Prediction of Bladder Cancer Recurrences Using Artificial Neural Networks
Zulueta Guerrero, Ekaitz; Garay, Naiara Telleria; Lopez-Guede, Jose Manuel; Vilches, Borja Ayerdi; Iragorri, Eider Egilegor; Castaños, David Lecumberri; de La Hoz Rastrollo, Ana Belén; Peña, Carlos Pertusa
Even if considerable advances have been made in the field of early diagnosis, there is no simple, cheap and non-invasive method that can be applied to the clinical monitorisation of bladder cancer patients. Moreover, bladder cancer recurrences or the reappearance of the tumour after its surgical resection cannot be predicted in the current clinical setting. In this study, Artificial Neural Networks (ANN) were used to assess how different combinations of classical clinical parameters (stage-grade and age) and two urinary markers (growth factor and pro-inflammatory mediator) could predict post surgical recurrences in bladder cancer patients. Different ANN methods, input parameter combinations and recurrence related output variables were used and the resulting positive and negative prediction rates compared. MultiLayer Perceptron (MLP) was selected as the most predictive model and urinary markers showed the highest sensitivity, predicting correctly 50% of the patients that would recur in a 2 year follow-up period.
Recurrent Artificial Neural Networks and Finite State Natural Language Processing.
Moisl, Hermann
It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…
Chon, K H; Hoyer, D; Armoundas, A A
1999-01-01
In this study, we introduce a new approach for estimating linear and nonlinear stochastic autoregressive moving average (ARMA) model parameters, given a corrupt signal, using artificial recurrent neural networks. This new approach is a two-step approach in which the parameters of the deterministic...... part of the stochastic ARMA model are first estimated via a three-layer artificial neural network (deterministic estimation step) and then reestimated using the prediction error as one of the inputs to the artificial neural networks in an iterative algorithm (stochastic estimation step). The prediction...... error is obtained by subtracting the corrupt signal of the estimated ARMA model obtained via the deterministic estimation step from the system output response. We present computer simulation examples to show the efficacy of the proposed stochastic recurrent neural network approach in obtaining accurate...
Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network
Yao, Weigang; Liou, Meng-Sing
2012-01-01
The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis
Ocean wave forecasting using recurrent neural networks
Mandal, S.; Prabaharan, N.
, merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper describes an artificial neural network, namely recurrent neural network with rprop update algorithm and is applied for wave forecasting. Measured ocean waves off...
Kabeshova, Anastasiia; Launay, Cyrille P; Gromov, Vasilii A; Annweiler, Cédric; Fantino, Bruno; Beauchet, Olivier
2015-04-01
Identification of the risk of recurrent falls is complex in older adults. The aim of this study was to examine the efficiency of 3 artificial neural networks (ANNs: multilayer perceptron [MLP], modified MLP, and neuroevolution of augmenting topologies [NEAT]) for the classification of recurrent fallers and nonrecurrent fallers using a set of clinical characteristics corresponding to risk factors of falls measured among community-dwelling older adults. Based on a cross-sectional design, 3289 community-dwelling volunteers aged 65 and older were recruited. Age, gender, body mass index (BMI), number of drugs daily taken, use of psychoactive drugs, diphosphonate, calcium, vitamin D supplements and walking aid, fear of falling, distance vision score, Timed Up and Go (TUG) score, lower-limb proprioception, handgrip strength, depressive symptoms, cognitive disorders, and history of falls were recorded. Participants were separated into 2 groups based on the number of falls that occurred over the past year: 0 or 1 fall and 2 or more falls. In addition, total population was separated into training and testing subgroups for ANN analysis. Among 3289 participants, 18.9% (n = 622) were recurrent fallers. NEAT, using 15 clinical characteristics (ie, use of walking aid, fear of falling, use of calcium, depression, use of vitamin D supplements, female, cognitive disorders, BMI 4, vision score 9 seconds, handgrip strength score ≤29 (N), and age ≥75 years), showed the best efficiency for identification of recurrent fallers, sensitivity (80.42%), specificity (92.54%), positive predictive value (84.38), negative predictive value (90.34), accuracy (88.39), and Cohen κ (0.74), compared with MLP and modified MLP. NEAT, using a set of 15 clinical characteristics, was an efficient ANN for the identification of recurrent fallers in older community-dwellers. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Chaotic diagonal recurrent neural network
Wang Xing-Yuan; Zhang Yi
2012-01-01
We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)
Introduction to Artificial Neural Networks
Larsen, Jan
1999-01-01
The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....
Artificial neural network modelling
Samarasinghe, Sandhya
2016-01-01
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .
International Conference on Artificial Neural Networks (ICANN)
Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics
2015-01-01
The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...
Trimaran Resistance Artificial Neural Network
2011-01-01
11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to
Artificial Neural Network Analysis System
2001-02-27
Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis
Artificial intelligence: Deep neural reasoning
Jaeger, Herbert
2016-10-01
The human brain can solve highly abstract reasoning problems using a neural network that is entirely physical. The underlying mechanisms are only partially understood, but an artificial network provides valuable insight. See Article p.471
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, Lars J.; Keller, Paul E.
1997-01-01
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.
What are artificial neural networks?
Krogh, Anders
2008-01-01
Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...
Deep Gate Recurrent Neural Network
2016-11-22
and Fred Cummins. Learning to forget: Continual prediction with lstm . Neural computation, 12(10):2451–2471, 2000. Alex Graves. Generating sequences...DSGU) and Simple Gated Unit (SGU), which are structures for learning long-term dependencies. Compared to traditional Long Short-Term Memory ( LSTM ) and...Gated Recurrent Unit (GRU), both structures require fewer parameters and less computation time in sequence classification tasks. Unlike GRU and LSTM
Artificial neural networks in NDT
Abdul Aziz Mohamed
2001-01-01
Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)
Introduction to Concepts in Artificial Neural Networks
Niebur, Dagmar
1995-01-01
This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.
Scheduling with artificial neural networks
Gürgün, Burçkaan
1993-01-01
Ankara : Department of Industrial Engineering and The Institute of Engineering and Sciences of Bilkent Univ., 1993. Thesis (Master's) -- Bilkent University, 1993. Includes bibliographical references leaves 59-65. Artificial Neural Networks (ANNs) attempt to emulate the massively parallel and distributed processing of the human brain. They are being examined for a variety of problems that have been very difficult to solve. The objective of this thesis is to review the curren...
Precipitation Nowcast using Deep Recurrent Neural Network
Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.
2016-12-01
An accurate precipitation nowcast (0-6 hours) with a fine temporal and spatial resolution has always been an important prerequisite for flood warning, streamflow prediction and risk management. Most of the popular approaches used for forecasting precipitation can be categorized into two groups. One type of precipitation forecast relies on numerical modeling of the physical dynamics of atmosphere and another is based on empirical and statistical regression models derived by local hydrologists or meteorologists. Given the recent advances in artificial intelligence, in this study a powerful Deep Recurrent Neural Network, termed as Long Short-Term Memory (LSTM) model, is creatively used to extract the patterns and forecast the spatial and temporal variability of Cloud Top Brightness Temperature (CTBT) observed from GOES satellite. Then, a 0-6 hours precipitation nowcast is produced using a Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) algorithm, in which the CTBT nowcast is used as the PERSIANN algorithm's raw inputs. Two case studies over the continental U.S. have been conducted that demonstrate the improvement of proposed approach as compared to a classical Feed Forward Neural Network and a couple simple regression models. The advantages and disadvantages of the proposed method are summarized with regard to its capability of pattern recognition through time, handling of vanishing gradient during model learning, and working with sparse data. The studies show that the LSTM model performs better than other methods, and it is able to learn the temporal evolution of the precipitation events through over 1000 time lags. The uniqueness of PERSIANN's algorithm enables an alternative precipitation nowcast approach as demonstrated in this study, in which the CTBT prediction is produced and used as the inputs for generating precipitation nowcast.
Recurrent Neural Network Approach Based on the Integral Representation of the Drazin Inverse.
Stanimirović, Predrag S; Živković, Ivan S; Wei, Yimin
2015-10-01
In this letter, we present the dynamical equation and corresponding artificial recurrent neural network for computing the Drazin inverse for arbitrary square real matrix, without any restriction on its eigenvalues. Conditions that ensure the stability of the defined recurrent neural network as well as its convergence toward the Drazin inverse are considered. Several illustrative examples present the results of computer simulations.
Advances in Artificial Neural Networks – Methodological Development and Application
Yanbo Huang
2009-08-01
Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological
Recursive Bayesian recurrent neural networks for time-series modeling.
Mirikitani, Derrick T; Nikolaev, Nikolay
2010-02-01
This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.
SORN: a self-organizing recurrent neural network
Andreea Lazar
2009-10-01
Full Text Available Understanding the dynamics of recurrent neural networks is crucial for explaining how the brain processes information. In the neocortex, a range of different plasticity mechanisms are shaping recurrent networks into effective information processing circuits that learn appropriate representations for time-varying sensory stimuli. However, it has been difficult to mimic these abilities in artificial neural network models. Here we introduce SORN, a self-organizing recurrent network. It combines three distinct forms of local plasticity to learn spatio-temporal patterns in its input while maintaining its dynamics in a healthy regime suitable for learning. The SORN learns to encode information in the form of trajectories through its high-dimensional state space reminiscent of recent biological findings on cortical coding. All three forms of plasticity are shown to be essential for the network's success.
Learning in Artificial Neural Systems
Matheus, Christopher J.; Hohensee, William E.
1987-01-01
This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.
Interpretation of Recurrent Neural Networks
Pedersen, Morten With; Larsen, Jan
1997-01-01
This paper addresses techniques for interpretation and characterization of trained recurrent nets for time series problems. In particular, we focus on assessment of effective memory and suggest an operational definition of memory. Further we discuss the evaluation of learning curves. Various nume...
Artificial Astrocytes Improve Neural Network Performance
Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-01-01
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157
Artificial Neural Networks and Instructional Technology.
Carlson, Patricia A.
1991-01-01
Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…
Artificial astrocytes improve neural network performance.
Ana B Porto-Pazos
Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
Artificial astrocytes improve neural network performance.
Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-04-19
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
Advanced Applications of Neural Networks and Artificial Intelligence: A Review
Koushal Kumar; Gour Sundar Mitra Thakur
2012-01-01
Artificial Neural Network is a branch of Artificial intelligence and has been accepted as a new computing technology in computer science fields. This paper reviews the field of Artificial intelligence and focusing on recent applications which uses Artificial Neural Networks (ANN’s) and Artificial Intelligence (AI). It also considers the integration of neural networks with other computing methods Such as fuzzy logic to enhance the interpretation ability of data. Artificial Neural Networks is c...
Mode Choice Modeling Using Artificial Neural Networks
Edara, Praveen Kumar
2003-01-01
Artificial intelligence techniques have produced excellent results in many diverse fields of engineering. Techniques such as neural networks and fuzzy systems have found their way into transportation engineering. In recent years, neural networks are being used instead of regression techniques for travel demand forecasting purposes. The basic reason lies in the fact that neural networks are able to capture complex relationships and learn from examples and also able to adapt when new data becom...
Recurrent Neural Network for Computing Outer Inverse.
Živković, Ivan S; Stanimirović, Predrag S; Wei, Yimin
2016-05-01
Two linear recurrent neural networks for generating outer inverses with prescribed range and null space are defined. Each of the proposed recurrent neural networks is based on the matrix-valued differential equation, a generalization of dynamic equations proposed earlier for the nonsingular matrix inversion, the Moore-Penrose inversion, as well as the Drazin inversion, under the condition of zero initial state. The application of the first approach is conditioned by the properties of the spectrum of a certain matrix; the second approach eliminates this drawback, though at the cost of increasing the number of matrix operations. The cases corresponding to the most common generalized inverses are defined. The conditions that ensure stability of the proposed neural network are presented. Illustrative examples present the results of numerical simulations.
Artificial neural network simulation of battery performance
O`Gorman, C.C.; Ingersoll, D.; Jungst, R.G.; Paez, T.L.
1998-12-31
Although they appear deceptively simple, batteries embody a complex set of interacting physical and chemical processes. While the discrete engineering characteristics of a battery such as the physical dimensions of the individual components, are relatively straightforward to define explicitly, their myriad chemical and physical processes, including interactions, are much more difficult to accurately represent. Within this category are the diffusive and solubility characteristics of individual species, reaction kinetics and mechanisms of primary chemical species as well as intermediates, and growth and morphology characteristics of reaction products as influenced by environmental and operational use profiles. For this reason, development of analytical models that can consistently predict the performance of a battery has only been partially successful, even though significant resources have been applied to this problem. As an alternative approach, the authors have begun development of a non-phenomenological model for battery systems based on artificial neural networks. Both recurrent and non-recurrent forms of these networks have been successfully used to develop accurate representations of battery behavior. The connectionist normalized linear spline (CMLS) network has been implemented with a self-organizing layer to model a battery system with the generalized radial basis function net. Concurrently, efforts are under way to use the feedforward back propagation network to map the {open_quotes}state{close_quotes} of a battery system. Because of the complexity of battery systems, accurate representation of the input and output parameters has proven to be very important. This paper describes these initial feasibility studies as well as the current models and makes comparisons between predicted and actual performance.
Local Dynamics in Trained Recurrent Neural Networks.
Rivkind, Alexander; Barak, Omri
2017-06-23
Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.
Local Dynamics in Trained Recurrent Neural Networks
Rivkind, Alexander; Barak, Omri
2017-06-01
Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.
The principles of artificial neural network information processing
Dai, Ru-Wei
1993-01-01
In this article, the basic structure of an artificial neuron is first introduced. In addition, principles of artificial neural network as well as several important artificial neural models such as perception, back propagation model, Hopfield net, and ART model are briefly discussed and analyzed. Finally the application of artificial neural network for Chinese character recognition is also given. (author)
The principles of artificial neural network information processing
Dai, Ru-Wei
1993-01-01
In this article, the basic structure of an artificial neuron is first introduced. In addition, principles of artificial neural network as well as several important artificial neural models such as Perceptron, Back propagation model, Hopfield net, and ART model are briefly discussed and analyzed. Finally, the application of artificial neural network for Chinese Character Recognition is also given. (author)
Parameter estimation in space systems using recurrent neural networks
Parlos, Alexander G.; Atiya, Amir F.; Sunkel, John W.
1991-01-01
The identification of time-varying parameters encountered in space systems is addressed, using artificial neural systems. A hybrid feedforward/feedback neural network, namely a recurrent multilayer perception, is used as the model structure in the nonlinear system identification. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard back-propagation-learning algorithm is modified and it is used for both the off-line and on-line supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying parameters of nonlinear dynamic systems is investigated by estimating the mass properties of a representative large spacecraft. The changes in the spacecraft inertia are predicted using a trained neural network, during two configurations corresponding to the early and late stages of the spacecraft on-orbit assembly sequence. The proposed on-line mass properties estimation capability offers encouraging results, though, further research is warranted for training and testing the predictive capabilities of these networks beyond nominal spacecraft operations.
Supervised Sequence Labelling with Recurrent Neural Networks
Graves, Alex
2012-01-01
Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional...
Artificial neural networks a practical course
da Silva, Ivan Nunes; Andrade Flauzino, Rogerio; Liboni, Luisa Helena Bartocci; dos Reis Alves, Silas Franco
2017-01-01
This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.
Alpha spectral analysis via artificial neural networks
Kangas, L.J.; Hashem, S.; Keller, P.E.; Kouzes, R.T.; Troyer, G.L.
1994-10-01
An artificial neural network system that assigns quality factors to alpha particle energy spectra is discussed. The alpha energy spectra are used to detect plutonium contamination in the work environment. The quality factors represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with a quality factor by an expert and used in training the artificial neural network expert system. The investigation shows that the expert knowledge of alpha spectra quality factors can be transferred to an ANN system
Cotton genotypes selection through artificial neural networks.
Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B
2017-09-27
Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.
An Artificial Neural Network Controller for Intelligent Transportation Systems Applications
1996-01-01
An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...
Analysis of some meteorological parameters using artificial neural ...
Analysis of some meteorological parameters using artificial neural network method for ... The mean daily data for sunshine hours, maximum temperature, cloud cover and ... The study used artificial neural networks (ANN) for the estimation.
Collaborative Recurrent Neural Networks forDynamic Recommender Systems
2016-11-22
JMLR: Workshop and Conference Proceedings 63:366–381, 2016 ACML 2016 Collaborative Recurrent Neural Networks for Dynamic Recommender Systems Young...an unprece- dented scale. Although such activity logs are abundantly available, most approaches to recommender systems are based on the rating...Recurrent Neural Network, Recommender System , Neural Language Model, Collaborative Filtering 1. Introduction As ever larger parts of the population
Analysis of Recurrent Analog Neural Networks
Z. Raida
1998-06-01
Full Text Available In this paper, an original rigorous analysis of recurrent analog neural networks, which are built from opamp neurons, is presented. The analysis, which comes from the approximate model of the operational amplifier, reveals causes of possible non-stable states and enables to determine convergence properties of the network. Results of the analysis are discussed in order to enable development of original robust and fast analog networks. In the analysis, the special attention is turned to the examination of the influence of real circuit elements and of the statistical parameters of processed signals to the parameters of the network.
Artificial neural network applications in ionospheric studies
L. R. Cander
1998-06-01
Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.
Artificial neural networks in neutron dosimetry
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. de Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)
2005-07-01
An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the {chi}{sup 2}- test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Artificial neural networks in neutron dosimetry
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A.; Gallego, E.; Lorente, A.
2005-01-01
An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the χ 2 - test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Artificial neural networks for plasma spectroscopy analysis
Morgan, W.L.; Larsen, J.T.; Goldstein, W.H.
1992-01-01
Artificial neural networks have been applied to a variety of signal processing and image recognition problems. Of the several common neural models the feed-forward, back-propagation network is well suited for the analysis of scientific laboratory data, which can be viewed as a pattern recognition problem. The authors present a discussion of the basic neural network concepts and illustrate its potential for analysis of experiments by applying it to the spectra of laser produced plasmas in order to obtain estimates of electron temperatures and densities. Although these are high temperature and density plasmas, the neural network technique may be of interest in the analysis of the low temperature and density plasmas characteristic of experiments and devices in gaseous electronics
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu
2017-10-01
This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.
Livermore Big Artificial Neural Network Toolkit
2016-07-01
LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.
Investment Valuation Analysis with Artificial Neural Networks
Hüseyin İNCE
2017-07-01
Full Text Available This paper shows that discounted cash flow and net present value, which are traditional investment valuation models, can be combined with artificial neural network model forecasting. The main inputs for the valuation models, such as revenue, costs, capital expenditure, and their growth rates, are heavily related to sector dynamics and macroeconomics. The growth rates of those inputs are related to inflation and exchange rates. Therefore, predicting inflation and exchange rates is a critical issue for the valuation output. In this paper, the Turkish economy’s inflation rate and the exchange rate of USD/TRY are forecast by artificial neural networks and implemented to the discounted cash flow model. Finally, the results are benchmarked with conventional practices.
Neutron spectrometry with artificial neural networks
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Rodriguez, J.M.; Mercado S, G.A.; Iniguez de la Torre Bayo, M.P.; Barquero, R.; Arteaga A, T.
2005-01-01
An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the χ 2 -test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Neutron spectrometry using artificial neural networks
Vega-Carrillo, Hector Rene; Martin Hernandez-Davila, Victor; Manzanares-Acuna, Eduardo; Mercado Sanchez, Gema A.; Pilar Iniguez de la Torre, Maria; Barquero, Raquel; Palacios, Francisco; Mendez Villafane, Roberto; Arteaga Arteaga, Tarcicio; Manuel Ortiz Rodriguez, Jose
2006-01-01
An artificial neural network has been designed to obtain neutron spectra from Bonner spheres spectrometer count rates. The neural network was trained using 129 neutron spectra. These include spectra from isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra based on mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. The re-binned spectra and the UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and their respective spectra were used as output during the neural network training. After training, the network was tested with the Bonner spheres count rates produced by folding a set of neutron spectra with the response matrix. This set contains data used during network training as well as data not used. Training and testing was carried out using the Matlab ( R) program. To verify the network unfolding performance, the original and unfolded spectra were compared using the root mean square error. The use of artificial neural networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated with this ill-conditioned problem
Artificial neural networks applied to forecasting time series.
Montaño Moreno, Juan J; Palmer Pol, Alfonso; Muñoz Gracia, Pilar
2011-04-01
This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparative study establishes that the error made by the four neural network models analyzed is less than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that the neural network models show a close fit regarding their forecasting capacity. The model with the best performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these limitations, and provide an orientation towards future research.
Adaptive Filtering Using Recurrent Neural Networks
Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.
2005-01-01
A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.
Identification of Non-Linear Structures using Recurrent Neural Networks
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Identification of Non-Linear Structures using Recurrent Neural Networks
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
1995-01-01
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Vaziri, N.; Erfani, A.; Monsefi, M.; Hajabri, A.
2008-01-01
In a reactor accident like loss of coolant accident , one or more signals may not be monitored by control panel for some reasons such as interruptions and so on. Therefore a fast alternative method could guarantee the safe and reliable exploration of nuclear power planets. In this study, we used artificial neural network with Elman recurrent structure to predict six thermal hydraulic signals in a loss of coolant accident after upper plenum break. In the prediction procedure, a few previous samples are fed to the artificial neural network and the output value or next time step is estimated by the network output. The Elman recurrent network is trained with the data obtained from the benchmark simulation of loss of coolant accident in VVER. The results reveal that the predicted values follow the real trends well and artificial neural network can be used as a fast alternative prediction tool in loss of coolant accident
Tuning Recurrent Neural Networks for Recognizing Handwritten Arabic Words
Qaralleh, Esam
2013-10-01
Artificial neural networks have the abilities to learn by example and are capable of solving problems that are hard to solve using ordinary rule-based programming. They have many design parameters that affect their performance such as the number and sizes of the hidden layers. Large sizes are slow and small sizes are generally not accurate. Tuning the neural network size is a hard task because the design space is often large and training is often a long process. We use design of experiments techniques to tune the recurrent neural network used in an Arabic handwriting recognition system. We show that best results are achieved with three hidden layers and two subsampling layers. To tune the sizes of these five layers, we use fractional factorial experiment design to limit the number of experiments to a feasible number. Moreover, we replicate the experiment configuration multiple times to overcome the randomness in the training process. The accuracy and time measurements are analyzed and modeled. The two models are then used to locate network sizes that are on the Pareto optimal frontier. The approach described in this paper reduces the label error from 26.2% to 19.8%.
A modular architecture for transparent computation in recurrent neural networks.
Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim
2017-01-01
Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Artificial neural network intelligent method for prediction
Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi
2017-09-01
Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.
Deep Recurrent Convolutional Neural Network: Improving Performance For Speech Recognition
Zhang, Zewang; Sun, Zheng; Liu, Jiaqi; Chen, Jingwen; Huo, Zhao; Zhang, Xiao
2016-01-01
A deep learning approach has been widely applied in sequence modeling problems. In terms of automatic speech recognition (ASR), its performance has significantly been improved by increasing large speech corpus and deeper neural network. Especially, recurrent neural network and deep convolutional neural network have been applied in ASR successfully. Given the arising problem of training speed, we build a novel deep recurrent convolutional network for acoustic modeling and then apply deep resid...
Artificial neural network detects human uncertainty
Hramov, Alexander E.; Frolov, Nikita S.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Koronovskii, Alexey A.; Garcia-Prieto, Juan; Antón-Toro, Luis Fernando; Maestú, Fernando; Pisarchik, Alexander N.
2018-03-01
Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.
Time series prediction with simple recurrent neural networks ...
A hybrid of the two called Elman-Jordan (or Multi-recurrent) neural network is also being used. In this study, we evaluated the performance of these neural networks on three established bench mark time series prediction problems. Results from the experiments showed that Jordan neural network performed significantly ...
Forecasting Monsoon Precipitation Using Artificial Neural Networks
无
2001-01-01
This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It pres ents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks (ANNs). Using the historical data of the total amount of summer rainfall over the Delta Area of Yangtze River in China, three ANNs models have been developed to forecast the monsoon precipitation in the corre sponding area one year, five-year, and ten-year forward respectively. Performances of the models have been validated using a ＇new＇ data set that has not been exposed to the models during the processes of model development and test. The experiment results are promising, indicating that the proposed ANNs models have good quality in terms of the accuracy, stability and generalisation ability.
Crack identification by artificial neural network
Hwu, C.B.; Liang, Y.C. [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Inst. of Aeronaut. and Astronaut.
1998-04-01
In this paper, a most popular artificial neural network called the back propagation neural network (BPN) is employed to achieve an ideal on-line identification of the crack embedded in a composite plate. Different from the usual dynamic estimate, the parameters used for the present crack identification are the strains of static deformation. It is known that the crack effects are localized which may not be clearly reflected from the boundary information especially when the data is from static deformation only. To remedy this, we use data from multiple-loading modes in which the loading modes may include the opening, shearing and tearing modes. The results show that our method for crack identification is always stable and accurate no matter how far-away of the test data from its training set. (orig.) 8 refs.
Tomographic image reconstruction using Artificial Neural Networks
Paschalis, P.; Giokaris, N.D.; Karabarbounis, A.; Loudos, G.K.; Maintas, D.; Papanicolas, C.N.; Spanoudaki, V.; Tsoumpas, Ch.; Stiliaris, E.
2004-01-01
A new image reconstruction technique based on the usage of an Artificial Neural Network (ANN) is presented. The most crucial factor in designing such a reconstruction system is the network architecture and the number of the input projections needed to reconstruct the image. Although the training phase requires a large amount of input samples and a considerable CPU time, the trained network is characterized by simplicity and quick response. The performance of this ANN is tested using several image patterns. It is intended to be used together with a phantom rotating table and the γ-camera of IASA for SPECT image reconstruction
Artificial Neural Network Analysis of Xinhui Pericarpium Citri ...
Methods: Artificial neural networks (ANN) models, including general regression neural network (GRNN) and multi-layer ... N-hexane (HPLC grade) was purchased from. Fisher Scientific. ..... Simultaneous Quantification of Seven Flavonoids in.
Ortiz R, J. M.; Martinez B, M. R.; Vega C, H. R.; Gallego D, E.; Lorente F, A.; Mendez V, R.; Los Arcos M, J. M.; Guerrero A, J. E.
2011-01-01
With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks (Ann) have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Ann still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning Ann parameters. In recent years the use of hybrid technologies, combining Ann and genetic algorithms, has been utilized to. In this work, several Ann topologies were trained and tested using Ann and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out. (Author)
Deep Recurrent Neural Networks for Supernovae Classification
Charnock, Tom; Moss, Adam
2017-03-01
We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set (around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F 1 = 0.64. When using only the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of 0.977, and F 1 = 0.58, results almost as good as with the whole light curve. By employing bidirectional neural networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of 90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time and show that it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.
Gap Filling of Daily Sea Levels by Artificial Neural Networks
Lyubka Pashova
2013-06-01
Full Text Available In the recent years, intelligent methods as artificial neural networks are successfully applied for data analysis from different fields of the geosciences. One of the encountered practical problems is the availability of gaps in the time series that prevent their comprehensive usage for the scientific and practical purposes. The article briefly describes two types of the artificial neural network (ANN architectures - Feed-Forward Backpropagation (FFBP and recurrent Echo state network (ESN. In some cases, the ANN can be used as an alternative on the traditional methods, to fill in missing values in the time series. We have been conducted several experiments to fill the missing values of daily sea levels spanning a 5-years period using both ANN architectures. A multiple linear regression for the same purpose has been also applied. The sea level data are derived from the records of the tide gauge Burgas, which is located on the western Black Sea coast. The achieved results have shown that the performance of ANN models is better than that of the classical one and they are very promising for the real-time interpolation of missing data in the time series.
Bayesian Recurrent Neural Network for Language Modeling.
Chien, Jen-Tzung; Ku, Yuan-Chu
2016-02-01
A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.
Character recognition from trajectory by recurrent spiking neural networks.
Jiangrong Shen; Kang Lin; Yueming Wang; Gang Pan
2017-07-01
Spiking neural networks are biologically plausible and power-efficient on neuromorphic hardware, while recurrent neural networks have been proven to be efficient on time series data. However, how to use the recurrent property to improve the performance of spiking neural networks is still a problem. This paper proposes a recurrent spiking neural network for character recognition using trajectories. In the network, a new encoding method is designed, in which varying time ranges of input streams are used in different recurrent layers. This is able to improve the generalization ability of our model compared with general encoding methods. The experiments are conducted on four groups of the character data set from University of Edinburgh. The results show that our method can achieve a higher average recognition accuracy than existing methods.
Predicting recurrent aphthous ulceration using genetic algorithms-optimized neural networks
Najla S Dar-Odeh
2010-05-01
Full Text Available Najla S Dar-Odeh1, Othman M Alsmadi2, Faris Bakri3, Zaer Abu-Hammour2, Asem A Shehabi3, Mahmoud K Al-Omiri1, Shatha M K Abu-Hammad4, Hamzeh Al-Mashni4, Mohammad B Saeed4, Wael Muqbil4, Osama A Abu-Hammad1 1Faculty of Dentistry, 2Faculty of Engineering and Technology, 3Faculty of Medicine, University of Jordan, Amman, Jordan; 4Dental Department, University of Jordan Hospital, Amman, JordanObjective: To construct and optimize a neural network that is capable of predicting the occurrence of recurrent aphthous ulceration (RAU based on a set of appropriate input data.Participants and methods: Artificial neural networks (ANN software employing genetic algorithms to optimize the architecture neural networks was used. Input and output data of 86 participants (predisposing factors and status of the participants with regards to recurrent aphthous ulceration were used to construct and train the neural networks. The optimized neural networks were then tested using untrained data of a further 10 participants.Results: The optimized neural network, which produced the most accurate predictions for the presence or absence of recurrent aphthous ulceration was found to employ: gender, hematological (with or without ferritin and mycological data of the participants, frequency of tooth brushing, and consumption of vegetables and fruits.Conclusions: Factors appearing to be related to recurrent aphthous ulceration and appropriate for use as input data to construct ANNs that predict recurrent aphthous ulceration were found to include the following: gender, hemoglobin, serum vitamin B12, serum ferritin, red cell folate, salivary candidal colony count, frequency of tooth brushing, and the number of fruits or vegetables consumed daily.Keywords: artifical neural networks, recurrent, aphthous ulceration, ulcer
Representation of linguistic form and function in recurrent neural networks
Kadar, Akos; Chrupala, Grzegorz; Alishahi, Afra
2017-01-01
We present novel methods for analyzing the activation patterns of recurrent neural networks from a linguistic point of view and explore the types of linguistic structure they learn. As a case study, we use a standard standalone language model, and a multi-task gated recurrent network architecture
Dynamic artificial neural networks with affective systems.
Catherine D Schuman
Full Text Available Artificial neural networks (ANNs are processors that are trained to perform particular tasks. We couple a computational ANN with a simulated affective system in order to explore the interaction between the two. In particular, we design a simple affective system that adjusts the threshold values in the neurons of our ANN. The aim of this paper is to demonstrate that this simple affective system can control the firing rate of the ensemble of neurons in the ANN, as well as to explore the coupling between the affective system and the processes of long term potentiation (LTP and long term depression (LTD, and the effect of the parameters of the affective system on its performance. We apply our networks with affective systems to a simple pole balancing example and briefly discuss the effect of affective systems on network performance.
Chiral topological phases from artificial neural networks
Kaubruegger, Raphael; Pastori, Lorenzo; Budich, Jan Carl
2018-05-01
Motivated by recent progress in applying techniques from the field of artificial neural networks (ANNs) to quantum many-body physics, we investigate to what extent the flexibility of ANNs can be used to efficiently study systems that host chiral topological phases such as fractional quantum Hall (FQH) phases. With benchmark examples, we demonstrate that training ANNs of restricted Boltzmann machine type in the framework of variational Monte Carlo can numerically solve FQH problems to good approximation. Furthermore, we show by explicit construction how n -body correlations can be kept at an exact level with ANN wave functions exhibiting polynomial scaling with power n in system size. Using this construction, we analytically represent the paradigmatic Laughlin wave function as an ANN state.
Flood routing modelling with Artificial Neural Networks
R. Peters
2006-01-01
Full Text Available For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks. To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting. In order to solve this problem we tested the application of Artificial Neural Networks (ANN. First studies show the ability of adequately trained multilayer feedforward networks (MLFN to reproduce the model performance.
Assessing Landslide Hazard Using Artificial Neural Network
Farrokhzad, Farzad; Choobbasti, Asskar Janalizadeh; Barari, Amin
2011-01-01
failure" which is main concentration of the current research and "liquefaction failure". Shear failures along shear planes occur when the shear stress along the sliding surfaces exceed the effective shear strength. These slides have been referred to as landslide. An expert system based on artificial...... and factor of safety. It can be stated that the trained neural networks are capable of predicting the stability of slopes and safety factor of landslide hazard in study area with an acceptable level of confidence. Landslide hazard analysis and mapping can provide useful information for catastrophic loss...... reduction, and assist in the development of guidelines for sustainable land use planning. The analysis is used to identify the factors that are related to landslides and to predict the landslide hazard in the future based on such a relationship....
Development of a hybrid system of artificial neural networks and ...
Development of a hybrid system of artificial neural networks and artificial bee colony algorithm for prediction and modeling of customer choice in the market. ... attempted to present a new method for the modeling and prediction of customer choice in the market using the combination of artificial intelligence and data mining.
Efficient computation in adaptive artificial spiking neural networks
D. Zambrano (Davide); R.B.P. Nusselder (Roeland); H.S. Scholte; S.M. Bohte (Sander)
2017-01-01
textabstractArtificial Neural Networks (ANNs) are bio-inspired models of neural computation that have proven highly effective. Still, ANNs lack a natural notion of time, and neural units in ANNs exchange analog values in a frame-based manner, a computationally and energetically inefficient form of
Artificial neural networks in neutron dosimetry
Vega-Carrillo, H. R.; Hernandez-Davila, V. M.; Manzanares-Acuna, E.; Mercado, G. A.; Gallego, E.; Lorente, A.; Perales-Munoz, W. A.; Robles-Rodriguez, J. A.
2006-01-01
An artificial neural network (ANN) has been designed to obtain neutron doses using only the count rates of a Bonner spheres spectrometer (BSS). Ambient, personal and effective neutron doses were included. One hundred and eighty-one neutron spectra were utilised to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in the BSS and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing were carried out in the MATLAB R environment. The impact of uncertainties in BSS count rates upon the dose quantities calculated with the ANN was investigated by modifying by ±5% the BSS count rates used in the training set. The use of ANNs in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated with this ill-conditioned problem. (authors)
A gentle introduction to artificial neural networks.
Zhang, Zhongheng
2016-10-01
Artificial neural network (ANN) is a flexible and powerful machine learning technique. However, it is under utilized in clinical medicine because of its technical challenges. The article introduces some basic ideas behind ANN and shows how to build ANN using R in a step-by-step framework. In topology and function, ANN is in analogue to the human brain. There are input and output signals transmitting from input to output nodes. Input signals are weighted before reaching output nodes according to their respective importance. Then the combined signal is processed by activation function. I simulated a simple example to illustrate how to build a simple ANN model using nnet() function. This function allows for one hidden layer with varying number of units in that layer. The basic structure of ANN can be visualized with plug-in plot.nnet() function. The plot function is powerful that it allows for varieties of adjustment to the appearance of the neural networks. Prediction with ANN can be performed with predict() function, similar to that of conventional generalized linear models. Finally, the prediction power of ANN is examined using confusion matrix and average accuracy. It appears that ANN is slightly better than conventional linear model.
Artificial Neural Networks and the Mass Appraisal of Real Estate
Gang Zhou
2018-03-01
Full Text Available With the rapid development of computer, artificial intelligence and big data technology, artificial neural networks have become one of the most powerful machine learning algorithms. In the practice, most of the applications of artificial neural networks use back propagation neural network and its variation. Besides the back propagation neural network, various neural networks have been developing in order to improve the performance of standard models. Though neural networks are well known method in the research of real estate, there is enormous space for future research in order to enhance their function. Some scholars combine genetic algorithm, geospatial information, support vector machine model, particle swarm optimization with artificial neural networks to appraise the real estate, which is helpful for the existing appraisal technology. The mass appraisal of real estate in this paper includes the real estate valuation in the transaction and the tax base valuation in the real estate holding. In this study we focus on the theoretical development of artificial neural networks and mass appraisal of real estate, artificial neural networks model evolution and algorithm improvement, artificial neural networks practice and application, and review the existing literature about artificial neural networks and mass appraisal of real estate. Finally, we provide some suggestions for the mass appraisal of China's real estate.
Taraglio, Sergio; Zanela, Andrea [ENEA, Casaccia (Italy). Dipt. Innovazione
1997-05-01
The artificial neural networks try to simulate the functionalities of the nervous system through a complex network of simple computing elements. In this work is presented an introduction to the neural networks and some of their possible applications, especially in the field of Artificial Intelligence.
Artificial Neural Network applied to lightning flashes
Gin, R. B.; Guedes, D.; Bianchi, R.
2013-05-01
The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a
Application of artificial neural network in radiographic diagnosis
Piraino, D.; Amartur, S.; Richmond, B.; Schils, J.; Belhobek, G.
1990-01-01
This paper reports on an artificial neural network trained to rate the likelihood of different bone neoplasms when given a standard description of a radiograph. A three-layer back propagation algorithm was trained with descriptions of examples of bone neoplasms obtained from standard radiographic textbooks. Fifteen bone neoplasms obtained from clinical material were used as unknowns to test the trained artificial neural network. The artificial neural network correctly rated the pathologic diagnosis as the most likely diagnosis in 10 of the 15 unknown cases
Patterns recognition of electric brain activity using artificial neural networks
Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.
2017-04-01
An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.
Forecasting Zakat collection using artificial neural network
Sy Ahmad Ubaidillah, Sh. Hafizah; Sallehuddin, Roselina
2013-04-01
'Zakat', "that which purifies" or "alms", is the giving of a fixed portion of one's wealth to charity, generally to the poor and needy. It is one of the five pillars of Islam, and must be paid by all practicing Muslims who have the financial means (nisab). 'Nisab' is the minimum level to determine whether there is a 'zakat' to be paid on the assets. Today, in most Muslim countries, 'zakat' is collected through a decentralized and voluntary system. Under this voluntary system, 'zakat' committees are established, which are tasked with the collection and distribution of 'zakat' funds. 'Zakat' promotes a more equitable redistribution of wealth, and fosters a sense of solidarity amongst members of the 'Ummah'. The Malaysian government has established a 'zakat' center at every state to facilitate the management of 'zakat'. The center has to have a good 'zakat' management system to effectively execute its functions especially in the collection and distribution of 'zakat'. Therefore, a good forecasting model is needed. The purpose of this study is to develop a forecasting model for Pusat Zakat Pahang (PZP) to predict the total amount of collection from 'zakat' of assets more precisely. In this study, two different Artificial Neural Network (ANN) models using two different learning algorithms are developed; Back Propagation (BP) and Levenberg-Marquardt (LM). Both models are developed and compared in terms of their accuracy performance. The best model is determined based on the lowest mean square error and the highest correlations values. Based on the results obtained from the study, BP neural network is recommended as the forecasting model to forecast the collection from 'zakat' of assets for PZP.
Artificial Neural Networks For Hadron Hadron Cross-sections
ELMashad, M.; ELBakry, M.Y.; Tantawy, M.; Habashy, D.M.
2011-01-01
In recent years artificial neural networks (ANN ) have emerged as a mature and viable framework with many applications in various areas. Artificial neural networks theory is sometimes used to refer to a branch of computational science that uses neural networks as models to either simulate or analyze complex phenomena and/or study the principles of operation of neural networks analytically. In this work a model of hadron- hadron collision using the ANN technique is present, the hadron- hadron based ANN model calculates the cross sections of hadron- hadron collision. The results amply demonstrate the feasibility of such new technique in extracting the collision features and prove its effectiveness
Loss surface of XOR artificial neural networks
Mehta, Dhagash; Zhao, Xiaojun; Bernal, Edgar A.; Wales, David J.
2018-05-01
Training an artificial neural network involves an optimization process over the landscape defined by the cost (loss) as a function of the network parameters. We explore these landscapes using optimization tools developed for potential energy landscapes in molecular science. The number of local minima and transition states (saddle points of index one), as well as the ratio of transition states to minima, grow rapidly with the number of nodes in the network. There is also a strong dependence on the regularization parameter, with the landscape becoming more convex (fewer minima) as the regularization term increases. We demonstrate that in our formulation, stationary points for networks with Nh hidden nodes, including the minimal network required to fit the XOR data, are also stationary points for networks with Nh+1 hidden nodes when all the weights involving the additional node are zero. Hence, smaller networks trained on XOR data are embedded in the landscapes of larger networks. Our results clarify certain aspects of the classification and sensitivity (to perturbations in the input data) of minima and saddle points for this system, and may provide insight into dropout and network compression.
Artificial neural network for violation analysis
Zhang, Z.; Polet, P.; Vanderhaegen, F.; Millot, P.
2004-01-01
Barrier removal (BR) is a safety-related violation, and it can be analyzed in terms of benefits, costs, and potential deficits. In order to allow designers to integrate BR into the risk analysis during the initial design phase or during re-design work, we propose a connectionist method integrating self-organizing maps (SOM). The basic SOM is an artificial neural network that, on the basis of the information contained in a multi-dimensional space, generates a space of lesser dimensions. Three algorithms--Unsupervised SOM, Supervised SOM, and Hierarchical SOM--have been developed to permit BR classification and prediction in terms of the different criteria. The proposed method can be used, on the one hand, to foresee/predict the possibility level of a new/changed barrier (prospective analysis), and on the other hand, to synthetically regroup/rearrange the BR of a given human-machine system (retrospective analysis). We applied this method to the BR analysis of an experimental railway simulator, and our preliminary results are presented here
Forecasting Water Levels Using Artificial Neural Networks
Shreenivas N. Londhe
2011-06-01
Full Text Available For all Ocean related activities it is necessary to predict the actual water levels as accurate as possible. The present work aims at predicting the water levels with a lead time of few hours to a day using the technique of artificial neural networks. Instead of using the previous and current values of observed water level time series directly as input and output the water level anomaly (difference between the observed water level and harmonically predicted tidal level is calculated for each hour and the ANN model is developed using this time series. The network predicted anomaly is then added to harmonic tidal level to predict the water levels. The exercise is carried out at six locations, two in The Gulf of Mexico, two in The Gulf of Maine and two in The Gulf of Alaska along the USA coastline. The ANN models performed reasonably well for all forecasting intervals at all the locations. The ANN models were also run in real time mode for a period of eight months. Considering the hurricane season in Gulf of Mexico the models were also tested particularly during hurricanes.
Doubly stochastic Poisson processes in artificial neural learning.
Card, H C
1998-01-01
This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.
Geochemical characterization of oceanic basalts using artificial neural network
Das, P.; Iyer, S.D.
method is specifically needed to identify the OFB as normal (N-MORB), enriched (E-MORB) and ocean island basalts (OIB). Artificial Neural Network (ANN) technique as a supervised Learning Vector Quantisation (LVQ) is applied to identify the inherent...
Applying Fuzzy Artificial Neural Network OSPF to develop Smart ...
pc
2018-03-05
Mar 5, 2018 ... Fuzzy Artificial Neural Network to create Smart Routing. Protocol Algorithm. ... manufactured mental aptitude strategy. The capacity to study .... Based Energy Efficiency in Wireless Sensor Networks: A Survey",. International ...
Statistical downscaling of precipitation using long short-term memory recurrent neural networks
Misra, Saptarshi; Sarkar, Sudeshna; Mitra, Pabitra
2017-11-01
Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes.
Noise-enhanced categorization in a recurrently reconnected neural network
Monterola, Christopher; Zapotocky, Martin
2005-01-01
We investigate the interplay of recurrence and noise in neural networks trained to categorize spatial patterns of neural activity. We develop the following procedure to demonstrate how, in the presence of noise, the introduction of recurrence permits to significantly extend and homogenize the operating range of a feed-forward neural network. We first train a two-level perceptron in the absence of noise. Following training, we identify the input and output units of the feed-forward network, and thus convert it into a two-layer recurrent network. We show that the performance of the reconnected network has features reminiscent of nondynamic stochastic resonance: the addition of noise enables the network to correctly categorize stimuli of subthreshold strength, with optimal noise magnitude significantly exceeding the stimulus strength. We characterize the dynamics leading to this effect and contrast it to the behavior of a more simple associative memory network in which noise-mediated categorization fails
Noise-enhanced categorization in a recurrently reconnected neural network
Monterola, Christopher; Zapotocky, Martin
2005-03-01
We investigate the interplay of recurrence and noise in neural networks trained to categorize spatial patterns of neural activity. We develop the following procedure to demonstrate how, in the presence of noise, the introduction of recurrence permits to significantly extend and homogenize the operating range of a feed-forward neural network. We first train a two-level perceptron in the absence of noise. Following training, we identify the input and output units of the feed-forward network, and thus convert it into a two-layer recurrent network. We show that the performance of the reconnected network has features reminiscent of nondynamic stochastic resonance: the addition of noise enables the network to correctly categorize stimuli of subthreshold strength, with optimal noise magnitude significantly exceeding the stimulus strength. We characterize the dynamics leading to this effect and contrast it to the behavior of a more simple associative memory network in which noise-mediated categorization fails.
Teaching methodology for modeling reference evapotranspiration with artificial neural networks
Martí, Pau; Pulido Calvo, Inmaculada; Gutiérrez Estrada, Juan Carlos
2015-01-01
[EN] Artificial neural networks are a robust alternative to conventional models for estimating different targets in irrigation engineering, among others, reference evapotranspiration, a key variable for estimating crop water requirements. This paper presents a didactic methodology for introducing students in the application of artificial neural networks for reference evapotranspiration estimation using MatLab c . Apart from learning a specific application of this software wi...
Comparing Neural Networks and ARMA Models in Artificial Stock Market
Krtek, Jiří; Vošvrda, Miloslav
2011-01-01
Roč. 18, č. 28 (2011), s. 53-65 ISSN 1212-074X R&D Projects: GA ČR GD402/09/H045 Institutional research plan: CEZ:AV0Z10750506 Keywords : neural networks * vector ARMA * artificial market Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2011/E/krtek-comparing neural networks and arma models in artificial stock market.pdf
NEW TECHNIQUES APPLIED IN ECONOMICS. ARTIFICIAL NEURAL NETWORK
Constantin Ilie
2009-05-01
Full Text Available The present paper has the objective to inform the public regarding the use of new techniques for the modeling, simulate and forecast of system from different field of activity. One of those techniques is Artificial Neural Network, one of the artificial in
Does Artificial Neural Network Support Connectivism's Assumptions?
AlDahdouh, Alaa A.
2017-01-01
Connectivism was presented as a learning theory for the digital age and connectivists claim that recent developments in Artificial Intelligence (AI) and, more specifically, Artificial Neural Network (ANN) support their assumptions of knowledge connectivity. Yet, very little has been done to investigate this brave allegation. Does the advancement…
Daily Nigerian peak load forecasting using artificial neural network ...
A daily peak load forecasting technique that uses artificial neural network with seasonal indices is presented in this paper. A neural network of relatively smaller size than the main prediction network is used to predict the daily peak load for a period of one year over which the actual daily load data are available using one ...
Optimal Brain Surgeon on Artificial Neural Networks in
Christiansen, Niels Hørbye; Job, Jonas Hultmann; Klyver, Katrine
2012-01-01
It is shown how the procedure know as optimal brain surgeon can be used to trim and optimize artificial neural networks in nonlinear structural dynamics. Beside optimizing the neural network, and thereby minimizing computational cost in simulation, the surgery procedure can also serve as a quick...
Advances in Artificial Neural Networks - Methodological Development and Application
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...
Optimization of recurrent neural networks for time series modeling
Pedersen, Morten With
1997-01-01
The present thesis is about optimization of recurrent neural networks applied to time series modeling. In particular is considered fully recurrent networks working from only a single external input, one layer of nonlinear hidden units and a li near output unit applied to prediction of discrete time...... series. The overall objective s are to improve training by application of second-order methods and to improve generalization ability by architecture optimization accomplished by pruning. The major topics covered in the thesis are: 1. The problem of training recurrent networks is analyzed from a numerical...... of solution obtained as well as computation time required. 3. A theoretical definition of the generalization error for recurrent networks is provided. This definition justifies a commonly adopted approach for estimating generalization ability. 4. The viability of pruning recurrent networks by the Optimal...
Hong, Wei-Chiang
2011-01-01
Support vector regression (SVR), with hybrid chaotic sequence and evolutionary algorithms to determine suitable values of its three parameters, not only can effectively avoid converging prematurely (i.e., trapping into a local optimum), but also reveals its superior forecasting performance. Electric load sometimes demonstrates a seasonal (cyclic) tendency due to economic activities or climate cyclic nature. The applications of SVR models to deal with seasonal (cyclic) electric load forecasting have not been widely explored. In addition, the concept of recurrent neural networks (RNNs), focused on using past information to capture detailed information, is helpful to be combined into an SVR model. This investigation presents an electric load forecasting model which combines the seasonal recurrent support vector regression model with chaotic artificial bee colony algorithm (namely SRSVRCABC) to improve the forecasting performance. The proposed SRSVRCABC employs the chaotic behavior of honey bees which is with better performance in function optimization to overcome premature local optimum. A numerical example from an existed reference is used to elucidate the forecasting performance of the proposed SRSVRCABC model. The forecasting results indicate that the proposed model yields more accurate forecasting results than ARIMA and TF-ε-SVR-SA models. Therefore, the SRSVRCABC model is a promising alternative for electric load forecasting. -- Highlights: → Hybridizing the seasonal adjustment and the recurrent mechanism into an SVR model. → Employing chaotic sequence to improve the premature convergence of artificial bee colony algorithm. → Successfully providing significant accurate monthly load demand forecasting.
Energy Complexity of Recurrent Neural Networks
Šíma, Jiří
2014-01-01
Roč. 26, č. 5 (2014), s. 953-973 ISSN 0899-7667 R&D Projects: GA ČR GAP202/10/1333 Institutional support: RVO:67985807 Keywords : neural network * finite automaton * energy complexity * optimal size Subject RIV: IN - Informatics, Computer Science Impact factor: 2.207, year: 2014
Liquefaction Microzonation of Babol City Using Artificial Neural Network
Farrokhzad, F.; Choobbasti, A.J.; Barari, Amin
2012-01-01
that will be less susceptible to damage during earthquakes. The scope of present study is to prepare the liquefaction microzonation map for the Babol city based on Seed and Idriss (1983) method using artificial neural network. Artificial neural network (ANN) is one of the artificial intelligence (AI) approaches...... microzonation map is produced for research area. Based on the obtained results, it can be stated that the trained neural network is capable in prediction of liquefaction potential with an acceptable level of confidence. At the end, zoning of the city is carried out based on the prediction of liquefaction...... that can be classified as machine learning. Simplified methods have been practiced by researchers to assess nonlinear liquefaction potential of soil. In order to address the collective knowledge built-up in conventional liquefaction engineering, an alternative general regression neural network model...
ECO INVESTMENT PROJECT MANAGEMENT THROUGH TIME APPLYING ARTIFICIAL NEURAL NETWORKS
Tamara Gvozdenović
2007-06-01
Full Text Available he concept of project management expresses an indispensable approach to investment projects. Time is often the most important factor in these projects. The artificial neural network is the paradigm of data processing, which is inspired by the one used by the biological brain, and it is used in numerous, different fields, among which is the project management. This research is oriented to application of artificial neural networks in managing time of investment project. The artificial neural networks are used to define the optimistic, the most probable and the pessimistic time in PERT method. The program package Matlab: Neural Network Toolbox is used in data simulation. The feed-forward back propagation network is chosen.
Neural Machine Translation with Recurrent Attention Modeling
Yang, Zichao; Hu, Zhiting; Deng, Yuntian; Dyer, Chris; Smola, Alex
2016-01-01
Knowing which words have been attended to in previous time steps while generating a translation is a rich source of information for predicting what words will be attended to in the future. We improve upon the attention model of Bahdanau et al. (2014) by explicitly modeling the relationship between previous and subsequent attention levels for each word using one recurrent network per input word. This architecture easily captures informative features, such as fertility and regularities in relat...
Bach in 2014: Music Composition with Recurrent Neural Network
Liu, I-Ting; Ramakrishnan, Bhiksha
2014-01-01
We propose a framework for computer music composition that uses resilient propagation (RProp) and long short term memory (LSTM) recurrent neural network. In this paper, we show that LSTM network learns the structure and characteristics of music pieces properly by demonstrating its ability to recreate music. We also show that predicting existing music using RProp outperforms Back propagation through time (BPTT).
Probing the basins of attraction of a recurrent neural network
Heerema, M.; van Leeuwen, W.A.
2000-01-01
Analytical expressions for the weights $w_{ij}(b)$ of the connections of a recurrent neural network are found by taking explicitly into account basins of attraction, the size of which is characterized by a basin parameter $b$. It is shown that a network with $b \
Bayesian model ensembling using meta-trained recurrent neural networks
Ambrogioni, L.; Berezutskaya, Y.; Gü ç lü , U.; Borne, E.W.P. van den; Gü ç lü tü rk, Y.; Gerven, M.A.J. van; Maris, E.G.G.
2017-01-01
In this paper we demonstrate that a recurrent neural network meta-trained on an ensemble of arbitrary classification tasks can be used as an approximation of the Bayes optimal classifier. This result is obtained by relying on the framework of e-free approximate Bayesian inference, where the Bayesian
Railway track circuit fault diagnosis using recurrent neural networks
de Bruin, T.D.; Verbert, K.A.J.; Babuska, R.
2017-01-01
Timely detection and identification of faults in railway track circuits are crucial for the safety and availability of railway networks. In this paper, the use of the long-short-term memory (LSTM) recurrent neural network is proposed to accomplish these tasks based on the commonly available
A recurrent neural network with ever changing synapses
Heerema, M.; van Leeuwen, W.A.
2000-01-01
A recurrent neural network with noisy input is studied analytically, on the basis of a Discrete Time Master Equation. The latter is derived from a biologically realizable learning rule for the weights of the connections. In a numerical study it is found that the fixed points of the dynamics of the
Active Control of Sound based on Diagonal Recurrent Neural Network
Jayawardhana, Bayu; Xie, Lihua; Yuan, Shuqing
2002-01-01
Recurrent neural network has been known for its dynamic mapping and better suited for nonlinear dynamical system. Nonlinear controller may be needed in cases where the actuators exhibit the nonlinear characteristics, or in cases when the structure to be controlled exhibits nonlinear behavior. The
Convolutional over Recurrent Encoder for Neural Machine Translation
Dakwale Praveen
2017-06-01
Full Text Available Neural machine translation is a recently proposed approach which has shown competitive results to traditional MT approaches. Standard neural MT is an end-to-end neural network where the source sentence is encoded by a recurrent neural network (RNN called encoder and the target words are predicted using another RNN known as decoder. Recently, various models have been proposed which replace the RNN encoder with a convolutional neural network (CNN. In this paper, we propose to augment the standard RNN encoder in NMT with additional convolutional layers in order to capture wider context in the encoder output. Experiments on English to German translation demonstrate that our approach can achieve significant improvements over a standard RNN-based baseline.
Synthesis of recurrent neural networks for dynamical system simulation.
Trischler, Adam P; D'Eleuterio, Gabriele M T
2016-08-01
We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Relation Classification via Recurrent Neural Network
Zhang, Dongxu; Wang, Dong
2015-01-01
Deep learning has gained much success in sentence-level relation classification. For example, convolutional neural networks (CNN) have delivered competitive performance without much effort on feature engineering as the conventional pattern-based methods. Thus a lot of works have been produced based on CNN structures. However, a key issue that has not been well addressed by the CNN-based method is the lack of capability to learn temporal features, especially long-distance dependency between no...
Artificial neural network based approach to transmission lines protection
Joorabian, M.
1999-05-01
The aim of this paper is to present and accurate fault detection technique for high speed distance protection using artificial neural networks. The feed-forward multi-layer neural network with the use of supervised learning and the common training rule of error back-propagation is chosen for this study. Information available locally at the relay point is passed to a neural network in order for an assessment of the fault location to be made. However in practice there is a large amount of information available, and a feature extraction process is required to reduce the dimensionality of the pattern vectors, whilst retaining important information that distinguishes the fault point. The choice of features is critical to the performance of the neural networks learning and operation. A significant feature in this paper is that an artificial neural network has been designed and tested to enhance the precision of the adaptive capabilities for distance protection
Robust recurrent neural network modeling for software fault detection and correction prediction
Hu, Q.P.; Xie, M.; Ng, S.H.; Levitin, G.
2007-01-01
Software fault detection and correction processes are related although different, and they should be studied together. A practical approach is to apply software reliability growth models to model fault detection, and fault correction process is assumed to be a delayed process. On the other hand, the artificial neural networks model, as a data-driven approach, tries to model these two processes together with no assumptions. Specifically, feedforward backpropagation networks have shown their advantages over analytical models in fault number predictions. In this paper, the following approach is explored. First, recurrent neural networks are applied to model these two processes together. Within this framework, a systematic networks configuration approach is developed with genetic algorithm according to the prediction performance. In order to provide robust predictions, an extra factor characterizing the dispersion of prediction repetitions is incorporated into the performance function. Comparisons with feedforward neural networks and analytical models are developed with respect to a real data set
Modeling Broadband Microwave Structures by Artificial Neural Networks
V. Otevrel
2004-06-01
Full Text Available The paper describes the exploitation of feed-forward neural networksand recurrent neural networks for replacing full-wave numerical modelsof microwave structures in complex microwave design tools. Building aneural model, attention is turned to the modeling accuracy and to theefficiency of building a model. Dealing with the accuracy, we describea method of increasing it by successive completing a training set.Neural models are mutually compared in order to highlight theiradvantages and disadvantages. As a reference model for comparisons,approximations based on standard cubic splines are used. Neural modelsare used to replace both the time-domain numeric models and thefrequency-domain ones.
Analysis of surface ozone using a recurrent neural network.
Biancofiore, Fabio; Verdecchia, Marco; Di Carlo, Piero; Tomassetti, Barbara; Aruffo, Eleonora; Busilacchio, Marcella; Bianco, Sebastiano; Di Tommaso, Sinibaldo; Colangeli, Carlo
2015-05-01
Hourly concentrations of ozone (O₃) and nitrogen dioxide (NO₂) have been measured for 16 years, from 1998 to 2013, in a seaside town in central Italy. The seasonal trends of O₃ and NO₂ recorded in this period have been studied. Furthermore, we used the data collected during one year (2005), to define the characteristics of a multiple linear regression model and a neural network model. Both models are used to model the hourly O₃ concentration, using, two scenarios: 1) in the first as inputs, only meteorological parameters and 2) in the second adding photochemical parameters at those of the first scenario. In order to evaluate the performance of the model four statistical criteria are used: correlation coefficient, fractional bias, normalized mean squared error and a factor of two. All the criteria show that the neural network gives better results, compared to the regression model, in all the model scenarios. Predictions of O₃ have been carried out by many authors using a feed forward neural architecture. In this paper we show that a recurrent architecture significantly improves the performances of neural predictors. Using only the meteorological parameters as input, the recurrent architecture shows performance better than the multiple linear regression model that uses meteorological and photochemical data as input, making the neural network model with recurrent architecture a more useful tool in areas where only weather measurements are available. Finally, we used the neural network model to forecast the O₃ hourly concentrations 1, 3, 6, 12, 24 and 48 h ahead. The performances of the model in predicting O₃ levels are discussed. Emphasis is given to the possibility of using the neural network model in operational ways in areas where only meteorological data are available, in order to predict O₃ also in sites where it has not been measured yet. Copyright © 2015 Elsevier B.V. All rights reserved.
Iterative free-energy optimization for recurrent neural networks (INFERNO)
2017-01-01
The intra-parietal lobe coupled with the Basal Ganglia forms a working memory that demonstrates strong planning capabilities for generating robust yet flexible neuronal sequences. Neurocomputational models however, often fails to control long range neural synchrony in recurrent spiking networks due to spontaneous activity. As a novel framework based on the free-energy principle, we propose to see the problem of spikes’ synchrony as an optimization problem of the neurons sub-threshold activity for the generation of long neuronal chains. Using a stochastic gradient descent, a reinforcement signal (presumably dopaminergic) evaluates the quality of one input vector to move the recurrent neural network to a desired activity; depending on the error made, this input vector is strengthened to hill-climb the gradient or elicited to search for another solution. This vector can be learned then by one associative memory as a model of the basal-ganglia to control the recurrent neural network. Experiments on habit learning and on sequence retrieving demonstrate the capabilities of the dual system to generate very long and precise spatio-temporal sequences, above two hundred iterations. Its features are applied then to the sequential planning of arm movements. In line with neurobiological theories, we discuss its relevance for modeling the cortico-basal working memory to initiate flexible goal-directed neuronal chains of causation and its relation to novel architectures such as Deep Networks, Neural Turing Machines and the Free-Energy Principle. PMID:28282439
A recurrent neural network for solving bilevel linear programming problem.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian
2014-04-01
In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.
Embedding recurrent neural networks into predator-prey models.
Moreau, Yves; Louiès, Stephane; Vandewalle, Joos; Brenig, Leon
1999-03-01
We study changes of coordinates that allow the embedding of ordinary differential equations describing continuous-time recurrent neural networks into differential equations describing predator-prey models-also called Lotka-Volterra systems. We transform the equations for the neural network first into quasi-monomial form (Brenig, L. (1988). Complete factorization and analytic solutions of generalized Lotka-Volterra equations. Physics Letters A, 133(7-8), 378-382), where we express the vector field of the dynamical system as a linear combination of products of powers of the variables. In practice, this transformation is possible only if the activation function is the hyperbolic tangent or the logistic sigmoid. From this quasi-monomial form, we can directly transform the system further into Lotka-Volterra equations. The resulting Lotka-Volterra system is of higher dimension than the original system, but the behavior of its first variables is equivalent to the behavior of the original neural network. We expect that this transformation will permit the application of existing techniques for the analysis of Lotka-Volterra systems to recurrent neural networks. Furthermore, our results show that Lotka-Volterra systems are universal approximators of dynamical systems, just as are continuous-time neural networks.
Global robust stability of delayed recurrent neural networks
Cao Jinde; Huang Deshuang; Qu Yuzhong
2005-01-01
This paper is concerned with the global robust stability of a class of delayed interval recurrent neural networks which contain time-invariant uncertain parameters whose values are unknown but bounded in given compact sets. A new sufficient condition is presented for the existence, uniqueness, and global robust stability of equilibria for interval neural networks with time delays by constructing Lyapunov functional and using matrix-norm inequality. An error is corrected in an earlier publication, and an example is given to show the effectiveness of the obtained results
Analysis Resilient Algorithm on Artificial Neural Network Backpropagation
Saputra, Widodo; Tulus; Zarlis, Muhammad; Widia Sembiring, Rahmat; Hartama, Dedy
2017-12-01
Prediction required by decision makers to anticipate future planning. Artificial Neural Network (ANN) Backpropagation is one of method. This method however still has weakness, for long training time. This is a reason to improve a method to accelerate the training. One of Artificial Neural Network (ANN) Backpropagation method is a resilient method. Resilient method of changing weights and bias network with direct adaptation process of weighting based on local gradient information from every learning iteration. Predicting data result of Istanbul Stock Exchange training getting better. Mean Square Error (MSE) value is getting smaller and increasing accuracy.
Simulation of nonlinear random vibrations using artificial neural networks
Paez, T.L.; Tucker, S.; O`Gorman, C.
1997-02-01
The simulation of mechanical system random vibrations is important in structural dynamics, but it is particularly difficult when the system under consideration is nonlinear. Artificial neural networks provide a useful tool for the modeling of nonlinear systems, however, such modeling may be inefficient or insufficiently accurate when the system under consideration is complex. This paper shows that there are several transformations that can be used to uncouple and simplify the components of motion of a complex nonlinear system, thereby making its modeling and random vibration simulation, via component modeling with artificial neural networks, a much simpler problem. A numerical example is presented.
water demand prediction using artificial neural network
user
2017-01-01
Jan 1, 2017 ... Interface for activation and deactivation of valves. •. Interface demand ... process could be done and monitored at the computer terminal as expected of a .... [15] Arbib, M. A.The Handbook of Brain Theory and Neural. Networks.
Artificial Neural Network Based Model of Photovoltaic Cell
Messaouda Azzouzi
2017-03-01
Full Text Available This work concerns the modeling of a photovoltaic system and the prediction of the sensitivity of electrical parameters (current, power of the six types of photovoltaic cells based on voltage applied between terminals using one of the best known artificial intelligence technique which is the Artificial Neural Networks. The results of the modeling and prediction have been well shown as a function of number of iterations and using different learning algorithms to obtain the best results.
Foot Plantar Pressure Estimation Using Artificial Neural Networks
Xidias , Elias; Koutkalaki , Zoi; Papagiannis , Panagiotis; Papanikos , Paraskevas; Azariadis , Philip
2015-01-01
Part 1: Smart Products; International audience; In this paper, we present a novel approach to estimate the maximum pressure over the foot plantar surface exerted by a two-layer shoe sole for three distinct phases of the gait cycle. The proposed method is based on Artificial Neural Networks and can be utilized for the determination of the comfort that is related to the sole construction. Input parameters to the proposed neural network are the material properties and the thicknesses of the sole...
Vickram, A S; Kamini, A Rao; Das, Raja; Pathy, M Ramesh; Parameswari, R; Archana, K; Sridharan, T B
2016-08-01
Seminal fluid is the secretion from many glands comprised of several organic and inorganic compounds including free amino acids, proteins, fructose, glucosidase, zinc, and other scavenging elements like Mg(2+), Ca(2+), K(+), and Na(+). Therefore, in the view of development of novel approaches and proper diagnosis to male infertility, overall understanding of the biochemical and molecular composition and its role in regulation of sperm quality is highly desirable. Perhaps this can be achieved through artificial intelligence. This study was aimed to elucidate and predict various biochemical markers present in human seminal plasma with three different neural network models. A total of 177 semen samples were collected for this research (both fertile and infertile samples) and immediately processed to prepare a semen analysis report, based on the protocol of the World Health Organization (WHO [2010]). The semen samples were then categorized into oligoasthenospermia (n=35), asthenospermia (n=35), azoospermia (n=22), normospermia (n=34), oligospermia (n=34), and control (n=17). The major biochemical parameters like total protein content, fructose, glucosidase, and zinc content were elucidated by standard protocols. All the biochemical markers were predicted by using three different artificial neural network (ANN) models with semen parameters as inputs. Of the three models, the back propagation neural network model (BPNN) yielded the best results with mean absolute error 0.025, -0.080, 0.166, and -0.057 for protein, fructose, glucosidase, and zinc, respectively. This suggests that BPNN can be used to predict biochemical parameters for the proper diagnosis of male infertility in assisted reproductive technology (ART) centres. AAS: absorption spectroscopy; AI: artificial intelligence; ANN: artificial neural networks; ART: assisted reproductive technology; BPNN: back propagation neural network model; DT: decision tress; MLP: multilayer perceptron; PESA: percutaneous
Cao Jiacong; Lin Xingchun
2008-01-01
An accurate forecast of solar irradiation is required for various solar energy applications and environmental impact analyses in recent years. Comparatively, various irradiation forecast models based on artificial neural networks (ANN) perform much better in accuracy than many conventional prediction models. However, the forecast precision of most existing ANN based forecast models has not been satisfactory to researchers and engineers so far, and the generalization capability of these networks needs further improving. Combining the prominent dynamic properties of a recurrent neural network (RNN) with the enhanced ability of a wavelet neural network (WNN) in mapping nonlinear functions, a diagonal recurrent wavelet neural network (DRWNN) is newly established in this paper to perform fine forecasting of hourly and daily global solar irradiance. Some additional steps, e.g. applying historical information of cloud cover to sample data sets and the cloud cover from the weather forecast to network input, are adopted to help enhance the forecast precision. Besides, a specially scheduled two phase training algorithm is adopted. As examples, both hourly and daily irradiance forecasts are completed using sample data sets in Shanghai and Macau, and comparisons between irradiation models show that the DRWNN models are definitely more accurate
Predicting local field potentials with recurrent neural networks.
Kim, Louis; Harer, Jacob; Rangamani, Akshay; Moran, James; Parks, Philip D; Widge, Alik; Eskandar, Emad; Dougherty, Darin; Chin, Sang Peter
2016-08-01
We present a Recurrent Neural Network using LSTM (Long Short Term Memory) that is capable of modeling and predicting Local Field Potentials. We train and test the network on real data recorded from epilepsy patients. We construct networks that predict multi-channel LFPs for 1, 10, and 100 milliseconds forward in time. Our results show that prediction using LSTM outperforms regression when predicting 10 and 100 millisecond forward in time.
Web server's reliability improvements using recurrent neural networks
Madsen, Henrik; Albu, Rǎzvan-Daniel; Felea, Ioan
2012-01-01
In this paper we describe an interesting approach to error prediction illustrated by experimental results. The application consists of monitoring the activity for the web servers in order to collect the specific data. Predicting an error with severe consequences for the performance of a server (t...... usage, network usage and memory usage. We collect different data sets from monitoring the web server's activity and for each one we predict the server's reliability with the proposed recurrent neural network. © 2012 Taylor & Francis Group...
Beneficial role of noise in artificial neural networks
Monterola, Christopher; Saloma, Caesar; Zapotocky, Martin
2008-01-01
We demonstrate enhancement of neural networks efficacy to recognize frequency encoded signals and/or to categorize spatial patterns of neural activity as a result of noise addition. For temporal information recovery, noise directly added to the receiving neurons allow instantaneous improvement of signal-to-noise ratio [Monterola and Saloma, Phys. Rev. Lett. 2002]. For spatial patterns however, recurrence is necessary to extend and homogenize the operating range of a feed-forward neural network [Monterola and Zapotocky, Phys. Rev. E 2005]. Finally, using the size of the basin of attraction of the networks learned patterns (dynamical fixed points), a procedure for estimating the optimal noise is demonstrated
Khil'ko, O.S.; Kovalenko, V.I.; Kundas, S.P.
2010-01-01
Artificial neural networks approach for horizontal and vertical radionuclide transport forecasting was proposed. Runoff factors analysis was considered. Additional artificial neural network structures for physical-chemical properties recognition were used. (authors)
Recurrent Neural Network for Computing the Drazin Inverse.
Stanimirović, Predrag S; Zivković, Ivan S; Wei, Yimin
2015-11-01
This paper presents a recurrent neural network (RNN) for computing the Drazin inverse of a real matrix in real time. This recurrent neural network (RNN) is composed of n independent parts (subnetworks), where n is the order of the input matrix. These subnetworks can operate concurrently, so parallel and distributed processing can be achieved. In this way, the computational advantages over the existing sequential algorithms can be attained in real-time applications. The RNN defined in this paper is convenient for an implementation in an electronic circuit. The number of neurons in the neural network is the same as the number of elements in the output matrix, which represents the Drazin inverse. The difference between the proposed RNN and the existing ones for the Drazin inverse computation lies in their network architecture and dynamics. The conditions that ensure the stability of the defined RNN as well as its convergence toward the Drazin inverse are considered. In addition, illustrative examples and examples of application to the practical engineering problems are discussed to show the efficacy of the proposed neural network.
A Recurrent Neural Network for Nonlinear Fractional Programming
Quan-Ju Zhang
2012-01-01
Full Text Available This paper presents a novel recurrent time continuous neural network model which performs nonlinear fractional optimization subject to interval constraints on each of the optimization variables. The network is proved to be complete in the sense that the set of optima of the objective function to be minimized with interval constraints coincides with the set of equilibria of the neural network. It is also shown that the network is primal and globally convergent in the sense that its trajectory cannot escape from the feasible region and will converge to an exact optimal solution for any initial point being chosen in the feasible interval region. Simulation results are given to demonstrate further the global convergence and good performance of the proposing neural network for nonlinear fractional programming problems with interval constraints.
Ideomotor feedback control in a recurrent neural network.
Galtier, Mathieu
2015-06-01
The architecture of a neural network controlling an unknown environment is presented. It is based on a randomly connected recurrent neural network from which both perception and action are simultaneously read and fed back. There are two concurrent learning rules implementing a sort of ideomotor control: (i) perception is learned along the principle that the network should predict reliably its incoming stimuli; (ii) action is learned along the principle that the prediction of the network should match a target time series. The coherent behavior of the neural network in its environment is a consequence of the interaction between the two principles. Numerical simulations show a promising performance of the approach, which can be turned into a local and better "biologically plausible" algorithm.
A novel word spotting method based on recurrent neural networks.
Frinken, Volkmar; Fischer, Andreas; Manmatha, R; Bunke, Horst
2012-02-01
Keyword spotting refers to the process of retrieving all instances of a given keyword from a document. In the present paper, a novel keyword spotting method for handwritten documents is described. It is derived from a neural network-based system for unconstrained handwriting recognition. As such it performs template-free spotting, i.e., it is not necessary for a keyword to appear in the training set. The keyword spotting is done using a modification of the CTC Token Passing algorithm in conjunction with a recurrent neural network. We demonstrate that the proposed systems outperform not only a classical dynamic time warping-based approach but also a modern keyword spotting system, based on hidden Markov models. Furthermore, we analyze the performance of the underlying neural networks when using them in a recognition task followed by keyword spotting on the produced transcription. We point out the advantages of keyword spotting when compared to classic text line recognition.
Artificial neural networks for prediction of percentage of water ...
have high compressive strengths in comparison with con- crete specimens ... presenting suitable model based on artificial neural networks. (ANNs) to ... by experimental ones to evaluate the software power for pre- dicting the ..... Figure 7. Correlation of measured and predicted percentage of water absorption values of.
Prediction of littoral drift with artificial neural networks
Singh, A.K.; Deo, M.C.; SanilKumar, V.
of the rate of sand drift has still remained as a problem. The current study addresses this issue through the use of artificial neural networks (ANN). Feed forward networks were developed to predict the sand drift from a variety of causative variables...
Artificial Neural Networks for SCADA Data based Load Reconstruction (poster)
Hofemann, C.; Van Bussel, G.J.W.; Veldkamp, H.
2011-01-01
If at least one reference wind turbine is available, which provides sufficient information about the wind turbine loads, the loads acting on the neighbouring wind turbines can be predicted via an artificial neural network (ANN). This research explores the possibilities to apply such a network not
A Neuron- and a Synapse Chip for Artificial Neural Networks
Lansner, John; Lehmann, Torsten
1992-01-01
A cascadable, analog, CMOS chip set has been developed for hardware implementations of artificial neural networks (ANN's):I) a neuron chip containing an array of neurons with hyperbolic tangent activation functions and adjustable gains, and II) a synapse chip (or a matrix-vector multiplier) where...
Artificial neural networks as a tool in urban storm drainage
Loke, E.; Warnaars, E.A.; Jacobsen, P.
1997-01-01
The introduction of Artificial Neural Networks (ANNs) as a tool in the field of urban storm drainage is discussed. Besides some basic theory on the mechanics of ANNs and a general classification of the different types of ANNs, two ANN application examples are presented: The prediction of runoff...
Face Recognition using Artificial Neural Network | Endeshaw | Zede ...
Face recognition (FR) is one of the biometric methods to identify the individuals by the features of face. Two Face Recognition Systems (FRS) based on Artificial Neural Network (ANN) have been proposed in this paper based on feature extraction techniques. In the first system, Principal Component Analysis (PCA) has been ...
Improving Artificial Neural Network Forecasts with Kalman Filtering ...
In this paper, we examine the use of the artificial neural network method as a forecasting technique in financial time series and the application of a Kalman filter algorithm to improve the accuracy of the model. Forecasting accuracy criteria are used to compare the two models over different set of data from different companies ...
Artificial Neural Networks for Thermochemical Conversion of Biomass
Puig Arnavat, Maria; Bruno, Joan Carles
2015-01-01
Artificial neural networks (ANNs), extensively used in different fields, have been applied for modeling biomass gasification processes in fluidized bed reactors. Two ANN models are presented, one for circulating fluidized bed gasifiers and another for bubbling fluidized bed gasifiers. Both models...
Introducing Artificial Neural Networks through a Spreadsheet Model
Rienzo, Thomas F.; Athappilly, Kuriakose K.
2012-01-01
Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…
Application of design of experiments and artificial neural networks ...
This paper discusses the use of Distance based optimal designs in the design of experiments (DOE) and artificial neural networks (ANN) in optimizing the stacking sequence for simply supported laminated composite plate under uniformly distributed load (UDL) for minimizing the deflections and stresses. A number of finite ...
Aspects of artificial neural networks and experimental noise
Derks, E.P.P.A.
1997-01-01
About a decade ago, artificial neural networks (ANN) have been introduced to chemometrics for solving problems in analytical chemistry. ANN are based on the functioning of the brain and can be used for modeling complex relationships within chemical data. An ANN-model can be obtained by earning or
Application of artificial neural networks to improve power transfer ...
Application of artificial neural networks to improve power transfer capability through OLTC. ... International Journal of Engineering, Science and Technology ... Numerical results show that the setting of OLTC transformer in terms of the load model has a major effect on the maximum power transfer in power systems and the ...
Artificial-neural-network-based failure detection and isolation
Sadok, Mokhtar; Gharsalli, Imed; Alouani, Ali T.
1998-03-01
This paper presents the design of a systematic failure detection and isolation system that uses the concept of failure sensitive variables (FSV) and artificial neural networks (ANN). The proposed approach was applied to tube leak detection in a utility boiler system. Results of the experimental testing are presented in the paper.
Artificial neural networks for prediction of percentage of water
... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 35; Issue 6. Artificial neural networks for prediction of percentage of water absorption of geopolymers produced by waste ashes. Ali Nazari. Volume 35 Issue 6 November 2012 pp 1019-1029 ...
Vibration monitoring with artificial neural networks
Alguindigue, I.
1991-01-01
Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural network to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected from operating machinery. Two neural networks algorithms were used in our project: the Recirculation algorithm for data compression and the Backpropagation algorithm to perform the actual classification of the patterns. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results to date are very encouraging
WATER DEMAND PREDICTION USING ARTIFICIAL NEURAL ...
This paper presents Hourly water demand prediction at the demand nodes of a water distribution network using NeuNet Pro 2.3 neural network software and the monitoring and control of water distribution using supervisory control. The case study is the Laminga Water Treatment Plant and its water distribution network, Jos.
Evaluation of scoliosis using baropodometer and artificial neural network
Caroline Meireles Fanfoni
Full Text Available Abstract Introduction: One of the most recurrent pathologies in the spine is scoliosis. It occurs in the frontal plane and is formed by one or more curves in the spinal column. The scoliosis causes global postural misalignment in an individual. One of the modifications produced by postural misalignment is the way in which an individual distributes weight to the feet. We aimed to implement an electronic system for separating patients with Degree I scoliosis (i.e., 1° to 19° scoliosis according to the Ricard classification into two groups: C1 (1°-9° and C2 (10°-9°. The highest percentage of patients with scoliosis is in this range: those who do not need to wear vests or undergo surgery and whose treatment is performed via special physical exercise and frequent evaluations by healthcare professionals. Methods The electronic system consists of a baropodometer and artificial neural networks (ANNs. The classification of patients in the scoliosis groups was performed with MATLAB software and a Single Layer Perceptron network using the backpropagation training algorithm. Evaluations were performed on 63 volunteers. Results The mean classification sensitivity was 93.7% in the C1 group and 94.5% in the C2 group. The classification accuracy was 83.3% in the C1 group and 96.0% in the C2 group. Conclusion The implemented system can contribute to the treatment of patients with scoliosis grades ranging from 1° to 19°, which represents the highest incidence of this pathology, for which the monitoring of the clinical condition using noninvasive techniques is of fundamental importance.
Recurrent networks for wave forecasting
Mandal, S.; Prabaharan, N.
, merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper presents an application of the Artificial Neural Network, namely Backpropagation Recurrent Neural Network (BRNN) with rprop update algorithm for wave forecasting...
Probabilistic Wind Power Forecasting with Hybrid Artificial Neural Networks
Wan, Can; Song, Yonghua; Xu, Zhao
2016-01-01
probabilities of prediction errors provide an alternative yet effective solution. This article proposes a hybrid artificial neural network approach to generate prediction intervals of wind power. An extreme learning machine is applied to conduct point prediction of wind power and estimate model uncertainties...... via a bootstrap technique. Subsequently, the maximum likelihood estimation method is employed to construct a distinct neural network to estimate the noise variance of forecasting results. The proposed approach has been tested on multi-step forecasting of high-resolution (10-min) wind power using...... actual wind power data from Denmark. The numerical results demonstrate that the proposed hybrid artificial neural network approach is effective and efficient for probabilistic forecasting of wind power and has high potential in practical applications....
Artificial neural networks in the nuclear engineering (Part 2)
Baptista Filho, Benedito Dias
2002-01-01
The field of Artificial Neural Networks (ANN), one of the branches of Artificial Intelligence has been waking up a lot of interest in the Nuclear Engineering (NE). ANN can be used to solve problems of difficult modeling, when the data are fail or incomplete and in high complexity problems of control. The first part of this work began a discussion with feed-forward neural networks in back-propagation. In this part of the work, the Multi-synaptic neural networks is applied to control problems. Also, the self-organized maps is presented in a typical pattern classification problem: transients classification. The main purpose of the work is to show that ANN can be successfully used in NE if a carefully choice of its type is done: the application sets this choice. (author)
2010-03-01
EVOLUTIONARY ARTIFICIAL NEURAL NETWORK WEIGHT TUNING TO OPTIMIZE DECISION MAKING FOR AN ABSTRACT...AFIT/GCS/ENG/10-06 EVOLUTIONARY ARTIFICIAL NEURAL NETWORK WEIGHT TUNING TO OPTIMIZE DECISION MAKING FOR AN ABSTRACT GAME THESIS Presented...35 14: Diagram of pLoGANN’s Artificial Neural Network and
Artificial neural networks for decision-making in urologic oncology.
Anagnostou, Theodore; Remzi, Mesut; Lykourinas, Michael; Djavan, Bob
2003-06-01
The authors are presenting a thorough introduction in Artificial Neural Networks (ANNs) and their contribution to modern Urologic Oncology. The article covers a description of Artificial Neural Network methodology and points out the differences of Artificial Intelligence to traditional statistic models in terms of serving patients and clinicians, in a different way than current statistical analysis. Since Artificial Intelligence is not yet fully understood by many practicing clinicians, the authors have reviewed a careful selection of articles in order to explore the clinical benefit of Artificial Intelligence applications in modern Urology questions and decision-making. The data are from real patients and reflect attempts to achieve more accurate diagnosis and prognosis, especially in prostate cancer that stands as a good example of difficult decision-making in everyday practice. Experience from current use of Artificial Intelligence is also being discussed, and the authors address future developments as well as potential problems such as medical record quality, precautions in using ANNs or resistance to system use, in an attempt to point out future demands and the need for common standards. The authors conclude that both methods should continue to be used in a complementary manner. ANNs still do not prove always better as to replace standard statistical analysis as the method of choice in interpreting medical data.
Evaluating neural networks and artificial intelligence systems
Alberts, David S.
1994-02-01
Systems have no intrinsic value in and of themselves, but rather derive value from the contributions they make to the missions, decisions, and tasks they are intended to support. The estimation of the cost-effectiveness of systems is a prerequisite for rational planning, budgeting, and investment documents. Neural network and expert system applications, although similar in their incorporation of a significant amount of decision-making capability, differ from each other in ways that affect the manner in which they can be evaluated. Both these types of systems are, by definition, evolutionary systems, which also impacts their evaluation. This paper discusses key aspects of neural network and expert system applications and their impact on the evaluation process. A practical approach or methodology for evaluating a certain class of expert systems that are particularly difficult to measure using traditional evaluation approaches is presented.
Convolutional neural networks for prostate cancer recurrence prediction
Kumar, Neeraj; Verma, Ruchika; Arora, Ashish; Kumar, Abhay; Gupta, Sanchit; Sethi, Amit; Gann, Peter H.
2017-03-01
Accurate prediction of the treatment outcome is important for cancer treatment planning. We present an approach to predict prostate cancer (PCa) recurrence after radical prostatectomy using tissue images. We used a cohort whose case vs. control (recurrent vs. non-recurrent) status had been determined using post-treatment follow up. Further, to aid the development of novel biomarkers of PCa recurrence, cases and controls were paired based on matching of other predictive clinical variables such as Gleason grade, stage, age, and race. For this cohort, tissue resection microarray with up to four cores per patient was available. The proposed approach is based on deep learning, and its novelty lies in the use of two separate convolutional neural networks (CNNs) - one to detect individual nuclei even in the crowded areas, and the other to classify them. To detect nuclear centers in an image, the first CNN predicts distance transform of the underlying (but unknown) multi-nuclear map from the input HE image. The second CNN classifies the patches centered at nuclear centers into those belonging to cases or controls. Voting across patches extracted from image(s) of a patient yields the probability of recurrence for the patient. The proposed approach gave 0.81 AUC for a sample of 30 recurrent cases and 30 non-recurrent controls, after being trained on an independent set of 80 case-controls pairs. If validated further, such an approach might help in choosing between a combination of treatment options such as active surveillance, radical prostatectomy, radiation, and hormone therapy. It can also generalize to the prediction of treatment outcomes in other cancers.
Artificial Neural Network Model for Predicting Compressive
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Seker, Serhat; Tuerkcan, Erdinc; Ayaz, Emine; Barutcu, Burak
2003-01-01
This paper addresses to the problem of utilisation of the artificial neural networks (ANNs) for detecting anomalies as well as physical parameters of a nuclear power plant during power operation in real time. Three different types of neural network algorithms were used namely, feed-forward neural network (back-propagation, BP) and two types of recurrent neural networks (RNN). The data used in this paper were gathered from the simulation of the power operation of the Japan's High Temperature Engineering Testing Reactor (HTTR). For the wide range of power operation, 56 signals were generated by the reactor dynamic simulation code for several hours of normal power operation at different power ramps between 30 and 100% nominal power. Paper will compare the outcomes of different neural networks and presents the neural network system and the determination of physical parameters from the simulated operating data
Sensitivity analysis of linear programming problem through a recurrent neural network
Das, Raja
2017-11-01
In this paper we study the recurrent neural network for solving linear programming problems. To achieve optimality in accuracy and also in computational effort, an algorithm is presented. We investigate the sensitivity analysis of linear programming problem through the neural network. A detailed example is also presented to demonstrate the performance of the recurrent neural network.
Fine-tuning and the stability of recurrent neural networks.
David MacNeil
Full Text Available A central criticism of standard theoretical approaches to constructing stable, recurrent model networks is that the synaptic connection weights need to be finely-tuned. This criticism is severe because proposed rules for learning these weights have been shown to have various limitations to their biological plausibility. Hence it is unlikely that such rules are used to continuously fine-tune the network in vivo. We describe a learning rule that is able to tune synaptic weights in a biologically plausible manner. We demonstrate and test this rule in the context of the oculomotor integrator, showing that only known neural signals are needed to tune the weights. We demonstrate that the rule appropriately accounts for a wide variety of experimental results, and is robust under several kinds of perturbation. Furthermore, we show that the rule is able to achieve stability as good as or better than that provided by the linearly optimal weights often used in recurrent models of the integrator. Finally, we discuss how this rule can be generalized to tune a wide variety of recurrent attractor networks, such as those found in head direction and path integration systems, suggesting that it may be used to tune a wide variety of stable neural systems.
Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.
Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng
2016-02-01
This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.
Estimating Ads’ Click through Rate with Recurrent Neural Network
Chen Qiao-Hong
2016-01-01
Full Text Available With the development of the Internet, online advertising spreads across every corner of the world, the ads' click through rate (CTR estimation is an important method to improve the online advertising revenue. Compared with the linear model, the nonlinear models can study much more complex relationships between a large number of nonlinear characteristics, so as to improve the accuracy of the estimation of the ads’ CTR. The recurrent neural network (RNN based on Long-Short Term Memory (LSTM is an improved model of the feedback neural network with ring structure. The model overcomes the problem of the gradient of the general RNN. Experiments show that the RNN based on LSTM exceeds the linear models, and it can effectively improve the estimation effect of the ads’ click through rate.
Delay-slope-dependent stability results of recurrent neural networks.
Li, Tao; Zheng, Wei Xing; Lin, Chong
2011-12-01
By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.
Very deep recurrent convolutional neural network for object recognition
Brahimi, Sourour; Ben Aoun, Najib; Ben Amar, Chokri
2017-03-01
In recent years, Computer vision has become a very active field. This field includes methods for processing, analyzing, and understanding images. The most challenging problems in computer vision are image classification and object recognition. This paper presents a new approach for object recognition task. This approach exploits the success of the Very Deep Convolutional Neural Network for object recognition. In fact, it improves the convolutional layers by adding recurrent connections. This proposed approach was evaluated on two object recognition benchmarks: Pascal VOC 2007 and CIFAR-10. The experimental results prove the efficiency of our method in comparison with the state of the art methods.
Optimizing Markovian modeling of chaotic systems with recurrent neural networks
Cechin, Adelmo L.; Pechmann, Denise R.; Oliveira, Luiz P.L. de
2008-01-01
In this paper, we propose a methodology for optimizing the modeling of an one-dimensional chaotic time series with a Markov Chain. The model is extracted from a recurrent neural network trained for the attractor reconstructed from the data set. Each state of the obtained Markov Chain is a region of the reconstructed state space where the dynamics is approximated by a specific piecewise linear map, obtained from the network. The Markov Chain represents the dynamics of the time series in its statistical essence. An application to a time series resulted from Lorenz system is included
INTEGRATING ARTIFICIAL NEURAL NETWORKS FOR DEVELOPING TELEMEDICINE SOLUTION
Mihaela GHEORGHE
2015-06-01
Full Text Available Artificial intelligence is assuming an increasing important role in the telemedicine field, especially neural networks with their ability to achieve meaning from large sets of data characterized by lacking exactness and accuracy. These can be used for assisting physicians or other clinical staff in the process of taking decisions under uncertainty. Thus, machine learning methods which are specific to this technology are offering an approach for prediction based on pattern classification. This paper aims to present the importance of neural networks in detecting trends and extracting patterns which can be used within telemedicine domains, particularly for taking medical diagnosis decisions.
Modelling of word usage frequency dynamics using artificial neural network
Maslennikova, Yu S; Bochkarev, V V; Voloskov, D S
2014-01-01
In this paper the method for modelling of word usage frequency time series is proposed. An artificial feedforward neural network was used to predict word usage frequencies. The neural network was trained using the maximum likelihood criterion. The Google Books Ngram corpus was used for the analysis. This database provides a large amount of data on frequency of specific word forms for 7 languages. Statistical modelling of word usage frequency time series allows finding optimal fitting and filtering algorithm for subsequent lexicographic analysis and verification of frequency trend models
Improved Local Weather Forecasts Using Artificial Neural Networks
Wollsen, Morten Gill; Jørgensen, Bo Nørregaard
2015-01-01
Solar irradiance and temperature forecasts are used in many different control systems. Such as intelligent climate control systems in commercial greenhouses, where the solar irradiance affects the use of supplemental lighting. This paper proposes a novel method to predict the forthcoming weather...... using an artificial neural network. The neural network used is a NARX network, which is known to model non-linear systems well. The predictions are compared to both a design reference year as well as commercial weather forecasts based upon numerical modelling. The results presented in this paper show...
Static human face recognition using artificial neural networks
Qamar, R.; Shah, S.H.; Javed-ur-Rehman
2003-01-01
This paper presents a novel method of human face recognition using digital computers. A digital PC camera is used to take the BMP images of the human faces. An artificial neural network using Back Propagation Algorithm is developed as a recognition engine. The BMP images of the faces serve as the input patterns for this engine. A software 'Face Recognition' has been developed to recognize the human faces for which it is trained. Once the neural network is trained for patterns of the faces, the software is able to detect and recognize them with success rate of about 97%. (author)
Optimizing sliver quality using Artificial Neural Networks in ring spinning
Samar Ahmed Mohsen Abd-Ellatif
2013-12-01
Full Text Available Sliver evenness is a very important parameter affecting the quality of the yarn produced. Therefore, controlling the sliver evenness is of major importance. Auto-levelers mounted on modern Drawing Frames should be accurately adjusted to help to achieve this task. The Leveling Action Point (LAP is one of the important auto-leveling parameters which highly influence the evenness of the slivers produced. Its adjustment is therefore of a crucial importance. In this research work, Artificial Neural Networks are applied to predict the optimum value of the LAP under different productions and material conditions. Five models are developed and tested for their ability to predict the optimum value of the LAP from the most influencing fiber and process parameters. As a final step, a statistical multiple regression model was developed to conduct a comparison between the performance of the developed Artificial Neural Network model and the currently applied statistical techniques.
Incidents Prediction in Road Junctions Using Artificial Neural Networks
Hajji, Tarik; Alami Hassani, Aicha; Ouazzani Jamil, Mohammed
2018-05-01
The implementation of an incident detection system (IDS) is an indispensable operation in the analysis of the road traffics. However the IDS may, in no case, represent an alternative to the classical monitoring system controlled by the human eye. The aim of this work is to increase detection and prediction probability of incidents in camera-monitored areas. Knowing that, these areas are monitored by multiple cameras and few supervisors. Our solution is to use Artificial Neural Networks (ANN) to analyze moving objects trajectories on captured images. We first propose a modelling of the trajectories and their characteristics, after we develop a learning database for valid and invalid trajectories, and then we carry out a comparative study to find the artificial neural network architecture that maximizes the rate of valid and invalid trajectories recognition.
Artificial neural networks for static security assessment
Niebur, D.; Fischl, R.
1997-12-31
A reliable, continuous supply of electric energy is essential for the functioning of today`s complex societies. Due to a combination of increasing energy consumption and impediments of various kinds to the extension of existing electric transmission networks, these power systems are operated closer and closer to their limits. This situation requires a significantly less conservative power system operation and control regime which, in turn, is possible only by monitoring the system state in much more detail than was necessary previously. Fortunately, the large quantity of information required can be provided in many cases through recent advances in telecommunications and computing techniques. There is, however, a lack of evaluation techniques required to extract the salient information and to use it for higher-order processing. Whilst the sheer quantity of available information is always a problem, this situation is aggravated in emergency situations when rapid decisions are required. Furthermore, the behaviour of power systems is highly non-linear. Monitoring and control involves several hundred variables which are only partly available by measurements. Load demands and dynamic loads are difficult to model. Therefore models appropriate for normal situations might become invalid in emergency situations. These problems provide important motivation to explore novel data processing and programming techniques from the vast pool of artificial intelligence techniques. The following section gives a short introduction to static security assessment. (Author)
Application of artificial neural network for NHR fault diagnosis
Yu Haitao; Zhang Liangju; Xu Xiangdong
1999-01-01
The author makes researches on 200 MW nuclear heating reactor (NHR) fault diagnosis system using artificial neural network, and use the tendency value and real value of the data under the accidents to train and test two BP networks respectively. The final diagnostic result is the combination of the results of the two networks. The compound system can enhance the accuracy and adaptability of the diagnosis comparing to the single network system
Artificial neural network applying for justification of tractors undercarriages parameters
V. A. Kuz’Min
2017-01-01
Full Text Available One of the most important properties that determine undercarriage layout on design stage is the soil compaction effect. Existing domestic standards of undercarriages impact to soil do not meet modern agricultural requirements completely. The authors justify the need for analysis of traction and transportation machines travel systems and recommendations for these parameters applied to machines that are on design or modernization stage. The database of crawler agricultural tractors particularly in such parameters as traction class and basic operational weight, engine power rating, average ground pressure, square of track basic branch surface area was modeled. Meanwhile the considered machines were divided into two groups by producing countries: Europe/North America and Russian Federation/CIS. The main graphical dependences for every group of machines are plotted, and the conforming analytical dependences within the ranges with greatest concentration of machines are generated. To make the procedure of obtaining parameters of the soil panning by tractors easier it is expedient to use the program tool - artificial neural network (or perceptron. It is necessary to apply to the solution of this task multilayered perceptron - neutron network of direct distribution of signals (without feedback. To carry out the analysis of parameters of running systems taking into account parameters of the soil panning by them and to recommend the choice of these parameters for newly created machines. The program code of artificial neural network is developed. On the basis of the created base of tractors the artificial neural network was created and tested. Accumulated error was not more than 5 percent. These data indicate the results accuracy and tool reliability. It is possible by operating initial design-data base and using the designed artificial neural network to define missing parameters.
THE COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR PREDICTIONS - ARTIFICIAL NEURAL NETWORKS
Mary Violeta Bar
2014-01-01
The computational intelligence techniques are used in problems which can not be solved by traditional techniques when there is insufficient data to develop a model problem or when they have errors.Computational intelligence, as he called Bezdek (Bezdek, 1992) aims at modeling of biological intelligence. Artificial Neural Networks( ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is solving problems that are too c...
Application of artificial neural networks in particle physics
Kolanoski, H.
1995-04-01
The application of Artificial Neural Networks in Particle Physics is reviewed. Most common is the use of feed-forward nets for event classification and function approximation. This network type is best suited for a hardware implementation and special VLSI chips are available which are used in fast trigger processors. Also discussed are fully connected networks of the Hopfield type for pattern recognition in tracking detectors. (orig.)
Image reconstruction using Monte Carlo simulation and artificial neural networks
Emert, F.; Missimner, J.; Blass, W.; Rodriguez, A.
1997-01-01
PET data sets are subject to two types of distortions during acquisition: the imperfect response of the scanner and attenuation and scattering in the active distribution. In addition, the reconstruction of voxel images from the line projections composing a data set can introduce artifacts. Monte Carlo simulation provides a means for modeling the distortions and artificial neural networks a method for correcting for them as well as minimizing artifacts. (author) figs., tab., refs
Charged particle track reconstruction using artificial neural networks
Glover, C.; Fu, P.; Gabriel, T.; Handler, T.
1992-01-01
This paper summarizes the current state of our research in developing and applying artificial neural network (ANN) algorithm described here is based on a crude model of the retina. It takes as input the coordinates of each charged particle's interaction point (''hit'') in the tracking chamber. The algorithm's output is a set of vectors pointing to other hits that most likely to form a track
Selection of radio pulsar candidates using artificial neural networks
Eatough, R. P.; Molkenthin, N.; Kramer, M.; Noutsos, A.; Keith, M. J.; Stappers, B. W.; Lyne, A. G.
2010-01-01
Radio pulsar surveys are producing many more pulsar candidates than can be inspected by human experts in a practical length of time. Here we present a technique to automatically identify credible pulsar candidates from pulsar surveys using an artificial neural network. The technique has been applied to candidates from a recent re-analysis of the Parkes multi-beam pulsar survey resulting in the discovery of a previously unidentified pulsar.
Learning text representation using recurrent convolutional neural network with highway layers
Wen, Ying; Zhang, Weinan; Luo, Rui; Wang, Jun
2016-01-01
Recently, the rapid development of word embedding and neural networks has brought new inspiration to various NLP and IR tasks. In this paper, we describe a staged hybrid model combining Recurrent Convolutional Neural Networks (RCNN) with highway layers. The highway network module is incorporated in the middle takes the output of the bi-directional Recurrent Neural Network (Bi-RNN) module in the first stage and provides the Convolutional Neural Network (CNN) module in the last stage with the i...
Predicting Developmental Disorder in Infants Using an Artificial Neural Network
Farin Soleimani
2013-06-01
Full Text Available Early recognition of developmental disorders is an important goal, and equally important is avoiding misdiagnosing a disorder in a healthy child without pathology. The aim of the present study was to develop an artificial neural network using perinatal information to predict developmental disorder at infancy. A total of 1,232 mother–child dyads were recruited from 6,150 in the original data of Karaj, Alborz Province, Iran. Thousands of variables are examined in this data including basic characteristics, medical history, and variables related to infants. The validated Infant Neurological International Battery test was employed to assess the infant’s development. The concordance indexes showed that true prediction of developmental disorder in the artificial neural network model, compared to the logistic regression model, was 83.1% vs. 79.5% and the area under ROC curves, calculated from testing data, were 0.79 and 0.68, respectively. In addition, specificity and sensitivity of the ANN model vs. LR model was calculated 93.2% vs. 92.7% and 39.1% vs. 21.7%. An artificial neural network performed significantly better than a logistic regression model.
Eswari J, Satya; Chandrakar, Neha [National Institute of Technology Raipur, Raipur (India)
2016-04-15
Artificial neural networks (ANNs) can be used to develop a technique to classify lymph node negative breast cancer that is prone to distant metastases based on gene expression signatures. The neural network used is a multilayered feed forward network that employs back propagation algorithm. Once trained with DNA microarraybased gene expression profiles of genes that were predictive of distant metastasis recurrence of lymph node negative breast cancer, the ANNs became capable of correctly classifying all samples and recognizing the genes most appropriate to the classification. To test the ability of the trained ANN models in recognizing lymph node negative breast cancer, we analyzed additional idle samples that were not used beforehand for the training procedure and obtained the correctly classified result in the validation set. For more substantial result, bootstrapping of training and testing dataset was performed as external validation. This study illustrates the potential application of ANN for breast tumor diagnosis and the identification of candidate targets in patients for therapy.
A TLD dose algorithm using artificial neural networks
Moscovitch, M.; Rotunda, J.E.; Tawil, R.A.; Rathbone, B.A.
1995-01-01
An artificial neural network was designed and used to develop a dose algorithm for a multi-element thermoluminescence dosimeter (TLD). The neural network architecture is based on the concept of functional links network (FLN). Neural network is an information processing method inspired by the biological nervous system. A dose algorithm based on neural networks is fundamentally different as compared to conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with given responses of a multi-element dosimeter (input) many times. The algorithm, being trained that way, eventually is capable to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personal dosimetry, the output consists of the desired dose components: deep dose, shallow dose and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. The neural network approach was applied to the Harshaw Type 8825 TLD, and was shown to significantly improve the performance of this dosimeter, well within the U.S. accreditation requirements for personnel dosimeters
Improved Artificial Fish Algorithm for Parameters Optimization of PID Neural Network
Jing Wang; Yourui Huang
2013-01-01
In order to solve problems such as initial weights are difficult to be determined, training results are easy to trap in local minima in optimization process of PID neural network parameters by traditional BP algorithm, this paper proposed a new method based on improved artificial fish algorithm for parameters optimization of PID neural network. This improved artificial fish algorithm uses a composite adaptive artificial fish algorithm based on optimal artificial fish and nearest artificial fi...
A Quantum Implementation Model for Artificial Neural Networks
Ammar Daskin
2018-02-01
Full Text Available The learning process for multilayered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow–Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, these iterative formulas result in terms formed by the principal components of the weight matrix, namely, the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the phase estimation algorithm is known to provide speedups over the conventional algorithms for the eigenvalue-related problems. Combining the quantum amplitude amplification with the phase estimation algorithm, a quantum implementation model for artificial neural networks using the Widrow–Hoff learning rule is presented. The complexity of the model is found to be linear in the size of the weight matrix. This provides a quadratic improvement over the classical algorithms. Quanta 2018; 7: 7–18.
Use of artificial neural networks for transport energy demand modeling
Murat, Yetis Sazi; Ceylan, Halim
2006-01-01
The paper illustrates an artificial neural network (ANN) approach based on supervised neural networks for the transport energy demand forecasting using socio-economic and transport related indicators. The ANN transport energy demand model is developed. The actual forecast is obtained using a feed forward neural network, trained with back propagation algorithm. In order to investigate the influence of socio-economic indicators on the transport energy demand, the ANN is analyzed based on gross national product (GNP), population and the total annual average veh-km along with historical energy data available from 1970 to 2001. Comparing model predictions with energy data in testing period performs the model validation. The projections are made with two scenarios. It is obtained that the ANN reflects the fluctuation in historical data for both dependent and independent variables. The results obtained bear out the suitability of the adopted methodology for the transport energy-forecasting problem
HIV lipodystrophy case definition using artificial neural network modelling
Ioannidis, John P A; Trikalinos, Thomas A; Law, Matthew
2003-01-01
OBJECTIVE: A case definition of HIV lipodystrophy has recently been developed from a combination of clinical, metabolic and imaging/body composition variables using logistic regression methods. We aimed to evaluate whether artificial neural networks could improve the diagnostic accuracy. METHODS......: The database of the case-control Lipodystrophy Case Definition Study was split into 504 subjects (265 with and 239 without lipodystrophy) used for training and 284 independent subjects (152 with and 132 without lipodystrophy) used for validation. Back-propagation neural networks with one or two middle layers...... were trained and validated. Results were compared against logistic regression models using the same information. RESULTS: Neural networks using clinical variables only (41 items) achieved consistently superior performance than logistic regression in terms of specificity, overall accuracy and area under...
Multiple simultaneous fault diagnosis via hierarchical and single artificial neural networks
Eslamloueyan, R.; Shahrokhi, M.; Bozorgmehri, R.
2003-01-01
Process fault diagnosis involves interpreting the current status of the plant given sensor reading and process knowledge. There has been considerable work done in this area with a variety of approaches being proposed for process fault diagnosis. Neural networks have been used to solve process fault diagnosis problems in chemical process, as they are well suited for recognizing multi-dimensional nonlinear patterns. In this work, the use of Hierarchical Artificial Neural Networks in diagnosing the multi-faults of a chemical process are discussed and compared with that of Single Artificial Neural Networks. The lower efficiency of Hierarchical Artificial Neural Networks , in comparison to Single Artificial Neural Networks, in process fault diagnosis is elaborated and analyzed. Also, the concept of a multi-level selection switch is presented and developed to improve the performance of hierarchical artificial neural networks. Simulation results indicate that application of multi-level selection switch increase the performance of the hierarchical artificial neural networks considerably
Classification of conductance traces with recurrent neural networks
Lauritzen, Kasper P.; Magyarkuti, András; Balogh, Zoltán; Halbritter, András; Solomon, Gemma C.
2018-02-01
We present a new automated method for structural classification of the traces obtained in break junction experiments. Using recurrent neural networks trained on the traces of minimal cross-sectional area in molecular dynamics simulations, we successfully separate the traces into two classes: point contact or nanowire. This is done without any assumptions about the expected features of each class. The trained neural network is applied to experimental break junction conductance traces, and it separates the classes as well as the previously used experimental methods. The effect of using partial conductance traces is explored, and we show that the method performs equally well using full or partial traces (as long as the trace just prior to breaking is included). When only the initial part of the trace is included, the results are still better than random chance. Finally, we show that the neural network classification method can be used to classify experimental conductance traces without using simulated results for training, but instead training the network on a few representative experimental traces. This offers a tool to recognize some characteristic motifs of the traces, which can be hard to find by simple data selection algorithms.
Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat K
2016-01-01
The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process.
Region stability analysis and tracking control of memristive recurrent neural network.
Bao, Gang; Zeng, Zhigang; Shen, Yanjun
2018-02-01
Memristor is firstly postulated by Leon Chua and realized by Hewlett-Packard (HP) laboratory. Research results show that memristor can be used to simulate the synapses of neurons. This paper presents a class of recurrent neural network with HP memristors. Firstly, it shows that memristive recurrent neural network has more compound dynamics than the traditional recurrent neural network by simulations. Then it derives that n dimensional memristive recurrent neural network is composed of [Formula: see text] sub neural networks which do not have a common equilibrium point. By designing the tracking controller, it can make memristive neural network being convergent to the desired sub neural network. At last, two numerical examples are given to verify the validity of our result. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of recurrent neural networks for short-term energy load forecasting
Di Persio, Luca; Honchar, Oleksandr
2017-11-01
Short-term forecasts have recently gained an increasing attention because of the rise of competitive electricity markets. In fact, short-terms forecast of possible future loads turn out to be fundamental to build efficient energy management strategies as well as to avoid energy wastage. Such type of challenges are difficult to tackle both from a theoretical and applied point of view. Latter tasks require sophisticated methods to manage multidimensional time series related to stochastic phenomena which are often highly interconnected. In the present work we first review novel approaches to energy load forecasting based on recurrent neural network, focusing our attention on long/short term memory architectures (LSTMs). Such type of artificial neural networks have been widely applied to problems dealing with sequential data such it happens, e.g., in socio-economics settings, for text recognition purposes, concerning video signals, etc., always showing their effectiveness to model complex temporal data. Moreover, we consider different novel variations of basic LSTMs, such as sequence-to-sequence approach and bidirectional LSTMs, aiming at providing effective models for energy load data. Last but not least, we test all the described algorithms on real energy load data showing not only that deep recurrent networks can be successfully applied to energy load forecasting, but also that this approach can be extended to other problems based on time series prediction.
A novel recurrent neural network with finite-time convergence for linear programming.
Liu, Qingshan; Cao, Jinde; Chen, Guanrong
2010-11-01
In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.
Application of Artificial Neural Networks to Rainfall Forecasting in Queensland, Australia
John ABBOT; Jennifer MAROHASY
2012-01-01
In this study,the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland,Australia,was assessed by inputting recognized climate indices,monthly historical rainfall data,and atmospheric temperatures into a prototype stand-alone,dynamic,recurrent,time-delay,artificial neural network.Outputs,as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009,were compared with observed rainfall data using time-series plots,root mean squared error (RMSE),and Pearson correlation coefficients.A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology's Predictive Ocean Atmosphere Model for Australia (POAMA)-1.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared.The application of artificial neural networks to rainfall forecasting was reviewed.The prototype design is considered preliminary,with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes.
1987-10-01
include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen
Artificial neural networks for stiffness estimation in magnetic resonance elastography.
Murphy, Matthew C; Manduca, Armando; Trzasko, Joshua D; Glaser, Kevin J; Huston, John; Ehman, Richard L
2018-07-01
To investigate the feasibility of using artificial neural networks to estimate stiffness from MR elastography (MRE) data. Artificial neural networks were fit using model-based training patterns to estimate stiffness from images of displacement using a patch size of ∼1 cm in each dimension. These neural network inversions (NNIs) were then evaluated in a set of simulation experiments designed to investigate the effects of wave interference and noise on NNI accuracy. NNI was also tested in vivo, comparing NNI results against currently used methods. In 4 simulation experiments, NNI performed as well or better than direct inversion (DI) for predicting the known stiffness of the data. Summary NNI results were also shown to be significantly correlated with DI results in the liver (R 2 = 0.974) and in the brain (R 2 = 0.915), and also correlated with established biological effects including fibrosis stage in the liver and age in the brain. Finally, repeatability error was lower in the brain using NNI compared to DI, and voxel-wise modeling using NNI stiffness maps detected larger effects than using DI maps with similar levels of smoothing. Artificial neural networks represent a new approach to inversion of MRE data. Summary results from NNI and DI are highly correlated and both are capable of detecting biologically relevant signals. Preliminary evidence suggests that NNI stiffness estimates may be more resistant to noise than an algebraic DI approach. Taken together, these results merit future investigation into NNIs to improve the estimation of stiffness in small regions. Magn Reson Med 80:351-360, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin
2015-01-01
here, an artificial bio-inspired walking system which effectively combines biomechanics (in terms of the body and leg structures) with the underlying neural mechanisms. The neural mechanisms consist of (1) central pattern generator based control for generating basic rhythmic patterns and coordinated......Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental...... conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain...
[Simulation of lung motions using an artificial neural network].
Laurent, R; Henriet, J; Salomon, M; Sauget, M; Nguyen, F; Gschwind, R; Makovicka, L
2011-04-01
A way to improve the accuracy of lung radiotherapy for a patient is to get a better understanding of its lung motion. Indeed, thanks to this knowledge it becomes possible to follow the displacements of the clinical target volume (CTV) induced by the lung breathing. This paper presents a feasibility study of an original method to simulate the positions of points in patient's lung at all breathing phases. This method, based on an artificial neural network, allowed learning the lung motion on real cases and then to simulate it for new patients for which only the beginning and the end breathing data are known. The neural network learning set is made up of more than 600 points. These points, shared out on three patients and gathered on a specific lung area, were plotted by a MD. The first results are promising: an average accuracy of 1mm is obtained for a spatial resolution of 1 × 1 × 2.5mm(3). We have demonstrated that it is possible to simulate lung motion with accuracy using an artificial neural network. As future work we plan to improve the accuracy of our method with the addition of new patient data and a coverage of the whole lungs. Copyright © 2010 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Simulation of lung motions using an artificial neural network
Laurent, R.; Henriet, J.; Sauget, M.; Gschwind, R.; Makovicka, L.; Salomon, M.; Nguyen, F.
2011-01-01
Purpose. A way to improve the accuracy of lung radiotherapy for a patient is to get a better understanding of its lung motion. Indeed, thanks to this knowledge it becomes possible to follow the displacements of the clinical target volume (CTV) induced by the lung breathing. This paper presents a feasibility study of an original method to simulate the positions of points in patient's lung at all breathing phases. Patients and methods. This method, based on an artificial neural network, allowed learning the lung motion on real cases and then to simulate it for new patients for which only the beginning and the end breathing data are known. The neural network learning set is made up of more than 600 points. These points, shared out on three patients and gathered on a specific lung area, were plotted by a MD. Results. - The first results are promising: an average accuracy of 1 mm is obtained for a spatial resolution of 1 x 1 x 2.5 mm 3 . Conclusion. We have demonstrated that it is possible to simulate lung motion with accuracy using an artificial neural network. As future work we plan to improve the accuracy of our method with the addition of new patient data and a coverage of the whole lungs. (authors)
A recurrent neural network for adaptive beamforming and array correction.
Che, Hangjun; Li, Chuandong; He, Xing; Huang, Tingwen
2016-08-01
In this paper, a recurrent neural network (RNN) is proposed for solving adaptive beamforming problem. In order to minimize sidelobe interference, the problem is described as a convex optimization problem based on linear array model. RNN is designed to optimize system's weight values in the feasible region which is derived from arrays' state and plane wave's information. The new algorithm is proven to be stable and converge to optimal solution in the sense of Lyapunov. So as to verify new algorithm's performance, we apply it to beamforming under array mismatch situation. Comparing with other optimization algorithms, simulations suggest that RNN has strong ability to search for exact solutions under the condition of large scale constraints. Copyright © 2016 Elsevier Ltd. All rights reserved.
Global robust exponential stability analysis for interval recurrent neural networks
Xu Shengyuan; Lam, James; Ho, Daniel W.C.; Zou Yun
2004-01-01
This Letter investigates the problem of robust global exponential stability analysis for interval recurrent neural networks (RNNs) via the linear matrix inequality (LMI) approach. The values of the time-invariant uncertain parameters are assumed to be bounded within given compact sets. An improved condition for the existence of a unique equilibrium point and its global exponential stability of RNNs with known parameters is proposed. Based on this, a sufficient condition for the global robust exponential stability for interval RNNs is obtained. Both of the conditions are expressed in terms of LMIs, which can be checked easily by various recently developed convex optimization algorithms. Examples are provided to demonstrate the reduced conservatism of the proposed exponential stability condition
Cascaded bidirectional recurrent neural networks for protein secondary structure prediction.
Chen, Jinmiao; Chaudhari, Narendra
2007-01-01
Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.
Mehrshad Salmasi
2012-07-01
Full Text Available Active noise control is based on the destructive interference between the primary noise and generated noise from the secondary source. An antinoise of equal amplitude and opposite phase is generated and combined with the primary noise. In this paper, performance of the neural networks is evaluated in active cancellation of sound noise. For this reason, feedforward and recurrent neural networks are designed and trained. After training, performance of the feedforwrad and recurrent networks in noise attenuation are compared. We use Elman network as a recurrent neural network. For simulations, noise signals from a SPIB database are used. In order to compare the networks appropriately, equal number of layers and neurons are considered for the networks. Moreover, training and test samples are similar. Simulation results show that feedforward and recurrent neural networks present good performance in noise cancellation. As it is seen, the ability of recurrent neural network in noise attenuation is better than feedforward network.
Xia, Peng; Hu, Jie; Peng, Yinghong
2017-10-25
A novel model based on deep learning is proposed to estimate kinematic information for myoelectric control from multi-channel electromyogram (EMG) signals. The neural information of limb movement is embedded in EMG signals that are influenced by all kinds of factors. In order to overcome the negative effects of variability in signals, the proposed model employs the deep architecture combining convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The EMG signals are transformed to time-frequency frames as the input to the model. The limb movement is estimated by the model that is trained with the gradient descent and backpropagation procedure. We tested the model for simultaneous and proportional estimation of limb movement in eight healthy subjects and compared it with support vector regression (SVR) and CNNs on the same data set. The experimental studies show that the proposed model has higher estimation accuracy and better robustness with respect to time. The combination of CNNs and RNNs can improve the model performance compared with using CNNs alone. The model of deep architecture is promising in EMG decoding and optimization of network structures can increase the accuracy and robustness. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Recurrent Neural Networks for Multivariate Time Series with Missing Values.
Che, Zhengping; Purushotham, Sanjay; Cho, Kyunghyun; Sontag, David; Liu, Yan
2018-04-17
Multivariate time series data in practical applications, such as health care, geoscience, and biology, are characterized by a variety of missing values. In time series prediction and other related tasks, it has been noted that missing values and their missing patterns are often correlated with the target labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns for effective imputation and improving prediction performance. In this paper, we develop novel deep learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit (GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns, i.e., masking and time interval, and effectively incorporates them into a deep model architecture so that it not only captures the long-term temporal dependencies in time series, but also utilizes the missing patterns to achieve better prediction results. Experiments of time series classification tasks on real-world clinical datasets (MIMIC-III, PhysioNet) and synthetic datasets demonstrate that our models achieve state-of-the-art performance and provide useful insights for better understanding and utilization of missing values in time series analysis.
artificial neural network model for low strength rc beam shear capacity
User
RESEARCH PAPER. Keywords: Shear strength, reinforced concrete, Artificial Neural Network, design equations ... searchers using artificial intelligence to im- prove on theoretical ...... benefit to humanity or a waste of time?” The. Structural ...
Deep Recurrent Neural Networks for Human Activity Recognition
Abdulmajid Murad
2017-11-01
Full Text Available Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM and k-nearest neighbors (KNN. Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs and CNNs.
Recurrent Neural Network Applications for Astronomical Time Series
Protopapas, Pavlos
2017-06-01
The benefits of good predictive models in astronomy lie in early event prediction systems and effective resource allocation. Current time series methods applicable to regular time series have not evolved to generalize for irregular time series. In this talk, I will describe two Recurrent Neural Network methods, Long Short-Term Memory (LSTM) and Echo State Networks (ESNs) for predicting irregular time series. Feature engineering along with a non-linear modeling proved to be an effective predictor. For noisy time series, the prediction is improved by training the network on error realizations using the error estimates from astronomical light curves. In addition to this, we propose a new neural network architecture to remove correlation from the residuals in order to improve prediction and compensate for the noisy data. Finally, I show how to set hyperparameters for a stable and performant solution correctly. In this work, we circumvent this obstacle by optimizing ESN hyperparameters using Bayesian optimization with Gaussian Process priors. This automates the tuning procedure, enabling users to employ the power of RNN without needing an in-depth understanding of the tuning procedure.
Drawing and Recognizing Chinese Characters with Recurrent Neural Network.
Zhang, Xu-Yao; Yin, Fei; Zhang, Yan-Ming; Liu, Cheng-Lin; Bengio, Yoshua
2018-04-01
Recent deep learning based approaches have achieved great success on handwriting recognition. Chinese characters are among the most widely adopted writing systems in the world. Previous research has mainly focused on recognizing handwritten Chinese characters. However, recognition is only one aspect for understanding a language, another challenging and interesting task is to teach a machine to automatically write (pictographic) Chinese characters. In this paper, we propose a framework by using the recurrent neural network (RNN) as both a discriminative model for recognizing Chinese characters and a generative model for drawing (generating) Chinese characters. To recognize Chinese characters, previous methods usually adopt the convolutional neural network (CNN) models which require transforming the online handwriting trajectory into image-like representations. Instead, our RNN based approach is an end-to-end system which directly deals with the sequential structure and does not require any domain-specific knowledge. With the RNN system (combining an LSTM and GRU), state-of-the-art performance can be achieved on the ICDAR-2013 competition database. Furthermore, under the RNN framework, a conditional generative model with character embedding is proposed for automatically drawing recognizable Chinese characters. The generated characters (in vector format) are human-readable and also can be recognized by the discriminative RNN model with high accuracy. Experimental results verify the effectiveness of using RNNs as both generative and discriminative models for the tasks of drawing and recognizing Chinese characters.
Recurrent Neural Networks to Correct Satellite Image Classification Maps
Maggiori, Emmanuel; Charpiat, Guillaume; Tarabalka, Yuliya; Alliez, Pierre
2017-09-01
While initially devised for image categorization, convolutional neural networks (CNNs) are being increasingly used for the pixelwise semantic labeling of images. However, the proper nature of the most common CNN architectures makes them good at recognizing but poor at localizing objects precisely. This problem is magnified in the context of aerial and satellite image labeling, where a spatially fine object outlining is of paramount importance. Different iterative enhancement algorithms have been presented in the literature to progressively improve the coarse CNN outputs, seeking to sharpen object boundaries around real image edges. However, one must carefully design, choose and tune such algorithms. Instead, our goal is to directly learn the iterative process itself. For this, we formulate a generic iterative enhancement process inspired from partial differential equations, and observe that it can be expressed as a recurrent neural network (RNN). Consequently, we train such a network from manually labeled data for our enhancement task. In a series of experiments we show that our RNN effectively learns an iterative process that significantly improves the quality of satellite image classification maps.
Deep Recurrent Neural Networks for Human Activity Recognition.
Murad, Abdulmajid; Pyun, Jae-Young
2017-11-06
Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs.
Paraconsistent artificial neural networks and Alzheimer disease: A preliminary study
Jair Minoro Abe
Full Text Available Abstract EEG visual analysis has proved useful in aiding AD diagnosis, being indicated in some clinical protocols. However, such analysis is subject to the inherent imprecision of equipment, patient movements, electric registers, and individual variability of physician visual analysis. Objectives: To employ the Paraconsistent Artificial Neural Network to ascertain how to determine the degree of certainty of probable dementia diagnosis. Methods: Ten EEG records from patients with probable Alzheimer disease and ten controls were obtained during the awake state at rest. An EEG background between 8 Hz and 12 Hz was considered the normal pattern for patients, allowing a variance of 0.5 Hz. Results: The PANN was capable of accurately recognizing waves belonging to Alpha band with favorable evidence of 0.30 and contrary evidence of 0.19, while for waves not belonging to the Alpha pattern, an average favorable evidence of 0.19 and contrary evidence of 0.32 was obtained, indicating that PANN was efficient in recognizing Alpha waves in 80% of the cases evaluated in this study. Artificial Neural Networks - ANN - are well suited to tackle problems such as prediction and pattern recognition. The aim of this work was to recognize predetermined EEG patterns by using a new class of ANN, namely the Paraconsistent Artificial Neural Network - PANN, which is capable of handling uncertain, inconsistent and paracomplete information. An architecture is presented to serve as an auxiliary method in diagnosing Alzheimer disease. Conclusions: We believe the results show PANN to be a promising tool to handle EEG analysis, bearing in mind two considerations: the growing interest of experts in visual analysis of EEG, and the ability of PANN to deal directly with imprecise, inconsistent, and paracomplete data, thereby providing a valuable quantitative analysis.
Science of the science, drug discovery and artificial neural networks.
Patel, Jigneshkumar
2013-03-01
Drug discovery process many times encounters complex problems, which may be difficult to solve by human intelligence. Artificial Neural Networks (ANNs) are one of the Artificial Intelligence (AI) technologies used for solving such complex problems. ANNs are widely used for primary virtual screening of compounds, quantitative structure activity relationship studies, receptor modeling, formulation development, pharmacokinetics and in all other processes involving complex mathematical modeling. Despite having such advanced technologies and enough understanding of biological systems, drug discovery is still a lengthy, expensive, difficult and inefficient process with low rate of new successful therapeutic discovery. In this paper, author has discussed the drug discovery science and ANN from very basic angle, which may be helpful to understand the application of ANN for drug discovery to improve efficiency.
A genetic-neural artificial intelligence approach to resins optimization
Cabral, Denise C.; Barros, Marcio P.; Lapa, Celso M.F.; Pereira, Claudio M.N.A.
2005-01-01
This work presents a preliminary study about the viability and adequacy of a new methodology for the definition of one of the main properties of ion exchange resins used for isotopic separation. Basically, the main problem is the definition of pelicule diameter in case of pelicular ion exchange resins, in order to achieve the best performance in the shortest time. In order to achieve this, a methodology was developed, based in two classic techniques of Artificial Intelligence (AI). At first, an artificial neural network (NN) was trained to map the existing relations between the nucleus radius and the resin's efficiency associated with the exchange time. Later on, a genetic algorithm (GA) was developed in order to find the best pelicule dimension. Preliminary results seem to confirm the potential of the method, and this can be used in any chemical process employing ion exchange resins. (author)
Global dissipativity of continuous-time recurrent neural networks with time delay
Liao Xiaoxin; Wang Jun
2003-01-01
This paper addresses the global dissipativity of a general class of continuous-time recurrent neural networks. First, the concepts of global dissipation and global exponential dissipation are defined and elaborated. Next, the sets of global dissipativity and global exponentially dissipativity are characterized using the parameters of recurrent neural network models. In particular, it is shown that the Hopfield network and cellular neural networks with or without time delays are dissipative systems
An Artificial Neural Network for Data Forecasting Purposes
Catalina Lucia COCIANU
2015-01-01
Full Text Available Considering the fact that markets are generally influenced by different external factors, the stock market prediction is one of the most difficult tasks of time series analysis. The research reported in this paper aims to investigate the potential of artificial neural networks (ANN in solving the forecast task in the most general case, when the time series are non-stationary. We used a feed-forward neural architecture: the nonlinear autoregressive network with exogenous inputs. The network training function used to update the weight and bias parameters corresponds to gradient descent with adaptive learning rate variant of the backpropagation algorithm. The results obtained using this technique are compared with the ones resulted from some ARIMA models. We used the mean square error (MSE measure to evaluate the performances of these two models. The comparative analysis leads to the conclusion that the proposed model can be successfully applied to forecast the financial data.
Design of Jetty Piles Using Artificial Neural Networks
Yongjei Lee
2014-01-01
Full Text Available To overcome the complication of jetty pile design process, artificial neural networks (ANN are adopted. To generate the training samples for training ANN, finite element (FE analysis was performed 50 times for 50 different design cases. The trained ANN was verified with another FE analysis case and then used as a structural analyzer. The multilayer neural network (MBPNN with two hidden layers was used for ANN. The framework of MBPNN was defined as the input with the lateral forces on the jetty structure and the type of piles and the output with the stress ratio of the piles. The results from the MBPNN agree well with those from FE analysis. Particularly for more complex modes with hundreds of different design cases, the MBPNN would possibly substitute parametric studies with FE analysis saving design time and cost.
Nuclear power plant fault-diagnosis using artificial neural networks
Kim, Keehoon; Aljundi, T.L.; Bartlett, E.B.
1992-01-01
Artificial neural networks (ANNs) have been applied to various fields due to their fault and noise tolerance and generalization characteristics. As an application to nuclear engineering, we apply neural networks to the early recognition of nuclear power plant operational transients. If a transient or accident occurs, the network will advise the plant operators in a timely manner. More importantly, we investigate the ability of the network to provide a measure of the confidence level in its diagnosis. In this research an ANN is trained to diagnose the status of the San Onofre Nuclear Generation Station using data obtained from the plant's training simulator. Stacked generalization is then applied to predict the error in the ANN diagnosis. The data used consisted of 10 scenarios that include typical design basis accidents as well as less severe transients. The results show that the trained network is capable of diagnosing all 10 instabilities as well as providing a measure of the level of confidence in its diagnoses
Application of Artificial Neural Networks for estimating index floods
Šimor, Viliam; Hlavčová, Kamila; Kohnová, Silvia; Szolgay, Ján
2012-12-01
This article presents an application of Artificial Neural Networks (ANNs) and multiple regression models for estimating mean annual maximum discharge (index flood) at ungauged sites. Both approaches were tested for 145 small basins in Slovakia in areas ranging from 20 to 300 km2. Using the objective clustering method, the catchments were divided into ten homogeneous pooling groups; for each pooling group, mutually independent predictors (catchment characteristics) were selected for both models. The neural network was applied as a simple multilayer perceptron with one hidden layer and with a back propagation learning algorithm. Hyperbolic tangents were used as an activation function in the hidden layer. Estimating index floods by the multiple regression models were based on deriving relationships between the index floods and catchment predictors. The efficiencies of both approaches were tested by the Nash-Sutcliffe and a correlation coefficients. The results showed the comparative applicability of both models with slightly better results for the index floods achieved using the ANNs methodology.
Modeling of an industrial drying process by artificial neural networks
E. Assidjo
2008-09-01
Full Text Available A suitable method is needed to solve the nonquality problem in the grated coconut industry due to the poor control of product humidity during the process. In this study the possibility of using an artificial neural network (ANN, precisely a Multilayer Perceptron, for modeling the drying step of the production of grated coconut process is highlighted. Drying must confer to the product a final moisture of 3%. Unfortunately, under industrial conditions, this moisture varies from 1.9 to 4.8 %. In order to control this parameter and consequently reduce the proportion of the product that does not meet the humidity specification, a 9-4-1 neural network architecture was established using data gathered from an industrial plant. This Multilayer Perceptron can satisfactorily model the process with less bias, ranging from -0.35 to 0.34%, and can reduce the rate of rejected products from 92% to 3% during the first cycle of drying.
Artificial Neural Network for Location Estimation in Wireless Communication Systems
Chien-Sheng Chen
2012-03-01
Full Text Available In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS. To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA measurements and the angle of arrival (AOA information to locate MS when three base stations (BSs are available. Artificial neural networks (ANN are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line, based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments.
Artificial neural network for location estimation in wireless communication systems.
Chen, Chien-Sheng
2012-01-01
In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information to locate MS when three base stations (BSs) are available. Artificial neural networks (ANN) are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line), based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments.
Natural and artificial intelligence misconceptions about brains and neural networks
de Callataÿ, A
1992-01-01
How does the mind work? How is data stored in the brain? How does the mental world connect with the physical world? The hybrid system developed in this book shows a radically new view on the brain. Briefly, in this model memory remains permanent by changing the homeostasis rebuilding the neuronal organelles. These transformations are approximately abstracted as all-or-none operations. Thus the computer-like neural systems become plausible biological models. This illustrated book shows how artificial animals with such brains learn invariant methods of behavior control from their repeated action
Artificial neural network model of pork meat cubes osmotic dehydration
Pezo, Lato L.; Ćurčić, Biljana Lj.; Filipović, Vladimir S.; Nićetin, Milica R.; Koprivica, Gordana B.; Mišljenović, Nevena M.; Lević, Ljubinko B.
2013-01-01
Mass transfer of pork meat cubes (M. triceps brachii), shaped as 1x1x1 cm, during osmotic dehydration (OD) and under atmospheric pressure was investigated in this paper. The effects of different parameters, such as concentration of sugar beet molasses (60-80%, w/w), temperature (20-50ºC), and immersion time (1-5 h) in terms of water loss (WL), solid gain (SG), final dry matter content (DM), and water activity (aw), were investigated using experimental results. Five artificial neural net...
Use of artificial neural networks on optical track width measurements
Smith, Richard J.; See, Chung W.; Somekh, Mike G.; Yacoot, Andrew
2007-08-01
We have demonstrated recently that, by using an ultrastable optical interferometer together with artificial neural networks (ANNs), track widths down to 60 nm can be measured with a 0.3 NA objective lens. We investigate the effective conditions for training ANNs. Experimental results will be used to show the characteristics of the training samples and the data format of the ANN inputs required to produce suitably trained ANNs. Results obtained with networks measuring double tracks, and classifying different structures, will be presented to illustrate the capability of the technique. We include a discussion on expansion of the application areas of the system, allowing it to be used as a general purpose instrument.
Artificial neural network does better spatiotemporal compressive sampling
Lee, Soo-Young; Hsu, Charles; Szu, Harold
2012-06-01
Spatiotemporal sparseness is generated naturally by human visual system based on artificial neural network modeling of associative memory. Sparseness means nothing more and nothing less than the compressive sensing achieves merely the information concentration. To concentrate the information, one uses the spatial correlation or spatial FFT or DWT or the best of all adaptive wavelet transform (cf. NUS, Shen Shawei). However, higher dimensional spatiotemporal information concentration, the mathematics can not do as flexible as a living human sensory system. The reason is obviously for survival reasons. The rest of the story is given in the paper.
Predicting pressure drop in venturi scrubbers with artificial neural networks.
Nasseh, S; Mohebbi, A; Jeirani, Z; Sarrafi, A
2007-05-08
In this study a new approach based on artificial neural networks (ANNs) has been used to predict pressure drop in venturi scrubbers. The main parameters affecting the pressure drop are mainly the gas velocity in the throat of venturi scrubber (V(g)(th)), liquid to gas flow rate ratio (L/G), and axial distance of the venturi scrubber (z). Three sets of experimental data from five different venturi scrubbers have been applied to design three independent ANNs. Comparing the results of these ANNs and the calculated results from available models shows that the results of ANNs have a better agreement with experimental data.
ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM
X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen
2003-01-01
An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.
Discrimination between earthquakes and chemical explosions using artificial neural networks
Kundu, Ajit; Bhadauria, Y.S.; Roy, Falguni
2012-05-01
An Artificial Neural Network (ANN) for discriminating between earthquakes and chemical explosions located at epicentral distances, Δ <5 deg from Gauribidanur Array (GBA) has been developed using the short period digital seismograms recorded at GBA. For training the ANN spectral amplitude ratios between P and Lg phases computed at 13 different frequencies in the frequency range of 2-8 Hz, corresponding to 20 earthquakes and 23 chemical explosions were used along with other parameters like magnitude, epicentral distance and amplitude ratios Rg/P and Rg/Lg. After training and development, the ANN has correctly identified a set of 21 test events, comprising 6 earthquakes and 15 chemical explosions. (author)
Pulse discrimination of scintillator detector with artificial neural network
Chen Man; Cai Yuerong; Yang Chaowen
2006-01-01
The features of signal for scintillator detectors are analyzed. According to the difference in the fraction of slow and fast scintillation for different particles, three intrinsic parameters (signal amplitude, integration of signal during rinsing, integration of frequency spectrum of signals in middle frequencies) of signals are defined. The artificial neural network method for pulse discrimination of scintillator detector is studied. The signals with different shapes under real condition are simulated with computer, and discriminated by the method. Results of discrimination are gotten and discussed. (authors)
Application of artificial neural nets to Shashlik calorimetry
Bonesini, M.; Paganoni, M.; Terranova, F.
1997-01-01
Artificial neural networks (ANN) are powerful tools widely used in high-energy physics to solve track finding and particle identification problems. An entirely new class of application is related to the problem of recovering the information lost during data taking or signal transmission. Good performances can be reached by ANN when the events are described by quite regular patterns. Such a method was used for the DELPHI luminosity monitor (STIC) to recover calorimeter dead channels. A comparison with more traditional techniques is also given. (orig.)
Securing Digital Images Integrity using Artificial Neural Networks
Hajji, Tarik; Itahriouan, Zakaria; Ouazzani Jamil, Mohammed
2018-05-01
Digital image signature is a technique used to protect the image integrity. The application of this technique can serve several areas of imaging applied to smart cities. The objective of this work is to propose two methods to protect digital image integrity. We present a description of two approaches using artificial neural networks (ANN) to digitally sign an image. The first one is “Direct Signature without learning” and the second is “Direct Signature with learning”. This paper presents the theory of proposed approaches and an experimental study to test their effectiveness.
Estimation of Solar Radiation using Artificial Neural Network
Slamet Suprayogi
2004-01-01
Full Text Available The solar radiation is the most important fator affeccting evapotranspiration, the mechanism of transporting the vapor from the water surface has also a great effect. The main objectives of this study were to investigate the potential of using Artificial Neural Network (ANN to predict solar radiation related to temperature. The three-layer backpropagation were developed, trained, and tested to forecast solar radiation for Ciriung sub Cachment. Result revealed that the ANN were able to well learn the events they were trained to recognize. Moreover, they were capable of effecctively generalize their training by predicting solar radiation for sets unseen cases.
Artificial neural nets application in the cotton yarn industry
Gilberto Clóvis Antoneli
2016-06-01
Full Text Available The competitiveness in the yarn production sector has led companies to search for solutions to attain quality yarn at a low cost. Today, the difference between them, and thus the sector, is in the raw material, meaning processed cotton and its characteristics. There are many types of cotton with different characteristics due to its production region, harvest, storage and transportation. Yarn industries work with cotton mixtures, which makes it difficult to determine the quality of the yarn produced from the characteristics of the processed fibers. This study uses data from a conventional spinning, from a raw material made of 100% cotton, and presents a solution with artificial neural nets that determine the thread quality information, using the fibers’ characteristics values and settings of some process adjustments. In this solution a neural net of the type MultiLayer Perceptron with 11 entry neurons (8 characteristics of the fiber and 3 process adjustments, 7 output neurons (yarn quality and two types of training, Back propagation and Conjugate gradient descent. The selection and organization of the production data of the yarn industry of the cocamar® indústria de fios company are described, to apply the artificial neural nets developed. In the application of neural nets to determine yarn quality, one concludes that, although the ideal precision of absolute values is lacking, the presented solution represents an excellent tool to define yarn quality variations when modifying the raw material composition. The developed system enables a simulation to define the raw material percentage mixture to be processed in the plant using the information from the stocked cotton packs, thus obtaining a mixture that maintains the stability of the entire productive process.
Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde No. 801, 98000 Zacatecas (Mexico)
2006-07-01
An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)
Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R.
2006-01-01
An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)
Calibration Technique of the Irradiated Thermocouple using Artificial Neural Network
Hong, Jin Tae; Joung, Chang Young; Ahn, Sung Ho; Yang, Tae Ho; Heo, Sung Ho; Jang, Seo Yoon [KAERI, Daejeon (Korea, Republic of)
2016-05-15
To correct the signals, the degradation rate of sensors needs to be analyzed, and re-calibration of sensors should be followed periodically. In particular, because thermocouples instrumented in the nuclear fuel rod are degraded owing to the high neutron fluence generated from the nuclear fuel, the periodic re-calibration process is necessary. However, despite the re-calibration of the thermocouple, the measurement error will be increased until next re-calibration. In this study, based on the periodically calibrated temperature - voltage data, an interpolation technique using the artificial neural network will be introduced to minimize the calibration error of the C-type thermocouple under the irradiation test. The test result shows that the calculated voltages derived from the interpolation function have good agreement with the experimental sampling data, and they also accurately interpolate the voltages at arbitrary temperature and neutron fluence. That is, once the reference data is obtained by experiments, it is possible to accurately calibrate the voltage signal at a certain neutron fluence and temperature using an artificial neural network.
Applications of artificial neural networks in medical science.
Patel, Jigneshkumar L; Goyal, Ramesh K
2007-09-01
Computer technology has been advanced tremendously and the interest has been increased for the potential use of 'Artificial Intelligence (AI)' in medicine and biological research. One of the most interesting and extensively studied branches of AI is the 'Artificial Neural Networks (ANNs)'. Basically, ANNs are the mathematical algorithms, generated by computers. ANNs learn from standard data and capture the knowledge contained in the data. Trained ANNs approach the functionality of small biological neural cluster in a very fundamental manner. They are the digitized model of biological brain and can detect complex nonlinear relationships between dependent as well as independent variables in a data where human brain may fail to detect. Nowadays, ANNs are widely used for medical applications in various disciplines of medicine especially in cardiology. ANNs have been extensively applied in diagnosis, electronic signal analysis, medical image analysis and radiology. ANNs have been used by many authors for modeling in medicine and clinical research. Applications of ANNs are increasing in pharmacoepidemiology and medical data mining. In this paper, authors have summarized various applications of ANNs in medical science.
Risk prediction model: Statistical and artificial neural network approach
Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim
2017-04-01
Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.
Artificial neural network based particle size prediction of polymeric nanoparticles.
Youshia, John; Ali, Mohamed Ehab; Lamprecht, Alf
2017-10-01
Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificial neural network including these properties as input with particle size and polydispersity index as output. The established model successfully predicted particle size of nanoparticles covering a range of 70-400nm prepared from other polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and testing data, respectively. Polymer surface activity was found to have the highest impact on the particle size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted polymer properties affecting particle size and confirmed the usefulness of artificial neural networks in predicting the particle size and polydispersity of polymeric nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.
Network traffic anomaly prediction using Artificial Neural Network
Ciptaningtyas, Hening Titi; Fatichah, Chastine; Sabila, Altea
2017-03-01
As the excessive increase of internet usage, the malicious software (malware) has also increase significantly. Malware is software developed by hacker for illegal purpose(s), such as stealing data and identity, causing computer damage, or denying service to other user[1]. Malware which attack computer or server often triggers network traffic anomaly phenomena. Based on Sophos's report[2], Indonesia is the riskiest country of malware attack and it also has high network traffic anomaly. This research uses Artificial Neural Network (ANN) to predict network traffic anomaly based on malware attack in Indonesia which is recorded by Id-SIRTII/CC (Indonesia Security Incident Response Team on Internet Infrastructure/Coordination Center). The case study is the highest malware attack (SQL injection) which has happened in three consecutive years: 2012, 2013, and 2014[4]. The data series is preprocessed first, then the network traffic anomaly is predicted using Artificial Neural Network and using two weight update algorithms: Gradient Descent and Momentum. Error of prediction is calculated using Mean Squared Error (MSE) [7]. The experimental result shows that MSE for SQL Injection is 0.03856. So, this approach can be used to predict network traffic anomaly.
Handwritten Javanese Character Recognition Using Several Artificial Neural Network Methods
Gregorius Satia Budhi
2015-07-01
Full Text Available Javanese characters are traditional characters that are used to write the Javanese language. The Javanese language is a language used by many people on the island of Java, Indonesia. The use of Javanese characters is diminishing more and more because of the difficulty of studying the Javanese characters themselves. The Javanese character set consists of basic characters, numbers, complementary characters, and so on. In this research we have developed a system to recognize Javanese characters. Input for the system is a digital image containing several handwritten Javanese characters. Preprocessing and segmentation are performed on the input image to get each character. For each character, feature extraction is done using the ICZ-ZCZ method. The output from feature extraction will become input for an artificial neural network. We used several artificial neural networks, namely a bidirectional associative memory network, a counterpropagation network, an evolutionary network, a backpropagation network, and a backpropagation network combined with chi2. From the experimental results it can be seen that the combination of chi2 and backpropagation achieved better recognition accuracy than the other methods.
Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy
2013-01-01
The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.
Recurrent Neural Network Based Boolean Factor Analysis and its Application to Word Clustering
Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.
2009-01-01
Roč. 20, č. 7 (2009), s. 1073-1086 ISSN 1045-9227 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.889, year: 2009
Modeling of methane emissions using artificial neural network approach
Stamenković Lidija J.
2015-01-01
Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007
Advanced approach to numerical forecasting using artificial neural networks
Michael Štencl
2009-01-01
Full Text Available Current global market is driven by many factors, such as the information age, the time and amount of information distributed by many data channels it is practically impossible analyze all kinds of incoming information flows and transform them to data with classical methods. New requirements could be met by using other methods. Once trained on patterns artificial neural networks can be used for forecasting and they are able to work with extremely big data sets in reasonable time. The patterns used for learning process are samples of past data. This paper uses Radial Basis Functions neural network in comparison with Multi Layer Perceptron network with Back-propagation learning algorithm on prediction task. The task works with simplified numerical time series and includes forty observations with prediction for next five observations. The main topic of the article is the identification of the main differences between used neural networks architectures together with numerical forecasting. Detected differences then verify on practical comparative example.
Fault tolerance of artificial neural networks with applications in critical systems
Protzel, Peter W.; Palumbo, Daniel L.; Arras, Michael K.
1992-01-01
This paper investigates the fault tolerance characteristics of time continuous recurrent artificial neural networks (ANN) that can be used to solve optimization problems. The principle of operations and performance of these networks are first illustrated by using well-known model problems like the traveling salesman problem and the assignment problem. The ANNs are then subjected to 13 simultaneous 'stuck at 1' or 'stuck at 0' faults for network sizes of up to 900 'neurons'. The effects of these faults is demonstrated and the cause for the observed fault tolerance is discussed. An application is presented in which a network performs a critical task for a real-time distributed processing system by generating new task allocations during the reconfiguration of the system. The performance degradation of the ANN under the presence of faults is investigated by large-scale simulations, and the potential benefits of delegating a critical task to a fault tolerant network are discussed.
Sequence-specific bias correction for RNA-seq data using recurrent neural networks.
Zhang, Yao-Zhong; Yamaguchi, Rui; Imoto, Seiya; Miyano, Satoru
2017-01-25
The recent success of deep learning techniques in machine learning and artificial intelligence has stimulated a great deal of interest among bioinformaticians, who now wish to bring the power of deep learning to bare on a host of bioinformatical problems. Deep learning is ideally suited for biological problems that require automatic or hierarchical feature representation for biological data when prior knowledge is limited. In this work, we address the sequence-specific bias correction problem for RNA-seq data redusing Recurrent Neural Networks (RNNs) to model nucleotide sequences without pre-determining sequence structures. The sequence-specific bias of a read is then calculated based on the sequence probabilities estimated by RNNs, and used in the estimation of gene abundance. We explore the application of two popular RNN recurrent units for this task and demonstrate that RNN-based approaches provide a flexible way to model nucleotide sequences without knowledge of predetermined sequence structures. Our experiments show that training a RNN-based nucleotide sequence model is efficient and RNN-based bias correction methods compare well with the-state-of-the-art sequence-specific bias correction method on the commonly used MAQC-III data set. RNNs provides an alternative and flexible way to calculate sequence-specific bias without explicitly pre-determining sequence structures.
Application of artificial neural networks in the analysis of multi-particle data
Kunze, M.
1995-01-01
During the past years artificial neural networks (ANN) have gained increasing interest not only in the regime of financial forecast and data mining, but also in the field of particle physics. Up to now artificial neural networks have mostly been applied in high energy physics trigger studies. The use of ANNs in medium energy physics data analysis is summarized. (author). 21 refs., 9 figs
Liu, Qingshan; Cao, Jinde
2010-06-01
Based on the projection operator, a recurrent neural network is proposed for solving extended general variational inequalities (EGVIs). Sufficient conditions are provided to ensure the global convergence of the proposed neural network based on Lyapunov methods. Compared with the existing neural networks for variational inequalities, the proposed neural network is a modified version of the general projection neural network existing in the literature and capable of solving the EGVI problems. In addition, simulation results on numerical examples show the effectiveness and performance of the proposed neural network.
Application of recurrent neural networks for drought projections in California
Le, J. A.; El-Askary, H. M.; Allali, M.; Struppa, D. C.
2017-05-01
We use recurrent neural networks (RNNs) to investigate the complex interactions between the long-term trend in dryness and a projected, short but intense, period of wetness due to the 2015-2016 El Niño. Although it was forecasted that this El Niño season would bring significant rainfall to the region, our long-term projections of the Palmer Z Index (PZI) showed a continuing drought trend, contrasting with the 1998-1999 El Niño event. RNN training considered PZI data during 1896-2006 that was validated against the 2006-2015 period to evaluate the potential of extreme precipitation forecast. We achieved a statistically significant correlation of 0.610 between forecasted and observed PZI on the validation set for a lead time of 1 month. This gives strong confidence to the forecasted precipitation indicator. The 2015-2016 El Niño season proved to be relatively weak as compared with the 1997-1998, with a peak PZI anomaly of 0.242 standard deviations below historical averages, continuing drought conditions.
Recurrent Neural Network Model for Constructive Peptide Design.
Müller, Alex T; Hiss, Jan A; Schneider, Gisbert
2018-02-26
We present a generative long short-term memory (LSTM) recurrent neural network (RNN) for combinatorial de novo peptide design. RNN models capture patterns in sequential data and generate new data instances from the learned context. Amino acid sequences represent a suitable input for these machine-learning models. Generative models trained on peptide sequences could therefore facilitate the design of bespoke peptide libraries. We trained RNNs with LSTM units on pattern recognition of helical antimicrobial peptides and used the resulting model for de novo sequence generation. Of these sequences, 82% were predicted to be active antimicrobial peptides compared to 65% of randomly sampled sequences with the same amino acid distribution as the training set. The generated sequences also lie closer to the training data than manually designed amphipathic helices. The results of this study showcase the ability of LSTM RNNs to construct new amino acid sequences within the applicability domain of the model and motivate their prospective application to peptide and protein design without the need for the exhaustive enumeration of sequence libraries.
Multiplex visibility graphs to investigate recurrent neural network dynamics
Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert
2017-03-01
A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods.
Spatial Clockwork Recurrent Neural Network for Muscle Perimysium Segmentation.
Xie, Yuanpu; Zhang, Zizhao; Sapkota, Manish; Yang, Lin
2016-10-01
Accurate segmentation of perimysium plays an important role in early diagnosis of many muscle diseases because many diseases contain different perimysium inflammation. However, it remains as a challenging task due to the complex appearance of the perymisum morphology and its ambiguity to the background area. The muscle perimysium also exhibits strong structure spanned in the entire tissue, which makes it difficult for current local patch-based methods to capture this long-range context information. In this paper, we propose a novel spatial clockwork recurrent neural network (spatial CW-RNN) to address those issues. Specifically, we split the entire image into a set of non-overlapping image patches, and the semantic dependencies among them are modeled by the proposed spatial CW-RNN. Our method directly takes the 2D structure of the image into consideration and is capable of encoding the context information of the entire image into the local representation of each patch. Meanwhile, we leverage on the structured regression to assign one prediction mask rather than a single class label to each local patch, which enables both efficient training and testing. We extensively test our method for perimysium segmentation using digitized muscle microscopy images. Experimental results demonstrate the superiority of the novel spatial CW-RNN over other existing state of the arts.
Fast computation with spikes in a recurrent neural network
Jin, Dezhe Z.; Seung, H. Sebastian
2002-01-01
Neural networks with recurrent connections are sometimes regarded as too slow at computation to serve as models of the brain. Here we analytically study a counterexample, a network consisting of N integrate-and-fire neurons with self excitation, all-to-all inhibition, instantaneous synaptic coupling, and constant external driving inputs. When the inhibition and/or excitation are large enough, the network performs a winner-take-all computation for all possible external inputs and initial states of the network. The computation is done very quickly: As soon as the winner spikes once, the computation is completed since no other neurons will spike. For some initial states, the winner is the first neuron to spike, and the computation is done at the first spike of the network. In general, there are M potential winners, corresponding to the top M external inputs. When the external inputs are close in magnitude, M tends to be larger. If M>1, the selection of the actual winner is strongly influenced by the initial states. If a special relation between the excitation and inhibition is satisfied, the network always selects the neuron with the maximum external input as the winner
Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.
Xia, Youshen; Wang, Jun
2015-07-01
This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Artificial neural networks application for solid fuel slagging intensity predictions
Kakietek Sławomir
2017-01-01
Full Text Available Slagging issues present in pulverized steam boilers very often lead to heat transfer problems, corrosion and not planned outages of boilers which increase the cost of energy production and decrease the efficiency of energy production. Slagging especially occurs in regions with reductive atmospheres which nowadays are very common due to very strict limitations in NOx emissions. Moreover alternative fuels like biomass which are also used in combustion systems from two decades in order to decrease CO2 emissions also usually increase the risk of slagging. Thus the prediction of slagging properties of fuels is not the minor issue which can be neglected before purchasing or mixing of fuels. This however is rather difficult to estimate and even commonly known standard laboratory methods like fusion temperature determination or special indexers calculated on the basis of proximate and ultimate analyses, very often have no reasonable correlation to real boiler fuel behaviour. In this paper the method of determination of slagging properties of solid fuels based on laboratory investigation and artificial neural networks were presented. A fuel data base with over 40 fuels was created. Neural networks simulations were carried out in order to predict the beginning temperature and intensity of slagging. Reasonable results were obtained for some of tested neural networks, especially for hybrid feedforward networks with PCA technique. Consequently neural network model will be used in Common Intelligent Boiler Operation Platform (CIBOP being elaborated within CERUBIS research project for two BP-1150 and BB-1150 steam boilers. The model among others enables proper fuel selection in order to minimize slagging risk.
Artificial Neural Network L* from different magnetospheric field models
Yu, Y.; Koller, J.; Zaharia, S. G.; Jordanova, V. K.
2011-12-01
The third adiabatic invariant L* plays an important role in modeling and understanding the radiation belt dynamics. The popular way to numerically obtain the L* value follows the recipe described by Roederer [1970], which is, however, slow and computational expensive. This work focuses on a new technique, which can compute the L* value in microseconds without losing much accuracy: artificial neural networks. Since L* is related to the magnetic flux enclosed by a particle drift shell, global magnetic field information needed to trace the drift shell is required. A series of currently popular empirical magnetic field models are applied to create the L* data pool using 1 million data samples which are randomly selected within a solar cycle and within the global magnetosphere. The networks, trained from the above L* data pool, can thereby be used for fairly efficient L* calculation given input parameters valid within the trained temporal and spatial range. Besides the empirical magnetospheric models, a physics-based self-consistent inner magnetosphere model (RAM-SCB) developed at LANL is also utilized to calculate L* values and then to train the L* neural network. This model better predicts the magnetospheric configuration and therefore can significantly improve the L*. The above neural network L* technique will enable, for the first time, comprehensive solar-cycle long studies of radiation belt processes. However, neural networks trained from different magnetic field models can result in different L* values, which could cause mis-interpretation of radiation belt dynamics, such as where the source of the radiation belt charged particle is and which mechanism is dominant in accelerating the particles. Such a fact calls for attention to cautiously choose a magnetospheric field model for the L* calculation.
Separation prediction in two dimensional boundary layer flows using artificial neural networks
Sabetghadam, F.; Ghomi, H.A.
2003-01-01
In this article, the ability of artificial neural networks in prediction of separation in steady two dimensional boundary layer flows is studied. Data for network training is extracted from numerical solution of an ODE obtained from Von Karman integral equation with approximate one parameter Pohlhousen velocity profile. As an appropriate neural network, a two layer radial basis generalized regression artificial neural network is used. The results shows good agreements between the overall behavior of the flow fields predicted by the artificial neural network and the actual flow fields for some cases. The method easily can be extended to unsteady separation and turbulent as well as compressible boundary layer flows. (author)
Design of a heart rate controller for treadmill exercise using a recurrent fuzzy neural network.
Lu, Chun-Hao; Wang, Wei-Cheng; Tai, Cheng-Chi; Chen, Tien-Chi
2016-05-01
In this study, we developed a computer controlled treadmill system using a recurrent fuzzy neural network heart rate controller (RFNNHRC). Treadmill speeds and inclines were controlled by corresponding control servo motors. The RFNNHRC was used to generate the control signals to automatically control treadmill speed and incline to minimize the user heart rate deviations from a preset profile. The RFNNHRC combines a fuzzy reasoning capability to accommodate uncertain information and an artificial recurrent neural network learning process that corrects for treadmill system nonlinearities and uncertainties. Treadmill speeds and inclines are controlled by the RFNNHRC to achieve minimal heart rate deviation from a pre-set profile using adjustable parameters and an on-line learning algorithm that provides robust performance against parameter variations. The on-line learning algorithm of RFNNHRC was developed and implemented using a dsPIC 30F4011 DSP. Application of the proposed control scheme to heart rate responses of runners resulted in smaller fluctuations than those produced by using proportional integra control, and treadmill speeds and inclines were smoother. The present experiments demonstrate improved heart rate tracking performance with the proposed control scheme. The RFNNHRC scheme with adjustable parameters and an on-line learning algorithm was applied to a computer controlled treadmill system with heart rate control during treadmill exercise. Novel RFNNHRC structure and controller stability analyses were introduced. The RFNNHRC were tuned using a Lyapunov function to ensure system stability. The superior heart rate control with the proposed RFNNHRC scheme was demonstrated with various pre-set heart rates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Neural processing of short-term recurrence in songbird vocal communication.
Gabriël J L Beckers
Full Text Available BACKGROUND: Many situations involving animal communication are dominated by recurring, stereotyped signals. How do receivers optimally distinguish between frequently recurring signals and novel ones? Cortical auditory systems are known to be pre-attentively sensitive to short-term delivery statistics of artificial stimuli, but it is unknown if this phenomenon extends to the level of behaviorally relevant delivery patterns, such as those used during communication. METHODOLOGY/PRINCIPAL FINDINGS: We recorded and analyzed complete auditory scenes of spontaneously communicating zebra finch (Taeniopygia guttata pairs over a week-long period, and show that they can produce tens of thousands of short-range contact calls per day. Individual calls recur at time scales (median interval 1.5 s matching those at which mammalian sensory systems are sensitive to recent stimulus history. Next, we presented to anesthetized birds sequences of frequently recurring calls interspersed with rare ones, and recorded, in parallel, action and local field potential responses in the medio-caudal auditory forebrain at 32 unique sites. Variation in call recurrence rate over natural ranges leads to widespread and significant modulation in strength of neural responses. Such modulation is highly call-specific in secondary auditory areas, but not in the main thalamo-recipient, primary auditory area. CONCLUSIONS/SIGNIFICANCE: Our results support the hypothesis that pre-attentive neural sensitivity to short-term stimulus recurrence is involved in the analysis of auditory scenes at the level of delivery patterns of meaningful sounds. This may enable birds to efficiently and automatically distinguish frequently recurring vocalizations from other events in their auditory scene.
Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders.
Liu, Han; Zhou, Jianzhong; Zheng, Yang; Jiang, Wei; Zhang, Yuncheng
2018-04-19
As the rolling bearings being the key part of rotary machine, its healthy condition is quite important for safety production. Fault diagnosis of rolling bearing has been research focus for the sake of improving the economic efficiency and guaranteeing the operation security. However, the collected signals are mixed with ambient noise during the operation of rotary machine, which brings great challenge to the exact diagnosis results. Using signals collected from multiple sensors can avoid the loss of local information and extract more helpful characteristics. Recurrent Neural Networks (RNN) is a type of artificial neural network which can deal with multiple time sequence data. The capacity of RNN has been proved outstanding for catching time relevance about time sequence data. This paper proposed a novel method for bearing fault diagnosis with RNN in the form of an autoencoder. In this approach, multiple vibration value of the rolling bearings of the next period are predicted from the previous period by means of Gated Recurrent Unit (GRU)-based denoising autoencoder. These GRU-based non-linear predictive denoising autoencoders (GRU-NP-DAEs) are trained with strong generalization ability for each different fault pattern. Then for the given input data, the reconstruction errors between the next period data and the output data generated by different GRU-NP-DAEs are used to detect anomalous conditions and classify fault type. Classic rotating machinery datasets have been employed to testify the effectiveness of the proposed diagnosis method and its preponderance over some state-of-the-art methods. The experiment results indicate that the proposed method achieves satisfactory performance with strong robustness and high classification accuracy. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Yasir Hassan Ali
2015-01-01
Full Text Available The thickness of an oil film lubricant can contribute to less gear tooth wear and surface failure. The purpose of this research is to use artificial neural network (ANN computational modelling to correlate spur gear data from acoustic emissions, lubricant temperature, and specific film thickness (λ. The approach is using an algorithm to monitor the oil film thickness and to detect which lubrication regime the gearbox is running either hydrodynamic, elastohydrodynamic, or boundary. This monitoring can aid identification of fault development. Feed-forward and recurrent Elman neural network algorithms were used to develop ANN models, which are subjected to training, testing, and validation process. The Levenberg-Marquardt back-propagation algorithm was applied to reduce errors. Log-sigmoid and Purelin were identified as suitable transfer functions for hidden and output nodes. The methods used in this paper shows accurate predictions from ANN and the feed-forward network performance is superior to the Elman neural network.
Solving differential equations with unknown constitutive relations as recurrent neural networks
Hagge, Tobias J.; Stinis, Panagiotis; Yeung, Enoch H.; Tartakovsky, Alexandre M.
2017-12-08
We solve a system of ordinary differential equations with an unknown functional form of a sink (reaction rate) term. We assume that the measurements (time series) of state variables are partially available, and use a recurrent neural network to “learn” the reaction rate from this data. This is achieved by including discretized ordinary differential equations as part of a recurrent neural network training problem. We extend TensorFlow’s recurrent neural network architecture to create a simple but scalable and effective solver for the unknown functions, and apply it to a fedbatch bioreactor simulation problem. Use of techniques from recent deep learning literature enables training of functions with behavior manifesting over thousands of time steps. Our networks are structurally similar to recurrent neural networks, but differ in purpose, and require modified training strategies.
Zhao, Haiquan; Zeng, Xiangping; Zhang, Jiashu; Liu, Yangguang; Wang, Xiaomin; Li, Tianrui
2011-01-01
To eliminate nonlinear channel distortion in chaotic communication systems, a novel joint-processing adaptive nonlinear equalizer based on a pipelined recurrent neural network (JPRNN) is proposed, using a modified real-time recurrent learning (RTRL) algorithm. Furthermore, an adaptive amplitude RTRL algorithm is adopted to overcome the deteriorating effect introduced by the nesting process. Computer simulations illustrate that the proposed equalizer outperforms the pipelined recurrent neural network (PRNN) and recurrent neural network (RNN) equalizers. Copyright © 2010 Elsevier Ltd. All rights reserved.
Research on artificial neural network applications for nuclear power plants
Chang, Soon-Heung; Cheon, Se-Woo
1992-01-01
Artificial neural networks (ANNs) are an emerging computational technology which can significantly enhance a number of applications. These consist of many interconnected processing elements that exhibit human-like performance, i.e., learning, pattern recognition and associative memory skills. Several application studies on ANNs devoted to nuclear power plants have been carried out at the Korea Advanced Institute of Science and Technology since 1989. These studies include the feasibility of using ANNs for the following tasks: (1) thermal power prediction, (2) transient identification, (3) multiple alarm processing and diagnosis, (4) core thermal margin prediction, and (5) prediction of core parameters for fuel reloading. This paper introduces the back-propagation network (BPN) model which is the most commonly used algorithm, and summarizes each of the studies briefly. (author)
Artificial neural network for research reactor safety status monitoring
Varde, P.V.
2001-01-01
During reactor upset/abnormal conditions, emphasis is placed on plant operator's ability to quickly identify the problem and perform diagnosis and initiate recovery action to ensure safety of the plant. However, the reliability of human action is adversely affected at the time of crisis, due to the time stress and psychological factors. Availability of operational aids capable of monitoring the status of the plant and quickly identifying the deviation from normal operation is expected to significantly improve the operator reliability. Artificial Neural Network (based on Back Propagation Algorithm) has been developed and applied for reactor safety status monitoring, as part of an Operator Support System. ANN has been trained for 14 different plant states using 42 input symptom patterns. Recall tests performed on the ANN show that the system was able to identify the plant state with reasonable accuracy. (author)
Prediction of pelvic organ prolapse using an artificial neural network.
Robinson, Christopher J; Swift, Steven; Johnson, Donna D; Almeida, Jonas S
2008-08-01
The objective of this investigation was to test the ability of a feedforward artificial neural network (ANN) to differentiate patients who have pelvic organ prolapse (POP) from those who retain good pelvic organ support. Following institutional review board approval, patients with POP (n = 87) and controls with good pelvic organ support (n = 368) were identified from the urogynecology research database. Historical and clinical information was extracted from the database. Data analysis included the training of a feedforward ANN, variable selection, and external validation of the model with an independent data set. Twenty variables were used. The median-performing ANN model used a median of 3 (quartile 1:3 to quartile 3:5) variables and achieved an area under the receiver operator curve of 0.90 (external, independent validation set). Ninety percent sensitivity and 83% specificity were obtained in the external validation by ANN classification. Feedforward ANN modeling is applicable to the identification and prediction of POP.
Magnesium degradation as determined by artificial neural networks.
Willumeit, Regine; Feyerabend, Frank; Huber, Norbert
2013-11-01
Magnesium degradation under physiological conditions is a highly complex process in which temperature, the use of cell culture growth medium and the presence of CO2, O2 and proteins can influence the corrosion rate and the composition of the resulting corrosion layer. Due to the complexity of this process it is almost impossible to predict the parameters that are most important and whether some parameters have a synergistic effect on the corrosion rate. Artificial neural networks are a mathematical tool that can be used to approximate and analyse non-linear problems with multiple inputs. In this work we present the first analysis of corrosion data obtained using this method, which reveals that CO2 and the composition of the buffer system play a crucial role in the corrosion of magnesium, whereas O2, proteins and temperature play a less prominent role. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Prediction of flow boiling curves based on artificial neural network
Wu Junmei; Xi'an Jiaotong Univ., Xi'an; Su Guanghui
2007-01-01
The effects of the main system parameters on flow boiling curves were analyzed by using an artificial neural network (ANN) based on the database selected from the 1960s. The input parameters of the ANN are system pressure, mass flow rate, inlet subcooling, wall superheat and steady/transition boiling, and the output parameter is heat flux. The results obtained by the ANN show that the heat flux increases with increasing inlet sub cooling for all heat transfer modes. Mass flow rate has no significant effects on nucleate boiling curves. The transition boiling and film boiling heat fluxes will increase with an increase of mass flow rate. The pressure plays a predominant role and improves heat transfer in whole boiling regions except film boiling. There are slight differences between the steady and the transient boiling curves in all boiling regions except the nucleate one. (authors)
Selection in sugarcane families with artificial neural networks
Bruno Portela Brasileiro
2015-04-01
Full Text Available The objective of this study was to evaluate Artificial Neural Networks (ANN applied in an selection process within sugarcane families. The best ANN model produced no mistake, but was able to classify all genotypes correctly, i.e., the network made the same selective choice as the breeder during the simulation individual best linear unbiased predictor (BLUPIS, demonstrating the ability of the ANN to learn from the inputs and outputs provided in the training and validation phases. Since the ANN-based selection facilitates the identification of the best plants and the development of a new selection strategy in the best families, to ensure that the best genotypes of the population are evaluated in the following stages of the breeding program, we recommend to rank families by BLUP, followed by selection of the best families and finally, select the seedlings by ANN, from information at the individual level in the best families.
Automatic classification of DMSA scans using an artificial neural network
Wright, J. W.; Duguid, R.; Mckiddie, F.; Staff, R. T.
2014-04-01
DMSA imaging is carried out in nuclear medicine to assess the level of functional renal tissue in patients. This study investigated the use of an artificial neural network to perform diagnostic classification of these scans. Using the radiological report as the gold standard, the network was trained to classify DMSA scans as positive or negative for defects using a representative sample of 257 previously reported images. The trained network was then independently tested using a further 193 scans and achieved a binary classification accuracy of 95.9%. The performance of the network was compared with three qualified expert observers who were asked to grade each scan in the 193 image testing set on a six point defect scale, from ‘definitely normal’ to ‘definitely abnormal’. A receiver operating characteristic analysis comparison between a consensus operator, generated from the scores of the three expert observers, and the network revealed a statistically significant increase (α quality assurance assistant in clinical practice.
Nuclear power plant status diagnostics using artificial neural networks
Bartlett, E.B.; Uhrig, R.E.
1991-01-01
In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results
An artificial neural network model for periodic trajectory generation
Shankar, S.; Gander, R. E.; Wood, H. C.
A neural network model based on biological systems was developed for potential robotic application. The model consists of three interconnected layers of artificial neurons or units: an input layer subdivided into state and plan units, an output layer, and a hidden layer between the two outer layers which serves to implement nonlinear mappings between the input and output activation vectors. Weighted connections are created between the three layers, and learning is effected by modifying these weights. Feedback connections between the output and the input state serve to make the network operate as a finite state machine. The activation vector of the plan units of the input layer emulates the supraspinal commands in biological central pattern generators in that different plan activation vectors correspond to different sequences or trajectories being recalled, even with different frequencies. Three trajectories were chosen for implementation, and learning was accomplished in 10,000 trials. The fault tolerant behavior, adaptiveness, and phase maintenance of the implemented network are discussed.
Super capacitor modeling with artificial neural network (ANN)
Marie-Francoise, J.N.; Gualous, H.; Berthon, A. [Universite de Franche-Comte, Lab. en Electronique, Electrotechnique et Systemes (L2ES), UTBM, INRETS (LRE T31) 90 - Belfort (France)
2004-07-01
This paper presents super-capacitors modeling using Artificial Neural Network (ANN). The principle consists on a black box nonlinear multiple inputs single output (MISO) model. The system inputs are temperature and current, the output is the super-capacitor voltage. The learning and the validation of the ANN model from experimental charge and discharge of super-capacitor establish the relationship between inputs and output. The learning and the validation of the ANN model use experimental results of 2700 F, 3700 F and a super-capacitor pack. Once the network is trained, the ANN model can predict the super-capacitor behaviour with temperature variations. The update parameters of the ANN model are performed thanks to Levenberg-Marquardt method in order to minimize the error between the output of the system and the predicted output. The obtained results with the ANN model of super-capacitor and experimental ones are in good agreement. (authors)
Forecasting electricity market pricing using artificial neural networks
Pao, Hsiao-Tien
2007-01-01
Electricity price forecasting is extremely important for all market players, in particular for generating companies: in the short term, they must set up bids for the spot market; in the medium term, they have to define contract policies; and in the long term, they must define their expansion plans. For forecasting long-term electricity market pricing, in order to avoid excessive round-off and prediction errors, this paper proposes a new artificial neural network (ANN) with single output node structure by using direct forecasting approach. The potentials of ANNs are investigated by employing a rolling cross validation scheme. Out of sample performance evaluated with three criteria across five forecasting horizons shows that the proposed ANNs are a more robust multi-step ahead forecasting method than autoregressive error models. Moreover, ANN predictions are quite accurate even when the length of the forecast horizon is relatively short or long
Automatic segmentation of cerebral MR images using artificial neural networks
Alirezaie, J.; Jernigan, M.E.; Nahmias, C.
1996-01-01
In this paper we present an unsupervised clustering technique for multispectral segmentation of magnetic resonance (MR) images of the human brain. Our scheme utilizes the Self Organizing Feature Map (SOFM) artificial neural network for feature mapping and generates a set of codebook vectors. By extending the network with an additional layer the map will be classified and each tissue class will be labelled. An algorithm has been developed for extracting the cerebrum from the head scan prior to the segmentation. Extracting the cerebrum is performed by stripping away the skull pixels from the T2 image. Three tissue types of the brain: white matter, gray matter and cerebral spinal fluid (CSF) are segmented accurately. To compare the results with other conventional approaches we applied the c-means algorithm to the problem
Artificial neural network analysis of triple effect absorption refrigeration systems
Hajizadeh Aghdam, A. [Department of Mechanical Engineering, Islamic Azad University (Iran, Islamic Republic of)], email: a.hajizadeh@iaukashan.ac.ir; Nazmara, H.; Farzaneh, B. [Department of Mechanical Engineering, University of Tabriz (Iran, Islamic Republic of)], email: h.nazmara@nioec.org, email: b_farzaneh_ms@yahoo.com
2011-07-01
In this study, artificial neural networks are utilized to predict the performance of triple effect series and parallel flow absorption refrigeration systems, with lithium bromide/water as the working fluid. Important parameters such as high generator and evaporator temperatures were varied and their effects on the performance characteristics of the refrigeration unit were observed. Absorption refrigeration systems make energy savings possible because they can use heat energy to produce cooling, in place of the electricity used for conventional vapour compression chillers. In addition, non-conventional sources of energy (such as solar, waste heat, and geothermal) can be utilized as their primary energy input. Moreover, absorption units use environmentally friendly working fluid pairs instead of CFCs and HCFCs, which affect the ozone layer. Triple effect absorption cycles were analysed. Results apply for both series and parallel flow systems. A relative preference for parallel-flow over series-flow is also shown.
Artificial Neural Network Method at PT Buana Intan Gemilang
Shadika
2017-01-01
Full Text Available The textile industry is one of the industries that provide high export value by occupying the third position in Indonesia. The process of inspection on traditional textile enterprises by relying on human vision that takes an average scanning time of 19.87 seconds. Each roll of cloth should be inspected twice to avoid missed defects. This inspection process causes the buildup at the inspection station. This study proposes the automation of inspection systems using the Artificial Neural Network (ANN. The input for ANN comes from GLCM extraction. The automation system on the defect inspection resulted in a detection time of 0.56 seconds. The degree of accuracy gained in classifying the three types of defects is 88.7%. Implementing an automated inspection system results in faster processing time.
Power plant fault detection using artificial neural network
Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Joini, Nur Fazriana; Hidzir, Hidzrin Dayana Mohd; Awira, Mohammad Zulfikar Khairul
2018-02-01
The fault that commonly occurs in power plants is due to various factors that affect the system outage. There are many types of faults in power plants such as single line to ground fault, double line to ground fault, and line to line fault. The primary aim of this paper is to diagnose the fault in 14 buses power plants by using an Artificial Neural Network (ANN). The Multilayered Perceptron Network (MLP) that detection trained utilized the offline training methods such as Gradient Descent Backpropagation (GDBP), Levenberg-Marquardt (LM), and Bayesian Regularization (BR). The best method is used to build the Graphical User Interface (GUI). The modelling of 14 buses power plant, network training, and GUI used the MATLAB software.
Saini, K. K.; Saini, Sanju
2008-01-01
Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.
Mehrshad Salmasi; Homayoun Mahdavi-Nasab
2012-01-01
Active noise control is based on the destructive interference between the primary noise and generated noise from the secondary source. An antinoise of equal amplitude and opposite phase is generated and combined with the primary noise. In this paper, performance of the neural networks is evaluated in active cancellation of sound noise. For this reason, feedforward and recurrent neural networks are designed and trained. After training, performance of the feedforwrad and recurrent networks in n...
Liang Jinling; Cao Jinde
2003-01-01
Employing general Halanay inequality, we analyze the global exponential stability of a class of reaction-diffusion recurrent neural networks with time-varying delays. Several new sufficient conditions are obtained to ensure existence, uniqueness and global exponential stability of the equilibrium point of delayed reaction-diffusion recurrent neural networks. The results extend and improve the earlier publications. In addition, an example is given to show the effectiveness of the obtained result
Review of Artificial Neural Networks (ANN) applied to corrosion monitoring
Mabbutt, S; Picton, P; Shaw, P; Black, S
2012-01-01
The assessment of corrosion within an engineering system often forms an important aspect of condition monitoring but it is a parameter that is inherently difficult to measure and predict. The electrochemical nature of the corrosion process allows precise measurements to be made. Advances in instruments, techniques and software have resulted in devices that can gather data and perform various analysis routines that provide parameters to identify corrosion type and corrosion rate. Although corrosion rates are important they are only useful where general or uniform corrosion dominates. However, pitting, inter-granular corrosion and environmentally assisted cracking (stress corrosion) are examples of corrosion mechanisms that can be dangerous and virtually invisible to the naked eye. Electrochemical noise (EN) monitoring is a very useful technique for detecting these types of corrosion and it is the only non-invasive electrochemical corrosion monitoring technique commonly available. Modern instrumentation is extremely sensitive to changes in the system and new experimental configurations for gathering EN data have been proven. In this paper the identification of localised corrosion by different data analysis routines has been reviewed. In particular the application of Artificial Neural Network (ANN) analysis to corrosion data is of key interest. In most instances data needs to be used with conventional theory to obtain meaningful information and relies on expert interpretation. Recently work has been carried out using artificial neural networks to investigate various types of corrosion data in attempts to predict corrosion behaviour with some success. This work aims to extend this earlier work to identify reliable electrochemical indicators of localised corrosion onset and propagation stages.
Prediction of Austenite Formation Temperatures Using Artificial Neural Networks
Schulze, P; Schmidl, E; Grund, T; Lampke, T
2016-01-01
For the modeling and design of heat treatments, in consideration of the development/ transformation of the microstructure, different material data depending on the chemical composition, the respective microstructure/phases and the temperature are necessary. Material data are, e.g. the thermal conductivity, heat capacity, thermal expansion and transformation data etc. The quality of thermal simulations strongly depends on the accuracy of the material data. For many materials, the required data - in particular for different microstructures and temperatures - are rare in the literature. In addition, a different chemical composition within the permitted limits of the considered steel alloy cannot be predicted. A solution for this problem is provided by the calculation of material data using Artificial Neural Networks (ANN). In the present study, the start and finish temperatures of the transformation from the bcc lattice to the fcc lattice structure of hypoeutectoid steels are calculated using an Artificial Neural Network. An appropriate database containing different transformation temperatures (austenite formation temperatures) to train the ANN is selected from the literature. In order to find a suitable feedforward network, the network topologies as well as the activation functions of the hidden layers are varied and subsequently evaluated in terms of the prediction accuracy. The transformation temperatures calculated by the ANN exhibit a very good compliance compared to the experimental data. The results show that the prediction performance is even higher compared to classical empirical equations such as Andrews or Brandis. Therefore, it can be assumed that the presented ANN is a convenient tool to distinguish between bcc and fcc phases in hypoeutectoid steels. (paper)
Prediction of Austenite Formation Temperatures Using Artificial Neural Networks
Schulze, P.; Schmidl, E.; Grund, T.; Lampke, T.
2016-03-01
For the modeling and design of heat treatments, in consideration of the development/ transformation of the microstructure, different material data depending on the chemical composition, the respective microstructure/phases and the temperature are necessary. Material data are, e.g. the thermal conductivity, heat capacity, thermal expansion and transformation data etc. The quality of thermal simulations strongly depends on the accuracy of the material data. For many materials, the required data - in particular for different microstructures and temperatures - are rare in the literature. In addition, a different chemical composition within the permitted limits of the considered steel alloy cannot be predicted. A solution for this problem is provided by the calculation of material data using Artificial Neural Networks (ANN). In the present study, the start and finish temperatures of the transformation from the bcc lattice to the fcc lattice structure of hypoeutectoid steels are calculated using an Artificial Neural Network. An appropriate database containing different transformation temperatures (austenite formation temperatures) to train the ANN is selected from the literature. In order to find a suitable feedforward network, the network topologies as well as the activation functions of the hidden layers are varied and subsequently evaluated in terms of the prediction accuracy. The transformation temperatures calculated by the ANN exhibit a very good compliance compared to the experimental data. The results show that the prediction performance is even higher compared to classical empirical equations such as Andrews or Brandis. Therefore, it can be assumed that the presented ANN is a convenient tool to distinguish between bcc and fcc phases in hypoeutectoid steels.
Beam-orientation customization using an artificial neural network
Rowbottom, C.G.; Webb, S.; Oldham, M.
1999-01-01
A methodology for the constrained customization of coplanar beam orientations in radiotherapy treatment planning using an artificial neural network (ANN) has been developed. The geometry of the patients, with cancer of the prostate, was modelled by reducing the external contour, planning target volume (PTV) and organs at risk (OARs) to a set of cuboids. The coordinates and size of the cuboids were given to the ANN as inputs. A previously developed beam-orientation constrained-customization (BOCC) scheme employing a conventional computer algorithm was used to determine the customized beam orientations in a training set containing 45 patient datasets. Twelve patient datasets not involved in the training of the artificial neural network were used to test whether the ANN was able to map the inputs to customized beam orientations. Improvements from the customized beam orientations were compared with standard treatment plans with fixed gantry angles and plans produced from the BOCC scheme. The ANN produced customized beam orientations within 5 deg. of the BOCC scheme in 62.5% of cases. The average difference in the beam orientations produced by the ANN and the BOCC scheme was 7.7 deg. (±1.7, 1 SD). Compared with the standard treatment plans, the BOCC scheme produced plans with an increase in the average tumour control probability (TCP) of 5.7% (±1.4, 1 SD) whilst the ANN generated plans increased the average TCP by 3.9% (±1.3, 1 SD). Both figures refer to the TCP at a fixed rectal normal tissue complication probability (NTCP) of 1%. In conclusion, even using a very simple model for the geometry of the patient, an ANN was able to produce beam orientations that were similar to those produced by a conventional computer algorithm. (author)
Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks.
Goudar, Vishwa; Buonomano, Dean V
2018-03-14
Much of the information the brain processes and stores is temporal in nature-a spoken word or a handwritten signature, for example, is defined by how it unfolds in time. However, it remains unclear how neural circuits encode complex time-varying patterns. We show that by tuning the weights of a recurrent neural network (RNN), it can recognize and then transcribe spoken digits. The model elucidates how neural dynamics in cortical networks may resolve three fundamental challenges: first, encode multiple time-varying sensory and motor patterns as stable neural trajectories; second, generalize across relevant spatial features; third, identify the same stimuli played at different speeds-we show that this temporal invariance emerges because the recurrent dynamics generate neural trajectories with appropriately modulated angular velocities. Together our results generate testable predictions as to how recurrent networks may use different mechanisms to generalize across the relevant spatial and temporal features of complex time-varying stimuli. © 2018, Goudar et al.
Artificial Neural Network-Based System for PET Volume Segmentation
Mhd Saeed Sharif
2010-01-01
Full Text Available Tumour detection, classification, and quantification in positron emission tomography (PET imaging at early stage of disease are important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy, and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI approaches can provide improved accuracy and save decent amount of time. Artificial neural networks (ANNs, as one of the best AI techniques, have the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application. The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results.
Assessing Breast Cancer Risk with an Artificial Neural Network
Sepandi, Mojtaba; Taghdir, Maryam; Rezaianzadeh, Abbas; Rahimikazerooni, Salar
2018-04-25
Objectives: Radiologists face uncertainty in making decisions based on their judgment of breast cancer risk. Artificial intelligence and machine learning techniques have been widely applied in detection/recognition of cancer. This study aimed to establish a model to aid radiologists in breast cancer risk estimation. This incorporated imaging methods and fine needle aspiration biopsy (FNAB) for cyto-pathological diagnosis. Methods: An artificial neural network (ANN) technique was used on a retrospectively collected dataset including mammographic results, risk factors, and clinical findings to accurately predict the probability of breast cancer in individual patients. Area under the receiver-operating characteristic curve (AUC), accuracy, sensitivity, specificity, and positive and negative predictive values were used to evaluate discriminative performance. Result: The network incorporating the selected features performed best (AUC = 0.955). Sensitivity and specificity of the ANN were respectively calculated as 0.82 and 0.90. In addition, negative and positive predictive values were respectively computed as 0.90 and 0.80. Conclusion: ANN has potential applications as a decision-support tool to help underperforming practitioners to improve the positive predictive value of biopsy recommendations. Creative Commons Attribution License
Training Spiking Neural Models Using Artificial Bee Colony
Vazquez, Roberto A.; Garro, Beatriz A.
2015-01-01
Spiking neurons are models designed to simulate, in a realistic manner, the behavior of biological neurons. Recently, it has been proven that this type of neurons can be applied to solve pattern recognition problems with great efficiency. However, the lack of learning strategies for training these models do not allow to use them in several pattern recognition problems. On the other hand, several bioinspired algorithms have been proposed in the last years for solving a broad range of optimization problems, including those related to the field of artificial neural networks (ANNs). Artificial bee colony (ABC) is a novel algorithm based on the behavior of bees in the task of exploring their environment to find a food source. In this paper, we describe how the ABC algorithm can be used as a learning strategy to train a spiking neuron aiming to solve pattern recognition problems. Finally, the proposed approach is tested on several pattern recognition problems. It is important to remark that to realize the powerfulness of this type of model only one neuron will be used. In addition, we analyze how the performance of these models is improved using this kind of learning strategy. PMID:25709644
Artificial Neural Network Based Mission Planning Mechanism for Spacecraft
Li, Zhaoyu; Xu, Rui; Cui, Pingyuan; Zhu, Shengying
2018-04-01
The ability to plan and react fast in dynamic space environments is central to intelligent behavior of spacecraft. For space and robotic applications, many planners have been used. But it is difficult to encode the domain knowledge and directly use existing techniques such as heuristic to improve the performance of the application systems. Therefore, regarding planning as an advanced control problem, this paper first proposes an autonomous mission planning and action selection mechanism through a multiple layer perceptron neural network approach to select actions in planning process and improve efficiency. To prove the availability and effectiveness, we use autonomous mission planning problems of the spacecraft, which is a sophisticated system with complex subsystems and constraints as an example. Simulation results have shown that artificial neural networks (ANNs) are usable for planning problems. Compared with the existing planning method in EUROPA, the mechanism using ANNs is more efficient and can guarantee stable performance. Therefore, the mechanism proposed in this paper is more suitable for planning problems of spacecraft that require real time and stability.
Direct process estimation from tomographic data using artificial neural systems
Mohamad-Saleh, Junita; Hoyle, Brian S.; Podd, Frank J.; Spink, D. M.
2001-07-01
The paper deals with the goal of component fraction estimation in multicomponent flows, a critical measurement in many processes. Electrical capacitance tomography (ECT) is a well-researched sensing technique for this task, due to its low-cost, non-intrusion, and fast response. However, typical systems, which include practicable real-time reconstruction algorithms, give inaccurate results, and existing approaches to direct component fraction measurement are flow-regime dependent. In the investigation described, an artificial neural network approach is used to directly estimate the component fractions in gas-oil, gas-water, and gas-oil-water flows from ECT measurements. A 2D finite- element electric field model of a 12-electrode ECT sensor is used to simulate ECT measurements of various flow conditions. The raw measurements are reduced to a mutually independent set using principal components analysis and used with their corresponding component fractions to train multilayer feed-forward neural networks (MLFFNNs). The trained MLFFNNs are tested with patterns consisting of unlearned ECT simulated and plant measurements. Results included in the paper have a mean absolute error of less than 1% for the estimation of various multicomponent fractions of the permittivity distribution. They are also shown to give improved component fraction estimation compared to a well known direct ECT method.
Consistently Trained Artificial Neural Network for Automatic Ship Berthing Control
Y.A. Ahmed
2015-09-01
Full Text Available In this paper, consistently trained Artificial Neural Network controller for automatic ship berthing is discussed. Minimum time course changing manoeuvre is utilised to ensure such consistency and a new concept named ‘virtual window’ is introduced. Such consistent teaching data are then used to train two separate multi-layered feed forward neural networks for command rudder and propeller revolution output. After proper training, several known and unknown conditions are tested to judge the effectiveness of the proposed controller using Monte Carlo simulations. After getting acceptable percentages of success, the trained networks are implemented for the free running experiment system to judge the network’s real time response for Esso Osaka 3-m model ship. The network’s behaviour during such experiments is also investigated for possible effect of initial conditions as well as wind disturbances. Moreover, since the final goal point of the proposed controller is set at some distance from the actual pier to ensure safety, therefore a study on automatic tug assistance is also discussed for the final alignment of the ship with actual pier.
Analysing 21cm signal with artificial neural network
Shimabukuro, Hayato; a Semelin, Benoit
2018-05-01
The 21cm signal at epoch of reionization (EoR) should be observed within next decade. We expect that cosmic 21cm signal at the EoR provides us both cosmological and astrophysical information. In order to extract fruitful information from observation data, we need to develop inversion method. For such a method, we introduce artificial neural network (ANN) which is one of the machine learning techniques. We apply the ANN to inversion problem to constrain astrophysical parameters from 21cm power spectrum. We train the architecture of the neural network with 70 training datasets and apply it to 54 test datasets with different value of parameters. We find that the quality of the parameter reconstruction depends on the sensitivity of the power spectrum to the different parameter sets at a given redshift and also find that the accuracy of reconstruction is improved by increasing the number of given redshifts. We conclude that the ANN is viable inversion method whose main strength is that they require a sparse extrapolation of the parameter space and thus should be usable with full simulation.
Artificial earthquake record generation using cascade neural network
Bani-Hani Khaldoon A.
2017-01-01
Full Text Available This paper presents the results of using artificial neural networks (ANN in an inverse mapping problem for earthquake accelerograms generation. This study comprises of two parts: 1-D site response analysis; performed for Dubai Emirate at UAE, where eight earthquakes records are selected and spectral matching are performed to match Dubai response spectrum using SeismoMatch software. Site classification of Dubai soil is being considered for two classes C and D based on shear wave velocity of soil profiles. Amplifications factors are estimated to quantify Dubai soil effect. Dubai’s design response spectra are developed for site classes C & D according to International Buildings Code (IBC -2012. In the second part, ANN is employed to solve inverse mapping problem to generate time history earthquake record. Thirty earthquakes records and their design response spectrum with 5% damping are used to train two cascade forward backward neural networks (ANN1, ANN2. ANN1 is trained to map the design response spectrum to time history and ANN2 is trained to map time history records to the design response spectrum. Generalized time history earthquake records are generated using ANN1 for Dubai’s site classes C and D, and ANN2 is used to evaluate the performance of ANN1.
Advances in spectral analysis using artificial neural networks
Martinez, M.; Vigneron, V.
1995-01-01
Artificial Neural networks (ANNs) have a powerful representational capacity and ability to handle with any multi-input multi-output mapping problem, e.g. in clustering, pattern recognition and identification areas, particularly when combined with some a priori knowledge and statistical point of view. They can be useful in spectrometry for the uranium enrichment methods by examples, where numerous approaches like models fitting or experts analysis are limited. These depends on the radiation measured: the methods most widely used developed over the past 20 years were based on the counting of the 185.7-keV peak with a sodium iodide scintillation detector or the 163.4-keV peak of 235 U. But these methods depend critically of the source-detector geometry. A means of improving the above conventional methods is to reduce the region of interest: it is possible by focusing at the region called KαX where the three elementary components are present. The measurement of these components in mixtures leads to the isotope ratio 235 U / ( 235 U + 236 U + 238 U). In this paper we explore statistical orientations and their consequences on 'neural' parameters. We show this decisions are induced by a log-linear model, a special case of a GLIM (Generalized LInear Model) and correspond to a Maximum Likelihood Estimation problem. (authors). 15 refs., 7 figs., 2 tabs
Raingauge-Based Rainfall Nowcasting with Artificial Neural Network
Liong, Shie-Yui; He, Shan
2010-05-01
Rainfall forecasting and nowcasting are of great importance, for instance, in real-time flood early warning systems. Long term rainfall forecasting demands global climate, land, and sea data, thus, large computing power and storage capacity are required. Rainfall nowcasting's computing requirement, on the other hand, is much less. Rainfall nowcasting may use data captured by radar and/or weather stations. This paper presents the application of Artificial Neural Network (ANN) on rainfall nowcasting using data observed at weather and/or rainfall stations. The study focuses on the North-East monsoon period (December, January and February) in Singapore. Rainfall and weather data from ten stations, between 2000 and 2006, were selected and divided into three groups for training, over-fitting test and validation of the ANN. Several neural network architectures were tried in the study. Two architectures, Backpropagation ANN and Group Method of Data Handling ANN, yielded better rainfall nowcasting, up to two hours, than the other architectures. The obtained rainfall nowcasts were then used by a catchment model to forecast catchment runoff. The results of runoff forecast are encouraging and promising.With ANN's high computational speed, the proposed approach may be deliverable for creating the real-time flood early warning system.
Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition.
Spoerer, Courtney J; McClure, Patrick; Kriegeskorte, Nikolaus
2017-01-01
Feedforward neural networks provide the dominant model of how the brain performs visual object recognition. However, these networks lack the lateral and feedback connections, and the resulting recurrent neuronal dynamics, of the ventral visual pathway in the human and non-human primate brain. Here we investigate recurrent convolutional neural networks with bottom-up (B), lateral (L), and top-down (T) connections. Combining these types of connections yields four architectures (B, BT, BL, and BLT), which we systematically test and compare. We hypothesized that recurrent dynamics might improve recognition performance in the challenging scenario of partial occlusion. We introduce two novel occluded object recognition tasks to test the efficacy of the models, digit clutter (where multiple target digits occlude one another) and digit debris (where target digits are occluded by digit fragments). We find that recurrent neural networks outperform feedforward control models (approximately matched in parametric complexity) at recognizing objects, both in the absence of occlusion and in all occlusion conditions. Recurrent networks were also found to be more robust to the inclusion of additive Gaussian noise. Recurrent neural networks are better in two respects: (1) they are more neurobiologically realistic than their feedforward counterparts; (2) they are better in terms of their ability to recognize objects, especially under challenging conditions. This work shows that computer vision can benefit from using recurrent convolutional architectures and suggests that the ubiquitous recurrent connections in biological brains are essential for task performance.
Lu, Weizhao; Huang, Chunhui; Hou, Kun; Shi, Liting; Zhao, Huihui; Li, Zhengmei; Qiu, Jianfeng
2018-05-01
In continuous-variable quantum key distribution (CV-QKD), weak signal carrying information transmits from Alice to Bob; during this process it is easily influenced by unknown noise which reduces signal-to-noise ratio, and strongly impacts reliability and stability of the communication. Recurrent quantum neural network (RQNN) is an artificial neural network model which can perform stochastic filtering without any prior knowledge of the signal and noise. In this paper, a modified RQNN algorithm with expectation maximization algorithm is proposed to process the signal in CV-QKD, which follows the basic rule of quantum mechanics. After RQNN, noise power decreases about 15 dBm, coherent signal recognition rate of RQNN is 96%, quantum bit error rate (QBER) drops to 4%, which is 6.9% lower than original QBER, and channel capacity is notably enlarged.
A One-Layer Recurrent Neural Network for Constrained Complex-Variable Convex Optimization.
Qin, Sitian; Feng, Jiqiang; Song, Jiahui; Wen, Xingnan; Xu, Chen
2018-03-01
In this paper, based on calculus and penalty method, a one-layer recurrent neural network is proposed for solving constrained complex-variable convex optimization. It is proved that for any initial point from a given domain, the state of the proposed neural network reaches the feasible region in finite time and converges to an optimal solution of the constrained complex-variable convex optimization finally. In contrast to existing neural networks for complex-variable convex optimization, the proposed neural network has a lower model complexity and better convergence. Some numerical examples and application are presented to substantiate the effectiveness of the proposed neural network.
Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network
Ma Qianli; Zheng Qilun; Peng Hong; Qin Jiangwei; Zhong Tanwei
2008-01-01
This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent neural networks by co-evolutionary strategy. The searching space was separated into two subspaces and the individuals are trained in a parallel computational procedure. It can dynamically combine the embedding method with the capability of recurrent neural network to incorporate past experience due to internal recurrence. The effectiveness of CERNN is evaluated by using three benchmark chaotic time series data sets: the Lorenz series, Mackey-Glass series and real-world sun spot series. The simulation results show that CERNN improves the performances of multi-step-prediction of chaotic time series
Ridluan, Artit; Tokuhiro, Akira; Linda, Ondrej; Manic, Milos
2009-01-01
The U.S. Department of Energy (DOE) is leading a number of initiatives, including one known as the Next Generation Nuclear Plant (NGNP) project. One of the NGNP nuclear system concepts is the Very High Temperature (gas-cooled) Reactor (VHTR) that may be coupled to a hydrogen generating plant to support the anticipated hydrogen economy. For the NGNP, an efficient power conversion system using an Intermediate Heat Exchanger (IHX) is key to electricity and/or process heat generation (hydrogen production). Ideally, it's desirable for the IHX to be compact and thermally efficient. However, traditional heat exchanger design practices do not assure that the design parameters are optimized. As part of NGNP heat exchanger design and optimization project, this research paper thus proposes developing a recurrent-type Artificial Neural Network (ANN), the Hopfield Network (HN) model, in which the activation function is modified, as a design optimization approach to support a NGNP thermal system candidate, the Printed Circuit Heat Exchanger (PCHE). Four quadratic functions, available in literature, were used to test the presented methodology. The results computed by an artificially intelligent approach were compared to another approach, the Genetic Algorithm (GA). The results show that the HN results are close to GA in optimization of multi-variable second-order equations. (author)
Juan Andres Laura
2018-03-01
Full Text Available In recent studies Recurrent Neural Networks were used for generative processes and their surprising performance can be explained by their ability to create good predictions. In addition, Data Compression is also based on prediction. What the problem comes down to is whether a data compressor could be used to perform as well as recurrent neural networks in the natural language processing tasks of sentiment analysis and automatic text generation. If this is possible, then the problem comes down to determining if a compression algorithm is even more intelligent than a neural network in such tasks. In our journey, a fundamental difference between a Data Compression Algorithm and Recurrent Neural Networks has been discovered.
An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks
Cabessa, Jérémie; Villa, Alessandro E. P.
2014-01-01
We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866
Yeşilkanat, Cafer Mert; Kobya, Yaşar; Taşkın, Halim; Çevik, Uğur
2017-09-01
The aim of this study was to determine spatial risk dispersion of ambient gamma dose rate (AGDR) by using both artificial neural network (ANN) and fuzzy logic (FL) methods, compare the performances of methods, make dose estimations for intermediate stations with no previous measurements and create dose rate risk maps of the study area. In order to determine the dose distribution by using artificial neural networks, two main networks and five different network structures were used; feed forward ANN; Multi-layer perceptron (MLP), Radial basis functional neural network (RBFNN), Quantile regression neural network (QRNN) and recurrent ANN; Jordan networks (JN), Elman networks (EN). In the evaluation of estimation performance obtained for the test data, all models appear to give similar results. According to the cross-validation results obtained for explaining AGDR distribution, Pearson's r coefficients were calculated as 0.94, 0.91, 0.89, 0.91, 0.91 and 0.92 and RMSE values were calculated as 34.78, 43.28, 63.92, 44.86, 46.77 and 37.92 for MLP, RBFNN, QRNN, JN, EN and FL, respectively. In addition, spatial risk maps showing distributions of AGDR of the study area were created by all models and results were compared with geological, topological and soil structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Entity recognition from clinical texts via recurrent neural network.
Liu, Zengjian; Yang, Ming; Wang, Xiaolong; Chen, Qingcai; Tang, Buzhou; Wang, Zhe; Xu, Hua
2017-07-05
Entity recognition is one of the most primary steps for text analysis and has long attracted considerable attention from researchers. In the clinical domain, various types of entities, such as clinical entities and protected health information (PHI), widely exist in clinical texts. Recognizing these entities has become a hot topic in clinical natural language processing (NLP), and a large number of traditional machine learning methods, such as support vector machine and conditional random field, have been deployed to recognize entities from clinical texts in the past few years. In recent years, recurrent neural network (RNN), one of deep learning methods that has shown great potential on many problems including named entity recognition, also has been gradually used for entity recognition from clinical texts. In this paper, we comprehensively investigate the performance of LSTM (long-short term memory), a representative variant of RNN, on clinical entity recognition and protected health information recognition. The LSTM model consists of three layers: input layer - generates representation of each word of a sentence; LSTM layer - outputs another word representation sequence that captures the context information of each word in this sentence; Inference layer - makes tagging decisions according to the output of LSTM layer, that is, outputting a label sequence. Experiments conducted on corpora of the 2010, 2012 and 2014 i2b2 NLP challenges show that LSTM achieves highest micro-average F1-scores of 85.81% on the 2010 i2b2 medical concept extraction, 92.29% on the 2012 i2b2 clinical event detection, and 94.37% on the 2014 i2b2 de-identification, which is considerably competitive with other state-of-the-art systems. LSTM that requires no hand-crafted feature has great potential on entity recognition from clinical texts. It outperforms traditional machine learning methods that suffer from fussy feature engineering. A possible future direction is how to integrate knowledge
Liu, Qingshan; Dang, Chuangyin; Huang, Tingwen
2013-02-01
This paper presents a decision-making model described by a recurrent neural network for dynamic portfolio optimization. The portfolio-optimization problem is first converted into a constrained fractional programming problem. Since the objective function in the programming problem is not convex, the traditional optimization techniques are no longer applicable for solving this problem. Fortunately, the objective function in the fractional programming is pseudoconvex on the feasible region. It leads to a one-layer recurrent neural network modeled by means of a discontinuous dynamic system. To ensure the optimal solutions for portfolio optimization, the convergence of the proposed neural network is analyzed and proved. In fact, the neural network guarantees to get the optimal solutions for portfolio-investment advice if some mild conditions are satisfied. A numerical example with simulation results substantiates the effectiveness and illustrates the characteristics of the proposed neural network.
Sakyasingha eDasgupta
2015-09-01
Full Text Available Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain a variety of movements, the neural mechanisms generate movements while making appropriate predictions crucial for achieving adaptation. Such predictions or planning ahead can be achieved by way of internal models that are grounded in the overall behavior of the animal. Inspired by these findings, we present here, an artificial bio-inspired walking system which effectively combines biomechanics (in terms of the body and leg structures with the underlying neural mechanisms. The neural mechanisms consist of 1 central pattern generator based control for generating basic rhythmic patterns and coordinated movements, 2 distributed (at each leg recurrent neural network based adaptive forward models with efference copies as internal models for sensory predictions and instantaneous state estimations, and 3 searching and elevation control for adapting the movement of an individual leg to deal with different environmental conditions. Using simulations we show that this bio-inspired approach with adaptive internal models allows the walking robot to perform complex locomotive behaviors as observed in insects, including walking on undulated terrains, crossing large gaps as well as climbing over high obstacles. Furthermore we demonstrate that the newly developed recurrent network based approach to sensorimotor prediction outperforms the previous state of the art adaptive neuron
Mandal, Sudip; Saha, Goutam; Pal, Rajat Kumar
2017-08-01
Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.
Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence.
Khan, Abhinandan; Mandal, Sudip; Pal, Rajat Kumar; Saha, Goutam
2016-01-01
We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters. The proposed methodology has been first applied to a small artificial network, and the results obtained suggest that it can produce the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we have implemented our proposed algorithm with half the number of time points. The results indicate that a reduction of 50% in the number of time points does not have an effect on the accuracy of the proposed methodology significantly, with a maximum of just over 15% deterioration in the worst case.
Artificial Neural Networks in Mammography Interpretation and Diagnostic Decision Making
Turgay Ayer
2013-01-01
Full Text Available Screening mammography is the most effective means for early detection of breast cancer. Although general rules for discriminating malignant and benign lesions exist, radiologists are unable to perfectly detect and classify all lesions as malignant and benign, for many reasons which include, but are not limited to, overlap of features that distinguish malignancy, difficulty in estimating disease risk, and variability in recommended management. When predictive variables are numerous and interact, ad hoc decision making strategies based on experience and memory may lead to systematic errors and variability in practice. The integration of computer models to help radiologists increase the accuracy of mammography examinations in diagnostic decision making has gained increasing attention in the last two decades. In this study, we provide an overview of one of the most commonly used models, artificial neural networks (ANNs, in mammography interpretation and diagnostic decision making and discuss important features in mammography interpretation. We conclude by discussing several common limitations of existing research on ANN-based detection and diagnostic models and provide possible future research directions.
Use artificial neural network to align biological ontologies.
Huang, Jingshan; Dang, Jiangbo; Huhns, Michael N; Zheng, W Jim
2008-09-16
Being formal, declarative knowledge representation models, ontologies help to address the problem of imprecise terminologies in biological and biomedical research. However, ontologies constructed under the auspices of the Open Biomedical Ontologies (OBO) group have exhibited a great deal of variety, because different parties can design ontologies according to their own conceptual views of the world. It is therefore becoming critical to align ontologies from different parties. During automated/semi-automated alignment across biological ontologies, different semantic aspects, i.e., concept name, concept properties, and concept relationships, contribute in different degrees to alignment results. Therefore, a vector of weights must be assigned to these semantic aspects. It is not trivial to determine what those weights should be, and current methodologies depend a lot on human heuristics. In this paper, we take an artificial neural network approach to learn and adjust these weights, and thereby support a new ontology alignment algorithm, customized for biological ontologies, with the purpose of avoiding some disadvantages in both rule-based and learning-based aligning algorithms. This approach has been evaluated by aligning two real-world biological ontologies, whose features include huge file size, very few instances, concept names in numerical strings, and others. The promising experiment results verify our proposed hypothesis, i.e., three weights for semantic aspects learned from a subset of concepts are representative of all concepts in the same ontology. Therefore, our method represents a large leap forward towards automating biological ontology alignment.
Learning free energy landscapes using artificial neural networks.
Sidky, Hythem; Whitmer, Jonathan K
2018-03-14
Existing adaptive bias techniques, which seek to estimate free energies and physical properties from molecular simulations, are limited by their reliance on fixed kernels or basis sets which hinder their ability to efficiently conform to varied free energy landscapes. Further, user-specified parameters are in general non-intuitive yet significantly affect the convergence rate and accuracy of the free energy estimate. Here we propose a novel method, wherein artificial neural networks (ANNs) are used to develop an adaptive biasing potential which learns free energy landscapes. We demonstrate that this method is capable of rapidly adapting to complex free energy landscapes and is not prone to boundary or oscillation problems. The method is made robust to hyperparameters and overfitting through Bayesian regularization which penalizes network weights and auto-regulates the number of effective parameters in the network. ANN sampling represents a promising innovative approach which can resolve complex free energy landscapes in less time than conventional approaches while requiring minimal user input.
Learning free energy landscapes using artificial neural networks
Sidky, Hythem; Whitmer, Jonathan K.
2018-03-01
Existing adaptive bias techniques, which seek to estimate free energies and physical properties from molecular simulations, are limited by their reliance on fixed kernels or basis sets which hinder their ability to efficiently conform to varied free energy landscapes. Further, user-specified parameters are in general non-intuitive yet significantly affect the convergence rate and accuracy of the free energy estimate. Here we propose a novel method, wherein artificial neural networks (ANNs) are used to develop an adaptive biasing potential which learns free energy landscapes. We demonstrate that this method is capable of rapidly adapting to complex free energy landscapes and is not prone to boundary or oscillation problems. The method is made robust to hyperparameters and overfitting through Bayesian regularization which penalizes network weights and auto-regulates the number of effective parameters in the network. ANN sampling represents a promising innovative approach which can resolve complex free energy landscapes in less time than conventional approaches while requiring minimal user input.
Prediction of Asphalt Creep Compliance Using Artificial Neural Networks
Zofka A.
2012-06-01
Full Text Available Creep compliance of the hot-mix asphalt (HMA is a primary input of the pavement thermal cracking prediction model in the recently developed Mechanistic-Empirical Pavement Design Guide (M-EPDG in the US. The HMA creep compliance is typically determined from the Indirect Tension (IDT tests and requires complex experimental setup. On the other hand, creep compliance of asphalt binders is determined from a relatively simple three- point bending test performed in the Bending Beam Rheometer (BBR device. This paper discusses a process of training an Artificial Neural Network (ANN to correlate the creep compliance values obtained from the IDT with those from an innovative approach of testing HMA beams in the BBR. In addition, ANNs are also trained to predict HMA creep compliance from the creep compliance of asphalt binder and vice versa using the BBR setup. All trained ANNs exhibited a very high correlation of 97 to 99 percent between predicted and measured values. The binder creep compliance curves built on the ANN-predicted values also exhibited good correlation with those obtained from laboratory experiments. However, the simulation of trained ANNs on the independent dataset produced a significant deviation from the expected values which was most likely caused by the differences in material composition, such as aggregate type and gradation, presence of recycled additives, and binder type.
Artificial neural networks approach on solar parabolic dish cooker
Lokeswaran, S.; Eswaramoorthy, M.
2011-01-01
This paper presents heat transfer analysis of solar parabolic dish cooker using Artificial Neural Network (ANN). The objective of this study to envisage thermal performance parameters such as receiver plate and pot water temperatures of the solar parabolic dish cooker by using the ANN for experimental data. An experiment is conducted under two cases (1) cooker with plain receiver and (2) cooker with porous receiver. The Back Propagation (BP) algorithm is used to train and test networks and ANN predictions are compared with experimental results. Different network configurations are studied by the aid of searching a relatively better network for prediction. The results showed a good regression analysis with the correlation coefficients in the range of 0.9968-0.9992 and mean relative errors (MREs) in the range of 1.2586-4.0346% for the test data set. Thus ANN model can successfully be used for the prediction of the thermal performance parameters of parabolic dish cooker with reasonable degree of accuracy. (authors)
A new evolutionary system for evolving artificial neural networks.
Yao, X; Liu, Y
1997-01-01
This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.
Artificial neural network model of pork meat cubes osmotic dehydratation
Pezo Lato L.
2013-01-01
Full Text Available Mass transfer of pork meat cubes (M. triceps brachii, shaped as 1x1x1 cm, during osmotic dehydration (OD and under atmospheric pressure was investigated in this paper. The effects of different parameters, such as concentration of sugar beet molasses (60-80%, w/w, temperature (20-50ºC, and immersion time (1-5 h in terms of water loss (WL, solid gain (SG, final dry matter content (DM, and water activity (aw, were investigated using experimental results. Five artificial neural network (ANN models were developed for the prediction of WL, SG, DM, and aw in OD of pork meat cubes. These models were able to predict process outputs with coefficient of determination, r2, of 0.990 for SG, 0.985 for WL, 0.986 for aw, and 0.992 for DM compared to experimental measurements. The wide range of processing variables considered for the formulation of these models, and their easy implementation in a spreadsheet calculus make it very useful and practical for process design and control.
Segmented attenuation correction using artificial neural networks in positron tomography
Yu, S.K.; Nahmias, C.
1996-01-01
The measured attenuation correction technique is widely used in cardiac positron tomographic studies. However, the success of this technique is limited because of insufficient counting statistics achievable in practical transmission scan times, and of the scattered radiation in transmission measurement which leads to an underestimation of the attenuation coefficients. In this work, a segmented attenuation correction technique has been developed that uses artificial neural networks. The technique has been validated in phantoms and verified in human studies. The results indicate that attenuation coefficients measured in the segmented transmission image are accurate and reproducible. Activity concentrations measured in the reconstructed emission image can also be recovered accurately using this new technique. The accuracy of the technique is subject independent and insensitive to scatter contamination in the transmission data. This technique has the potential of reducing the transmission scan time, and satisfactory results are obtained if the transmission data contain about 400 000 true counts per plane. It can predict accurately the value of any attenuation coefficient in the range from air to water in a transmission image with or without scatter correction. (author)
Urban Ozone Concentration Forecasting with Artificial Neural Network in Corsica
Tamas Wani
2014-03-01
Full Text Available Atmospheric pollutants concentration forecasting is an important issue in air quality monitoring. Qualitair Corse, the organization responsible for monitoring air quality in Corsica (France, needs to develop a short-term prediction model to lead its mission of information towards the public. Various deterministic models exist for local forecasting, but need important computing resources, a good knowledge of atmospheric processes and can be inaccurate because of local climatical or geographical particularities, as observed in Corsica, a mountainous island located in the Mediterranean Sea. As a result, we focus in this study on statistical models, and particularly Artificial Neural Networks (ANNs that have shown good results in the prediction of ozone concentration one hour ahead with data measured locally. The purpose of this study is to build a predictor realizing predictions of ozone 24 hours ahead in Corsica in order to be able to anticipate pollution peaks formation and to take appropriate preventive measures. Specific meteorological conditions are known to lead to particular pollution event in Corsica (e.g. Saharan dust events. Therefore, an ANN model will be used with pollutant and meteorological data for operational forecasting. Index of agreement of this model was calculated with a one year test dataset and reached 0.88.
Artificial Neural Network versus Linear Models Forecasting Doha Stock Market
Yousif, Adil; Elfaki, Faiz
2017-12-01
The purpose of this study is to determine the instability of Doha stock market and develop forecasting models. Linear time series models are used and compared with a nonlinear Artificial Neural Network (ANN) namely Multilayer Perceptron (MLP) Technique. It aims to establish the best useful model based on daily and monthly data which are collected from Qatar exchange for the period starting from January 2007 to January 2015. Proposed models are for the general index of Qatar stock exchange and also for the usages in other several sectors. With the help of these models, Doha stock market index and other various sectors were predicted. The study was conducted by using various time series techniques to study and analyze data trend in producing appropriate results. After applying several models, such as: Quadratic trend model, double exponential smoothing model, and ARIMA, it was concluded that ARIMA (2,2) was the most suitable linear model for the daily general index. However, ANN model was found to be more accurate than time series models.
Automatic classification of DMSA scans using an artificial neural network
Wright, J W; Duguid, R; Mckiddie, F; Staff, R T
2014-01-01
DMSA imaging is carried out in nuclear medicine to assess the level of functional renal tissue in patients. This study investigated the use of an artificial neural network to perform diagnostic classification of these scans. Using the radiological report as the gold standard, the network was trained to classify DMSA scans as positive or negative for defects using a representative sample of 257 previously reported images. The trained network was then independently tested using a further 193 scans and achieved a binary classification accuracy of 95.9%. The performance of the network was compared with three qualified expert observers who were asked to grade each scan in the 193 image testing set on a six point defect scale, from ‘definitely normal’ to ‘definitely abnormal’. A receiver operating characteristic analysis comparison between a consensus operator, generated from the scores of the three expert observers, and the network revealed a statistically significant increase (α < 0.05) in performance between the network and operators. A further result from this work was that when suitably optimized, a negative predictive value of 100% for renal defects was achieved by the network, while still managing to identify 93% of the negative cases in the dataset. These results are encouraging for application of such a network as a screening tool or quality assurance assistant in clinical practice. (paper)
An alternative respiratory sounds classification system utilizing artificial neural networks
Rami J Oweis
2015-04-01
Full Text Available Background: Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. Methods: This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs and adaptive neuro-fuzzy inference systems (ANFIS toolboxes. The methods have been applied to 10 different respiratory sounds for classification. Results: The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. Conclusions: The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.
Application of Artificial Neural Networks in Canola Crop Yield Prediction
S. J. Sajadi
2014-02-01
Full Text Available Crop yield prediction has an important role in agricultural policies such as specification of the crop price. Crop yield prediction researches have been based on regression analysis. In this research canola yield was predicted using Artificial Neural Networks (ANN using 11 crop year climate data (1998-2009 in Gonbad-e-Kavoos region of Golestan province. ANN inputs were mean weekly rainfall, mean weekly temperature, mean weekly relative humidity and mean weekly sun shine hours and ANN output was canola yield (kg/ha. Multi-Layer Perceptron networks (MLP with Levenberg-Marquardt backpropagation learning algorithm was used for crop yield prediction and Root Mean Square Error (RMSE and square of the Correlation Coefficient (R2 criterions were used to evaluate the performance of the ANN. The obtained results show that the 13-20-1 network has the lowest RMSE equal to 101.235 and maximum value of R2 equal to 0.997 and is suitable for predicting canola yield with climate factors.
Symptom based diagnostic system using artificial neural networks
Santosh; Vinod, Gopika; Saraf, R.K.
2003-01-01
Nuclear power plant experiences a number of transients during its operations. In case of such an undesired plant condition generally known as an initiating event, the operator has to carry out diagnostic and corrective actions. The operator's response may be too late to mitigate or minimize the negative consequences in such scenarios. The objective of this work is to develop an operator support system based on artificial neural networks that will assist the operator to identify the initiating events at the earliest stages of their developments. A symptom based diagnostic system has been developed to investigate the initiating events. Neutral networks are utilized for carrying out the event identification by continuously monitoring process parameters. Whenever an event is detected, the system will display the necessary operator actions along with the initiating event. The system will also show the graphical trend of process parameters that are relevant to the event. This paper describes the features of the software that is used to monitor the reactor. (author)
Predicting concrete corrosion of sewers using artificial neural network.
Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo
2016-04-01
Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.
Garro, Beatriz A; Vázquez, Roberto A
2015-01-01
Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems.
Ground Motion Prediction Model Using Artificial Neural Network
Dhanya, J.; Raghukanth, S. T. G.
2018-03-01
This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg-Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude ( M w), closest distance to rupture plane ( R rup), shear wave velocity in the region ( V s30) and focal mechanism ( F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.
Design The Cervical Cancer Detector Use The Artificial Neural Network
Af'idah, Dwi Intan; Widianto, Eko Didik; Setyawan, Budi
2013-01-01
Cancer is one of the contagious diseases that become a public health issue, both in the world and in Indonesia. In the world, 12% of all deaths caused by cancer and is the second killer after cardiovascular disease. Early detection using the IVA is a practical and inexpensive (only requiring acetic acid). However, the accuracy of the method is quite low, as it can not detect the stage of the cancer. While other methods have a better sensitivity than the IVA method, is a method of PAP smear. However, this method is relatively expensive, and requires an experienced pathologist-cytologist. According to the case above, Considered important to make the cancer cervics detector that is used to detect the abnormality and cervical cancer stage and consists of a digital microscope, as well as a computer application based on artificial neural network. The use of cervical cancer detector software and hardware are integrated each other. After the specifications met, the steps to design the cervical cancer detection are: Modifying a conventional microscope by adding a lens, image recording, and the lights, Programming the tools, designing computer applications, Programming features abnormality detection and staging of cancer.
An integrated artificial neural networks approach for predicting global radiation
Azadeh, A.; Maghsoudi, A.; Sohrabkhani, S.
2009-01-01
This article presents an integrated artificial neural network (ANN) approach for predicting solar global radiation by climatological variables. The integrated ANN trains and tests data with multi layer perceptron (MLP) approach which has the lowest mean absolute percentage error (MAPE). The proposed approach is particularly useful for locations where no available measurement equipment. Also, it considers all related climatological and meteorological parameters as input variables. To show the applicability and superiority of the integrated ANN approach, monthly data were collected for 6 years (1995-2000) in six nominal cities in Iran. Separate model for each city is considered and the quantity of solar global radiation in each city is calculated. Furthermore an integrated ANN model has been introduced for prediction of solar global radiation. The acquired results of the integrated model have shown high accuracy of about 94%. The results of the integrated model have been compared with traditional angstrom's model to show its considerable accuracy. Therefore, the proposed approach can be used as an efficient tool for prediction of solar radiation in the remote and rural locations with no direct measurement equipment.
Inflow forecasting using Artificial Neural Networks for reservoir operation
C. Chiamsathit
2016-05-01
Full Text Available In this study, multi-layer perceptron (MLP artificial neural networks have been applied to forecast one-month-ahead inflow for the Ubonratana reservoir, Thailand. To assess how well the forecast inflows have performed in the operation of the reservoir, simulations were carried out guided by the systems rule curves. As basis of comparison, four inflow situations were considered: (1 inflow known and assumed to be the historic (Type A; (2 inflow known and assumed to be the forecast (Type F; (3 inflow known and assumed to be the historic mean for month (Type M; and (4 inflow is unknown with release decision only conditioned on the starting reservoir storage (Type N. Reservoir performance was summarised in terms of reliability, resilience, vulnerability and sustainability. It was found that Type F inflow situation produced the best performance while Type N was the worst performing. This clearly demonstrates the importance of good inflow information for effective reservoir operation.
Differentiating Agar wood Oil Quality Using Artificial Neural Network
Nurlaila Ismail; Nor Azah Mohd Ali; Mailina Jamil; Saiful Nizam Tajuddin; Mohd Nasir Taib
2013-01-01
Agar wood oil is well known as expensive oil extracted from the resinous of fragrant heartwood. The oil is getting high demand in the market especially from the Middle East countries, China and Japan because of its unique odor. As part of an on-going research in grading the agar wood oil quality, the application of Artificial Neural Network (ANN) is proposed in this study to analyze agar wood oil quality using its chemical profiles. The work involves of selected agar wood oil from low and high quality, the extraction of chemical compounds using GC-MS and Z-score to identify of the significant compounds as input to the network. The ANN programming algorithm was developed and computed automatically via Matlab software version R2010a. Back-propagation training algorithm and sigmoid transfer function were used to optimize the parameters in the training network. The result obtained showed the capability of ANN in analyzing the agar wood oil quality hence beneficial for the further application such as grading and classification for agar wood oil. (author)
Estimation of local rainfall erosivity using artificial neural network
Paulo Tarso Sanches Oliveira
2011-08-01
Full Text Available The information retrieval of local values of rainfall erosivity is essential for soil loss estimation with the Universal Soil Loss Equation (USLE, and thus is very useful in soil and water conservation planning. In this manner, the objective of this study was to develop an Artificial Neural Network (ANN with the capacity of estimating, with satisfactory accuracy, the rainfall erosivity in any location of the Mato Grosso do Sul state. We used data from rain erosivity, latitude, longitude, altitude of pluviometric and pluviographic stations located in the state to train and test an ANN. After training with various network configurations, we selected the best performance and higher coefficient of determination calculated on the basis of data erosivity of the sample test and the values estimated by ANN. In evaluating the results, the confidence and the agreement indices were used in addition to the coefficient of determination. It was found that it is possible to estimate the rainfall erosivity for any location in the state of Mato Grosso do Sul, in a reliable way, using only data of geographical coordinates and altitude.
Appraisal of artificial neural network for forecasting of economic parameters
Kordanuli, Bojana; Barjaktarović, Lidija; Jeremić, Ljiljana; Alizamir, Meysam
2017-01-01
The main aim of this research is to develop and apply artificial neural network (ANN) with extreme learning machine (ELM) and back propagation (BP) to forecast gross domestic product (GDP) and Hirschman-Herfindahl Index (HHI). GDP could be developed based on combination of different factors. In this investigation GDP forecasting based on the agriculture and industry added value in gross domestic product (GDP) was analysed separately. Other inputs are final consumption expenditure of general government, gross fixed capital formation (investments) and fertility rate. The relation between product market competition and corporate investment is contentious. On one hand, the relation can be positive, but on the other hand, the relation can be negative. Several methods have been proposed to monitor market power for the purpose of developing procedures to mitigate or eliminate the effects. The most widely used methods are based on indices such as the Hirschman-Herfindahl Index (HHI). The reliability of the ANN models were accessed based on simulation results and using several statistical indicators. Based upon simulation results, it was presented that ELM shows better performances than BP learning algorithm in applications of GDP and HHI forecasting.
Modeling of the height control system using artificial neural networks
A. R Tahavvor
2016-09-01
Full Text Available Introduction Automation of agricultural and machinery construction has generally been enhanced by intelligent control systems due to utility and efficiency rising, ease of use, profitability and upgrading according to market demand. A broad variety of industrial merchandise are now supplied with computerized control systems of earth moving processes to be performed by construction and agriculture field vehicle such as grader, backhoe, tractor and scraper machines. A height control machine which is used in measuring base thickness is consisted of two mechanical and electronic parts. The mechanical part is consisted of conveyor belt, main body, electrical engine and invertors while the electronic part is consisted of ultrasonic, wave transmitter and receiver sensor, electronic board, control set, and microcontroller. The main job of these controlling devices consists of the topographic surveying, cutting and filling of elevated and spotted low area, and these actions fundamentally dependent onthe machine's ability in elevation and thickness measurement and control. In this study, machine was first tested and then some experiments were conducted for data collection. Study of system modeling in artificial neural networks (ANN was done for measuring, controlling the height for bases by input variable input vectors such as sampling time, probe speed, conveyer speed, sound wave speed and speed sensor are finally the maximum and minimum probe output vector on various conditions. The result reveals the capability of this procedure for experimental recognition of sensors' behavior and improvement of field machine control systems. Inspection, calibration and response, diagnosis of the elevation control system in combination with machine function can also be evaluated by some extra development of this system. Materials and Methods Designing and manufacture of the planned apparatus classified in three dissimilar, mechanical and electronic module, courses of
Forecasting of passenger traffic in Moscow metro applying artificial neural networks
Ivanov, V.V.; Natsional'nyj Issledovatel'skij Yadernyj Univ. MIFI, Moscow; FKU Rostransmodernizatsiya, Moscow
2016-01-01
Methods for the forecasting of passenger traffic in Moscow metro have been developed using artificial neural networks. To this end, the factors primarily determining passenger traffic in the subway have been analyzed and selected [ru
Chakraborty, B.; Mahale, V.; Navelkar, G.S.; Desai, R.G.P.
In this paper seafloor classifications system based on artificial neural network (ANN) has been designed. The ANN architecture employed here is a combination of Self Organizing Feature Map (SOFM) and Linear Vector Quantization (LVQ1). Currently...
Nondestructive pavement evaluation using ILLI-PAVE based artificial neural network models.
2008-09-01
The overall objective in this research project is to develop advanced pavement structural analysis models for more accurate solutions with fast computation schemes. Soft computing and modeling approaches, specifically the Artificial Neural Network (A...
Application of artificial neural networks in analysis of CHF experimental data in round tubes
Huang Yanping; Chen Bingde; Lang Xuemei; Wang Xiaojun; Shan Jianqiang; Jia Dounan
2004-01-01
Artificial neural networks (ANNs) are applied successfully to analyze the critical heat flux (CHF) experimental data from some round tubes in this paper. A set of software adopting artificial neural network method for predicting CHF in round tube and a set of CHF database are gotten. Comparing with common CHF correlations and CHF look-up table, ANN method has stronger ability of allow-wrong and nice robustness. The CHF predicting software adopting artificial neural network technology can improve the predicting accuracy in a wider parameter range, and is easier to update and to use. The artificial neural network method used in this paper can be applied to some similar physical problems. (authors)
Model-Based Fault Diagnosis in Electric Drive Inverters Using Artificial Neural Network
Masrur, Abul; Chen, ZhiHang; Zhang, Baifang; Jia, Hongbin; Murphey, Yi-Lu
2006-01-01
.... A normal model and various faulted models of the inverter-motor combination were developed, and voltages and current signals were generated from those models to train an artificial neural network for fault diagnosis...
The method in γ spectrum analysis with artificial neural network based on MATLAB
Bai Lixin; Zhang Yiyun; Xu Jiayun; Wu Liping
2003-01-01
Analyzing γ spectrum with artificial neural network have the advantage of using the information of whole spectrum and having high analyzing precision. A convenient realization based on MATLAB was present in this
Breast Cancer Diagnosis using Artificial Neural Networks with Extreme Learning Techniques
Chandra Prasetyo Utomo; Aan Kardiana; Rika Yuliwulandari
2014-01-01
Breast cancer is the second cause of dead among women. Early detection followed by appropriate cancer treatment can reduce the deadly risk. Medical professionals can make mistakes while identifying a disease. The help of technology such as data mining and machine learning can substantially improve the diagnosis accuracy. Artificial Neural Networks (ANN) has been widely used in intelligent breast cancer diagnosis. However, the standard Gradient-Based Back Propagation Artificial Neural Networks...
FORECASTING KUALA LUMPUR COMPOSITE INDEX: EVIDENCE OF THE ARTIFICIAL NEURAL NETWORK AND ARIMA
Sukmana, Raditya; Solihin, Mahmud Iwan
2007-01-01
The aim of this paper is to use, compare, and analyze two forecasting technique: namelyAuto Regressive Integrated Moving Average(ARIMA) and Artificial NeuralNetwork(ANN) using Kuala Lumpur Composite Index(KLCI) in Malaysia. ArtificialNeural Network is used because of its popularity of capturing the volatility patterns innonlinear time series while ARIMA used since it is a standard method in the forecastingtool. Daily data of Kuala Lumpur Composite Index from 4 January 1999 to 26 September2005...
Forecasting Kuala Lumpur Composite Index: Evidence of the Artificial Neural Network and Arima
Mahmud Iwan, Raditya Sukmana,
2007-01-01
The aim of this paper is to use, compare, and analyze two forecasting technique: namely Auto Regressive Integrated Moving Average(ARIMA) and Artificial Neural Network(ANN) using Kuala Lumpur Composite Index(KLCI) in Malaysia. Artificial Neural Network is used because of its popularity of capturing the volatility patterns in nonlinear time series while ARIMA used since it is a standard method in the forecasting tool. Daily data of Kuala Lumpur Composite Index from 4 January 1999 to 26 Septembe...
Rajpal, P.S.; Shishodia, K.S.; Sekhon, G.S.
2006-01-01
The paper explores the application of artificial neural networks to model the behaviour of a complex, repairable system. A composite measure of reliability, availability and maintainability parameters has been proposed for measuring the system performance. The artificial neural network has been trained using past data of a helicopter transportation facility. It is used to simulate behaviour of the facility under various constraints. The insights obtained from results of simulation are useful in formulating strategies for optimal operation of the system
Artificial Neural Networks for Nonlinear Dynamic Response Simulation in Mechanical Systems
Christiansen, Niels Hørbye; Høgsberg, Jan Becker; Winther, Ole
2011-01-01
It is shown how artificial neural networks can be trained to predict dynamic response of a simple nonlinear structure. Data generated using a nonlinear finite element model of a simplified wind turbine is used to train a one layer artificial neural network. When trained properly the network is ab...... to perform accurate response prediction much faster than the corresponding finite element model. Initial result indicate a reduction in cpu time by two orders of magnitude....
Artificial Neural Network for the Prediction of Chromosomal Abnormalities in Azoospermic Males.
Akinsal, Emre Can; Haznedar, Bulent; Baydilli, Numan; Kalinli, Adem; Ozturk, Ahmet; Ekmekçioğlu, Oğuz
2018-02-04
To evaluate whether an artifical neural network helps to diagnose any chromosomal abnormalities in azoospermic males. The data of azoospermic males attending to a tertiary academic referral center were evaluated retrospectively. Height, total testicular volume, follicle stimulating hormone, luteinising hormone, total testosterone and ejaculate volume of the patients were used for the analyses. In artificial neural network, the data of 310 azoospermics were used as the education and 115 as the test set. Logistic regression analyses and discriminant analyses were performed for statistical analyses. The tests were re-analysed with a neural network. Both logistic regression analyses and artificial neural network predicted the presence or absence of chromosomal abnormalities with more than 95% accuracy. The use of artificial neural network model has yielded satisfactory results in terms of distinguishing patients whether they have any chromosomal abnormality or not.
Gerard Marx
2017-07-01
Full Text Available The link of memory to intelligence is incontestable, though the development of electronic artifacts with memory has confounded cognitive and computer scientists’ conception of memory and its relevance to “intelligence”. We propose two categories of “Intelligence”: (1 Logical (objective — mathematics, numbers, pattern recognition, games, programmable in binary format. (2 Emotive (subjective — sensations, feelings, perceptions, goals desires, sociability, sex, food, love. The 1st has been reduced to computational algorithms of which we are well versed, witness global technology and the internet. The 2nd relates to the mysterious process whereby (psychic emotive states are achieved by neural beings sensing, comprehending, remembering and dealing with their surroundings. Many theories and philosophies have been forwarded to rationalize this process, but as neuroscientists, we remain dissatisfied. Our own musings on universal neural memory, suggest a tripartite mechanism involving neurons interacting with their surroundings, notably the neural extracellular matrix (nECM with dopants [trace metals and neurotransmitters (NTs]. In particular, the NTs are the molecular encoders of emotive states. We have developed a chemographic representation of such a molecular code.To quote Longuet-Higgins, “Perhaps it is time for the term ‘artificial intelligence’ to be replaced by something more modest and less provisional”. We suggest “artifact intelligence” (ARTI or “machine intelligence” (MI, neither of which imply emulation of emotive neural processes, but simply refer to the ‘demotive’ (lacking emotive quality capability of electronic artifacts that employ a recall function, to calculate algorithms.
Ads' click-through rates predicting based on gated recurrent unit neural networks
Chen, Qiaohong; Guo, Zixuan; Dong, Wen; Jin, Lingzi
2018-05-01
In order to improve the effect of online advertising and to increase the revenue of advertising, the gated recurrent unit neural networks(GRU) model is used as the ads' click through rates(CTR) predicting. Combined with the characteristics of gated unit structure and the unique of time sequence in data, using BPTT algorithm to train the model. Furthermore, by optimizing the step length algorithm of the gated unit recurrent neural networks, making the model reach optimal point better and faster in less iterative rounds. The experiment results show that the model based on the gated recurrent unit neural networks and its optimization of step length algorithm has the better effect on the ads' CTR predicting, which helps advertisers, media and audience achieve a win-win and mutually beneficial situation in Three-Side Game.
Multistability and instability analysis of recurrent neural networks with time-varying delays.
Zhang, Fanghai; Zeng, Zhigang
2018-01-01
This paper provides new theoretical results on the multistability and instability analysis of recurrent neural networks with time-varying delays. It is shown that such n-neuronal recurrent neural networks have exactly [Formula: see text] equilibria, [Formula: see text] of which are locally exponentially stable and the others are unstable, where k 0 is a nonnegative integer such that k 0 ≤n. By using the combination method of two different divisions, recurrent neural networks can possess more dynamic properties. This method improves and extends the existing results in the literature. Finally, one numerical example is provided to show the superiority and effectiveness of the presented results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Financial Time Series Prediction Using Elman Recurrent Random Neural Networks
Jie Wang
2016-01-01
(ERNN, the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.
DANNP: an efficient artificial neural network pruning tool
Alshahrani, Mona
2017-11-06
Background Artificial neural networks (ANNs) are a robust class of machine learning models and are a frequent choice for solving classification problems. However, determining the structure of the ANNs is not trivial as a large number of weights (connection links) may lead to overfitting the training data. Although several ANN pruning algorithms have been proposed for the simplification of ANNs, these algorithms are not able to efficiently cope with intricate ANN structures required for complex classification problems. Methods We developed DANNP, a web-based tool, that implements parallelized versions of several ANN pruning algorithms. The DANNP tool uses a modified version of the Fast Compressed Neural Network software implemented in C++ to considerably enhance the running time of the ANN pruning algorithms we implemented. In addition to the performance evaluation of the pruned ANNs, we systematically compared the set of features that remained in the pruned ANN with those obtained by different state-of-the-art feature selection (FS) methods. Results Although the ANN pruning algorithms are not entirely parallelizable, DANNP was able to speed up the ANN pruning up to eight times on a 32-core machine, compared to the serial implementations. To assess the impact of the ANN pruning by DANNP tool, we used 16 datasets from different domains. In eight out of the 16 datasets, DANNP significantly reduced the number of weights by 70%–99%, while maintaining a competitive or better model performance compared to the unpruned ANN. Finally, we used a naïve Bayes classifier derived with the features selected as a byproduct of the ANN pruning and demonstrated that its accuracy is comparable to those obtained by the classifiers trained with the features selected by several state-of-the-art FS methods. The FS ranking methodology proposed in this study allows the users to identify the most discriminant features of the problem at hand. To the best of our knowledge, DANNP (publicly
Using domain-specific basic functions for the analysis of supervised artificial neural networks
van der Zwaag, B.J.
2003-01-01
Since the early development of artificial neural networks, researchers have tried to analyze trained neural networks in order to gain insight into their behavior. For certain applications and in certain problem domains this has been successful, for example by the development of so-called rule
Everson, Howard T.; And Others
This paper explores the feasibility of neural computing methods such as artificial neural networks (ANNs) and abductory induction mechanisms (AIM) for use in educational measurement. ANNs and AIMS methods are contrasted with more traditional statistical techniques, such as multiple regression and discriminant function analyses, for making…
Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin
2015-01-01
correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking...... dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural...... mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online...
A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.
Zhao, Haiquan; Zhang, Jiashu
2009-12-01
To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module.
Lin, Yang-Yin; Chang, Jyh-Yeong; Lin, Chin-Teng
2013-02-01
This paper presents a novel recurrent fuzzy neural network, called an interactively recurrent self-evolving fuzzy neural network (IRSFNN), for prediction and identification of dynamic systems. The recurrent structure in an IRSFNN is formed as an external loops and internal feedback by feeding the rule firing strength of each rule to others rules and itself. The consequent part in the IRSFNN is composed of a Takagi-Sugeno-Kang (TSK) or functional-link-based type. The proposed IRSFNN employs a functional link neural network (FLNN) to the consequent part of fuzzy rules for promoting the mapping ability. Unlike a TSK-type fuzzy neural network, the FLNN in the consequent part is a nonlinear function of input variables. An IRSFNNs learning starts with an empty rule base and all of the rules are generated and learned online through a simultaneous structure and parameter learning. An on-line clustering algorithm is effective in generating fuzzy rules. The consequent update parameters are derived by a variable-dimensional Kalman filter algorithm. The premise and recurrent parameters are learned through a gradient descent algorithm. We test the IRSFNN for the prediction and identification of dynamic plants and compare it to other well-known recurrent FNNs. The proposed model obtains enhanced performance results.
Liang Jinling; Cao Jinde
2003-01-01
In this Letter, the problems of boundedness and stability for a general class of non-autonomous recurrent neural networks with variable coefficients and time-varying delays are analyzed via employing Young inequality technique and Lyapunov method. Some simple sufficient conditions are given for boundedness and stability of the solutions for the recurrent neural networks. These results generalize and improve the previous works, and they are easy to check and apply in practice. Two illustrative examples and their numerical simulations are also given to demonstrate the effectiveness of the proposed results
Use of artificial neural networks as estimators and controllers
Concilio, Antonio; Sorrentino, A.
1996-04-01
Active noise control is one among the most promising applications of the so-called Smart Structures, because it ensures, or promises, lower weight, lower cost, more effectiveness and all what is desirable in a vehicle design process, with respect to the current solutions. More and more attention in the research world has been devoting to this argument, pushed by both political, economical and environmental reasons, the one connected to the others. Piezoceramic actuators, integrated into the structure, seem to offer the most fashionable and practical solutions among all the proposed architectures, [1-2]. As sensors, microphones demonstrated to be the most performing, above all because they give the most suitable representation of the field that has to be cancelled, [3-4]. This approach is known as Acousto-Structural Active Control, ASAC, [5]. However, according to Fuller's definition, [6] , an intelligent controller is needed to ensure the development of an "Intelligent Structure" . Its main characteristic should be represented by the capability of learning by examples, of following the structure during its evolution, of being the system "brain" . This peculiarity may be offered by Artificial Neural Networks (ANN's), [7-8]. They present other important features, like the capability, in principle, of treating non-linear as well as linear problems, [9], of identifying dynamic systems, [10], of properly acting as a controller. Then, such a net could integrate in itself the function of "system estimator" or "observer" ,and of interpolator - extrapolator and controller, contemporarily. The authors have been working on such subjects for a long time, proposing for instance ANN's as time-domain structural parameters estimators on a simple 2D element ( a framed plate), [11], as noise and vibration controllers in a FF system, [12-13], as materials damping parameters extractors from experimental data, [14]. All these applications were aimed at noise reduction problems. The
SWANN: The Snow Water Artificial Neural Network Modelling System
Broxton, P. D.; van Leeuwen, W.; Biederman, J. A.
2017-12-01
Snowmelt from mountain forests is important for water supply and ecosystem health. Along Arizona's Mogollon Rim, snowmelt contributes to rivers and streams that provide a significant water supply for hydro-electric power generation, agriculture, and human consumption in central Arizona. In this project, we are building a snow monitoring system for the Salt River Project (SRP), which supplies water and power to millions of customers in the Phoenix metropolitan area. We are using process-based hydrological models and artificial neural networks (ANNs) to generate information about both snow water equivalent (SWE) and snow cover. The snow-cover data is generated with ANNs that are applied to Landsat and MODIS satellite reflectance data. The SWE data is generated using a combination of gridded SWE estimates generated by process-based snow models and ANNs that account for variations in topography, forest cover, and solar radiation. The models are trained and evaluated with snow data from SNOTEL stations as well as from aerial LiDAR and field data that we collected this past winter in northern Arizona, as well as with similar data from other sites in the Southwest US. These snow data are produced in near-real time, and we have built a prototype decision support tool to deliver them to SRP. This tool is designed to provide daily-to annual operational monitoring of spatial and temporal changes in SWE and snow cover conditions over the entire Salt River Watershed (covering 17,000 km2), and features advanced web mapping capabilities and watershed analytics displayed as graphical data.
Applications of artificial neural networks in Nuclear Medicine
Maddalena, D.J.
1993-01-01
Artificial neural networks (ANNs) are computer-based mathematical models developed to have analogous functions to idealized simple biological nervous systems. They consist of layers of processing elements, which are considered to be analogous to the nerve cells (neurons) and these are interconnected to form a network which is in essence a parallel computer even though they are most likely to be run on non-parallel computers such as personal computers or workstations. The parallel processing nature of the ANNs gives them the characteristics of speed, reliability and generalisation. The speed occurs because many bits of information can be input and analysed simultaneously. Reliability occurs because the networks can produce reasonable results even when some input data are missing or inaccurate. Generalisation is the ability of the network to estimate reasonable results when faced with new data outside its normal range of experience. There are two main classes of ANN - supervised and un-supervised. Supervised ANNs are trained to build internal algorithms relating patterns of inputs to outputs. After learning the relationship between the inputs and outputs they are able to classify patterns and make decisions of predictions based upon new patterns of inputs. The most frequently used ANN for biomedical applications is a supervised type called the back propagation ANN which has an excellent ability to predict and classify data and is becoming commonly used throughout the biomedical field. This article will discuss back propagation ANN structure. Its use for image analysis and diagnostic classification in various imaging modalities including Single Photon Emission Computed Tomography and Positron Emission Tomography 17 refs., 2 figs
Application of Artificial Neural Networks to Complex Groundwater Management Problems
Coppola, Emery; Poulton, Mary; Charles, Emmanuel; Dustman, John; Szidarovszky, Ferenc
2003-01-01
As water quantity and quality problems become increasingly severe, accurate prediction and effective management of scarcer water resources will become critical. In this paper, the successful application of artificial neural network (ANN) technology is described for three types of groundwater prediction and management problems. In the first example, an ANN was trained with simulation data from a physically based numerical model to predict head (groundwater elevation) at locations of interest under variable pumping and climate conditions. The ANN achieved a high degree of predictive accuracy, and its derived state-transition equations were embedded into a multiobjective optimization formulation and solved to generate a trade-off curve depicting water supply in relation to contamination risk. In the second and third examples, ANNs were developed with real-world hydrologic and climate data for different hydrogeologic environments. For the second problem, an ANN was developed using data collected for a 5-year, 8-month period to predict heads in a multilayered surficial and limestone aquifer system under variable pumping, state, and climate conditions. Using weekly stress periods, the ANN substantially outperformed a well-calibrated numerical flow model for the 71-day validation period, and provided insights into the effects of climate and pumping on water levels. For the third problem, an ANN was developed with data collected automatically over a 6-week period to predict hourly heads in 11 high-capacity public supply wells tapping a semiconfined bedrock aquifer and subject to large well-interference effects. Using hourly stress periods, the ANN accurately predicted heads for 24-hour periods in all public supply wells. These test cases demonstrate that the ANN technology can solve a variety of complex groundwater management problems and overcome many of the problems and limitations associated with traditional physically based flow models
Bacterial DNA Sequence Compression Models Using Artificial Neural Networks
Armando J. Pinho
2013-08-01
Full Text Available It is widely accepted that the advances in DNA sequencing techniques have contributed to an unprecedented growth of genomic data. This fact has increased the interest in DNA compression, not only from the information theory and biology points of view, but also from a practical perspective, since such sequences require storage resources. Several compression methods exist, and particularly, those using finite-context models (FCMs have received increasing attention, as they have been proven to effectively compress DNA sequences with low bits-per-base, as well as low encoding/decoding time-per-base. However, the amount of run-time memory required to store high-order finite-context models may become impractical, since a context-order as low as 16 requires a maximum of 17.2 x 109 memory entries. This paper presents a method to reduce such a memory requirement by using a novel application of artificial neural networks (ANN to build such probabilistic models in a compact way and shows how to use them to estimate the probabilities. Such a system was implemented, and its performance compared against state-of-the art compressors, such as XM-DNA (expert model and FCM-Mx (mixture of finite-context models , as well as with general-purpose compressors. Using a combination of order-10 FCM and ANN, similar encoding results to those of FCM, up to order-16, are obtained using only 17 megabytes of memory, whereas the latter, even employing hash-tables, uses several hundreds of megabytes.
Application of Artificial Neural Networks in the Heart Electrical Axis Position Conclusion Modeling
Bakanovskaya, L. N.
2016-08-01
The article touches upon building of a heart electrical axis position conclusion model using an artificial neural network. The input signals of the neural network are the values of deflections Q, R and S; and the output signal is the value of the heart electrical axis position. Training of the network is carried out by the error propagation method. The test results allow concluding that the created neural network makes a conclusion with a high degree of accuracy.
Training the Recurrent neural network by the Fuzzy Min-Max algorithm for fault prediction
Zemouri, Ryad; Racoceanu, Daniel; Zerhouni, Noureddine; Minca, Eugenia; Filip, Florin
2009-01-01
In this paper, we present a training technique of a Recurrent Radial Basis Function neural network for fault prediction. We use the Fuzzy Min-Max technique to initialize the k-center of the RRBF neural network. The k-means algorithm is then applied to calculate the centers that minimize the mean square error of the prediction task. The performances of the k-means algorithm are then boosted by the Fuzzy Min-Max technique.
Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
Francisco Javier Ordóñez; Daniel Roggen
2016-01-01
Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we pro...
Bi-directional LSTM Recurrent Neural Network for Chinese Word Segmentation
Yao, Yushi; Huang, Zheng
2016-01-01
Recurrent neural network(RNN) has been broadly applied to natural language processing(NLP) problems. This kind of neural network is designed for modeling sequential data and has been testified to be quite efficient in sequential tagging tasks. In this paper, we propose to use bi-directional RNN with long short-term memory(LSTM) units for Chinese word segmentation, which is a crucial preprocess task for modeling Chinese sentences and articles. Classical methods focus on designing and combining...
Cui Baotong; Lou Xuyang
2009-01-01
In this paper, a new method to synchronize two identical chaotic recurrent neural networks is proposed. Using the drive-response concept, a nonlinear feedback control law is derived to achieve the state synchronization of the two identical chaotic neural networks. Furthermore, based on the Lyapunov method, a delay independent sufficient synchronization condition in terms of linear matrix inequality (LMI) is obtained. A numerical example with graphical illustrations is given to illuminate the presented synchronization scheme
Lou, X.; Cui, B.
2008-01-01
In this paper we consider the problem of exponential stability for recurrent neural networks with multiple time varying delays and reaction-diffusion terms. The activation functions are supposed to be bounded and globally Lipschitz continuous. By means of Lyapunov functional, sufficient conditions are derived, which guarantee global exponential stability of the delayed neural network. Finally, a numerical example is given to show the correctness of our analysis. (author)
ReSeg: A Recurrent Neural Network-Based Model for Semantic Segmentation
Visin, Francesco; Ciccone, Marco; Romero, Adriana; Kastner, Kyle; Cho, Kyunghyun; Bengio, Yoshua; Matteucci, Matteo; Courville, Aaron
2015-01-01
We propose a structured prediction architecture, which exploits the local generic features extracted by Convolutional Neural Networks and the capacity of Recurrent Neural Networks (RNN) to retrieve distant dependencies. The proposed architecture, called ReSeg, is based on the recently introduced ReNet model for image classification. We modify and extend it to perform the more challenging task of semantic segmentation. Each ReNet layer is composed of four RNN that sweep the image horizontally ...
Artificial Neural Network Modeling of an Inverse Fluidized Bed ...
A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological decomposition of pollutants in the reactor. The neural network has been trained with experimental data ...
Reconstruction of magnetic configurations in W7-X using artificial neural networks
Böckenhoff, Daniel; Blatzheim, Marko; Hölbe, Hauke; Niemann, Holger; Pisano, Fabio; Labahn, Roger; Pedersen, Thomas Sunn; The W7-X Team
2018-05-01
It is demonstrated that artificial neural networks can be used to accurately and efficiently predict details of the magnetic topology at the plasma edge of the Wendelstein 7-X stellarator, based on simulated as well as measured heat load patterns onto plasma-facing components observed with infrared cameras. The connection between heat load patterns and the magnetic topology is a challenging regression problem, but one that suits artificial neural networks well. The use of a neural network makes it feasible to analyze and control the plasma exhaust in real-time, an important goal for Wendelstein 7-X, and for magnetic confinement fusion research in general.
Application of artificial neural network for heat transfer in porous cone
Athani, Abdulgaphur; Ahamad, N. Ameer; Badruddin, Irfan Anjum
2018-05-01
Heat transfer in porous medium is one of the classical areas of research that has been active for many decades. The heat transfer in porous medium is generally studied by using numerical methods such as finite element method; finite difference method etc. that solves coupled partial differential equations by converting them into simpler forms. The current work utilizes an alternate method known as artificial neural network that mimics the learning characteristics of neurons. The heat transfer in porous medium fixed in a cone is predicted using backpropagation neural network. The artificial neural network is able to predict this behavior quite accurately.
Stimulus-dependent suppression of chaos in recurrent neural networks
Rajan, Kanaka; Abbott, L. F.; Sompolinsky, Haim
2010-01-01
Neuronal activity arises from an interaction between ongoing firing generated spontaneously by neural circuits and responses driven by external stimuli. Using mean-field analysis, we ask how a neural network that intrinsically generates chaotic patterns of activity can remain sensitive to extrinsic input. We find that inputs not only drive network responses, but they also actively suppress ongoing activity, ultimately leading to a phase transition in which chaos is completely eliminated. The critical input intensity at the phase transition is a nonmonotonic function of stimulus frequency, revealing a 'resonant' frequency at which the input is most effective at suppressing chaos even though the power spectrum of the spontaneous activity peaks at zero and falls exponentially. A prediction of our analysis is that the variance of neural responses should be most strongly suppressed at frequencies matching the range over which many sensory systems operate.
Artificial neural networks for spatial distribution of fuel assemblies in reload of PWR reactors
Oliveira, Edyene; Castro, Victor F.; Velásquez, Carlos E.; Pereira, Claubia
2017-01-01
An artificial neural network methodology is being developed in order to find an optimum spatial distribution of the fuel assemblies in a nuclear reactor core during reload. The main bounding parameter of the modelling was the neutron multiplication factor, k ef f . The characteristics of the network are defined by the nuclear parameters: cycle, burnup, enrichment, fuel type, and average power peak of each element. These parameters were obtained by the ORNL nuclear code package SCALE6.0. As for the artificial neural network, the ANN Feedforward Multi L ayer P erceptron with various layers and neurons were constructed. Three algorithms were used and tested: LM (Levenberg-Marquardt), SCG (Scaled Conjugate Gradient) and BayR (Bayesian Regularization). Artificial neural network have implemented using MATLAB 2015a version. As preliminary results, the spatial distribution of the fuel assemblies in the core using a neural network was slightly better than the standard core. (author)
Tuning Recurrent Neural Networks for Recognizing Handwritten Arabic Words
Qaralleh, Esam; Abandah, Gheith; Jamour, Fuad Tarek
2013-01-01
and sizes of the hidden layers. Large sizes are slow and small sizes are generally not accurate. Tuning the neural network size is a hard task because the design space is often large and training is often a long process. We use design of experiments
Homeostatic scaling of excitability in recurrent neural networks.
Remme, M.W.H.; Wadman, W.J.
2012-01-01
Neurons adjust their intrinsic excitability when experiencing a persistent change in synaptic drive. This process can prevent neural activity from moving into either a quiescent state or a saturated state in the face of ongoing plasticity, and is thought to promote stability of the network in which
Individual Identification Using Functional Brain Fingerprint Detected by Recurrent Neural Network.
Chen, Shiyang; Hu, Xiaoping P
2018-03-20
Individual identification based on brain function has gained traction in literature. Investigating individual differences in brain function can provide additional insights into the brain. In this work, we introduce a recurrent neural network based model for identifying individuals based on only a short segment of resting state functional MRI data. In addition, we demonstrate how the global signal and differences in atlases affect the individual identifiability. Furthermore, we investigate neural network features that exhibit the uniqueness of each individual. The results indicate that our model is able to identify individuals based on neural features and provides additional information regarding brain dynamics.
Vintenat, Lionel
1999-01-01
A good quality often attributed to artificial neural networks is fault tolerance. In general presentation works, this property is almost always introduced as 'natural', i.e. being obtained without any specific precaution during learning. Besides, space environment is known to be aggressive towards on-board hardware, inducing various abnormal operations. Particularly, digital components suffer from upset phenomenon, i.e. misplaced switches of memory flip-flops. These two observations lead to the question: would neural chips constitute an interesting and robust solution to implement some board functions of spacecrafts? First, the various aspects of the problem are detailed: artificial neural networks and their fault tolerance, neural chips, space environment and resulting failures. Further to this presentation, a particular technique to carry out neural chips is selected because of its simplicity, and especially because it requires few memory flip-flops: random pulse streams. An original method for star recognition inside a field-of-view is then proposed for the board function 'attitude computation'. This method relies on a winner-takes-all competition network, and on a Kohonen self-organized map. An hardware implementation of those two neural models is then proposed using random pulse streams. Thanks to this realization, on one hand difficulties related to that particular implementation technique can be highlighted, and on the other hand a first evaluation of its practical fault tolerance can be carried out. (author) [fr
Wang, Ziyin; Liu, Mandan; Cheng, Yicheng; Wang, Rubin
2017-06-01
In this paper, a dynamical recurrent artificial neural network (ANN) is proposed and studied. Inspired from a recent research in neuroscience, we introduced nonsynaptic coupling to form a dynamical component of the network. We mathematically proved that, with adequate neurons provided, this dynamical ANN model is capable of approximating any continuous dynamic system with an arbitrarily small error in a limited time interval. Its extreme concise Jacobian matrix makes the local stability easy to control. We designed this ANN for fitting and forecasting dynamic data and obtained satisfied results in simulation. The fitting performance is also compared with those of both the classic dynamic ANN and the state-of-the-art models. Sufficient trials and the statistical results indicated that our model is superior to those have been compared. Moreover, we proposed a robust approximation problem, which asking the ANN to approximate a cluster of input-output data pairs in large ranges and to forecast the output of the system under previously unseen input. Our model and learning scheme proposed in this paper have successfully solved this problem, and through this, the approximation becomes much more robust and adaptive to noise, perturbation, and low-order harmonic wave. This approach is actually an efficient method for compressing massive external data of a dynamic system into the weight of the ANN.
Qin, Sitian; Yang, Xiudong; Xue, Xiaoping; Song, Jiahui
2017-10-01
Pseudoconvex optimization problem, as an important nonconvex optimization problem, plays an important role in scientific and engineering applications. In this paper, a recurrent one-layer neural network is proposed for solving the pseudoconvex optimization problem with equality and inequality constraints. It is proved that from any initial state, the state of the proposed neural network reaches the feasible region in finite time and stays there thereafter. It is also proved that the state of the proposed neural network is convergent to an optimal solution of the related problem. Compared with the related existing recurrent neural networks for the pseudoconvex optimization problems, the proposed neural network in this paper does not need the penalty parameters and has a better convergence. Meanwhile, the proposed neural network is used to solve three nonsmooth optimization problems, and we make some detailed comparisons with the known related conclusions. In the end, some numerical examples are provided to illustrate the effectiveness of the performance of the proposed neural network.
Folk music style modelling by recurrent neural networks with long short term memory units
Sturm, Bob; Santos, João Felipe; Korshunova, Iryna
2015-01-01
We demonstrate two generative models created by training a recurrent neural network (RNN) with three hidden layers of long short-term memory (LSTM) units. This extends past work in numerous directions, including training deeper models with nearly 24,000 high-level transcriptions of folk tunes. We discuss our on-going work.
Recurrent Neural Network For Forecasting Time Series With Long Memory Pattern
Walid; Alamsyah
2017-04-01
Recurrent Neural Network as one of the hybrid models are often used to predict and estimate the issues related to electricity, can be used to describe the cause of the swelling of electrical load which experienced by PLN. In this research will be developed RNN forecasting procedures at the time series with long memory patterns. Considering the application is the national electrical load which of course has a different trend with the condition of the electrical load in any country. This research produces the algorithm of time series forecasting which has long memory pattern using E-RNN after this referred to the algorithm of integrated fractional recurrent neural networks (FIRNN).The prediction results of long memory time series using models Fractional Integrated Recurrent Neural Network (FIRNN) showed that the model with the selection of data difference in the range of [-1,1] and the model of Fractional Integrated Recurrent Neural Network (FIRNN) (24,6,1) provides the smallest MSE value, which is 0.00149684.
Encoding of phonology in a recurrent neural model of grounded speech
Alishahi, Afra; Barking, Marie; Chrupala, Grzegorz; Levy, Roger; Specia, Lucia
2017-01-01
We study the representation and encoding of phonemes in a recurrent neural network model of grounded speech. We use a model which processes images and their spoken descriptions, and projects the visual and auditory representations into the same semantic space. We perform a number of analyses on how
Direction-of-change forecasting using a volatility-based recurrent neural network
Bekiros, S.D.; Georgoutsos, D.A.
2008-01-01
This paper investigates the profitability of a trading strategy, based on recurrent neural networks, that attempts to predict the direction-of-change of the market in the case of the NASDAQ composite index. The sample extends over the period 8 February 1971 to 7 April 1998, while the sub-period 8
Global stability of discrete-time recurrent neural networks with impulse effects
Zhou, L; Li, C; Wan, J
2008-01-01
This paper formulates and studies a class of discrete-time recurrent neural networks with impulse effects. A stability criterion, which characterizes the effects of impulse and stability property of the corresponding impulse-free networks on the stability of the impulsive networks in an aggregate form, is established. Two simplified and numerically tractable criteria are also provided
A one-layer recurrent neural network for constrained nonsmooth optimization.
Liu, Qingshan; Wang, Jun
2011-10-01
This paper presents a novel one-layer recurrent neural network modeled by means of a differential inclusion for solving nonsmooth optimization problems, in which the number of neurons in the proposed neural network is the same as the number of decision variables of optimization problems. Compared with existing neural networks for nonsmooth optimization problems, the global convexity condition on the objective functions and constraints is relaxed, which allows the objective functions and constraints to be nonconvex. It is proven that the state variables of the proposed neural network are convergent to optimal solutions if a single design parameter in the model is larger than a derived lower bound. Numerical examples with simulation results substantiate the effectiveness and illustrate the characteristics of the proposed neural network.
A one-layer recurrent neural network for constrained nonconvex optimization.
Li, Guocheng; Yan, Zheng; Wang, Jun
2015-01-01
In this paper, a one-layer recurrent neural network is proposed for solving nonconvex optimization problems subject to general inequality constraints, designed based on an exact penalty function method. It is proved herein that any neuron state of the proposed neural network is convergent to the feasible region in finite time and stays there thereafter, provided that the penalty parameter is sufficiently large. The lower bounds of the penalty parameter and convergence time are also estimated. In addition, any neural state of the proposed neural network is convergent to its equilibrium point set which satisfies the Karush-Kuhn-Tucker conditions of the optimization problem. Moreover, the equilibrium point set is equivalent to the optimal solution to the nonconvex optimization problem if the objective function and constraints satisfy given conditions. Four numerical examples are provided to illustrate the performances of the proposed neural network.
A one-layer recurrent neural network for constrained nonsmooth invex optimization.
Li, Guocheng; Yan, Zheng; Wang, Jun
2014-02-01
Invexity is an important notion in nonconvex optimization. In this paper, a one-layer recurrent neural network is proposed for solving constrained nonsmooth invex optimization problems, designed based on an exact penalty function method. It is proved herein that any state of the proposed neural network is globally convergent to the optimal solution set of constrained invex optimization problems, with a sufficiently large penalty parameter. In addition, any neural state is globally convergent to the unique optimal solution, provided that the objective function and constraint functions are pseudoconvex. Moreover, any neural state is globally convergent to the feasible region in finite time and stays there thereafter. The lower bounds of the penalty parameter and convergence time are also estimated. Two numerical examples are provided to illustrate the performances of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.
Estimating wheat and maize daily evapotranspiration using artificial neural network
Abrishami, Nazanin; Sepaskhah, Ali Reza; Shahrokhnia, Mohammad Hossein
2018-02-01
In this research, artificial neural network (ANN) is used for estimating wheat and maize daily standard evapotranspiration. Ten ANN models with different structures were designed for each crop. Daily climatic data [maximum temperature (T max), minimum temperature (T min), average temperature (T ave), maximum relative humidity (RHmax), minimum relative humidity (RHmin), average relative humidity (RHave), wind speed (U 2), sunshine hours (n), net radiation (Rn)], leaf area index (LAI), and plant height (h) were used as inputs. For five structures of ten, the evapotranspiration (ETC) values calculated by ETC = ET0 × K C equation (ET0 from Penman-Monteith equation and K C from FAO-56, ANNC) were used as outputs, and for the other five structures, the ETC values measured by weighing lysimeter (ANNM) were used as outputs. In all structures, a feed forward multiple-layer network with one or two hidden layers and sigmoid transfer function and BR or LM training algorithm was used. Favorite network was selected based on various statistical criteria. The results showed the suitable capability and acceptable accuracy of ANNs, particularly those having two hidden layers in their structure in estimating the daily evapotranspiration. Best model for estimation of maize daily evapotranspiration is «M»ANN1 C (8-4-2-1), with T max, T min, RHmax, RHmin, U 2, n, LAI, and h as input data and LM training rule and its statistical parameters (NRMSE, d, and R2) are 0.178, 0.980, and 0.982, respectively. Best model for estimation of wheat daily evapotranspiration is «W»ANN5 C (5-2-3-1), with T max, T min, Rn, LAI, and h as input data and LM training rule, its statistical parameters (NRMSE, d, and R 2) are 0.108, 0.987, and 0.981 respectively. In addition, if the calculated ETC used as the output of the network for both wheat and maize, higher accurate estimation was obtained. Therefore, ANN is suitable method for estimating evapotranspiration of wheat and maize.
The application of artificial neural networks in astronomy
Li, Li-Li; Zhang, Yan-Xia; Zhao, Yong-Heng; Yang, Da-Wei
2006-12-01
Artificial Neural Networks (ANNs) are computer algorithms inspired from simple models of human central nervous system activity. They can be roughly divided into two main kinds: supervised and unsupervised. The supervised approach lays the stress on "teaching" a machine to do the work of a mention human expert, usually by showing examples for which the true answer is supplied by the expert. The unsupervised one is aimed at learning new things from the data, and most useful when the data cannot easily be plotted in a two or three dimensional space. ANNs have been used widely and successfully in various fields, for instance, pattern recognition, financial analysis, biology, engineering and so on, because they have many merits such as self-learning, self-adapting, good robustness and dynamically rapid response as well as strong capability of dealing with non-linear problems. In the last few years there has been an increasing interest toward the astronomical applications of ANNs. In this paper, the authors firstly introduce the fundamental principle of ANNs together with the architecture of the network and outline various kinds of learning algorithms and network toplogies. The specific aspects of the applications of ANNs in astronomical problems are also listed, which contain the strong capabilities of approximating to arbitrary accuracy, any nonlinear functional mapping, parallel and distributed storage, tolerance of faulty and generalization of results. They summarize the advantages and disadvantages of main ANN models available to the astronomical community. Furthermore, the application cases of ANNs in astronomy are mainly described in detail. Here, the focus is on some of the most interesting fields of its application, for example: object detection, star/galaxy classification, spectral classification, galaxy morphology classification, the estimation of photometric redshifts of galaxies and time series analysis. In addition, other kinds of applications have been
Hysteretic recurrent neural networks: a tool for modeling hysteretic materials and systems
Veeramani, Arun S; Crews, John H; Buckner, Gregory D
2009-01-01
This paper introduces a novel recurrent neural network, the hysteretic recurrent neural network (HRNN), that is ideally suited to modeling hysteretic materials and systems. This network incorporates a hysteretic neuron consisting of conjoined sigmoid activation functions. Although similar hysteretic neurons have been explored previously, the HRNN is unique in its utilization of simple recurrence to 'self-select' relevant activation functions. Furthermore, training is facilitated by placing the network weights on the output side, allowing standard backpropagation of error training algorithms to be used. We present two- and three-phase versions of the HRNN for modeling hysteretic materials with distinct phases. These models are experimentally validated using data collected from shape memory alloys and ferromagnetic materials. The results demonstrate the HRNN's ability to accurately generalize hysteretic behavior with a relatively small number of neurons. Additional benefits lie in the network's ability to identify statistical information concerning the macroscopic material by analyzing the weights of the individual neurons
Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks
Pyle, Ryan; Rosenbaum, Robert
2017-01-01
Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.
Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks.
Pyle, Ryan; Rosenbaum, Robert
2017-01-06
Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.
Xing Yin
2011-01-01
uncertain periodic switched recurrent neural networks with time-varying delays. When uncertain discrete-time recurrent neural network is a periodic system, it is expressed as switched neural network for the finite switching state. Based on the switched quadratic Lyapunov functional approach (SQLF and free-weighting matrix approach (FWM, some linear matrix inequality criteria are found to guarantee the delay-dependent asymptotical stability of these systems. Two examples illustrate the exactness of the proposed criteria.
Using a multi-state recurrent neural network to optimize loading patterns in BWRs
Ortiz, Juan Jose; Requena, Ignacio
2004-01-01
A Multi-State Recurrent Neural Network is used to optimize Loading Patterns (LP) in BWRs. We have proposed an energy function that depends on fuel assembly positions and their nuclear cross sections to carry out optimisation. Multi-State Recurrent Neural Networks creates LPs that satisfy the Radial Power Peaking Factor and maximize the effective multiplication factor at the Beginning of the Cycle, and also satisfy the Minimum Critical Power Ratio and Maximum Linear Heat Generation Rate at the End of the Cycle, thereby maximizing the effective multiplication factor. In order to evaluate the LPs, we have used a trained back-propagation neural network to predict the parameter values, instead of using a reactor core simulator, which saved considerable computation time in the search process. We applied this method to find optimal LPs for five cycles of Laguna Verde Nuclear Power Plant (LVNPP) in Mexico
Natural Language Video Description using Deep Recurrent Neural Networks
2015-11-23
ht = f (Wxhxt + Whhht−1) (2.1) zt = g(Wzhht) (2.2) where f and g are element-wise non-linear functions such as a sigmoid or hyperbolic tan - gent, xt...space. arXiv preprint arXiv:1301.3781, 2013. 22 [68] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. In...2010. 2 36 Bibliography [107] Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas, Christopher Pal, Hugo Larochelle, and Aaron Courville. Describing
Güntürkün, Rüştü
2010-08-01
In this study, Elman recurrent neural networks have been defined by using conjugate gradient algorithm in order to determine the depth of anesthesia in the continuation stage of the anesthesia and to estimate the amount of medicine to be applied at that moment. The feed forward neural networks are also used for comparison. The conjugate gradient algorithm is compared with back propagation (BP) for training of the neural Networks. The applied artificial neural network is composed of three layers, namely the input layer, the hidden layer and the output layer. The nonlinear activation function sigmoid (sigmoid function) has been used in the hidden layer and the output layer. EEG data has been recorded with Nihon Kohden 9200 brand 22-channel EEG device. The international 8-channel bipolar 10-20 montage system (8 TB-b system) has been used in assembling the recording electrodes. EEG data have been recorded by being sampled once in every 2 milliseconds. The artificial neural network has been designed so as to have 60 neurons in the input layer, 30 neurons in the hidden layer and 1 neuron in the output layer. The values of the power spectral density (PSD) of 10-second EEG segments which correspond to the 1-50 Hz frequency range; the ratio of the total power of PSD values of the EEG segment at that moment in the same range to the total of PSD values of EEG segment taken prior to the anesthesia.
Mattia Rigotti
2010-10-01
Full Text Available Neural activity of behaving animals, especially in the prefrontal cortex, is highly heterogeneous, with selective responses to diverse aspects of the executed task. We propose a general model of recurrent neural networks that perform complex rule-based tasks, and we show that the diversity of neuronal responses plays a fundamental role when the behavioral responses are context dependent. Specifically, we found that when the inner mental states encoding the task rules are represented by stable patterns of neural activity (attractors of the neural dynamics, the neurons must be selective for combinations of sensory stimuli and inner mental states. Such mixed selectivity is easily obtained by neurons that connect with random synaptic strengths both to the recurrent network and to neurons encoding sensory inputs. The number of randomly connected neurons needed to solve a task is on average only three times as large as the number of neurons needed in a network designed ad hoc. Moreover, the number of needed neurons grows only linearly with the number of task-relevant events and mental states, provided that each neuron responds to a large proportion of events (dense/distributed coding. A biologically realistic implementation of the model captures several aspects of the activity recorded from monkeys performing context dependent tasks. Our findings explain the importance of the diversity of neural responses and provide us with simple and general principles for designing attractor neural networks that perform complex computation.
Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.
Ly, Cheng
2015-12-01
Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.
Exponentially convergent state estimation for delayed switched recurrent neural networks.
Ahn, Choon Ki
2011-11-01
This paper deals with the delay-dependent exponentially convergent state estimation problem for delayed switched neural networks. A set of delay-dependent criteria is derived under which the resulting estimation error system is exponentially stable. It is shown that the gain matrix of the proposed state estimator is characterised in terms of the solution to a set of linear matrix inequalities (LMIs), which can be checked readily by using some standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed state estimator.
Artificial Neural Networks in Evaluation and Optimization of Modified Release Solid Dosage Forms
Zorica Djurić
2012-10-01
Full Text Available Implementation of the Quality by Design (QbD approach in pharmaceutical development has compelled researchers in the pharmaceutical industry to employ Design of Experiments (DoE as a statistical tool, in product development. Among all DoE techniques, response surface methodology (RSM is the one most frequently used. Progress of computer science has had an impact on pharmaceutical development as well. Simultaneous with the implementation of statistical methods, machine learning tools took an important place in drug formulation. Twenty years ago, the first papers describing application of artificial neural networks in optimization of modified release products appeared. Since then, a lot of work has been done towards implementation of new techniques, especially Artificial Neural Networks (ANN in modeling of production, drug release and drug stability of modified release solid dosage forms. The aim of this paper is to review artificial neural networks in evaluation and optimization of modified release solid dosage forms.
Standard representation and unified stability analysis for dynamic artificial neural network models.
Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D
2018-02-01
An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.
Putra, J. C. P.; Safrilah
2017-06-01
Artificial neural network approaches are useful to solve many complicated problems. It solves a number of problems in various areas such as engineering, medicine, business, manufacturing, etc. This paper presents an application of artificial neural network to predict a runway capacity at Juanda International Airport. An artificial neural network model of backpropagation and multi-layer perceptron is adopted to this research to learning process of runway capacity at Juanda International Airport. The results indicate that the training data is successfully recognizing the certain pattern of runway use at Juanda International Airport. Whereas, testing data indicate vice versa. Finally, it can be concluded that the approach of uniformity data and network architecture is the critical part to determine the accuracy of prediction results.
Moon, Sang Ki; Chang, Soon Heung
1994-01-01
A new method to predict the critical heat flux (CHF) is proposed, based on the fuzzy clustering and artificial neural network. The fuzzy clustering classifies the experimental CHF data into a few data clusters (data groups) according to the data characteristics. After classification of the experimental data, the characteristics of the resulting clusters are discussed with emphasis on the distribution of the experimental conditions and physical mechanism. The CHF data in each group are trained in an artificial neural network to predict the CHF. The artificial neural network adjusts the weight so as to minimize the prediction error within the corresponding cluster. Application of the proposed method to the KAIST CHF data bank shows good prediction capability of the CHF, better than other existing methods. ((orig.))
The application of artificial neural networks to TLD dose algorithm
Moscovitch, M.
1997-01-01
We review the application of feed forward neural networks to multi element thermoluminescence dosimetry (TLD) dose algorithm development. A Neural Network is an information processing method inspired by the biological nervous system. A dose algorithm based on a neural network is a fundamentally different approach from conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with a given response of a multi-element dosimeter (input) many times.The algorithm, being trained that way, eventually is able to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personnel dosimetry, the output consists of the desired dose components: deep dose, shallow dose, and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. For this application, a neural network architecture was developed based on the concept of functional links network (FLN). The FLN concept allowed an increase in the dimensionality of the input space and construction of a neural network without any hidden layers. This simplifies the problem and results in a relatively simple and reliable dose calculation algorithm. Overall, the neural network dose algorithm approach has been shown to significantly improve the precision and accuracy of dose calculations. (authors)
A two-layer recurrent neural network for nonsmooth convex optimization problems.
Qin, Sitian; Xue, Xiaoping
2015-06-01
In this paper, a two-layer recurrent neural network is proposed to solve the nonsmooth convex optimization problem subject to convex inequality and linear equality constraints. Compared with existing neural network models, the proposed neural network has a low model complexity and avoids penalty parameters. It is proved that from any initial point, the state of the proposed neural network reaches the equality feasible region in finite time and stays there thereafter. Moreover, the state is unique if the initial point lies in the equality feasible region. The equilibrium point set of the proposed neural network is proved to be equivalent to the Karush-Kuhn-Tucker optimality set of the original optimization problem. It is further proved that the equilibrium point of the proposed neural network is stable in the sense of Lyapunov. Moreover, from any initial point, the state is proved to be convergent to an equilibrium point of the proposed neural network. Finally, as applications, the proposed neural network is used to solve nonlinear convex programming with linear constraints and L1 -norm minimization problems.
An artificial neural network approach to reconstruct the source term of a nuclear accident
Giles, J.; Palma, C. R.; Weller, P.
1997-01-01
This work makes use of one of the main features of artificial neural networks, which is their ability to 'learn' from sets of known input and output data. Indeed, a trained artificial neural network can be used to make predictions on the input data when the output is known, and this feedback process enables one to reconstruct the source term from field observations. With this aim, an artificial neural networks has been trained, using the projections of a segmented plume atmospheric dispersion model at fixed points, simulating a set of gamma detectors located outside the perimeter of a nuclear facility. The resulting set of artificial neural networks was used to determine the release fraction and rate for each of the noble gases, iodines and particulate fission products that could originate from a nuclear accident. Model projections were made using a large data set consisting of effective release height, release fraction of noble gases, iodines and particulate fission products, atmospheric stability, wind speed and wind direction. The model computed nuclide-specific gamma dose rates. The locations of the detectors were chosen taking into account both building shine and wake effects, and varied in distance between 800 and 1200 m from the reactor.The inputs to the artificial neural networks consisted of the measurements from the detector array, atmospheric stability, wind speed and wind direction; the outputs comprised a set of release fractions and heights. Once trained, the artificial neural networks was used to reconstruct the source term from the detector responses for data sets not used in training. The preliminary results are encouraging and show that the noble gases and particulate fission product release fractions are well determined
Marcia M. Lastre Valdes
2014-06-01
Full Text Available In this paper a review and analysis of the major theories and models that address the prediction of corporate bankruptcy and insolvency is made. Neural networks are a tool of most recent appearance, although in recent years have received considerable attention from the academic and professional world, and have started to be implemented in different models testing organizations insolvency based on neural computation. The purpose of this paper is to yield evidence of the usefulness of Artificial Neural Networks in the problem of bankruptcy prediction insolence or so compare its predictive ability with the methods commonly used in that context. The findings suggest that high predictive capabilities can be achieved using artificial neural networks, with qualitative and quantitative variables.
Artificial neural networks for processing fluorescence spectroscopy data in skin cancer diagnostics
Lenhardt, L; Zeković, I; Dramićanin, T; Dramićanin, M D
2013-01-01
Over the years various optical spectroscopic techniques have been widely used as diagnostic tools in the discrimination of many types of malignant diseases. Recently, synchronous fluorescent spectroscopy (SFS) coupled with chemometrics has been applied in cancer diagnostics. The SFS method involves simultaneous scanning of both emission and excitation wavelengths while keeping the interval of wavelengths (constant-wavelength mode) or frequencies (constant-energy mode) between them constant. This method is fast, relatively inexpensive, sensitive and non-invasive. Total synchronous fluorescence spectra of normal skin, nevus and melanoma samples were used as input for training of artificial neural networks. Two different types of artificial neural networks were trained, the self-organizing map and the feed-forward neural network. Histopathology results of investigated skin samples were used as the gold standard for network output. Based on the obtained classification success rate of neural networks, we concluded that both networks provided high sensitivity with classification errors between 2 and 4%. (paper)
Land Cover Classification via Multitemporal Spatial Data by Deep Recurrent Neural Networks
Ienco, Dino; Gaetano, Raffaele; Dupaquier, Claire; Maurel, Pierre
2017-10-01
Nowadays, modern earth observation programs produce huge volumes of satellite images time series (SITS) that can be useful to monitor geographical areas through time. How to efficiently analyze such kind of information is still an open question in the remote sensing field. Recently, deep learning methods proved suitable to deal with remote sensing data mainly for scene classification (i.e. Convolutional Neural Networks - CNNs - on single images) while only very few studies exist involving temporal deep learning approaches (i.e Recurrent Neural Networks - RNNs) to deal with remote sensing time series. In this letter we evaluate the ability of Recurrent Neural Networks, in particular the Long-Short Term Memory (LSTM) model, to perform land cover classification considering multi-temporal spatial data derived from a time series of satellite images. We carried out experiments on two different datasets considering both pixel-based and object-based classification. The obtained results show that Recurrent Neural Networks are competitive compared to state-of-the-art classifiers, and may outperform classical approaches in presence of low represented and/or highly mixed classes. We also show that using the alternative feature representation generated by LSTM can improve the performances of standard classifiers.
Artificial neural networks for prediction of quality in resistance spot welding
Martin, O.; Lopez, M.; Martin, F.
2006-01-01
An artificial neural network is proposed as a tool for predicting from three parameters (weld time, current intensity and electrode sort) if the quality of a resistance spot weld reaches a certain level or not. The quality id determined by cross tension testing. The fact of reaching this quality level or not is the desired output that goes with each input of the artificial neural network during its supervised learning. The available data set is made up of input/desired output pairs and is split randomly into a training subset (to update synaptic weight values) and a validation subset (to avoid overfitting phenomenon by means of cross validation). (Author) 44 refs
Kinematic Analysis of 3-DOF Planer Robot Using Artificial Neural Network
Jolly Atit Shah
2012-07-01
Full Text Available Automatic control of the robotic manipulator involves study of kinematics and dynamics as a major issue. This paper involves the forward and inverse kinematics of 3-DOF robotic manipulator with revolute joints. In this study the Denavit- Hartenberg (D-H model is used to model robot links and joints. Also forward and inverse kinematics solution has been achieved using Artificial Neural Networks for 3-DOF robotic manipulator. It shows that by using artificial neural network the solution we get is faster, acceptable and has zero error.
Stefaniak, B.; Cholewinski, W.; Tarkowska, A.
2005-01-01
Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer application of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. In this paper practical aspects of scientific application of ANN in medicine using the Statistical Neural Networks Computer program, were presented. Several steps of data analysis with the above ANN software package were discussed shortly, from material selection and its dividing into groups to the types of obtained results. The typical problems connected with assessing scintigrams by ANN were also described. (author)
Comparative performance of some popular artificial neural network ...
tificial neural network domain (viz., local search algorithms, global search ... branches of astronomy for automated data analysis and other applications like ...... such as standard backpropagation, fuzzy logic, genetic algorithms, fractals etc.,.
ASLAN, Muhammet Fatih; SABANCI, Kadir; YİĞİT, Enes; KAYABAŞI, Ahmet; TOKTAŞ, Abdurrahim; DUYSAK, Hüseyin
2018-01-01
In this study, classification of two types of wheat grainsinto bread and durum was carried out. The species of wheat grains in thisdataset are bread and durum and these species have equal samples in the datasetas 100 instances. Seven features, including width, height, area, perimeter,roundness, width and perimeter/area were extracted from each wheat grains. Classificationwas separately conducted by Artificial Neural Network (ANN) and Extreme Learning Machine (ELM)artificial intelligence techn...
Simultaneous multichannel signal transfers via chaos in a recurrent neural network.
Soma, Ken-ichiro; Mori, Ryota; Sato, Ryuichi; Furumai, Noriyuki; Nara, Shigetoshi
2015-05-01
We propose neural network model that demonstrates the phenomenon of signal transfer between separated neuron groups via other chaotic neurons that show no apparent correlations with the input signal. The model is a recurrent neural network in which it is supposed that synchronous behavior between small groups of input and output neurons has been learned as fragments of high-dimensional memory patterns, and depletion of neural connections results in chaotic wandering dynamics. Computer experiments show that when a strong oscillatory signal is applied to an input group in the chaotic regime, the signal is successfully transferred to the corresponding output group, although no correlation is observed between the input signal and the intermediary neurons. Signal transfer is also observed when multiple signals are applied simultaneously to separate input groups belonging to different memory attractors. In this sense simultaneous multichannel communications are realized, and the chaotic neural dynamics acts as a signal transfer medium in which the signal appears to be hidden.
A non-penalty recurrent neural network for solving a class of constrained optimization problems.
Hosseini, Alireza
2016-01-01
In this paper, we explain a methodology to analyze convergence of some differential inclusion-based neural networks for solving nonsmooth optimization problems. For a general differential inclusion, we show that if its right hand-side set valued map satisfies some conditions, then solution trajectory of the differential inclusion converges to optimal solution set of its corresponding in optimization problem. Based on the obtained methodology, we introduce a new recurrent neural network for solving nonsmooth optimization problems. Objective function does not need to be convex on R(n) nor does the new neural network model require any penalty parameter. We compare our new method with some penalty-based and non-penalty based models. Moreover for differentiable cases, we implement circuit diagram of the new neural network. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Novel Recurrent Neural Network for Manipulator Control With Improved Noise Tolerance.
Li, Shuai; Wang, Huanqing; Rafique, Muhammad Usman
2017-04-12
In this paper, we propose a novel recurrent neural network to resolve the redundancy of manipulators for efficient kinematic control in the presence of noises in a polynomial type. Leveraging the high-order derivative properties of polynomial noises, a deliberately devised neural network is proposed to eliminate the impact of noises and recover the accurate tracking of desired trajectories in workspace. Rigorous analysis shows that the proposed neural law stabilizes the system dynamics and the position tracking error converges to zero in the presence of noises. Extensive simulations verify the theoretical results. Numerical comparisons show that existing dual neural solutions lose stability when exposed to large constant noises or time-varying noises. In contrast, the proposed approach works well and has a low tracking error comparable to noise-free situations.
Multi-stability and almost periodic solutions of a class of recurrent neural networks
Liu Yiguang; You Zhisheng
2007-01-01
This paper studies multi-stability, existence of almost periodic solutions of a class of recurrent neural networks with bounded activation functions. After introducing a sufficient condition insuring multi-stability, many criteria guaranteeing existence of almost periodic solutions are derived using Mawhin's coincidence degree theory. All the criteria are constructed without assuming the activation functions are smooth, monotonic or Lipschitz continuous, and that the networks contains periodic variables (such as periodic coefficients, periodic inputs or periodic activation functions), so all criteria can be easily extended to fit many concrete forms of neural networks such as Hopfield neural networks, or cellular neural networks, etc. Finally, all kinds of simulations are employed to illustrate the criteria
The Use of Artificial Neural Networks in Prediction of Congenital CMV Outcome from Sequence Data
Ravit Arav-Boger
2008-01-01
Full Text Available A large number of CMV strains has been reported to circulate in the human population, and the biological significance of these strains is currently an active area of research. The analysis of complex genetic information may be limited using conventional phylogenetic techniques. We constructed artificial neural networks to determine their feasibility in predicting the outcome of congenital CMV disease (defined as presence of CMV symptoms at birth based on two data sets: 54 sequences of CMV gene UL144 obtained from 54 amniotic fluids of women who contracted acute CMV infection during their pregnancy, and 80 sequences of 4 genes (US28, UL144, UL146 and UL147 obtained from urine, saliva or blood of 20 congenitally infected infants that displayed different outcomes at birth. When data from all four genes was used in the 20-infants’ set, the artificial neural network model accurately identified outcome in 90% of cases. While US28 and UL147 had low yield in predicting outcome, UL144 and UL146 predicted outcome in 80% and 85% respectively when used separately. The model identified specific nucleotide positions that were highly relevant to prediction of outcome. The artificial neural network classified genotypes in agreement with classic phylogenetic analysis. We suggest that artificial neural networks can accurately and efficiently analyze sequences obtained from larger cohorts to determine specific outcomes.The ANN training and analysis code is commercially available from Optimal Neural Informatics (Pikesville, MD.
A Quantum Implementation Model for Artificial Neural Networks
Daskin, Ammar
2016-01-01
The learning process for multi layered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow-Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, this iterative formulas result in terms formed by the principal components of the weight matrix: i.e., the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the phase...
A Quantum Implementation Model for Artificial Neural Networks
Ammar Daskin
2018-01-01
The learning process for multilayered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow–Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, these iterative formulas result in terms formed by the principal components of the weight matrix, namely, the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the pha...
Evaluation and scoring of radiotherapy treatment plans using an artificial neural network
Willoughby, Twyla R.; Starkschall, George; Janjan, Nora A.; Rosen, Isaac I.
1996-01-01
Purpose: The objective of this work was to demonstrate the feasibility of using an artificial neural network to predict the clinical evaluation of radiotherapy treatment plans. Methods and Materials: Approximately 150 treatment plans were developed for 16 patients who received external-beam radiotherapy for soft-tissue sarcomas of the lower extremity. Plans were assigned a figure of merit by a radiation oncologist using a five-point rating scale. Plan scoring was performed by a single physician to ensure consistency in rating. Dose-volume information extracted from a training set of 511 treatment plans on 14 patients was correlated to the physician-generated figure of merit using an artificial neural network. The neural network was tested with a test set of 19 treatment plans on two patients whose plans were not used in the training of the neural net. Results: Physician scoring of treatment plans was consistent to within one point on the rating scale 88% of the time. The neural net reproduced the physician scores in the training set to within one point approximately 90% of the time. It reproduced the physician scores in the test set to within one point approximately 83% of the time. Conclusions: An artificial neural network can be trained to generate a score for a treatment plan that can be correlated to a clinically-based figure of merit. The accuracy of the neural net in scoring plans compares well with the reproducibility of the clinical scoring. The system of radiotherapy treatment plan evaluation using an artificial neural network demonstrates promise as a method for generating a clinically relevant figure of merit
A Fault Diagnosis Approach for the Hydraulic System by Artificial Neural Networks
Xiangyu He; Shanghong He
2014-01-01
Based on artificial neural networks, a fault diagnosis approach for the hydraulic system was proposed in this paper. Normal state samples were used as the training data to develop a dynamic general regression neural network (DGRNN) model. The trained DGRNN model then served as the fault determinant to diagnose test faults and the work condition of the hydraulic system was identified. Several typical faults of the hydraulic system were used to verify the fault diagnosis approach. Experiment re...
Cyclone track forecasting based on satellite images using artificial neural networks
Kovordanyi, Rita; Roy, Chandan
2009-01-01
Many places around the world are exposed to tropical cyclones and associated storm surges. In spite of massive efforts, a great number of people die each year as a result of cyclone events. To mitigate this damage, improved forecasting techniques must be developed. The technique presented here uses artificial neural networks to interpret NOAA-AVHRR satellite images. A multi-layer neural network, resembling the human visual system, was trained to forecast the movement of cyclones based on sate...
Huang Yu-Jiao; Hu Hai-Gen
2015-01-01
In this paper, the multistability issue is discussed for delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions. Based on a fixed theorem and stability definition, sufficient criteria are established for the existence and stability of multiple equilibria of complex-valued recurrent neural networks. The number of stable equilibria is larger than that of real-valued recurrent neural networks, which can be used to achieve high-capacity associative memories. One numerical example is provided to show the effectiveness and superiority of the presented results. (paper)
Paul Tonelli
Full Text Available A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1 the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2 synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT. Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1 in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2 whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities.
Transport energy demand modeling of South Korea using artificial neural network
Geem, Zong Woo
2011-01-01
Artificial neural network models were developed to forecast South Korea's transport energy demand. Various independent variables, such as GDP, population, oil price, number of vehicle registrations, and passenger transport amount, were considered and several good models (Model 1 with GDP, population, and passenger transport amount; Model 2 with GDP, number of vehicle registrations, and passenger transport amount; and Model 3 with oil price, number of vehicle registrations, and passenger transport amount) were selected by comparing with multiple linear regression models. Although certain regression models obtained better R-squared values than neural network models, this does not guarantee the fact that the former is better than the latter because root mean squared errors of the former were much inferior to those of the latter. Also, certain regression model had structural weakness based on P-value. Instead, neural network models produced more robust results. Forecasted results using the neural network models show that South Korea will consume around 37 MTOE of transport energy in 2025. - Highlights: → Transport energy demand of South Korea was forecasted using artificial neural network. → Various variables (GDP, population, oil price, number of registrations, etc.) were considered. → Results of artificial neural network were compared with those of multiple linear regression.
Musatov, V. Yu.; Runnova, A. E.; Andreev, A. V.; Zhuravlev, M. O.
2018-04-01
In the present paper, the possibility of classification by artificial neural networks of a certain architecture of ambiguous images is investigated using the example of the Necker cube from the experimentally obtained EEG recording data of several operators. The possibilities of artificial neural network classification of ambiguous images are investigated in the different frequency ranges of EEG recording signals.
An artificial Radial Basis Function (RBF) neural network model was developed for the prediction of mass transfer of the phospholipids from canola meal in supercritical CO2 fluid. The RBF kind of artificial neural networks (ANN) with orthogonal least squares (OLS) learning algorithm were used for mod...
Chen, Guiling; Li, Dingshi; Shi, Lin; van Gaans, Onno; Verduyn Lunel, Sjoerd
2018-03-01
We present new conditions for asymptotic stability and exponential stability of a class of stochastic recurrent neural networks with discrete and distributed time varying delays. Our approach is based on the method using fixed point theory, which do not resort to any Liapunov function or Liapunov functional. Our results neither require the boundedness, monotonicity and differentiability of the activation functions nor differentiability of the time varying delays. In particular, a class of neural networks without stochastic perturbations is also considered. Examples are given to illustrate our main results.
Wang Linshan; Zhang Zhe; Wang Yangfan
2008-01-01
Some criteria for the global stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters are presented. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish some easy-to-test criteria of global exponential stability in the mean square for the stochastic neural networks. The criteria are computationally efficient, since they are in the forms of some linear matrix inequalities
An Examination of Application of Artificial Neural Network in Cognitive Radios
Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.
2013-12-01
Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.
An Examination of Application of Artificial Neural Network in Cognitive Radios
Salau, H Bello; Onwuka, E N; Aibinu, A M
2013-01-01
Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined
Vein matching using artificial neural network in vein authentication systems
Noori Hoshyar, Azadeh; Sulaiman, Riza
2011-10-01
Personal identification technology as security systems is developing rapidly. Traditional authentication modes like key; password; card are not safe enough because they could be stolen or easily forgotten. Biometric as developed technology has been applied to a wide range of systems. According to different researchers, vein biometric is a good candidate among other biometric traits such as fingerprint, hand geometry, voice, DNA and etc for authentication systems. Vein authentication systems can be designed by different methodologies. All the methodologies consist of matching stage which is too important for final verification of the system. Neural Network is an effective methodology for matching and recognizing individuals in authentication systems. Therefore, this paper explains and implements the Neural Network methodology for finger vein authentication system. Neural Network is trained in Matlab to match the vein features of authentication system. The Network simulation shows the quality of matching as 95% which is a good performance for authentication system matching.
Han, Seong Ik; Jeong, Chan Se; Yang, Soon Yong
2012-01-01
A robust positioning control scheme has been developed using friction parameter observer and recurrent fuzzy neural networks based on the sliding mode control. As a dynamic friction model, the LuGre model is adopted for handling friction compensation because it has been known to capture sufficiently the properties of a nonlinear dynamic friction. A developed friction parameter observer has a simple structure and also well estimates friction parameters of the LuGre friction model. In addition, an approximation method for the system uncertainty is developed using recurrent fuzzy neural networks technology to improve the precision positioning degree. Some simulation and experiment provide the verification on the performance of a proposed robust control scheme
CloudScan - A Configuration-Free Invoice Analysis System Using Recurrent Neural Networks
Palm, Rasmus Berg; Winther, Ole; Laws, Florian
2017-01-01
We present CloudScan; an invoice analysis system that requires zero configuration or upfront annotation. In contrast to previous work, CloudScan does not rely on templates of invoice layout, instead it learns a single global model of invoices that naturally generalizes to unseen invoice layouts....... The model is trained using data automatically extracted from end-user provided feedback. This automatic training data extraction removes the requirement for users to annotate the data precisely. We describe a recurrent neural network model that can capture long range context and compare it to a baseline...... logistic regression model corresponding to the current CloudScan production system. We train and evaluate the system on 8 important fields using a dataset of 326,471 invoices. The recurrent neural network and baseline model achieve 0.891 and 0.887 average F1 scores respectively on seen invoice layouts...
Han, Seong Ik [Pusan National University, Busan (Korea, Republic of); Jeong, Chan Se; Yang, Soon Yong [University of Ulsan, Ulsan (Korea, Republic of)
2012-04-15
A robust positioning control scheme has been developed using friction parameter observer and recurrent fuzzy neural networks based on the sliding mode control. As a dynamic friction model, the LuGre model is adopted for handling friction compensation because it has been known to capture sufficiently the properties of a nonlinear dynamic friction. A developed friction parameter observer has a simple structure and also well estimates friction parameters of the LuGre friction model. In addition, an approximation method for the system uncertainty is developed using recurrent fuzzy neural networks technology to improve the precision positioning degree. Some simulation and experiment provide the verification on the performance of a proposed robust control scheme.
Performance of an artificial neural network for vertical root fracture detection: an ex vivo study.
Kositbowornchai, Suwadee; Plermkamon, Supattra; Tangkosol, Tawan
2013-04-01
To develop an artificial neural network for vertical root fracture detection. A probabilistic neural network design was used to clarify whether a tooth root was sound or had a vertical root fracture. Two hundred images (50 sound and 150 vertical root fractures) derived from digital radiography--used to train and test the artificial neural network--were divided into three groups according to the number of training and test data sets: 80/120,105/95 and 130/70, respectively. Either training or tested data were evaluated using grey-scale data per line passing through the root. These data were normalized to reduce the grey-scale variance and fed as input data of the neural network. The variance of function in recognition data was calculated between 0 and 1 to select the best performance of neural network. The performance of the neural network was evaluated using a diagnostic test. After testing data under several variances of function, we found the highest sensitivity (98%), specificity (90.5%) and accuracy (95.7%) occurred in Group three, for which the variance of function in recognition data was between 0.025 and 0.005. The neural network designed in this study has sufficient sensitivity, specificity and accuracy to be a model for vertical root fracture detection. © 2012 John Wiley & Sons A/S.
A neutron spectrum unfolding computer code based on artificial neural networks
Ortiz-Rodríguez, J.M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J.M.; Vega-Carrillo, H.R.
2014-01-01
The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6 LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding
Online Signature Verification using Recurrent Neural Network and Length-normalized Path Signature
Lai, Songxuan; Jin, Lianwen; Yang, Weixin
2017-01-01
Inspired by the great success of recurrent neural networks (RNNs) in sequential modeling, we introduce a novel RNN system to improve the performance of online signature verification. The training objective is to directly minimize intra-class variations and to push the distances between skilled forgeries and genuine samples above a given threshold. By back-propagating the training signals, our RNN network produced discriminative features with desired metrics. Additionally, we propose a novel d...
Complex Dynamical Network Control for Trajectory Tracking Using Delayed Recurrent Neural Networks
Jose P. Perez
2014-01-01
Full Text Available In this paper, the problem of trajectory tracking is studied. Based on the V-stability and Lyapunov theory, a control law that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a complex dynamical network is obtained. To illustrate the analytic results, we present a tracking simulation of a dynamical network with each node being just one Lorenz’s dynamical system and three identical Chen’s dynamical systems.
Online Sequence Training of Recurrent Neural Networks with Connectionist Temporal Classification
Hwang, Kyuyeon; Sung, Wonyong
2015-01-01
Connectionist temporal classification (CTC) based supervised sequence training of recurrent neural networks (RNNs) has shown great success in many machine learning areas including end-to-end speech and handwritten character recognition. For the CTC training, however, it is required to unroll (or unfold) the RNN by the length of an input sequence. This unrolling requires a lot of memory and hinders a small footprint implementation of online learning or adaptation. Furthermore, the length of tr...
Cadini, F.; Zio, E.; Pedroni, N.
2007-01-01
In this paper, a locally recurrent neural network (LRNN) is employed for approximating the temporal evolution of a nonlinear dynamic system model of a simplified nuclear reactor. To this aim, an infinite impulse response multi-layer perceptron (IIR-MLP) is trained according to a recursive back-propagation (RBP) algorithm. The network nodes contain internal feedback paths and their connections are realized by means of IIR synaptic filters, which provide the LRNN with the necessary system state memory
Some new results for recurrent neural networks with varying-time coefficients and delays
Jiang Haijun; Teng Zhidong
2005-01-01
In this Letter, we consider the recurrent neural networks with varying-time coefficients and delays. By constructing new Lyapunov functional, introducing ingeniously many real parameters and applying the technique of Young inequality, we establish a series of criteria on the boundedness, global exponential stability and the existence of periodic solutions. In these criteria, we do not require that the response functions are differentiable, bounded and monotone nondecreasing. Some previous works are improved and extended
Li, Xiangang; Wu, Xihong
2014-01-01
Long short-term memory (LSTM) based acoustic modeling methods have recently been shown to give state-of-the-art performance on some speech recognition tasks. To achieve a further performance improvement, in this research, deep extensions on LSTM are investigated considering that deep hierarchical model has turned out to be more efficient than a shallow one. Motivated by previous research on constructing deep recurrent neural networks (RNNs), alternative deep LSTM architectures are proposed an...
Yin, Zi; Chang, Keng-hao; Zhang, Ruofei
2017-01-01
Information extraction and user intention identification are central topics in modern query understanding and recommendation systems. In this paper, we propose DeepProbe, a generic information-directed interaction framework which is built around an attention-based sequence to sequence (seq2seq) recurrent neural network. DeepProbe can rephrase, evaluate, and even actively ask questions, leveraging the generative ability and likelihood estimation made possible by seq2seq models. DeepProbe makes...
A Heuristic Approach to Intra-Brain Communications Using Chaos in a Recurrent Neural Network Model
Soma, Ken-ichiro; Mori, Ryota; Sato, Ryuichi; Nara, Shigetoshi
2011-09-01
To approach functional roles of chaos in brain, a heuristic model to consider mechanisms of intra-brain communications is proposed. The key idea is to use chaos in firing pattern dynamics of a recurrent neural network consisting of birary state neurons, as propagation medium of pulse signals. Computer experiments and numerical methods are introduced to evaluate signal transport characteristics by calculating correlation functions between sending neurons and receiving neurons of pulse signals.
Asada, N.; Eiho, S.; Doi, K.; MacMahon, H.; Montner, S.M.; Giger, M.L.
1989-01-01
An artificial neural network has been applied for pattern recognition and used as a tool in an expert system. The purpose of this study is to examine the potential usefulness of the neural network approach in medical applications for image recognition and decision making. The authors designed multilayer feedforward neural networks with a back-propagation algorithm for our study. Using first-pass radionuclide ventriculograms, we attempted to identify the right and left ventricles of the heart and the lungs by training the neural network from patterns of time-activity curves. In a preliminary study, the neural network enabled identification of the lungs and heart chambers once the network was trained sufficiently by means of repeated entries of data from the same case
Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks
Aminmohammad Saberian
2014-01-01
Full Text Available This paper presents a solar power modelling method using artificial neural networks (ANNs. Two neural network structures, namely, general regression neural network (GRNN feedforward back propagation (FFBP, have been used to model a photovoltaic panel output power and approximate the generated power. Both neural networks have four inputs and one output. The inputs are maximum temperature, minimum temperature, mean temperature, and irradiance; the output is the power. The data used in this paper started from January 1, 2006, until December 31, 2010. The five years of data were split into two parts: 2006–2008 and 2009-2010; the first part was used for training and the second part was used for testing the neural networks. A mathematical equation is used to estimate the generated power. At the end, both of these networks have shown good modelling performance; however, FFBP has shown a better performance comparing with GRNN.
Zúñiga-Aguilar, C. J.; Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Martínez, V. M.; Romero-Ugalde, H. M.
2018-02-01
In this paper, we approximate the solution of fractional differential equations with delay using a new approach based on artificial neural networks. We consider fractional differential equations of variable order with the Mittag-Leffler kernel in the Liouville-Caputo sense. With this new neural network approach, an approximate solution of the fractional delay differential equation is obtained. Synaptic weights are optimized using the Levenberg-Marquardt algorithm. The neural network effectiveness and applicability were validated by solving different types of fractional delay differential equations, linear systems with delay, nonlinear systems with delay and a system of differential equations, for instance, the Newton-Leipnik oscillator. The solution of the neural network was compared with the analytical solutions and the numerical simulations obtained through the Adams-Bashforth-Moulton method. To show the effectiveness of the proposed neural network, different performance indices were calculated.
Distribution network fault section identification and fault location using artificial neural network
Dashtdar, Masoud; Dashti, Rahman; Shaker, Hamid Reza
2018-01-01
In this paper, a method for fault location in power distribution network is presented. The proposed method uses artificial neural network. In order to train the neural network, a series of specific characteristic are extracted from the recorded fault signals in relay. These characteristics...... components of the sequences as well as three-phase signals could be obtained using statistics to extract the hidden features inside them and present them separately to train the neural network. Also, since the obtained inputs for the training of the neural network strongly depend on the fault angle, fault...... resistance, and fault location, the training data should be selected such that these differences are properly presented so that the neural network does not face any issues for identification. Therefore, selecting the signal processing function, data spectrum and subsequently, statistical parameters...
The use of artificial neural network to evaluate the effects of human ...
The use of artificial neural network to evaluate the effects of human and physiographic factors on forest stock volume. ... stock volume and human factors in certain topography conditions and provides useful information for the acceptable amount of standing inventory using the present human population in future experiment.
Distracted in a Demanding Task : A Classification Study with Artificial Neural Networks
Huijser, Stefan; Taatgen, Niels; van Vugt, Marieke; Verheij, Bart; Wiering, Marco
An important issue in cognitive science research is to know what your subjects are thinking about. In this paper, we trained multiple artificial Neural Network (ANN) classifiers to predict whether subjects’ thoughts were focused on the task (i.e., on-task) or if they were distracted (i.e.,
Internal-state analysis in layered artificial neural network trained to categorize lung sounds
Oud, M
2002-01-01
In regular use of artificial neural networks, only input and output states of the network are known to the user. Weight and bias values can be extracted but are difficult to interpret. We analyzed internal states of networks trained to map asthmatic lung sound spectra onto lung function parameters.
Gonzalez, Julie M. Byers; DesJardins, Stephen L.
This paper examines how predictive modeling can be used to study application behavior. A relatively new technique, artificial neural networks (ANNs), was applied to help predict which students were likely to get into a large Research I university. Data were obtained from a university in Iowa. Two cohorts were used, each containing approximately…
Briggs, Derek C.; Circi, Ruhan
2017-01-01
Artificial Neural Networks (ANNs) have been proposed as a promising approach for the classification of students into different levels of a psychological attribute hierarchy. Unfortunately, because such classifications typically rely upon internally produced item response patterns that have not been externally validated, the instability of ANN…
Paudel, S.; Elmtiri, M.; Kling, W.L.; Corre, le O.; Lacarriere, B.
2014-01-01
This paper presents the building heating demand prediction model with occupancy profile and operational heating power level characteristics in short time horizon (a couple of days) using artificial neural network. In addition, novel pseudo dynamic transitional model is introduced, which consider
Artificial neural network models for biomass gasification in fluidized bed gasifiers
Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles
2013-01-01
Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine...
Cho, Kyung Jin; Müller, Jacobus H; Erasmus, Pieter J; DeJour, David; Scheffer, Cornie
2014-01-01
Segmentation and computer assisted design tools have the potential to test the validity of simulated surgical procedures, e.g., trochleoplasty. A repeatable measurement method for three dimensional femur models that enables quantification of knee parameters of the distal femur is presented. Fifteen healthy knees are analysed using the method to provide a training set for an artificial neural network. The aim is to use this artificial neural network for the prediction of parameter values that describe the shape of a normal trochlear groove geometry. This is achieved by feeding the artificial neural network with the unaffected parameters of a dysplastic knee. Four dysplastic knees (Type A through D) are virtually redesigned by way of morphing the groove geometries based on the suggested shape from the artificial neural network. Each of the four resulting shapes is analysed and compared to its initial dysplastic shape in terms of three anteroposterior dimensions: lateral, central and medial. For the four knees the trochlear depth is increased, the ventral trochlear prominence reduced and the sulcus angle corrected to within published normal ranges. The results show a lateral facet elevation inadequate, with a sulcus deepening or a depression trochleoplasty more beneficial to correct trochlear dysplasia.
van Staveren, HJ; van Veen, RLP; Speelman, OC; Witjes, MJH; Roodenburg, JLN
The performance of an artificial neural network was evaluated as an alternative classification technique of autofluorescence spectra of oral leukoplakia, which may reflect the grade of tissue dysplasia. Twenty-two visible lesions of 21 patients suffering from oral leukoplakia and six locations on
Development of surrogate models using artificial neural network for building shell energy labelling
Melo, A.P.; Costola, D.; Lamberts, R.; Hensen, J.L.M.
2014-01-01
Surrogate models are an important part of building energy labelling programs, but these models still present low accuracy, particularly in cooling-dominated climates. The objective of this study was to evaluate the feasibility of using an artificial neural network (ANN) to improve the accuracy of
Wind Turbine Fault Detection based on Artificial Neural Network Analysis of SCADA Data
Herp, Jürgen; S. Nadimi, Esmaeil
2015-01-01
Slowly developing faults in wind turbine can, when not detected and fixed on time, cause severe damage and downtime. We are proposing a fault detection method based on Artificial Neural Networks (ANN) and the recordings from Supervisory Control and Data Acquisition (SCADA) systems installed in wind...
Artificial neural network decision support systems for new product development project selection
Thieme, R.J.; Song, Michael; Calantone, R.J.
2000-01-01
The authors extend and develop an artificial neural network decision support system and demonstrate how it can guide managers when they make complex new product development decisions. The authors use data from 612 projects to compare this new method with traditional methods for predicting various
Chon, K H; Holstein-Rathlou, N H; Marsh, D J
1998-01-01
kernel estimation method based on Laguerre expansions. The results for the two types of artificial neural networks and the Volterra models are comparable in terms of normalized mean square error (NMSE) of the respective output prediction for independent testing data. However, the Volterra models obtained...
Hjerrild, M.; Stensballe, A.; Rasmussen, T.E.
2004-01-01
Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...
Implementation of a feed-forward artificial neural network in VHDL on FPGA
Dondon, P.; Carvalho, J.; Gardere, R.; Lahalle, P.; Tsenov, G.; Mladenov, V.M.; Reljin, B.; Stankovic, S.
2014-01-01
Describing an Artificial Neural Network (ANN) using VHDL allows a further implementation of such a system on FPGA. Indeed, the principal point of using FPGA for ANNs is flexibility that gives it an advantage toward other systems like ASICS which are entirely dedicated to one unique architecture and
Prediction of Full-Scale Propulsion Power using Artificial Neural Networks
Pedersen, Benjamin Pjedsted; Larsen, Jan
2009-01-01
Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature from four different loading conditions, together with hind cast data of wind and sea properties; and noon report data has been used to train an Artificial Neural Network for prediction...
Cui, Ying; Gierl, Mark; Guo, Qi
2016-01-01
The purpose of the current investigation was to describe how the artificial neural networks (ANNs) can be used to interpret student performance on cognitive diagnostic assessments (CDAs) and evaluate the performances of ANNs using simulation results. CDAs are designed to measure student performance on problem-solving tasks and provide useful…
Incomplete meteorological data has been a problem in environmental modeling studies. The objective of this work was to develop a technique to reconstruct missing daily precipitation data in the central part of Chesapeake Bay Watershed using regression trees (RT) and artificial neural networks (ANN)....
Obie Farobie
2016-05-01
Full Text Available In this study, for the first time artificial neural network was used to predict biodiesel yield in supercritical tert-butyl methyl ether (MTBE. The experimental data of biodiesel yield conducted by varying four input factors (i.e. temperature, pressure, oil-to-MTBE molar ratio, and reaction time were used to elucidate artificial neural network model in order to predict biodiesel yield. The main goal of this study was to assess how accurately this artificial neural network model to predict biodiesel yield conducted under supercritical MTBE condition. The result shows that artificial neural network is a powerful tool for modeling and predicting biodiesel yield conducted under supercritical MTBE condition that was proven by a high value of coefficient of determination (R of 0.9969, 0.9899, and 0.9658 for training, validation, and testing, respectively. Using this approach, the highest biodiesel yield was determined of 0.93 mol/mol (corresponding to the actual biodiesel yield of 0.94 mol/mol that was achieved at 400 °C, under the reactor pressure of 10 MPa, oil-to-MTBE molar ratio of 1:40 within 15 min of reaction time.
Assessing Rainfall Erosivity with Artificial Neural Networks for the Ribeira Valley, Brazil
Reginald B. Silva
2010-01-01
Full Text Available Soil loss is one of the main causes of pauperization and alteration of agricultural soil properties. Various empirical models (e.g., USLE are used to predict soil losses from climate variables which in general have to be derived from spatial interpolation of point measurements. Alternatively, Artificial Neural Networks may be used as a powerful option to obtain site-specific climate data from independent factors. This study aimed to develop an artificial neural network to estimate rainfall erosivity in the Ribeira Valley and Coastal region of the State of São Paulo. In the development of the Artificial Neural Networks the input variables were latitude, longitude, and annual rainfall and a mathematical equation of the activation function for use in the study area as the output variable. It was found among other things that the Artificial Neural Networks can be used in the interpolation of rainfall erosivity values for the Ribeira Valley and Coastal region of the State of São Paulo to a satisfactory degree of precision in the estimation of erosion. The equation performance has been demonstrated by comparison with the mathematical equation of the activation function adjusted to the specific conditions of the study area.
Rezaeianzadeh, M.; Stein, A.; Tabari, H.; Abghari, H.; Jalalkamali, N.; Hosseinipour, E.Z.; Singh, V.P.
2013-01-01
Artificial neural networks (ANNs) are used by hydrologists and engineers to forecast flows at the outlet of a watershed. They are employed in particular where hydrological data are limited. Despite these developments, practitioners still prefer conventional hydrological models. This study applied
Hjerrild, Majbrit; Stensballe, Allan; Rasmussen, Thomas E
2011-01-01
Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...
Artificial neural networks to forecast biomass of Pacific sardine and its environment
Cisneros Mata, M.A.; Brey, T.; Jarre, Astrid
1996-01-01
We tested the forecasting performance of artificial neural networks (ANNs) using several time series of environmental and biotic data pertaining to the California Current (CC) neritic ecosystem. ANNs performed well predicting CC monthly 10-m depth temperature up to nine years in advance, using te...
Federico Nuñez-Piña
2018-01-01
Full Text Available The problem of assigning buffers in a production line to obtain an optimum production rate is a combinatorial problem of type NP-Hard and it is known as Buffer Allocation Problem. It is of great importance for designers of production systems due to the costs involved in terms of space requirements. In this work, the relationship among the number of buffer slots, the number of work stations, and the production rate is studied. Response surface methodology and artificial neural network were used to develop predictive models to find optimal throughput values. 360 production rate values for different number of buffer slots and workstations were used to obtain a fourth-order mathematical model and four hidden layers’ artificial neural network. Both models have a good performance in predicting the throughput, although the artificial neural network model shows a better fit (R=1.0000 against the response surface methodology (R=0.9996. Moreover, the artificial neural network produces better predictions for data not utilized in the models construction. Finally, this study can be used as a guide to forecast the maximum or near maximum throughput of production lines taking into account the buffer size and the number of machines in the line.
Ngwangwa, HM
2010-04-01
Full Text Available -1 Journal of Terramechanics Volume 47, Issue 2, April 2010, Pages 97-111 Reconstruction of road defects and road roughness classification using vehicle responses with artificial neural networks simulation H.M. Ngwangwaa, P.S. Heynsa, , , F...
Artificial Neural Network Based State Estimators Integrated into Kalmtool
Bayramoglu, Enis; Ravn, Ole; Poulsen, Niels Kjølstad
2012-01-01
In this paper we present a toolbox enabling easy evaluation and comparison of dierent ltering algorithms. The toolbox is called Kalmtool and is a set of MATLAB tools for state estimation of nonlinear systems. The toolbox now contains functions for Articial Neural Network Based State Estimation as...
Cycles of a discrete time bipolar artificial neural network
Cheng Suisun; Chen, J.-S.; Yueh, W.-C.
2009-01-01
A discrete time bipolar neural network depending on two parameters is studied. It is observed that its dynamical behaviors can be classified into six cases. For each case, the long time behaviors can be summarized in terms of fixed points, periodic points, basin of attractions, and related initial distributions. Mathematical reasons are supplied for these observations and applications in cellular automata are illustrated.
A Search for top quark using artificial neural networks
Amidi, Erfan [Northeastern Univ., Boston, MA (United States)
1996-02-01
The neural networks method has been applied to 75 pb^{-1} of data collected by the D0 detector at Fermilab during the 1993-1995 p$\\bar{p}$ collider run at √s = 1.8 TeV, to isolate the top quark in the e+jets+E_{T} channel.
Determination of Liquefaction Potential using Artificial Neural Networks
Farrokhzad, F; Choobbasti, A.J; Barari, Amin
2011-01-01
The authors propose an alternative general regression model based on neural networks, which enables analysis of summary data obtained by liquefaction analysis according to usual methods. For that purpose, the data from some thirty boreholes made during field investigations in Babol, in the Iranian...
Patterning and predicting aquatic macroinvertebrate diversities using artificial neural network
Park, Y.S.; Verdonschot, P.F.M.; Chon, T.S.; Lek, S.
2003-01-01
A counterpropagation neural network (CPN) was applied to predict species richness (SR) and Shannon diversity index (SH) of benthic macroinvertebrate communities using 34 environmental variables. The data were collected at 664 sites at 23 different water types such as springs, streams, rivers,
predicting water levels at kainji dam using artificial neural networks
2013-03-01
Mar 1, 2013 ... Apart from insufficient number of power generation plants, existing ones are ... ture and/or functional aspects of biological neural net-. Nigerian Journal of ... Their model used the radiosonde-based 700-hPa wind direction and ...