleton are also reported...

  19. Macromolecular synthesis in algal cells

    International Nuclear Information System (INIS)

    Ishida, M.R.; Kikuchi, Tadatoshi

    1980-01-01

    The present paper is a review of our experimental results obtained previously on the macromolecular biosyntheses in the cells of blue-green alga Anacystis nidulans as a representative species of prokaryote, and also in those of three species of eukaryotic algae, i.e. Euglena gracilis strain Z, Chlamydomonas reinhardi, and Cyanidium caldarium. In these algal cells, the combined methods consisting of pulse-labelling using 32 P, 3 H- and 14 C-labelled precursors for macromolecules, of their chasing and of the use of inhibitors which block specifically the syntheses of macromolecules such as proteins, RNA and DNA in living cells were very effectively applied for the analyses of the regulatory mechanism in biosyntheses of macromolecules and of the mode of their assembly into the cell structure, especially organelle constituents. Rased on the results obtained thus, the following conclusions are reached: (1) the metabolic pool for syntheses of macromolecules in the cells of prokaryotic blue-green alga is limited to the small extent and such activities couple largely with the photosynthetic mechanism; (2) 70 S ribosomes in the blue-green algal cells are assembled on the surface of thylakoid membranes widely distributed in their cytoplasm; and (3) the cells of eukaryotic unicellular algae used here have biochemical characters specific for already differentiated enzyme system involving in transcription and translation machineries as the same as in higher organisms, but the control mechanism concerning with such macromolecule syntheses are different among each species. (author)

  20. The genus Bipolaris

    NARCIS (Netherlands)

    Manamgoda, D.S.; Rossman, A.Y.; Castlebury, L.A.; Crous, P.W.; Madrid, H.; Chukeatirote, E.; Hyde, K.D.

    2014-01-01

    The genus Bipolaris includes important plant pathogens with worldwide distribution. Species recognition in the genus has been uncertain due to the lack of molecular data from ex-type cultures as well as overlapping morphological characteristics. In this study, we revise the genus Bipolaris based on

  1. Ottia meiospora (Ottiaceae, Rhodophyta), a new genus and family endophytic within the thallus of Nothocladus (Batrachospermales, Rhodophyta).

    Science.gov (United States)

    Entwisle, Timothy J; Evans, Joshua R; Vis, Morgan L; Saunders, Gary W

    2018-02-01

    A new genus, Ottia, and family, Ottiaceae, are proposed within the Acrochaetiales to accommodate the uniseriate red algal endophyte of batrachspermalean taxa previously named Balbiania meiospora. Prior to this study, Balbiania investiens was transferred to its own family and order (Balbianiales) based on comparative DNA sequence data and a distinctive reproductive morphology. However, the second species described in this genus, B. meiospora, continued to be treated as a species of Audouinella (A. meiospora) pending further investigation. Phylogenetic analyses of sequence data confirmed only a distant relationship between the two endophytes, and a closer alliance of B. meiospora to Acrochaetiales. The data also showed that Ottia meiospora was the deepest diverging lineage in the Acrochaetiales, sister to all of the currently recognized genera and families. In this study, we review the classification of what we now call O. meiospora - reported from Australia, New Zealand and Brazil - based on sequence and morphological data. Morphological observations provided little clarity around the reproductive morphology or the life cycle of this endophyte of Nothocladus s. lat. found commonly in mainland Australia but, to date, less so in New Zealand. © 2017 Phycological Society of America.

  2. NREL Algal Biofuels Projects and Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-01

    This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.

  3. Marine mimivirus relatives are probably large algal viruses

    Directory of Open Access Journals (Sweden)

    Claverie Jean-Michel

    2008-01-01

    Full Text Available Abstract Background Acanthamoeba polyphaga mimivirus is the largest known ds-DNA virus and its 1.2 Mb-genome sequence has revealed many unique features. Mimivirus occupies an independent lineage among eukaryotic viruses and its known hosts include only species from the Acanthamoeba genus. The existence of mimivirus relatives was first suggested by the analysis of the Sargasso Sea metagenomic data. Results We now further demonstrate the presence of numerous "mimivirus-like" sequences using a larger marine metagenomic data set. We also show that the DNA polymerase sequences from three algal viruses (CeV01, PpV01, PoV01 infecting different marine algal species (Chrysochromulina ericina, Phaeocystis pouchetii, Pyramimonas orientalis are very closely related to their homolog in mimivirus. Conclusion Our results suggest that the numerous mimivirus-related sequences identified in marine environments are likely to originate from diverse large DNA viruses infecting phytoplankton. Micro-algae thus constitute a new category of potential hosts in which to look for new species of Mimiviridae.

  4. Constraints to commercialization of algal fuels.

    Science.gov (United States)

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. Copyright © 2013 Elsevier B.V. All

  5. Sustainable Algal Energy Production and Environmental Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, William E. [College of William and Mary, Williamsburg, VA (United States). Dept. of Physics

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  6. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Cyd E. [Dept. of Energy (DOE), Washington DC (United States).

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  7. Interactive effects of ocean acidification and warming on coral reef associated epilithic algal communities under past, present-day and future ocean conditions

    Science.gov (United States)

    Vogel, N.; Cantin, N. E.; Strahl, J.; Kaniewska, P.; Bay, L.; Wild, C.; Uthicke, S.

    2016-06-01

    Epilithic algal communities play critical ecological roles on coral reefs, but their response to individual and interactive effects of ocean warming (OW) and ocean acidification (OA) is still largely unknown. We investigated growth, photosynthesis and calcification of early epilithic algal community assemblages exposed for 6 months to four temperature profiles (-1.1, ±0.0, +0.9, +1.6 °C) that were crossed with four carbon dioxide partial pressure (pCO2) levels (360, 440, 650, 940 µatm), under flow-through conditions and natural light regimes. Additionally, we compared the cover of heavily calcified crustose coralline algae (CCA) and lightly calcified red algae of the genus Peyssonnelia among treatments. Increase in cover of epilithic communities showed optima under moderately elevated temperatures and present pCO2, while cover strongly decreased under high temperatures and high-pCO2 conditions, particularly due to decreasing cover of CCA. Similarly, community calcification rates were strongly decreased at high pCO2 under both measured temperatures. While final cover of CCA decreased under high temperature and pCO2 (additive negative effects), cover of Peyssonnelia spp. increased at high compared to annual average and moderately elevated temperatures. Thus, cover of Peyssonnelia spp. increased in treatment combinations with less CCA, which was supported by a significant negative correlation between organism groups. The different susceptibility to stressors most likely derived from a different calcification intensity and/or mineral. Notably, growth of the epilithic communities and final cover of CCA were strongly decreased under reduced-pCO2 conditions compared to the present. Thus, CCA may have acclimatized from past to present-day pCO2 conditions, and changes in carbonate chemistry, regardless in which direction, negatively affect them. However, if epilithic organisms cannot further acclimatize to OW and OA, the interacting effects of both factors may change

  8. Screening for antifungal activities of extracts of the brazilian seaweed genus Laurencia (Ceramiales, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Erika M. Stein

    2011-04-01

    Full Text Available The resistance of pathogens to commonly used antibiotics has enhanced morbidity and mortality and has triggered the search for new drugs. Several species of the red alga genus Laurencia are very interesting candidates as potential sources of natural products with pharmaceutical activity because they are known to produce a wide range of chemically interesting halogenated secondary metabolites. This is an initial report of the antifungal activities of the secondary metabolites of five species of Laurencia, collected in the state of Espírito Santo, against three strains of pathogenic fungi: Candida albicans (CA, Candida parapsilosis (CP, and Cryptococcus neoformans (CN. Minimum inhibitory concentrations (MIC of the algal extracts were determined by serial dilution method in RPMI 1640 Medium in 96-well plates according to the NCCLS and microbial growth was determined by absorbance at 492nm. A result showing maintenance or reduction of the inoculum was defined as fungistatic, while fungicidal action was no observed growth in the 10 µL fungistatic samples subcultured in Sabouraud Agar. Our results indicate that apolar extracts of Laurencia species possess antifungal properties and encourage continued research to find new drugs for therapy of infectious diseases in these algae.

  9. Screening for antifungal activities of extracts of the brazilian seaweed genus Laurencia (Ceramiales, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Erika M. Stein

    2011-05-01

    Full Text Available The resistance of pathogens to commonly used antibiotics has enhanced morbidity and mortality and has triggered the search for new drugs. Several species of the red alga genus Laurencia are very interesting candidates as potential sources of natural products with pharmaceutical activity because they are known to produce a wide range of chemically interesting halogenated secondary metabolites. This is an initial report of the antifungal activities of the secondary metabolites of five species of Laurencia, collected in the state of Espírito Santo, against three strains of pathogenic fungi: Candida albicans (CA, Candida parapsilosis (CP, and Cryptococcus neoformans (CN. Minimum inhibitory concentrations (MIC of the algal extracts were determined by serial dilution method in RPMI 1640 Medium in 96-well plates according to the NCCLS and microbial growth was determined by absorbance at 492nm. A result showing maintenance or reduction of the inoculum was defined as fungistatic, while fungicidal action was no observed growth in the 10 µL fungistatic samples subcultured in Sabouraud Agar. Our results indicate that apolar extracts of Laurencia species possess antifungal properties and encourage continued research to find new drugs for therapy of infectious diseases in these algae.

  10. Climate Adaptation and Harmful Algal Blooms

    Science.gov (United States)

    EPA supports local, state and tribal efforts to maintain water quality. A key element of its efforts is to reduce excess nutrient pollution and the resulting adverse impacts, including harmful algal blooms.

  11. Detecting the Killer Toxin (Harmful Algal Blooms)

    International Nuclear Information System (INIS)

    Quevenco, Rodolfo

    2011-01-01

    IAEA is stepping up efforts to help countries understand the phenomenon and use more reliable methods for early detection and monitoring so as to limit harmful algal blooms (HABs) adverse effects on coastal communities everywhere.

  12. Antibacterial Compounds from Red Seaweeds (Rhodophyta

    Directory of Open Access Journals (Sweden)

    Noer Kasanah

    2015-07-01

    Full Text Available Seaweeds produce great variety of metabolites benefit for human. Red seaweeds (Rhodophyta are well known as producer of phycocolloids such agar, agarose, carragenan and great variety of secondary metabolites. This review discusses the red algal secondary metabolites with antibacterial activity. The chemical constituents of red algae are steroid, terpenoid, acetogenin and dominated by halogenated compounds mainly brominated compounds. Novel compounds with intriguing skeleton are also reported such as bromophycolides and neurymenolides. In summary, red seaweeds are potential sources for antibacterial agents and can serve as lead in synthesis of new natural medicines.

  13. Gasification of Phycoremediation Algal Biomass

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Sharara

    2015-03-01

    Full Text Available Microalgae have been utilized in wastewater treatment strategies in various contexts. Uncontrolled algal species are a cheap and effective remediation strategy. This study investigates the thermochemical potential of wastewater treatment algae (phycoremediation as a means to produce renewable fuel streams and bio-products. Three gasification temperature levels were investigated in an auger gasification platform: 760, 860, and 960 °C. Temperature increases resulted in corresponding increases in CO and H2 concentrations in the producer gas from 12.8% and 4.7% at 760 °C to 16.9% and 11.4% at 960 °C, respectively. Condensable yields ranged between 15.0% and 16.6%, whereas char yields fell between 46.0% and 51.0%. The high ash content (40% on a dry basis was the main cause of the elevated char yields. On the other hand, the relatively high yields of condensables and a high carbon concentration in the char were attributed to the low conversion efficiency in this gasification platform. Combustion kinetics of the raw algae, in a thermogravimetric analyzer, showed three consecutive stages of weight loss: drying, devolatilization, and char oxidation. Increasing the algae gasification temperature led to increases in the temperature of peak char oxidation. Future studies will further investigate improvements to the performance of auger gasification.

  14. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir

    Directory of Open Access Journals (Sweden)

    Haihan Zhang

    2018-02-01

    Full Text Available The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP from the outbreak to the decline period (p < 0.05 while Fe concentration increased sharply during the decline period (p < 0.05. The highest algal biomass and cell concentrations observed during the bloom were 51.7 mg/L and 1.9×108 cell/L, respectively. The cell concentration was positively correlated with CODMn (r = 0.89, p = 0.02. Illumina Miseq sequencing showed that algal bloom altered the water bacterial and fungal community structure. During the bloom, the dominant bacterial genus were Acinetobacter sp., Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of

  15. The genus Bipolaris.

    Science.gov (United States)

    Manamgoda, D S; Rossman, A Y; Castlebury, L A; Crous, P W; Madrid, H; Chukeatirote, E; Hyde, K D

    2014-09-01

    The genus Bipolaris includes important plant pathogens with worldwide distribution. Species recognition in the genus has been uncertain due to the lack of molecular data from ex-type cultures as well as overlapping morphological characteristics. In this study, we revise the genus Bipolaris based on DNA sequence data derived from living cultures of fresh isolates, available ex-type cultures from worldwide collections and observation of type and additional specimens. Combined analyses of ITS, GPDH and TEF gene sequences were used to reconstruct the molecular phylogeny of the genus Bipolaris for species with living cultures. The GPDH gene is determined to be the best single marker for species of Bipolaris. Generic boundaries between Bipolaris and Curvularia are revised and presented in an updated combined ITS and GPDH phylogenetic tree. We accept 47 species in the genus Bipolaris and clarify the taxonomy, host associations, geographic distributions and species' synonymies. Modern descriptions and illustrations are provided for 38 species in the genus with notes provided for the other taxa when recent descriptions are available. Bipolaris cynodontis, B. oryzae, B. victoriae, B. yamadae and B. zeicola are epi- or neotypified and a lectotype is designated for B. stenospila. Excluded and doubtful species are listed with notes on taxonomy and phylogeny. Seven new combinations are introduced in the genus Curvularia to accomodate the species of Bipolaris transferred based on the phylogenetic analysis. A taxonomic key is provided for the morphological identification of species within the genus.

  16. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization

    OpenAIRE

    Jones, A.M; Berkelmans, R; van Oppen, M.J.H; Mieog, J.C; Sinclair, W

    2008-01-01

    The symbiosis between reef-building corals and their algal endosymbionts (zooxanthellae of the genus Symbiodinium) is highly sensitive to temperature stress, which makes coral reefs vulnerable to climate change. Thermal tolerance in corals is known to be substantially linked to the type of zooxanthellae they harbour and, when multiple types are present, the relative abundance of types can be experimentally manipulated to increase the thermal limits of individual corals. Although the potential...

  17. The Hawaiian Freshwater Algal Database (HfwADB: a laboratory LIMS and online biodiversity resource

    Directory of Open Access Journals (Sweden)

    Sherwood Alison R

    2012-10-01

    Full Text Available Abstract Background Biodiversity databases serve the important role of highlighting species-level diversity from defined geographical regions. Databases that are specially designed to accommodate the types of data gathered during regional surveys are valuable in allowing full data access and display to researchers not directly involved with the project, while serving as a Laboratory Information Management System (LIMS. The Hawaiian Freshwater Algal Database, or HfwADB, was modified from the Hawaiian Algal Database to showcase non-marine algal specimens collected from the Hawaiian Archipelago by accommodating the additional level of organization required for samples including multiple species. Description The Hawaiian Freshwater Algal Database is a comprehensive and searchable database containing photographs and micrographs of samples and collection sites, geo-referenced collecting information, taxonomic data and standardized DNA sequence data. All data for individual samples are linked through unique 10-digit accession numbers (“Isolate Accession”, the first five of which correspond to the collection site (“Environmental Accession”. Users can search online for sample information by accession number, various levels of taxonomy, habitat or collection site. HfwADB is hosted at the University of Hawaii, and was made publicly accessible in October 2011. At the present time the database houses data for over 2,825 samples of non-marine algae from 1,786 collection sites from the Hawaiian Archipelago. These samples include cyanobacteria, red and green algae and diatoms, as well as lesser representation from some other algal lineages. Conclusions HfwADB is a digital repository that acts as a Laboratory Information Management System for Hawaiian non-marine algal data. Users can interact with the repository through the web to view relevant habitat data (including geo-referenced collection locations and download images of collection sites, specimen

  18. Algal Supply System Design - Harmonized Version

    Energy Technology Data Exchange (ETDEWEB)

    Jared Abodeely; Daniel Stevens; Allison Ray; Debor

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  19. Algal Energy Conversion and Capture

    Science.gov (United States)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  20. Chlorophyll specific absorption coefficient and phytoplankton biomass in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash; Kheireddine, Malika; Jones, Burton

    2015-01-01

    are fundamental to understanding remotely sensed ocean color. Until recently, data regarding the contribution of phytoplankton and algal particles to the inherent optical properties of the Red Sea was nonexistent. Some of the first measurements of these inherent

  1. The host transcriptome remains unaltered during the establishment of coral-algal symbioses.

    Science.gov (United States)

    Voolstra, Christian R; Schwarz, Jodi A; Schnetzer, Julia; Sunagawa, Shinichi; Desalvo, Michael K; Szmant, Alina M; Coffroth, Mary Alice; Medina, Mónica

    2009-05-01

    Coral reefs are based on the symbiotic relationship between corals and photosynthetic dinoflagellates of the genus Symbiodinium. We followed gene expression of coral larvae of Acropora palmata and Montastraea faveolata after exposure to Symbiodinium strains that differed in their ability to establish symbioses. We show that the coral host transcriptome remains almost unchanged during infection by competent symbionts, but is massively altered by symbionts that fail to establish symbioses. Our data suggest that successful coral-algal symbioses depend mainly on the symbionts' ability to enter the host in a stealth manner rather than a more active response from the coral host.

  2. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses?

    Directory of Open Access Journals (Sweden)

    Tian Jing

    2009-10-01

    Full Text Available Abstract Background How photosynthetic organelles, or plastids, were acquired by diverse eukaryotes is among the most hotly debated topics in broad scale eukaryotic evolution. The history of plastid endosymbioses commonly is interpreted under the "chromalveolate" hypothesis, which requires numerous plastid losses from certain heterotrophic groups that now are entirely aplastidic. In this context, discoveries of putatively algal genes in plastid-lacking protists have been cited as evidence of gene transfer from a photosynthetic endosymbiont that subsequently was lost completely. Here we examine this evidence, as it pertains to the chromalveolate hypothesis, through genome-level statistical analyses of similarity scores from queries with two diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, and two aplastidic sister taxa, Phytophthora ramorum and P. sojae. Results Contingency tests of specific predictions of the chromalveolate model find no evidence for an unusual red algal contribution to Phytophthora genomes, nor that putative cyanobacterial sequences that are present entered these genomes through a red algal endosymbiosis. Examination of genes unrelated to plastid function provide extraordinarily significant support for both of these predictions in diatoms, the control group where a red endosymbiosis is known to have occurred, but none of that support is present in genes specifically conserved between diatoms and oomycetes. In addition, we uncovered a strong association between overall sequence similarities among taxa and relative sizes of genomic data sets in numbers of genes. Conclusion Signal from "algal" genes in oomycete genomes is inconsistent with the chromalveolate hypothesis, and better explained by alternative models of sequence and genome evolution. Combined with the numerous sources of intragenomic phylogenetic conflict characterized previously, our results underscore the potential to be mislead by a posteriori

  3. The genus Baijiania (Cucurbitaceae)

    NARCIS (Netherlands)

    Wilde, de W.J.J.O.; Duyfjes, B.E.E.

    2003-01-01

    The genus Baijiania, originally thought to be indigenous in China and Borneo, appears to be restricted to Borneo. The only species is Baijiania borneensis, with two varieties, the type variety and var. paludicola Duyfjes, var. nov.

  4. Algal Biology Toolbox Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-08-01

    DOE-EERE's Bioenergy Technologies Office (BETO) works to accelerate the development of a sustainable, cost-competitive, advanced biofuel industry that can strengthen U.S. energy security, environmental quality, and economic vitality, through research, development, and demonstration projects in partnership with industry, academia, and national laboratory partners. BETO’s Advanced Algal Systems Program (also called the Algae Program) has a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels. The team works with partners to develop new technologies, to integrate technologies at commercially relevant scales, and to conduct crosscutting analyses to better understand the potential and challenges of the algal biofuels industry. Research has indicated that this industry is capable of producing billions of gallons of renewable diesel, gasoline, and jet fuels annually. R&D activities are integrated with BETO’s longstanding effort to accelerate the commercialization of lignocellulosic biofuels.

  5. Convergent adaptation to a marginal habitat by homoploid hybrids and polyploid ecads in the seaweed genus Fucus

    NARCIS (Netherlands)

    Coyer, James A.; Hoarau, Galice; Pearson, Gareth A.; Serrao, Ester A.; Stam, Wytze T.; Olsen, Jeanine L.

    2006-01-01

    Hybridization and polyploidy are two major sources of genetic variability that can lead to adaptation in new habitats. Most species of the brown algal genus Fucus are found along wave-swept rocky shores of the Northern Hemisphere, but some species have adapted to brackish and salt marsh habitats.

  6. Algal recycling enhances algal productivity and settleability in Pediastrum boryanum pure cultures.

    Science.gov (United States)

    Park, Jason B K; Craggs, Rupert J; Shilton, Andy N

    2015-12-15

    Recycling a portion of gravity harvested algae (i.e. algae and associated bacteria biomass) has been shown to improve both algal biomass productivity and harvest efficiency by maintaining the dominance of a rapidly-settleable colonial alga, Pediastrum boryanum in both pilot-scale wastewater treatment High Rate Algal Ponds (HRAP) and outdoor mesocosms. While algal recycling did not change the relative proportions of algae and bacteria in the HRAP culture, the contribution of the wastewater bacteria to the improved algal biomass productivity and settleability with the recycling was not certain and still required investigation. P. boryanum was therefore isolated from the HRAP and grown in pure culture on synthetic wastewater growth media under laboratory conditions. The influence of recycling on the productivity and settleability of the pure P. boryanum culture was then determined without wastewater bacteria present. Six 1 L P. boryanum cultures were grown over 30 days in a laboratory growth chamber simulating New Zealand summer conditions either with (Pr) or without (Pc) recycling of 10% of gravity harvested algae. The cultures with recycling (Pr) had higher algal productivity than the controls (Pc) when the cultures were operated at both 4 and 3 d hydraulic retention times by 11% and 38% respectively. Furthermore, algal recycling also improved 1 h settleability from ∼60% to ∼85% by increasing the average P. boryanum colony size due to the extended mean cell residence time and promoted formation of large algal bio-flocs (>500 μm diameter). These results demonstrate that the presence of wastewater bacteria was not necessary to improve algal productivity and settleability with algal recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Resolving Mixed Algal Species in Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Mehrube Mehrubeoglu

    2013-12-01

    Full Text Available We investigated a lab-based hyperspectral imaging system’s response from pure (single and mixed (two algal cultures containing known algae types and volumetric combinations to characterize the system’s performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert’s law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements.

  8. Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2010-01-01

    Algal biomass can provide viable third generation feedstock for liquid transportation fuel. However, for a mature commercial industry to develop, sustainability as well as technological and economic issues pertinent to algal biofuel sector must be addressed first. This viewpoint focuses on three integrated approaches laid out to meet these challenges. Firstly, an integrated algal biorefinery for sequential biomass processing for multiple high-value products is delineated to bring in the financial sustainability to the algal biofuel production units. Secondly, an integrated renewable energy park (IREP) approach is proposed for amalgamating various renewable energy industries established in different locations. This would aid in synergistic and efficient electricity and liquid biofuel production with zero net carbon emissions while obviating numerous sustainability issues such as productive usage of agricultural land, water, and fossil fuel usage. A 'renewable energy corridor' rich in multiple energy sources needed for algal biofuel production for deploying IREPs in the United States is also illustrated. Finally, the integration of various industries with algal biofuel sector can bring a multitude of sustainable deliverables to society, such as renewable supply of cheap protein supplements, health products and aquafeed ingredients. The benefits, challenges, and policy needs of the IREP approach are also discussed.

  9. Algal MIPs, high diversity and conserved motifs.

    Science.gov (United States)

    Anderberg, Hanna I; Danielson, Jonas Å H; Johanson, Urban

    2011-04-21

    Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.

  10. Algal MIPs, high diversity and conserved motifs

    Directory of Open Access Journals (Sweden)

    Johanson Urban

    2011-04-01

    Full Text Available Abstract Background Major intrinsic proteins (MIPs also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. Results A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs and GlpF-like Intrinsic Proteins (GIPs, are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Conclusions Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.

  11. Algal Toxins Alter Copepod Feeding Behavior

    Science.gov (United States)

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A.; Waggett, Rebecca J.; Place, Allen R.

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod’s feeding appendages–a “sampling beating” that has short durations (<100 ms) and involves little fluid entrainment and a longer duration “grazing beating” that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod’s grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod’s feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  12. Algal toxins alter copepod feeding behavior.

    Directory of Open Access Journals (Sweden)

    Jiarong Hong

    Full Text Available Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods.

  13. Epilithic algal assemblages in the Forsmark Biotest basin

    Energy Technology Data Exchange (ETDEWEB)

    Snoeijs, P.

    1987-04-01

    The Forsmark Biotest Basin is an artificial offshore brackish lake, through which the cooling water is led from the Forsmark Nuclear Power Station on the Swedish east coast. The Biotest Basin differs from the Bothnian Sea surrounding it by a temperature elevation of up to 10 degrees C, no ice cover in winter, and an artificial, fast current. At 11 sites in- and outside the basin, benthic algal assemblages on stones in the hydrolittoral belt were sampled every third week during one year. Cover abundances were estimated for all algae occurring on the stones, but for diatoms only when they formed blooms. The results of the vegetation analyses are given. Diversity indices and dominance-diversity curves were computed for each site on the basis of pooled data for the cold season and for the rest of the year. The algae included both unicellular and multicellular forms. In total 88 taxa were distinguished in the species lists: 29 Cyanophyta, 7 Rhodophyta, 1 Chrysophyceae, 9 Fucophyceae, 17 Diatomophyceae and 25 Chlorophyta. In terms of percentage cover-abundance, blue-green and green algae increased with temperature, while red and brown algae and diatoms decreased with temperature in the interval between the minimum (0 degrees C) and the maximum (25.7 degrees C) water temperatures that were measured during the investigation period. Melosira spp. and Nitzschia filiformis proved to be the diatoms most favoured by the cooling water discharge. Lower diversity and greater dominance of one or a few species over the other was caused by thermal discharge at sites with fast-flowing water, but the opposite occurred at sites with quiescent water, mainly due to a greater number and higher abundances of blue-green algal species and thread-like green algae at the latter sites. This report also gives some notes on taxonomy of the encountered species.

  14. Observations on algal populations in an experimental maturation pond system

    CSIR Research Space (South Africa)

    Shillinglaw, SN

    1977-01-01

    Full Text Available ?) of influent (HTE) and secondary pond. The arrows indicate the beginning of the noled algal concentration declines. 190 Water SA Vol. 3 No. 4 October 1977 intermittent presence of some factor which suppresses algal growth and/or removes algal cells from... the system at a very rapid rate. Another possibility is that an algal growth suppres sor is almost continuously present and only when the suppres sing factor is intermittently ahsent, do the algal concentrations exhihit a peak. Based on the results...

  15. A holomorphic anomaly in the elliptic genus

    International Nuclear Information System (INIS)

    Murthy, Sameer

    2014-01-01

    We consider a class of gauged linear sigma models (GLSMs) in two dimensions that flow to non-compact (2,2) superconformal field theories in the infra-red, a prototype of which is the SL(2,ℝ)/U(1) (cigar) coset. We compute the elliptic genus of the GLSMs as a path-integral on the torus using supersymmetric localization. We find that the result is a Jacobi-like form that is non-holomorphic in the modular parameter τ of the torus, with mock modular behavior. This agrees with a previously-computed expression in the cigar coset. We show that the lack of holomorphicity of the elliptic genus arises from the contributions of a compact boson carrying momentum and winding excitations. This boson has an axionic shift symmetry and plays the role of a compensator field that is needed to cancel the chiral anomaly in the rest of the theory.

  16. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health

    OpenAIRE

    Anderson, Donald M.; Alpermann, Tilman J.; Cembella, Allan D.; Collos, Yves; Masseret, Estelle; Montresor, Marina

    2012-01-01

    The dinoflagellate genus Alexandrium is one of the major harmful algal bloom (HAB) genera with respect to the diversity, magnitude and consequences of blooms. The ability of Alexandrium to colonize multiple habitats and to persist over large regions through time is testimony to the adaptability and resilience of this group of species. Three different families of toxins, as well as an as yet incompletely characterized suite of allelochemicals are produced among Alexandrium species. Nutri...

  17. The ascomycete genus Sordaria

    OpenAIRE

    Guarro, J.; Arx, von, J.A.

    1987-01-01

    Sordaria is restricted to coprophilous, soil-, or seed-borne Pyrenomycetes with aseptate, elongate ascospores with a gelatinous, amorphous sheath. The genus is redescribed and a key to fourteen accepted species is given. A checklist of all taxa described as Sordaria is added.

  18. Genus I. Leptospira

    Science.gov (United States)

    Leptospira comprise a diverse group of bacteria. Some species cause serious infections in animals and humans. These bacteria are aerobes that consume long-chain fatty acids and alcohols as carbon and energy sources. This genus is distinguished from Leptonema or Turneriella by lack of similarity u...

  19. The amphipod genus Acidostoma

    NARCIS (Netherlands)

    Dahl, E.

    1964-01-01

    The genus Acidostoma was established by Lilljeborg (1865, p. 24) to receive Anonyx obesus Sp. Bate (1862, p. 74). Afterwards two further species have been added, viz. A. laticorne G. O. Sars (1879, p. 440) and A. nodiferum Stephensen (1923, p. 40). In the present paper it will be shown that A.

  20. Coupling of Algal Biofuel Production with Wastewater

    Directory of Open Access Journals (Sweden)

    Neha Chamoli Bhatt

    2014-01-01

    Full Text Available Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  1. Microbial bioenergetics of coral-algal interactions

    Directory of Open Access Journals (Sweden)

    Ty N.F. Roach

    2017-06-01

    Full Text Available Human impacts are causing ecosystem phase shifts from coral- to algal-dominated reef systems on a global scale. As these ecosystems undergo transition, there is an increased incidence of coral-macroalgal interactions. Mounting evidence indicates that the outcome of these interaction events is, in part, governed by microbially mediated dynamics. The allocation of available energy through different trophic levels, including the microbial food web, determines the outcome of these interactions and ultimately shapes the benthic community structure. However, little is known about the underlying thermodynamic mechanisms involved in these trophic energy transfers. This study utilizes a novel combination of methods including calorimetry, flow cytometry, and optical oxygen measurements, to provide a bioenergetic analysis of coral-macroalgal interactions in a controlled aquarium setting. We demonstrate that the energetic demands of microbial communities at the coral-algal interaction interface are higher than in the communities associated with either of the macroorganisms alone. This was evident through higher microbial power output (energy use per unit time and lower oxygen concentrations at interaction zones compared to areas distal from the interface. Increases in microbial power output and lower oxygen concentrations were significantly correlated with the ratio of heterotrophic to autotrophic microbes but not the total microbial abundance. These results suggest that coral-algal interfaces harbor higher proportions of heterotrophic microbes that are optimizing maximal power output, as opposed to yield. This yield to power shift offers a possible thermodynamic mechanism underlying the transition from coral- to algal-dominated reef ecosystems currently being observed worldwide. As changes in the power output of an ecosystem are a significant indicator of the current state of the system, this analysis provides a novel and insightful means to quantify

  2. Copper desorption from Gelidium algal biomass.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-04-01

    Desorption of divalent copper from marine algae Gelidium sesquipedale, an algal waste (from agar extraction industry) and a composite material (the algal waste immobilized in polyacrylonitrile) was studied in a batch system. Copper ions were first adsorbed until saturation and then desorbed by HNO(3) and Na(2)EDTA solutions. Elution efficiency using HNO(3) increases as pH decreases. At pH=1, for a solid to liquid ratio S/L=4gl(-1), elution efficiency was 97%, 95% and 88%, the stoichiometric coefficient for the ionic exchange, 0.70+/-0.02, 0.73+/-0.05 and 0.76+/-0.06 and the selectivity coefficient, 0.93+/-0.07, 1.0+/-0.3 and 1.1+/-0.3, respectively, for algae Gelidium, algal waste and composite material. Complexation of copper ions by EDTA occurs in a molar proportion of 1:1 and the elution efficiency increases with EDTA concentration. For concentrations of 1.4, 0.88 and 0.57 mmoll(-1), the elution efficiency for S/L=4gl(-1), was 91%, 86% and 78%, respectively, for algae Gelidium, algal waste and composite material. The S/L ratio, in the range 1-20gl(-1), has little influence on copper recovery by using 0.1M HNO(3). Desorption kinetics was very fast for all biosorbents. Kinetic data using HNO(3) as eluant were well described by the mass transfer model, considering the average metal concentration in the solid phase and the equilibrium relationship given by the mass action law. The homogeneous diffusion coefficient varied between 1.0 x 10(-7)cm(2)s(-1) for algae Gelidium and 3.0 x 10(-7)cm(2)s(-1) for the composite material.

  3. Collection and conversion of algal lipid

    Science.gov (United States)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and

  4. A review of algal research in space

    Science.gov (United States)

    Niederwieser, Tobias; Kociolek, Patrick; Klaus, David

    2018-05-01

    With the continued expansion of human presence into space, typical mission durations will routinely exceed six months and extend to distances beyond the Moon. As such, sending periodic resupply vehicles, as currently provided to the International Space Station, will likely no longer be feasible. Instead, self-sustaining life support systems that recycle human waste products will become increasingly necessary, especially for planetary bases. The idea of bioregenerative life support systems using algal photobioreactors has been discussed since the beginning of the space age. In order to evaluate how such a system could be implemented, a variety of space flight studies aimed at characterizing the potential for using algae in air revitalization, water recycling, food production, and radiation shielding applications have been conducted over the years. Also, given the recent, growing interest in algal research for regenerative fuel production, food supplements, and cosmetics, many algal strains are already well documented from related terrestrial experiments. This paper reviews past algal experiments flown in space from 1960 until today. Experimental methods and results from 51 investigations utilizing either green algae (Chlorophyta), cyanobacteria (Cyanophyta), or Euglenophyta are analyzed and categorized by a variety of parameters, including size, species and duration. The collected data are summarized in a matrix that allows easy comparison between the experiments and provides important information for future life support system requirement definition and design. Similarities between experiment results are emphasized. Common problems and shortcomings are summarized and analyzed in terms of potential solutions. Finally, key research gaps, which must be closed before developing a functional life support system, are identified.

  5. Thermodynamic analysis of algal biocrude production

    International Nuclear Information System (INIS)

    Beal, C.M.; Hebner, R.E.; Webber, M.E.

    2012-01-01

    Although algal biofuels possess great potential, profitable production is quite challenging. Much of this challenge is rooted in the thermodynamic constraints associated with producing fuels with high energy, low entropy, and high exergy from dispersed materials. In this study, a preliminary thermodynamic analysis is presented that calculates the energy, entropy, and exergy of the intermediate products for algal biocrude production. These values are also used in an initial attempt to characterize the thermodynamic efficiency of that system. The production pathway is simplified by assuming ideal solutions throughout. Results for the energy and exergy efficiencies, and the first-order energy and exergy return on investment, of the system are given. The summary finding is that the first-order energy return on investment in the best case considered could be as high as 520, as compared to 1.7 × 10 −3 in the experimental unit under development. While this analysis shows that significant improvement may be possible, the ultimate thermodynamic efficiency of algal biofuels likely lies closer to the moderate case examined here, which yielded a first-order energy return on investment of 10. For perspective, the first-order energy return on investment for oil and gas production has been estimated in the literature to be ∼35. -- Highlights: ► A first-principles thermodynamic analysis was conducted for algal biocrude production. ► The energy, entropy, and exergy was determined for each intermediate product by assuming the products were ideal solutions. ► The thermodynamic properties were used to calculate the energy and exergy return on investments for three cases. ► It was determined that the energy and exergy return on investments could be as high as ∼500. ► More realistic assumptions for efficient systems yielded return on investments on the order of 10.

  6. Control of algal production in a high rate algal pond: investigation through batch and continuous experiments.

    Science.gov (United States)

    Derabe Maobe, H; Onodera, M; Takahashi, M; Satoh, H; Fukazawa, T

    2014-01-01

    For decades, arid and semi-arid regions in Africa have faced issues related to water availability for drinking, irrigation and livestock purposes. To tackle these issues, a laboratory scale greywater treatment system based on high rate algal pond (HRAP) technology was investigated in order to guide the operation of the pilot plant implemented in the 2iE campus in Ouagadougou (Burkina Faso). Because of the high suspended solids concentration generally found in effluents of this system, the aim of this study is to improve the performance of HRAPs in term of algal productivity and removal. To determine the selection mechanism of self-flocculated algae, three sets of sequencing batch reactors (SBRs) and three sets of continuous flow reactors (CFRs) were operated. Despite operation with the same solids retention time and the similarity of the algal growth rate found in these reactors, the algal productivity was higher in the SBRs owing to the short hydraulic retention time of 10 days in these reactors. By using a volume of CFR with twice the volume of our experimental CFRs, the algal concentration can be controlled during operation under similar physical conditions in both reactors.

  7. Sierra Nevada, California, U.S.A., Snow Algae: Snow albedo changes, algal-bacterial interrelationships and ultraviolet radiation effects

    International Nuclear Information System (INIS)

    Thomas, W.H.; Duval, B.

    1995-01-01

    In the Tioga Pass area (upper LeeVining Creek watershed) of the Sierra Nevada (California), snow algae were prevalent in the early summers of 1993 and 1994. Significant negative correlations were found between snow water content. However, red snow caused by algal blooms did not decrease mean albedos in representative snowfields. This was due to algal patchiness; mean albedos would not decrease over the whole water catchment basin; and water supplies would not be affected by the presence of algae. Albedo was also reduced by dirt on the snow, and wind-blown dirt may provide a source of allochthonous organic matter for snow bacteria. However, several observations emphasize the importance of an autochthonous source for bacterial nutrition. Bacterial abundances and production rates were higher in red snow containing algae than in noncolored snow. Bacterial production was about two orders-of-magnitude lower than photosynthetic algal production. Bacteria were also sometimes attached to algal cells. In experiments where snow algae were contained in UV-transmitting quartz tubes, ultraviolet radiation inhibited red snow (collected form open, sunlit areas) photosynthesis about 25%, while green snow (collected from forested, shady locations) photosynthesis was inhibited by 85%. Methanol extracts of red snow algae had greater absorbances in blue and UV spectral regions than did algae from green snow. These differences in UV responses and spectra may be due to habitat (sun vs shade) differences, or may be genetic, since different species were found in the two snow types. However, both habitat and genetic mechanisms may be operating together to cause these differences. 53 refs., 5 figs., 5 tabs

  8. Spiky higher genus strings

    International Nuclear Information System (INIS)

    Ambjoern, J.; Bellini, A.; Johnston, D.

    1990-10-01

    It is clear from both the non-perturbative and perturbative approaches to two-dimensional quantum gravity that a new strong coupling regime is setting in at d=1, independent of the genus of the worldsheet being considered. It has been suggested that a Kosterlitz-Thouless (KT) phase transition in the Liouville theory is the cause of this behaviour. However, it has recently been pointed out that the XY model, which displays a KT transition on the plane and the sphere, is always in the strong coupling, disordered phase on a surface of constant negative curvature. A higher genus worldsheet can be represented as a fundamental region on just such a surface, which might seem to suggest that the KT picture predicts a strong coupling region for arbitrary d, contradicting the known results. We resolve the apparent paradox. (orig.)

  9. What is the genus?

    CERN Document Server

    Popescu-Pampu, Patrick

    2016-01-01

    Exploring several of the evolutionary branches of the mathematical notion of genus, this book traces the idea from its prehistory in problems of integration, through algebraic curves and their associated Riemann surfaces, into algebraic surfaces, and finally into higher dimensions. Its importance in analysis, algebraic geometry, number theory and topology is emphasized through many theorems. Almost every chapter is organized around excerpts from a research paper in which a new perspective was brought on the genus or on one of the objects to which this notion applies. The author was motivated by the belief that a subject may best be understood and communicated by studying its broad lines of development, feeling the way one arrives at the definitions of its fundamental notions, and appreciating the amount of effort spent in order to explore its phenomena.

  10. Diversity and dispersal capacities of a terrestrial algal genus Klebsormidium (Streptophyta) in polar regions

    Czech Academy of Sciences Publication Activity Database

    Ryšánek, D.; Elster, Josef; Kováčik, L.; Škaloud, P.

    2016-01-01

    Roč. 92, č. 4 (2016), s. 1-9, č. článku fiw039. ISSN 0168-6496 Institutional support: RVO:67985939 Keywords : genetic diversity * Klebsormidium * phylogeography * polar regions Subject RIV: EH - Ecology , Behaviour Impact factor: 3.720, year: 2016

  11. Algal-bacterial interactions in metal contaminated floodplain sediments

    International Nuclear Information System (INIS)

    Boivin, M.E.Y.; Greve, G.D.; Garcia-Meza, J.V.; Massieux, B.; Sprenger, W.; Kraak, M.H.S.; Breure, A.M.; Rutgers, M.; Admiraal, W.

    2007-01-01

    The aim of the present study was to investigate algal-bacterial interactions in a gradient of metal contaminated natural sediments. By means of multivariate techniques, we related the genetic structure (denaturing gradient gel electrophoresis, DGGE) and the physiological structure (community-level physiological profiling, CLPP) of the bacterial communities to the species composition of the algal communities and to the abiotic environmental variables, including metal contamination. The results revealed that genetic and physiological structure of the bacterial communities correlated with the species composition of the algal community, but hardly to the level of metal pollution. This must be interpreted as an indication for a strong and species-specific linkage of algal and bacterial species in floodplain sediments. Metals were, however, not proven to affect either the algal or the bacterial communities of the Dutch river floodplains. - Algal and bacterial communities in floodplain sediments are interlinked, but are not affected by metal pollution

  12. Spatio-temporal analyses of Symbiodinium physiology of the coral Pocillopora verrucosa along large-scale nutrient and temperature gradients in the Red Sea.

    Science.gov (United States)

    Sawall, Yvonne; Al-Sofyani, Abdulmohsin; Banguera-Hinestroza, Eulalia; Voolstra, Christian R

    2014-01-01

    Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic

  13. Spatio-temporal analyses of Symbiodinium physiology of the coral Pocillopora verrucosa along large-scale nutrient and temperature gradients in the Red Sea.

    Directory of Open Access Journals (Sweden)

    Yvonne Sawall

    Full Text Available Algal symbionts (zooxanthellae, genus Symbiodinium of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply. As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication. To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1 was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of

  14. Spatio-Temporal Analyses of Symbiodinium Physiology of the Coral Pocillopora verrucosa along Large-Scale Nutrient and Temperature Gradients in the Red Sea

    KAUST Repository

    Sawall, Yvonne

    2014-08-19

    Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e. g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic

  15. Genus Ranges of Chord Diagrams.

    Science.gov (United States)

    Burns, Jonathan; Jonoska, Nataša; Saito, Masahico

    2015-04-01

    A chord diagram consists of a circle, called the backbone, with line segments, called chords, whose endpoints are attached to distinct points on the circle. The genus of a chord diagram is the genus of the orientable surface obtained by thickening the backbone to an annulus and attaching bands to the inner boundary circle at the ends of each chord. Variations of this construction are considered here, where bands are possibly attached to the outer boundary circle of the annulus. The genus range of a chord diagram is the genus values over all such variations of surfaces thus obtained from a given chord diagram. Genus ranges of chord diagrams for a fixed number of chords are studied. Integer intervals that can be, and those that cannot be, realized as genus ranges are investigated. Computer calculations are presented, and play a key role in discovering and proving the properties of genus ranges.

  16. Hydrogen production from algal biomass via steam gasification.

    Science.gov (United States)

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Mitogenomes from type specimens, a genotyping tool for morphologically simple species: ten genomes of agar-producing red algae.

    Science.gov (United States)

    Boo, Ga Hun; Hughey, Jeffery R; Miller, Kathy Ann; Boo, Sung Min

    2016-10-14

    DNA sequences from type specimens provide independent, objective characters that enhance the value of type specimens and permit the correct application of species names to phylogenetic clades and specimens. We provide mitochondrial genomes (mitogenomes) from archival type specimens of ten species in agar-producing red algal genera Gelidium and Pterocladiella. The genomes contain 43-44 genes, ranging in size from 24,910 to 24,970 bp with highly conserved gene synteny. Low Ka/Ks ratios of apocytochrome b and cytochrome oxidase genes support their utility as markers. Phylogenies of mitogenomes and cox1+rbcL sequences clarified classification at the genus and species levels. Three species formerly in Gelidium and Pterocladia are transferred to Pterocladiella: P. media comb. nov., P. musciformis comb. nov., and P. luxurians comb. and stat. nov. Gelidium sinicola is merged with G. coulteri because they share identical cox1 and rbcL sequences. We describe a new species, Gelidium millariana sp. nov., previously identified as G. isabelae from Australia. We demonstrate that mitogenomes from type specimens provide a new tool for typifying species in the Gelidiales and that there is an urgent need for analyzing mitogenomes from type specimens of red algae and other morphologically simple organisms for insight into their nomenclature, taxonomy and evolution.

  18. Abundance and size distribution of the sacoglossan Elysia viridis on co-occurring algal hosts on the Swedish west coast.

    Directory of Open Access Journals (Sweden)

    Finn A Baumgartner

    Full Text Available Sacoglossans are specialized marine herbivores that tend to have a close evolutionary relationship with their macroalgal hosts, but the widely distributed species Elysia viridis can associate with several algal species. However, most previous investigations on the field abundance and size distribution of E. viridis have focussed on Codium spp. in the British Isles, and algae from this genus are considered superior hosts for E. viridis. In the present study, we investigated the abundance and size distribution of E. viridis on 6 potential host algae with differing morphologies (the septate species Cladophora sericea, Cladophora rupestris, Chaetomorpha melagonium, and Ceramium virgatum, as well as the siphonaceous species Codium fragile and Bryopsis sp. at 2 sites on the Swedish west coast over the course of a year. In spring, slugs were almost absent from all algal hosts. In summer and autumn, E. viridis consistently occurred on several of the algal species at both sites. The highest number of small E. viridis were found on C. sericea, intermediate numbers of significantly larger E. viridis were found on C. rupestris, while fewer, intermediate sized animals were found on C. fragile. Throughout the study period, only a few E. viridis individuals were found on C. melagonium, Bryopsis sp., and C. virgatum. Our results indicate that E. viridis is an annual species in Sweden, capable of exploiting co-occurring congeneric and intergeneric algal hosts with differing morphologies. These results corroborate previous findings that E. viridis can exploit several different algal species, but does not indicate that C. fragile is a superior host.

  19. Stimulation of bacterial DNA synthesis by algal exudates in attached algal-bacterial consortia

    International Nuclear Information System (INIS)

    Murray, R.E.; Cooksey, K.E.; Priscu, J.C.

    1986-01-01

    Algal-bacterial consortia attached to polystyrene surfaces were prepared in the laboratory by using the marine diatom Amphora coffeaeformis and the marine bacterium Vibrio proteolytica (the approved name of this bacterium is Vibrio proteolyticus. The organisms were attached to the surfaces at cell densities of approximately 5 x 10 4 cells cm -2 (diatoms) and 5 x 10 6 cells cm -2 (bacteria). The algal-bacterial consortia consistently exhibited higher rates of [ 3 H]thymidine incorporation than did biofilms composed solely of bacteria. The rates of [ 3 H]thymidine incorporation by the algal-bacterial consortia were fourfold greater than the rates of incorporation by monobacterial biofilms 16 h after biofilm formation and were 16-fold greater 70 h after biofilm formation. Extracellular material released from the attached Amphora cells supported rates of bacterial activity (0.8 x 10 -21 mol to 17.9 x 10 -21 mol of [ 3 H]thymidine incorporated cell -1 h -1 ) and growth (doubling time, 29.5 to 1.4 days) comparable to values reported for a wide variety of marine and freshwater ecosystems. In the presence of sessile diatom populations, DNA synthesis by attached V. proteolytica cells was light dependent and increased with increasing algal abundance. The metabolic activity of diatoms thus appears to be the rate-limiting process in biofilm development on illuminated surfaces under conditions of low bulk-water dissolved organic carbon

  20. Formation of emerging DBPs from the chlorination and chloramination of seawater algal organic matter and related model compounds

    KAUST Repository

    Nihemaiti, Maolida

    2014-05-01

    Limited studies focused on reactions occurring during disinfection and oxidation processes of seawater. The aim of this work was to investigate disinfection by-products (DBPs) formation from the chlorination and chloramination of seawater algal organic matter and related model compounds. Simulated algal blooms directly growing in Red Sea, red tide samples collected during an algal bloom event and Hymenomonas sp. monoculture were studied as algal organic matter sources. Experiments were conducted in synthetic seawater containing bromide ion. A variety of DBPs was formed from the chlorination and chloramination of algal organic matter. Brominated DBPs (bromoform, DBAA, DBAN and DBAcAm) were the dominant species. Iodinated DBPs (CIAcAm and iodinated THMs) were detected, which are known to be highly toxic compared to their chlorinated or brominated analogues. Algal organic matter was found to incorporate important precursors of nitrogenous DBPs (N-DBPs), which have been reported to be more toxic than regulated THMs and HAAs. Isotopically-labeled monochloramine (15N- NH2Cl) was used in order to investigate the nitrogen source in N-DBPs. High formation of N-DBPs was found from Hymenomonas sp. sample in exponential growth phase, which was enriched in nitrogen-containing organic compounds. High inorganic nitrogen incorporation was found from the algal samples enriched in humic-like compounds. HAcAms formation was studied from chlorination and chloramination of amino acids. Asparagine, aspartic acid and other amino acids with an aromatic structure were found to be important precursors of HAcAms and DCAN. Factors affecting HAcAms formation (Cl2/ amino acid molar ratio and pH) were evaluated. Studies on the formation kinetics of DCAcAm and DCAN from asparagine suggested a rapid formation of DCAcAm from organic nitrogen (amide group) and a slower incorporation of inorganic nitrogen coming from monochloramine to form DCAN. High amounts of DCAN and DCAcAm were detected from the

  1. A new species of Arachnanthus from the Red Sea (Cnidaria, Ceriantharia).

    Science.gov (United States)

    Stampar, Sérgio N; Didi, Suraia O El; Paulay, Gustav; Berumen, Michael L

    2018-01-01

    A new species of the genus Arachnanthus (Cnidaria: Ceriantharia), Arachnanthus lilith Stampar & El Didi, sp. n. , is described. This species is widely distributed in the Red Sea, and recorded from 2-30 m depths. Arachnanthus lilith Stampar & El Didi, sp. n. is the fifth species of the genus and the first recorded from the Red Sea. The number of labial tentacle pseudocycles, arrangement of mesenteries, and distribution of acontioids allow the differentiation of the new species from other species of the genus.

  2. A new species of Arachnanthus from the Red Sea (Cnidaria, Ceriantharia)

    KAUST Repository

    Stampar, Sérgio N.

    2018-04-04

    A new species of the genus Arachnanthus (Cnidaria: Ceriantharia), Arachnanthus lilith Stampar & El Didi, sp. n., is described. This species is widely distributed in the Red Sea, and recorded from 2–30 m depths. Arachnanthus lilith Stampar & El Didi, sp. n. is the fifth species of the genus and the first recorded from the Red Sea. The number of labial tentacle pseudocycles, arrangement of mesenteries, and distribution of acontioids allow the differentiation of the new species from other species of the genus.

  3. A new species of Arachnanthus from the Red Sea (Cnidaria, Ceriantharia)

    KAUST Repository

    Stampar, Sé rgio N.; El Didi, Suraia O.; Paulay, Gustav; Berumen, Michael L.

    2018-01-01

    A new species of the genus Arachnanthus (Cnidaria: Ceriantharia), Arachnanthus lilith Stampar & El Didi, sp. n., is described. This species is widely distributed in the Red Sea, and recorded from 2–30 m depths. Arachnanthus lilith Stampar & El Didi, sp. n. is the fifth species of the genus and the first recorded from the Red Sea. The number of labial tentacle pseudocycles, arrangement of mesenteries, and distribution of acontioids allow the differentiation of the new species from other species of the genus.

  4. Formation of Emerging Disinfection By-products by Chlorination/Chloramination of Seawater Impacted by Algal Organic Matter

    KAUST Repository

    Nihemaiti, Maolida

    2015-08-31

    The aim of this work was to study the formation of haloacetamides (HAcAms) and other DBPs during chlorination and chloramination of algal organic matter (AlOM). The HAcAms formation potentials of different precursors (amino acids, simulated algal blooms grown in the Red Sea) were evaluated. Experiments with simulated algal blooms were conducted in the presence of bromide ion (synthetic seawater containing 800 μg/L Br−) to assess the formation of brominated analogues of HAcAms in conditions close to the disinfection of real seawater. Chlorination produced more HAcAms than chloramination from real algae (Synecococcus sp.), thus indicating that the nitrogen of HAcAms comes predominantly from DON through the decarboxylation of amino acids rather than from NH2Cl. Dibrominated species of DBPs (i.e., DBAcAm, DBAA and DBAN) were the dominant species formed by both chlorination and chloramination of algal bloom samples. Chloramination of the amino acid asparagine produced an important amount of DCAcAm as compared to chlorination, indicating the existence of a specific reaction pathway.

  5. Formation of Emerging Disinfection By-products by Chlorination/Chloramination of Seawater Impacted by Algal Organic Matter

    KAUST Repository

    Nihemaiti, Maolida; Le Roux, Julien; Croue, Jean-Philippe

    2015-01-01

    The aim of this work was to study the formation of haloacetamides (HAcAms) and other DBPs during chlorination and chloramination of algal organic matter (AlOM). The HAcAms formation potentials of different precursors (amino acids, simulated algal blooms grown in the Red Sea) were evaluated. Experiments with simulated algal blooms were conducted in the presence of bromide ion (synthetic seawater containing 800 μg/L Br−) to assess the formation of brominated analogues of HAcAms in conditions close to the disinfection of real seawater. Chlorination produced more HAcAms than chloramination from real algae (Synecococcus sp.), thus indicating that the nitrogen of HAcAms comes predominantly from DON through the decarboxylation of amino acids rather than from NH2Cl. Dibrominated species of DBPs (i.e., DBAcAm, DBAA and DBAN) were the dominant species formed by both chlorination and chloramination of algal bloom samples. Chloramination of the amino acid asparagine produced an important amount of DCAcAm as compared to chlorination, indicating the existence of a specific reaction pathway.

  6. Luminescent Solar Concentrators in the Algal Industry

    Science.gov (United States)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  7. Mechanical algal disruption for efficient biodiesel extraction

    Science.gov (United States)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  8. Algal-Based Renewable Energy for Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Fritsen, Christian [Desert Research Institute, Las Vegas, NV (United States)

    2017-03-31

    To help in the overall evaluation of the potential for growing algal biomass in high productivity systems, we conducted a study that evaluated water from geothermal sources and cultivated mixed consortia from hot springs in Nevada, we evaluated their growth at moderately high varying temperatures and then evaluated potential manipulations that could possibly increase their biomass and oleaginous production. Studies were conducted at scales ranging from the laboratory benchtop to raceways in field settings. Mixed consortia were readily grown at all scales and growth could be maintained in Nevada year round. Moderate productivities were attained even during the shoulder seasons- where temperature control was maintained by hot water and seasonally cold temperatures when there was still plentiful solar radiation. The results enhance the prospects for economic feasibility of developing algal based industries in areas with geothermal energy or even other large alternative sources of heat that are not being used for other purposes. The public may benefit from such development as a means for economic development as well as development of industries for alternative energy and products that do not rely on fossil fuels.

  9. The genus Vitex: A review

    OpenAIRE

    Rani, Anita; Sharma, Anupam

    2013-01-01

    The review includes 161 references on the genus Vitex, and comprises ethnopharmacology, morphology and microscopy, phytoconstituents, pharmacological reports, clinical studies, and toxicology of the prominent species of Vitex. Essential oils, flavonoids, iridoid glycosides, diterpenoides and ligans constitute major classes of phytoconstituents of the genus. A few species of this genus have medicinal value, among these, leaves and fruits of V. agnus-castus Linn. (Verbenaceae) has been traditio...

  10. Molecular phylogeny of the genus Chondracanthus (Rhodophyta), focusing on the resurrection of C. okamurae and the description of C. cincinnus sp. nov.

    Science.gov (United States)

    Yang, Mi Yeon; Kim, Myung Sook

    2016-09-01

    Determining the taxonomic status of the red algal genus Chondracanthus based on morphological characters is challenging due to the similarity and high degree of plasticity of the thallus. Since the taxonomic history of several Chondracanthus species remains unclear, we analyzed the plastid rbcL and mitochondrial COI genes of the specimens from Korea and Japan, in combination with morphological observations, to examine their phylogenetic relationships. Our results confirmed the distinction of C. okamurae, which is separated from C. intermedius, and identified a novel species, C. cincinnus sp. nov. Three species ( C. okamurae, C. intermedius and C. cincinnus) formed a monophyletic clade with C. tenellus. C. okamurae is distinguished by linear, narrow, cylindrical to compressed, slightly recurved axes, and a high-intertidal to subtidal distribution. It was collected from Korea and Japan, while C. intermedius was identified from Japan only. A new species, Chondracanthus cincinnus sp. nov., is characterized by linear, compressed, strongly recurved axes, and a low-intertidal to subtidal distiribution. Based on the molecular phylogeny using rbcL and COI data, we herein resurrect C. okamurae as a distinct species and identify C. cincinnus as a new species.

  11. Ceramic Ultrafiltration of Marine Algal Solutions: A Comprehensive Study

    KAUST Repository

    Dramas, Laure

    2014-01-01

    understanding of UF membrane fouling caused by algal organic matter (AOM) is needed, in order to adjust the filtration conditions during algal bloom events. Polymeric MF/UF membranes are already widely used for RO pretreatment, but ceramic UF membranes can also

  12. Dynamic metabolic exchange governs a marine algal-bacterial interaction.

    Science.gov (United States)

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-11-18

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens , a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.

  13. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  14. Changes in algal composition and environmental variables in the ...

    African Journals Online (AJOL)

    Monthly sampling in 2003 and 2006 indicated that dissolved inorganic nitrogen concentrations decreased, while dissolved inorganic phosphorus concentration increased 12-fold, resulting in increases in algal concentration and a shift from green algal dominance in 2003 to cyanobacterial dominance in 2006. Multivariate ...

  15. COMPARISON OF LARGE RIVER SAMPLING METHODS ON ALGAL METRICS

    Science.gov (United States)

    We compared the results of four methods used to assess the algal communities at 60 sites distributed among four rivers. Based on Principle Component Analysis of physical habitat data collected concomitantly with the algal data, sites were separated into those with a mean thalweg...

  16. Algal diversity of Adada River, Nigeria. I. Chlorophyta (green algae ...

    African Journals Online (AJOL)

    Commercial water tankers collect water and sell to indigenes and towns around the river, hence the need to investigate the algal biodiversity in other to access its suitability for human consumption using known algal indicators of water quality and add to the pool of data useful for long term trends in floral composition in ...

  17. Increasing the extraction efficiency of algal lipid for biodiesel ...

    African Journals Online (AJOL)

    Various studies have been conducted recently using microalgal system for the production of algal lipid for biodiesel production. This study aimed at increasing the extraction efficiency of algal lipid from Chlorella sp. by the application of Chlorella viruses. The calorific value of lipid from Chlorella sp. has been reported to be ...

  18. Paralytic shellfish poison algal biotoxins: Sardinia report 2002-2011 and non-compliance management

    Directory of Open Access Journals (Sweden)

    Giuseppa Lorenzoni

    2013-09-01

    Full Text Available Several microalgae of the genus Alexandrium (Alexandrium minutum and Alexandrium catenelle can produce an algal biotoxin, the paralytic shellfish poison (PSP that can be accumulated in the shellfish edible tissues making them hazardous to the consumer’s health. In this paper we report i the results of PSP toxins survey carried out by mouse bioassays (mouse test AOAC 958.08 on 7457 samples of bivalve molluscs farmed in Sardinia and in other European countries and marketed in Sardinia region from 2002 to 2011, and ii the management of positive cases. Based on our experience it is very important to strictly apply the planned activities in order to prevent any risk and to protect the consumer’s and producer’s health.

  19. Deep-Learning-Based Approach for Prediction of Algal Blooms

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2016-10-01

    Full Text Available Algal blooms have recently become a critical global environmental concern which might put economic development and sustainability at risk. However, the accurate prediction of algal blooms remains a challenging scientific problem. In this study, a novel prediction approach for algal blooms based on deep learning is presented—a powerful tool to represent and predict highly dynamic and complex phenomena. The proposed approach constructs a five-layered model to extract detailed relationships between the density of phytoplankton cells and various environmental parameters. The algal blooms can be predicted by the phytoplankton density obtained from the output layer. A case study is conducted in coastal waters of East China using both our model and a traditional back-propagation neural network for comparison. The results show that the deep-learning-based model yields better generalization and greater accuracy in predicting algal blooms than a traditional shallow neural network does.

  20. Complex distribution of EFL and EF-1α proteins in the green algal lineage

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-05-01

    Full Text Available Abstract Background EFL (or elongation factor-like is a member of the translation superfamily of GTPase proteins. It is restricted to eukaryotes, where it is found in a punctate distribution that is almost mutually exclusive with elongation factor-1 alpha (EF-1α. EF-1α is a core translation factor previously thought to be essential in eukaryotes, so its relationship to EFL has prompted the suggestion that EFL has spread by horizontal or lateral gene transfer (HGT or LGT and replaced EF-1α multiple times. Among green algae, trebouxiophyceans and chlorophyceans have EFL, but the ulvophycean Acetabularia and the sister group to green algae, land plants, have EF-1α. This distribution singles out green algae as a particularly promising group to understand the origin of EFL and the effects of its presence on EF-1α. Results We have sampled all major lineages of green algae for both EFL and EF-1α. EFL is unexpectedly broad in its distribution, being found in all green algal lineages (chlorophyceans, trebouxiophyceans, ulvophyceans, prasinophyceans, and mesostigmatophyceans, except charophyceans and the genus Acetabularia. The presence of EFL in the genus Mesostigma and EF-1α in Acetabularia are of particular interest, since the opposite is true of all their closest relatives. The phylogeny of EFL is poorly resolved, but the Acetabularia EF-1α is clearly related to homologues from land plants and charophyceans, demonstrating that EF-1α was present in the common ancestor of the green lineage. Conclusion The distribution of EFL and EF-1α in the green lineage is not consistent with the phylogeny of the organisms, indicating a complex history of both genes. Overall, we suggest that after the introduction of EFL (in the ancestor of green algae or earlier, both genes co-existed in green algal genomes for some time before one or the other was lost on multiple occasions.

  1. Association of coral algal symbionts with a diverse viral community responsive to heat shock

    KAUST Repository

    Brüwer, Jan D.

    2017-08-17

    Stony corals provide the structural foundation of coral reef ecosystems and are termed holobionts given they engage in symbioses, in particular with photosynthetic dinoflagellates of the genus Symbiodinium. Besides Symbiodinium, corals also engage with bacteria affecting metabolism, immunity, and resilience of the coral holobiont, but the role of associated viruses is largely unknown. In this regard, the increase of studies using RNA sequencing (RNA-Seq) to assess gene expression provides an opportunity to elucidate viral signatures encompassed within the data via careful delineation of sequence reads and their source of origin.Here, we re-analyzed an RNA-Seq dataset from a cultured coral symbiont (Symbiodinium microadriaticum, Clade A1) across four experimental treatments (control, cold shock, heat shock, dark shock) to characterize associated viral diversity, abundance, and gene expression. Our approach comprised the filtering and removal of host sequence reads, subsequent phylogenetic assignment of sequence reads of putative viral origin, and the assembly and analysis of differentially expressed viral genes. About 15.46% (123 million) of all sequence reads were non-host-related, of which <1% could be classified as archaea, bacteria, or virus. Of these, 18.78% were annotated as virus and comprised a diverse community consistent across experimental treatments. Further, non-host related sequence reads assembled into 56,064 contigs, including 4856 contigs of putative viral origin that featured 43 differentially expressed genes during heat shock. The differentially expressed genes included viral kinases, ubiquitin, and ankyrin repeat proteins (amongst others), which are suggested to help the virus proliferate and inhibit the algal host\\'s antiviral response.Our results suggest that a diverse viral community is associated with coral algal endosymbionts of the genus Symbiodinium, which prompts further research on their ecological role in coral health and resilience.

  2. The plastid genome of the red macroalga Grateloupia taiwanensis (Halymeniaceae.

    Directory of Open Access Journals (Sweden)

    Michael S DePriest

    Full Text Available The complete plastid genome sequence of the red macroalga Grateloupia taiwanensis S.-M.Lin & H.-Y.Liang (Halymeniaceae, Rhodophyta is presented here. Comprising 191,270 bp, the circular DNA contains 233 protein-coding genes and 29 tRNA sequences. In addition, several genes previously unknown to red algal plastids are present in the genome of G. taiwanensis. The plastid genomes from G. taiwanensis and another florideophyte, Gracilaria tenuistipitata var. liui, are very similar in sequence and share significant synteny. In contrast, less synteny is shared between G. taiwanensis and the plastid genome representatives of Bangiophyceae and Cyanidiophyceae. Nevertheless, the gene content of all six red algal plastid genomes here studied is highly conserved, and a large core repertoire of plastid genes can be discerned in Rhodophyta.

  3. The Plastid Genome of the Red Macroalga Grateloupia taiwanensis (Halymeniaceae)

    Science.gov (United States)

    DePriest, Michael S.; Bhattacharya, Debashish; López-Bautista, Juan M.

    2013-01-01

    The complete plastid genome sequence of the red macroalga Grateloupia taiwanensis S.-M.Lin & H.-Y.Liang (Halymeniaceae, Rhodophyta) is presented here. Comprising 191,270 bp, the circular DNA contains 233 protein-coding genes and 29 tRNA sequences. In addition, several genes previously unknown to red algal plastids are present in the genome of G. taiwanensis. The plastid genomes from G. taiwanensis and another florideophyte, Gracilaria tenuistipitata var. liui, are very similar in sequence and share significant synteny. In contrast, less synteny is shared between G. taiwanensis and the plastid genome representatives of Bangiophyceae and Cyanidiophyceae. Nevertheless, the gene content of all six red algal plastid genomes here studied is highly conserved, and a large core repertoire of plastid genes can be discerned in Rhodophyta. PMID:23894297

  4. Phytochemical review of Juncus L. genus (Fam. Juncaceae

    Directory of Open Access Journals (Sweden)

    Abdelsamed I. El-Shamy

    2015-09-01

    Full Text Available This review surveys the various naturally occurring compounds that have been isolated from different species of Juncus genus. This is the first review published on this topic. The present study furnishes an overview of all naturally isolated compounds, flavonoids, coumarines, terpenes, stilbenes, sterols, phenolic acids, carotenes, phenanthrenes derivatives (monomeric and dimeric and biological activities of these species. These plants have often been used in traditional medicine, and also have therefore been studied for their antitumor, antioxidant, antiviral, anti-algal, antimicrobial, cytotoxic and anti-inflammatory, significant anti-eczematic and hepatoprotective activity. On the basis of 48 references, this review covers the phytochemistry and pharmacology of Juncus species, describing compounds previously reported.

  5. Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta and its microbiome

    Directory of Open Access Journals (Sweden)

    de Oliveira Louisi

    2012-09-01

    Full Text Available Abstract Background Seaweeds of the Laurencia genus have a broad geographic distribution and are largely recognized as important sources of secondary metabolites, mainly halogenated compounds exhibiting diverse potential pharmacological activities and relevant ecological role as anti-epibiosis. Host-microbe interaction is a driving force for co-evolution in the marine environment, but molecular studies of seaweed-associated microbial communities are still rare. Despite the large amount of research describing the chemical compositions of Laurencia species, the genetic knowledge regarding this genus is currently restricted to taxonomic markers and general genome features. In this work we analyze the transcriptomic profile of L. dendroidea J. Agardh, unveil the genes involved on the biosynthesis of terpenoid compounds in this seaweed and explore the interactions between this host and its associated microbiome. Results A total of 6 transcriptomes were obtained from specimens of L. dendroidea sampled in three different coastal locations of the Rio de Janeiro state. Functional annotations revealed predominantly basic cellular metabolic pathways. Bacteria was the dominant active group in the microbiome of L. dendroidea, standing out nitrogen fixing Cyanobacteria and aerobic heterotrophic Proteobacteria. The analysis of the relative contribution of each domain highlighted bacterial features related to glycolysis, lipid and polysaccharide breakdown, and also recognition of seaweed surface and establishment of biofilm. Eukaryotic transcripts, on the other hand, were associated with photosynthesis, synthesis of carbohydrate reserves, and defense mechanisms, including the biosynthesis of terpenoids through the mevalonate-independent pathway. Conclusions This work describes the first transcriptomic profile of the red seaweed L. dendroidea, increasing the knowledge about ESTs from the Florideophyceae algal class. Our data suggest an important role for L

  6. Biodiversity of the genus Cladophialophora

    NARCIS (Netherlands)

    Badali, H.; Gueidan, C.; Najafzadeh, M.J.; Bonifaz, A.; Gerrits van den Ende, A.H.G.; de Hoog, G.S.

    2008-01-01

    Cladophialophora is a genus of black yeast-like fungi comprising a number of clinically highly significant species in addition to environmental taxa. The genus has previously been characterized by branched chains of ellipsoidal to fusiform conidia. However, this character was shown to have evolved

  7. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index SABI)

    OpenAIRE

    Alawadi, Fahad

    2010-01-01

    Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HA...

  8. Harmful Algal Blooms and Public Health.

    Science.gov (United States)

    Grattan, Lynn M; Holobaugh, Sailor; Morris, J Glenn

    2016-07-01

    The five most commonly recognized Harmful Algal Bloom related illnesses include Ciguatera poisoning, Paralytic Shellfish poisoning, Neurotoxin Shellfish poisoning, Diarrheic Shellfish Poisoning and Amnesic Shellfish poisoning. Although they are each the product of different toxins, toxin assemblages or HAB precursors these clinical syndromes have much in common. Exposure occurs through the consumption of fish or shellfish; routine clinical tests are not available for diagnosis; there is no known antidote for exposure; and the risk of these illnesses can negatively impact local fishing and tourism industries. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, close communication and collaboration is needed among HAB scientists, public health researchers and local, state and tribal health departments at academic, community outreach, and policy levels.

  9. Harmful Algal Blooms and Public Health

    Science.gov (United States)

    Grattan, Lynn M.; Holobaugh, Sailor; Morris, J. Glenn

    2015-01-01

    The five most commonly recognized Harmful Algal Bloom related illnesses include Ciguatera poisoning, Paralytic Shellfish poisoning, Neurotoxin Shellfish poisoning, Diarrheic Shellfish Poisoning and Amnesic Shellfish poisoning. Although they are each the product of different toxins, toxin assemblages or HAB precursors these clinical syndromes have much in common. Exposure occurs through the consumption of fish or shellfish; routine clinical tests are not available for diagnosis; there is no known antidote for exposure; and the risk of these illnesses can negatively impact local fishing and tourism industries. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, close communication and collaboration is needed among HAB scientists, public health researchers and local, state and tribal health departments at academic, community outreach, and policy levels. PMID:27616971

  10. Life cycle environmental impacts of wastewater-based algal biofuels.

    Science.gov (United States)

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  11. Models of genus one curves

    OpenAIRE

    Sadek, Mohammad

    2010-01-01

    In this thesis we give insight into the minimisation problem of genus one curves defined by equations other than Weierstrass equations. We are interested in genus one curves given as double covers of P1, plane cubics, or complete intersections of two quadrics in P3. By minimising such a curve we mean making the invariants associated to its defining equations as small as possible using a suitable change of coordinates. We study the non-uniqueness of minimisations of the genus one curves des...

  12. Chemodiversity in the genus Aspergillus

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian; Larsen, Thomas Ostenfeld

    2015-01-01

    to be characterized. The genus Aspergillus is cladistically holophyletic but phenotypically polythetic and very diverse and is associated to quite different sexual states. Following the one fungus one name system, the genus Aspergillus is restricted to a holophyletic clade that include the morphologically different...... biosynthetic family isoextrolites. However, it appears that secondary metabolites from one Aspergillus section have analogous metabolites in other sections (here also called heteroisoextrolites). In this review, we give a genus-wide overview of secondary metabolite production in Aspergillus species. Extrolites...

  13. Algal biodiesel economy and competition among bio-fuels.

    Science.gov (United States)

    Lee, D H

    2011-01-01

    This investigation examines the possible results of policy support in developed and developing economies for developing algal biodiesel through to 2040. This investigation adopts the Taiwan General Equilibrium Model-Energy for Bio-fuels (TAIGEM-EB) to predict competition among the development of algal biodiesel, bioethanol and conventional crop-based biodiesel. Analytical results show that algal biodiesel will not be the major energy source in 2040 without strong support in developed economies. In contrast, bioethanol enjoys a development advantage relative to both forms of biodiesel. Finally, algal biodiesel will almost completely replace conventional biodiesel. CO(2) reduction benefits the development of the bio-fuels industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. The Structure of Algal Population in the Presence of Toxicants

    Science.gov (United States)

    Ipatova, Valentina; Prokhotskaya, Valeria; Dmitrieva, Aida

    Algal bioassays are routinely employed as part of a battery of toxicity tests to assess the environmental impacts of contaminants on aquatic ecosystems. This estimation is an essential component of the ecological risk assessment.

  15. Algal Biofuels R&D at NREL (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  16. Marine algal flora of submerged Angria Bank (Arabian Sea)

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Reddy, C.R.K.; Ambiye, V.

    Submerged Angria Bank was surveyed for the deep water marine algal flora. About 57 species were reported from this bank for the first time. Rhodophyta dominated (30 species) followed by Chlorophyta (18 species) and Phaeophyta (9 species). A few...

  17. In situ Transesterification of Microalgal Oil to Produce Algal Biodiesel

    Science.gov (United States)

    2012-06-01

    This research was to process whole microalgae cells for biodiesel production without first extracting lipids. The ultimate : goal is develop a novel process for algal biodiesel production directly from microalgae cells in a single step, i.e., in situ...

  18. Rotating Algal Biofilm Reactors: Mathematical Modeling and Lipid Production

    OpenAIRE

    Woolsey, Paul A.

    2011-01-01

    Harvesting of algal biomass presents a large barrier to the success of biofuels made from algae feedstock. Small cell sizes coupled with dilute concentrations of biomass in lagoon systems make separation an expensive and energy intense-process. The rotating algal biofilm reactor (RABR) has been developed at USU to provide a sustainable technology solution to this issue. Algae cells grown as a biofilm are concentrated in one location for ease of harvesting of high density biomass. A mathematic...

  19. 2016 National Algal Biofuels Technology Review Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s (BETO’s) vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration (RD&D) is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.

  20. Ecological study of algal flora of Neelum river Azad Kashmir

    International Nuclear Information System (INIS)

    Leghari, M.K.; Leghari, M.Y.

    2000-01-01

    First time ecological study of Algal Flora of Neelum River Azad Kashmir was carried out during January 1998 to July 1998. A total of 78 species belonging to 48 genera of 4 Algal groups. Cyanophyceae (16 species 20.5 % belonging to 11 genera), Choloronophycease (23 species 29.5 % belonging to 18 genera), Bacillariophyceae (37 species 47 % belonging to 17 genera), Xanthophyceae (2 species 3 % belonging to 2 genera) and 39 physico - chemical parameters were recorded. (author)

  1. The genus Cladosporium

    Science.gov (United States)

    Bensch, K.; Braun, U.; Groenewald, J.Z.; Crous, P.W.

    2012-01-01

    A monographic revision of the hyphomycete genus Cladosporium s. lat. (Cladosporiaceae, Capnodiales) is presented. It includes a detailed historic overview of Cladosporium and allied genera, with notes on their phylogeny, systematics and ecology. True species of Cladosporium s. str. (anamorphs of Davidiella), are characterised by having coronate conidiogenous loci and conidial hila, i.e., with a convex central dome surrounded by a raised periclinal rim. Recognised species are treated and illustrated with line drawings and photomicrographs (light as well as scanning electron microscopy). Species known from culture are described in vivo as well as in vitro on standardised media and under controlled conditions. Details on host range/substrates and the geographic distribution are given based on published accounts, and a re-examination of numerous herbarium specimens. Various keys are provided to support the identification of Cladosporium species in vivo and in vitro. Morphological datasets are supplemented by DNA barcodes (nuclear ribosomal RNA gene operon, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S nrDNA, as well as partial actin and translation elongation factor 1-α gene sequences) diagnostic for individual species. In total 993 names assigned to Cladosporium s. lat., including Heterosporium (854 in Cladosporium and 139 in Heterosporium), are treated, of which 169 are recognized in Cladosporium s. str. The other taxa are doubtful, insufficiently known or have been excluded from Cladosporium in its current circumscription and re-allocated to other genera by the authors of this monograph or previous authors. Taxonomic novelties: Cladosporium allicinum (Fr.: Fr.) Bensch, U. Braun & Crous, comb. nov., C. astroideum var. catalinense U. Braun, var. nov., Fusicladium tectonicola (Yong H. He & Z.Y. Zhang) U. Braun & Bensch, comb. nov., Septoidium uleanum (Henn.) U. Braun, comb. nov., Zasmidium adeniae (Hansf.) U. Braun, comb. nov., Zasmidium

  2. The genus Vitex: A review.

    Science.gov (United States)

    Rani, Anita; Sharma, Anupam

    2013-07-01

    The review includes 161 references on the genus Vitex, and comprises ethnopharmacology, morphology and microscopy, phytoconstituents, pharmacological reports, clinical studies, and toxicology of the prominent species of Vitex. Essential oils, flavonoids, iridoid glycosides, diterpenoides and ligans constitute major classes of phytoconstituents of the genus. A few species of this genus have medicinal value, among these, leaves and fruits of V. agnus-castus Linn. (Verbenaceae) has been traditionally used in treatment of women complaints. V. agnus-castus has also been included in herbal remedies, which are in clinical use to regulate the menstrual cycle, reduce premenstrual symptom tension and anxiety, treat some menopausal symptoms as well as to treat hormonally induced acne. Despite a long tradition of use of some species, the genus has not been explored properly. In the concluding part, the future scope of Vitex species has been emphasized with a view to establish their multifarious biological activities and mode of action.

  3. Utilizing the algicidal activity of aminoclay as a practical treatment for toxic red tides.

    Science.gov (United States)

    Lee, Young-Chul; Jin, EonSeon; Jung, Seung Won; Kim, Yeon-Mi; Chang, Kwang Suk; Yang, Ji-Won; Kim, Si-Wouk; Kim, Young-Ok; Shin, Hyun-Jae

    2013-01-01

    In recent decades, harmful algal blooms (HABs) - commonly known as red tides - have increasingly impacted human health, caused significant economic losses to fisheries and damaged coastal environments and ecosystems. Here, we demonstrate a method to control and suppress HABs through selective algal lysis. The approach harnesses the algicidal effects of aminoclays, which are comprised of a high density of primary amine groups covalently bonded by metal cation backbones. Positively charged colloidals of aminoclays induce cell lysis in HABs within several minutes exposure but have negligible impact on non-harmful phytoplankton, zooplankton and farmed fish. This selective lysis is due to the ammonium characteristics of the aminoclay and the electrostatic attraction between the clay nanoparticles and the algal cells. In contrast, yellow loess clay, a recognized treatment for HABs, causes algal flocs with little cell lysis. Thus, the aminoclay loading can be effective for the mitigation of HABs.

  4. Parasitism finds many solutions to the same problems in red algae (Florideophyceae, Rhodophyta).

    Science.gov (United States)

    Freese, Jillian M; Lane, Christopher E

    2017-06-01

    Parasitic red algae evolve from a common ancestor with their hosts, parasitizing cousins using familiar cellular mechanisms. They have independently evolved over one hundred times within the exclusively multicellular red algal class Florideophyceae. Reduced morphology, a lack of pigmentation, and direct cell-cell connections with their hosts are markers of red algal parasitism. With so many potential evolutionary pathways, red algal parasite diversity offers a unique test case to understand the earliest stages of this lifestyle transition. Molecular and morphological investigations led to the categorization of these parasites based on their relationship to their host. "Adelphoparasites" are phylogenetically close to their hosts, often infecting a sister species, whereas "alloparasites" are more distantly related to their hosts. The differentiation of these parasites, based on their phylogenetic relationship to their host, has resulted in a simplified classification of these parasites that may not reflect the many evolutionary pathways they take to arrive at a similar endpoint. Accordingly, many parasites fall into a gray area between adelphoparasite and alloparasite definitions, challenging the established features we use to classify them. Molecular phylogenetic research has been essential in identifying gaps in knowledge, but microscopy needs to be reincorporated in order to address red algal parasite developmental variation to establish a new paradigm. The joint utilization of molecular and microscopic methods will be critical in identifying the genomic and physiological traits of both nascent and well-established parasites. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Product (RED)

    DEFF Research Database (Denmark)

    Ponte, Stefano

    2011-01-01

    ) and the consumers who buy iconic brand products to help ‘distant others’. While in many other forms of causumerism, labels or certification systems ‘prove’ that a product is just, in RED, aid celebrities provide the proof. From the consumer point of view both labels and celebrities provide a similar simplification...... of complex social, economic, and environmental processes. At the same time, we argue that there are important distinctions as well—labels and certifications are ultimately about improving the conditions of production, whereas RED is about accepting existing production and trade systems and donating......(PRODUCT)RED™ (hereafter RED) is a cobranding initiative launched in 2006 by the aid celebrity Bono to raise money from product sales to support The Global Fund to Fight AIDS, Tuberculosis and Malaria. In this paper we argue that RED is shifting the boundaries of ‘causumerism’ (shopping...

  6. Algal Turf Scrubbers: Cleaning Water While Capturing Solar Energy

    International Nuclear Information System (INIS)

    Adey, W.

    2009-01-01

    Algal Turfs and Algal Turf Scrubbers (ATS) Algal Turfs are bio diverse communities of unicellular to filamentous algae of all major algal phyla. Algal Turf Scrubbers (ATS) are bioengineered ecosystems dominated by algal turfs. They clean water to very high quality, and remove CO 2 from the atmosphere by capturing solar energy at rates 10 times that of agriculture and 50 times that of forestry. ATS was invented at the Smithsonian Institution, by scientist, Walter Adey in the 1980s as a tool for controlling water quality in highly diverse model ecosystems. The technology received extensive R and D for aqua cultural, municipal, and industrial water cleaning by Dr. Adey, using venture capital, through the 1990s. Later, Hydro Mentia, Inc., of Ocala, Florida, engineered ATS to landscape scale of 20-50 Mgpd (it is important to note that this is a modular system, capable of expanding to any size.) A 2005 independent study of ATS, by the South Florida Water Management District and the IFAS Institute of the University of Florida, certified ATS as 5-100 times more cost efficient at removing nutrients from Everglades canal waters than the next competitor, the STA, a managed marsh system. ATS and STA were the final contestants in a 15-year study of nine technologies, and ATS was the only technology that created a use able byproduct.

  7. Evaluation of Harmful Algal Bloom Outreach Activities

    Directory of Open Access Journals (Sweden)

    Richard Weisman

    2007-12-01

    Full Text Available With an apparent increase of harmful algal blooms (HABs worldwide,healthcare providers, public health personnel and coastal managers are struggling toprovide scientifically-based appropriately-targeted HAB outreach and education. Since1998, the Florida Poison Information Center-Miami, with its 24 hour/365 day/year freeAquatic Toxins Hotline (1-888-232-8635 available in several languages, has received over 25,000 HAB-related calls. As part of HAB surveillance, all possible cases of HAB-relatedillness among callers are reported to the Florida Health Department. This pilot studyevaluated an automated call processing menu system that allows callers to access bilingualHAB information, and to speak directly with a trained Poison Information Specialist. Themajority (68% of callers reported satisfaction with the information, and many provided specific suggestions for improvement. This pilot study, the first known evaluation of use and satisfaction with HAB educational outreach materials, demonstrated that the automated system provided useful HAB-related information for the majority of callers, and decreased the routine informational call workload for the Poison Information Specialists, allowing them to focus on callers needing immediate assistance and their healthcare providers. These results will lead to improvement of this valuable HAB outreach, education and surveillance tool. Formal evaluation is recommended for future HAB outreach and educational materials.

  8. Adsorption of Nanoplastics on Algal Photosynthesis

    Science.gov (United States)

    Turner, James; Bhattacharya, Priyanka; Lin, Sijie; Ke, Pu Chun

    2010-03-01

    The rapid accumulation of disposed plastics in the environment, especially in the Pacific Ocean, has become a global concern in recent years. Photo, chemical and physical degradations constantly fragment these plastics into a wide array of macroscopic to microscopic particles. As a result, marine organisms such as algae may be exposed to plastic particles through ingestion, adsorption and other forms of uptake. Such interactions, currently little understood, could potentially impact on the health state of the entire food chain. Here we report on polystyrene-algae interaction and its impact on algal photosynthesis. We first investigated the adsorption of polystyrene beads (20 nm) on a cellulose film coated on a 96-well plate. We derived a supralinear increase of the adsorption with the beads concentration for both positively and negatively charged polystyrene beads, with a saturation observed for the negatively charged polystyrene beads of concentration above 1.6 mg/mL. Using a bicarbonate indicator we discovered decreased carbon dioxide depletion due to polystyrene-algae binding. Since polystyrene beads also mediated algae aggregation, nanoplastics may alternatively be harnessed for waste water treatment.

  9. Satellite monitoring of cyanobacterial harmful algal bloom ...

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (cyanoHABs) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern because of their dense biomass and the risk of exposure to toxins in both recreational waters and drinking source waters. Successful cyanoHAB assessment by satellites may provide a first-line of defense indicator for human and ecological health protection. In this study, assessment methods were developed to determine the utility of satellite technology for detecting cyanoHAB occurrence frequency at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent Sentinel-3 Ocean and Land Colour Imager (OLCI) launched in 2016. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, there were 275,897 lakes and reservoirs greater than 1 hectare in the 48 U.S. states. Results from this evaluation show that 5.6 % of waterbodies were resolvable by satellites with 300 m single pixel resolution and 0.7 % of waterbodies were resolvable when a 3x3 pixel array was applied based on minimum Euclidian distance from shore. Satellite data was also spatially joined to US public water surface intake (PWSI) locations, where single pixel resolution resolved 57% of PWSI and a 3x3 pixel array resolved 33% of

  10. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    Unitless chemical activity, expressing the energetic level of a compound relative to its energetic level in pure liquid [0-1], has proven useful to quantify the effective exposure to hydrophobic organic compounds through both aerial and aqueous media. Several studies have linked toxicity to chemi......Unitless chemical activity, expressing the energetic level of a compound relative to its energetic level in pure liquid [0-1], has proven useful to quantify the effective exposure to hydrophobic organic compounds through both aerial and aqueous media. Several studies have linked toxicity...... to chemical activity, as opposed to e.g. the total concentration. Baseline toxicity (narcosis) for neutral hydrophobic organic compounds has been shown to initiate in the narrow chemical activity range of 0.01 to 0.1. This presentation focuses on linking algal growth inhibition to chemical activity......-polar liquids were applied to challenge the chemical activity range for baseline toxicity. For each compound, the effective activity (Ea50) was estimated as the ratio of the effective concentration (EC50) and water solubility. Of these ratios, 90% were within the expected chemical activity range of 0.01 to 0...

  11. Revision of the genus Phaeanthus (Annonaceae)

    NARCIS (Netherlands)

    Mols, J.B.; Keßler, P.J.A.

    2000-01-01

    A revision of the genus Phaeanthus Hook.f. & Thomson (Annonaceae) is presented. The genus comprises 8 species. A key to the fruiting and/or flowering specimens of the genus is included. The genus consists of shrubs to small-sized trees from Malesia and Vietnam. It is characterised by sepals and

  12. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.

    Science.gov (United States)

    Costa, Taynan de Oliveira; Calijuri, Maria Lúcia; Avelar, Nayara Vilela; Carneiro, Angélica de Cássia de Oliveira; de Assis, Letícia Rodrigues

    2017-08-01

    In this investigation, chemical characteristics, higher, lower and net heating value, bulk and energy density, and thermogravimetric analysis were applied to study the thermal characteristics of three algal biomasses. These biomasses, grown as by-products of wastewater treatment in high-rate algal ponds (HRAPs), were: (i) biomass produced in domestic effluent and collected directly from an HRAP (PO); (ii) biomass produced in domestic effluent in a mixed pond-panel system and collected from the panels (PA); and (iii) biomass originating from the treatment effluent from the meat processing industry and collected directly from an HRAP (IN). The biomass IN was the best alternative for thermal power generation. Subsequently, a mixture of the algal biomasses and Jatropha epicarp was used to produce briquettes containing 0%, 25%, 50%, 75%, and 100% of algal biomass, and their properties were evaluated. In general, the addition of algal biomass to briquettes decreased both the hygroscopicity and fixed carbon content and increased the bulk density, ash content, and energy density. A 50% proportion of biomass IN was found to be the best raw material for producing briquettes. Therefore, the production of briquettes consisting of algal biomass and Jatropha epicarp at a laboratory scale was shown to be technically feasible.

  13. Identification of a new marine algal species Pyropia nitida sp. nov. (Bangiales: Rhodophyta) from Monterey, California.

    Science.gov (United States)

    Harden, Leeanne K; Morales, Karina M; Hughey, Jeffery R

    2016-07-01

    An unidentified marine red algal species classified in Pyropia J. Agardh was discovered from Monterey, CA. Morphological, barcode, and complete mitochondrial genome analysis of the alga support its recognition as a new species, Pyropia nitida sp. nov. The species is a high-intertidal, winter annual that is lanceolate in shape, monostromatic, and dioecious. Based on CO1 sequences, P. nitida is closely allied with the P. nereocystis clade. The mitogenome of P. nitida is 35 313 bp in length and contains 53 genes, including two ribosomal RNAs, 24 transfer RNAs, four ribosomal proteins, two ymfs, four ORFs, and 17 genes involved in electron transport and oxidative phosphorylation. The results support the recognition of P. nitida as distinct from the morphologically similar P. lanceolata.

  14. THE GENUS CULLENIA Wight * (Bombacaceae

    Directory of Open Access Journals (Sweden)

    A. J. G. H. KOSTERMANS

    1956-12-01

    Full Text Available The monotypic genus Cullenia was established by Wight (IconesPI. Ind. or. 5 (1 : pi. 1761—62 & text, 1851, who differentiated it fromDurio Adans. mainly by the lack of a corolla and the position and shapeof the anthers. The only species, originally described as Durio ceylanicusby Gardner, was cited by Wight as Cullenia excelsa Wight. K. Schumanncorrected the specific epithet rather casually and atributed it (wronglyto Wight. Bentham (in Benth. & Hook., Gen. pi. 1: 212. 1867; Baillon(Hist. pi. 4: 159. 1872, Masters (in Hook, f., Fl. Br. Ind. 1: 350. 1874and Beccari (Malesia 3: 219. 1889 accepted the genus.Bakhuizen van den Brink (in Bull. Jard. bot. Buitenzorg III, 6: 228.1924 incorporated the genus in Durio.In my opinion Cullenia represents a "good" genus by its lack ofcorolla. Alston, although accepting Bakhuizen's reduction, informed mepersonally, that he, too, is inclined to consider Cullenia different fromDurio.The pollen were described as being naked and pedicellate by Gardner;this wrong statement was corrected by Wight; the anthers are pedicellateand one-celled.In this paper a new Cullenia species is described, which strengthensthe position of the genus; both species are restricted to the rain forestregion of Ceylon and the Southern Indian Peninsula.

  15. Red Sirius

    Energy Technology Data Exchange (ETDEWEB)

    Martynov, D Ya

    1976-01-01

    A hypothesis is proposed explaining the assumption that Sirius changed its colour from red in the second century to pale blue in the tenth century A.D. The hypothesis is based on the possibility of transformation of a Sirius satellite (Sirius B) from a red giant in the past to a white dwarf in the present. Such a transformation would have been accompanied by an explosion of Sirius B, which is clearly visible from the Earth. The fact that the increase in Sirius brightness by 4-5 units is not reflected in historical chronicles is attributed to the degradation of sciences in Europe in 4-10 centuries.

  16. An Algal Diet Accelerates Larval Growth of Anopheles gambiae (Diptera: Culicidae) and Anopheles arabiensis (Diptera: Culicidae).

    Science.gov (United States)

    Tuno, N; Kohzu, A; Tayasu, I; Nakayama, T; Githeko, A; Yan, G

    2018-01-21

    The population sizes of Anopheles gambiae Giles (Diptera: Culicidae) and Anopheles arabiensis Patton (Diptera: Culicidae) increase dramatically with the onset of the rainy season in sub-Saharan Africa, but the ecological mechanisms underlying the increases are not well understood. As a first step toward to understand, we investigated the proliferation of algae, the major food of mosquito larvae, in artificial fresh water bodies exposed to sunlight for a short period, and old water bodies exposed to sunlight for a long period, and the effects thereof on the development of these anopheline larvae. We found that an epizoic green algal species of the genus Rhopalosolen (Chlorophyta: Chlorophyceae) proliferated immediately after water freshly taken from a spring was placed in sunlight. This alga proliferated only briefly (for ~10 d) even if the water was repeatedly exposed to sunlight. However, various algal species were observed in water that remained under sunlight for 40 d or longer (i.e., in old water bodies). The growth performance of larvae was higher in sunlight-exposed (alga-rich) water than in shade-stored (alga-poor) water. Stable isotope analysis suggested that these two anopheline species fed on Rhopalosolen algae in fresh water bodies but hardly at all on other algae occurring in the old water bodies. We concluded that freshly formed ground water pools facilitate high production of anopheline species because of the proliferation of Rhopalosolen algae therein, and the increase in the number of such pools in the rainy season, followed by rapid increases in A. gambiae and A. arabiensis numbers. © The Author(s) 2018. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Phylogeny of the Genus Drosophila

    Science.gov (United States)

    O’Grady, Patrick M.; DeSalle, Rob

    2018-01-01

    Understanding phylogenetic relationships among taxa is key to designing and implementing comparative analyses. The genus Drosophila, which contains over 1600 species, is one of the most important model systems in the biological sciences. For over a century, one species in this group, Drosophila melanogaster, has been key to studies of animal development and genetics, genome organization and evolution, and human disease. As whole-genome sequencing becomes more cost-effective, there is increasing interest in other members of this morphologically, ecologically, and behaviorally diverse genus. Phylogenetic relationships within Drosophila are complicated, and the goal of this paper is to provide a review of the recent taxonomic changes and phylogenetic relationships in this genus to aid in further comparative studies. PMID:29716983

  18. Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results

    Directory of Open Access Journals (Sweden)

    Colin M. Beal

    2012-06-01

    Full Text Available Worldwide, algal biofuel research and development efforts have focused on increasing the competitiveness of algal biofuels by increasing the energy and financial return on investments, reducing water intensity and resource requirements, and increasing algal productivity. In this study, analyses are presented in each of these areas—costs, resource needs, and productivity—for two cases: (1 an Experimental Case, using mostly measured data for a lab-scale system, and (2 a theorized Highly Productive Case that represents an optimized commercial-scale production system, albeit one that relies on full-price water, nutrients, and carbon dioxide. For both cases, the analysis described herein concludes that the energy and financial return on investments are less than 1, the water intensity is greater than that for conventional fuels, and the amounts of required resources at a meaningful scale of production amount to significant fractions of current consumption (e.g., nitrogen. The analysis and presentation of results highlight critical areas for advancement and innovation that must occur for sustainable and profitable algal biofuel production can occur at a scale that yields significant petroleum displacement. To this end, targets for energy consumption, production cost, water consumption, and nutrient consumption are presented that would promote sustainable algal biofuel production. Furthermore, this work demonstrates a procedure and method by which subsequent advances in technology and biotechnology can be framed to track progress.

  19. Evaluation of attached periphytical algal communities for biofuel feedstock generation

    Energy Technology Data Exchange (ETDEWEB)

    Sandefur, H.N.; Matlock, M.D.; Costello, T.A. [Arkansas Univ., Division of Agriculture, Fayetteville, AR (United States). Dept. of Biological and Agricultural Engineering, Center for Agricultural and Rural Sustainability

    2010-07-01

    This paper reported on a study that investigated the feasibility of using algal biomass as a feedstock for biofuel production. Algae has a high lipid content, and with its high rate of production, it can produce more oil on less land than traditional bioenergy crops. In addition, algal communities can remove nutrients from wastewater. Enclosed photobioreactors and open pond systems are among the many different algal growth systems that can be highly productive. However, they can also be difficult to maintain. The objective of this study was to demonstrate the ability of a pilot scale algal turf scrubber (ATS) to facilitate the growth of attached periphytic algal communities for the production of biomass feedstock and the removal of nutrients from a local stream in Springdale, Arizona. The ATS operated for a 9 month sampling period, during which time the system productivity averaged 26 g per m{sup 2} per day. The removal of total phosphorus and total nitrogen averaged 48 and 13 per cent, respectively.

  20. Evidence of ancient genome reduction in red algae (Rhodophyta).

    Science.gov (United States)

    Qiu, Huan; Price, Dana C; Yang, Eun Chan; Yoon, Hwan Su; Bhattacharya, Debashish

    2015-08-01

    Red algae (Rhodophyta) comprise a monophyletic eukaryotic lineage of ~6,500 species with a fossil record that extends back 1.2 billion years. A surprising aspect of red algal evolution is that sequenced genomes encode a relatively limited gene inventory (~5-10 thousand genes) when compared with other free-living algae or to other eukaryotes. This suggests that the common ancestor of red algae may have undergone extensive genome reduction, which can result from lineage specialization to a symbiotic or parasitic lifestyle or adaptation to an extreme or oligotrophic environment. We gathered genome and transcriptome data from a total of 14 red algal genera that represent the major branches of this phylum to study genome evolution in Rhodophyta. Analysis of orthologous gene gains and losses identifies two putative major phases of genome reduction: (i) in the stem lineage leading to all red algae resulting in the loss of major functions such as flagellae and basal bodies, the glycosyl-phosphatidylinositol anchor biosynthesis pathway, and the autophagy regulation pathway; and (ii) in the common ancestor of the extremophilic Cyanidiophytina. Red algal genomes are also characterized by the recruitment of hundreds of bacterial genes through horizontal gene transfer that have taken on multiple functions in shared pathways and have replaced eukaryotic gene homologs. Our results suggest that Rhodophyta may trace their origin to a gene depauperate ancestor. Unlike plants, it appears that a limited gene inventory is sufficient to support the diversification of a major eukaryote lineage that possesses sophisticated multicellular reproductive structures and an elaborate triphasic sexual cycle. © 2015 Phycological Society of America.

  1. In vitro antitumor activity of Gracilaria corticata (a red alga) against ...

    African Journals Online (AJOL)

    ) assay. The results showed that 9.336 and 9.726 μg/μl of algal extract were the most effective concentrations against Jurkat and molt-4 cells, respectively. The water crude extract of red alga G. corticata had significant anticancer activity and it ...

  2. Seasonality and toxin production of Pyrodinium bahamense in a Red Sea lagoon

    KAUST Repository

    Banguera Hinestroza, Eulalia; Eikrem, W.; Mansour, H.; Solberg, Ingrid; Curdia, Joao; Holtermann, Karie Ellen; Edvardsen, B.; Kaartvedt, Stein

    2016-01-01

    Harmful algal blooms of the dinoflagellate Pyrodinium bahamense have caused human and economic losses in the last decades. This study, for the first time, documents a bloom of P. bahamense in the Red Sea. The alga was recurrently present in a semi

  3. Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-03-01

    Biosorption of copper ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). The effects of contact time, pH, ionic strength (IS) and temperature on the biosorption process have been studied. Equilibrium data follow both Langmuir and Langmuir-Freundlich models. The parameters of Langmuir equilibrium model were: q(max)=33.0mgg(-1), K(L)=0.015mgl(-1); q(max)=16.7mgg(-1), K(L)=0.028mgl(-1) and q(max)=10.3mgg(-1), K(L)=0.160mgl(-1) respectively for Gelidium, algal waste and composite material at pH=5.3, T=20 degrees C and IS=0.001M. Increasing the pH, the number of deprotonated active sites increases and so the uptake capacity of copper ions. In the case of high ionic strengths, the contribution of the electrostatic component to the overall binding decreases, and so the uptake capacity. The temperature has little influence on the uptake capacity principally for low equilibrium copper concentrations. Changes in standard enthalpy, Gibbs energy and entropy during biosorption were determined. Kinetic data at different solution pH (3, 4 and 5.3) were fitted to pseudo-first-order and pseudo-second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model, which successfully predicts Cu(II) concentration profiles.

  4. Marine algal toxins: origins, health effects, and their increased occurrence

    International Nuclear Information System (INIS)

    Van Dolah, Frances M.

    2000-01-01

    Certain marine algae produce potent toxins that impact human health through the consumption of contaminated shellfish and finfish and through water or aerosol exposure. Over the past three decades, the frequency and global distribution of toxic algal incidents appear to have increased, and human intoxications from novel algal sources have occurred. This increase is of particular concern, since it parallels recent evidence of large-scale ecologic disturbances that coincide with trends in global warming. The extent to which human activities have contributed to their increase therefore comes into question. This review summarizes the origins and health effects of marine algal toxins, as well as changes in their current global distribution, and examines possible causes for the recent increase in their occurrence. (Author)

  5. Hydrogen from algal biomass: A review of production process

    Directory of Open Access Journals (Sweden)

    Archita Sharma

    2017-09-01

    Full Text Available Multifariousness of biofuel sources has marked an edge to an imperative energy issue. Production of hydrogen from microalgae has been gathering much contemplation right away. But, mercantile production of microalgae biofuels considering bio-hydrogen is still not practicable because of low biomass concentration and costly down streaming processes. This review has taken up the hydrogen production by microalgae. Biofuels are the up and coming alternative to exhaustible, environmentally and unsafe fossil fuels. Algal biomass has been considered as an enticing raw material for biofuel production, these days photobioreactors and open-air systems are being used for hydrogen production from algal biomass. The formers allow the careful cultivation control whereas the latter ones are cheaper and simpler. A contemporary, encouraging optimization access has been included called algal cell immobilization on various matrixes which has resulted in marked increase in the productivity per volume of a reactor and addition of the hydrogen-production phase.

  6. Hydrogen production from algal biomass - Advances, challenges and prospects.

    Science.gov (United States)

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Catalytic Processes for Utilizing Carbohydrates Derived from Algal Biomass

    Directory of Open Access Journals (Sweden)

    Sho Yamaguchi

    2017-05-01

    Full Text Available The high productivity of oil biosynthesized by microalgae has attracted increasing attention in recent years. Due to the application of such oils in jet fuels, the algal biosynthetic pathway toward oil components has been extensively researched. However, the utilization of the residue from algal cells after oil extraction has been overlooked. This residue is mainly composed of carbohydrates (starch, and so we herein describe the novel processes available for the production of useful chemicals from algal biomass-derived sugars. In particular, this review highlights our latest research in generating lactic acid and levulinic acid derivatives from polysaccharides and monosaccharides using homogeneous catalysts. Furthermore, based on previous reports, we discuss the potential of heterogeneous catalysts for application in such processes.

  8. Algal biofuels: key issues, sustainability and life cycle assessment

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving

    2011-01-01

    wastewater. Algae capture CO2 from atmosphere and industrial flue gases and transform it in to organic biomass that can be used for the production of biofuels. Like other biomass, algal biomass is also a carbon neutral source for the production of bioenergy. Therefore cultivation of algal biomass provides......In recent years research activities are intensively focused on renewable fuels in order to fulfill the increasing energy demand and to reduce the fossil fuels consumption and external oil dependency either in order to provide local energetic resources and or as a means for reducing greenhouse gases...... (GHG) emissions to reduce the climate change effects. Among the various renewable energy sources algal biofuels is a very promising source of biomass as algae sequester huge quantities of carbon from atmosphere and are very efficient in utilizing the nutrients from the industrial effluent and municipal...

  9. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P. [Univ. of California, San Diego, CA (United States)

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  10. Early detection of protozoan grazers in algal biofuel cultures.

    Science.gov (United States)

    Day, John G; Thomas, Naomi J; Achilles-Day, Undine E M; Leakey, Raymond J G

    2012-06-01

    Future micro-algal biofuels will most likely be derived from open-pond production systems. These are by definition open to "invasion" by grazers, which could devastate micro-algal mass-cultures. There is an urgent requirement for methodologies capable of early detection and control of grazers in dense algal cultures. In this study a model system employing the marine alga Nannochloropsis oculata was challenged by grazers including ciliates, amoebae and a heterotrophic dinoflagellate. A FlowCAM flow-cytometer was used to detect all grazers investigated (size range 80 μm in length) in the presence of algae. Detection limits were 1.4 × 10(8) cells ml(-1) (>0.5 g l(-1) dry wt.). Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Algal blooms: an emerging threat to seawater reverse osmosis desalination

    KAUST Repository

    Villacorte, Loreen O.

    2014-08-04

    Seawater reverse osmosis (SWRO) desalination technology has been rapidly growing in terms of installed capacity and global application over the last decade. An emerging threat to SWRO application is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in SWRO plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of various desalination plants to avoid irreversible fouling of downstream SWRO membranes. This article summarizes the current state of SWRO technology and the emerging threat of algal blooms to its application. It also highlights the importance of studying the algal bloom phenomena in the perspective of seawater desalination, so proper mitigation and preventive strategies can be developed in the near future. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  12. Algal blooms: an emerging threat to seawater reverse osmosis desalination

    KAUST Repository

    Villacorte, Loreen O.; Tabatabai, S. Assiyeh Alizadeh; Dhakal, N.; Amy, Gary L.; Schippers, Jan Cornelis; Kennedy, Maria Dolores

    2014-01-01

    Seawater reverse osmosis (SWRO) desalination technology has been rapidly growing in terms of installed capacity and global application over the last decade. An emerging threat to SWRO application is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in SWRO plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of various desalination plants to avoid irreversible fouling of downstream SWRO membranes. This article summarizes the current state of SWRO technology and the emerging threat of algal blooms to its application. It also highlights the importance of studying the algal bloom phenomena in the perspective of seawater desalination, so proper mitigation and preventive strategies can be developed in the near future. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  13. Analysis of triglyceride synthesis unveils a green algal soluble diacylglycerol acyltransferase and provides clues to potential enzymatic components of the chloroplast pathway.

    Science.gov (United States)

    Bagnato, Carolina; Prados, María B; Franchini, Gisela R; Scaglia, Natalia; Miranda, Silvia E; Beligni, María V

    2017-03-09

    Microalgal triglyceride (TAG) synthesis has attracted considerable attention. Particular emphasis has been put towards characterizing the algal homologs of the canonical rate-limiting enzymes, diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). Less work has been done to analyze homologs from a phylogenetic perspective. In this work, we used HMMER iterative profiling and phylogenetic and functional analyses to determine the number and sequence characteristics of algal DGAT and PDAT, as well as related sequences that constitute their corresponding superfamilies. We included most algae with available genomes, as well as representative eukaryotic and prokaryotic species. Amongst our main findings, we identified a novel clade of DGAT1-like proteins exclusive to red algae and glaucophyta and a previously uncharacterized subclade of DGAT2 proteins with an unusual number of transmembrane segments. Our analysis also revealed the existence of a novel DGAT exclusive to green algae with moderate similarity to plant soluble DGAT3. The DGAT3 clade shares a most recent ancestor with a group of uncharacterized proteins from cyanobacteria. Subcellular targeting prediction suggests that most green algal DGAT3 proteins are imported to the chloroplast, evidencing that the green algal chloroplast might have a soluble pathway for the de novo synthesis of TAGs. Heterologous expression of C. reinhardtii DGAT3 produces an increase in the accumulation of TAG, as evidenced by thin layer chromatography. Our analysis contributes to advance in the knowledge of complex superfamilies involved in lipid metabolism and provides clues to possible enzymatic players of chloroplast TAG synthesis.

  14. Metabolite Profiling of Red Sea Corals

    KAUST Repository

    Ortega, Jovhana Alejandra

    2016-12-01

    Looking at the metabolite profile of an organism provides insights into the metabolomic state of a cell and hence also into pathways employed. Little is known about the metabolites produced by corals and their algal symbionts. In particular, corals from the central Red Sea are understudied, but interesting study objects, as they live in one of the warmest and most saline environments and can provide clues as to the adjustment of corals to environmental change. In this study, we applied gas chromatography – mass spectrometry (GC–MS) metabolite profiling to analyze the metabolic profile of four coral species and their associated symbionts: Fungia granulosa, Acropora hemprichii, Porites lutea, and Pocillopora verrucosa. We identified and quantified 102 compounds among primary and secondary metabolites across all samples. F. granulosa and its symbiont showed a total of 59 metabolites which were similar to the 51 displayed by P. verrucosa. P. lutea and A. hemprichii both harbored 40 compounds in conjunction with their respective isolated algae. Comparing across species, 28 metabolites were exclusively present in algae, while 38 were exclusive to corals. A principal component and cluster analyses revealed that metabolite profiles clustered between corals and algae, but each species harbored a distinct catalog of metabolites. The major classes of compounds were carbohydrates and amino acids. Taken together, this study provides a first description of metabolites of Red Sea corals and their associated symbionts. As expected, the metabolites of coral hosts differ from their algal symbionts, but each host and algal species harbor a unique set of metabolites. This corroborates that host-symbiont species pairs display a fine-tuned complementary metabolism that provide insights into the specific nature of the symbiosis. Our analysis also revealed aquatic pollutants, which suggests that metabolite profiling might be used for monitoring pollution levels and assessing

  15. Bordasia Krapov., new Malvaceae genus

    Directory of Open Access Journals (Sweden)

    Antonio Krapovickas

    2003-01-01

    Full Text Available Bordasia bicornis Krapov. new genus and species is described from northwestern ParaguayanChaco. It is related to Sida from which it differs by the mericarp with two apical horns, by theleaves dimorphic and coriaceous and by the fannel-shaped calyx

  16. The genus Actiniceps Berk. & Br

    NARCIS (Netherlands)

    Boedijn, K.B.

    1959-01-01

    The genus Actiniceps Berk. & Br. is shown to be a Basidiomycete. Wiesnerina Höhn. and Dimorphocystis Corner are regarded synonymous. The type species A. thwaitesii Berk. & Br. is redescribed with D. capitatus Corner as synonym. The following new combinations are proposed: A. horrida (Höhn.) Boedijn,

  17. Carbohydrate-degrading bacteria closely associated with Tetraselmis indica: Influence on algal growth

    Digital Repository Service at National Institute of Oceanography (India)

    Arora, M.; Anil, A.C.; Delany, J.; Rajarajan, N.; Emami, K.; Mesbahi, E.

    to promote growth of the algae. These experiments revealed that microbes associated with the alga differentially influence algal growth dynamics. Bacterial presence on the cast-off cell wall products of the alga suggested the likely utilisation of algal cell...

  18. Basic and Applied Algal Life Support System Research on Board the Deep Space Gateway

    Science.gov (United States)

    Niederwieser, T.; Zea, L.; Anthony, J.; Stodieck, L.

    2018-02-01

    We study the effect of long-term preservation methods on DNA damage of algal cultures for BLSS applications. In a secondary step, the Deep Space Gateway serves as a technology demonstration platform for algal photobioreactors in intermittently occupied habitats.

  19. Review of the Indo-Pacific labrid fish genus Hemigymnus

    OpenAIRE

    Randall, John E.

    2013-01-01

    The labrid fish genus Hemigymnus Günther consists of three relatively large coral-reef species: the wide-ranging Indo-Pacific H. fasciatus (Bloch) and H. melapterus (Bloch), and H. sexfasciatus (Rüppell) of the Red Sea and Gulf of Aden, usually regarded as a synonym of H. fasciatus. It is treated here as a species, distinguished by color pattern, longer pelvic fins of the terminal male, and fewer gill rakers. These three fishes are generally found as solitary individuals over sand or sand-and...

  20. Rank Two Affine Manifolds in Genus 3

    OpenAIRE

    Aulicino, David; Nguyen, Duc-Manh

    2016-01-01

    We complete the classification of rank two affine manifolds in the moduli space of translation surfaces in genus three. Combined with a recent result of Mirzakhani and Wright, this completes the classification of higher rank affine manifolds in genus three.

  1. Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M. L.

    2016-01-13

    This procedure guides the integration of laboratory analytical procedures to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in algal biomass analysis.

  2. A review of the genus Erycibe Roxb

    NARCIS (Netherlands)

    Hoogland, R.D.

    1953-01-01

    In this paper I intend to give a review of the genus Erycibe Roxb. in. which all the names published in the genus will be accounted for. The representatives from Malaysia have been dealt with more extensively in the revision of the genus in Flora Malesiana, Ser. I, Vol. 4, 4th instalment, 1953, pp.

  3. Symbiotic diversity in the cosmopolitan genus Acacia

    Science.gov (United States)

    James K. Leary; Paul W. Singleton; Paul G. Scowcroft; Dulal Borthakur

    2006-01-01

    Acacia is the second largest genus within the Leguminosae, with 1352 species identified. This genus is now known to be polyphyletic and the international scientific community will presumably split Acacia into five new genera. This review examines the diversity of biological nitrogen fixation symbiosis within Acacia as a single genus. Due to its global importance, an...

  4. Physical processes contributing to harmful algal blooms in Saldanha ...

    African Journals Online (AJOL)

    Since 1994, disruption of harvesting as a result of the presence of harmful algal species has been a regular late-summer phenomenon. Toxic blooms that are ultimately advected into the bay develop on the continental shelf to the north between 32°S and St Helena Bay, a region characterized by favourable conditions for ...

  5. Environmental variables, algal pigments and phytoplankton in the ...

    African Journals Online (AJOL)

    The phytoplankton diversity, environmental variables and algal pigments of the Atlantic Ocean off the coast of Badagry, Lagos were investigated for twelve months between May 2015 and April 2016. The water chemistry characteristics reflected sea water conditions. At the two stations, the range of values recorded for some ...

  6. Effects of fertilizers used in agricultural fields on algal blooms

    Science.gov (United States)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S. K.; Misra, A. K.; Chattopadhyay, Joydev

    2017-06-01

    The increasing occurrence of algal blooms and their negative ecological impacts have led to intensified monitoring activities. This needs the proper identification of the most responsible factor/factors for the bloom formation. However, in natural systems, algal blooms result from a combination of factors and from observation it is difficult to identify the most important one. In the present paper, using a mathematical model we compare the effects of three human induced factors (fertilizer input in agricultural field, eutrophication due to other sources than fertilizers, and overfishing) on the bloom dynamics and DO level. By applying a sophisticated sensitivity analysis technique, we found that the increasing use of fertilizers in agricultural field causes more rapid algal growth and decreases DO level much faster than eutrophication from other sources and overfishing. We also look at the mechanisms how fertilizer input rate affects the algal bloom dynamics and DO level. The model can be helpful for the policy makers in determining the influential factors responsible for the bloom formation.

  7. Effects of solar ultraviolet radiation on tropical algal communities

    International Nuclear Information System (INIS)

    Santas, R.

    1989-01-01

    This study assessed some of the effects of solar ultraviolet (UV) radiation ion coral reef algal assemblages. The first part of the investigation was carried out under controlled laboratory conditions in the coral reef microcosm at the National Museum of Natural History in Washington, D.C., while a field counterpart was completed at the Smithsonian Institution's marine station on Grand Turk, Turks and Caicos Islands, in the eastern Caribbean. The study attempted to separate the effects of UV-A from those of UV-B. In the laboratory, algal turf assemblages exposed to simulated solar UV radiation produced 55.1% less biomass than assemblages that were not exposed to UV. Assemblages not exposed to UV were dominated by Ectocarpus rhodochondroides, whereas in the assemblage developing under high UV radiation, Enteromorpha prolifera and eventually Schizothrix calcicola dominated. Lower UV-B irradiances caused a proportional reduction in biomass production and had less pronounced effects on species composition. UV-A did not have any significant effects on either algal turf productivity or community structure. In the field, assemblages exposed to naturally occurring solar UV supported a biomass 40% lower than that of assemblages protected from UV-B exposure. Once again, UV-A did not inhibit algal turf productivity

  8. Changes in density and composition of algal assemblages in certain ...

    African Journals Online (AJOL)

    The water purification plants at Virginia and Bothaville, South Africa, experience problems with cyanobacteria and other algae. Their algal assemblages were studied during 2010 and 2011 to determine the dominant species that may pose problems in purification. Cyanobacteria, diatoms and green algae were the dominant ...

  9. Seawater reverse osmosis desalination and (harmful) algal blooms

    KAUST Repository

    Villacorte, Loreen O.; Tabatabai, S. Assiyeh Alizadeh; Anderson, Donald M.; Amy, Gary L.; Schippers, Jan Cornelis; Kennedy, Maria Dolores

    2015-01-01

    This article reviews the occurrence of HABs in seawater, their effects on the operation of seawater reverse osmosis (SWRO) plants, the indicators for quantifying/predicting these effects, and the pretreatment strategies for mitigating operational issues during algal blooms. The potential issues in SWRO plants during HABs are particulate/organic fouling of pretreatment systems and biological fouling of RO membranes, mainly due to accumulation of algal organic matter (AOM). The presence of HAB toxins in desalinated water is also a potential concern but only at very low concentrations. Monitoring algal cell density, AOM concentrations and membrane fouling indices is a promising approach to assess the quality of SWRO feedwater and performance of the pretreatment system. When geological condition is favourable, subsurface intake can be a robust pretreatment for SWRO during HABs. Existing SWRO plants with open intake and are fitted with granular media filtration can improve performance in terms of capacity and product water quality, if preceded by dissolved air flotation or sedimentation. However, the application of advanced pretreatment using ultrafiltration membrane with in-line coagulation is often a better option as it is capable of maintaining stable operation and better RO feed water quality during algal bloom periods with significantly lower chemical consumption.

  10. Algal communities associated with aquatic macrophytes in some ...

    African Journals Online (AJOL)

    This study describes the algal communities of six ponds colonised by aquatic macrophytes in Nyanza Province, Kenya. Plankton samples were collected from the water column and epiphytic samples from macrophytes such as Azolla, Pistia, Nymphaea, Ipomoea and Ludwigia. Pond pH, temperature, conductivity, ...

  11. Monitoring of harmful algal blooms along the Norwegian coast using ...

    African Journals Online (AJOL)

    A Norwegian monitoring system for harmful algal blooms, consisting of an Observer Network, the State Food Hygiene Control Agency, the Oceanographic Company of Norway, the Institute of Marine Research and the Directorate for Fisheries, is reviewed. Potentially harmful algae on the Norwegian coast are found primarily ...

  12. Biological control of Microcystis dominated harmful algal blooms ...

    African Journals Online (AJOL)

    Freshwater resources are now threatened by the presence and increase of harmful algal blooms (HAB) all over the world. The HABs are sometimes a direct result of anthropogenic pollution entering water bodies, such as partially treated nutrient-rich effluents and the leaching of fertilisers and animal wastes. The impact of ...

  13. Increasing the extraction efficiency of algal lipid for biodiesel ...

    African Journals Online (AJOL)

    SAM

    2014-04-09

    Apr 9, 2014 ... biodiesel production: Novel application of algal viruses ... Environmental Virology Cell, Council of Scientific and Industrial ... content, biomass productivity and are more sustainable ... rRNA of microalgae using outsourcing the sequencing services to .... efficiency is concerned, such as development of.

  14. Seawater reverse osmosis desalination and (harmful) algal blooms

    KAUST Repository

    Villacorte, Loreen O.

    2015-03-01

    This article reviews the occurrence of HABs in seawater, their effects on the operation of seawater reverse osmosis (SWRO) plants, the indicators for quantifying/predicting these effects, and the pretreatment strategies for mitigating operational issues during algal blooms. The potential issues in SWRO plants during HABs are particulate/organic fouling of pretreatment systems and biological fouling of RO membranes, mainly due to accumulation of algal organic matter (AOM). The presence of HAB toxins in desalinated water is also a potential concern but only at very low concentrations. Monitoring algal cell density, AOM concentrations and membrane fouling indices is a promising approach to assess the quality of SWRO feedwater and performance of the pretreatment system. When geological condition is favourable, subsurface intake can be a robust pretreatment for SWRO during HABs. Existing SWRO plants with open intake and are fitted with granular media filtration can improve performance in terms of capacity and product water quality, if preceded by dissolved air flotation or sedimentation. However, the application of advanced pretreatment using ultrafiltration membrane with in-line coagulation is often a better option as it is capable of maintaining stable operation and better RO feed water quality during algal bloom periods with significantly lower chemical consumption.

  15. Algal blooms: a perspective from the coasts of India

    Digital Repository Service at National Institute of Oceanography (India)

    DeSilva, M.S.; Anil, A.C.; Naik, R.K.; DeCosta, P.M.

    Algal blooms have been documented along the west and east coasts of India. A review of bloom occurrences in Indian waters from 1908 to 2009 points out that a total of 101 cases have been reported. A comparison of the bloom cases reported before...

  16. The extended Kalman filter for forecast of algal bloom dynamics.

    Science.gov (United States)

    Mao, J Q; Lee, Joseph H W; Choi, K W

    2009-09-01

    A deterministic ecosystem model is combined with an extended Kalman filter (EKF) to produce short term forecasts of algal bloom and dissolved oxygen dynamics in a marine fish culture zone (FCZ). The weakly flushed FCZ is modelled as a well-mixed system; the tidal exchange with the outer bay is lumped into a flushing rate that is numerically determined from a three-dimensional hydrodynamic model. The ecosystem model incorporates phytoplankton growth kinetics, nutrient uptake, photosynthetic production, nutrient sources from organic fish farm loads, and nutrient exchange with a sediment bed layer. High frequency field observations of chlorophyll, dissolved oxygen (DO) and hydro-meteorological parameters (sampling interval Deltat=1 day, 2h, 1h, respectively) and bi-weekly nutrient data are assimilated into the model to produce the combined state estimate accounting for the uncertainties. In addition to the water quality state variables, the EKF incorporates dynamic estimation of algal growth rate and settling velocity. The effectiveness of the EKF data assimilation is studied for a wide range of sampling intervals and prediction lead-times. The chlorophyll and dissolved oxygen estimated by the EKF are compared with field data of seven algal bloom events observed at Lamma Island, Hong Kong. The results show that the EKF estimate well captures the nonlinear error evolution in time; the chlorophyll level can be satisfactorily predicted by the filtered model estimate with a mean absolute error of around 1-2 microg/L. Predictions with 1-2 day lead-time are highly correlated with the observations (r=0.7-0.9); the correlation stays at a high level for a lead-time of 3 days (r=0.6-0.7). Estimated algal growth and settling rates are in accord with field observations; the more frequent DO data can compensate for less frequent algal biomass measurements. The present study is the first time the EKF is successfully applied to forecast an entire algal bloom cycle, suggesting the

  17. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin

    Czech Academy of Sciences Publication Activity Database

    Burki, F.; Flegontov, Pavel; Oborník, Miroslav; Cihlář, Jaromír; Pain, A.; Lukeš, Julius; Keeling, P. J.

    2012-01-01

    Roč. 4, č. 6 (2012), s. 738-747 ISSN 1759-6653 R&D Projects: GA ČR GAP506/12/1522; GA ČR GBP501/12/G055 Institutional support: RVO:60077344 Keywords : Endosymbiotic gene transfer * plastid evolution * protist * algae * chromera Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.759, year: 2012

  18. Juvenile corals can acquire more carbon from high-performance algal symbionts

    Science.gov (United States)

    Cantin, N. E.; van Oppen, M. J. H.; Willis, B. L.; Mieog, J. C.; Negri, A. P.

    2009-06-01

    Algal endosymbionts of the genus Symbiodinium play a key role in the nutrition of reef building corals and strongly affect the thermal tolerance and growth rate of the animal host. This study reports that 14C photosynthate incorporation into juvenile coral tissues was doubled in Acropora millepora harbouring Symbiodinium C1 compared with juveniles from common parentage harbouring Symbiodinium D in a laboratory experiment. Rapid light curves performed on the same corals revealed that the relative electron transport rate of photosystem II (rETRMAX) was 87% greater in Symbiodinium C1 than in Symbiodinium D in hospite. The greater relative electron transport through photosystem II of Symbiodinium C1 is positively correlated with increased carbon delivery to the host under the applied experimental conditions ( r 2 = 0.91). This may translate into a competitive advantage for juveniles harbouring Symbiodinium C1 under certain field conditions, since rapid early growth typically limits mortality. Both symbiont types exhibited severe reductions in 14C incorporation during a 10-h exposure to the electron transport blocking herbicide diuron (DCMU), confirming the link between electron transport through PSII and photosynthate incorporation within the host tissue. These findings advance the current understanding of symbiotic relationships between corals and their symbionts, providing evidence that enhanced growth rates of juvenile corals may result from greater translocation of photosynthates from Symbiodinium C1.

  19. Beach-goer behavior during a retrospectively detected algal ...

    Science.gov (United States)

    Algal blooms occur among nutrient rich, warm surface waters and may adversely impact recreational beaches. During July – September 2003, a prospective study of beachgoers was conducted on weekends at a public beach on a Great Lake in the United States. We measured each beachgoer’s activity at the start and end of their beach visit and the environmental factors: water and air temperature, wind speed and wave height at the study site each day. At the time, there was no notification of algal blooms; we retrospectively evaluated the presence of algal blooms using MERIS data from the Envisat-1 satellite. A total of 2840 people participated in the study over 16 study days. The majority (55%) were female, and 751 (26%) were < 18 years of age. An algal bloom was detected retrospectively by remotely sensed satellite imagery during August 16 – 24. This peak bloom period (PB) included 4 study days. During PB study days, more study participants 226/742 (31%) reported body contact with the water compared to contact 531/2098 (25%) on non-peak days. During the 4 PB days, of the environmental factors, only mean water temperature was significantly different, 250 C vs. 230 C (p<0.05) from other days.These results suggest that beachgoer body contact with water was not deterred by the presence of an algal bloom, and that interventions to actively discourage water contact during a bloom are needed to reduce exposure to blooms. This is an abstract of a proposed presentation and

  20. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata.

    Science.gov (United States)

    Wang, Song; Li, Xiao-Ming; Teuscher, Franka; Li, Dong-Li; Diesel, Arnulf; Ebel, Rainer; Proksch, Peter; Wang, Bin-Gui

    2006-11-01

    Cultivation of the endophytic fungus Chaetomium globosum, which was isolated from the inner tissue of the marine red alga Polysiphonia urceolata, resulted in the isolation of chaetopyranin (1), a new benzaldehyde secondary metabolite. Ten known compounds were also isolated, including two benzaldehyde congeners, 2-(2',3-epoxy-1',3'-heptadienyl)-6-hydroxy-5-(3-methyl-2-butenyl)benzaldehyde (2) and isotetrahydroauroglaucin (3), two anthraquinone derivatives, erythroglaucin (4) and parietin (5), five asperentin derivatives including asperentin (6, also known as cladosporin), 5'-hydroxy-asperentin-8-methylether (7), asperentin-8-methyl ether (8), 4'-hydroxyasperentin (9), and 5'-hydroxyasperentin (10), and the prenylated diketopiperazine congener neoechinulin A (11). The structures of these compounds were determined on the basis of their spectroscopic data analysis (1H, 13C, 1H-1H COSY, HMQC, and HMBC NMR, as well as low- and high-resolution mass experiments). To our knowledge, compound 1 represents the first example of a 2H-benzopyran derivative of marine algal-derived fungi as well as of the fungal genus Chaetomium. Each isolate was tested for its DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging property. Compounds 1-4 were found to have moderate activity. Chaetopyranin (1) also exhibited moderate to weak cytotoxic activity toward several tumor cell lines.

  1. Scavenging in the genus Natrix

    Directory of Open Access Journals (Sweden)

    Cesar Ayres

    2012-07-01

    Full Text Available Scavenging is reported as an unusual behaviour of snakes. However, it is likely more common than is supposed. Here I report the use of dead newts as prey source by water snakes of the genus Natrix at a dam in north-western Spain. Juveniles and adults viperine snakes (Natrix maura, and also an adult grass snake (Natrix natrix were found feeding on newt carcasses.

  2. Seasonal and algal diet-driven patterns of the digestive microbiota of the European abalone Haliotis tuberculata, a generalist marine herbivore.

    Science.gov (United States)

    Gobet, Angélique; Mest, Laëtitia; Perennou, Morgan; Dittami, Simon M; Caralp, Claire; Coulombet, Céline; Huchette, Sylvain; Roussel, Sabine; Michel, Gurvan; Leblanc, Catherine

    2018-03-27

    Holobionts have a digestive microbiota with catabolic abilities allowing the degradation of complex dietary compounds for the host. In terrestrial herbivores, the digestive microbiota is known to degrade complex polysaccharides from land plants while in marine herbivores, the digestive microbiota is poorly characterized. Most of the latter are generalists and consume red, green, and brown macroalgae, three distinct lineages characterized by a specific composition in complex polysaccharides, which represent half of their biomass. Subsequently, each macroalga features a specific epiphytic microbiota, and the digestive microbiota of marine herbivores is expected to vary with a monospecific algal diet. We investigated the effect of four monospecific diets (Palmaria palmata, Ulva lactuca, Saccharina latissima, Laminaria digitata) on the composition and specificity of the digestive microbiota of a generalist marine herbivore, the abalone, farmed in a temperate coastal area over a year. The microbiota from the abalone digestive gland was sampled every 2 months and explored using metabarcoding. Diversity and multivariate analyses showed that patterns of the microbiota were significantly linked to seasonal variations of contextual parameters but not directly to a specific algal diet. Three core genera: Psychrilyobacter, Mycoplasma, and Vibrio constantly dominated the microbiota in the abalone digestive gland. Additionally, a less abundant and diet-specific core microbiota featured genera representing aerobic primary degraders of algal polysaccharides. This study highlights the establishment of a persistent core microbiota in the digestive gland of the abalone since its juvenile state and the presence of a less abundant and diet-specific core community. While composed of different microbial taxa compared to terrestrial herbivores, the digestive gland constitutes a particular niche in the abalone holobiont, where bacteria (i) may cooperate to degrade algal polysaccharides to

  3. CYANOBACTERIA OF THE GENUS PROCHLOROTHRIX

    Directory of Open Access Journals (Sweden)

    Alexander Vasilievich Pinevich

    2012-05-01

    Full Text Available Green cyanobacteria are distinguished from blue-green ones by the possession of a chlorophyll-containing light harvesting antenna. Three genera of green cyanobacteria, namely Acaryochloris, Prochlorococcus and Prochloron, are unicellular and of marine habitat; Prochlorococcus marinus attracts most attention due to its outstanding role in prime productivity. The fourth genus, Prochlorothrix, is represented by filamentous freshwater strains. Unlike the rest of green cyanobacteria, Prochlorothrix is paradoxically rare: it has been isolated from two European locations only. Taking into account fluctuating blooms, morphological resemblance with Planktothrix and Pseudanabaena, and unsuccessful enrichment of Prochlorothrix, the preferred strategy of search for this cyanobacterium is based on PCR with natural DNA and specific primers. This approach already demonstrates a broader distribution of Prochlorothrix: marker genes have been found in at least two additional locations. Despite the growing evidence for naturally occurring Prochlorothrix, there are only a few cultivated strains, and only one of them (PCC 9006 is claimed to be axenic. In multixenic cultures, Prochlorothrix is accompanied by heterotrophic bacteria, indicating a consortium-type association. The genus Prochlorothrix includes two species: P. hollandica and P. scandica based on distinctions in genomic DNA, cell size, temperature optimum, and fatty acid composition of membrane lipids. In this short review, the properties of cyanobacteria of the genus Prochlorothrix are described, and the evolutionary scenario of green cyanobacteria, especially taking into account their role in the origin of simple chloroplast is given.

  4. Biodiversity of the genus Cladophialophora

    Science.gov (United States)

    Badali, H.; Gueidan, C.; Najafzadeh, M.J.; Bonifaz, A.; van den Ende, A.H.G. Gerrits; de Hoog, G.S.

    2008-01-01

    Cladophialophora is a genus of black yeast-like fungi comprising a number of clinically highly significant species in addition to environmental taxa. The genus has previously been characterized by branched chains of ellipsoidal to fusiform conidia. However, this character was shown to have evolved several times independently in the order Chaetothyriales. On the basis of a multigene phylogeny (nucLSU, nucSSU, RPB1), most of the species of Cladophialophora (including its generic type C. carrionii) belong to a monophyletic group comprising two main clades (carrionii- and bantiana-clades). The genus includes species causing chromoblastomycosis and other skin infections, as well as disseminated and cerebral infections, often in immunocompetent individuals. In the present study, multilocus phylogenetic analyses were combined to a morphological study to characterize phenetically similar Cladophialophora strains. Sequences of the ITS region, partial Translation Elongation Factor 1-α and β-Tubulin genes were analysed for a set of 48 strains. Four novel species were discovered, originating from soft drinks, alkylbenzene-polluted soil, and infected patients. Membership of the both carrionii and bantiana clades might be indicative of potential virulence to humans. PMID:19287540

  5. On genus expansion of superpolynomials

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, Andrei, E-mail: mironov@itep.ru [Lebedev Physics Institute, Moscow 119991 (Russian Federation); ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Morozov, Alexei, E-mail: morozov@itep.ru [ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Sleptsov, Alexei, E-mail: sleptsov@itep.ru [ITEP, Moscow 117218 (Russian Federation); Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); KdVI, University of Amsterdam (Netherlands); Smirnov, Andrey, E-mail: asmirnov@math.columbia.edu [ITEP, Moscow 117218 (Russian Federation); Columbia University, Department of Mathematics, New York (United States)

    2014-12-15

    Recently it was shown that the (Ooguri–Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present paper we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are β-deformed to Hamiltonians of the Calogero–Moser–Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials. However, even for the thin knots the beta-deformation is non-innocent: already in the simplest examples it seems inconsistent with the positivity of colored superpolynomials in non-(anti)symmetric representations, which also happens in I. Cherednik's (DAHA-based) approach to the torus knots.

  6. An updated review on the Oenothera genus.

    Science.gov (United States)

    Singh, Sumitra; Kaur, Rupinder; Sharma, Surendra Kr

    2012-07-01

    Oenothera genus (Onagraceae) has been used as a folk remedy since ancient times for the treatment of asthma, gastrointestinal disorders, neuralgia, skin diseases, and hepatic and kidney diseases. Different chemical constituents like lipids, flavonoids, tannins, steroids and triterpenes have been isolated from this genus. The various notable pharmacological activities reported from the genus are antioxidant, cytotoxic, antibacterial, antiviral, anti-inflammatory, antihyperlipidaemic, thrombolytic and antidiarrhoeal. The present paper is to summarize the worldwide reported biological activities and phytoconstituents associated with this genus for about 50 years and highlight the medicinally important species belonging to this genus so that these species can be further explored and used as therapeutic agents for various diseases.

  7. Effectiveness of an anti-algal compound in eliminating an aquatic unicellular harmful algal Phaeocystis globosa

    Directory of Open Access Journals (Sweden)

    Huajun eZhang

    2016-04-01

    Full Text Available Phaeocystis globosa blooms can have negative effects on higher trophic levels in the marine ecosystem and consequently influence human activities. Strain KA22, identified as the bacterium Hahella, was isolated from coastal surface water and used to control P. globosa growth. A methanol extract from the bacteral cells showed strong algicidal activity. After purification, the compound showed a similar structure to prodigiosin when identified with Q-Exactive Orbitrap MS and nuclear magnetic resonance spectra. The compound showed algicidal activity against P. globosa with a 50% Lethal Dose (LD50 of 2.24 μg/mL. The prodigiosin was stable under heat and acid environment, and it could be degraded under alkaline environment and natural light condition. The growth rates of strain KA22 was fast in 2216E medium and the content of prodigiosin in this medium was more than 70 μg/mL after 16 h incubation. The compound showed particularly strong algicidal activity against Prorocentrum donghaiense, P. globosa and Heterosigma akashiwo, but having little effect on three other phytoplankton species tested. The results of our research could increase our knowledge on harmful algal bloom control compound and lead to further study on the mechanisms of the lysis effect on harmful algae.

  8. A new species of Arachnanthus from the Red Sea (Cnidaria, Ceriantharia

    Directory of Open Access Journals (Sweden)

    Sérgio N. Stampar

    2018-04-01

    Full Text Available A new species of the genus Arachnanthus (Cnidaria: Ceriantharia, Arachnanthus lilith Stampar & El Didi, sp. n., is described. This species is widely distributed in the Red Sea, and recorded from 2–30 m depths. Arachnanthus lilith Stampar & El Didi, sp. n. is the fifth species of the genus and the first recorded from the Red Sea. The number of labial tentacle pseudocycles, arrangement of mesenteries, and distribution of acontioids allow the differentiation of the new species from other species of the genus.

  9. Mitigation of algal organic matter released from Chaetoceros affinis and Hymenomonas by in situ generated ferrate

    KAUST Repository

    Deka, Bhaskar Jyoti

    2018-05-10

    This study demonstrates the application of in situ ferrate (Fe(VI)) for the efficient removal of dissolved algal organic matter (AOM) from seawater. Sodium hypochlorite (NaOCl) and ferric (Fe(III)) were used to produce in situ Fe(VI) by wet chemical oxidation. First, the removal efficiencies of model AOM compounds, humic acid (HA), and sodium alginate (SA) were evaluated in the presence of sodium chloride with an initial influent dissolved organic carbon (DOC) concentration of 5.0 mg C L−1 at different pH levels to establish the optimal doses for in situ Fe(VI) generation. The concentration of Fe(VI) was determined by the 2,2-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) ultraviolet–visible spectrophotometry method. In the case of HA, 72% DOC removal was recorded when applied with 1.5 mg L−1 of Fe(III) and 1.5 mg L−1 of NaOCl (in situ Fe(VI) concentration of 1.46 mg L−1) while 42% DOC removal was observed for SA. Subsequently, the removal of AOM extracted from two bloom-forming algal species, Chaetoceros affinis (CA) and Hymenomonas (Hym), cultivated in seawater from the Red Sea, were tested with in situ generated Fe(VI) at the established optimum condition. In situ Fe(VI) recorded superior performance in removing AOM extracted from CA and Hym, showing 83% and 92% DOC removal when the influent DOC concentrations were 2.48 and 2.63 mg L−1, respectively. A detailed AOM characterization was conducted using liquid chromatography–organic carbon detection.

  10. Vernalophrys algivore gen. nov., sp. nov. (Rhizaria: Cercozoa: Vampyrellida), a New Algal Predator Isolated from Outdoor Mass Culture of Scenedesmus dimorphus.

    Science.gov (United States)

    Gong, Yingchun; Patterson, David J; Li, Yunguang; Hu, Zixuan; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2015-06-15

    Microbial contamination is the main cause of loss of biomass yield in microalgal cultures, especially under outdoor environmental conditions. Little is known about the identities of microbial contaminants in outdoor mass algal cultures. In this study, a new genus and species of vampyrellid amoeba, Vernalophrys algivore, is described from cultures of Scenedesmus dimorphus in open raceway ponds and outdoor flat-panel photobioreactors. This vampyrellid amoeba was a significant grazer of Scenedesmus and was frequently associated with a very rapid decline in algal numbers. We report on the morphology, subcellular structure, feeding behavior, molecular phylogeny, and life cycle. The new amoeba resembles Leptophrys in the shape of trophozoites and pseudopodia and in the mechanism of feeding (mainly by engulfment). It possesses two distinctive regions in helix E10_1 (nucleotides 117 to 119, CAA) and E23_1 (nucleotides 522 and 523, AG) of the 18S rRNA gene. It did not form a monophyletic group with Leptophrys in molecular phylogenetic trees. We establish a new genus, Vernalophrys, with the type species Vernalophrys algivore. The occurrence, impact of the amoeba on mass culture of S. dimorphus, and means to reduce vampyrellid amoeba contamination in Scenedesmus cultures are addressed. The information obtained from this study will be useful for developing an early warning system and control measures for preventing or treating this contaminant in microalgal mass cultures. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Harmful algal bloom smart device application: using image analysis and machine learning techniques for classification of harmful algal blooms

    Science.gov (United States)

    Northern Kentucky University and the U.S. EPA Office of Research Development in Cincinnati Agency are collaborating to develop a harmful algal bloom detection algorithm that estimates the presence of cyanobacteria in freshwater systems by image analysis. Green and blue-green alg...

  12. On the concordance genus of topologically slice knots

    OpenAIRE

    Hom, Jennifer

    2012-01-01

    The concordance genus of a knot K is the minimum Seifert genus of all knots smoothly concordant to K. Concordance genus is bounded below by the 4-ball genus and above by the Seifert genus. We give a lower bound for the concordance genus of K coming from the knot Floer complex of K. As an application, we prove that there are topologically slice knots with 4-ball genus equal to one and arbitrarily large concordance genus.

  13. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids

    Czech Academy of Sciences Publication Activity Database

    Janouškovec, J.; Horák, A.; Oborník, Miroslav; Lukeš, Julius; Keeling, P. J.

    2010-01-01

    Roč. 107, č. 24 (2010), s. 10949-10954 ISSN 0027-8424 R&D Projects: GA AV ČR IAA601410907 Institutional research plan: CEZ:AV0Z60220518 Keywords : Apicomplexa * Chromera velia * CCMP3155 * plastid evolution * chloroplast genome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.771, year: 2010

  14. Classification, Naming and Evolutionary History of Glycosyltransferases from Sequenced Green and Red Algal Genomes

    DEFF Research Database (Denmark)

    Ulvskov, Peter; Paiva, Dionisio Soares; Domozych, David

    2013-01-01

    . In order to elucidate possible evolutionary links between the three advanced lineages in Archaeplastida, a genomic analysis was initiated. Fully sequenced genomes from the Rhodophyta and Virideplantae and the well-defined CAZy database on glycosyltransferases were included in the analysis. The number...

  15. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    Science.gov (United States)

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.

  16. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta).

    Science.gov (United States)

    Brawley, Susan H; Blouin, Nicolas A; Ficko-Blean, Elizabeth; Wheeler, Glen L; Lohr, Martin; Goodson, Holly V; Jenkins, Jerry W; Blaby-Haas, Crysten E; Helliwell, Katherine E; Chan, Cheong Xin; Marriage, Tara N; Bhattacharya, Debashish; Klein, Anita S; Badis, Yacine; Brodie, Juliet; Cao, Yuanyu; Collén, Jonas; Dittami, Simon M; Gachon, Claire M M; Green, Beverley R; Karpowicz, Steven J; Kim, Jay W; Kudahl, Ulrich Johan; Lin, Senjie; Michel, Gurvan; Mittag, Maria; Olson, Bradley J S C; Pangilinan, Jasmyn L; Peng, Yi; Qiu, Huan; Shu, Shengqiang; Singer, John T; Smith, Alison G; Sprecher, Brittany N; Wagner, Volker; Wang, Wenfei; Wang, Zhi-Yong; Yan, Juying; Yarish, Charles; Zäuner-Riek, Simone; Zhuang, Yunyun; Zou, Yong; Lindquist, Erika A; Grimwood, Jane; Barry, Kerrie W; Rokhsar, Daniel S; Schmutz, Jeremy; Stiller, John W; Grossman, Arthur R; Prochnik, Simon E

    2017-08-01

    Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra , lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.

  17. Seasonal and life-phase related differences in growth in Scarus ferrugineus on a southern Red Sea fringing reef

    NARCIS (Netherlands)

    Afeworki, Y.; Videler, J. J.; Berhane, Y. H.; Bruggemann, J. H.

    Temporal trends in growth of the rusty parrotfish Scarus ferrugineus were studied on a southern Red Sea fringing reef that experiences seasonal changes in environmental conditions and benthic algal resources. Length increment data from tagging and recapture were compared among periods and sexes and

  18. Chemotaxonomy of the genus Stemphylium

    DEFF Research Database (Denmark)

    Olsen, Kresten Jon Kromphardt; Andersen, Birgitte

    2016-01-01

    The filamentous fungal genus Stemphylium (Anamophic Pleospora) is often found on various crops, and especially the common animal feed plant Medicago sativa (alfalfa) is often infected by this plant pathogen. With this in mind it is important to consider what consequences such a contamination can...... have, e.g. production of mycotoxins. (Firsvad et al. (2009)) A clade of Stemphylium spp. i.e. S. herbarum, S. alfalfae, S. sedicola, S. tomatonis and S. vesicariumare troublesome to distinguish as they share both morphological and molecular characteristics. This study has focused on using chemotaxonomy...

  19. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan; Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  20. Effects of fertilizers used in agricultural fields on algal blooms

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S. K.

    2017-01-01

    of factors and from observation it is difficult to identify the most important one. In the present paper, using a mathematical model we compare the effects of three human induced factors (fertilizer input in agricultural field, eutrophication due to other sources than fertilizers, and overfishing......) on the bloom dynamics and DO level. By applying a sophisticated sensitivity analysis technique, we found that the increasing use of fertilizers in agricultural field causes more rapid algal growth and decreases DO level much faster than eutrophication from other sources and overfishing. We also look...... at the mechanisms how fertilizer input rate affects the algal bloom dynamics and DO level. The model can be helpful for the policy makers in determining the influential factors responsible for the bloom formation....

  1. Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers

    Science.gov (United States)

    Sundareshwar, P. V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S. A.; Sandvik, C.; Trennepohl, A.

    2011-05-01

    In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large “blooms” in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers.

  2. The attached algal community near Pickering GS: (II)

    International Nuclear Information System (INIS)

    McKinley, S.R.

    1982-01-01

    Environmental parameters correlated with attached algal standing crop are investigated in this report. Three groups were recognized on the basis of standing crop levels and seasonal standing crop patterns. Factors which appeared to influence the separation among the three groups were substrate size and water temperature. Standing crop levels among the discharge transects, intake and areas outside the station were found to be correlated with a combination of parameters. Standing crop levels outside the station were inversely correlated with wind speed but positively correlated with substrate particle size and depth. Algal standing crop at the intake also was inversely correlated with wind speed. Differences in standing crop levels between the intake and areas outside the station may have been attributed to substrate particle size. Low standing crop level among the discharge transects may have been attributed to higher current velocities and periodically to high water temperature

  3. A Taste of Algal Genomes from the Joint Genome Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2012-06-17

    Algae play profound roles in aquatic food chains and the carbon cycle, can impose health and economic costs through toxic blooms, provide models for the study of symbiosis, photosynthesis, and eukaryotic evolution, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE's Joint Genome Institute (JGI). To date JGI has sequenced, assembled, annotated, and released to the public the genomes of 18 species and strains of algae, sampling almost all of the major clades of photosynthetic eukaryotes. With more algal genomes currently undergoing analysis, JGI continues its commitment to driving forward basic and applied algal science. Among these ongoing projects are the pan-genome of the dominant coccolithophore Emiliania huxleyi, the interrelationships between the 4 genomes in the nucleomorph-containing Bigelowiella natans and Guillardia theta, and the search for symbiosis genes of lichens.

  4. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health.

    Science.gov (United States)

    Anderson, Donald M; Alpermann, Tilman J; Cembella, Allan D; Collos, Yves; Masseret, Estelle; Montresor, Marina

    2012-02-01

    The dinoflagellate genus Alexandrium is one of the major harmful algal bloom (HAB) genera with respect to the diversity, magnitude and consequences of blooms. The ability of Alexandrium to colonize multiple habitats and to persist over large regions through time is testimony to the adaptability and resilience of this group of species. Three different families of toxins, as well as an as yet incompletely characterized suite of allelochemicals are produced among Alexandrium species. Nutritional strategies are equally diverse, including the ability to utilize a range of inorganic and organic nutrient sources, and feeding by ingestion of other organisms. Many Alexandrium species have complex life histories that include sexuality and often, but not always, cyst formation, which is characteristic of a meroplanktonic life strategy and offers considerable ecological advantages. Due to the public health and ecosystem impacts of Alexandrium blooms, the genus has been extensively studied, and there exists a broad knowledge base that ranges from taxonomy and phylogeny through genomics and toxin biosynthesis to bloom dynamics and modeling. Here we present a review of the genus Alexandrium, focusing on the major toxic and otherwise harmful species.

  5. Marine harmful algal blooms, human health and wellbeing

    DEFF Research Database (Denmark)

    Berdalet, Elisa; Fleming, Lora E.; Gowen, Richard

    2016-01-01

    cause harm to humans and other organisms. These harmful algal blooms (HABs) have direct impacts on human health and negative influences on human wellbeing, mainly through their consequences to coastal ecosystem services (fisheries, tourism and recreation) and other marine organisms and environments...... maintaining intensive, multidisciplinary and collaborative scientific research, and strengthening the coordination with stakeholders, policymakers and the general public. Here we provide an overview of different aspects of the HABs phenomena, an important element of the intrinsic links between oceans...

  6. Conversion of Small Algal Oil Sample to JP-8

    Science.gov (United States)

    2012-01-01

    cracking of Algal Oil to SPK Hydroprocessing Lab Plant uop Nitrogen Hydrogen Product ., __ Small Scale Lab Hydprocessing plant - Down flow trickle ... bed configuration - Capable of retaining 25 cc of catalyst bed Meter UOP ·CONFIDENTIAL File Number The catalytic deoxygenation stage of the...content which combined with the samples acidity, is a challenge to reactor metallurgy. None the less, an attempt was made to convert this sample to

  7. The paradox of algal blooms in oligotrophic waters

    Science.gov (United States)

    Sundareshwar, P. V.; Upadhyay, S.; Abessa, M. B.; Honomichl, S.; Berdanier, B.; Spaulding, S.; Sandvik, C.; Trennepohl, A.

    2010-12-01

    Nutrient inputs to streams and lakes, primarily from anthropogenic sources, lead to eutrophic conditions that favor algal blooms with undesirable consequences. In contrast, low nutrient or oligotrophic waters rarely support algal blooms; such ecosystems are typically lower in productivity. Since the mid-1980’s however, the diatom Didymosphenia geminata has dramatically expanded its range colonizing oligotrophic rivers worldwide with blooms appearing as thick benthic mats. This recent global occurrence of Didymosphenia geminata blooms in temperate rivers has been perplexing in its pace of spread and the paradoxical nature of the nuisance growths. The blooms occur primarily in oligotrophic flowing waters, where phosphorus (P) availability often limits primary production. We present a biogeochemical process by which D. geminata mats adsorb both P and iron (Fe) from flowing waters and make P available for cellular uptake. The adsorbed P becomes bioavailable through biogeochemical processes that occur within the mat. The biogeochemical processes observed here while well accepted in benthic systems are novel for algal blooms in lotic habits. Enzymatic and bacterial processes such as Fe and sulfate reduction can release the adsorbed P and increase its bioavailability, creating a positive feedback between total stalk biomass and nutrient availability. Stalk affinity for Fe, Fe-P biogeochemistry, and interaction between watershed processes and climatic setting explain the paradoxical blooms, and the recent global spread of this invasive aquatic species. At a broader scale the study also implies that such algal blooms in oligotrophic environments can fundamentally alter the retention and longitudinal transfer of important nutrients such as P in streams and rivers.

  8. Efficient algal bioassay based on short-term photosynthetic response

    International Nuclear Information System (INIS)

    Giddings, J.M.; Stewart, A.J.; O'Neill, R.V.; Gardner, R.H.

    1983-01-01

    A procedure is described for measuring the effects of toxicants on algal photosynthesis (carbon-14 bicarbonate (H 14 CO 3 )uptake) in 4-h experiments. The results for individual aromatic compounds and the water-soluble fraction (WSF) of a synthetic oil are presented as examples of applications of the bioassay. The toxicity of the WSF varied among the seven algal species tested, and the responses of some species were pH-dependent. With Selenastrum capricornutum as the test organism, the bioassay results were unaffected by variations in pH from 7.0 to 9.0, light intensity from 40 to 200 μeinsteins m -2 s -1 , culture density up to 0.5 mg chlorophyll a per litre, and agitation up to 100 rpm. The photosynthesis bioassay is simpler and faster (4 h versus 4 to 14 days), uses smaller culture volumes, and requires less space than static culture-growth tests. One person can conveniently test four materials per day, and the entire procedure, including preparation, exposure, and analysis, takes less than two days. The short incubation time reduces bottle effects such as pH changes, accumulation of metabolic products, nutrient depletion, and bacterial growth. Processes that remove or alter the test materials are also minimized. The data presented here indicate that algal photosynthesis is inhibited at toxicant concentrations similar to those that cause acute effects in aquatic animals. A model of a pelagic ecosystem is used to demonstrate that even temporary (seven-day) inhibition of algal photosynthesis can have a measurable impact on other trophic levels, particularly if the other trophic levels are also experiencing toxic effects. 25 references, 6 figures, 1 table

  9. NSR superstring measures in genus 5

    International Nuclear Information System (INIS)

    Dunin-Barkowski, Petr; Sleptsov, Alexey; Stern, Abel

    2013-01-01

    Currently there are two proposed ansätze for NSR superstring measures: the Grushevsky ansatz and the OPSMY ansatz, which for genera g⩽4 are known to coincide. However, neither the Grushevsky nor the OPSMY ansatz leads to a vanishing two-point function in genus four, which can be constructed from the genus five expressions for the respective ansätze. This is inconsistent with the known properties of superstring amplitudes. In the present paper we show that the Grushevsky and OPSMY ansätze do not coincide in genus five. Then, by combining these ansätze, we propose a new ansatz for genus five, which now leads to a vanishing two-point function in genus four. We also show that one cannot construct an ansatz from the currently known forms in genus 6 that satisfies all known requirements for superstring measures

  10. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.

    Science.gov (United States)

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young

    2014-06-01

    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Study of cnidarian-algal symbiosis in the "omics" age.

    Science.gov (United States)

    Meyer, Eli; Weis, Virginia M

    2012-08-01

    The symbiotic associations between cnidarians and dinoflagellate algae (Symbiodinium) support productive and diverse ecosystems in coral reefs. Many aspects of this association, including the mechanistic basis of host-symbiont recognition and metabolic interaction, remain poorly understood. The first completed genome sequence for a symbiotic anthozoan is now available (the coral Acropora digitifera), and extensive expressed sequence tag resources are available for a variety of other symbiotic corals and anemones. These resources make it possible to profile gene expression, protein abundance, and protein localization associated with the symbiotic state. Here we review the history of "omics" studies of cnidarian-algal symbiosis and the current availability of sequence resources for corals and anemones, identifying genes putatively involved in symbiosis across 10 anthozoan species. The public availability of candidate symbiosis-associated genes leaves the field of cnidarian-algal symbiosis poised for in-depth comparative studies of sequence diversity and gene expression and for targeted functional studies of genes associated with symbiosis. Reviewing the progress to date suggests directions for future investigations of cnidarian-algal symbiosis that include (i) sequencing of Symbiodinium, (ii) proteomic analysis of the symbiosome membrane complex, (iii) glycomic analysis of Symbiodinium cell surfaces, and (iv) expression profiling of the gastrodermal cells hosting Symbiodinium.

  12. Population dynamics of potentially harmful algal blooms in Bizerte ...

    African Journals Online (AJOL)

    These were numerically dominated by potentially toxic species of the diatom genus Pseudo-nitzschia, which were present year-round at all stations. ... Canonical correspondence analyses revealed significant relationships between the harmful phytoplankton species monitored and the environmental conditions.

  13. The genus Retiboletus in China.

    Science.gov (United States)

    Zeng, Nian-Kai; Liang, Zhi-Qun; Wu, Gang; Li, Yan-Chun; Yang, Zhu L; Liang, Zhi-Qun

    2016-01-01

    Species of the genus Retiboletus (Boletaceae, Boletales) in China are investigated based on morphology and phylogenetic analyses of DNA sequences from nuc rDNA internal transcribed spacer (ITS) and partial 28S regions and sequences from the translation elongation factor 1-a gene (tef1a). Six lineages are recovered among the collections studied. Five of these are documented and presented in the present paper, including three new species and two new combinations. The remaining species is not described due to the paucity of material. The specimens from China identified as "R. ornatipes" or "R. retipes" are in fact R. sinensis or R. kauffmanii, those labeled "R. griseus" are either R. fuscus or R. pseudogriseus A key to all known taxa of the genus is provided. Phylogenetic relationships of taxa within Retiboletus are partially resolved. A preliminary biogeographical analysis shows that allied species of Retiboletus between eastern Asia and North/Central America are common but there are no Retiboletus species common to both continents. Species of Retiboletus in Japan and southern China are conspecific or closely related. © 2016 by The Mycological Society of America.

  14. Hypothesis: Gene-rich plastid genomes in red algae may be an outcome of nuclear genome reduction.

    Science.gov (United States)

    Qiu, Huan; Lee, Jun Mo; Yoon, Hwan Su; Bhattacharya, Debashish

    2017-06-01

    Red algae (Rhodophyta) putatively diverged from the eukaryote tree of life >1.2 billion years ago and are the source of plastids in the ecologically important diatoms, haptophytes, and dinoflagellates. In general, red algae contain the largest plastid gene inventory among all such organelles derived from primary, secondary, or additional rounds of endosymbiosis. In contrast, their nuclear gene inventory is reduced when compared to their putative sister lineage, the Viridiplantae, and other photosynthetic lineages. The latter is thought to have resulted from a phase of genome reduction that occurred in the stem lineage of Rhodophyta. A recent comparative analysis of a taxonomically broad collection of red algal and Viridiplantae plastid genomes demonstrates that the red algal ancestor encoded ~1.5× more plastid genes than Viridiplantae. This difference is primarily explained by more extensive endosymbiotic gene transfer (EGT) in the stem lineage of Viridiplantae, when compared to red algae. We postulate that limited EGT in Rhodophytes resulted from the countervailing force of ancient, and likely recurrent, nuclear genome reduction. In other words, the propensity for nuclear gene loss led to the retention of red algal plastid genes that would otherwise have undergone intracellular gene transfer to the nucleus. This hypothesis recognizes the primacy of nuclear genome evolution over that of plastids, which have no inherent control of their gene inventory and can change dramatically (e.g., secondarily non-photosynthetic eukaryotes, dinoflagellates) in response to selection acting on the host lineage. © 2017 Phycological Society of America.

  15. 2+1 gravity for genus >1

    International Nuclear Information System (INIS)

    Nelson, J.E.; Regge, T.

    1991-01-01

    We analysed the algebra of observables for the simple case of a genus 1 initial data surface Σ 2 for 2+1 De Sitter gravity. Here we extend the analysis to higher genus. We construct for genus 2 the group of automorphisms H of the homotopy group π 1 induced by the mapping class group. The group H induces a group D of canonical transformations on the algebra of observables which is related to the braid group for 6 threads. (orig.)

  16. The genus Lolium : taxonomy and genetic resources

    OpenAIRE

    Loos, B.P.

    1994-01-01

    Several aspects of variation within the genus Lolium, and more in detail within Lolium perenne (perennial ryegrass) have been highlighted. As the results are extensively discussed in each chapter, the general discussion is focused on two aspects of the research.

    Speciation
    It is clear that the genus Lolium is a very variable genus. The variation within the species reduces the clarity o...

  17. Aspidonepsis (Asclepiadaceae, a new southern African genus

    Directory of Open Access Journals (Sweden)

    A. Nicholas

    1992-10-01

    Full Text Available Aspidonepsis, an endemic southern African genus, is described and compared to the closely allied genus Aspidoglossum. This newly described genus is composed of two subgenera, Aspidonepsis and Unguilobium. consisting of three and two species respectively.  Asclepias diploglossa, A. flava, A. cognata and A. reneensis are transferred to Aspidonepsis. and A. shebae is newly described. All species are discussed, illustrated and a key is given to aid in their identification.

  18. Genome Sequence and Transcriptome Analyses of Chrysochromulina tobin: Metabolic Tools for Enhanced Algal Fitness in the Prominent Order Prymnesiales (Haptophyceae.

    Directory of Open Access Journals (Sweden)

    Blake T Hovde

    Full Text Available Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales, is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales, and transcriptome data collected at seven time points over a 24-hour light/dark cycle. The nuclear genome of C. tobin is small (59 Mb, compact (∼ 40% of the genome is protein coding and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two "red" RuBisCO activases that are shared across many algal lineages. The Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes.

  19. Surveillance guidelines for toxic algal species of Italian sea and lake waters; Indicazioni per il controllo delle specie algali tossiche delle acque marine e lacustri italiane: Studio delle coste e di un lago del Lazio: 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Milena; Congestri, Roberta; Buzzelli, Elena [Istituot Superiore di Sanita` , Rome (Italy). Lab. di Igiene Ambientale

    1997-09-01

    The health conditions of the coasts of the Rome district and of a large lake in the northern area of the Latium Region were examined to evaluate the toxic algal species, during a 14-month study carried on in cooperation with the Region and the local prevention units of the Region. The study shows the existence of a mesotrophic state in the coastal waters of the lake Bolsena, and a trophic level increased in last years, along the sea coasts of the Rome district. alga populations of genus Dinophysis, harmless to bathing activities, but able to contaminate the edible molluscs with toxins of the okadaic acid group, have been found. The technical occurrences of this study points out the operators`need of a taxonomic atlas, collecting all the toxic algal species known in the Mediterranean basin. This report includes a number of drawings of all the signaled species, each one followed by a fried schedule with the main taxonomic characteristics.

  20. Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems.

    Science.gov (United States)

    Gross, Martin; Mascarenhas, Vernon; Wen, Zhiyou

    2015-10-01

    A Revolving Algal Biofilm (RAB) growth system in which algal cells are attached to a flexible material rotating between liquid and gas phases has been developed. In this work, different configurations of RAB systems were developed at pilot-scale by retrofitting the attachment materials to a raceway pond (2000-L with 8.5 m(2) footprint area) and a trough reservoir (150 L with 3.5 m(2) footprint area). The algal growth performance and chemical composition, as well as the water evaporative loss and specific water consumption were evaluated over a period of nine months in a greenhouse environment near Boone, Iowa USA. Additionally a raceway pond was run in parallel, which served as a control. On average the raceway-based RAB and the trough-based RAB outperformed the control pond by 309% and 697%, respectively. A maximum productivity of 46.8 g m(-2) day(-1) was achieved on the trough-based RAB system. The evaporative water loss of the RAB system was modeled based on an energy balance analysis and was experimentally validated. While the RAB system, particularly the trough-based RAB, had higher water evaporative loss, the specific water consumption per unit of biomass produced was only 26% (raceway-based RAB) and 7% (trough-based RAB) of that of the control pond. Collectively, this research shows that the RAB system is an efficient algal culture system and has great potential to commercially produce microalgae with high productivity and efficient water use. © 2015 Wiley Periodicals, Inc.

  1. Algal remediation of CO₂ and nutrient discharges: A review.

    Science.gov (United States)

    Judd, Simon; van den Broeke, Leo J P; Shurair, Mohamed; Kuti, Yussuf; Znad, Hussein

    2015-12-15

    The recent literature pertaining to the application of algal photobioreactors (PBRs) to both carbon dioxide mitigation and nutrient abatement is reviewed and the reported data analysed. The review appraises the influence of key system parameters on performance with reference to (a) the absorption and biological fixation of CO2 from gaseous effluent streams, and (b) the removal of nutrients from wastewaters. Key parameters appraised individually with reference to CO2 removal comprise algal speciation, light intensity, mass transfer, gas and hydraulic residence time, pollutant (CO2 and nutrient) loading, biochemical and chemical stoichiometry (including pH), and temperature. Nutrient removal has been assessed with reference to hydraulic residence time and reactor configuration, along with C:nutrient ratios and other factors affecting carbon fixation, and outcomes compared with those reported for classical biological nutrient removal (BNR). Outcomes of the review indicate there has been a disproportionate increase in algal PBR research outputs over the past 5-8 years, with a significant number of studies based on small, bench-scale systems. The quantitative impacts of light intensity and loading on CO2 uptake are highly dependent on the algal species, and also affected by solution chemical conditions such as temperature and pH. Calculations based on available data for biomass growth rates indicate that a reactor CO2 residence time of around 4 h is required for significant CO2 removal. Nutrient removal data indicate residence times of 2-5 days are required for significant nutrient removal, compared with PBR configuration (the high rate algal pond, HRAP) means that its footprint is at least two orders of magnitude greater than a classical BNR plant. It is concluded that the combined carbon capture/nutrient removal process relies on optimisation of a number of process parameters acting synergistically, principally microalgal strain, C:N:P load and balance, CO2 and liquid

  2. Allelopathic interactions between the red-tide causative dinoflagellate Prorocentrum donghaiense and the diatom Phaeodactylum tricornutum* This study was supported by the Natural Science Foundation of China-Guangdong Province Joint Key Project (U1133003 Science Technology Planning Project of Guangdong Province (2012B020307009 Open Fund from Key Laboratory of Aquatic Eutrophication Control of Harmful Algal Blooms of Guangdong Higher Education Institutes Open Fund from Key Laboratory of Microbial Resources Collection Preservation Ministry of Agriculture.

    Directory of Open Access Journals (Sweden)

    Zhuoping Cai

    2014-06-01

    Full Text Available The interactions between the red-tide causing dinoflagellate Prorocentrum donghaiense and the marine diatom Phaeodactylum tricornutum were investigated using a co-culture experiment and an enriched culture filtrate experiment. The results showed that when the two microalgae were cultured together with different initial cell densities, the growth of one species was basically suppressed by the other one. In addition, the enriched culture filtrates of one species had generally inhibitory effects on the other one. Our result inferred that P. donghaiense and P. tricornutum would interfere with each other mainly by releasing allelochemicals into the culture medium, and that the degree of allelopathic effects was dependent on the initial cell densities and growth phases. The allelopathic interactions between microalgal species may contribute to the formation and succession of red tides.

  3. Genome and metabolic network of Candidatus Phaeomarinobacter ectocarpi Ec32, a new candidate genus of Alphaproteobacteria frequently associated with brown algae

    Directory of Open Access Journals (Sweden)

    Simon M Dittami

    2014-07-01

    Full Text Available Rhizobiales and related orders of Alphaproteobacteria comprise several genera of nodule-inducing symbiotic bacteria associated with plant roots. Here we describe the genome and the metabolic network of Candidatus Phaeomarinobacter ectocarpi Ec32, a member of a new candidate genus closely related to Rhizobiales and found in association with cultures of the filamentous brown algal model Ectocarpus. The Ca. P. ectocarpi genome encodes numerous metabolic pathways that may be relevant for this bacterium to interact with algae. Notably, it possesses a large set of glycoside hydrolases and transporters, which may serve to process and assimilate algal metabolites. It also harbors several proteins likely to be involved in the synthesis of algal hormones such as auxins and cytokinins, as well as the vitamins pyridoxine, biotin, and thiamine. As of today, Ca. P. ectocarpi has not been successfully cultured, and identical 16S rDNA sequences have been found exclusively associated with Ectocarpus. However, related sequences (≥ 97% identity have also been detected free-living and in a Fucus vesiculosus microbiome barcoding project, indicating that the candidate genus Phaeomarinobacter may comprise several species, which may colonize different niches.

  4. THE GENUS TEIJSMANNIODENDRON KOORDERS (VERBENACEAE

    Directory of Open Access Journals (Sweden)

    A. J. G. H. KOSTERMANS

    2015-11-01

    Full Text Available 1. The present notes on Teijsmanniodendron are based on a study of the spec- imens from Herbarium Bogoriense and the Herbarium of the Singapore Botanic Garden. 2. The taxonomic value of the principal characters and their variation are discussed. Each of the species recognized is annotated. 3. A delimitation and subdivision of the genus in two sections,  Plurifoliolatae Kosterm.  and 'Unifoliolatae Kosterm  is proposed. 4. A key to the 12 species and 1 variety distinguished, is included. 5. One new species is provisionally described (but not named, and one new variety, Teijsmanniodendron pteropodum var. auriculatum Kosterm, is published. 6. The following new combinations are made: Teijsmanniodendron coriaceum B. Clarke Kosterm,, T. hollrungii (Warb. Kosterm. T. holophyllum (Bak. Kos- term, T.novoguineense (Kan. & Hatus. Kosterm., T. sarawakanum (H. H. W. Pears. Kosterm., T. smilacifolium (H. H. W. Pears. Kosterm., and T. subspieatum (Hallier f. Kosterm. 7. The genus Xerocarpa H. 3. Lam (non Spach is rejected; its only species, X. avicenniaefoliola H. J. Lam, is referred to Teijsmanniodendron ahernianum (Merr. Bakh. In addition, the following reductions are made: Teijsmanniodendron mono- phyllum Kurata = T. hollrungii (Warb. Kosterm.; Vitex bankae H. J. Lam = T. ahernianum (Merr. Bakh., V. bogoriensis H. J. Lam = T. ahernianum (Merr. Bakh.; V. koordersii H. J. Lam t= T. pteropodum (Miq. Bakh.; V. tetragona Hallier f. = T. sarawakanum (H. H. W. Pears. Kosterm.; V. venosa H. J. Lam = T. coriaceum (C. B. Clarke Kosterm. Possible identity of T. longifolium (Merr. Merr. and T. bogoriense is suggested: the identity of T. simplicifolium Merr. and T. smilacifolium (H. H-, W. Pears. Kosterm. is indicated as probable. 8. Vitex subspicata Hallier f. and V. holophylla Bak. included by Lam in vitex hollrungii Warb. are reinstated as distinct species of Teijsmanniodendron.

  5. Evolution of the Genus Homo

    Science.gov (United States)

    Tattersall, Ian; Schwartz, Jeffrey H.

    2009-05-01

    Definition of the genus Homo is almost as fraught as the definition of Homo sapiens. We look at the evidence for “early Homo,” finding little morphological basis for extending our genus to any of the 2.5-1.6-myr-old fossil forms assigned to “early Homo” or Homo habilis/rudolfensis. We also point to heterogeneity among “early African Homo erectus,” and the lack of apomorphies linking these fossils to the Asian Homo erectus group, a cohesive regional clade that shows some internal variation, including brain size increase over time. The first truly cosmopolitan Homo species is Homo heidelbergensis, known from Africa, Europe, and China following 600 kyr ago. One species sympatric with it included the >500-kyr-old Sima de los Huesos fossils from Spain, clearly distinct from Homo heidelbergensis and the oldest hominids assignable to the clade additionally containing Homo neanderthalensis. This clade also shows evidence of brain size expansion with time; but although Homo neanderthalensis had a large brain, it left no unequivocal evidence of the symbolic consciousness that makes our species unique. Homo sapiens clearly originated in Africa, where it existed as a physical entity before it began (also in that continent) to show the first stirrings of symbolism. Most likely, the biological underpinnings of symbolic consciousness were exaptively acquired in the radical developmental reorganization that gave rise to the highly characteristic osteological structure of Homo sapiens, but lay fallow for tens of thousands of years before being “discovered” by a cultural stimulus, plausibly the invention of language.

  6. Photoreactivation of UV-irradiated blue-green algae and algal virus LPP-1

    Energy Technology Data Exchange (ETDEWEB)

    Singh, P K [Central Rice Research Inst., Cuttack (India)

    1975-01-01

    Ultraviolet (UV) sensitivity and photoreactivation of blue-green algae Cylindrospermum sp., Plectonema boryanum, spores of Fischerella muscicola and algal virus (cyanophage) LPP-1 were studied. The survival value after UV irradiation of filaments of Cylindrospermum sp. and Virus LPP-1 showed exponential trend and these were comparatively sensitive towards UV than F. muscicola and P. boryanum. Photoreactivation of UV-induced damage occurred in black, blue, green, yellow, red and white light in Cylindrospermum sp., however only black, blue and white light were capable of photorepair of UV-induced damage in P. boryanum, spores of F. muscicola and virus LPP-1 in infected host alga. Pre-exposure to yellow and black light did not show photoprotection. The non-heterocystous and nitrogen fixation-less mutants of Cylindrospermum sp. were not induced by UV and their spontaneous mutation frequency was not affected after photoreactivation. The short trichome mutants of P. boryanum were more resistant towards UV. The occurrence of photoreactivation of UV-induced killing in wide range of light in Cylindrospermum sp. is the first report in organisms.

  7. Biodegradation of polyether algal toxins–Isolation of potential marine bacteria

    Science.gov (United States)

    SHETTY, KATEEL G.; HUNTZICKER, JACQUELINE V.; REIN, KATHLEEN S.; JAYACHANDRAN, KRISH

    2012-01-01

    Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6 × 107 per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp. PMID:20954040

  8. Biodegradation of polyether algal toxins--isolation of potential marine bacteria.

    Science.gov (United States)

    Shetty, Kateel G; Huntzicker, Jacqueline V; Rein, Kathleen S; Jayachandran, Krish

    2010-12-01

    Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6×10(7) per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp.

  9. Calcifying algae maintain settlement cues to larval abalone following algal exposure to extreme ocean acidification.

    Science.gov (United States)

    O'Leary, Jennifer K; Barry, James P; Gabrielson, Paul W; Rogers-Bennett, Laura; Potts, Donald C; Palumbi, Stephen R; Micheli, Fiorenza

    2017-07-18

    Ocean acidification (OA) increasingly threatens marine systems, and is especially harmful to calcifying organisms. One important question is whether OA will alter species interactions. Crustose coralline algae (CCA) provide space and chemical cues for larval settlement. CCA have shown strongly negative responses to OA in previous studies, including disruption of settlement cues to corals. In California, CCA provide cues for seven species of harvested, threatened, and endangered abalone. We exposed four common CCA genera and a crustose calcifying red algae, Peyssonnelia (collectively CCRA) from California to three pCO 2 levels ranging from 419-2,013 µatm for four months. We then evaluated abalone (Haliotis rufescens) settlement under ambient conditions among the CCRA and non-algal controls that had been previously exposed to the pCO 2 treatments. Abalone settlement and metamorphosis increased from 11% in the absence of CCRA to 45-69% when CCRA were present, with minor variation among CCRA genera. Though all CCRA genera reduced growth during exposure to increased pCO 2 , abalone settlement was unaffected by prior CCRA exposure to increased pCO 2 . Thus, we find no impacts of OA exposure history on CCRA provision of settlement cues. Additionally, there appears to be functional redundancy in genera of CCRA providing cues to abalone, which may further buffer OA effects.

  10. A taxonomic revision of the genus Podocarpus

    NARCIS (Netherlands)

    Laubenfels, de D.J.

    1985-01-01

    In connection with the forthcoming revision of the Coniferae for the Flora Malesiana, the author thought it necessary to revise the genus Podocarpus. Although this genus has a substantial representation in Malesia (30 species), the revision is too involved to be appropriate with the Flora Malesiana

  11. Phylogeny of the Peckia-genus group

    DEFF Research Database (Denmark)

    Buenaventura Ruiz, Ingrid Eliana; Pape, Thomas

    2015-01-01

    Peckia is the most species-rich necrophagous genus among the Neotropical sarcophagids, encompassing 67 species distributed in 5 subgenera. Recent phylogenetic studies have challenged the monophyly of this genus with regard to species of the genera Peckiamyia, Titanogrypa, and Villegasia, and the ...

  12. Advancing Commercialization of Algal Biofuel through Increased Biomass Productivity and Technical Integration

    Energy Technology Data Exchange (ETDEWEB)

    Anton, David [Cellana, LLC, Kailua-Kona, HI (United States)

    2016-12-31

    The proposed project built on the foundation of over several years years of intensive and ground-breaking R&D work at Cellana's Kona Demonstration Facility (KDF). Phycological and engineering solutions were provided to tackle key cultivation issues and technical barriers limiting algal biomass productivity identified through work conducted outdoors at industrial (1 acre) scale. The objectives of this project were to significantly improve algal biomass productivity and reduce operational cost in a seawater-based system, using results obtained from two top-performing algal strains as the baseline while technically advancing and more importantly, integrating the various unit operations involved in algal biomass production, processing, and refining.

  13. The elliptic genus and Hidden symmetry

    International Nuclear Information System (INIS)

    Jaffe, A.

    2001-01-01

    We study the elliptic genus (a partition function) in certain interacting, twist quantum field theories. Without twists, these theories have N=2 supersymmetry. The twists provide a regularization, and also partially break the supersymmetry. In spite of the regularization, one can establish a homotopy of the elliptic genus in a coupling parameter. Our construction relies on a priori estimates and other methods from constructive quantum field theory; this mathematical underpinning allows us to justify evaluating the elliptic genus at one endpoint of the homotopy. We obtain a version of Witten's proposed formula for the elliptic genus in terms of classical theta functions. As a consequence, the elliptic genus has a hidden SL(2,Z) symmetry characteristic of conformal theory, even though the underlying theory is not conformal. (orig.)

  14. Diversity and abundance of the bacterial community of the red Macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae?

    Directory of Open Access Journals (Sweden)

    Lilibeth N Miranda

    Full Text Available Macroalgae harbor microbial communities whose bacterial biodiversity remains largely uncharacterized. The goals of this study were 1 to examine the composition of the bacterial community associated with Porphyra umbilicalis Kützing from Schoodic Point, ME, 2 determine whether there are seasonal trends in species diversity but a core group of bacteria that are always present, and 3 to determine how the microbial community associated with a laboratory strain (P.um.1 established in the presence of antibiotics has changed. P. umbilicalis blades (n = 5, fall 2010; n = 5, winter 2011; n = 2, clonal P.um.1 were analyzed by pyrosequencing over two variable regions of the 16 S rDNA (V5-V6 and V8; 147,880 total reads. The bacterial taxa present were classified at an 80% confidence threshold into eight phyla (Bacteroidetes, Proteobacteria, Planctomycetes, Chloroflexi, Actinobacteria, Deinococcus-Thermus, Firmicutes, and the candidate division TM7. The Bacteroidetes comprised the majority of bacterial sequences on both field and lab blades, but the Proteobacteria (Alphaproteobacteria, Gammaproteobacteria were also abundant. Sphingobacteria (Bacteroidetes and Flavobacteria (Bacteroidetes had inverse abundances on natural versus P.um.1 blades. Bacterial communities were richer and more diverse on blades sampled in fall compared to winter. Significant differences were observed between microbial communities among all three groups of blades examined. Only two OTUs were found on all 12 blades, and only one of these, belonging to the Saprospiraceae (Bacteroidetes, was abundant. Lewinella (as 66 OTUs was found on all field blades and was the most abundant genus. Bacteria from the Bacteroidetes, Proteobacteria and Planctomycetes that are known to digest the galactan sulfates of red algal cell walls were well-represented. Some of these taxa likely provide essential morphogenetic and beneficial nutritive factors to P. umbilicalis and may have had

  15. Rachael Carson Lecture - Algal Toxins in the Deep Blue Sea: an Environmental Concern?

    Science.gov (United States)

    Silver, M. W.; Bargu, S.

    2008-05-01

    Many land plants are known to possess toxins, presumably for grazer deterrence, whereas toxins in marine phytoplankton are a much rarer phenomenon, particularly in open ocean (blue water) environments. Several dozen phytoplankton species, frequently dinoflagellates but also some diatoms, form "harmful algal blooms" nearshore: here their toxins can contaminate filter-feeding shellfish resulting in poisoning "syndromes" when humans consume the tainted shellfish. The present rise in such coastal events is a likely consequence of human activities. In blue water, open ocean environments, the filamentous cyanobacterium Trichodesmium (a blue green alga) is one of the few bloom-forming toxin producers and hosts a consortium of microorganisms that may be partially immune to its toxins. Pseudo-nitzschia, a ubiquitous genus of diatoms recently has been shown to include coastal species that produce domoic acid (DA), a neurotoxin that passes through the food web, sometimes with resulting deaths of marine birds and mammals. Oceanic species of Pseudo-nitzschia also exist but are less well known, and DA has not yet been found in them. Here we review some general features of toxic marine phytoplankton, recent studies on DA in coastal ecosystems and describe some of our findings on blue water Pseudo-nitzschia. We will summarize laboratory experiments that show complex patterns of DA retention and release into the water when Fe is added to coastal Pseudo-nitzschia cultures. In oceanic species, equivalent experiments on cell physiology are limited and the natural species and abundance patterns poorly known. Here we present our recent discovery that DA occurs in oceanic Pseudo-nitzschia and review evidence from the literature that this genus may be preferentially enhanced when iron is added to HNLC (high nutrient, low chlorophyll) waters: areas where nitrogen and phosphorus are not yet depleted, but iron concentrations and phytoplankton biomass are low. The rapid growth of these DA

  16. Chlorophyll specific absorption coefficient and phytoplankton biomass in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash

    2015-01-01

    The role of total particulate matter, the sum of phytoplankton and nonalgal particles, is essential to understanding the distribution and pathways of particulate carbon in the ocean. Their relative contributions to light absorption and scattering are fundamental to understanding remotely sensed ocean color. Until recently, data regarding the contribution of phytoplankton and algal particles to the inherent optical properties of the Red Sea was nonexistent. Some of the first measurements of these inherent optical properties in the Red Sea including phytoplankton specific absorption coefficients (aph*(λ)) were obtained by the TARA Oceans expedition in January 2010. From these observations, chlorophyll a was calculated using the Line Height Method (LHM) that minimizes the contribution to total and particulate absorption by non-algal particles (NAP) and CDOM. Bricaud and Stramski’s (1990) a method was then used to decompose hyperspectral total particulate absorption into the contributions by phytoplankton and nonalgal particles.

  17. Expanded algal cultivation can reverse key planetary boundary transgressions

    Directory of Open Access Journals (Sweden)

    Dean Calahan

    2018-02-01

    Full Text Available Humanity is degrading multiple ecosystem services, potentially irreversibly. Two of the most important human impacts are excess agricultural nutrient loading in our fresh and estuarine waters and excess carbon dioxide in our oceans and atmosphere. Large-scale global intervention is required to slow, halt, and eventually reverse these stresses. Cultivating attached polyculture algae within controlled open-field photobioreactors is a practical technique for exploiting the ubiquity and high primary productivity of algae to capture and recycle the pollutants driving humanity into unsafe regimes of biogeochemical cycling, ocean acidification, and global warming. Expanded globally and appropriately distributed, algal cultivation is capable of removing excess nutrients from global environments, while additionally sequestering appreciable excess carbon. While obviously a major capital and operational investment, such a project is comparable in magnitude to the construction and maintenance of the global road transportation network. Beyond direct amelioration of critical threats, expanded algal cultivation would produce a major new commodity flow of biomass, potentially useful either as a valuable organic commodity itself, or used to reduce the scale of the problem by improving soils, slowing or reversing the loss of arable land. A 100 year project to expand algal cultivation to completely recycle excess global agricultural N and P would, when fully operational, require gross global expenses no greater than $2.3 × 1012 yr−1, (3.0% of the 2016 global domestic product and less than 1.9 × 107 ha (4.7 × 107 ac, 0.38% of the land area used globally to grow food. The biomass generated embodies renewable energy equivalent to 2.8% of global primary energy production.

  18. Copper removal by algal biomass: biosorbents characterization and equilibrium modelling.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Pinheiro, José P S; Domingos, Rute F; Boaventura, Rui A R

    2009-04-30

    The general principles of Cu(II) binding to algal waste from agar extraction, composite material and algae Gelidium, and different modelling approaches, are discussed. FTIR analyses provided a detailed description of the possible binding groups present in the biosorbents, as carboxylic groups (D-glucuronic and pyruvic acids), hydroxyl groups (cellulose, agar and floridean starch) and sulfonate groups (sulphated galactans). Potentiometric acid-base titrations showed a heterogeneous distribution of two major binding groups, carboxyl and hydroxyl, following the quasi-Gaussian affinity constant distribution suggested by Sips, which permitted to estimate the maximum amount of acid functional groups (0.36, 0.25 and 0.1 mmol g(-1)) and proton binding parameters (pK(H)=5.0, 5.3 and 4.4; m(H)=0.43, 0.37, 0.33), respectively for algae Gelidium, algal waste and composite material. A non-ideal, semi-empirical, thermodynamically consistent (NICCA) isotherm fitted better the experimental ion binding data for different pH values and copper concentrations, considering only the acid functional groups, than the discrete model. Values of pK(M) (3.2; 3.6 and 3.3), n(M) (0.98, 0.91, 1.0) and p (0.67, 0.53 and 0.43) were obtained, respectively for algae Gelidium, algal waste and composite material. NICCA model reflects the complex macromolecular systems that take part in biosorption considering the heterogeneity of the biosorbent, the competition between protons and metals ions to the binding sites and the stoichiometry for different ions.

  19. Copper removal by algal biomass: Biosorbents characterization and equilibrium modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Vitor J.P. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: vilar@fe.up.pt; Botelho, Cidalia M.S. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: cbotelho@fe.up.pt; Pinheiro, Jose P.S.; Domingos, Rute F. [Centro de Biomedicina Molecular e Estrutural, Department of Chemistry and Biochemistry, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Boaventura, Rui A.R. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: bventura@fe.up.pt

    2009-04-30

    The general principles of Cu(II) binding to algal waste from agar extraction, composite material and algae Gelidium, and different modelling approaches, are discussed. FTIR analyses provided a detailed description of the possible binding groups present in the biosorbents, as carboxylic groups (D-glucuronic and pyruvic acids), hydroxyl groups (cellulose, agar and floridean starch) and sulfonate groups (sulphated galactans). Potentiometric acid-base titrations showed a heterogeneous distribution of two major binding groups, carboxyl and hydroxyl, following the quasi-Gaussian affinity constant distribution suggested by Sips, which permitted to estimate the maximum amount of acid functional groups (0.36, 0.25 and 0.1 mmol g{sup -1}) and proton binding parameters (pK{sup '}{sub H}=5.0,5.3and4.4;m{sub H} = 0.43, 0.37, 0.33), respectively for algae Gelidium, algal waste and composite material. A non-ideal, semi-empirical, thermodynamically consistent (NICCA) isotherm fitted better the experimental ion binding data for different pH values and copper concentrations, considering only the acid functional groups, than the discrete model. Values of pK{sup '}{sub M} (3.2; 3.6 and 3.3), n{sub M} (0.98, 0.91, 1.0) and p (0.67, 0.53 and 0.43) were obtained, respectively for algae Gelidium, algal waste and composite material. NICCA model reflects the complex macromolecular systems that take part in biosorption considering the heterogeneity of the biosorbent, the competition between protons and metals ions to the binding sites and the stoichiometry for different ions.

  20. Copper removal by algal biomass: Biosorbents characterization and equilibrium modelling

    International Nuclear Information System (INIS)

    Vilar, Vitor J.P.; Botelho, Cidalia M.S.; Pinheiro, Jose P.S.; Domingos, Rute F.; Boaventura, Rui A.R.

    2009-01-01

    The general principles of Cu(II) binding to algal waste from agar extraction, composite material and algae Gelidium, and different modelling approaches, are discussed. FTIR analyses provided a detailed description of the possible binding groups present in the biosorbents, as carboxylic groups (D-glucuronic and pyruvic acids), hydroxyl groups (cellulose, agar and floridean starch) and sulfonate groups (sulphated galactans). Potentiometric acid-base titrations showed a heterogeneous distribution of two major binding groups, carboxyl and hydroxyl, following the quasi-Gaussian affinity constant distribution suggested by Sips, which permitted to estimate the maximum amount of acid functional groups (0.36, 0.25 and 0.1 mmol g -1 ) and proton binding parameters (pK ' H =5.0,5.3and4.4;m H = 0.43, 0.37, 0.33), respectively for algae Gelidium, algal waste and composite material. A non-ideal, semi-empirical, thermodynamically consistent (NICCA) isotherm fitted better the experimental ion binding data for different pH values and copper concentrations, considering only the acid functional groups, than the discrete model. Values of pK ' M (3.2; 3.6 and 3.3), n M (0.98, 0.91, 1.0) and p (0.67, 0.53 and 0.43) were obtained, respectively for algae Gelidium, algal waste and composite material. NICCA model reflects the complex macromolecular systems that take part in biosorption considering the heterogeneity of the biosorbent, the competition between protons and metals ions to the binding sites and the stoichiometry for different ions

  1. Assessment of Algal Farm Designs Using a Dynamic Modular Approach

    Energy Technology Data Exchange (ETDEWEB)

    Abodeely, Jared [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology; Coleman, Andre M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Hydrology Technical Group; Stevens, Daniel M. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology; Ray, Allison E. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology; Cafferty, Kara G. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology; Newby, Deborah T. [Idaho National Laboratory (INL), Idaho Falls, ID (United States). Biofuels and Renewable Energy Technology

    2014-07-01

    The notion of renewable energy provides an important mechanism for diversifying an energy portfolio, which ultimately would have numerous benefits including increased energy resilience, reduction of foreign energy supplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth, and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associated with algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the Algae Logistics Model (ALM) which helps to address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments of multiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tier were sub-selected and assessed using daily site-specific algae biomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass

  2. A study of algal biomass potential in selected Canadian regions.

    Energy Technology Data Exchange (ETDEWEB)

    Passell, Howard David; Roach, Jesse Dillon; Klise, Geoffrey T.

    2011-11-01

    A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify

  3. Bioconversion of poultry droppings for biogas and algal production

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevaswamy, M.; Venkataraman, L.V.

    1986-01-01

    An integrated system for the bioconversion of poultry droppings for biogas production and utilization of the effluent for the production of the blue-green alga Spirulina platensis was studied. Poultry droppings produced 0.54 cubic m of biogas per kilogran of Total Solids (TS). The 2% TS biogas plant effluent as sole nutrient medium for Spirulina yielded 7-8 g dry algae a day. The biomass was harvested by filtration. The sundried algal biomass has been used as a poultry feed component. In economic terms the system appears promising. 18 references.

  4. A Collection of Algal Genomes from the JGI

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2012-03-19

    Algae, defined as photosynthetic eukaryotes other than plants, constitute a major component of fundamental eukaryotic diversity. Acquisition of the ability to conduct oxygenic photosynthesis through endosymbiotic events has been a principal driver of eukaryotic evolution, and today algae continue to underpin aquatic food chains as primary producers. Algae play profound roles in the carbon cycle, can impose health and economic costs through toxic blooms, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE?s Joint Genome Institute (JGI). A collection of algal projects ongoing at JGI contributes to each of these areas and illustrates analyses employed in their genome exploration.

  5. A trait-based framework for stream algal communities.

    Science.gov (United States)

    Lange, Katharina; Townsend, Colin Richard; Matthaei, Christoph David

    2016-01-01

    The use of trait-based approaches to detect effects of land use and climate change on terrestrial plant and aquatic phytoplankton communities is increasing, but such a framework is still needed for benthic stream algae. Here we present a conceptual framework of morphological, physiological, behavioural and life-history traits relating to resource acquisition and resistance to disturbance. We tested this approach by assessing the relationships between multiple anthropogenic stressors and algal traits at 43 stream sites. Our "natural experiment" was conducted along gradients of agricultural land-use intensity (0-95% of the catchment in high-producing pasture) and hydrological alteration (0-92% streamflow reduction resulting from water abstraction for irrigation) as well as related physicochemical variables (total nitrogen concentration and deposited fine sediment). Strategic choice of study sites meant that agricultural intensity and hydrological alteration were uncorrelated. We studied the relationships of seven traits (with 23 trait categories) to our environmental predictor variables using general linear models and an information-theoretic model-selection approach. Life form, nitrogen fixation and spore formation were key traits that showed the strongest relationships with environmental stressors. Overall, FI (farming intensity) exerted stronger effects on algal communities than hydrological alteration. The large-bodied, non-attached, filamentous algae that dominated under high farming intensities have limited dispersal abilities but may cope with unfavourable conditions through the formation of spores. Antagonistic interactions between FI and flow reduction were observed for some trait variables, whereas no interactions occurred for nitrogen concentration and fine sediment. Our conceptual framework was well supported by tests of ten specific hypotheses predicting effects of resource supply and disturbance on algal traits. Our study also shows that investigating a

  6. Red Tide Strands South African Rock Lobsters

    Science.gov (United States)

    2002-01-01

    Although some red tides form a healthy part of phytoplankton production, recurrent harmful or toxic blooms also occur, with results depending upon the type of plankton and on atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached themselves during February 2002, when the decay of dense blooms of phytoplankton caused a rapid reduction in the oxygen concentration of nearshore waters. The lobsters (or crayfish, as they are known locally) moved toward the breaking surf in search of oxygen, but were stranded by the retreating tide. The Multi-angle Imaging SpectroRadiometer's nadir camera acquired these red, green, blue composites on February 2 and 18, 2002, during Terra orbits 11315 and 11548. The colors have been accentuated to highlight the bloom, and land and water have been enhanced separately. The two views show the shoreward migration of the algal bloom. Each image represents an area of about 205 kilometers x 330 kilometers. Elands Bay is situated near the mouth of the Doring River, about 75 kilometers northeast of the jutting Cape Columbine. The term 'red tide' is used to refer to a number of different types of phytoplankton blooms of various hues. The wine color of certain parts of this bloom are consistent with the ciliate species Mesodinium rubrum, which has been associated with recurring harmful algal blooms along the Western Cape coast. Under these conditions, the lobsters are not poisoned. During the recent event, government and military staff transported as many of the living lobsters as possible to areas that were less affected by the red tide. At the same time, people came from across South Africa to gather the undersized creatures for food. The effects of the losses on the maritime economy are expected to be felt over the next few years. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra

  7. Fossorial snake genus Apostolepis from South America (Serpentes: Colubridae: Elapomorphinae

    Directory of Open Access Journals (Sweden)

    De Lema, Thales

    2001-07-01

    Full Text Available An update commented list of the snake genus Apostolepis from South America, with keys for identification of the species. They are fossorial snakes that present different coloration according their distribution: (a 7 to 3 dark stripes coloration, without light nuchal collar (if present, vestigial, with snout not projected beyond jaws - in Amazonian and enclaves within Caatinga domain; (b 5 dark striped dorsal pattern, snout projected, usually without white nuchal collars — from region of contact between Cerrado and Chaco domains; (c dorsal pattern coloration uniformly red, with nucho-cervical collars, snout usually projected — in Cerrado with dispersion to Chaco and Caatinga; (d 2 or none dark stripes dorsally, venter immaculate or with black blotches, snout projecting: (e an aberrant pattern with oblique black dorsal stripes, without collars, head black and snout projecting — one species in an enclave within Caatinga, with 17 rows of scales instead of 15.

  8. The use of pigment "fingerprints" in the study of harmful algal blooms

    Directory of Open Access Journals (Sweden)

    J Bustillos-Guzmán

    2004-09-01

    Full Text Available Along the Mexican coast, harmful algae blooms (HAB have become more frequent, and therefore, there is an urgent need to establish monitoring programs to avoid the undesired consequences of HAB in human and natural ecosystems. In this work, we analyzed the pigment signatures and the species composition from phytoplankton samples to evaluate the utility of the specific pigment "fingerprints" in HAB monitoring programs. Vertical profiles from a coastal lagoon and temporal samples of a red tide occurring in a shrimp-culture pond and in a coastal zone were taken into consideration. Between 76% and 84% of dinoflagellate and diatom cell density was explained by their specific signature variation, in both vertical and temporal samples. Only the variation of zeaxanthin and the cyanobacteria Anabaena sp. showed a poor relationship, probably from difficulties in counting other cyanobacteria present in the samples examined with the microscopic method. These results suggest that inclusion of pigment analysis in the study and monitoring programs dealing with harmful algae would be very usefulA lo largo de las costas mexicanas, los florecimientos algales nocivos (FAN se han vuelto cada vez mas frecuentes y por lo tanto, existe una necesidad urgente de establecer programas de monitoreo para evitar las consecuencias no deseadas por su desarrollo, sobre los ecosistemas naturales y el ser humano. En este trabajo, nosotros analizamos las huellas pigmentarias y la composición de especies de diversas muestras de fitoplancton para evaluar la utilidad que pueden representar estos pigmentos específicos o "huellas pigmentarias" en programas de monitoreo de florecimientos algales nocivos. Los perfiles verticales de muestras de fitoplancton de una laguna costera y muestras de mareas rojas que ocurrieron en un estanque de cultivo de camarón y en una laguna costera, fueron considerados en este estudio. Tanto en muestras verticales como en temporales, entre el 76% y 84% de

  9. Harmful algal bloom smart device application: using image analysis and machine learning techniques for early classification of harmful algal blooms (SETAC presentation)

    Science.gov (United States)

    Reports of toxic cyanobacterial blooms, also known as Harmful Algal Blooms (HABS) have increased drastically in recent years. HABS impact human health from causing mild allergies to liver damage and death. The Ecological Stewardship Institute (ESI) at Northern Kentucky Universi...

  10. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  11. Beta genus papillomaviruses and skin cancer.

    Science.gov (United States)

    Howley, Peter M; Pfister, Herbert J

    2015-05-01

    A role for the beta genus HPVs in keratinocyte carcinoma (KC) remains to be established. In this article we examine the potential role of the beta HPVs in cancer revealed by the epidemiology associating these viruses with KC and supported by oncogenic properties of the beta HPV proteins. Unlike the cancer associated alpha genus HPVs, in which transcriptionally active viral genomes are invariably found associated with the cancers, that is not the case for the beta genus HPVs and keratinocyte carcinomas. Thus a role for the beta HPVs in KC would necessarily be in the carcinogenesis initiation and not in the maintenance of the tumor. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Compatibility of hydroxypropyl-β-cyclodextrin with algal toxicity bioassays

    International Nuclear Information System (INIS)

    Fai, Patricia Bi; Grant, Alastair; Reid, Brian J.

    2009-01-01

    Numerous reports have indicated that hydrophobic organic compound bioaccessibility in sediment and soil can be determined by extraction using aqueous hydroxypropyl-β-cyclodextrin (HPCD) solutions. This study establishes the compatibility of HPCD with Selenastrum capricornutum and assesses whether its presence influences the toxicity of reference toxicants. Algal growth inhibition (72 h) showed no significant (P > 0.05) difference at HPCD concentrations up to and including 20 mM. HPCD presence did not influence the toxicity of the inorganic reference toxicant (ZnSO 4 ), with IC50 values of 0.82 μM and 0.85 μM, in the presence and absence of HPCD (20 mM), respectively. However, HPCD presence (20 mM) reduced the toxicity of 2,4-dichlorophenol and the herbicides diuron and isoproturon. These reductions were attributed to inclusion complex formation between the toxicants and the HPCD cavity. Liberation of complexed toxicants, by sample manipulation prior to toxicity assessment, is proposed to provide a sensitive, high throughput, bioassay that reflects compound bioaccessibility. - Compatibility of the biomimetic HPCD extraction method with algal cell growth inhibition bioassays to assess toxicity of reference toxicants and environmental relevant herbicides

  13. Algal and microbial exopolysaccharides: new insights as biosurfactants and bioemulsifiers.

    Science.gov (United States)

    Paniagua-Michel, José de Jesús; Olmos-Soto, Jorge; Morales-Guerrero, Eduardo Roberto

    2014-01-01

    Currently, efforts are being made to utilize more natural biological systems as alternatives as a way to replace fossil forms of carbon. There is a growing concern at global level to have nontoxic, nonhazardous surface-active agents; contrary to synthetic surfactants, their biological counterparts or biosurfactants play a primary function, facilitating microbial presence in environments dominated by hydrophilic-hydrophobic interfaces. Algal and microbial biosurfactants/bioemulsifiers from marine and deep-sea environments are attracting major interest due to their structural and functional diversity as molecules actives of surface and an alternative biomass to replace fossil forms of carbon. Algal and microbial surfactants are lipid in nature and classified as glycolipids, phospholipids, lipopeptides, natural lipids, fatty acids, and lipopolysaccharides. These metabolic bioactive products are applicable in a number of industries and processes, viz., food processing, pharmacology, and bioremediation of oil-polluted environments. This chapter presents an update of the progress and potentialities of the principal producers of exopolysaccharide (EPS)-type biosurfactants and bioemulsifiers, viz., macro- and microalgae (cyanobacteria and diatoms) and bacteria from marine and extreme environments. Particular interest is centered into new sources and applications, viz., marine and deep-sea environments and promissory uses of these EPSs as biosurfactants/emulsifiers and other polymeric roles. The enormous benefits of these molecules encourage their discovery, exploitation, and development of new microbial EPSs that could possess novel industrial importance and corresponding innovations. © 2014 Elsevier Inc. All rights reserved.

  14. Algal Blooms and Cyanotoxins in Jordan Lake, North Carolina

    Directory of Open Access Journals (Sweden)

    Daniel Wiltsie

    2018-02-01

    Full Text Available The eutrophication of waterways has led to a rise in cyanobacterial, harmful algal blooms (CyanoHABs worldwide. The deterioration of water quality due to excess algal biomass in lakes has been well documented (e.g., water clarity, hypoxic conditions, but health risks associated with cyanotoxins remain largely unexplored in the absence of toxin information. This study is the first to document the presence of dissolved microcystin, anatoxin-a, cylindrospermopsin, and β-N-methylamino-l-alanine in Jordan Lake, a major drinking water reservoir in North Carolina. Saxitoxin presence was not confirmed. Multiple toxins were detected at 86% of the tested sites and during 44% of the sampling events between 2014 and 2016. Although concentrations were low, continued exposure of organisms to multiple toxins raises some concerns. A combination of discrete sampling and in-situ tracking (Solid Phase Adsorption Toxin Tracking [SPATT] revealed that microcystin and anatoxin were the most pervasive year-round. Between 2011 and 2016, summer and fall blooms were dominated by the same cyanobacterial genera, all of which are suggested producers of single or multiple cyanotoxins. The study’s findings provide further evidence of the ubiquitous nature of cyanotoxins, and the challenges involved in linking CyanoHAB dynamics to specific environmental forcing factors are discussed.

  15. Algal Blooms and Cyanotoxins in Jordan Lake, North Carolina.

    Science.gov (United States)

    Wiltsie, Daniel; Schnetzer, Astrid; Green, Jason; Vander Borgh, Mark; Fensin, Elizabeth

    2018-02-24

    The eutrophication of waterways has led to a rise in cyanobacterial, harmful algal blooms (CyanoHABs) worldwide. The deterioration of water quality due to excess algal biomass in lakes has been well documented (e.g., water clarity, hypoxic conditions), but health risks associated with cyanotoxins remain largely unexplored in the absence of toxin information. This study is the first to document the presence of dissolved microcystin, anatoxin-a, cylindrospermopsin, and β- N -methylamino-l-alanine in Jordan Lake, a major drinking water reservoir in North Carolina. Saxitoxin presence was not confirmed. Multiple toxins were detected at 86% of the tested sites and during 44% of the sampling events between 2014 and 2016. Although concentrations were low, continued exposure of organisms to multiple toxins raises some concerns. A combination of discrete sampling and in-situ tracking (Solid Phase Adsorption Toxin Tracking [SPATT]) revealed that microcystin and anatoxin were the most pervasive year-round. Between 2011 and 2016, summer and fall blooms were dominated by the same cyanobacterial genera, all of which are suggested producers of single or multiple cyanotoxins. The study's findings provide further evidence of the ubiquitous nature of cyanotoxins, and the challenges involved in linking CyanoHAB dynamics to specific environmental forcing factors are discussed.

  16. Algal Blooms and Cyanotoxins in Jordan Lake, North Carolina

    Science.gov (United States)

    Wiltsie, Daniel; Schnetzer, Astrid; Green, Jason; Vander Borgh, Mark; Fensin, Elizabeth

    2018-01-01

    The eutrophication of waterways has led to a rise in cyanobacterial, harmful algal blooms (CyanoHABs) worldwide. The deterioration of water quality due to excess algal biomass in lakes has been well documented (e.g., water clarity, hypoxic conditions), but health risks associated with cyanotoxins remain largely unexplored in the absence of toxin information. This study is the first to document the presence of dissolved microcystin, anatoxin-a, cylindrospermopsin, and β-N-methylamino-l-alanine in Jordan Lake, a major drinking water reservoir in North Carolina. Saxitoxin presence was not confirmed. Multiple toxins were detected at 86% of the tested sites and during 44% of the sampling events between 2014 and 2016. Although concentrations were low, continued exposure of organisms to multiple toxins raises some concerns. A combination of discrete sampling and in-situ tracking (Solid Phase Adsorption Toxin Tracking [SPATT]) revealed that microcystin and anatoxin were the most pervasive year-round. Between 2011 and 2016, summer and fall blooms were dominated by the same cyanobacterial genera, all of which are suggested producers of single or multiple cyanotoxins. The study’s findings provide further evidence of the ubiquitous nature of cyanotoxins, and the challenges involved in linking CyanoHAB dynamics to specific environmental forcing factors are discussed. PMID:29495289

  17. Compatibility of hydroxypropyl-{beta}-cyclodextrin with algal toxicity bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Fai, Patricia Bi; Grant, Alastair [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Reid, Brian J. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom)], E-mail: b.reid@uea.ac.uk

    2009-01-15

    Numerous reports have indicated that hydrophobic organic compound bioaccessibility in sediment and soil can be determined by extraction using aqueous hydroxypropyl-{beta}-cyclodextrin (HPCD) solutions. This study establishes the compatibility of HPCD with Selenastrum capricornutum and assesses whether its presence influences the toxicity of reference toxicants. Algal growth inhibition (72 h) showed no significant (P > 0.05) difference at HPCD concentrations up to and including 20 mM. HPCD presence did not influence the toxicity of the inorganic reference toxicant (ZnSO{sub 4}), with IC50 values of 0.82 {mu}M and 0.85 {mu}M, in the presence and absence of HPCD (20 mM), respectively. However, HPCD presence (20 mM) reduced the toxicity of 2,4-dichlorophenol and the herbicides diuron and isoproturon. These reductions were attributed to inclusion complex formation between the toxicants and the HPCD cavity. Liberation of complexed toxicants, by sample manipulation prior to toxicity assessment, is proposed to provide a sensitive, high throughput, bioassay that reflects compound bioaccessibility. - Compatibility of the biomimetic HPCD extraction method with algal cell growth inhibition bioassays to assess toxicity of reference toxicants and environmental relevant herbicides.

  18. Microencapsulation of Algal Oil Using Spray Drying Technology

    Directory of Open Access Journals (Sweden)

    Xueshan Pan

    2018-01-01

    Full Text Available This work aims at developing a process of microencapsulation of algal oil containing ≥40 % docosahexaenoic acid (DHA using spray drying technology. Purity Gum® 2000 and Capsul®, both obtained from waxy corn starch, were chosen as the encapsulation materials. The effects of emulsification conditions on the droplet size, stability, viscosity and surface tension, and the effects of spraying conditions on the particle size, moisture content and surface oil content were investigated successively. The morphology of emulsion droplets and the microcapsules was observed by optical microscope and scanning electron micro scopy. The results showed that the produced spherical microcapsules were smooth and free of pores, cracks, and surface indentation when shear velocity was 8.63 m/s in the first step of emulsification, homogenization pressure was 1.75·10˄8 Pa and number of passes through homogenization unit was six for fine emulsification, rotational speed of spray disk was 400 s-1, and air inlet temperature was 170 °C. Therefore, it was concluded that the emulsification and encapsulation of algal oil containing DHA with above process was feasible.

  19. Recycling produced water for algal cultivation for biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Justin N. [Los Alamos National Laboratory; Sullivan, Enid J. [Los Alamos National Laboratory; Dean, Cynthia A. [Los Alamos National Laboratory; Steichen, Seth A. [Los Alamos National Laboratory

    2012-08-09

    Algal growth demands a continuous source of water of appropriate salinity and nutritional content. Fresh water sources are scarce in the deserts of the Southwestern United States, hence, salt water algae species are being investigated as a renewable biofuel source. The use of produced water from oil wells (PW) could offset the demand for fresh water in cultivation. Produced water can contain various concentrations of dissolved solids, metals and organic contaminants and often requires treatment beyond oil/water separation to make it suitable for algae cultivation. The produced water used in this study was taken from an oil well in Jal, New Mexico. An F/2-Si (minus silica) growth media commonly used to cultivate Nannochloropsis salina 1776 (NS 1776) was prepared using the produced water (F/2-Si PW) taking into account the metals and salts already present in the water. NS 1776 was seeded into a bioreactor containing 5L of the (F/2-Si PW) media. After eleven days the optical density at 750 nm (an indicator of algal growth) increased from 0 to 2.52. These results indicate algae are able to grow, though inhibited when compared with non-PW media, in the complex chemical conditions found in produced water. Savings from using nutrients present in the PW, such as P, K, and HCO{sub 3}{sup -}, results in a 44.38% cost savings over fresh water to mix the F/2-Si media.

  20. Effect of algal density in bead, bead size and bead concentrations ...

    African Journals Online (AJOL)

    Effect of algal density in bead, bead size and bead concentrations on wastewater nutrient removal. ... African Journal of Biotechnology ... The bioreactor containing algal beads (4 mm diameter) with 1.5 x 106 cells bead-1 (cell stocking) at concentration of 10.66 beads ml-1 wastewater (1:3 bead: wastewater, v/v) achieved ...

  1. Biofouling in capillary and spiral wound membranes facilitated by marine algal bloom

    NARCIS (Netherlands)

    Villacorte, L.O.; Ekowati, Y.; Calix-Ponce, H.N.; Kisielius, V.; Kleijn, J.M.; Vrouwenvelder, J.S.; Schippers, J.C.; Kennedy, M.D.

    2017-01-01

    Algal-derived organic matter (AOM), particularly transparent exopolymer particles, has been suspected to facilitate biofilm development in membrane systems (e.g., seawater reverse osmosis). This study demonstrates the possible role of AOM on biofouling in membrane systems affected by marine algal

  2. Releasing Stored Solar Energy within Pond Scum: Biodiesel from Algal Lipids

    Science.gov (United States)

    Blatti, Jillian L.; Burkart, Michael D.

    2012-01-01

    Microalgae have emerged as an attractive feedstock for the mass production of renewable transportation fuels due to their fast growth rate, flexible habitat preferences, and substantial oil yields. As an educational tool, a laboratory was developed that mimics emerging algal biofuel technology, including the extraction of algal lipids and…

  3. Algal assay research in programs for Euthrophic Lake management: laboratory and field studies

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, G

    1979-01-01

    The present study is an attempt to clarify whether relations between viruses (cyanophages) and their algal hosts can be affected by manipulations in the environment. Is is possible to activate cyanophages and accelerate lysis of blue-green algal populations or to enhance the resistance of blue-green algae to attack from cynaophages. The experiments presented here were performed under laboratory conditions with a well-known algal - canophage system, Plectonema boryanum and cyanophage LPP-1 (attacking strains of Lyngbya, Phormidium and Plectonema). The work was done in close connection with field experiments on natural blue-green algal communities, however, because the nature of the induced blue-green algal collapse in plastic enclosures suggested lysis of the algal cells. The rate of LPP-1 cyanophage replication and lysis of plectonema was studied in relation to: (a) pH alterations by CO/sub 2//air additions, (b) algal host culture age and density, (c) nutrient concentrations and (d) presence of additional algal species.

  4. Mathematical-statistical model for analysis of Ulva algal net photosynthesis in Venice lagoon

    International Nuclear Information System (INIS)

    Izzo, G.; Rizzo, V.; Bella, A.; Picci, M.; Giordano, P.

    1996-08-01

    The algal net photosynthesis, an important factor for the characterization of water quality in Venice lagoon, has been studied experimentally providing a mathematical model, validated by using statistical methods. This model relates oxygen production with irradiance, according to a well known law in biological literature. Its observed an inverted proportion between algal oxygen production and temperature, thus seasonality

  5. Data from: Evidence for water-mediated mechanisms in coral–algal interactions

    NARCIS (Netherlands)

    Jorissen, Hendrikje; Skinner, Christina; Osinga, R.; Beer, De Dirk; Nugues, Maggy M.

    2016-01-01

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral–algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at

  6. Evidence for water-mediated mechanisms in coral–algal interactions

    NARCIS (Netherlands)

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; Beer, De Dirk; Nugues, Maggy M.

    2016-01-01

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral–algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations

  7. Applications of MODIS Fluorescent Line Height Measurements to Monitor Water Quality Trends and Algal Bloom Activity

    Science.gov (United States)

    Fischer, Andrew; Moreno-Mardinan, Max; Ryan, John P.

    2012-01-01

    Recent advances in satellite and airborne remote sensing, such as improvements in sensor and algorithm calibrations, processing techniques and atmospheric correction procedures have provided for increased coverage of remote-sensing, ocean-color products for coastal regions. In particular, for the Moderate Resolution Imaging Spectrometer (MODIS) sensor calibration updates, improved aerosol retrievals and new aerosol models has led to improved atmospheric correction algorithms for turbid waters and have improved the retrieval of ocean color in coastal waters. This has opened the way for studying ocean phenomena and processes at finer spatial scales, such as the interactions at the land-sea interface, trends in coastal water quality and algal blooms. Human population growth and changes in coastal management practices have brought about significant changes in the concentrations of organic and inorganic, particulate and dissolved substances entering the coastal ocean. There is increasing concern that these inputs have led to declines in water quality and have increase local concentrations of phytoplankton, which cause harmful algal blooms. In two case studies we present MODIS observations of fluorescence line height (FLH) to 1) assess trends in water quality for Tampa Bay, Florida and 2) illustrate seasonal and annual variability of algal bloom activity in Monterey Bay, California as well as document estuarine/riverine plume induced red tide events. In a comprehensive analysis of long term (2003-2011) in situ monitoring data and satellite imagery from Tampa Bay we assess the validity of the MODIS FLH product against chlorophyll-a and a suite of water quality parameters taken in a variety of conditions throughout a large optically complex estuarine system. A systematic analysis of sampling sites throughout the bay is undertaken to understand how the relationship between FLH and in situ chlorophyll-a responds to varying conditions and to develop a near decadal trend in

  8. HARMFUL ALGAL BLOOMS IN THE MEDITERRANEAN SEA: EFFECTS ON HUMAN HEALTH.

    Directory of Open Access Journals (Sweden)

    Margherita Ferrante

    2013-01-01

    Full Text Available A harmful algal bloom (HAB is defined as a bloom that has deleterious effects on plants, animals or humans. Marine algal toxins are responsible for an array of human illnesses associated with consumption of seafood or exposure to aerosolized toxins. The effects of algal toxins are generally observed as acute intoxications, whereas the environmental health effects of chronic exposure to low levels of algal toxins are, to date, only poorly documented and an emerging issue. Consumption of seafood contaminated with algal toxins can result in five types of seafood poisoning syndromes: paralytic shellfish poisoning, neurotoxic shellfish poisoning, amnesic shellfish poisoning, diarrhetic shellfish poisoning and ciguatera fish poisoning. The aim of this paper is to provide an overview on HAB-related issues in the Mediterranean Sea.

  9. Genus Pouteria: chemistry and biological activity

    Directory of Open Access Journals (Sweden)

    Cíntia A. M. Silva

    Full Text Available The genus Pouteria belongs to the family Sapotaceae and can be widely found around the World. These plants have been used as building material, as food, because the eatable fruits, as well as remedies in folk medicine. Some biological activities have been reported to species of this genus such as antioxidant, anti-inflammatory, antibacterial and antifungal. However, the real potential of this genus as source of new drugs or phytomedicines remains unknown. Therefore, a review of the so far known chemical composition and biological activities of this genus is presented to stimulate new studies about the species already reported moreover that species have no reference about chemistry or biological activities could be found until now.

  10. Genomic Diversity in the Genus of Aspergillus

    DEFF Research Database (Denmark)

    Rasmussen, Jane Lind Nybo

    , sections and genus of Aspergillus. The work uncovers a large genomic diversity across all studied groups of species. The genomic diversity was especially evident on the section level, where the proteins shared by all species only represents ⇠55% of the proteome. This number decreases even further, to 38......, sections Nigri, Usti and Cavericolus, clade Tubingensis, and species A. niger. It lastly uses these results to predict genetic traits that take part in fungal speciation. Within a few years the Aspergillus whole-genus sequencing project will have published all currently-accepted Aspergillus genomes......Aspergillus is a highly important genus of saprotrophic filamentous fungi. It is a very diverse genus that is inextricably intertwined with human a↵airs on a daily basis, holding species relevant to plant and human pathology, enzyme and bulk chemistry production, food and beverage biotechnology...

  11. Infinite genus surfaces and irrational polygonal billiards

    OpenAIRE

    Valdez, Ferrán

    2009-01-01

    We prove that the natural invariant surface associated with the billiard game on an irrational polygonal table is homeomorphic to the Loch Ness monster, that is, the only orientable infinite genus topological real surface with exactly one end.

  12. Phylogeny and taxonomy of the genus Gliocephalotrichum

    NARCIS (Netherlands)

    Lombard, L.; Serrato-Diaz, L.M.; Cheewangkoon, R.; French-Monar, R.D.; Decock, C.; Crous, P.W.

    2014-01-01

    Species in the genus Gliocephalotrichum (= Leuconectria) (Hypocreales, Nectriaceae) are soilborne fungi, associated with post-harvest fruit spoilage of several important tropical fruit crops. Contemporary taxonomic studies of these fungi have relied on morphology and DNA sequence comparisons of the

  13. Phylogeny and taxonomy of the genus Gliocephalotrichum

    NARCIS (Netherlands)

    Lombard, L.; Serrato-Diaz, L. M.; Cheewangkoon, R.; French-Monar, R. D.; Decock, C.; Crous, P. W.

    Species in the genus Gliocephalotrichum (= Leuconectria) (Hypocreales, Nectriaceae) are soilborne fungi, associated with post-harvest fruit spoilage of several important tropical fruit crops. Contemporary taxonomic studies of these fungi have relied on morphology and DNA sequence comparisons of the

  14. Generalized regular genus for manifolds with boundary

    Directory of Open Access Journals (Sweden)

    Paola Cristofori

    2003-05-01

    Full Text Available We introduce a generalization of the regular genus, a combinatorial invariant of PL manifolds ([10], which is proved to be strictly related, in dimension three, to generalized Heegaard splittings defined in [12].

  15. Kops genus - en værkstedsrapport

    DEFF Research Database (Denmark)

    Gudiksen, Asgerd

    2008-01-01

     Inden for Ømålsområdet optræder ordet kop både i genus femininum, masku­linum og neutrum. På Sjælland, hvor trekønssystemet er under af­vikling, kan ordet desuden være genus commune. Der kan konstateres en vis dialektgeografisk fordeling af de tre (fire) genera, men især på Sjælland er...

  16. A taxonomic revision of the genus Podocarpus

    OpenAIRE

    Laubenfels, de, D.J.

    1985-01-01

    In connection with the forthcoming revision of the Coniferae for the Flora Malesiana, the author thought it necessary to revise the genus Podocarpus. Although this genus has a substantial representation in Malesia (30 species), the revision is too involved to be appropriate with the Flora Malesiana per se. One new subgenus and 17 new sections are described, and 94 species are enumerated, of which 11 species and 1 variety are described as new, and 3 varieties have been raised to specific rank....

  17. The Genus Cladophora Kützing (Ulvophyceae) as a Globally Distributed Ecological Engineer.

    Science.gov (United States)

    Zulkifly, Shahrizim B; Graham, James M; Young, Erica B; Mayer, Robert J; Piotrowski, Michael J; Smith, Izak; Graham, Linda E

    2013-02-01

    The green algal genus Cladophora forms conspicuous nearshore populations in marine and freshwaters worldwide, commonly dominating peri-phyton communities. As the result of human activities, including the nutrient pollution of nearshore waters, Cladophora-dominated periphyton can form nuisance blooms. On the other hand, Cladophora has ecological functions that are beneficial, but less well appreciated. For example, Cladophora has previously been characterized as an ecological engineer because its complex structure fosters functional and taxonomic diversity of benthic microfauna. Here, we review classic and recent literature concerning taxonomy, cell biology, morphology, reproductive biology, and ecology of the genus Cladophora, to examine how this alga functions to modify habitats and influence littoral biogeochemistry. We review the evidence that Cladophora supports large, diverse populations of microalgal and bacterial epiphytes that influence the cycling of carbon and other key elements, and that the high production of cellulose and hydrocarbons by Cladophora-dominated periphyton has the potential for diverse technological applications, including wastewater remediation coupled to renewable biofuel production. We postulate that well-known aspects of Cladophora morphology, hydrodynamically stable and perennial holdfasts, distinctively branched architecture, unusually large cell and sporangial size and robust cell wall construction, are major factors contributing to the multiple roles of this organism as an ecological engineer. © 2013 Phycological Society of America.

  18. Bioactive Compound Synthetic Capacity and Ecological Significance of Marine Bacterial Genus Pseudoalteromonas

    Directory of Open Access Journals (Sweden)

    John P. Bowman

    2007-12-01

    Full Text Available The genus Pseudoalteromonas is a marine group of bacteria belonging to theclass Gammaproteobacteria that has come to attention in the natural product andmicrobial ecology science fields in the last decade. Pigmented species of the genus havebeen shown to produce an array of low and high molecular weight compounds withantimicrobial, anti-fouling, algicidal and various pharmaceutically-relevant activities.Compounds formed include toxic proteins, polyanionic exopolymers, substitutedphenolic and pyrolle-containing alkaloids, cyclic peptides and a range of bromine-substituted compounds. Ecologically, Pseudoalteromonas appears significant and to datehas been shown to influence biofilm formation in various marine econiches; involved inpredator-like interactions within the microbial loop; influence settlement, germinationand metamorphosis of various invertebrate and algal species; and may also be adopted bymarine flora and fauna as defensive agents. Studies have been so far limited to arelatively small subset of strains compared to the known diversity of the genussuggesting that many more discoveries of novel natural products as well as ecologicalconnections these may have in the marine ecosystem remain to be made.

  19. Geographic variation in the damselfish-red alga cultivation mutualism in the Indo-West Pacific

    Science.gov (United States)

    2010-01-01

    Background On coral reefs, damselfish defend their territories from invading herbivores and maintain algal turfs, from which they harvest filamentous algae. In southern Japan, intensive weeding of indigestible algae by Stegastes nigricans results in overgrowth by one filamentous alga, Polysiphonia sp. 1. Because this alga is highly susceptible to grazing and is competitively inferior to other algae, it survives only within the protective territories of this fish species, suggesting an obligate mutualism between damselfish and their cultivated alga. The wide distribution of damselfish species through the Indo-Central Pacific raises the question of whether this species-specific mutualism is maintained throughout the geographic range of the fish. To address this question, from all 18 damselfish species we conducted comprehensive surveys of algal flora within their territories throughout the Indo-West Pacific, and identified species of Polysiphonia using morphological examination and gene sequencing data. Results Several species of the genus Polysiphonia were observed as a major crop in territories throughout the geographic range of S. nigricans. Polysiphonia sp. 1 occurred only in territories of S. nigricans in central areas of the Indo-Pacific. However, its occurrence was low from the Great Barrier Reef and Mauritius. In contrast, other indigenous Polysiphonia species, which formed a clade with Polysiphonia sp. 1, occurred in the territories of fishes from Egypt, Kenya, and the Maldives. The other Polysiphonia species in the clade only inhabited damselfish territories and were never found elsewhere. Conclusions Cultivation mutualism between the damselfish S. nigricans and algae of Polysiphonia was maintained throughout the Indo-West Pacific, although algal crop species and the mode of cultivation (e.g., presence/absence of selective weeding, the species composition of algal turfs) varied among localities. This finding implies that damselfish utilize indigenous

  20. Geographic variation in the damselfish-red alga cultivation mutualism in the Indo-West Pacific

    Directory of Open Access Journals (Sweden)

    Watanabe Katsutoshi

    2010-06-01

    Full Text Available Abstract Background On coral reefs, damselfish defend their territories from invading herbivores and maintain algal turfs, from which they harvest filamentous algae. In southern Japan, intensive weeding of indigestible algae by Stegastes nigricans results in overgrowth by one filamentous alga, Polysiphonia sp. 1. Because this alga is highly susceptible to grazing and is competitively inferior to other algae, it survives only within the protective territories of this fish species, suggesting an obligate mutualism between damselfish and their cultivated alga. The wide distribution of damselfish species through the Indo-Central Pacific raises the question of whether this species-specific mutualism is maintained throughout the geographic range of the fish. To address this question, from all 18 damselfish species we conducted comprehensive surveys of algal flora within their territories throughout the Indo-West Pacific, and identified species of Polysiphonia using morphological examination and gene sequencing data. Results Several species of the genus Polysiphonia were observed as a major crop in territories throughout the geographic range of S. nigricans. Polysiphonia sp. 1 occurred only in territories of S. nigricans in central areas of the Indo-Pacific. However, its occurrence was low from the Great Barrier Reef and Mauritius. In contrast, other indigenous Polysiphonia species, which formed a clade with Polysiphonia sp. 1, occurred in the territories of fishes from Egypt, Kenya, and the Maldives. The other Polysiphonia species in the clade only inhabited damselfish territories and were never found elsewhere. Conclusions Cultivation mutualism between the damselfish S. nigricans and algae of Polysiphonia was maintained throughout the Indo-West Pacific, although algal crop species and the mode of cultivation (e.g., presence/absence of selective weeding, the species composition of algal turfs varied among localities. This finding implies that

  1. Possible importance of algal toxins in the Salton Sea, California

    Science.gov (United States)

    Reifel, K.M.; McCoy, M.P.; Rocke, T.E.; Tiffany, M.A.; Hurlbert, S.H.; Faulkner, D.J.

    2002-01-01

    In response to wildlife mortality including unexplained eared grebe (Podiceps nigricollis) die-off events in 1992 and 1994 and other mortality events including large fish kills, a survey was conducted for the presence of algal toxins in the Salton Sea. Goals of this survey were to determine if and when algal toxins are present in the Salton Sea and to describe the phytoplankton composition during those times. A total of 29 samples was collected for toxicity analysis from both nearshore and midlake sites visited biweekly from January to December 1999. Dinoflagellates and diatoms dominated most samples, but some were dominated by a prymnesiophyte (Pleurochrysis pseudoroscoffensis) or a raphidophyte (Chattonella marina). Several types of blooms were observed and sampled. The dinoflagellate Gyrodinium uncatenum formed an extensive, dense (up to 310 000 cells ml−1) and long-lasting bloom during the winter in 1999. A coccolithophorid, Pleurochrysis pseudoroscoffensis, occurred at high densities in surface films and nearshore areas during the spring and summer of 1999. These surface films also contained high densities of one or two other species (an unidentified scrippsielloid, Heterocapsa niei, Chattonella marina). Localized blooms were also observed in the Salton Sea. An unknown small dinoflagellate reached high densities (110 000 cells ml−1) inside Varner Harbor, and an unidentified species of Gymnodinium formed a dense (270 000 cells ml−1) band along part of the southern shoreline during the summer. Three species known to produce toxins in other systems were found. Protoceratium reticulatum (=Gonyaulax grindleyi) and Chattonella marina were found in several samples taken during summer months, and Prorocentrum minimum was found in low densities in several samples. Extracts of most samples, including those containing known toxic species, showed a low level (Salton Sea, no evidence gathered in this study suggests that algal toxins are present

  2. Mg-lattice associations in red coralline algae

    Science.gov (United States)

    Kamenos, N. A.; Cusack, M.; Huthwelker, T.; Lagarde, P.; Scheibling, R. E.

    2009-04-01

    Recent investigations have shown red coralline algae to record ambient temperature in their calcite skeletons. Temperature recorded by variation in Mg concentrations within algal growth bands has sub-annual resolution and high accuracy. The conversion of Mg concentration to temperature is based on the assumption of Ca replacement by Mg within the algal calcite skeleton at higher temperatures. While Mg-temperature relationships in coralline algae have been calibrated for some species, the location of Mg within the calcite lattice remains unknown. Critically, if Mg is not a lattice component but associated with organic components this could lead to erroneous temperature records. Before coralline algae are used in large scale climate reconstructions it is therefore important to determine the location of Mg. Synchrotron Mg-X-ray absorbance near edge structure (XANES) indicates that Mg is associated with the calcite lattice in Lithothamnion glaciale (contemporary free-living, contemporary encrusting and sub-fossil free-living) and Phymatolithon calcareum (contemporary free-living) coralline algae. Mg is deposited within the calcite lattice in all seasons ( L. glaciale & P. calcareum) and thallus areas ( P. calcareum). These results suggest L. glaciale and P. calcareum are robust Mg-palaeotemperature proxies. We suggest that similar confirmation be obtained for Mg associations in other species of red coralline algae aiding our understanding of their role in climate reconstruction at large spatial scales.

  3. Red blood cell production

    Science.gov (United States)

    ... bone marrow of bones. Stem cells in the red bone marrow called hemocytoblasts give rise to all of the formed elements in blood. If a hemocytoblast commits to becoming a cell called a proerythroblast, it will develop into a new red blood cell. The formation of a red blood ...

  4. Amdoparvovirus Infection in Red Pandas ( Ailurus fulgens).

    Science.gov (United States)

    Alex, Charles E; Kubiski, Steven V; Li, Linlin; Sadeghi, Mohammadreza; Wack, Raymund F; McCarthy, Megan A; Pesavento, Joseph B; Delwart, Eric; Pesavento, Patricia A

    2018-01-01

    Aleutian mink disease virus is the type species in the genus Amdoparvovirus, and in mink and other Mustelidae can cause either subclinical disease or fatal chronic immune stimulation and immune complex disease. The authors describe a novel amdoparvovirus in the endangered red panda ( Ailurus fulgens), discovered using viral metagenomics. The authors analyzed the prevalence, tissue distribution, and disease association by PCR, in situ hybridization, electron microscopy, and histology in a group of 6 red pandas from a single zoological collection. The study incorporates a fecal shedding survey and analysis of tissues from 4 necropsied animals over a 12-year span. The tentatively named red panda amdoparvovirus (RpAPV) was detected in the feces and/or tissues of all animals tested. At necropsy of 1 geriatric animal, infection was associated with pyogranulomatous peritonitis, pancreatitis, and myocarditis. Other animals had detectable low-level viral nucleic acid in lymph nodes and both oral and intestinal epithelium at the time of necropsy. Full-length genome sequences of RpAPV strains from 2 animals had 12% sequence divergence, demonstrating genetic diversity even among in-contact animals. RpAPV is a persistent infection in this cohort of red pandas, and has variable clinical expression.

  5. Information on existing monitoring practices for Harmful Algal ...

    African Journals Online (AJOL)

    spamer

    emitting diodes in the blue, green and red part of the visible spectrum ..... highly affected by sun angle, cloud cover and time of .... for Detecting Large-Scale Environmental Change. Kahru, ... Oceanographic Commission Technical Series. No.

  6. Algal growth inhibition test results of 425 organic chemical substances

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Christensen, Anne Munch; Nyholm, Niels

    2018-01-01

    The toxicity towards the algal species Pseudokirchneriella subcapitata of 425 organic chemical substances was tested in a growth inhibition test. Precautions were taken to prevent loss of the compounds from the water phase and the test system (closed test system, low biomass, shorter test duration......, silanized glass) and to keep pH constant by applying a higher alkalinity. Chemical phase distribution was modelled taking ionization, volatilisation, and adsorption to glass and biomass into consideration. If the modelled water concentration was below 90% of the nominal concentration the calculated EC...... values were corrected accordingly. The model helped to identify substances, where the calculated water concentration was too uncertain. Substances covering a wide range of physical-chemical properties and different modes of action were tested. Median effect concentrations (EC50) lower than 1000 mg/L were...

  7. Arrest of cytoplasmic streaming induces algal proliferation in green paramecia.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Takahashi

    Full Text Available A green ciliate Paramecium bursaria, bearing several hundreds of endosymbiotic algae, demonstrates rotational microtubule-based cytoplasmic streaming, in which cytoplasmic granules and endosymbiotic algae flow in a constant direction. However, its physiological significance is still unknown. We investigated physiological roles of cytoplasmic streaming in P. bursaria through host cell cycle using video-microscopy. Here, we found that cytoplasmic streaming was arrested in dividing green paramecia and the endosymbiotic algae proliferated only during the arrest of cytoplasmic streaming. Interestingly, arrest of cytoplasmic streaming with pressure or a microtubule drug also induced proliferation of endosymbiotic algae independently of host cell cycle. Thus, cytoplasmic streaming may control the algal proliferation in P. bursaria. Furthermore, confocal microscopic observation revealed that a division septum was formed in the constricted area of a dividing paramecium, producing arrest of cytoplasmic streaming. This is a first report to suggest that cytoplasmic streaming controls proliferation of eukaryotic cells.

  8. Heterologous expression of an algal hydrogenase in a heterocystous cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Thorsten Heidorn; Peter Lindblad [Dept. of Physiological Botany, Uppsala University, Villavogen 6, SE-752 36 Uppsala, (Sweden)

    2006-07-01

    For the expression of an active algal [FeFe] hydrogenase in the heterocystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyanobacteria cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  9. Heterologous expression of an algal hydrogenase in a heterocystous cyanobacterium

    International Nuclear Information System (INIS)

    Thorsten Heidorn; Peter Lindblad

    2006-01-01

    For the expression of an active algal [FeFe] hydrogenase in the heterocystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyanobacteria cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  10. Oceans and Human Health: Microplastics and Harmful Algal Bloom

    International Nuclear Information System (INIS)

    Sombrito, Elvira Z.

    2015-01-01

    Traditionally the focus of research and concern of environmental studies in the marine system is the impact of human activities in the ocean: the sources, distribution and fate of pollutants resulting from human activities. More recently, there has been recognition of the potential direct impact health can come from eating contaminated seafood, swimming in polluted water, and exposure to toxins from harmful algal blooms. This paper will present two areas of concern that illustrates the fact that the health of the oceans and the health of humans go hand in hand: chemical pollution from plastics in the ocean and harmful alga bloom. The nuclear methodologies than can be useful in these areas will also be introduced. It is hoped that through the recognition of the inter-dependence of the health of both humans and the oceans, efforts will be made to restore and preserve the oceans. (author)

  11. Animal behaviour and algal camouflage jointly structure predation and selection.

    Science.gov (United States)

    Start, Denon

    2018-05-01

    Trait variation can structure interactions between individuals, thus shaping selection. Although antipredator strategies are an important component of many aquatic systems, how multiple antipredator traits interact to influence consumption and selection remains contentious. Here, I use a common larval dragonfly (Epitheca canis) and its predator (Anax junius) to test for the joint effects of activity rate and algal camouflage on predation and survival selection. I found that active and poorly camouflaged Epitheca were more likely to be consumed, and thus, survival selection favoured inactive and well-camouflaged individuals. Notably, camouflage dampened selection on activity rate, likely by reducing attack rates when Epitheca encountered a predator. Correlational selection is therefore conferred by the ecological interaction of traits, rather than by opposing selection acting on linked traits. I suggest that antipredator traits with different adaptive functions can jointly structure patterns of consumption and selection. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  12. Biotreatment of industrial wastewater by selected algal-bacterial consortia

    Energy Technology Data Exchange (ETDEWEB)

    Safonova, E.; Kvitko, K.V. [St. Petersburg State University, Biological Institute, Oranienbaum Chaussee 2, Old Peterhof, 198504 St. Petersburg (Russian Federation); Iankevitch, M.I.; Surgko, L.F.; Afti, I.A. [Ecoprom Ltd., Gruzovoi Proezd 13, Obukhovo, 192289 St. Petersburg (Russian Federation); Reisser, W. [Universitaet Leipzig, Botanisches Institut, Johannisallee 21-23, D-04103 Leipzig (Germany)

    2004-08-01

    A new approach for remediation processes in highly polluted environments is presented. The efficiency of algal-bacterial associations for the remediation of industrial wastewater of a pond in Samara, Russia, was investigated. After screening of algae and bacteria for the resistance to the wastewater the following strains were selected: the algal strains Chlorella sp. ES-13, Chlorella sp. ES-30, Scenedesmus obliquus ES-55, several Stichococcus strains (ES-19, ES-85, ES-86, ES-87, ES-88), and Phormidium sp. ES-90 and the bacterial strains Rhodococcus sp. Ac-1267, Kibdelosporangium aridum 754 as well as two unidentified bacterial strains (St-1, St-2) isolated from the collector pond. All the strains listed above were immobilized onto various solid carriers (capron fibers for algae; ceramics, capron and wood for bacteria) and used for biotreatment in a pilot installation. The results showed that the selected algae and bacteria formed stable consortia during the degradation of the waste, which was demonstrated for the first time for the green alga Stichococcus. Stichococcus and Phormidium cells attached to capron fibers with the help of slime and formed a matrix. This matrix fixed the bacteria and eukaryotic algae and prevented them from being washed off. A significant decrease in the content of the pollutants was observed: phenols were removed up to 85 %, anionic surface active substances (anionic SAS) up to 73 %, oil spills up to 96 %, copper up to 62 %, nickel up to 62 %, zinc up to 90 %, manganese up to 70 %, and iron up to 64 %. The reduction of the biological oxygen demand (BOD{sub 25}) and the chemical oxygen demand COD amounted to 97 % and 51 %, respectively. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  13. Distribution of heavy metals from flue gas in algal bioreactor

    Science.gov (United States)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  14. Interaction between local hydrodynamics and algal community in epilithic biofilm.

    Science.gov (United States)

    Graba, Myriam; Sauvage, Sabine; Moulin, Frédéric Y; Urrea, Gemma; Sabater, Sergi; Sanchez-Pérez, José Miguel

    2013-05-01

    Interactions between epilithic biofilm and local hydrodynamics were investigated in an experimental flume. Epilithic biofilm from a natural river was grown over a 41-day period in three sections with different flow velocities (0.10, 0.25 and 0.40 m s(-1) noted LV, IV and HV respectively). Friction velocities u* and boundary layer parameters were inferred from PIV measurement in the three sections and related to the biofilm structure. The results show that there were no significant differences in Dry Mass and Ash-Free Dry Mass (g m(-2)) at the end of experiment, but velocity is a selective factor in algal composition and the biofilms' morphology differed according to differences in water velocity. A hierarchical agglomerative cluster analysis (Bray-Curtis distances) and an Indicator Species Analysis (IndVal) showed that the indicator taxa were Fragilaria capucina var. mesolepta in the low-velocity (u*. = 0.010-0.012 m s(-1)), Navicula atomus, Navicula capitatoradiata and Nitzschia frustulum in the intermediate-velocity (u*. = 0.023-0.030 m s(-1)) and Amphora pediculus, Cymbella proxima, Fragilaria capucina var. vaucheriae and Surirella angusta in the high-velocity (u*. = 0.033-0.050 m s(-1)) sections. A sloughing test was performed on 40-day-old biofilms in order to study the resistance of epilithic biofilms to higher hydrodynamic regimes. The results showed an inverse relationship between the proportion of detached biomass and the average value of friction velocity during growth. Therefore, water velocity during epilithic biofilm growth conditioned the structure and algal composition of biofilm, as well as its response (ability to resist) to higher shear stresses. This result should be considered in modelling epilithic biofilm dynamics in streams subject to a variable hydrodynamics regime. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    Science.gov (United States)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  16. The mitochondrial genome of Grateloupia taiwanensis (Halymeniaceae, Rhodophyta) and comparative mitochondrial genomics of red algae.

    Science.gov (United States)

    DePriest, Michael S; Bhattacharya, Debashish; López-Bautista, Juan M

    2014-10-01

    Although red algae are economically highly valuable for their gelatinous cell wall compounds as well as being integral parts of marine benthic habitats, very little genome data are currently available. We present mitochondrial genome sequence data from the red alga Grateloupia taiwanensis S.-M. Lin & H.-Y. Liang. Comprising 28,906 nucleotide positions, the mitochondrial genome contig contains 25 protein-coding genes and 24 transfer RNA genes. It is highly similar to other red algal genomes in gene content as well as overall structure. An intron in the cox1 gene was found to be shared by G. taiwanensis and Grateloupia angusta (Okamura) S. Kawaguchi & H. W. Wang. We also used whole-genome alignments to compare G. taiwanensis to different groups of red algae, and these results are consistent with the currently accepted phylogeny of Rhodophyta. © 2014 Marine Biological Laboratory.

  17. Genomic diversity within the haloalkaliphilic genus Thioalkalivibrio.

    Science.gov (United States)

    Ahn, Anne-Catherine; Meier-Kolthoff, Jan P; Overmars, Lex; Richter, Michael; Woyke, Tanja; Sorokin, Dimitry Y; Muyzer, Gerard

    2017-01-01

    Thioalkalivibrio is a genus of obligate chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria. Their habitat are soda lakes which are dual extreme environments with a pH range from 9.5 to 11 and salt concentrations up to saturation. More than 100 strains of this genus have been isolated from various soda lakes all over the world, but only ten species have been effectively described yet. Therefore, the assignment of the remaining strains to either existing or novel species is important and will further elucidate their genomic diversity as well as give a better general understanding of this genus. Recently, the genomes of 76 Thioalkalivibrio strains were sequenced. On these, we applied different methods including (i) 16S rRNA gene sequence analysis, (ii) Multilocus Sequence Analysis (MLSA) based on eight housekeeping genes, (iii) Average Nucleotide Identity based on BLAST (ANIb) and MUMmer (ANIm), (iv) Tetranucleotide frequency correlation coefficients (TETRA), (v) digital DNA:DNA hybridization (dDDH) as well as (vi) nucleotide- and amino acid-based Genome BLAST Distance Phylogeny (GBDP) analyses. We detected a high genomic diversity by revealing 15 new "genomic" species and 16 new "genomic" subspecies in addition to the ten already described species. Phylogenetic and phylogenomic analyses showed that the genus is not monophyletic, because four strains were clearly separated from the other Thioalkalivibrio by type strains from other genera. Therefore, it is recommended to classify the latter group as a novel genus. The biogeographic distribution of Thioalkalivibrio suggested that the different "genomic" species can be classified as candidate disjunct or candidate endemic species. This study is a detailed genome-based classification and identification of members within the genus Thioalkalivibrio. However, future phenotypical and chemotaxonomical studies will be needed for a full species description of this genus.

  18. Algal Growth and Waste Stabilization Ponds Performance Efficiency in a Sub-Tropical Climate

    International Nuclear Information System (INIS)

    Alamgir, A.; Khan, M. A.; Shaukat, S. S.

    2016-01-01

    Both irrigation and potable water are in diminutive supply in most of the developing countries particularly those situated in tropical and subtropical regions where, often untreated wastewater is utilized for the purpose of irrigation. Treated wastewater has proved to be a potential asset serving as an alternate source for the expansion of irrigated agriculture. Waste stabilization ponds (WSP) are considered as less costly and effective substitute for the wastewater water treatment in tropics. The principle of wastewater treatment in waste stabilization pond is based on the symbiotic relationship between bacteria and various algal species. In this study, an attempt was made to relate algal growth and different extrinsic factors using multiple regression models. The predominant algal species found in WSP systems were Chlorella, Euglena, Oscillatoria and Scenedesmus. The growth of individual algal species and overall algal growth was principally governed by temperature, total sunshine hours and Total Kjeldhal Nitrogen (TKN). The study suggested that algal bacterial symbiotic relationship works well and the dissolved oxygen production through algal photosynthesis was optimum to decompose heavy organic load resulting in oxygen-rich effluent (liquid fertilizer) which could be successfully exploited for unrestricted irrigation. (author)

  19. Algal growth inhibition test in filled, closed bottles for volatile and sorptive materials

    DEFF Research Database (Denmark)

    Mayer, Philipp; Nyholm, Niels; Verbruggen, Eric M. J.

    2000-01-01

    Exposure concentrations of many hydrophobic substances are difficult to maintain in algal growth inhibition tests performed in open agitated flasks. This is partly because such compounds tend to volatilize from aqueous solution and partly because of sorption to the algal biomass as well as to the......Exposure concentrations of many hydrophobic substances are difficult to maintain in algal growth inhibition tests performed in open agitated flasks. This is partly because such compounds tend to volatilize from aqueous solution and partly because of sorption to the algal biomass as well......, and the resulting dissolved CO2 concentration supported maximum algal growth rates without pH drift for algal densities up to 4 mg dry weight/L. Two-day toxicity tests with kerosene were performed with this new test design and compared with an open bottle test and with a closed bottle test with headspace. Exposure...... concentrations of the volatile fraction of kerosene decreased by 99% in the open test, by 77% in the closed flask test with headspace, and by 16% in the filled closed bottle test. Algal growth inhibition was observed at much lower additions of kerosene in the new test design because of the improved maintenance...

  20. Algal Pretreatment Improves Biofuels Yield and Value; Highlights in Science, NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-15

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the work the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels.  With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks.  This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.

  1. Daphnia fed algal food grown at elevated temperature have reduced fitness

    Directory of Open Access Journals (Sweden)

    Anna B. Sikora

    2014-05-01

    Full Text Available Lake water temperature is negatively correlated with fatty acids content and P:C ratio in green algae. Hence, elevated temperature may indirectly reduce the fitness of Daphnia due to induced decrease in algal food quality. The aim of this study was to test the hypotheses that quality of algal food decreases with increasing temperature of its culture and that large-bodied Daphnia are more vulnerable to the temperature-related deterioration of algal food quality than small-bodied ones. Laboratory life-table experiments were performed at 20°C with large-bodied D. pulicaria and small-bodied D. cucullata fed with the green alga Scenedesmus obliquus, that had been grown at temperatures of 16, 24 or 32°C. The somatic growth rates of both species decreased significantly with increasing algal culture temperature and this effect was more pronounced in D. pulicaria than in D. cucullata. In the former species, age at first reproduction significantly increased and clutch size significantly decreased with increasing temperature of algae growth, while no significant changes in these two parameters were observed in the latter species. The proportion of egg-bearing females decreased with increasing algal culture temperature in both species. The results of this study support the notion that the quality of algal food decreases with increasing water temperature and also suggest that small-bodied Daphnia species might be less vulnerable to temperature-related decreases in algal food quality than large-bodied ones.

  2. Evidence for water-mediated mechanisms in coral–algal interactions

    Science.gov (United States)

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; de Beer, Dirk

    2016-01-01

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral–algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral–algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral–algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation. PMID:27512146

  3. General Aviation Citizen Science Study to Help Tackle Remote Sensing of Harmful Algal Blooms (HABs)

    Science.gov (United States)

    Ansari, Rafat R.; Schubert, Terry

    2018-01-01

    We present a new, low-cost approach, based on volunteer pilots conducting high-resolution aerial imaging, to help document the onset, growth, and outbreak of harmful algal blooms (HABs) and related water quality issues in central and western Lake Erie. In this model study, volunteer private pilots acting as citizen scientists frequently flew over 200 mi of Lake Erie coastline, its islands, and freshwater estuaries, taking high-quality aerial photographs and videos. The photographs were taken in the nadir (vertical) position in red, green, and blue (RGB) and near-infrared (NIR) every 5 s with rugged, commercially available built-in Global Positioning System (GPS) cameras. The high-definition (HD) videos in 1080p format were taken continuously in an oblique forward direction. The unobstructed, georeferenced, high-resolution images, and HD videos can provide an early warning of ensuing HAB events to coastal communities and freshwater resource managers. The scientists and academic researchers can use the data to compliment a collection of in situ water measurements, matching satellite imagery, and help develop advanced airborne instrumentation, and validation of their algorithms. This data may help develop empirical models, which may lead to the next steps in predicting a HAB event as some watershed observed events changed the water quality such as particle size, sedimentation, color, mineralogy, and turbidity delivered to the Lake site. This paper shows the efficacy and scalability of citizen science (CS) aerial imaging as a complimentary tool for rapid emergency response in HABs monitoring, land and vegetation management, and scientific studies. This study can serve as a model for monitoring/management of freshwater and marine aquatic systems.

  4. The Diversity of the Limnohabitans Genus, an Important Group of Freshwater Bacterioplankton, by Characterization of 35 Isolated Strains

    Science.gov (United States)

    Kasalický, Vojtěch; Jezbera, Jan; Hahn, Martin W.; Šimek, Karel

    2013-01-01

    Bacteria of the genus Limnohabitans, more precisely the R-BT lineage, have a prominent role in freshwater bacterioplankton communities due to their high rates of substrate uptake and growth, growth on algal-derived substrates and high mortality rates from bacterivory. Moreover, due to their generally larger mean cell volume, compared to typical bacterioplankton cells, they contribute over-proportionally to total bacterioplankton biomass. Here we present genetic, morphological and ecophysiological properties of 35 bacterial strains affiliated with the Limnohabitans genus newly isolated from 11 non-acidic European freshwater habitats. The low genetic diversity indicated by the previous studies using the ribosomal SSU gene highly contrasted with the surprisingly rich morphologies and different patterns in substrate utilization of isolated strains. Therefore, the intergenic spacer between 16S and 23S rRNA genes was successfully tested as a fine-scale marker to delineate individual lineages and even genotypes. For further studies, we propose the division of the Limnohabitans genus into five lineages (provisionally named as LimA, LimB, LimC, LimD and LimE) and also additional sublineages within the most diversified lineage LimC. Such a delineation is supported by the morphology of isolated strains which predetermine large differences in their ecology. PMID:23505469

  5. The genus Isodon (Schrad. ex Benth. Spach in Africa and a new genus Rabdosiella Codd (Lamiaceae

    Directory of Open Access Journals (Sweden)

    L. E. Codd

    1984-12-01

    Full Text Available The typification of the genus Isodon (Schrad. ex Benth. Spach and its occurrence in Africa are discussed; an allied genus Rabdosiella Codd is described and the combinations R. calycina (Benth. Codd and R. ternifolia (D.Don Codd (the latter an Indian species are effected.

  6. An integrated renewable energy park approach for algal biofuel production in United States

    Energy Technology Data Exchange (ETDEWEB)

    Subhadra, Bobban [Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131 (United States); Edwards, Mark [Marketing and Sustainability, W.P. Carey School of Business, Arizona State University, Tempe, AZ 85282 (United States)

    2010-09-15

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed. (author)

  7. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review

    Directory of Open Access Journals (Sweden)

    Pavel Pořízka

    2014-09-01

    Full Text Available Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail.

  8. An integrated renewable energy park approach for algal biofuel production in United States

    International Nuclear Information System (INIS)

    Subhadra, Bobban; Edwards, Mark

    2010-01-01

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed.

  9. Identification and nomenclature of the genus Penicillium.

    Science.gov (United States)

    Visagie, C M; Houbraken, J; Frisvad, J C; Hong, S-B; Klaassen, C H W; Perrone, G; Seifert, K A; Varga, J; Yaguchi, T; Samson, R A

    2014-06-01

    Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens. Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept of Penicillium was re-defined to accommodate species from other genera, such as Chromocleista, Eladia, Eupenicillium, Torulomyces and Thysanophora, which together comprise a large monophyletic clade. As a result of this, and the many new species described in recent years, it was necessary to update the list of accepted species in Penicillium. The genus currently contains 354 accepted species, including new combinations for Aspergillus crystallinus, A. malodoratus and A. paradoxus, which belong to Penicillium section Paradoxa. To add to the taxonomic value of the list, we also provide information on each accepted species MycoBank number, living ex-type strains and provide GenBank accession numbers to ITS, β-tubulin, calmodulin and RPB2 sequences, thereby supplying a verified set of sequences for each species of the genus. In addition to the nomenclatural list, we recommend a standard working method for species descriptions and identifications to be adopted by laboratories working on this genus.

  10. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes

    OpenAIRE

    Kumar, Vikas; Kutschera, Verena E.; Nilsson, Maria A.; Janke, Axel

    2015-01-01

    Background The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated...

  11. Identification and nomenclature of the genus Penicillium

    DEFF Research Database (Denmark)

    Visagie, C.M.; Houbraken, J.; Frisvad, Jens Christian

    2014-01-01

    Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens....... Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept...... of accepted species in Penicillium. The genus currently contains 354 accepted species, including new combinations for Aspergillus crystallinus, A. malodoratus and A. paradoxus, which belong to Penicillium section Paradoxa. To add to the taxonomic value of the list, we also provide information on each accepted...

  12. The genus curve of the Abell clusters

    Science.gov (United States)

    Rhoads, James E.; Gott, J. Richard, III; Postman, Marc

    1994-01-01

    We study the topology of large-scale structure through a genus curve measurement of the recent Abell catalog redshift survey of Postman, Huchra, and Geller (1992). The structure is found to be spongelike near median density and to exhibit isolated superclusters and voids at high and low densities, respectively. The genus curve shows a slight shift toward 'meatball' topology, but remains consistent with the hypothesis of Gaussian random phase initial conditions. The amplitude of the genus curve corresponds to a power-law spectrum with index n = 0.21-0.47+0.43 on scales of 48/h Mpc or to a cold dark matter power spectrum with omega h = 0.36-0.17+0.46.

  13. The genus curve of the Abell clusters

    Science.gov (United States)

    Rhoads, James E.; Gott, J. Richard, III; Postman, Marc

    1994-01-01

    We study the topology of large-scale structure through a genus curve measurement of the recent Abell catalog redshift survey of Postman, Huchra, and Geller (1992). The structure is found to be spongelike near median density and to exhibit isolated superclusters and voids at high and low densities, respectively. The genus curve shows a slight shift toward 'meatball' topology, but remains consistent with the hypothesis of Gaussian random phase initial conditions. The amplitude of the genus curve corresponds to a power-law spectrum with index n = 0.21(sub -0.47 sup +0.43) on scales of 48/h Mpc or to a cold dark matter power spectrum with omega h = 0.36(sub -0.17 sup +0.46).

  14. Therapeutic value of the genus Alpinia, Zingiberaceae

    Directory of Open Access Journals (Sweden)

    Cristiane P. Victório

    2011-02-01

    Full Text Available Plants containing bioactive substances have increasingly become the object of research studies, particularly those plants with therapeutic value. Many species of the genus Alpinia provide a variety of medicinal properties, such as, Alpinia zerumbet (Pers. Burtt et Smith and A. purpurata (Vieill K. Schum, which have a significant presence in Brazil. These species have been commercialized in the food and cosmetic industries. However, their greatest importance arises from the medicinal properties of their essential oils containing flavonoids, terpenoids and kavalactones which have been used in folk medicine to treat, for example, arterial hypertension and inflammatory processes. In addition, such species are also used in multidisciplinary studies, including phytochemistry, ethnobotany and biology, indicating the key pharmacological role of this genus in everyday life. Therefore, this work aims to present a bibliographic review of the genus Alpinia and its significance in therapeutic applications.

  15. Notes on the genus Punctelia in Denmark

    DEFF Research Database (Denmark)

    Christensen, Steen; Søchting, Ulrik

    2007-01-01

    establishing the genus Punctelia, did not re-combine P. ulophylla, nor include it in the accompanying key. She probably considered it as a synonym of P. subrudecta. In a study on European Punctelia species with lecanoric acid, van Herk & Aptroot (2000) accepted the taxon and made the combination Punctelia...... name at species level, proposed the combination Punctelia jeckeri, and lectotypified the name. As a preparatory work to a forthcoming revision of the Danish lichen checklist (Søchting & Alstrup 2007) it was decided to examine the Danish material of the genus Punctelia....

  16. Determination of Total Carbohydrates in Algal Biomass: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Van Wychen, Stefanie; Laurens, Lieve M. L.

    2016-01-13

    This procedure uses two-step sulfuric acid hydrolysis to hydrolyze the polymeric forms of carbohydrates in algal biomass into monomeric subunits. The monomers are then quantified by either HPLC or a suitable spectrophotometric method.

  17. COMBUSTION ANALYSIS OF ALGAL OIL METHYL ESTER IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    HARIRAM V.

    2013-02-01

    Full Text Available Algal oil methyl ester was derived from microalgae (Spirulina sp. The microalga was cultivated in BG 11 media composition in a photobioreactor. Upon harvesting, the biomass was filtered and dried. The algal oil was obtained by a two step solvent extraction method using hexane and ether solvent. Cyclohexane was added to biomass to expel the remaining algal oil. By this method 92% of algal oil is obtained. Transesterification process was carried out to produce AOME by adding sodium hydroxide and methanol. The AOME was blended with straight diesel in 5%, 10% and 15% blend ratio. Combustion parameters were analyzed on a Kirloskar single cylinder direct injection compression ignition engine. The cylinder pressure characteristics, the rate of pressure rise, heat release analysis, performance and emissions were studied for straight diesel and the blends of AOME’s. AOME 15% blend exhibits significant variation in cylinder pressure and rate of heat release.

  18. THE TRPV1 RECEPTOR: THE INTERAGENCY, INTERNATION SYMPOSIUM ON CYANOBACTERIAL HARMFUL ALGAL BLOOMS.

    Science.gov (United States)

    Background and Significance Evidence indicates that the frequency of occurrence of cyanobacterial harmful algal blooms (CHABs) is increasing in spatial and temporal extent in the US and worldwide. Cyanotoxins are among the most potent toxins known, causing death through ...

  19. Cyanobacterial-algal cenoses in ordinary chernozems under the impact of different phytoameliorants

    Science.gov (United States)

    Dubovik, I. E.; Suyundukov, Ya. T.; Khasanova, R. F.; Shalygina, R. R.

    2016-04-01

    General ecological and taxonomic characteristics of cyanobacterial-algal cenoses in ordinary chernozems under different ameliorative plants (phytoameliorants) were studied in the Trans-Ural region of the Republic of Bashkortostan. A comparative analysis of the taxa of studied cenoses in the soils under leguminous herbs and grasses was performed. The phytoameliorative effect of different herbs and their relationships with cyanobacterial-algal cenoses were examined. Overall, 134 cyanoprokaryotic and algal species belonging to 70 genera, 36 families, 15 orders, and 9 classes were identified. Cyanobacterial-algal cenoses included the divisions of Chlorophyta, Cyanoprokaryota, Xanthophyta, Bacillariophyta, and Euglenophyta. Representatives of Ch-, X-, CF-, and P-forms were the leading ecobiomorphs in the studied cenoses.

  20. The effect of algal and bacterial filters on sea water quality during ...

    African Journals Online (AJOL)

    quality changes in bacterial and algal filtration systems over a two month period. Juvenile ..... of the algae, prawns and micro-organisms (decomposition of excess food and .... Cultivation of marine organisms: Water quality management and ...

  1. effect of natural blue-green algal cells lysis on freshwater quality

    African Journals Online (AJOL)

    Compaq

    released into water due to algal cells lysis was performed by placing samples in two ... Keywords; Algae, cells lysis, Fatty acids, gas chromatography time-of-flight mass spectrometry, water quality ... Factors such as municipal and industrial.

  2. Characterisation of transparent exopolymer particles (TEP) produced during algal bloom: A membrane treatment perspective

    KAUST Repository

    Villacorte, Loreen O.; Ekowati, Yuli; Winters, Harvey; Amy, Gary L.; Schippers, Jan Cornelis; Kennedy, D.

    2013-01-01

    Algal blooms are currently a major concern of the membrane industry as it generates massive concentrations of organic matter (e.g. transparent exopolymer particles [TEP]), which can adversely affect the operation of membrane filtration systems

  3. Comparison of Acute Toxicity of Algal Metabolites Using Bioluminescence Inhibition Assay

    Directory of Open Access Journals (Sweden)

    Hansa Jeswani

    2015-01-01

    Full Text Available Microalgae are reported to degrade hazardous compounds. However, algae, especially cyanobacteria are known to produce secondary metabolites which may be toxic to flora, fauna and human beings. The aim of this study was selection of an appropriate algal culture for biological treatment of biomass gasification wastewater based on acute toxicity considerations. The three algae that were selected were Spirulina sp., Scenedesmus abundans and a fresh water algal consortium. Acute toxicity of the metabolites produced by these algal cultures was tested at the end of log phase using the standard bioluminescence inhibition assay based on Vibrio fischeri NRRLB 11174. Scenedesmus abundans and a fresh water algal consortium dominated by cyanobacteria such as Phormidium, Chroococcus and Oscillatoria did not release much toxic metabolites at the end of log phase and caused only about 20% inhibition in bioluminescence. In comparison, Spirulina sp. released toxic metabolites and caused 50% bioluminescence inhibition at 3/5 times dilution of the culture supernatant (EC50.

  4. Non-conventional approaches to food processing in CELSS, 1. Algal proteins: Characterization and process optimization

    Science.gov (United States)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine make algal protein isolate a high quality component of closed ecological life support system diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical carbon dioxide resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  5. Non-conventional approaches to food processing in CELSS. I - Algal proteins: Characterization and process optimization

    Science.gov (United States)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of CELSS diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  6. Free ammonia offers algal crop protection from predators in dairy wastewater and ammonium-rich media.

    Science.gov (United States)

    Thomas, Patrick K; Dunn, Gary P; Passero, Maxine; Feris, Kevin P

    2017-11-01

    Cost-effective methods for protecting crops from grazing organisms like rotifers are needed to reduce the risk of pond crashes in mass algal cultures. We present a novel strategy to optimize the exposure time to free ammonia, via control of media pH, in both defined media and dairy anaerobic digester effluent to suppress rotifers and maintain algal productivity. We tested five different free ammonia exposure times (0, 1, 2, 6, and 12h) and found a significant nonlinear effect of exposure time (p0.9) on rotifer survival. In both media types, 6-12h of elevated free ammonia significantly reduced Brachionus plicatilis rotifer survival with no negative effects on Nannochloropsis oculata, while shorter exposure times were insufficient to inhibit rotifers, leading to severe algal culture crashes. These results suggest that algal crops can be protected from rotifers, without productivity loss, by elevating free ammonia for 6 or more hours. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Bio prospecting for High Lipid-producing Indigenous Algal in 8 South African provinces

    CSIR Research Space (South Africa)

    Ramukhwatho, R

    2011-10-01

    Full Text Available The scope of this project covers the screening and characterisation of selected indigenous algal strains and screening them for lipid production potential. The algae were isolated from salt- and freshwater bodies, along the Western Cape coastline...

  8. Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP)

    International Nuclear Information System (INIS)

    He Shengbing; Xue Gang

    2010-01-01

    Algal-based immobilization process was applied to treat the effluent from a secondary wastewater treatment plant. Batch test proved that algae could attach onto fiber-bundle carrier in 7 days, and then the algal-based immobilization reactor could reduce TN (total nitrogen) and TP (total phosphorus) significantly within 48 h. Based on the above investigations, the hydraulic retention time (HRT) of the algal-based immobilization reactor in continuous operation mode was determined to be 2 days. During the 91 days of experiment on the treating secondary effluent of Guang-Rao wastewater treatment plant, it was found that the fiber-bundle carrier could collect the heterobacteria and nitrifying bacteria gradually, and thus improved the COD removal efficiency and nitrification performance step by step. Results of the continuous operation indicated that the final effluent could meet the Chinese National First A-level Sewage Discharge Standard when the algal-based immobilization reactor reached steady state.

  9. A Molecular Genetic Classification of Zooxanthellae and the Evolution of Animal-Algal Symbioses

    Science.gov (United States)

    Rowan, Rob; Powers, Dennis A.

    1991-03-01

    Zooxanthellae are unicellular algae that occur as endosymbionts in many hundreds of marine invertebrate species. Because zooxanthellae have traditionally been difficult to classify, little is known about the natural history of these symbioses. Zooxanthellae were isolated from 131 individuals in 22 host taxa and characterized by the use of restriction fragment length polymorphisms (RFLPs) in nuclear genes that encode small ribosomal subunit RNA (ssRNA). Six algal RFLPs, distributed host species specifically, were detected. Individual hosts contained one algal RFLP. Zooxanthella phylogenetic relationships were estimated from 22 algal ssRNA sequences-one from each host species. Closely related algae were found in dissimilar hosts, suggesting that animal and algal lineages have maintained a flexible evolutionary relation with each other.

  10. Harmful algal blooms discovered during the Mote Monthly transect cruises, 1998 and 1999 (NODC Accession 0000532)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Harmful algal blooms of the toxic dinoflagellate, Karenia brevis, have caused massive fish kills in the Gulf of Mexico since the 1500's, with most occurrences on the...

  11. Atmospheric Transport of Nutrient Matter during a Red Tide Event

    Science.gov (United States)

    Tian, R.; Weng, H.; Lin, Q.

    2017-12-01

    Harmful algal blooms (HABs) resulting from an explosive increase in algae population have become a global problem in coastal marine environment. During 3rd -8th, May of 2006, large-scale, mixed prorocentrum dentatum stein and skeletonema costatum bloom developed in those water off the coast of Zhejiang province (Zhoushan city and Liuheng Island) of China. Using Global Nested Air Quality Prediction Modeling System (GNAQPMS), we find an atmospheric transport of considerable nutrient matter (nitrate, ammonium, Fe (Ⅱ)) to East China Sea (ECS) before the red tide event. It be inferred that the atmospheric transport of nutrient matter is a significant source of nutrient matter in the water of East China Sea whose hydrological setting is dominated by oligotrophic Taiwan Warm Current in spring. Such atmospheric transport of nutrient matter is likely a cause factor of red tide in the coast of East China Sea, especially during dust event. The study provides new information for discovering the occurring mechanism of the red tides in ECS and the essential parameters for the red tide research.

  12. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo

    Directory of Open Access Journals (Sweden)

    Ladislav Nedbal

    2010-09-01

    Full Text Available Algae are becoming a strategic source of fuels, food, feedstocks, and biologically active compounds. This potential has stimulated the development of innovative analytical methods focused on these microorganisms. Algal lipids are among the most promising potential products for fuels as well as for nutrition. The crucial parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids quantified by the iodine value. Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. The Raman spectra were collected from three selected algal species immobilized in an agarose gel. Prior to immobilization, the algae were cultivated in the stationary phase inducing an overproduction of lipids. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm−1 (cis C=C stretching mode and 1,445 cm−1 (CH2 scissoring mode as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids. These spectral features were first quantified for pure fatty acids of known iodine value. The resultant calibration curve was then used to calculate the effective iodine value of storage lipids in the living algal cells from their Raman spectra. We demonstrated that the iodine value differs significantly for the three studied algal species. Our spectroscopic estimations of the iodine value were validated using GC-MS measurements and an excellent agreement was found for the Trachydiscus minutus species. A good agreement was also found with the earlier published data on Botryococcus braunii. Thus, we propose that Raman microspectroscopy can become technique of choice in the rapidly expanding field of algal biotechnology.

  13. Algal Biofuels Strategy. Proceedings from the March 26-27, 2014, Workshop, Charleston, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-06-01

    This report is based on the proceedings of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy’s Bioenergy Technologies Office’s Algal Biofuel Strategy Workshop on March 26-27, 2014, in Charleston, South Carolina. The workshop objective was to convene stakeholders to engage in discussion on strategies over the next 5 to 10 years to achieve affordable, scalable, and sustainable algal biofuels.

  14. Stressor-Response Models Relating Nutrient Enrichment to Algal Communities in Pacific Northwest Streams and Rivers

    Science.gov (United States)

    Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.

    2015-12-01

    Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.

  15. Investigation and Control of Algal Grwoths in Water Resources Using Zn Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mehdi Eskandary

    2016-03-01

    Full Text Available Increasing nutrients such as nitrates and phosphates in water resources lead to the growth of various algal species, causing undesirable odors and taste in the water. This study investigated the identification and removal of harmful algal growths by Zinc oxide nanoparticles (using Ardabil Yamichi Dam reservoir as a case study. Samples were initially collected from the Yamichi Dam reservoir and the algae in the water samples were cultivated. Enough time was allowed for the algae to grow before they were identified under the microscope. The results showed that most of the algal species grown in the culture medium belonged to the species Cladophora and Euglena. Zinc oxide nanoparticles were then synthesized to be used in the removal and/or inhibition of algal growths. ZnO nanoparticles were subsequently characterized by transmission electron microscopy (TEM and X-ray diffraction (XRD methods which revealed that the size of the ZnO nanoparticles was in the range of 10‒30 nanometers and further that the nanoparticles were pure and of a  hexagonal phase. In continuation, the capability of ZnO nanoparticles with concentrations in the range of 0-3 ppm to inhibit algal growth was investigated. Results showed that no reduction was observed in algal growth for Zinc oxide nanoparticle concentrations below 1 mg/lit. At concentrations between 1 to 2 mg/lit, however, a significant reduction was observed in algal growth. Finally, it was found that algal growths completely stopped at ZnO concentrations beyond 2 mg/lit

  16. Antimicrobials from the marine algal endophyte Penicillium sp.

    Science.gov (United States)

    Flewelling, Andrew J; Johnson, John A; Gray, Christopher A

    2013-03-01

    An endophytic fungus identified as Penicillium sp. was isolated from the brown alga Fucus spiralis collected from the Shetland Islands, United Kingdom. Bioassay-guided fractionation of an extract of the fungus led to the isolation of cladosporin, epiepoformin, phyllostine, and patulin, all of which showed antimicrobial activity against either Staphylococcus aureus or Pseudomonas aeruginosa. Cladosporin has not previously been identified from a fungus of the genus Penicillium, and, despite being biosynthetically related, epiepoformin, phyllostine and patulin have not been previously reported from one source.

  17. Humpback Dolphins: A Brief Introduction to the Genus Sousa.

    Science.gov (United States)

    Jefferson, Thomas A; Curry, Barbara E

    2015-01-01

    IUCN Red List criteria in the current volume. The results suggest that all four species in the genus are threatened at some level (suggested Red List status ranges from Vulnerable for S. chinensis and S. sahulensis to Critically Endangered for S. teuszii). © 2015 Elsevier Ltd All rights reserved.

  18. Isolation and characterization of PSI-LHCI super-complex and their sub-complexes from a red alga Cyanidioschyzon merolae.

    Science.gov (United States)

    Tian, Lirong; Liu, Zheyi; Wang, Fangjun; Shen, Liangliang; Chen, Jinghua; Chang, Lijing; Zhao, Songhao; Han, Guangye; Wang, Wenda; Kuang, Tingyun; Qin, Xiaochun; Shen, Jian-Ren

    2017-09-01

    Photosystem I (PSI)-light-harvesting complex I (LHCI) super-complex and its sub-complexes PSI core and LHCI, were purified from a unicellular red alga Cyanidioschyzon merolae and characterized. PSI-LHCI of C. merolae existed as a monomer with a molecular mass of 580 kDa. Mass spectrometry analysis identified 11 subunits (PsaA, B, C, D, E, F, I, J, K, L, O) in the core complex and three LHCI subunits, CMQ142C, CMN234C, and CMN235C in LHCI, indicating that at least three Lhcr subunits associate with the red algal PSI core. PsaG was not found in the red algae PSI-LHCI, and we suggest that the position corresponding to Lhca1 in higher plant PSI-LHCI is empty in the red algal PSI-LHCI. The PSI-LHCI complex was separated into two bands on native PAGE, suggesting that two different complexes may be present with slightly different protein compositions probably with respective to the numbers of Lhcr subunits. Based on the results obtained, a structural model was proposed for the red algal PSI-LHCI. Furthermore, pigment analysis revealed that the C. merolae PSI-LHCI contained a large amount of zeaxanthin, which is mainly associated with the LHCI complex whereas little zeaxanthin was found in the PSI core. This indicates a unique feature of the carotenoid composition of the Lhcr proteins and may suggest an important role of Zea in the light-harvesting and photoprotection of the red algal PSI-LHCI complex.

  19. Pachyseris inattesa sp. n. (Cnidaria, Anthozoa, Scleractinia): A new reef coral species from the red sea and its phylogenetic relationships

    KAUST Repository

    Terraneo, Tullia I.; Berumen, Michael L.; Arrigoni, Roberto; Waheed, Zarinah; Bouwmeester, Jessica; Caragnano, Annalisa; Stefani, Fabrizio; Benzoni, Francesca

    2014-01-01

    A new scleractinian coral species, Pachyseris inattesa sp. n., is described from the Red Sea. Despite a superficial resemblance with some species in the agariciid genus Leptoseris with which it has been previously confused, P. inattesa sp. n. has micro-morphological characters typical of the genus Pachyseris. This genus, once part of the Agariciidae, is comprised of five extant species and is widely distributed throughout the tropical Indo-Pacific. It is currently incertae sedis as a result of recent molecular analysis and appears to be closely related to the Euphylliidae. A molecular phylogenetic reconstruction including P. inattesa sp. n., the genus type species P. rugosa, and P. speciosa, all present in the Red Sea, was performed using the mitochondrial intergenic spacer between COI and 16S-rRNA. The results confirm that P. inattesa sp. n. is a monophyletic lineage closely related to the other Pachyseris species examined. © Tullia I. Terraneo et al.

  20. Pachyseris inattesa sp. n. (Cnidaria, Anthozoa, Scleractinia): A new reef coral species from the red sea and its phylogenetic relationships

    KAUST Repository

    Terraneo, Tullia I.

    2014-08-13

    A new scleractinian coral species, Pachyseris inattesa sp. n., is described from the Red Sea. Despite a superficial resemblance with some species in the agariciid genus Leptoseris with which it has been previously confused, P. inattesa sp. n. has micro-morphological characters typical of the genus Pachyseris. This genus, once part of the Agariciidae, is comprised of five extant species and is widely distributed throughout the tropical Indo-Pacific. It is currently incertae sedis as a result of recent molecular analysis and appears to be closely related to the Euphylliidae. A molecular phylogenetic reconstruction including P. inattesa sp. n., the genus type species P. rugosa, and P. speciosa, all present in the Red Sea, was performed using the mitochondrial intergenic spacer between COI and 16S-rRNA. The results confirm that P. inattesa sp. n. is a monophyletic lineage closely related to the other Pachyseris species examined. © Tullia I. Terraneo et al.

  1. Inquiring into Red/Red Inquiring

    Directory of Open Access Journals (Sweden)

    Ken Gale

    2013-05-01

    Full Text Available This layered account of an inquiry into ‘red’ emerged out of a collective biography workshop. In the middle of the Wiltshire countryside, an international and interdisciplinary group of scholars gathered together to write and make other things and marks on paper that asked questions of, and into, the spaces between words, people, things and their environments. We did not set out to workshop or write into or paint ‘red’ but, rather, it was red that slipped in, uninvited, and painted and wrote us. Red arose as a blush or a stain seeping amongst us that became referenced obliquely by material objects, metaphors and fairytales. The stain spread, became noticeable through our weekend together and beyond it, creating another (bright red artery vein of connection to write with.

  2. Whole-lake algal responses to a century of acidic industrial deposition on the Canadian Shield

    International Nuclear Information System (INIS)

    Vinebrooke, R.D.; Dixit, S.S.; Graham, M.D.; Gunn, J.M.; Chen, Y.-W.; Belzile, N.

    2002-01-01

    A century of cultural acidification is hypothesized to have altered algal community structure in boreal lakes. To date, this hypothesis has remained untested because of both the lack of data predating the onset of industrial pollution and incomplete estimates of whole-lake algal community structure. High-pressure liquid chromatography (HPLC) of sedimentary pigments was used to quantify whole-lake algal responses to acid deposition in six boreal lakes located in Killarney Park, Ontario, Canada. Concomitant significant increases in chlorophyll and carotenoid concentrations, diatom-inferred lake acidity, and metal levels since 1900 suggested that algal abundances in four acidified lakes and one small, circumneutral lake were enhanced by aerial pollution. An alternate explanation is that increased acidity and underwater light availability in the acidified lakes shifted algal abundance towards phytobenthos and deepwater phytoplankton, whose pigment signatures were better preserved in the sediments. Taxonomically diagnostic pigment stratigraphies were consistent with shifts in algal community structure towards filamentous green phytobenthos and deepwater phytoflagellates in the acidified lakes. Our findings suggest that decades of aerial pollution have altered the base of foodwebs in boreal lakes, potentially rendering them less resilient to other environmental stressors. (author)

  3. Enhanced production of green tide algal biomass through additional carbon supply.

    Science.gov (United States)

    de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).

  4. Enhanced production of green tide algal biomass through additional carbon supply.

    Directory of Open Access Journals (Sweden)

    Pedro H de Paula Silva

    Full Text Available Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2 enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (- as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (- affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9, and grew at similar rates up to pH 9, demonstrating HCO3 (- utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%, Chaetomorpha linum (24% and to a lesser extent for Cladophora patentiramea (11%, compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-.

  5. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Clifford J.; Sayre, Richard T.; Magnuson, Jon K.; Anderson, Daniel B.; Baxter, Ivan; Blaby, Ian K.; Brown, Judith K.; Carleton, Michael; Cattolico, Rose Ann; Dale, Taraka; Devarenne, Timothy P.; Downes, C. Meghan; Dutcher, Susan K.; Fox, David T.; Goodenough, Ursula; Jaworski, Jan; Holladay, Jonathan E.; Kramer, David M.; Koppisch, Andrew T.; Lipton, Mary S.; Marrone, Babetta L.; McCormick, Margaret; Molnár, István; Mott, John B.; Ogden, Kimberly L.; Panisko, Ellen A.; Pellegrini, Matteo; Polle, Juergen; Richardson, James W.; Sabarsky, Martin; Starkenburg, Shawn R.; Stormo, Gary D.; Teshima, Munehiro; Twary, Scott N.; Unkefer, Pat J.; Yuan, Joshua S.; Olivares, José A.

    2017-03-01

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortiumbegan, littlewas known about themolecular basis of algal biomass or oil production. Very fewalgal genome sequenceswere available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played bymetabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oil yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. This review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.

  6. THE GENUS TRIGONOSPORA (THELYPTERIDACEAE IN MALESIA

    Directory of Open Access Journals (Sweden)

    RE Holttum

    2014-01-01

    Full Text Available The distribution of the genus is discussed, and the Malesian species distinguished and described. Two new combinations are effected, Trigono-spora calcarata (Bl. Holtt. and T. koorderSiiH (Chr. Holtt.; the latter is here recognized for the first time as closely related to T. calcarata,.

  7. Palynology of the Genus Stachytarpheta Vahl. (Verbenaceae

    Directory of Open Access Journals (Sweden)

    Olubukola ADEDEJI

    2010-12-01

    Full Text Available The exine morphology of pollen grains of Stachytarpheta indica (Linn. Vahl, Stachytarpheta cayennensis (Rich. Vahl and Stachytarpheta angustifolia (Mill. Vahl is reported. This study was carried out with a light microscope. Pollen grains from fresh anthers were collected and aceolysed. Statistical analysis used to analyse the data collected include cluster analysis, correlation analysis, similarity and distance indices. The pollen grains are spheroidal to oblate to sub-oblate in shape. They are aperturate, both colpate and porate. Tricolpate types occur most frequently, acolpate, monocolpate, bicolpate and tetracolpate types less frequently. The multicolpate and multiporate attributes in all the species indicate that the genus is not primitive in evolutionary history and this species probably, evolved around in the same time. According to the size, the pollen grains of the genus falls into groups permagna (pollen diameter 100-200 ?m and giganta (pollen diameter greater than 200 ?m. S. cayennensis and S. anguistifolia belong to group permagna and S. indica only in the group giganta. This separates S. indica from the other two species. The large pollen grain size in the genus clearly supports the fact that the flowers in the genus are more insect-and-bird pollinated than wind pollinated. The similarity and distance indices of the species showed that S. cayennensis and S. angustifolia are the closest. S. indica is closer to S. angustifolia but farther from S. cayennensis.

  8. Genome Evolution in the Genus Sorghum (Poaceae)

    OpenAIRE

    PRICE, H. JAMES; DILLON, SALLY L.; HODNETT, GEORGE; ROONEY, WILLIAM L.; ROSS, LARRY; JOHNSTON, J. SPENCER

    2005-01-01

    • Background and Aims The roles of variation in DNA content in plant evolution and adaptation remain a major biological enigma. Chromosome number and 2C DNA content were determined for 21 of the 25 species of the genus Sorghum and analysed from a phylogenetic perspective.

  9. Some genus 3 curves with many points

    NARCIS (Netherlands)

    Auer, R; Top, J; Fieker, C; Kohel, DR

    2002-01-01

    We explain a naive approach towards the problem of finding genus 3 curves C over any given finite field F-q of odd characteristic, with a number of rational points close to the Hasse-Weil-Serre upper bound q+1+3[2rootq]. The method turns out to be successful at least in characteristic 3.

  10. Phylogeny of the plant genus Pachypodium (Apocynaceae

    Directory of Open Access Journals (Sweden)

    Dylan O. Burge

    2013-04-01

    Full Text Available Background. The genus Pachypodium contains 21 species of succulent, generally spinescent shrubs and trees found in southern Africa and Madagascar. Pachypodium has diversified mostly into arid and semi-arid habitats of Madagascar, and has been cited as an example of a plant group that links the highly diverse arid-adapted floras of Africa and Madagascar. However, a lack of knowledge about phylogenetic relationships within the genus has prevented testing of this and other hypotheses about the group.Methodology/Principal Findings. We use DNA sequence data from the nuclear ribosomal ITS and chloroplast trnL-F region for all 21 Pachypodium species to reconstruct evolutionary relationships within the genus. We compare phylogenetic results to previous taxonomic classifications and geography. Results support three infrageneric taxa from the most recent classification of Pachypodium, and suggest that a group of African species (P. namaquanum, P. succulentum and P. bispinosum may deserve taxonomic recognition as an infrageneric taxon. However, our results do not resolve relationships among major African and Malagasy lineages of the genus.Conclusions/Significance. We present the first molecular phylogenetic analysis of Pachypodium. Our work has revealed five distinct lineages, most of which correspond to groups recognized in past taxonomic classifications. Our work also suggests that there is a complex biogeographic relationship between Pachypodium of Africa and Madagascar.

  11. A revision of the genus Mastixia (Cornaceae)

    NARCIS (Netherlands)

    Matthew, K.M.

    1976-01-01

    A revision of the genus in its entire range of distribution is presented. Out of more than 50 published specific names, 9 species (with 13 subspecies or varieties) are recognized, in addition to 4 new species and one new subspecies. The two subgenera Pentamastixia and Tetramastixia of Wangerin

  12. Chloothamnus, a neglected genus of Bambusaceae

    NARCIS (Netherlands)

    Henrard, J.Th.

    1936-01-01

    Chloothamnus BUSE ap. MIQUEL, Pl. Jungh. 1854, 386 — Oreiostachys GAMBLE ap. KOORDERS, Verh. Kon. Ak. Wet. 16, 1908, 657.. Hab.: Malay Archipelago. 1. C. chilianthus BUSE, l.c., type species of the genus — Schizostachyum chilianthum (BUSE) KURZ, Journ. As. Soc. Beng. 39, ii, 1870, 88 — non Melocanna

  13. The genus Malassezia and human disease

    Directory of Open Access Journals (Sweden)

    Inamadar A

    2003-07-01

    Full Text Available Sabouraud's Pityrosporum is now recognized as Malassezia. With taxonomic revision of the genus, newer species have been included. The role of this member of the normal human skin flora in different cutaneous and systemic disorders is becoming clearer. The immunological responses it induces in the human body are conflicting and their relevance to clinical features is yet to be explored.

  14. The genus Lolium : taxonomy and genetic resources

    NARCIS (Netherlands)

    Loos, B.P.

    1994-01-01

    Several aspects of variation within the genus Lolium, and more in detail within Lolium perenne (perennial ryegrass) have been highlighted. As the results are extensively discussed in each chapter, the general discussion is focused on two aspects of

  15. A revision of the genus Phacellaria (Santalaceae)

    NARCIS (Netherlands)

    Danser, B.H.

    1939-01-01

    On several occasions the author received specimens for determination under the name of Loranthaceae, which in reality appeared to be Phacellarias, usually parasitic on Loranthaceae. When trying to name these Phacellarias, he preceived how difficult it was to survey the literature of the genus.

  16. Conspectus of the genus Amyema Tieghem (Loranthaceae)

    NARCIS (Netherlands)

    Barlow, Bryan A.

    1992-01-01

    The Australasian/Malesian genus Amyema is reviewed. Particular attention is given to the species of the Malesian region, as a precursor to a treatment of Loranthaceae for Flora Malesiana. Amyema comprises 92 species, and is distributed from the southeast Asian mainland (Malaya, Thailand) throughout

  17. Phylogeny and taxonomy of the genus Cylindrocladiella

    NARCIS (Netherlands)

    Lombard, L.; Shivas, R.G.; To-anun, C.; Crous, P.W.

    2012-01-01

    The genus Cylindrocladiella was established to accommodate Cylindrocladium-like fungi that have small, cylindrical conidia and aseptate stipe extensions. Contemporary taxonomic studies of these fungi have relied on morphology and to a lesser extent on DNA sequence comparisons of the internal

  18. Phylogeny and taxonomy of the genus Gliocladiopsis

    NARCIS (Netherlands)

    Lombard, L.; Crous, P.W.

    2012-01-01

    Using a global set of isolates and a phylogenetic approach employing DNA sequence data from five genes (β-tubulin, histone H3, internal transcribed spacer region, 28S large subunit region and translation elongation factor 1-α), the taxonomic status of the genus Gliocladiopsis (Glionectria)

  19. Phylogeny and taxonomy of the genus Gliocladiopsis

    NARCIS (Netherlands)

    Lombard, L.; Crous, P.W.

    2012-01-01

    Using a global set of isolates and a phylogenetic approach employing DNA sequence data from five genes (ß-tubulin, histone H3, internal transcribed spacer region, 28S large subunit region and translation elongation factor 1-a), the taxonomic status of the genus Gliocladiopsis (Glionectria)

  20. Records of the genus Coccygidium Saussure (Hymenoptera ...

    African Journals Online (AJOL)

    Coccygidium arabica sp. nov., (Hym., Braconidae, Agathidinae) is described from Saudi Arabia. Morphological diagnostic characters of the new species were figured and compared with those of the related species Coccygidium angostura. The genus Coccygidium Saussure is recorded for the first time from Saudi Arabia.

  1. Chemotaxonomy of the genus Nuxia (Buddlejaceae)

    DEFF Research Database (Denmark)

    Jensen, Søren Rosendal

    1999-01-01

    An investigation of two species of Nuxia (Buddlejaceae) showed that this genus is characterised by the presence of the eight-carbon iridoid glucoside unedoside and/or its derivatives. From N. floribunda was isolated unedoside, nuxioside (6-O-a-L-rhamnopyranosyl-unedoside) and 2''-acetyl-3...

  2. A new genus of Blacinae (Hymenoptera: Braconidae)

    Science.gov (United States)

    Lester P. Gibson

    1977-01-01

    A new genus, Canalicephalus, of the subfamily Blacinae is described along with 4 new species, C. orientalis from Borneo, C. novus from New Guinea, and C. bakeri and C. mindanao, both from the Philippines. Keys are included to separate these 2 genera and the 4...

  3. Thermoregulation of the subterranean rodent genus Bathyergus ...

    African Journals Online (AJOL)

    The thermoregulation of the largest subterranean rodent, genus Bathyergus, comprising two species, B. suillus and B. janetta,occurring in mesic and semiarid habitats respectively, was investigated and compared with that of other subterranean rodents. Both species display low resting metabolic rates and low body ...

  4. (Lepidoptera: Zygaenoidea) The genus Psycharium Herrich ...

    African Journals Online (AJOL)

    The genus Psycharium is revised for the first time. Until now, only a drawing of the female type species was known. The male and female of the type species, P. pellucens Herrich-Schaffer, and four new species, montanum, kammanassiense, bamardi and natalense,are comprehensively described. A key to the species of ...

  5. Biological advances in Bergenia genus plant

    African Journals Online (AJOL)

    Jane

    2011-08-08

    Aug 8, 2011 ... Bergenia, a genus belonging to Saxifragaceae family, is one of the most important medicinal plants, has high application values for human. Currently, wild Bergenia is becoming lacking, due to destruction of ecological environment and excessive excavation; furthermore, the study on it is not deep enough,.

  6. Phytochemical and Pharmacological Properties of the Genus ...

    African Journals Online (AJOL)

    Melodinus is an important genus comprising of approximately 53 species of medicinal plants (Apocynaceae). Some species have been used in Chinese folk medicine for the treatment of meningitis in children, rheumatic heart diseases, and diuresis, as well as a decongestive against migraine and sinusitis. This paper is a ...

  7. The genus Kochia (Chenopodiaceae) in North America

    Science.gov (United States)

    Ge-Lin Chu; Stewart Sanderson

    2008-01-01

    The genus Kochia and Bassia with which it has been combined, of Chenopodiaceae tribe Camphorosmeae, were at one time considered to include plants native to Eurasia, Australia, and North America, and included species of both C3 and C4 photosynthetic types. This aggregate has been reduced in size by removal of a large group of C3 Australian genera and species. Because of...

  8. A study in the genus Vulpia

    NARCIS (Netherlands)

    Henrard, J.Th.

    1937-01-01

    In conclusion, we propose the following nomenclatural alterations. For a good classification, the genus Vulpia is to be accepted as a member of the Festuceae. Various names of Vulpia are fixed according to our present rules of nomenclature, viz. V. bromoides (L.) GRAY, V. membranacea (L.) LINK, V.

  9. The genus Gymnospermium (Berberidaceae) in the Balkans

    DEFF Research Database (Denmark)

    Tan, Kit; Shuka, Lulezim; Siljak-Yakovlev, Sonja

    2011-01-01

    A revision of the genus Gymnospermium (Berberidaceae) in the Balkan Peninsula is carried out. Three species are recognised. Gymnospermium maloi is described as a new species from Mt. Picari in Gjirokastra district, southern Albania. It is compared with the closely related G. scipetarum which has...

  10. Polyphasic taxonomy of the genus Talaromyces

    DEFF Research Database (Denmark)

    Yilmaz, N.; Visagie, C.M.; Houbraken, J.

    2014-01-01

    The genus Talaromyces was described by Benjamin in 1955 as a sexual state of Penicillium that produces soft walled ascomata covered with interwoven hyphae. Phylogenetic information revealed that Penicillium subgenus Biverticillium and Talaromyces form a monophyletic clade distinct from the other...

  11. Interspecific hybridization in the genus Tulipa L.

    NARCIS (Netherlands)

    Creij, van M.G.M.

    1997-01-01

    The genus Tulipa L. comprises about 55 species. The tulip species are classified in two subgenera, Tulipa and Eriostemones, which are subdivided into five and three sections respectively. Commercial tulips are mainly cultivars

  12. Studies on the Genus Orbitolina (Foraminiferida)

    NARCIS (Netherlands)

    Hofker, J.

    1963-01-01

    The genus Orbitolina is described in detail and is shown to be represented by one species only: Orbitolina lenticularis (Blumenbach). This species can be subdivided into form-groups, based on the characteristics of the megalospheric embryonic apparatus. The evolution of the species is orthogenetic.

  13. Sarawakodendron, a new genus of Celastraceae

    NARCIS (Netherlands)

    Hou, Ding

    1967-01-01

    During my trip to Malaysia in 1966, sponsored by the Netherlands Foundation for the Advancement of Tropical Research (WOTRO), for doing field work on Anacardiaceae, a new tree genus was found in Sarawak belonging to the family Celastraceae which I have revised for the Flora Malesiana series I,

  14. The genus Lophopyxis Hook. f. (Lophopyxidaceae)

    NARCIS (Netherlands)

    Sleumer, H.

    1968-01-01

    When revising the Icacinaceae from SE. Asia and Malesia recently, my interest was drawn again to the genus Lophopyxis Hook. f. Designated by its author (1887) tentatively as a member of the Euphorbiaceae, it was rejected from this family by Pax as early as 1890. Engler (1893) transferred Lophopyxis

  15. A conspectus of the genus Bhesa (Celastraceae)

    NARCIS (Netherlands)

    Hou, Ding

    1958-01-01

    In his Numerical List Wallich inserted four specific epithets in the genus Kurrimia, viz 4334 K. pulcherrima Wall., 4335 K. calophylla Wall., 4336 K. paniculata Wall., and later 7200 K.? macrophylla Wall. The latter one was provided with a question mark; it was a new combination for Itea macrophylla

  16. The Mesozoic megafossil genus Linguifolium Arber 1917

    Directory of Open Access Journals (Sweden)

    Pattemore Gary A.

    2015-12-01

    Full Text Available The plant megafossil genus Linguifolium Arber 1917 is chiefly known from the Middle and Upper Triassic of Gondwana. The range of Linguifolium extended beyond Gondwana by the Late Triassic, persisting there through the earliest Jurassic (Hettangian. The parent plants probably grew in a well-watered, canopied environment.

  17. The Genus Diporochaeta (Oligochaeta Megascolecidae) in Queensland

    NARCIS (Netherlands)

    Jamieson, B.G.M.

    1976-01-01

    Perionychella is reassigned to Diporochaeta as a junior synonym. 9 new species are added to the 8 previously known Queensland species of Diporochaeta, all of which are redescribed, bringing the generic total for Australia to 77 named species. Distribution of the genus is disjunct, the Queensland

  18. On the genus Galidia and its species

    NARCIS (Netherlands)

    Jentink, F.A.

    1879-01-01

    In the year 1839 Is. Geoff. St. Hilaire ¹) described and figured three species of his new genus Galidia, viz: elegans, concolor and olivacea, all natives of Madagascar. It seems that Galidia olivacea has not been captured by the travellers who visited Madagascar after Bernier and Goudot: the only

  19. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T., E-mail: rsayre@newmexicoconsortium.org [Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM (United States)

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  20. [Algal control ability of allelopathically active submerged macrophytes: a review].

    Science.gov (United States)

    Xiao, Xi; Lou, Li-ping; Li, Hua; Chen, Ying-xu

    2009-03-01

    The inhibitory effect of allelochemicals released by submerged macrophytes on phytoplankton is considered as one of the mechanisms that contribute to the stabilization of clear-water status in shallow lakes. This paper reviewed the research progress in the allelopathy of submerged macrophytes on algae from the aspects of the occurrence frequency and coverage of allelopathically active submerged macrophytes in lakes, and the kinds and allelopathical effects of the allelochemicals released from the macrophytes. The previous researches indicated that allelopathically active submerged macrophyte species such as Myriophyllum, Ceratophyllum, and Elodea were efficient to control phytoplankton, especially when their biomass was high enough, and the dominant algae were sensitive species. The allelochemicals such as hydroxybenzene released by the submerged macrophytes could inhibit the growth of algae. Different phytoplankton species exhibited different sensitivity against allelochemicals, e.g., cyanobacteria and diatom were more sensitive than green algae, while epiphytic species were less sensitive than phytoplankton. Environmental factors such as light, temperature, and nutrients could significantly affect the allelopathical effect of submerged macrophytes. The research of the allelopathy of submerged macrophytes is still at its beginning, and further researches are needed on the effects of environmental factors on the allelopathy, extraction and identification of allelochemicals, selective algal control mechanisms, and metabolism of the allelochmicals.

  1. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    International Nuclear Information System (INIS)

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-01-01

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  2. Impact of iron porphyrin complexes when hydroprocessing algal HTL biocrude

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Jacqueline M.; Sudasinghe, Nilusha M.; Albrecht, Karl O.; Schmidt, Andrew J.; Hallen, Richard T.; Anderson, Daniel B.; Billing, Justin M.; Schaub, Tanner M.

    2016-10-01

    We apply Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for direct characterization of iron-porphyrins in hydrothermal liquefaction (HTL) biocrude oils derived from two algae: Tetraselmis sp. and cyanobacteria. The ironporphyrin compounds are shown to cause catalyst bed plugging during hydroprocessing due to iron deposition. Inductively-coupled plasma optical emission spectrometry (ICPOES) was utilized for iron quantitation in the plugged catalyst beds formed through hydroprocessing of the two HTL biocrudes and identifies an enrichment of iron in the upper five centimeters of the catalyst bed for Tetraselmis sp. (Fe=100,728 ppm) and cyanobacteria (Fe=115,450 ppm). Direct infusion FT-ICR MS analysis of the two HTL biocrudes with optimized instrument conditions facilitates rapid screening and identification of iron-porphyrins without prior chromatographic separation. With FT-ICR MS we identify 138 unique iron-porphyrin compounds in the two HTL biocrudes that are structurally similar to metal-porphyrins (e.g. Ni and V) observed in petroleum. No ironporphyrins are observed in the cyanobacteria HTL biocrude after hydroprocessing, which indicates that iron-porphyrin structures in the HTL biocrude are degraded during hydroprocessing. Hydrodemetallization reactions that occur through hydroprocessing of HTL biocrudes could be responsible for the decomposition of iron-porphyrin structures leading to metal deposition in the catalyst bed that result in catalyst deactivation and bed plugging, and must be addressed for effective upgrading of algal HTL biocrudes.

  3. Inhibition of marine algal photosynthesis by heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Overnell, J.

    1976-12-03

    A total of ninety phytoplankton species was recorded from June 1972 to May 1973 in samples taken weekly at Seal Beach, California. The study area was located in the vicinity of the mouth of the San Gabriel River, which is used as a site of discharge for heated effluents by two electric power plants and as a flood control channel by Los Angeles County. On a yearly basis, the two dominant algal groups were diatoms (forty-six species) and dinoflagellates (thirty-six species), accounting respectively for 64 percent and 30 percent of the total cell number, and for 20 percent and 79 percent of the total cell volume. The average phytoplankton concentration throughout the year was 180,000 cells l/sup -1/. A dinoflagellate bloom was observed in August between the two major peaks of diatoms which occurred during June--July and in late September. The five most common species (in order), Rhizosolenia delicatula, Chaetoceros curvisetus, Prorocentrum micans, Ceratium furca and Gymnodinium simplex, were present in more than 50 percent of the samples. The species diversity index (H') remained relatively stable during the year, showing no distinct seasonal pattern. Three interconnected associations of species were distinguished by x/sup 2/ analysis. The major group, composed mainly of dinoflagellates, was correlated with warm water conditions at Seal Beach. The other groups occurred at various times during the year, irrespective of seasonal variations, suggesting a possible mutualistic relationship between the species involved.

  4. Aerosol Emissions from Great Lakes Harmful Algal Blooms

    Energy Technology Data Exchange (ETDEWEB)

    May, Nathaniel W. [Department; Olson, Nicole E. [Department; Panas, Mark [Department; Axson, Jessica L. [Department; Tirella, Peter S. [Department; Kirpes, Rachel M. [Department; Craig, Rebecca L. [Department; Gunsch, Matthew J. [Department; China, Swarup [William; Laskin, Alexander [William; Ault, Andrew P. [Department; Department; Pratt, Kerri A. [Department; Department

    2017-12-20

    In freshwater lakes, harmful algal blooms (HABs) of Cyanobacteria (blue-green algae) produce toxins that impact human health. However, little is known about the chemical species present in lake spray aerosol (LSA) produced from wave-breaking in freshwater HABs. In this study, a laboratory LSA generator produced aerosols from freshwater samples collected from Lake Michigan and Lake Erie during HAB and non-bloom conditions. Particles were analyzed for size and chemical composition by single particle mass spectrometry, electron microscopy, and fluorescence microscopy, with three distinct types of LSA identified with varying levels of organic carbon and biological material associated with calcium salts. LSA autofluorescence increases with blue-green algae concentration, showing that organic molecules of biological origin are incorporated in LSA from HABs. The number fraction of LSA with biological mass spectral markers also increases with particle diameter (greater than 0.5 μm), showing that HABs have size-dependent impacts on aerosol composition. The highest number fraction of LSA enriched in organic carbon were observed in particles less than 0.5 μm in diameter. Understanding the transfer of organic and biogenic material from freshwater to the atmosphere via LSA particles is crucial for determining health and climate effects due to HABs.

  5. Algal ancestor of land plants was preadapted for symbiosis.

    Science.gov (United States)

    Delaux, Pierre-Marc; Radhakrishnan, Guru V; Jayaraman, Dhileepkumar; Cheema, Jitender; Malbreil, Mathilde; Volkening, Jeremy D; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Melkonian, Michael; Pokorny, Lisa; Rothfels, Carl J; Sederoff, Heike Winter; Stevenson, Dennis W; Surek, Barbara; Zhang, Yong; Sussman, Michael R; Dunand, Christophe; Morris, Richard J; Roux, Christophe; Wong, Gane Ka-Shu; Oldroyd, Giles E D; Ané, Jean-Michel

    2015-10-27

    Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis.

  6. Phylogeny of geminivirus coat protein sequences and digital PCR aid in identifying Spissistilus festinus (Say) as a vector of Grapevine red blotch-associated virus

    Science.gov (United States)

    Grapevine red blotch-associated virus (GRBaV) is a newly identified virus of grapevines, and a putative member of a new genus within the family Geminiviridae. This virus is associated with red blotch disease that was first reported in California in 2008. It affects the profitability of vineyards by ...

  7. Arthropod prey of nestling red-cockaded woodpeckers in the upper coastal plain of South Carolina

    Science.gov (United States)

    James L. Hanula; Kathleen E. Franzreb

    1995-01-01

    Four nest cavities of the Red-cockaded Woodpecker (Picoides borealis) were monitored with automatic cameras to determine the prey selected to feed nestlings. Twelve adults were photographed making nearly 3000 nest visits. Prey in 28 arthropod taxa were recognizable in 65% of the photographic slides. Wood roaches in the genus (Parcoblutta...

  8. Neural network retrievals of Karenia brevis harmful algal blooms in the West Florida Shelf (Conference Presentation)

    Science.gov (United States)

    Ahmed, Samir; El-Habashi, Ahmed

    2016-10-01

    Effective detection and tracking of Karenia brevis Harmful Algal Blooms (KB HAB) that frequently plague the coasts and beaches of the West Florida Shelf (WFS) is important because of their negative impacts on ecology. They pose threats to fisheries, human health, and directly affect tourism and local economies. Detection and tracking capabilities are needed for use with the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite, so that HABs monitoring capabilities, which previously relied on imagery from the Moderate Resolution Imaging Spectroradiometer Aqua, can be extended to VIIRS. Unfortunately, VIIRS, unlike its predecessor MODIS-A, does not have a 678 nm channel to detect chlorophyll fluorescence, which is used in the normalized fluorescence height (nFLH) algorithm, or in the Red Band Difference (RBD) algorithm. Both these techniques have demonstrated that the remote sensing reflectance signal from the MODIS-A fluorescence band (Rrs 678 nm) helps in effectively detecting and tracking KB HABs in the WFS. To overcome the lack of a fluorescence channel on VIIRS, the approach described here, bypasses the need for measurements at 678nm, and permits extension of KB HABs satellite monitoring to VIIRS. The essence of the approach is the application of a standard multiband neural network (NN) inversion algorithm, previously developed and reported by us, that takes VIIRS Rrs measurements at the 486, 551 and 671nm bands as inputs, and produces as output the related Inherent Optical Properties (IOPs), namely: absorption coefficients of phytoplankton (aph443) dissolved organic matter (ag) and non-algal particulates (adm) as well as the particulate backscatter coefficient, (bbp) all at 443nm. We next need to relate aph443 in the VIIRS NN retrieved image to equivalent KB HABs concentrations. To do this, we apply additional constraints, defined by (i) low backscatter manifested as a maximum Rrs551 value and (ii) a minimum [Chla] threshold (and hence an equivalent

  9. Conservation genetics of a critically endangered limpet genus and rediscovery of an extinct species.

    Directory of Open Access Journals (Sweden)

    Diarmaid Ó Foighil

    Full Text Available A third of all known freshwater mollusk extinctions worldwide have occurred within a single medium-sized American drainage. The Mobile River Basin (MRB of Alabama, a global hotspot of temperate freshwater biodiversity, was intensively industrialized during the 20(th century, driving 47 of its 139 endemic mollusk species to extinction. These include the ancylinid limpet Rhodacmea filosa, currently classified as extinct (IUCN Red List, a member of a critically endangered southeastern North American genus reduced to a single known extant population (of R. elatior in the MRB.We document here the tripling of known extant populations of this North American limpet genus with the rediscovery of enduring Rhodacmea filosa in a MRB tributary and of R. elatior in its type locality: the Green River, Kentucky, an Ohio River Basin (ORB tributary. Rhodacmea species are diagnosed using untested conchological traits and we reassessed their systematic and conservation status across both basins using morphometric and genetic characters. Our data corroborated the taxonomic validity of Rhodacmea filosa and we inferred a within-MRB cladogenic origin from a common ancestor bearing the R. elatior shell phenotype. The geographically-isolated MRB and ORB R. elatior populations formed a cryptic species complex: although overlapping morphometrically, they exhibited a pronounced phylogenetic disjunction that greatly exceeded that of within-MRB R. elatior and R. filosa sister species.Rhodacmea filosa, the type species of the genus, is not extinct. It persists in a Coosa River tributary and morphometric and phylogenetic analyses confirm its taxonomic validity. All three surviving populations of the genus Rhodacmea merit specific status. They collectively contain all known survivors of a phylogenetically highly distinctive North American endemic genus and therefore represent a concentrated fraction of continental freshwater gastropod biodiversity. We recommend the establishment

  10. Rare parasitic copepods (Siphonostomatoida: Lernanthropidae) from Egyptian Red Sea fishes.

    Science.gov (United States)

    El-Rashidy, Hoda Hassan; Boxshall, Geoffrey Allan

    2016-10-01

    Two rare species of parasitic copepods belonging to the genus Lernanthropus de Blainville, 1822 (Siphonostomatoida: Lernanthropidae) are redescribed in detail, based on material collected from Red Sea fishes, caught at El-Tor, near Sharm El-Sheikh on the Red Sea coast of Egypt. Adult females of Lernanthropus sanguineus Song & Chen, 1976 were found on the gills of snapper Lutjanus fulviflamma (Forsskål). This species was known only from its original description based on material from Chinese waters. Adult females of Lernanthropus triangularis Pillai, 1963 were obtained from the gills of mojarra Gerres oyena (Forsskål). Both parasite species are new records for Egyptian Red Sea waters and both host records are new.

  11. The phyletic status of the genus Planaria (Platyhelminthes, Turbellaria, Tricladida)

    NARCIS (Netherlands)

    Ball, Ian R.; Gourbault, Nicole

    1978-01-01

    The amphiatlantic distribution of the genus Planaria is incompatible with our current hypothesis of the historical biogeography of freshwater planarians. New anatomical studies suggest the possibility that the genus is not strictly monophyletic; new karyological data are strongly corroborative of

  12. Khmeriosicyos, a new monotypic genus of Cucurbitaceae from Cambodia

    NARCIS (Netherlands)

    Wilde, de W.J.J.O.; Duyfjes, B.E.E.; Ham, van der R.W.J.M.

    2004-01-01

    A new monotypic genus from Cambodia is described. The genus is defined by a unique combination of characters and has distinct pollen features. The only species is Khmeriosicyos harmandii W.J. de Wilde & Duyfjes.

  13. A preliminary survey of the genus Buchwaldoboletus (Boletales: Boletaceae)

    Science.gov (United States)

    Beatriz Ortiz-Santana; Ernst E. Both

    2011-01-01

    Buchwaldoboletus is a small genus of about a dozen species with a world-wide distribution. The boletes of this genus are non-mycorrhizal, saprophytic and lignicolous. A preliminary survey is provided and seven new combinations are proposed.

  14. Responses of Algal Cells to Engineered Nanoparticles Measured as Algal Cell Population, Chlorophyll a, and Lipid Peroxidation: Effect of Particle Size and Type

    Directory of Open Access Journals (Sweden)

    D. M. Metzler

    2012-01-01

    Full Text Available This paper investigated toxicity of three engineered nanoparticles (ENP, namely, Al2O3, SiO2, and TiO2 to the unicellular green algae, exemplified by Pseudokirchneriella subcapitata with an emphasis on particle size. The changes in pH, cell counts, chlorophyll a, and lipid peroxidation were used to measure the responses of the algal species to ENP. The most toxic particle size was TiO2 at 42 nm with an EC20 of 5.2 mg/L and Al2O3 at 14–18 nm with an EC20 of 5.1 mg/L. SiO2 was the least toxic with an EC20 of 318 mg/L. Toxicity was positively related to the surface charge of both ENP and algae. The chlorophyll content of the algal cells was influenced by the presence of ENP, which resulted in limited light and availability of nutrients due to increase in turbidity and nutrient adsorption onto the ENP surface, separately. Lipid peroxidation was attributed to reactive oxygen species (ROS. Fast reaction between algal cells and ROS due to direct contact between TiO2 and algal cells is an important factor for lipid peroxidation.

  15. Modular functors are determined by their genus zero data

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Ueno, Kenji

    2012-01-01

    We prove in this paper that the genus zero data of a modular functor determines the modular functor. We do this by establishing that the S-matrix in genus one with one point labeled arbitrarily can be expressed in terms of the genus zero information and we give an explicit formula. We do not assume...

  16. Topological classification and enumeration of RNA structures by genus

    DEFF Research Database (Denmark)

    Andersen, Joergen Ellegard; Penner, Robert C.; Reidys, Christian

    2013-01-01

    To an RNA pseudoknot structure is naturally associated a topological surface, which has its associated genus, and structures can thus be classified by the genus. Based on earlier work of Harer-Zagier, we compute the generating function for the number of those structures of fixed genus and minimum...

  17. A Comprehensive review on the genus Plumbago with focus on ...

    African Journals Online (AJOL)

    Background: The genus Plumbago distributed in warm tropical regions throughout the world is the largest genus in Plumbaginaceae. Medicinal plants are characteristic to the genus Plumbago and are cultivated and utilized worldwide. Plumbago auriculata Lam. is common in South Africa and is often cultivated for its ...

  18. Notes on the genus Digitaria, with descriptions of new species

    NARCIS (Netherlands)

    Henrard, J.Th.

    1934-01-01

    Some years ago I had the opportunity to study more extensively a very interesting group of grasses, belonging to what is now accepted as a distinct genus, the genus Digitaria, formerly belonging as a subgenus to the genus Panicum. As to living plants of this group I was familiar with two european

  19. A new name for the foraminiferal genus Heterospira

    NARCIS (Netherlands)

    Umbgrove, J.H.F.

    1937-01-01

    A short time ago I described a new foraminiferal genus from the Tertiary of Borneo 1). I gave this genus the name of Heterospira. Mr. P. H. Oehser of Washington drew my attention to the fact that E. Koken as early as 1896²) had used the name Heterospira for a genus of triassic gastropoda from

  20. Recent Inventions and Trends in Algal Biofuels Research.

    Science.gov (United States)

    Karemore, Ankush; Nayak, Manoranjan; Sen, Ramkrishna

    2016-01-01

    In recent times, when energy crisis compounded by global warming and climate change is receiving worldwide attention, the emergence of algae, as a better feedstock for third-generation biofuels than energy crops or plants, holds great promise. As compared to conventional biofuels feedstocks, algae offer several advantages and can alone produce a significant amount of biofuels sustainably in a shorter period to fulfill the rising demand for energy. Towards commercialisation, there have been numerous efforts put for- ward for the development of algae-derived biofuel. This article reviews and summarizes the recent inventions and the current trends that are reported and captured in relevant patents pertaining to the novel methods of algae biomass cultivation and processing for biofuels and value-added products. In addition, the recent advancement in techniques and technologies for microalgal biofuel production has been highlighted. Various steps involved in the production of algal biofuels have been considered in this article. Moreover, the work that advances to improve the efficiency and cost-effectiveness of the processes for the manufacture of biofuels has been presented. Our survey was conducted in the patent databases: WIPO, Spacenet and USPTO. There are still some technological bottlenecks that could be overcome by designing advanced photobioreactor and raceway ponds, developing new and low cost technologies for biomass cultivation, harvesting, drying and extraction. Recent advancement in algae biofuels methods is directed toward developing efficient and integrated systems to produce biofuels by overcoming the current challenges. However, further research effort is required to scale-up and improve the efficiency of these methods in the upstream and downstream technologies to make the cost of biofuels competitive with petroleum fuels.

  1. Phylogeny and taxonomy of the genus Gliocephalotrichum.

    Science.gov (United States)

    Lombard, L; Serrato-Diaz, L M; Cheewangkoon, R; French-Monar, R D; Decock, C; Crous, P W

    2014-06-01

    Species in the genus Gliocephalotrichum (= Leuconectria) (Hypocreales, Nectriaceae) are soilborne fungi, associated with post-harvest fruit spoilage of several important tropical fruit crops. Contemporary taxonomic studies of these fungi have relied on morphology and DNA sequence comparisons of the internal transcribed spacer region of the nuclear rDNA (ITS) and the β-tubulin gene regions. Employing DNA sequence data from four loci (β-tubulin, histone H3, ITS, and translation elongation factor 1-alpha) and morphological comparisons, the taxonomic status of the genus Gliocephalotrichum was re-evaluated. As a result five species are newly described, namely G. humicola (Taiwan, soil), G. mexicanum (rambutan fruit from Mexico), G. nephelii (rambutan fruit from Guatemala), G. queenslandicum (Australia, endophytic isolations) and G. simmonsii (rambutan fruit from Guatemala). Although species of Gliocephalotrichum are generally not regarded as important plant pathogens, their ability to cause post-harvest fruit rot could have an impact on fruit export and storage.

  2. Next generation red teaming

    CERN Document Server

    Dalziel, Henry

    2015-01-01

    Red Teaming is can be described as a type of wargaming.In private business, penetration testers audit and test organization security, often in a secretive setting. The entire point of the Red Team is to see how weak or otherwise the organization's security posture is. This course is particularly suited to CISO's and CTO's that need to learn how to build a successful Red Team, as well as budding cyber security professionals who would like to learn more about the world of information security. Teaches readers how to dentify systemic security issues based on the analysis of vulnerability and con

  3. The regulation of coralline algal physiology, an in situ study of Corallina officinalis (Corallinales, Rhodophyta)

    Science.gov (United States)

    Williamson, Christopher James; Perkins, Rupert; Voller, Matthew; Yallop, Marian Louise; Brodie, Juliet

    2017-10-01

    Calcified macroalgae are critical components of marine ecosystems worldwide, but face considerable threat both from climate change (increasing water temperatures) and ocean acidification (decreasing ocean pH and carbonate saturation). It is thus fundamental to constrain the relationships between key abiotic stressors and the physiological processes that govern coralline algal growth and survival. Here we characterize the complex relationships between the abiotic environment of rock pool habitats and the physiology of the geniculate red coralline alga, Corallina officinalis (Corallinales, Rhodophyta). Paired assessment of irradiance, water temperature and carbonate chemistry, with C. officinalis net production (NP), respiration (R) and net calcification (NG) was performed in a south-western UK field site, at multiple temporal scales (seasonal, diurnal and tidal). Strong seasonality was observed in NP and night-time R, with a Pmax of 22.35 µmol DIC (g DW)-1 h-1, Ek of 300 µmol photons m-2 s-1 and R of 3.29 µmol DIC (g DW)-1 h-1 determined across the complete annual cycle. NP showed a significant exponential relationship with irradiance (R2 = 0.67), although was temperature dependent given ambient irradiance > Ek for the majority of the annual cycle. Over tidal emersion periods, dynamics in NP highlighted the ability of C. officinalis to acquire inorganic carbon despite significant fluctuations in carbonate chemistry. Across all data, NG was highly predictable (R2 = 0.80) by irradiance, water temperature and carbonate chemistry, providing a NGmax of 3.94 µmol CaCO3 (g DW)-1 h-1 and Ek of 113 µmol photons m-2 s-1. Light NG showed strong seasonality and significant coupling to NP (R2 = 0.65) as opposed to rock pool water carbonate saturation. In contrast, the direction of dark NG (dissolution vs. precipitation) was strongly related to carbonate saturation, mimicking abiotic precipitation dynamics. Data demonstrated that C. officinalis is adapted to both long

  4. Sexual Communication in the Drosophila Genus

    OpenAIRE

    Gwénaëlle Bontonou; Claude Wicker-Thomas

    2014-01-01

    In insects, sexual behavior depends on chemical and non-chemical cues that might play an important role in sexual isolation. In this review, we present current knowledge about sexual behavior in the Drosophila genus. We describe courtship and signals involved in sexual communication, with a special focus on sex pheromones. We examine the role of cuticular hydrocarbons as sex pheromones, their implication in sexual isolation, and their evolution. Finally, we discuss the roles of male cuticular...

  5. The genus Artemisia: a comprehensive review.

    Science.gov (United States)

    Bora, Kundan Singh; Sharma, Anupam

    2011-01-01

    Medicinal plants are nature's gift to human beings to make disease free healthy life, and play a vital role to preserve our health. They are believed to be much safer and proven elixir in the treatment of various ailments. The genus Artemisia (Astraceae) consists of about 500 species, occurring throughout the world. The present review comprises the ethnopharmacological, phytochemical and therapeutic potential of various species of Artemisia. The aim of this this review is to bring together most of the available scientific research conducted on the genus Artemisia, which is currently scattered across various publications. Through this review the authors hope to attract the attention of natural product researchers throughout the world to focus on the unexplored potential of Artemisia species. This review has been compiled using references from major databases such as Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, SciFinder, PubMed, King's American Dispensatory, Henriette's Herbal Homepage, Dr. Duke's Phytochemical and Ethnobotanical Databases. An exhaustive survey of literature revealed that the different species of Artemisia have a vast range of biological activities including antimalarial, cytotoxic, antihepatotoxic, antibacterial, antifungal and antioxidant activity. Some very important drug leads have been discovered from this genus, notably artemisinin, the well known antimalarial drug isolated from the Chinese herb Artemisia annua. Terpenoids, flavonoids, coumarins, caffeoylquinic acids, sterols and acetylenes constitute major classes of phytoconstituents of the genus. Various species of Artemisia seems to hold great potential for in-depth investigation for various biological activities, especially their effects on the central nervous and cardiovascular systems.

  6. Wild translation surfaces and infinite genus

    OpenAIRE

    Randecker, Anja

    2014-01-01

    The Gauss-Bonnet formula for classical translation surfaces relates the cone angle of the singularities (geometry) to the genus of the surface (topology). When considering more general translation surfaces, we observe so-called wild singularities for which the notion of cone angle is not applicable any more. In this article, we study whether there still exist relations between the geometry and the topology for translation surfaces with wild singularities. By considering short saddle connectio...

  7. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization.

    Science.gov (United States)

    Jones, A M; Berkelmans, R; van Oppen, M J H; Mieog, J C; Sinclair, W

    2008-06-22

    The symbiosis between reef-building corals and their algal endosymbionts (zooxanthellae of the genus Symbiodinium) is highly sensitive to temperature stress, which makes coral reefs vulnerable to climate change. Thermal tolerance in corals is known to be substantially linked to the type of zooxanthellae they harbour and, when multiple types are present, the relative abundance of types can be experimentally manipulated to increase the thermal limits of individual corals. Although the potential exists for this to translate into substantial thermal acclimatization of coral communities, to date there is no evidence to show that this takes place under natural conditions. In this study, we show field evidence of a dramatic change in the symbiont community of Acropora millepora, a common and widespread Indo-Pacific hard coral species, after a natural bleaching event in early 2006 in the Keppel Islands (Great Barrier Reef). Before bleaching, 93.5% (n=460) of the randomly sampled and tagged colonies predominantly harboured the thermally sensitive Symbiodinium type C2, while the remainder harboured a tolerant Symbiodinium type belonging to clade D or mixtures of C2 and D. After bleaching, 71% of the surviving tagged colonies that were initially C2 predominant changed to D or C1 predominance. Colonies that were originally C2 predominant suffered high mortality (37%) compared with D-predominant colonies (8%). We estimate that just over 18% of the original A. millepora population survived unchanged leaving 29% of the population C2 and 71% D or C1 predominant six months after the bleaching event. This change in the symbiont community structure, while it persists, is likely to have substantially increased the thermal tolerance of this coral population. Understanding the processes that underpin the temporal changes in symbiont communities is key to assessing the acclimatization potential of reef corals.

  8. Algal bioremediation of waste waters from land-based aquaculture using ulva: selecting target species and strains.

    Directory of Open Access Journals (Sweden)

    Rebecca J Lawton

    Full Text Available The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a subset of samples from each location to determine whether local strains had superior performance under local environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day(-1 respectively across temperature treatments. Within species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2-20.4% day(-1 and Sydney strains had the lowest growth rates (2.5-8.3% day(-1. We also found significant differences in growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to

  9. The pangenome of the genus Clostridium.

    Science.gov (United States)

    Udaondo, Zulema; Duque, Estrella; Ramos, Juan-Luis

    2017-07-01

    The pangenome for the genus Clostridium sensu stricto, which was obtained using highly curated and annotated genomes from 16 species is presented; some of these cause disease, while others are used for the production of added-value chemicals. Multilocus sequencing analysis revealed that species of this genus group into at least two clades that include non-pathogenic and pathogenic strains, suggesting that pathogenicity is dispersed across the phylogenetic tree. The core genome of the genus includes 546 protein families, which mainly comprise those involved in protein translation and DNA repair. The GS-GOGAT may represent the central pathway for generating organic nitrogen from inorganic nitrogen sources. Glycerol and glucose metabolism genes are well represented in the core genome together with a set of energy conservation systems. A metabolic network comprising proteins/enzymes, RNAs and metabolites, whose topological structure is a non-random and scale-free network with hierarchically structured modules was built. These modules shed light on the interactions between RNAs, proteins and metabolites, revealing biological features of transcription and translation, cell wall biosynthesis, C1 metabolism and N metabolism. Network analysis identified four nodes that function as hubs and bottlenecks, namely, coenzyme A, HPr kinases, S-adenosylmethionine and the ribonuclease P-protein, suggesting pivotal roles for them in Clostridium. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas.

    Science.gov (United States)

    Gilani, Razia Alam; Rafique, Mazhar; Rehman, Abdul; Munis, Muhammad Farooq Hussain; Rehman, Shafiq Ur; Chaudhary, Hassan Javed

    2016-02-01

    Chlorpyrifos is an organophosphorus pesticide commonly used in agriculture. It is noxious to a variety of organisms that include living soil biota along with beneficial arthropods, fish, birds, humans, animals, and plants. Exposure to chlorpyrifos may cause detrimental effects as delayed seedling emergence, fruit deformities, and abnormal cell division. Contamination of chlorpyrifos has been found about 24 km from the site of its application. There are many physico-chemical and biological approaches to remove organophosphorus pesticides from the ecosystem, among them most promising is biodegradation. The 3,5,6-trichloro-2-pyridinol (TCP) and diethylthiophosphate (DETP) as primary products are made when chlorpyrifos is degraded by soil microorganisms which further break into nontoxic metabolites as CO(2), H(2)O, and NH(3). Pseudomonas is a diversified genus possessing a series of catabolic pathways and enzymes involved in pesticide degradation. Pseudomonas putida MAS-1 is reported to be more efficient in chlorpyrifos degradation by a rate of 90% in 24 h among Pseudomonas genus. The current review analyzed the comparative potential of bacterial species in Pseudomonas genus for degradation of chlorpyrifos thus, expressing an ecofriendly approach for the treatment of environmental contaminants like pesticides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Standardized gene nomenclature for the Brassica genus

    Directory of Open Access Journals (Sweden)

    King Graham J

    2008-05-01

    Full Text Available Abstract The genus Brassica (Brassicaceae, Brassiceae is closely related to the model plant Arabidopsis, and includes several important crop plants. Against the background of ongoing genome sequencing, and in line with efforts to standardize and simplify description of genetic entities, we propose a standard systematic gene nomenclature system for the Brassica genus. This is based upon concatenating abbreviated categories, where these are listed in descending order of significance from left to right (i.e. genus – species – genome – gene name – locus – allele. Indicative examples are provided, and the considerations and recommendations for use are discussed, including outlining the relationship with functionally well-characterized Arabidopsis orthologues. A Brassica Gene Registry has been established under the auspices of the Multinational Brassica Genome Project that will enable management of gene names within the research community, and includes provisional allocation of standard names to genes previously described in the literature or in sequence repositories. The proposed standardization of Brassica gene nomenclature has been distributed to editors of plant and genetics journals and curators of sequence repositories, so that it can be adopted universally.

  12. Sewage, green algal mats anchored by lugworms, and the effects on Turbellaria and small Polychaeta

    Science.gov (United States)

    Reise, Karsten

    1983-06-01

    On sandy tidal flats at the Island of Sylt (North Sea) ephemeral mats of green algae covered wide areas in the vicinity of sewage outflows. Algae became anchored in the feeding funnels of lugworms ( Arenicola marina) and thus were able to resist displacement by tidal currents. Below the algal mats anoxic conditions extend to the sediment surface. After about one month a rough sea removed all algae. Polychaetes endured this short-term environmental deterioration, while the more sensitive Turbellaria decreased in abundance and species richness. Diatom-feeders were affected most, predators to a medium extent, and bacteria-feeders the least affected. Rare and very abundant species were more affected than moderately abundant ones. None of the turbellarian species increased in abundance and none colonized the algal mats above the sediment. In a semicontrolled experiment with daily hand-removal of drift algae from a 100-m2 plot within an extensive field of algal mats, this cleaned "island" served as a refuge to Turbellaria escaping from their algal covered habitat. Here abundance doubled relative to initial conditions and was 5-times higher than below algal mats.

  13. Algal massive growth in relation to water quality and salinity at Damietta, north of Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Ibraheem Deyab

    2015-02-01

    Full Text Available Objective: To relate the proliferation and dominance of certain algal species at the Damietta and its relation to water quality. Methods: Water and algal biomass were bimonthly sampled from five selected sites at Damietta Province, Egypt during 2012. Algae were identified and quantified. Waters, algae and sediment were analyzed. Results: The physicochemical properties of water showed limited seasonal but substantial local variation. The high levels of nitrogen and phosphorus and turbidity of water pointed to marked eutrophication, which could enhance massive algal growth. The temporal fluctuation in temperature, exposure to industrial and domestic sewage and salinity results in succession between blooming algal species. Spirulina platensis and Chlorella vulgaris alternated in a moderately saline water and Oscillatoria agardhii and Mougeotia scalaris in a fresh water body during summer and winter respectively. Likewise, Microcystis aureginosa and Ulva lactuca alternated in a moderately saline site during autumn and summer respectively. Cladophora albida dominated a fish pond of brackish water and Dunaliella salina dominated the most saline water over the whole period of study. Conclusions: Growth of the predominant algal species is correlated to water quality. These species are of considerable nutritive value, with moderate contents of protein, carbohydrate, macronutrients and micronutrients, which evaluates them for usage as food (green and macroalgae, fodder or bio-fertilizer (cyanophytes.

  14. Comparison of Algal Biodiesel Production Pathways Using Life Cycle Assessment Tool

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    The consideration of algal biomass in biodiesel production increased very rapidly in the last decade. A life cycle assessment (LCA) study is presented to compare six different biodiesel production pathways (three different harvesting techniques, i.e., aluminum as flocculent, lime flocculent, and ......, ecosystem quality, and resources were higher than the conventional diesel. This study recommends more practical data at pilot-scale production plant with maximum utilization of by-products generated during the production to produce a sustainable algal biodiesel......., and centrifugation, and two different oil extraction methods, i.e., supercritical CO2 (sCO2) and press and co-solvent extraction). The cultivation of Nannochloropsis sp. considered in a flat-panel photobioreactor (FPPBR). These algal biodiesel production systems were compared with the conventional diesel in a EURO 5...... passenger car used for transport purpose (functional unit 1 person km (pkm). The algal biodiesel production systems provide lesser impact (22–105 %) in comparison with conventional diesel. Impacts of algal biodiesel on climate change were far better than conventional diesel, but impacts on human health...

  15. Astrophysics of Red Supergiants

    Science.gov (United States)

    Levesque, Emily M.

    2017-12-01

    'Astrophysics of Red Supergiants' is the first book of its kind devoted to our current knowledge of red supergiant stars, a key evolutionary phase that is critical to our larger understanding of massive stars. It provides a comprehensive overview of the fundamental physical properties of red supergiants, their evolution, and their extragalactic and cosmological applications. It serves as a reference for researchers from a broad range of fields (including stellar astrophysics, supernovae, and high-redshift galaxies) who are interested in red supergiants as extreme stages of stellar evolution, dust producers, supernova progenitors, extragalactic metallicity indicators, members of massive binaries and mergers, or simply as compelling objects in their own right. The book is accessible to a range of experience levels, from graduate students up to senior researchers.

  16. red flour beetle

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-01

    Dec 1, 2009 ... 2Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan. 3Department of ... most important energy source around the globe ... T. castaneum (red flour beetle) samples were collected from rice.

  17. RED-ML

    DEFF Research Database (Denmark)

    Xiong, Heng; Liu, Dongbing; Li, Qiye

    2017-01-01

    using diverse RNA-seq datasets, we have developed a software tool, RED-ML: RNA Editing Detection based on Machine learning (pronounced as "red ML"). The input to RED-ML can be as simple as a single BAM file, while it can also take advantage of matched genomic variant information when available...... accurately detect novel RNA editing sites without relying on curated RNA editing databases. We have also made this tool freely available via GitHub . We have developed a highly accurate, speedy and general-purpose tool for RNA editing detection using RNA-seq data....... With the availability of RED-ML, it is now possible to conveniently make RNA editing a routine analysis of RNA-seq. We believe this can greatly benefit the RNA editing research community and has profound impact to accelerate our understanding of this intriguing posttranscriptional modification process....

  18. Genus Ranges of 4-Regular Rigid Vertex Graphs.

    Science.gov (United States)

    Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin

    2015-01-01

    A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2 n vertices ( n > 1), we prove that all intervals [ a, b ] for all a genus ranges. For graphs with 2 n - 1 vertices ( n ≥ 1), we prove that all intervals [ a, b ] for all a genus ranges. We also provide constructions of graphs that realize these ranges.

  19. Boron-containing organic pigments from a Jurassic red alga.

    Science.gov (United States)

    Wolkenstein, Klaus; Gross, Jürgen H; Falk, Heinz

    2010-11-09

    Organic biomolecules that have retained their basic chemical structures over geological periods (molecular fossils) occur in a wide range of geological samples and provide valuable paleobiological, paleoenvironmental, and geochemical information not attainable from other sources. In rare cases, such compounds are even preserved with their specific functional groups and still occur within the organisms that produced them, providing direct information on the biochemical inventory of extinct organisms and their possible evolutionary relationships. Here we report the discovery of an exceptional group of boron-containing compounds, the borolithochromes, causing the distinct pink coloration of well-preserved specimens of the Jurassic red alga Solenopora jurassica. The borolithochromes are characterized as complicated spiroborates (boric acid esters) with two phenolic moieties as boron ligands, representing a unique class of fossil organic pigments. The chiroptical properties of the pigments unequivocally demonstrate a biogenic origin, at least of their ligands. However, although the borolithochromes originated from a fossil red alga, no analogy with hitherto known present-day red algal pigments was found. The occurrence of the borolithochromes or their possible diagenetic products in the fossil record may provide additional information on the classification and phylogeny of fossil calcareous algae.

  20. Review of Florida Red Tide and Human Health Effects

    Science.gov (United States)

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Walsh, Cathy J.; Nierenberg, Kate; Clark, John; Reich, Andrew; Hollenbeck, Julie; Benson, Janet; Cheng, Yung Sung; Naar, Jerome; Pierce, Richard; Bourdelais, Andrea J; Abraham, William M.; Kirkpatrick, Gary; Zaias, Julia; Wanner, Adam; Mendes, Eliana; Shalat, Stuart; Hoagland, Porter; Stephan, Wendy; Bean, Judy; Watkins, Sharon; Clarke, Tainya; Byrne, Margaret; Baden, Daniel G.

    2010-01-01

    This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue—one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people. PMID:21218152

  1. Four new species and one new genus of zoanthids (Cnidaria, Hexacorallia from the Galapagos Islands

    Directory of Open Access Journals (Sweden)

    James Reimer

    2010-04-01

    Full Text Available Recent research has confirmed the presence of several species of undescribed macrocnemic zoanthids (Cnidaria: Hexacorallia: Zoantharia: Macrocnemina in the Galapagos. In this study four new species, including two belonging to a new genus, are described. Two species, Terrazoanthus onoi sp. n. and Terrazoanthus sinnigeri sp. n., both belong within the recently erected family Hydrozoanthidae to the new genus Terrazoanthus, which can be distinguished from the type genus Hydrozoanthus by being attached to abiotic substrate as opposed to hydrozoans for Hydrozoanthus. Each new species of zoanthid can be clearly distinguished by a number of characters. Antipathozoanthus hickmani sp. n. is distinguished by its exclusive association with the antipatharian Antipathes galapagensis, and has approximately 40 tentacles. Parazoanthus darwini sp. n. is distinguished by its frequent association with sponges, with approximately 24–30 tentacles and polyps embedded in a well-developed coenenchyme. T. onoi sp. n. is distinguished by its bright red oral disk color, 32–40 tentacles, and has only basitrichs and mastigophores present in the pharynx. T. sinnigeri sp. n. is distinguished by usually occurring on the underside of rubble and rocks on sandy bottoms, showing 30–36 tentacles, and numerous nematocyst types in the pharynx. The two Terrazoanthus species, although divergent in both morphology and ecology, are apparently very closely related, with identical mitochondrial 16S ribosomal DNA and cytochrome oxidase subunit I sequences. These two species can be molecularly distinguished by their subtly different yet distinct sequences of internal transcribed spacer of ribosomal DNA (ITS-rDNA.

  2. Modular antenna of photosystem I in secondary plastids of red algal origin: a Nannochloropsis oceanica case study

    Czech Academy of Sciences Publication Activity Database

    Bína, David; Gardian, Zdenko; Herbstová, Miroslava; Litvín, Radek

    2017-01-01

    Roč. 131, č. 3 (2017), s. 255-266 ISSN 0166-8595 R&D Projects: GA ČR(CZ) GP14-01377P Institutional support: RVO:60077344 Keywords : light-harvesting complexes * diatom phaeodactylum-tricornutum * em structure determination Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.864, year: 2016

  3. USING CLAY TO CONTROL RED TIDES: I. FLOCCULATION, SEDIMENTATION, AND RESUSPENSION OF CLAY/ALGAL FLOCS. (R827090)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. Addressing harmful algal blooms (HABs) impacts with ferrate(VI): Simultaneous removal of algal cells and toxins for drinking water treatment.

    Science.gov (United States)

    Deng, Yang; Wu, Meiyin; Zhang, Huiqin; Zheng, Lei; Acosta, Yaritza; Hsu, Tsung-Ta D

    2017-11-01

    Although ferrate(VI) has long been recognized as a multi-purpose treatment agent, previous investigations regarding ferrate(VI) for addressing harmful algal blooms (HABs) impacts in drinking water treatment only focused on a single HAB pollutant (e.g. algal cells or algal toxins). Moreover, the performance of ferrate(VI)-driven coagulation was poorly investigated in comparison with ferrate(VI) oxidation, though it has been widely acknowledged as a major ferrate(VI) treatment mechanism. We herein reported ferrate(VI) as an emerging agent for simultaneous and effective removal of algal cells and toxins in a simulated HAB-impacted water. Ferrate(VI)-driven oxidation enabled algal cell inactivation and toxin decomposition. Subsequently, Fe(III) from ferrate(VI) reduction initiated an in-situ coagulation for cell aggregation. Cell viability (initial 4.26 × 10 4 cells/mL at pH 5.5 and 5.16 × 10 4 cells/mL at pH 7.5) decreased to 0.0% at ≥ 7 mg/L Fe(VI) at pH 5.5 and 7.5, respectively. Cell density and turbidity were dramatically decreased at pH 5.5 once ferrate(VI) doses were beyond their respective threshold levels, which are defined as minimum effective iron doses (MEIDs). However, the particulate removal at pH 7.5 was poor, likely because the coagulation was principally driven by charge neutralization and a higher pH could not sufficiently lower the particle surface charge. Meanwhile, algal toxins (i.e., microcystins) of 3.98 μg/L could be substantially decomposed at either pH. And the greater degradation achieved at pH 5.5 was due to the higher reactivity of ferrate(VI) at the lower pH. This study represents the first step toward the ferrate(VI) application as a promising approach for addressing multiple HABs impacts for water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Chemical composition influence of cement based mortars on algal biofouling

    Science.gov (United States)

    Estelle, Dalod; Alexandre, Govin; Philippe, Grosseau; Christine, Lors; René, Guyonnet; Denis, Damidot

    2013-04-01

    are easily distinguished. A threshold in graylevel allows to segment the image and to quantify the surface colonized by algae. The conversion process differentiates algal patches from dark slots caused by the rough relief. The covering rate depending on time is given by the ratio of colonized area to total surface. This experimental method proves that pH and roughness are determining in the biofouling mechanism.

  6. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization.

    Science.gov (United States)

    Park, Ki Young; Lee, Kwanyong; Kim, Daegi

    2018-06-01

    The aim of this work was to study the characterized hydrochar of algal biomass to produce solid fuel though hydrothermal carbonization. Hydrothermal carbonization conducted at temperatures ranging from 180 to 270 °C with a 60 min reaction improved the upgrading of the fuel properties and the dewatering of wet-basis biomasses such as algae. The carbon content, carbon recovery, energy recovery, and atomic C/O and C/H ratios in all the hydrochars in this study were improved. These characteristic changes in hydrochar from algal biomass are similar to the coalification reactions due to dehydration and decarboxylation with an increase in the hydrothermal reaction temperature. The results of this study indicate that hydrothermal carbonization can be used as an effective means of generating highly energy-efficient renewable fuel resources using algal biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Productivity and species composition of algal mat communities exposed to a fluctuating thermal regime

    International Nuclear Information System (INIS)

    Tison, D.L.; Wilde, E.W.; Pope, D.H.; Fliermans, C.B.

    1981-01-01

    Algal mat communities growing in thermal effluents of production nuclear reactors at the Savannah River Plant, near Aiken, SC, are exposed to large temperature fluctuations resulting from reactor operations. Rates of primary production and species composition were monitored at 4 sites along a thermal gradient in a trough microcosm to determine how these large temperature fluctuations affected productivity and algal community structure. Blue-green algae (cyanobacteria) were the only phototrophic primary producers growing in water above 45 0 C. These thermophiles were able to survive and apparently adapt to ambient temperatures when the reactor was shut down. The algal mat communities exposed to 14 C-labeled dissolved organic compounds and a decrease in primary production were observed during periods of thermal fluctuation. The results show that the dominant phototrophs in this artificially heated aquatic habitat have been selected for their abiity to survive large temperature fluctuations and are similar to those of natural hot springs

  8. Algal testing of titanium dioxide nanoparticles - Testing considerations, inhibitory effects and modification of cadmium bioavailability

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; von der Kammer, F.; Hofmann, T.

    2010-01-01

    The ecotoxicity of three different sizes of titanium dioxide (TiO(2)) particles (primary particles sizes: 10, 30, and 300 nm) to the freshwater green alga Pseudokirchneriella subcapitata was investigated in this study. Algal growth inhibition was found for all three particle types...... surfaces. It is also believed that heteroaggregation, driven by algal exopolymeric exudates, is occurring and could influence the concentration-response relationship. The ecotoxicity of cadmium to algae was investigated both in the presence and absence of 2 mg/LTiO(2). The presence of TiO(2) in algal tests......(II) species, indicating a possible carrier effect, or combined toxic effect of TiO(2) nanoparticles and cadmium. These results emphasize the importance of systematic studies of nanoecotoxicological effects of different sizes of nanoparticles and underline the fact that, in addition to particle toxicity...

  9. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production

    International Nuclear Information System (INIS)

    Sturm, Belinda S.M.; Lamer, Stacey L.

    2011-01-01

    Recently, several life cycle analyses of algal biodiesel from virtual production facilities have outlined the potential environmental benefits and energetic balance of the process. There are a wide range of assumptions that have been utilized for these calculations, including the addition of fertilizers and carbon dioxide to achieve high algal yields in open ponds. This paper presents an energy balance of microalgal production in open ponds coupled with nutrient removal from wastewater. Actual microalgal yields and nutrient removal rates were obtained from four pilot-scale reactors (2500 gallons each) fed with wastewater effluent from a conventional activated sludge process for 6 months, and the data was used to estimate an energy balance for treating the total average 12 million gallons per day processed by the wastewater treatment plant. Since one of the most energy-intensive steps is the dewatering of algal cultures, several thickening and dewatering processes were compared. This analysis also includes the energy offset from removing nutrients with algal reactors rather than the biological nutrient removal processes typically utilized in municipal wastewater treatment. The results show that biofuel production is energetically favorable for open pond reactors utilizing wastewater as a nutrient source, even without an energy credit for nutrient removal. The energy content of algal biomass was also considered as an alternate to lipid extraction and biodiesel production. Direct combustion of algal biomass may be a more viable energy source than biofuel production, especially when the lipid content of dry biomass (10% in this field experiment) is lower than the high values reported in lab-scale reactors (50-60%).

  10. Characteristics of algal succession following rock scraping at Imwon area in the east coast of Korea

    Science.gov (United States)

    Kim, Young Dae; Ahn, Jung Kwan; Nam, Myung Mo; Lee, Chu; Yoo, Hyun Il; Yeon, Su Yeoung; Kim, Young Hwan; Kim, Jang Kyun; Choi, Jae Suk

    2016-12-01

    This study was conducted to clarify the characteristics of algal succession following rock scraping using hoe or high-pressure water sprayer in the period from June 2010 to April 2011. We divided the research area off the eastern coast of Korean near Imwon into 3 categories depending upon the severity of the barren ground, i.e., the urchin barren-affected, urchin barren-ongoing and urchin barren-free areas. In April 2011, in the urchin barren-affected area with 25 seaweed species, the cover percentage and importance value (IV) of crustose coralline algae were higher than those of other species. In the urchin barren-ongoing area with 33 seaweed species, crustose coralline algae (mean IV = 62%) as well as Sargassum sp. (mean IV = 28%), and Gelidium amansii (mean IV = 19%) were observed following rock scraping. In the urchin barren-free area where seaweed communities were relatively abundant with 42 species, a variety of algal species including G. amansii (mean IV = 32%) underwent algal succession. Overall, it was observed that, as an aspect of algal succession, the weaker the barren ground severity was, the more frequent and diverse the seaweeds were, and the more complex the succession pattern was in the study. As an aspect of recovering algal community, rock scraping using hoe was shown to be superior to the method using high-pressure water spraying. Therefore, we conclude that rock scraping using hoe is a very effective strategy for recovering the algal community in urchin barren-ongoing area.

  11. The engine of the reef: Photobiology of the coral-algal symbiosis

    Directory of Open Access Journals (Sweden)

    Melissa Susan Roth

    2014-08-01

    Full Text Available Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral-algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral-algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral-algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral-algal symbiosis and recent advances in the field. Studies integrating physiology with the developing omics fields will provide new insights into the coral-algal symbiosis. Greater physiological and ecological understanding of the coral-algal symbiosis is needed for protection and conservation of coral reefs.

  12. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae

    KAUST Repository

    Villacorte, Loreen O.

    2015-04-01

    Algal blooms can seriously affect the operation of water treatment processes including low pressure (micro- and ultra-filtration) and high pressure (nanofiltration and reverse osmosis) membranes mainly due to accumulation of algal-derived organic matter (AOM). In this study, the different components of AOM extracted from three common species of bloom-forming algae (Alexandrium tamarense, Chaetoceros affinis and Microcystis sp.) were characterised employing various analytical techniques, such as liquid chromatography - organic carbon detection, fluorescence spectroscopy, fourier transform infrared spectroscopy, alcian blue staining and lectin staining coupled with laser scanning microscopy to indentify its composition and force measurement using atomic force microscopy to measure its stickiness. Batch culture monitoring of the three algal species illustrated varying characteristics in terms of growth pattern, cell concentration and AOM release. The AOM produced by the three algal species comprised mainly biopolymers (e.g., polysaccharides and proteins) but some refractory compounds (e.g., humic-like substances) and other low molecular weight acid and neutral compounds were also found. Biopolymers containing fucose and sulphated functional groups were found in all AOM samples while the presence of other functional groups varied between different species. A large majority (>80%) of the acidic polysaccharide components (in terms of transparent exopolymer particles) were found in the colloidal size range (<0.4μm). The relative stickiness of AOM substantially varied between algal species and that the cohesion between AOM-coated surfaces was much stronger than the adhesion of AOM on AOM-free surfaces. Overall, the composition as well as the physico-chemical characteristics (e.g., stickiness) of AOM will likely dictate the severity of fouling in membrane systems during algal blooms.

  13. The engine of the reef: photobiology of the coral–algal symbiosis

    Science.gov (United States)

    Roth, Melissa S.

    2014-01-01

    Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral–algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral–algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral–algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral–algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing “omics” fields will provide new insights into the coral–algal symbiosis. Greater physiological and ecological understanding of the coral–algal symbiosis is needed for protection and conservation of coral reefs. PMID:25202301

  14. Algal Hydrogen Production -- Stand Alone or Integrated System?

    Energy Technology Data Exchange (ETDEWEB)

    Ghirardi, Maria L.; Maness, Pin Ching; Kosourovo, Sergey

    2016-01-01

    Photosynthetic bacteria and green algae photoproduce H2. but do so utilizing different catalysts and substrates. Green algae use reductant generate mostly by water oxidation to catalyze the reduction of protons to H2 gas, while photosynthetic bacteria catalyze H2 production from organic acids using the nitrogenase enzyme. Moreover, these two organisms utilize different regions of the solar spectrum to perform photosynthesis: green algae's light harvesting antenna is comprised of chlorophyll molecules that absorb mostly blue and red light; photosynthetic bacteria harvest blue and far-red light through their light-harvesting pigments to run its non-oxygenic photosynthetic reactions. There is thus an opportunity to increase the range of solar spectrum used to photoproduce H2 by combining the light-harvesting and catalytic properties of these two organisms in a single process. In the current manuscript, we describe an experimental system that validates this hypothesis and demonstrates quantitatively the advantages of a two organism process for production of higher amounts of H2 and thus achieving solar light conversion efficiencies.

  15. Oil Spills and Dispersants Can Cause the Initiation of Potentially Harmful Dinoflagellate Blooms ("Red Tides")

    DEFF Research Database (Denmark)

    Almeda, Rodrigo; Cosgrove, Sarah; Buskey, Edward J.

    2018-01-01

    After oil spills and dispersant applications the formation of red tides or harmful algal blooms (HABs) has been observed, which can cause additional negative impacts in areas affected by oil spills. However, the link between oil spills and HABs is still unknown. Here, we present experimental...... evidence that demonstrates a connection between oil spills and HABs. We determined the effects of oil, dispersant-treated oil, and dispersant alone on the structure of natural plankton assemblages in the Northern Gulf of Mexico. In coastal waters, large tintinnids and oligotrich ciliates, major grazers...

  16. Algal tests with soil suspensions and elutriates: A comparative evaluation for PAH contaminated soils

    DEFF Research Database (Denmark)

    Baun, Anders; Justesen, Kasper Bo; Nyholm, Niels

    2002-01-01

    An algal growth inhibition test procedure with soil suspensions is proposed and evaluated for PAH-contaminated soil. The growth rate reduction of the standard freshwater green alga Pseudokirchneriella subcapitata (formerly known as Selenastrum capricornutum) was used as the toxicity endpoint......, and was quantified by measuring the fluorescence of solvent-extracted algal pigments. No growth rate reduction was detected for soil contents up to 20 g/l testing five non-contaminated Danish soils. Comparative testing with PAH-contaminated soil elutriates and soil suspensions showed that the suspensions had...

  17. Red fluorescence in reef fish: A novel signalling mechanism?

    Directory of Open Access Journals (Sweden)

    Siebeck Ulrike E

    2008-09-01

    Full Text Available Abstract Background At depths below 10 m, reefs are dominated by blue-green light because seawater selectively absorbs the longer, 'red' wavelengths beyond 600 nm from the downwelling sunlight. Consequently, the visual pigments of many reef fish are matched to shorter wavelengths, which are transmitted better by water. Combining the typically poor long-wavelength sensitivity of fish eyes with the presumed lack of ambient red light, red light is currently considered irrelevant for reef fish. However, previous studies ignore the fact that several marine organisms, including deep sea fish, produce their own red luminescence and are capable of seeing it. Results We here report that at least 32 reef fishes from 16 genera and 5 families show pronounced red fluorescence under natural, daytime conditions at depths where downwelling red light is virtually absent. Fluorescence was confirmed by extensive spectrometry in the laboratory. In most cases peak emission was around 600 nm and fluorescence was associated with guanine crystals, which thus far were known for their light reflecting properties only. Our data indicate that red fluorescence may function in a context of intraspecific communication. Fluorescence patterns were typically associated with the eyes or the head, varying substantially even between species of the same genus. Moreover red fluorescence was particularly strong in fins that are involved in intraspecific signalling. Finally, microspectrometry in one fluorescent goby, Eviota pellucida, showed a long-wave sensitivity that overlapped with its own red fluorescence, indicating that this species is capable of seeing its own fluorescence. Conclusion We show that red fluorescence is widespread among marine fishes. Many features indicate that it is used as a private communication mechanism in small, benthic, pair- or group-living fishes. Many of these species show quite cryptic colouration in other parts of the visible spectrum. High inter

  18. Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II and Pb(II

    Directory of Open Access Journals (Sweden)

    Shengye Wang

    2016-09-01

    Full Text Available Alginate and algal-biomass (Laminaria digitata beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine (PEI was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM coupled with energy dispersive X-ray analysis (EDX: the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g−1 and 112, 77 and 67 mg Cu g−1 for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads, the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions.

  19. Analysis of algal bloom risk with uncertainties in lakes by integrating self-organizing map and fuzzy information theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuwen, E-mail: qchen@rcees.ac.cn [RCEES, Chinese Academy of Sciences, Shuangqinglu 18, Beijing 10085 (China); China Three Gorges University, Daxuelu 8, Yichang 443002 (China); CEER, Nanjing Hydraulics Research Institute, Guangzhoulu 223, Nanjing 210029 (China); Rui, Han; Li, Weifeng; Zhang, Yanhui [RCEES, Chinese Academy of Sciences, Shuangqinglu 18, Beijing 10085 (China)

    2014-06-01

    Algal blooms are a serious problem in waters, which damage aquatic ecosystems and threaten drinking water safety. However, the outbreak mechanism of algal blooms is very complex with great uncertainty, especially for large water bodies where environmental conditions have obvious variation in both space and time. This study developed an innovative method which integrated a self-organizing map (SOM) and fuzzy information diffusion theory to comprehensively analyze algal bloom risks with uncertainties. The Lake Taihu was taken as study case and the long-term (2004–2010) on-site monitoring data were used. The results showed that algal blooms in Taihu Lake were classified into four categories and exhibited obvious spatial–temporal patterns. The lake was mainly characterized by moderate bloom but had high uncertainty, whereas severe blooms with low uncertainty were observed in the northwest part of the lake. The study gives insight on the spatial–temporal dynamics of algal blooms, and should help government and decision-makers outline policies and practices on bloom monitoring and prevention. The developed method provides a promising approach to estimate algal bloom risks under uncertainties. - Highlights: • An innovative method is developed to analyze algal bloom risks with uncertainties. • The algal blooms in Taihu Lake showed obvious spatial and temporal patterns. • The lake is mainly characterized as moderate bloom but with high uncertainty. • Severe bloom with low uncertainty appeared occasionally in the northwest part. • The results provide important information to bloom monitoring and management.

  20. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams

    Science.gov (United States)

    Black, R.W.; Moran, P.W.; Frankforter, J.D.

    2011-01-01

    Many streams within the United States are impaired due to nutrient enrichment, particularly in agricultural settings. The present study examines the response of benthic algal communities in agricultural and minimally disturbed sites from across the western United States to a suite of environmental factors, including nutrients, collected at multiple scales. The first objective was to identify the relative importance of nutrients, habitat and watershed features, and macroinvertebrate trophic structure to explain algal metrics derived from deposition and erosion habitats. The second objective was to determine if thresholds in total nitrogen (TN) and total phosphorus (TP) related to algal metrics could be identified and how these thresholds varied across metrics and habitats. Nutrient concentrations within the agricultural areas were elevated and greater than published threshold values. All algal metrics examined responded to nutrients as hypothesized. Although nutrients typically were the most important variables in explaining the variation in each of the algal metrics, environmental factors operating at multiple scales also were important. Calculated thresholds for TN or TP based on the algal metrics generated from samples collected from erosion and deposition habitats were not significantly different. Little variability in threshold values for each metric for TN and TP was observed. The consistency of the threshold values measured across multiple metrics and habitats suggest that the thresholds identified in this study are ecologically relevant. Additional work to characterize the relationship between algal metrics, physical and chemical features, and nuisance algal growth would be of benefit to the development of nutrient thresholds and criteria. ?? 2010 The Author(s).