WorldWideScience

Sample records for rectangle-based molecular materials

  1. Molecular Syntheses of Extended Materials

    Science.gov (United States)

    Paley, Daniel W.

    Bottom-up molecular synthesis is a route to chemically and crystallographically uniform polymers and solid-state materials. Through the use of molecular precursors, we gain atomic-level control of functionality and fine-tuning of the collective properties of materials. This dissertation presents two studies that demonstrate this approach. Ring-opening alkyne metathesis polymerization is a possible approach to monodisperse conjugated polymers, but its applications have been limited by difficult syntheses and high air sensitivity of known organometallic ROAMP initiators. We designed a dimeric, air-stable molybdenum alkylidyne with a tris(phenolate) supporting ligand. The precatalyst is activated by addition of methanol and polymerizes cyclooctynes with excellent chemical selectivity and functional group tolerance. The Nuckolls and Roy groups have introduced a new family of solid-state compounds synthesized from cobalt chalcogenide clusters Co6Q 8(PR3)6 and fullerenes. The first examples of these materials crystallized in superatom lattices with the symmetry of simple inorganic solids CdI2 (P-3m1) and NaCl (Fm-3m). This dissertation reveals that further members of the family feature extraordinary diversity of structure, including a pseudo-trigonal array of fulleride dimers in [Co 6Te8(PEt3)6]2[C140 ][C70]2 and a heterolayered van der Waals cocrystal [Co6Se8(PEt2phen)6][C 60]5. In addition to these unusual crystal structures, this dissertation presents a method for assigning redox states from crystallographic data in Co6Q8 clusters. Finally, a detailed guide to the collection and solution of single-crystal X-ray data is presented. The guide is intended for independent study by new crystallographers.

  2. Flexible molecular materials: Stressed out crystals

    Science.gov (United States)

    Kahr, Bart; Ward, Michael D.

    2018-01-01

    Molecular crystals have recently started to shake their inflexible reputation. Now, copper(II) acetylacetonate needles have been shown to be very flexible, and their mechanical deformation has been assessed through materials constants using methods customarily reserved for non-molecular materials.

  3. Molecular Engineering of dosimetric materials; Ingenieria Molecular de materiales dosimetricos

    Energy Technology Data Exchange (ETDEWEB)

    Salas, P.; Castano, V.M. [Instituto de Fisica, UNAM, A.P. 1-1010, Queretaro (Mexico); Mendoza, D.; Gonzalez, P. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027 Mexico D.F. (Mexico)

    1999-07-01

    It was studied the thermoluminescent response to the gamma radiation of a new family of solid materials of zircon-silica. In this study some materials have been prepared by the sol-gel method with different stoichiometric relations, finding that it is possible to control, at least, partially, the thermoluminescent behavior starting from the Molecular Engineering of those materials, since the mixture of both ceramics allows to produce materials with different spatial structures. (Author)

  4. Progress in molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Buhro, W.E. [Washington Univ., St. Louis, MO (United States)

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  5. Computational Nanotechnology Molecular Electronics, Materials and Machines

    Science.gov (United States)

    Srivastava, Deepak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This presentation covers research being performed on computational nanotechnology, carbon nanotubes and fullerenes at the NASA Ames Research Center. Topics cover include: nanomechanics of nanomaterials, nanotubes and composite materials, molecular electronics with nanotube junctions, kinky chemistry, and nanotechnology for solid-state quantum computers using fullerenes.

  6. Materials fundamentals of molecular beam epitaxy

    CERN Document Server

    Tsao, Jeffrey Y

    1992-01-01

    The technology of crystal growth has advanced enormously during the past two decades. Among, these advances, the development and refinement of molecular beam epitaxy (MBE) has been among the msot important. Crystals grown by MBE are more precisely controlled than those grown by any other method, and today they form the basis for the most advanced device structures in solid-state physics, electronics, and optoelectronics. As an example, Figure 0.1 shows a vertical-cavity surface emitting laser structure grown by MBE. * Provides comprehensive treatment of the basic materials and surface science principles that apply to molecular beam epitaxy * Thorough enough to benefit molecular beam epitaxy researchers * Broad enough to benefit materials, surface, and device researchers * Referenes articles at the forefront of modern research as well as those of historical interest.

  7. Harnessing Quantum Interference in Molecular Dielectric Materials.

    Science.gov (United States)

    Bergfield, Justin P; Heitzer, Henry M; Van Dyck, Colin; Marks, Tobin J; Ratner, Mark A

    2015-06-23

    We investigate the relationship between dielectric response and charge transport in molecule-based materials operating in the quantum coherent regime. We find that quantum interference affects these observables differently, for instance, allowing current passing through certain materials to be reduced by orders of magnitude without affecting dielectric behavior (or band gap). As an example, we utilize ab initio electronic structure theory to calculate conductance and dielectric constants of cross-conjugated anthraquinone (AQ)-based and linearly conjugated anthracene (AC)-based materials. In spite of having nearly equal fundamental gaps, electrode bonding configurations, and molecular dimensions, we find a ∼1.7 order of magnitude (∼50-fold) reduction in the conductance of the AQ-based material relative to the AC-based material, a value in close agreement with recent measurements, while the calculated dielectric constants of both materials are nearly identical. From these findings, we propose two molecular materials in which quantum interference is used to reduce leakage currents across a ∼25 Å monolayer gap with dielectric constants larger than 4.5.

  8. Process for the production of a molecular sieve material

    OpenAIRE

    Melian, C.I.; Kapteijn, F.; Moulijn, J.A.

    2006-01-01

    The invention concerns a process for the production of a molecular sieve material by growing the molecular sieve material structure in the presence of a template for the pore structure, followed by removal of the template from the molecular sieve material, in which process the template is removed by oxidation of the template material using an oxidising agent.

  9. Metal-molecular assembly for functional materials

    CERN Document Server

    Matsuo, Yutaka; Negishi, Yuichi; Yoshizawa, Michito; Uemura, Takashi; Takaya, Hikaru; Takeuchi, Masayuki; Yoshimoto, Soichiro

    2013-01-01

    This book focuses on modern coordination chemistry, covering porous coordination polymers, metalloproteins, metallopeptides, nanoclusters, nanocapsules, aligned polymers, and fullerenes. As well, it deals with applications to electronic devices and surface characterization. These wide-ranging topics are integrally described from the perspectives of dimensionality (one-, two-, and three-dimension), new materials design, synthesis, molecular assembly, function and application. The nine chapters making up this book have been authored by scientists who are at the cutting edge of research in this p

  10. Process for the production of a molecular sieve material

    NARCIS (Netherlands)

    Melian, C.I.; Kapteijn, F.; Moulijn, J.A.

    2006-01-01

    The invention concerns a process for the production of a molecular sieve material by growing the molecular sieve material structure in the presence of a template for the pore structure, followed by removal of the template from the molecular sieve material, in which process the template is removed by

  11. Alignment of molecular materials in high magnetic fields

    NARCIS (Netherlands)

    Christianen, P.C.M.; Shklyarevskiy, O.I.; Boamfa, M.I.; Maan, J.C.

    2004-01-01

    The potential of using high magnetic fields to align functional molecular materials is discussed, illustrated by magnetic orientation of two different types of materials. Alignment of side chain polymer liquid crystals leads to macroscopically ordered, transparant and strongly birefringent material.

  12. Langmuir Blodgett films of molecular organic materials

    Science.gov (United States)

    Talham, Daniel R.; Yamamoto, Takashi; Meisel, Mark W.

    2008-05-01

    Langmuir-Blodgett methods are perhaps the original approach for achieving controlled deposition of organic thin films. Molecules are first organized into a monolayer array on the surface of water before transfer as a monolayer onto solid supports. Molecular monolayers, multilayers, and multilayered heterostructures can be achieved. The capability of exercising such control over thin film assemblies has attracted materials chemists and physicists to develop Langmuir-Blodgett films for studies on organic conductors, magnets, non-linear optics, rectifiers, and intermolecular electron transfer. This article reviews objectives in each of these areas and selects some specific examples from the literature to highlight the state of the art, mostly from the point of view of the chemical systems that are studied. Mixed organic/inorganic hybrid films represent a new direction for Langmuir-Blodgett films in materials science, combining conventional inorganic solid-state phenomena with the properties of the organic networks, and recent examples, taken principally from the authors' work, are highlighted.

  13. Molecular modeling and multiscaling issues for electronic material applications

    CERN Document Server

    Iwamoto, Nancy; Yuen, Matthew; Fan, Haibo

    Volume 1 : Molecular Modeling and Multiscaling Issues for Electronic Material Applications provides a snapshot on the progression of molecular modeling in the electronics industry and how molecular modeling is currently being used to understand material performance to solve relevant issues in this field. This book is intended to introduce the reader to the evolving role of molecular modeling, especially seen through the eyes of the IEEE community involved in material modeling for electronic applications.  Part I presents  the role that quantum mechanics can play in performance prediction, such as properties dependent upon electronic structure, but also shows examples how molecular models may be used in performance diagnostics, especially when chemistry is part of the performance issue.  Part II gives examples of large-scale atomistic methods in material failure and shows several examples of transitioning between grain boundary simulations (on the atomistic level)and large-scale models including an example ...

  14. Investigation of hybrid molecular material prepared by ionic liquid ...

    Indian Academy of Sciences (India)

    Wintec

    1-Butyl 3-methyl imidazolium bromide; molecular material; phosphotungstic acid; near IR. 1. Introduction. Ionic liquids are gaining importance in the synthesis of hybrid materials. 1. The 'ionic liquid' moniker is used for low melting point salts that contain organic cations. 2 ... class of solid acid catalytic materials with Brønsted.

  15. Applications of Molecular and Materials Modeling

    Science.gov (United States)

    2002-01-01

    Modeling atmospheric chemistry, spectroscopy, adsorption Prof. Marco Antonio Chaer Nascimento http://www.iq.ufrj.br/~chaer/ University of São Paulo ...Jr. (Alkire 1996) was the champion for the start of molecular modeling at Amoco, aided by Joseph F. Gentile (Manager, Information and Computer

  16. Molecular simulation for novel carbon buckyball materials

    Directory of Open Access Journals (Sweden)

    Hasan R. Obayes

    2015-12-01

    Full Text Available The discovery of buckyballs was unexpected because the researchers were delivering carbon plasmas to reproduce and describe unidentified interstellar matter. Density functional theory was done to study and design the structure of [8]circulene and three new buckyballs with molecular dimensions of less than a nanometer. Cyclic polymerization reactions can be utilized to prepare new buckyballs, and this process also produces molecules of hydrogen. All reactions are spontaneous and exothermic as per the estimations to the values of entropy, Gibbs energy, and enthalpy changes. The results demonstrate that the most symmetric buckyball is the most stable, and the molecular dimensions are less than a nanometer. The new buckyballs are characterized by the high efficiency of their energy gaps, making it potentially useful for solar cell applications.

  17. Molecularly Designed Ultrafine/Nanostructured Materials

    Science.gov (United States)

    1994-04-08

    thank B. Halek for his help in XRD experiments. This work was supported by the Strategic Defense Initiative Organization’s Office of Innovative Science...of the organic materials were purified by a train sublimation method [ 14], before 257 Mat. Res. Soc. Symp. Proc. Vol. 351. ©1994. MateraIs Research

  18. Three Dimensional Molecular Imaging for Lignocellulosic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Paul W.; Sweedler, Jonathan V.

    2011-06-09

    The development of high efficiency, inexpensive processing protocols to render biomass components into fermentable substrates for the sequential processing of cell wall components into fuels and important feedstocks for the biorefinery of the future is a key goal of the national roadmap for renewable energy. Furthermore, the development of such protocols depends critically on detailed knowledge of the spatial and temporal infiltration of reagents designed to remove and separate the phenylpropenoid heteropolymer (lignin) from the processable sugar components sequestered in the rigid cell walls of plants. A detailed chemical and structural understanding of this pre-enzymatic processing in space and time was the focus of this program. We worked to develop new imaging strategies that produce real-time molecular speciation information in situ; extract sub-surface information about the effects of processing; and follow the spatial and temporal characteristics of the molecular species in the matrix and correlate this complex profile with saccharification. Spatially correlated SIMS and Raman imaging were used to provide high quality, high resolution subcellular images of Miscanthus cross sections. Furthermore, the combination of information from the mass spectrometry and Raman scattering allows specific chemical assignments of observed structures, difficult to assign from either imaging approach alone and lays the foundation for subsequent heterocorrelated imaging experiments targeted at more challenging biological systems, such as the interacting plant-microbe systems relevant to the rhizosphere.

  19. Spin Transition Molecular Materials: New Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Y., E-mail: garcia@chim.ucl.ac.be; Ksenofontov, V.; Guetlich, P. [Universitaet Mainz, Institut fuer Anorganische Chemie und Analytische Chemie (Germany)

    2002-03-15

    This short review article concerns a new family of iron(II) spin transition chain compounds containing 4-R-1,2,4-triazole derivatives whose properties have been followed by several physical techniques. A clear evidence of the LIESST effect at 20 K has been found for one of these materials by {sup 57}Fe Moessbauer spectroscopy. Potential applications in terms of pressure and thermal sensors are discussed.

  20. Molecular Simulation of Adsorption in Microporous Materials

    Directory of Open Access Journals (Sweden)

    Yiannourakou M.

    2013-11-01

    Full Text Available The development of industrial software, the decreasing cost of computing time, and the availability of well-tested forcefields make molecular simulation increasingly attractive for chemical engineers. We present here several applications of Monte-Carlo simulation techniques, applied to the adsorption of fluids in microporous solids such as zeolites and model carbons (pores < 2 nm. Adsorption was computed in the Grand Canonical ensemble with the MedeA®-GIBBS software, using energy grids to decrease computing time. MedeA®-GIBBS has been used for simulations in the NVT or NPT ensembles to obtain the density and fugacities of fluid phases. Simulation results are compared with experimental pure component isotherms in zeolites (hydrocarbon gases, water, alkanes, aromatics, ethanethiol, etc., and mixtures (methane-ethane, n-hexane-benzene, over a large range of temperatures. Hexane/benzene selectivity inversions between silicalite and Na-faujasites are well predicted with published forcefields, providing an insight on the underlying mechanisms. Also, the adsorption isotherms in Na-faujasites for light gases or ethane-thiol are well described. Regarding organic adsorbents, models of mature kerogen or coal were built in agreement with known chemistry of these systems. Obtaining realistic kerogen densities with the simple relaxation approach considered here is encouraging for the investigation of other organic systems. Computing excess sorption curves in qualitative agreement with those recently measured on dry samples of gas shale is also favorable. Although still preliminary, such applications illustrate the strength of molecular modeling in understanding complex systems in conditions where experiments are difficult.

  1. Quantum transport in superconducting hybrids : Molecular devices and layered materials

    NARCIS (Netherlands)

    Island, J.O.; van der Zant, H.S.J.

    In this thesis we investigate superconducting hybrids made from two material systems, namely, molecules and layered materials. For studies of superconducting phenomena in molecular junctions we develop two platforms which rely on the superconducting proximity effect to preserve pre-existing nano-gap

  2. Quantum transport in superconducting hybrids : Molecular devices and layered materials

    NARCIS (Netherlands)

    Island, J.O.

    2016-01-01

    In this thesis we investigate superconducting hybrids made from two material systems, namely, molecules and layered materials. For studies of superconducting phenomena in molecular junctions we develop two platforms which rely on the superconducting proximity effect to preserve pre-existing nano-gap

  3. Topography of photochemical initiation in molecular materials.

    Science.gov (United States)

    Aluker, Edward D; Krechetov, Alexander G; Mitrofanov, Anatoly Y; Zverev, Anton S; Kuklja, Maija M

    2013-11-15

    We propose a fluctuation model of the photochemical initiation of an explosive chain reaction in energetic materials. In accordance with the developed model, density fluctuations of photo-excited molecules serve as reaction nucleation sites due to the stochastic character of interactions between photons and energetic molecules. A further development of the reaction is determined by a competition of two processes. The first process is growth in size of the isolated reaction cell, leading to a micro-explosion and release of the material from the cell towards the sample surface. The second process is the overlap of reaction cells due to an increase in their size, leading to the formation of a continuous reaction zone and culminating in a macro-explosion, i.e., explosion of the entire area, covering a large part of the volume of the sample. Within the proposed analytical model, we derived expressions of the explosion probability and the duration of the induction period as a function of the initiation energy (exposure). An experimental verification of the model was performed by exploring the initiation of pentaerythritol tetranitrate (PETN) with the first harmonic of YAG: Nd laser excitation (1,064 nm, 10 ns), which has confirmed the adequacy of the model. This validation allowed us to make a few quantitative assessments and predictions. For example, there must be a few dozen optically excited molecules produced by the initial fluctuations for the explosive decomposition reaction to occur and the life-time of an isolated cell before the micro-explosion must be of the order of microseconds.

  4. Topography of Photochemical Initiation in Molecular Materials

    Directory of Open Access Journals (Sweden)

    Edward D. Aluker

    2013-11-01

    Full Text Available We propose a fluctuation model of the photochemical initiation of an explosive chain reaction in energetic materials. In accordance with the developed model, density fluctuations of photo-excited molecules serve as reaction nucleation sites due to the stochastic character of interactions between photons and energetic molecules. A further development of the reaction is determined by a competition of two processes. The first process is growth in size of the isolated reaction cell, leading to a micro-explosion and release of the material from the cell towards the sample surface. The second process is the overlap of reaction cells due to an increase in their size, leading to the formation of a continuous reaction zone and culminating in a macro-explosion, i.e., explosion of the entire area, covering a large part of the volume of the sample. Within the proposed analytical model, we derived expressions of the explosion probability and the duration of the induction period as a function of the initiation energy (exposure. An experimental verification of the model was performed by exploring the initiation of pentaerythritol tetranitrate (PETN with the first harmonic of YAG: Nd laser excitation (1,064 nm, 10 ns, which has confirmed the adequacy of the model. This validation allowed us to make a few quantitative assessments and predictions. For example, there must be a few dozen optically excited molecules produced by the initial fluctuations for the explosive decomposition reaction to occur and the life-time of an isolated cell before the micro-explosion must be of the order of microseconds.

  5. NATO Advanced Research Workshop on Molecular Engineering for Advanced Materials

    CERN Document Server

    Schaumburg, Kjeld

    1995-01-01

    An important aspect of molecular engineering is the `property directed' synthesis of large molecules and molecular assemblies. Synthetic expertise has advanced to a state which allows the assembly of supramolecules containing thousands of atoms using a `construction kit' of molecular building blocks. Expansion in the field is driven by the appearance of new building blocks and by an improved understanding of the rules for joining them in the design of nanometer-sized devices. Another aspect is the transition from supramolecules to materials. At present no single molecule (however large) has been demonstrated to function as a device, but this appears to be only a matter of time. In all of this research, which has a strongly multidisciplinary character, both existing and yet to be developed analytical techniques are and will remain indispensable. All this and more is discussed in Molecular Engineering for Advanced Materials, which provides a masterly and up to date summary of one of the most challenging researc...

  6. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality.

    Science.gov (United States)

    Yan, Dongpeng

    2015-03-23

    Molecule-based micro-/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro-sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro-/nanomaterials. Unlike single-component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro-/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional multicomponent micro-/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro-/nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Molecular Gels Materials with Self-Assembled Fibrillar Networks

    CERN Document Server

    Weiss, Richard G

    2006-01-01

    Molecular gels and fibrillar networks – a comprehensive guide to experiment and theory Molecular Gels: Materials with Self-Assembled Fibrillar Networks provides a comprehensive treatise on gelators, especially low molecular-mass gelators (LMOGs), and the properties of their gels. The structures and modes of formation of the self-assembled fibrillar networks (SAFINs) that immobilize the liquid components of the gels are discussed experimentally and theoretically. The spectroscopic, rheological, and structural features of the different classes of LMOGs are also presented. Many examples of the application of the principal analytical techniques for investigation of molecular gels (including SANS, SAXS, WAXS, UV-vis absorption, fluorescence and CD spectroscopies, scanning electron, transmission electron and optical microscopies, and molecular modeling) are presented didactically and in-depth, as are several of the theories of the stages of aggregation of individual LMOG molecules leading to SAFINs. Several actua...

  8. Investigation of hybrid molecular material prepared by ionic liquid ...

    Indian Academy of Sciences (India)

    A solid hybrid molecular material containing 1-butyl 3-methyl imidazolium cations and Keggin anions of phosphotungstic acid has been synthesized. It is fully characterized by CHN analysis, FTIR, XRD, UV-Vis-NIR DRS, 31P MAS NMR, TGA and SEM. The FTIR spectrum of the compound shows the fingerprint vibrational ...

  9. Molecularly Imprinted Polymers and Highly Porous Materials in Sensing Applications

    Science.gov (United States)

    2007-04-01

    83). The supercritical CO2 is then slowly vented. In the second method the monomers are polymerized with formic acid in the presence of...instance, materials might include polymers, molecularly imprinted polymers, dendrimers, porous silicon, optical fibres, nanoparticles /metallics, aptamersD...Analytes include small organic molecules, pharmaceuticals, pesticides, amino acids and peptides, nucleotide bases, steroids and sugars. Analytes

  10. Molecular Modelling of Peptide-Based Materials for Biomedical Applications.

    Science.gov (United States)

    Walsh, Tiffany R

    2017-01-01

    The molecular-level interactions between peptides and medically-relevant biomaterials, including nanoparticles, have the potential to advance technologies aimed at improving performance for medical applications including tissue implants and regenerative medicine. Peptides can possess materials-selective non-covalent adsorption properties, which in this instance can be exploited to enhance the biocompatibility and possible multi-functionality of medical implant materials. However, at present, their successful implementation in medical applications is largely on a trial-and-error basis, in part because a deep comprehension of general structure/function relationships at these interfaces is currently lacking. Molecular simulation approaches can complement experimental characterisation techniques and provide a wealth of relevant details at the atomic scale. In this Chapter, progress and prospects for advancing peptide-mediated medical implant surface treatments via molecular simulation is summarised for two of the most widely-found medical implant interfaces, titania and hydroxyapatite.

  11. Molecular tools for the construction of peptide-based materials.

    Science.gov (United States)

    Ramakers, B E I; van Hest, J C M; Löwik, D W P M

    2014-04-21

    Proteins and peptides are fundamental components of living systems where they play crucial roles at both functional and structural level. The versatile biological properties of these molecules make them interesting building blocks for the construction of bio-active and biocompatible materials. A variety of molecular tools can be used to fashion the peptides necessary for the assembly of these materials. In this tutorial review we shall describe five of the main techniques, namely solid phase peptide synthesis, native chemical ligation, Staudinger ligation, NCA polymerisation, and genetic engineering, that have been used to great effect for the construction of a host of peptide-based materials.

  12. Molecularly Engineered Energy Materials, an Energy Frontier Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds [Univ. of California, Los Angeles, CA (United States). Materials Science and Engineering Dept.

    2016-09-28

    Molecularly Engineered Energy Materials (MEEM) was established as an interdisciplinary cutting-edge UCLA-based research center uniquely equipped to attack the challenge of rationally designing, synthesizing and testing revolutionary new energy materials. Our mission was to achieve transformational improvements in the performance of materials via controlling the nano-and mesoscale structure using selectively designed, earth-abundant, inexpensive molecular building blocks. MEEM has focused on materials that are inherently abundant, can be easily assembled from intelligently designed building blocks (molecules, nanoparticles), and have the potential to deliver transformative economic benefits in comparison with the current crystalline-and polycrystalline-based energy technologies. MEEM addressed basic science issues related to the fundamental mechanisms of carrier generation, energy conversion, as well as transport and storage of charge and mass in tunable, architectonically complex materials. Fundamental understanding of these processes will enable rational design, efficient synthesis and effective deployment of novel three-dimensional material architectures for energy applications. Three interrelated research directions were initially identified where these novel architectures hold great promise for high-reward research: solar energy generation, electrochemical energy storage, and materials for CO2 capture. Of these, the first two remained throughout the project performance period, while carbon capture was been phased out in consultation and with approval from BES program manager.

  13. Non-Adiabatic Molecular Dynamics Methods for Materials Discovery

    Energy Technology Data Exchange (ETDEWEB)

    Furche, Filipp [Univ. of California, Irvine, CA (United States); Parker, Shane M. [Univ. of California, Irvine, CA (United States); Muuronen, Mikko J. [Univ. of California, Irvine, CA (United States); Roy, Saswata [Univ. of California, Irvine, CA (United States)

    2017-04-04

    The flow of radiative energy in light-driven materials such as photosensitizer dyes or photocatalysts is governed by non-adiabatic transitions between electronic states and cannot be described within the Born-Oppenheimer approximation commonly used in electronic structure theory. The non-adiabatic molecular dynamics (NAMD) methods based on Tully surface hopping and time-dependent density functional theory developed in this project have greatly extended the range of molecular materials that can be tackled by NAMD simulations. New algorithms to compute molecular excited state and response properties efficiently were developed. Fundamental limitations of common non-linear response methods were discovered and characterized. Methods for accurate computations of vibronic spectra of materials such as black absorbers were developed and applied. It was shown that open-shell TDDFT methods capture bond breaking in NAMD simulations, a longstanding challenge for single-reference molecular dynamics simulations. The methods developed in this project were applied to study the photodissociation of acetaldehyde and revealed that non-adiabatic effects are experimentally observable in fragment kinetic energy distributions. Finally, the project enabled the first detailed NAMD simulations of photocatalytic water oxidation by titania nanoclusters, uncovering the mechanism of this fundamentally important reaction for fuel generation and storage.

  14. Growth and modelling of spherical crystalline morphologies of molecular materials

    Science.gov (United States)

    Shalev, O.; Biswas, S.; Yang, Y.; Eddir, T.; Lu, W.; Clarke, R.; Shtein, M.

    2014-10-01

    Crystalline, yet smooth, sphere-like morphologies of small molecular compounds are desirable in a wide range of applications but are very challenging to obtain using common growth techniques, where either amorphous films or faceted crystallites are the norm. Here we show solvent-free, guard flow-assisted organic vapour jet printing of non-faceted, crystalline microspheroids of archetypal small molecular materials used in organic electronic applications. We demonstrate how process parameters control the size distribution of the spheroids and propose an analytical model and a phase diagram predicting the surface morphology evolution of different molecules based on processing conditions, coupled with the thermophysical and mechanical properties of the molecules. This experimental approach opens a path for exciting applications of small molecular organic compounds in optical coatings, textured surfaces with controlled wettability, pharmaceutical and food substance printing and others, where thick organic films and particles with high surface area are needed.

  15. Molecular receptors in metal oxide sol-gel materials prepared via molecular imprinting

    Science.gov (United States)

    Sasaki, Darryl Y.; Brinker, C. Jeffrey; Ashley, Carol S.; Daitch, Charles E.; Shea, Kenneth J.; Rush, Daniel J.

    2000-01-01

    A method is provided for molecularly imprinting the surface of a sol-gel material, by forming a solution comprised of a sol-gel material, a solvent, an imprinting molecule, and a functionalizing siloxane monomer of the form Si(OR).sub.3-n X.sub.n, wherein n is an integer between zero and three and X is a functional group capable of reacting with the imprinting molecule, evaporating the solvent, and removing the imprinting molecule to form the molecularly imprinted metal oxide sol-gel material. The use of metal oxide sol-gels allows the material porosity, pore size, density, surface area, hardness, electrostatic charge, polarity, optical density, and surface hydrophobicity to be tailored and be employed as sensors and in catalytic and separations operations.

  16. Modular Approaches to Flouride-Bridged Molecular Magnetic Materials

    DEFF Research Database (Denmark)

    Pedersen, Kasper Steen

    parameter make complexes with central ions from the 4d and 5d series particularly interesting building blocks for magnetic materials. The main obstacle is the common inherent lability of hexafluoridometallates towards hydrolysis, a tendency that is strongly diminished for several 4d and 5d [MF6]2– complexes...... spectroscopy. Lanthanides are interesting components for magnetic materials and have a huge underexplored potential in molecular magnetic systems. Advancements are, however, significantly hindered by their complicated electronic and magnetic nature. In this project, we have studied the properties of a class...

  17. Effect of polar surfaces on decomposition of molecular materials.

    Science.gov (United States)

    Kuklja, Maija M; Tsyshevsky, Roman V; Sharia, Onise

    2014-09-24

    We report polar instability in molecular materials. Polarization-induced explosive decomposition in molecular crystals is explored with an illustrative example of two crystalline polymorphs of HMX, an important energetic material. We establish that the presence of a polar surface in δ-HMX has fundamental implications for material stability and overall chemical behavior. A comparative quantum-chemical analysis of major decomposition mechanisms in polar δ-HMX and nonpolar β-HMX discovered a dramatic difference in dominating dissociation reactions, activation barriers, and reaction rates. The presence of charge on the polar δ-HMX surface alters chemical mechanisms and effectively triggers decomposition simultaneously through several channels with significantly reduced activation barriers. This results in much faster decomposition chemistry and in higher chemical reactivity of δ-HMX phase relatively to β-HMX phase. We predict decomposition mechanisms and their activation barriers in condensed δ-HMX phase, sensitivity of which happens to be comparable to primary explosives. We suggest that the observed trend among polymorphs is a manifestation of polar instability phenomena, and hence similar processes are likely to take place in all polar molecular crystals.

  18. From molecular design and materials construction to organic nanophotonic devices.

    Science.gov (United States)

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more

  19. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    Science.gov (United States)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  20. Nano-Doped Monolithic Materials for Molecular Separation

    Directory of Open Access Journals (Sweden)

    Caleb Acquah

    2017-01-01

    Full Text Available Monoliths are continuous adsorbents that can easily be synthesised to possess tuneable meso-/macropores, convective fluid transport, and a plethora of chemistries for ligand immobilisation. They are grouped into three main classes: organic, inorganic, and hybrid, based on their chemical composition. These classes may also be differentiated by their unique morphological and physicochemical properties which are significantly relevant to their specific separation applications. The potential applications of monoliths for molecular separation have created the need to enhance their characteristic properties including mechanical strength, electrical conductivity, and chemical and thermal stability. An effective approach towards monolith enhancement has been the doping and/or hybridization with miniaturized molecular species of desirable functionalities and characteristics. Nanoparticles are usually preferred as dopants due to their high solid phase dispersion features which are associated with improved intermolecular adsorptive interactions. Examples of such nanomaterials include, but are not limited to, carbon-based, silica-based, gold-based, and alumina nanoparticles. The incorporation of these nanoparticles into monoliths via in situ polymerisation and/or post-modification enhances surface adsorption for activation and ligand immobilisation. Herein, insights into the performance enhancement of monoliths as chromatographic supports by nanoparticles doping are presented. In addition, the potential and characteristics of less common nanoparticle materials such as hydroxyapatite, ceria, hafnia, and germania are discussed. The advantages and challenges of nanoparticle doping of monoliths are also discussed.

  1. Preparation of molecularly imprinted polymers simazine as material potentiometric sensor

    Directory of Open Access Journals (Sweden)

    Bow Yohandri

    2017-01-01

    Full Text Available Molecular imprinting technology is a promising technique for creating recognition elements for selected compounds and has been successfully applied for synthesis of environmental pollutants such as simazine. Simazine is a pesticide ingredient that is commonly used in agriculture, which has devastating effects on the environment if used excessively. Molecularly imprinted polymer (MIP provides cavities to form a particular space generated by removing the template when the polymer has formed. In this study, MIP using simazine as template had been made by the cooling-heating method and used as a material potentiometric sensor for detecting simazine. A template (simazine was incorporated into a pre-polymerization solution that contains a methacrylic acid as functional monomer, an ethylene glycol dimethacrylate as cross linker, and benzoyl peroxide as initiator. Characterization was performed by scanning electron microscope (SEM and fourier transforms infra-red (FTIR. The FTIR spectra of the MIP showed that the peaks of amine group decrease significantly, indicating that the simazine concentration decreases drastically. Characterization by SEM images showing the broadest pore size distribution with the highest number of pores in the MIP prepared under the heating time of 150 min. The MIPs therefore could be applied as a simazine sensor.

  2. Materials and Molecular Research Division annual report, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Progress in research in structure of materials, mechanical, and physical properties, solid state physics, and materials chemistry, including chemical structure, high temperature and surface chemistry, is reported. (FS)

  3. Digital Learning Material for Model Building in Molecular Biology

    Science.gov (United States)

    Aegerter-Wilmsen, Tinri; Janssen, Fred; Hartog, Rob; Bisseling, Ton

    2005-01-01

    Building models to describe processes forms an essential part of molecular biology research. However, in molecular biology curricula little attention is generally being paid to the development of this skill. In order to provide students the opportunity to improve their model building skills, we decided to develop a number of digital cases about…

  4. Influence of Constraining and Confinement in the Molecular Mobility of Low Molecular Weight Materials

    Science.gov (United States)

    Bras, Ana Rita Elias

    Despite the importance that the glassy state has nowadays, the transition from liquid to the glass, glass transition, still remains a matter of debate which constitutes one of the great condensed matter physics challenges. Since this fact is closely related to the cooperativity dynamics, the study of this phenomenon in glass-forming liquids under confinement in the nanometer scale, has recently emerged as a strategy to clarify factors such as the existence of an inherent length scale of the cooperative dynamics that determines the glass transition temperature. In this context, this thesis represents an additional contribution to the study of molecular dynamics of glass-forming liquids under confinement in nanoporous inorganic materials. As target compounds the liquid crystal E7 and the drug Ibuprofen were selected. Since the first exhibit various transitions makes it more sensitive to perturbations and thus appears as the ideal candidate to evaluate confinement effects. The study of ibuprofen is of particular interest because confinement emerges as a method of stabilizing the amorphous phase that is mostly important in pharmaceutical applications. Dielectric Relaxation Spectroscopy (DRS) is the main technique used to obtain detailed information about the molecular mobility in a wide range of frequencies (10-2-109Hz) (Chapter I and II). The first part of the thesis is devoted to the characterization of the two target compounds in the bulk state. The combination of DRS with the specific heat spectroscopy allowed to determine which of the E7 observed relaxation processes (a process in the isotropic phase and two processes in the nematic phase: delta and tumbling) is responsible for the glass transition temperature Tg (tumbling process). Detailed studies of ibuprofen molecular mobility in the liquid, supercooled liquid and glassy states are also presented in this chapter, where four relaxation processes are detected: two secondary processes (gamma and beta), the

  5. Materials and Molecular Research Division annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Research is presented concerning materials science including metallurgy and ceramics; solid state physics; and materials chemistry; chemical sciences covering radiation science, chemical physics, and chemical energy; nuclear science; coal research; solar energy; magnetic fusion, conservation; and environmental research. (FS)

  6. Materials and Molecular Research Division annual report 1983

    Energy Technology Data Exchange (ETDEWEB)

    Searcy, A.W.; Muller, R.H.; Peterson, C.V.

    1984-07-01

    Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

  7. Molecular materials and devices: developing new functional systems based on the coordination chemistry approach

    Directory of Open Access Journals (Sweden)

    Toma Henrique E.

    2003-01-01

    Full Text Available At the onset of the nanotechnology age, molecular designing of materials and single molecule studies are opening wide possibilities of using molecular systems in electronic and photonic devices, as well as in technological applications based on molecular switching or molecular recognition. In this sense, inorganic chemists are privileged by the possibility of using the basic strategies of coordination chemistry to build up functional supramolecular materials, conveying the remarkable chemical properties of the metal centers and the characteristics of the ancillary ligands. Coordination chemistry also provides effective self-assembly strategies based on specific metal-ligand affinity and stereochemistry. Several molecular based materials, derived from inorganic and metal-organic compounds are focused on this article, with emphasis on new supramolecular porphyrins and porphyrazines, metal-clusters and metal-polyimine complexes. Such systems are also discussed in terms of their applications in catalysis, sensors and molecular devices.

  8. Artificial Molecular Machine Immobilized Surfaces: A New Platform To Construct Functional Materials.

    Science.gov (United States)

    Zhang, Qi; Qu, Da-Hui

    2016-06-17

    Artificial molecular machines have received significant attention from chemists because of their unique ability to mimic the behaviors of biological systems. Artificial molecular machines can be easily modified with functional groups to construct new types of functional molecular switches. However, practical applications of artificial molecular machines are still challenging, because the working platform of artificial molecular machines is mostly in solution. Artificial molecular machine immobilized surfaces (AMMISs) are considered a promising platform to construct functional materials. Herein, we provide a minireview of some recent advances of functional AMMISs. The functions of AMMISs are highlighted and strategies for their construction are also discussed. Furthermore, a brief perspective of the development of artificial molecular machines towards functional materials is given. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Materials and Molecular Research Division annual report 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    Progress made in the following research areas is reported: materials sciences (metallurgy and ceramics, solid state physics, materials chemistry); chemical sciences (fundamental interactions, processes and techniques); nuclear sciences; fossil energy; advanced isotope separation technology; energy storage; magnetic fusion energy; and nuclear waste management.

  10. The Molecular Design of High-Performance Carbon Materials

    Science.gov (United States)

    2008-06-30

    molecular makeup . The overall mol wt distribution of the dimer fraction is also approximately Gaussian, and the most prevalent species are consistent...accessed June 2008). 20] Silverstein RM, Webster FX , Kiemie D. Spectrometric Identification of Organic Compounds, 7th Edition. John Wiley & Sons Ltd

  11. Optical materials based on molecular nano/microcrystals and ...

    Indian Academy of Sciences (India)

    Wintec

    quantum confinement effect familiar in semiconductor nanocrystals (Wise 2000; Horn and Rieger 2001). Conside- ... 'break-down' approaches have been developed for the synthesis of molecular nanomaterials (Ozin and .... characterization of BCADQ and semiempirical quantum chemical computations on the molecule and ...

  12. Computational Nanotechnology of Molecular Materials, Electronics and Machines

    Science.gov (United States)

    Srivastava, D.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This viewgraph presentation covers carbon nanotubes, their characteristics, and their potential future applications. The presentation include predictions on the development of nanostructures and their applications, the thermal characteristics of carbon nanotubes, mechano-chemical effects upon carbon nanotubes, molecular electronics, and models for possible future nanostructure devices. The presentation also proposes a neural model for signal processing.

  13. Molecular engineering of organic electroactive materials for redox flow batteries.

    Science.gov (United States)

    Ding, Yu; Zhang, Changkun; Zhang, Leyuan; Zhou, Yangen; Yu, Guihua

    2017-10-18

    With high scalability and independent control over energy and power, redox flow batteries (RFBs) stand out as an important large-scale energy storage system. However, the widespread application of conventional RFBs is limited by the uncompetitive performance, as well as the high cost and environmental concerns associated with the use of metal-based redox species. In consideration of advantageous features such as potentially low cost, vast molecular diversity, and highly tailorable properties, organic and organometallic molecules emerge as promising alternative electroactive species for building sustainable RFBs. This review presents a systematic molecular engineering scheme for designing these novel redox species. We provide detailed synthetic strategies for modifying the organic and organometallic redox species in terms of solubility, redox potential, and molecular size. Recent advances are then introduced covering the reaction mechanisms, specific functionalization methods, and electrochemical performances of redox species classified by their molecular structures. Finally, we conclude with an analysis of the current challenges and perspectives on future directions in this emerging research field.

  14. Molecular simulations in microporous materials: Adsorption and separation

    OpenAIRE

    Castillo, J. M.

    2010-01-01

    The adsorption of water on hydrophobic zeolites such as silicalite and on hydrophilic MOF (metal-organic framework), Cu-BTC, is completely different, as described in chapters 2 and 4. While in hydrophobic materials water adsorption isotherms are very steep and difficult to measure, both experimentally and by simulation, in hydrophilic materials water adsorbs easily and its isotherms are similar to the isotherms of other molecules. The key property to understand these differences is the dipole...

  15. Three molecular materials studied by positive muons and magnetometry

    CERN Document Server

    Lovett, B

    2000-01-01

    nematic liquid crystal 5CB. Muon spin relaxation has also been used; this has allowed the detection of fast molecular dynamics in the nematic and liquid phases. These are attributed to fast rotations of the molecules about their long axes. The complementary technique of avoided level crossing spectroscopy has allowed information about slower fluctuations of the nematic alignment to be obtained. This has been possible by applying Monte Carlo simulations of the muon signal as a function of applied field. The magnetic properties of a new layered molecular metamagnet, cobalt (II) terephthalate, are investigated. Susceptibility measurements show that the compound exhibits two low field phase transitions with decreasing temperature. The first is to a collinear antiferromagnetic state and at a slightly lower temperature a small spin canting appears. The virgin magnetization is well described by a two sublattice mean field model of a metamagnet, since the canting is smeared out by polycrystalline averaging effects. T...

  16. The Role of Hydrogen Bond in Designing Molecular Optical Materials

    Directory of Open Access Journals (Sweden)

    Leonardo H. R. Dos Santos

    2016-04-01

    Full Text Available In this perspective article, we revise some of the empirical and semi-empirical strategies for predicting how hydrogen bonding affects molecular and atomic polarizabilities in aggregates. We use p-nitroaniline and hydrated oxalic acid as working examples to illustrate the enhancement of donor and acceptor functional-group polarizabilities and their anisotropy. This is significant for the evaluation of electrical susceptibilities in crystals; and the properties derived from them like the refractive indices.

  17. Phase behaviour of macromolecular liquid crystalline materials. Computational studies at the molecular level

    CERN Document Server

    Stimson, L M

    2003-01-01

    Molecular simulations provide an increasingly useful insight into the static and dynamic characteristics of materials. In this thesis molecular simulations of macro-molecular liquid crystalline materials are reported. The first liquid crystalline material that has been investigated is a side chain liquid crystal polymer (SCLCP). In this study semi-atomistic molecular dynamics simulations have been conducted at a range of temperatures and an aligning potential has been applied to mimic the effect of a magnetic field. In cooling the SCLCP from an isotropic melt, microphase separation was observed yielding a domain structure. The application of a magnetic field to this structure aligns the domains producing a stable smectic mesophase. This is the first study in which mesophases have been observed using an off-lattice model of a SCLCP. The second material that has been investigated is a dendrimer with terminal mesogenic functionalization. Here, a multi-scale approach has been taken with Monte Carlo studies of a s...

  18. Far-infrared spectroscopy of lanthanide-based molecular magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Sabrina

    2015-05-13

    This thesis demonstrates the applicability of far-infrared spectroscopy for the study of the crystal-field splitting of lanthanides in single-molecular magnetic materials. The far-infrared studies of three different kinds of single-molecular-magnetic materials, a single-ion magnet, a single-chain magnet and an exchange-coupled cluster, yielded a deeper understanding of the crystal-field splitting of the lanthanides in these materials. In addition, our results offered the opportunity to gain a deeper insight into the relaxation processes of these materials.

  19. Molecular modeling for the design of novel performance chemicals and materials

    CERN Document Server

    Rai, Beena

    2012-01-01

    Molecular modeling (MM) tools offer significant benefits in the design of industrial chemical plants and material processing operations. While the role of MM in biological fields is well established, in most cases MM works as an accessory in novel products/materials development rather than a tool for direct innovation. As a result, MM engineers and practitioners are often seized with the question: ""How do I leverage these tools to develop novel materials or chemicals in my industry?"" Molecular Modeling for the Design of Novel Performance Chemicals and Materials answers this important questio

  20. Preparation and Gas Adsorption of Porous Materials from Molecular Precursors

    DEFF Research Database (Denmark)

    Hu, Xinming

    ABSTRACT This thesis deals with the synthesis of porous materials and their applications in gas adsorption. The thesis consists of eight chapters as follows: The first two chapters provide a brief introduction to porous materials and gas adsorption. Chapter 1 gives an overview of construction...... and characteristics of various porous materials, including activated carbons, zeolites, metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and organic porous polymers (POPs). Chapter 2 briefly introduces gas adsorption theory, such as physical and chemical adsorption, adsorption isotherms...... chlorination takes place during the oxidative polymerization, which affects not only the porosities but also photophysical properties of the resulting IPOPs. A systematic study on chlorination demonstrates that chlorination occurs on the TATA core, rather than the peripheral pendants. The chlorination gives...

  1. Biomimetic self-assembly of apatite hybrid materials: from a single molecular template to bi-/multi-molecular templates.

    Science.gov (United States)

    Ma, Jun; Wang, Jianglin; Ai, Xin; Zhang, Shengmin

    2014-01-01

    The self-assembly of apatite and proteins is a critical process to induce the formation of the bones and teeth in vertebrates. Although hierarchical structures and biomineralization mechanisms of the mineralized tissues have been intensively studied, most researches focus on the self-assembly biomimetic route using one single-molecular template, while the natural bone is an outcome of a multi-molecular template co-assembly process. Inspired by such a mechanism in nature, a novel strategy based on multi-molecular template co-assembly for fabricating bone-like hybrid materials was firstly proposed by the authors. In this review article we have summarized the new trends from single-molecular template to bi-/multi-molecular template systems in biomimetic fabrication of apatite hybrid materials. So far, many novel apatite hybrid materials with controlled morphologies and hierarchical structures have been successfully achieved using bi-/multi-molecular template strategy, and are found to have multiple common features in comparison with natural mineralized tissues. The carboxyl, carbonyl and amino groups of the template molecules are identified to initiate the nucleation of calcium phosphate during the assembling process. For bi-/multi-molecular templates, the incorporation of multiple promotion sites for calcium and phosphate ions precisely enables to regulate the apatite nucleation from the early stage. The roles of acidic molecules and the synergetic effects of protein templates have been significantly recognized in recent studies. In addition, a specific attention is paid to self-assembling of apatite nanoparticles into ordered structures on tissue regenerative scaffolds due to their promising clinical applications ranging from implant grafts, coatings to drug and gene delivery. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Materials and Molecular Research Division. Annual report 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    Progress is reported in the areas of materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced (laser) isotope separation technology, energy storage, superconducting magnets, and nuclear waste management. Work for others included phase equilibria for coal gasification products and ..beta..-alumina electrolytes for storage batteries. (DLC)

  3. Molecular simulations in microporous materials : Adsorption and separation

    NARCIS (Netherlands)

    Castillo, J.M.

    2010-01-01

    The adsorption of water on hydrophobic zeolites such as silicalite and on hydrophilic MOF (metal-organic framework), Cu-BTC, is completely different, as described in chapters 2 and 4. While in hydrophobic materials water adsorption isotherms are very steep and difficult to measure, both

  4. Charge density research: from inorganic and molecular materials to proteins

    OpenAIRE

    Lecomte, Claude; Aubert, Emmanuel; Legrand, Vincent; Porcher, Florence; Pillet, Sébastien; Guillot, Benoît; Jelsch, Christian

    2005-01-01

    International audience; This paper intends to present applications of experimental charge density research in physics, chemistry and biology. It describes briefly most methods for modelling the charge density and calculating and analyzing derived properties (electrostatic potential, topological properties). These methods are illustrated through examples ranging from material science and coordination chemistry to biocrystallography, like the estimation of electrostatic energy in a zeolite-like...

  5. Materials and Molecular Research Division annual report 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    This report is divided into: materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced isotope separation technology (AISI), energy storage, magnetic fusion energy (MFE), nuclear waste management, and work for others (WFO). Separate abstracts have been prepared for all except AIST, MFE, and WFO. (DLC)

  6. Molecularly imprinted polymers as recognition materials for electronic tongues.

    Science.gov (United States)

    Huynh, Tan-Phat; Kutner, Wlodzimierz

    2015-12-15

    For over three decades now, molecularly imprinted polymers (MIPs) have successfully been used for selective chemical sensing because the shape and size of their imprinted molecular cavities perfectly matched those of the target analyte molecules. Moreover, orientation of recognizing sites of these cavities corresponded to those of the binding sites of the template molecules. In contrast, electronic tongue (e-tongue) is usually an array of low-affinity recognition units. Its selectivity is based on recognition pattern or multivariate analysis. Merging these two sensing devices led to a synergetic hybrid sensor, an MIP based e-tongue. Fabrication of these e-tongues permitted simultaneous sensing and discriminating several analytes in complex solutions of many components so that these arrays compensated for limitation in cross-reactivity of MIPs. Apparently, analytical signals generated by MIP-based e-tongues, compared to those of ordinary sensor arrays, were more reliable where a unique pattern or 'fingerprint' for each analyte was generated. Additionally, several transduction platforms (from spectroscopic to electrochemical) engaged in constructing MIP-based e-tongues, found their broad and flexible applications. The present review critically evaluates achievements in recent developments of the MIP based e-tongues for chemosensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Charge carrier mobility in organic molecular materials probed by electromagnetic waves.

    Science.gov (United States)

    Seki, Shu; Saeki, Akinori; Sakurai, Tsuneaki; Sakamaki, Daisuke

    2014-06-21

    Charge carrier mobility is an essential parameter providing control over the performance of semiconductor devices fabricated using a variety of organic molecular materials. Recent design strategies toward molecular materials have been directed at the substitution of amorphous silicon-based semiconductors; accordingly, numerous measurement techniques have been designed and developed to probe the electronic conducting nature of organic materials bearing extremely wide structural variations in comparison with inorganic and/or metal-oxide semiconductor materials. The present perspective highlights the evaluation methodologies of charge carrier mobility in organic materials, as well as the merits and demerits of techniques examining the feasibility of organic molecules, crystals, and supramolecular assemblies in semiconductor applications. Beyond the simple substitution of amorphous silicon, we have attempted to address in this perspective the systematic use of measurement techniques for future development of organic molecular semiconductors.

  8. Shock waves simulated using the dual domain material point method combined with molecular dynamics

    Science.gov (United States)

    Zhang, Duan Z.; Dhakal, Tilak R.

    2017-04-01

    In this work we combine the dual domain material point method with molecular dynamics in an attempt to create a multiscale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically nonequilibrium state, and conventional constitutive relations or equations of state are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a molecular dynamics simulation of a group of atoms surrounding the material point. Rather than restricting the multiscale simulation in a small spatial region, such as phase interfaces, or crack tips, this multiscale method can be used to consider nonequilibrium thermodynamic effects in a macroscopic domain. This method takes the advantage that the material points only communicate with mesh nodes, not among themselves; therefore molecular dynamics simulations for material points can be performed independently in parallel. The dual domain material point method is chosen for this multiscale method because it can be used in history dependent problems with large deformation without generating numerical noise as material points move across cells, and also because of its convergence and conservation properties. To demonstrate the feasibility and accuracy of this method, we compare the results of a shock wave propagation in a cerium crystal calculated using the direct molecular dynamics simulation with the results from this combined multiscale calculation.

  9. Molecular Engineering of Functional Materials for Energy and Opto-Electronic Applications.

    Science.gov (United States)

    Gao, Peng; Domanski, Konrad; Konrad, Domanski; Aghazada, Sadig; Rakstys, Kasparas; Paek, Sanghyun; Nazeeruddin, Mohammad Khaja

    2015-01-01

    This review presents an overview of the dedicated research directions of the Group for Molecular Engineering of Functional Materials (GMF). This includes molecular engineering aspects of sensitizers constructed from ruthenium complexes, organic molecules, porphyrins and phthalocyanines. Manipulation of organometal trihalide perovskites, and charge transporting materials for high performance perovskite solar cells and photo-detectors are also described. Controlling phosphorescence color, and quantum yields in iridium complexes by tailoring ligands for organic light emitting diodes are demonstrated. Efficient reduction of CO(2) to CO using molecular catalyst on a protected Cu(2)O photocathode, and cost-effective water-splitting cell using a high efficiency perovskite solar cell are presented.

  10. Molecular Design of Low-Density Multifunctional Hybrid Materials

    Science.gov (United States)

    2016-01-01

    Research was conducted by 2 Stanford graduate students working in each of the two Focus Areas, as well as our partners at WPAFB, IBM , and Princeton...Materials & Interfaces, 2015. 7(12): p. 6812-6818. 10. Giachino, M., B.L. Watson , G. Dubois, and R.H. Dauskardt, Selective Deposition of...Interfaces, 2015. 7(12): p. 6812-6818. Giachino, M., B.L. Watson , G. Dubois, and R.H. Dauskardt, Selective Deposition of Compositionally Graded Hybrid

  11. Multiresolution molecular mechanics: Surface effects in nanoscale materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qingcheng, E-mail: qiy9@pitt.edu; To, Albert C., E-mail: albertto@pitt.edu

    2017-05-01

    Surface effects have been observed to contribute significantly to the mechanical response of nanoscale structures. The newly proposed energy-based coarse-grained atomistic method Multiresolution Molecular Mechanics (MMM) (Yang, To (2015), ) is applied to capture surface effect for nanosized structures by designing a surface summation rule SR{sup S} within the framework of MMM. Combined with previously proposed bulk summation rule SR{sup B}, the MMM summation rule SR{sup MMM} is completed. SR{sup S} and SR{sup B} are consistently formed within SR{sup MMM} for general finite element shape functions. Analogous to quadrature rules in finite element method (FEM), the key idea to the good performance of SR{sup MMM} lies in that the order or distribution of energy for coarse-grained atomistic model is mathematically derived such that the number, position and weight of quadrature-type (sampling) atoms can be determined. Mathematically, the derived energy distribution of surface area is different from that of bulk region. Physically, the difference is due to the fact that surface atoms lack neighboring bonding. As such, SR{sup S} and SR{sup B} are employed for surface and bulk domains, respectively. Two- and three-dimensional numerical examples using the respective 4-node bilinear quadrilateral, 8-node quadratic quadrilateral and 8-node hexahedral meshes are employed to verify and validate the proposed approach. It is shown that MMM with SR{sup MMM} accurately captures corner, edge and surface effects with less 0.3% degrees of freedom of the original atomistic system, compared against full atomistic simulation. The effectiveness of SR{sup MMM} with respect to high order element is also demonstrated by employing the 8-node quadratic quadrilateral to solve a beam bending problem considering surface effect. In addition, the introduced sampling error with SR{sup MMM} that is analogous to numerical integration error with quadrature rule in FEM is very small. - Highlights:

  12. A spin transition molecular material with a wide bistability domain.

    Science.gov (United States)

    Garcia, Yann; Moscovici, Jacques; Michalowicz, Alain; Ksenofontov, Vadim; Levchenko, Georg; Bravic, Georges; Chasseau, Daniel; Gütlich, Philipp

    2002-11-04

    [Fe(hyptrz)3](4-chloro-3-nitrophenylsulfonate)22 H2O (1; hyptrz=4-(3-hydroxypropyl)-1,2,4-triazole) has been synthesized and its physical properties have been investigated by several physical techniques including magnetic susceptibility measurements, calorimetry, and Mössbauer, optical, and EXAFS spectroscopy. Compound 1 exhibits a spin transition below room temperature, together with a very wide thermal hysteresis of about 50 K. This represents the widest hysteresis loop ever observed for an FeII-1,2,4-triazole spin transition material. The cooperativity is discussed on the basis of temperature-dependent EXAFS studies and of the structural features of a CuII analogue. The EXAFS structural model of (1) in both spin states is compared to that obtained for a related material whose spin transition occurs above room temperature. EXAFS spectroscopy suggests that 1,2,4-triazole chain compounds retain a linear character whatever the spin state of the iron(II).

  13. Molecular Beam Epitaxy of lithium niobium oxide multifunctional materials

    Science.gov (United States)

    Tellekamp, M. Brooks; Shank, Joshua C.; Doolittle, W. Alan

    2017-04-01

    The role of stoichiometry and growth temperature in the preferential nucleation of material phases in the Li-Nb-O family are explored yielding an empirical growth phase diagram. It is shown that while single parameter variation often produces multi-phase films, combining substrate temperature control with the previously published lithium flux limited growth allows the repeatable growth of high quality single crystalline films of many different oxide phases. Higher temperatures (800-1050 °C) than normally used in MBE were necessary to achieve high quality materials. At these temperatures the desorption of surface species is shown to play an important role in film composition. Using this method single phase films of NbO, NbO2, LiNbO2, Li3NbO4, LiNbO3, and LiNb3O8 have been achieved in the same growth system, all on c-plane sapphire. Finally, the future of these films in functional oxide heterostructures is briefly discussed.

  14. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites

    DEFF Research Database (Denmark)

    van Kooten, Elishevah M. M. E.; Wielandt, Daniel Kim Peel; Schiller, Martin

    2016-01-01

    -50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals...... that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants....

  15. Molecular depth profiling of organic and biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, John S. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom)]. E-mail: John.Fletcher@manchester.ac.uk; Conlan, Xavier A. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom); Lockyer, Nicholas P. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom); Vickerman, John C. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom)

    2006-07-30

    Atomic depth profiling using secondary ion mass spectrometry, SIMS, is common in the field micro-electronics; however, the generation of molecular information as a function of sample depth is difficult due to the accumulation of damage both on and beneath the sample surface. The introduction of polyatomic ion beams such as SF{sub 5} and C{sub 60} have raised the possibility of overcoming this problem as they deposit the majority of their energy in the upper surface of the sample resulting in increased sputter yields but with a complimentary reduction in sub-surface damage accumulation. In this paper we report the depth profile analysis of the bio-polymer polycaprolactone, PCL, using the polyatomic ions Au{sub 3}{sup +} and C{sub 60}{sup +} and the monoatomic Au{sup +}. Results are compared to recent analysis of a similar sample using SF{sub 5}{sup +}. C{sub 60}{sup +} depth profiling of cellulose is also demonstrated, an experiment that has been reported as unsuccessful when attempted with SF{sub 5}{sup +} implications for biological analysis are discussed.

  16. Preparation and Gas Adsorption of Porous Materials from Molecular Precursors

    DEFF Research Database (Denmark)

    Hu, Xinming

    with bimodal porosity are produced via cyclotrimerization of two aromatic tetranitriles and in situ carbonization in molten ZnCl2. The carbonization occurs by decomposition of triazine rings, which results in complete loss of nitrogen and formation of substantial mesopores. The resulting materials possess...... surface areas above 1200 m2 g−1 and exhibit exceptionally high H2 uptake (up to 2.34 wt% at 77 K and 1 bar) but low CO2 uptake capacity. In Chapter 4, a nitrogen-rich porous carbon is prepared via cyclotrimerization of a perfluorinated aromatic nitrile and in situ carbonization in molten ZnCl2......), and H2 (2.0 wt%, 77 K and 1.0 bar). Chapters 5, 6, and 7 deal with the construction of triazatriangulenium (TATA)-based ionic porous frameworks. A variety of polycondensation reactions have been applied, but only FeCl3-promoted oxidative polymerization of thiophene-/carbazolefunctionalized TATAs...

  17. Multiscale Modeling using Molecular Dynamics and Dual Domain Material Point Method

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Tilak Raj [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division. Fluid Dynamics and Solid Mechanics Group, T-3; Rice Univ., Houston, TX (United States)

    2016-07-07

    For problems involving large material deformation rate, the material deformation time scale can be shorter than the material takes to reach a thermodynamical equilibrium. For such problems, it is difficult to obtain a constitutive relation. History dependency become important because of thermodynamic non-equilibrium. Our goal is to build a multi-scale numerical method which can bypass the need for a constitutive relation. In conclusion, multi-scale simulation method is developed based on the dual domain material point (DDMP). Molecular dynamics (MD) simulation is performed to calculate stress. Since the communication among material points is not necessary, the computation can be done embarrassingly parallel in CPU-GPU platform.

  18. Multiresolution molecular mechanics: Surface effects in nanoscale materials

    Science.gov (United States)

    Yang, Qingcheng; To, Albert C.

    2017-05-01

    Surface effects have been observed to contribute significantly to the mechanical response of nanoscale structures. The newly proposed energy-based coarse-grained atomistic method Multiresolution Molecular Mechanics (MMM) (Yang, To (2015), [57]) is applied to capture surface effect for nanosized structures by designing a surface summation rule SRS within the framework of MMM. Combined with previously proposed bulk summation rule SRB, the MMM summation rule SRMMM is completed. SRS and SRB are consistently formed within SRMMM for general finite element shape functions. Analogous to quadrature rules in finite element method (FEM), the key idea to the good performance of SRMMM lies in that the order or distribution of energy for coarse-grained atomistic model is mathematically derived such that the number, position and weight of quadrature-type (sampling) atoms can be determined. Mathematically, the derived energy distribution of surface area is different from that of bulk region. Physically, the difference is due to the fact that surface atoms lack neighboring bonding. As such, SRS and SRB are employed for surface and bulk domains, respectively. Two- and three-dimensional numerical examples using the respective 4-node bilinear quadrilateral, 8-node quadratic quadrilateral and 8-node hexahedral meshes are employed to verify and validate the proposed approach. It is shown that MMM with SRMMM accurately captures corner, edge and surface effects with less 0.3% degrees of freedom of the original atomistic system, compared against full atomistic simulation. The effectiveness of SRMMM with respect to high order element is also demonstrated by employing the 8-node quadratic quadrilateral to solve a beam bending problem considering surface effect. In addition, the introduced sampling error with SRMMM that is analogous to numerical integration error with quadrature rule in FEM is very small.

  19. van der Waals dispersion interactions in molecular materials: beyond pairwise additivity

    Science.gov (United States)

    Reilly, Anthony M.

    2015-01-01

    van der Waals (vdW) dispersion interactions are a key ingredient in the structure, stability, and response properties of many molecular materials and essential for us to be able to understand and design novel intricate molecular systems. Pairwise-additive models of vdW interactions are ubiquitous, but neglect their true quantum-mechanical many-body nature. In this perspective we focus on recent developments and applications of methods that can capture collective and many-body effects in vdW interactions. Highlighting a number of recent studies in this area, we demonstrate both the need for and usefulness of explicit many-body treatments for obtaining qualitative and quantitative accuracy for modelling molecular materials, with applications presented for small-molecule dimers, supramolecular host–guest complexes, and finally stability and polymorphism in molecular crystals. PMID:28757994

  20. Materials learning from life: concepts for active, adaptive and autonomous molecular systems.

    Science.gov (United States)

    Merindol, Rémi; Walther, Andreas

    2017-09-18

    Bioinspired out-of-equilibrium systems will set the scene for the next generation of molecular materials with active, adaptive, autonomous, emergent and intelligent behavior. Indeed life provides the best demonstrations of complex and functional out-of-equilibrium systems: cells keep track of time, communicate, move, adapt, evolve and replicate continuously. Stirred by the understanding of biological principles, artificial out-of-equilibrium systems are emerging in many fields of soft matter science. Here we put in perspective the molecular mechanisms driving biological functions with the ones driving synthetic molecular systems. Focusing on principles that enable new levels of functionalities (temporal control, autonomous structures, motion and work generation, information processing) rather than on specific material classes, we outline key cross-disciplinary concepts that emerge in this challenging field. Ultimately, the goal is to inspire and support new generations of autonomous and adaptive molecular devices fueled by self-regulating chemistry.

  1. Microscopic Observation of Kinetic Molecular Sieving of Hydrogen Isotopes in a Nanoporous Material

    Science.gov (United States)

    Nguyen, T. X.; Jobic, H.; Bhatia, S. K.

    2010-08-01

    We report quasielastic neutron scattering studies of H2-D2 diffusion in a carbon molecular sieve, demonstrating remarkable quantum effects, with the heavier isotope diffusing faster below 100 K, confirming our recent predictions. Our transition state theory and molecular dynamics calculations show that while it is critical for this effect to have narrow windows of size comparable to the de Broglie wavelength, high flux requires that the energy barrier be reduced through small cages. Such materials will enable novel processes for kinetic molecular sieving of hydrogen isotopes.

  2. Molecular dynamics simulations of disordered materials from network glasses to phase-change memory alloys

    CERN Document Server

    Massobrio, Carlo; Bernasconi, Marco; Salmon, Philip S

    2015-01-01

    This book is a unique reference work in the area of atomic-scale simulation of glasses. For the first time, a highly selected panel of about 20 researchers provides, in a single book, their views, methodologies and applications on the use of molecular dynamics as a tool to describe glassy materials. The book covers a wide range of systems covering ""traditional"" network glasses, such as chalcogenides and oxides, as well as glasses for applications in the area of phase change materials. The novelty of this work is the interplay between molecular dynamics methods (both at the classical and firs

  3. Integrating Molecular Computation and Material Production in an Artificial Subcellular Matrix

    DEFF Research Database (Denmark)

    Fellermann, Harold; Hadorn, Maik; Bönzli, Eva

    compartmentalized re- action compartments that interact and get delivered through vesicle trafficking. The European Commission funded project MatchIT (Matrix for Chemical IT) aims at creating an artificial cellular matrix that seamlessly integrates infor- mation processing and material production in much the same......Living systems are unique in that they integrate molecular recognition and information processing with material production on the molecular scale. Pre- dominant locus of this integration is the cellular matrix, where a multitude of biochemical reactions proceed simultaneously in highly...... way as its biological counterpart: the project employs addressable chemical containers (chemtainers) interfaced with electronic computers via mechano-electronic microfluidics....

  4. Nanometer and molecular materials: the greatness of the very tiny; Materiales manometricos y moleculares: la grandeza de lo infimo

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, Marina [Centro de Investigacion en Energia (CIE) de la UNAM, Temixco, Morelos (Mexico)

    2010-07-01

    Some of the materials have been present in our lives for many years, and now appear with unique or improved properties by the fact that they can be manufactured in the nanometer scale; that is, a million times smaller than a millimeter and with geometries that include the nanodots, the nanotubes, the nanowires, to mention a few of them. The most popular is the titanium dioxide (Titania), known by many as the white pigment in paints, sunscreens, cosmetics and others for their null toxicity, low cost and high stability. Strictly speaking, these features are really applicable to the micrometric material (which is a thousand times larger than the nanometer) and it is still to be proven toxicity and stability of the nanometer materials; but it is a fact that the nanometer titania is very popular in a multitude of applications that have to do with catalysis, sensors, and energy conversion and storing. We will also deal with conductive polymers, which are molecular conjugated materials. [Spanish] Algunos de los materiales han estado presentes en nuestras vidas por muchos anos y ahora aparecen con propiedades unicas o mejoradas por el hecho de que se pueden fabricar en la escala de los nanometros; esto es, un millon de veces mas pequenos que un milimetro y con geometrias que comprenden los nanopuntos, los nanotubos, los nanoalambres, por mencionar algunas. El mas popular es el dioxido de titanio (titania), conocido por muchos como el pigmento blanco de las pinturas, filtros solares, cosmeticos y demas, por su nula toxicidad, bajo costo y gran estabilidad. Estrictamente hablando, estas caracteristicas son realmente aplicables al material micrometrico (que es mil veces mas grande que el nanometrico) y todavia esta por probarse la toxicidad y estabilidad de los nanomateriales; pero es un hecho que la titania nanometrica es muy popular en un sinfin de aplicaciones que tienen que ver con catalisis, sensores, y conversion y almacenamiento de energia. Hablaremos tambien de

  5. (TMTSF)2X materials and structural implications for low-dimensional polymeric and disordered molecular semiconductors

    DEFF Research Database (Denmark)

    Bechgaard, Klaus; Nielsen, Martin Meedom; Krebs, Frederik C

    2000-01-01

    The structural characteristics and the relation to the electronic properties of three types of molecular materials are discussed. In TMTSF2X salts a triclinic unit cell it suggested to be important in avoiding a 2k(F) Peierls distortion. In polythiophenes appropriate ordering of microcrystallites...

  6. Evaluation and selection of sensing materials for carbon dioxide (CO2) sensor by molecular modeling

    NARCIS (Netherlands)

    Chen, X.P.; Wong, C.K.Y.; Yuan, C.A.; Zhang, G.Q.

    2011-01-01

    We report a molecular modeling study to evaluate and select conducting polymers (CPs) as the sensing materials of carbon dioxide (CO2) sensor. The interaction between polymer and gas and the adsorption of the gas molecules in the polymer matrix are investigated. Polymers considered for this work

  7. Evaluation and selection of sensing materials for carbon dioxide (CO 2) sensor by molecular modeling

    NARCIS (Netherlands)

    Chen, X.P.; Wong, C.K.Y.; Yuan, C.A.; Zhang, G.Q.

    2011-01-01

    We report a molecular modeling study to evaluate and select conducting polymers (CPs) as the sensing materials of carbon dioxide (CO2) sensor. The interaction between polymer and gas and the adsorption of the gas molecules in the polymer matrix are investigated. Polymers considered for this work

  8. The mechanical properties modeling of nano-scale materials by molecular dynamics

    NARCIS (Netherlands)

    Yuan, C.; Driel, W.D. van; Poelma, R.; Zhang, G.Q.

    2012-01-01

    We propose a molecular modeling strategy which is capable of mod-eling the mechanical properties on nano-scale low-dielectric (low-k) materials. Such modeling strategy has been also validated by the bulking force of carbon nano tube (CNT). This modeling framework consists of model generation method,

  9. Boronate affinity materials for separation and molecular recognition: structure, properties and applications.

    Science.gov (United States)

    Li, Daojin; Chen, Yang; Liu, Zhen

    2015-11-21

    Boronate affinity materials, as unique sorbents, have emerged as important media for the selective separation and molecular recognition of cis-diol-containing compounds. With the introduction of boronic acid functionality, boronate affinity materials exhibit several significant advantages, including broad-spectrum selectivity, reversible covalent binding, pH-controlled capture/release, fast association/desorption kinetics, and good compatibility with mass spectrometry. Because cis-diol-containing biomolecules, including nucleosides, saccharides, glycans, glycoproteins and so on, are the important targets in current research frontiers such as metabolomics, glycomics and proteomics, boronate affinity materials have gained rapid development and found increasing applications in the last decade. In this review, we critically survey recent advances in boronate affinity materials. We focus on fundamental considerations as well as important progress and new boronate affinity materials reported in the last decade. We particularly discuss on the effects of the structure of boronate ligands and supporting materials on the properties of boronate affinity materials, such as binding pH, affinity, selectivity, binding capacity, tolerance for interference and so on. A variety of promising applications, including affinity separation, proteomics, metabolomics, disease diagnostics and aptamer selection, are introduced with main emphasis on how boronate affinity materials can solve the issues in the applications and what merits boronate affinity materials can provide.

  10. Acetic and Acrylic Acid Molecular Imprinted Model Silicone Hydrogel Materials for Ciprofloxacin-HCl Delivery

    Science.gov (United States)

    Hui, Alex; Sheardown, Heather; Jones, Lyndon

    2012-01-01

    Contact lenses, as an alternative drug delivery vehicle for the eye compared to eye drops, are desirable due to potential advantages in dosing regimen, bioavailability and patient tolerance/compliance. The challenge has been to engineer and develop these materials to sustain drug delivery to the eye for a long period of time. In this study, model silicone hydrogel materials were created using a molecular imprinting strategy to deliver the antibiotic ciprofloxacin. Acetic and acrylic acid were used as the functional monomers, to interact with the ciprofloxacin template to efficiently create recognition cavities within the final polymerized material. Synthesized materials were loaded with 9.06 mM, 0.10 mM and 0.025 mM solutions of ciprofloxacin, and the release of ciprofloxacin into an artificial tear solution was monitored over time. The materials were shown to release for periods varying from 3 to 14 days, dependent on the loading solution, functional monomer concentration and functional monomer:template ratio, with materials with greater monomer:template ratio (8:1 and 16:1 imprinted) tending to release for longer periods of time. Materials with a lower monomer:template ratio (4:1 imprinted) tended to release comparatively greater amounts of ciprofloxacin into solution, but the release was somewhat shorter. The total amount of drug released from the imprinted materials was sufficient to reach levels relevant to inhibit the growth of common ocular isolates of bacteria. This work is one of the first to demonstrate the feasibility of molecular imprinting in model silicone hydrogel-type materials. PMID:28817033

  11. Acetic and Acrylic Acid Molecular Imprinted Model Silicone Hydrogel Materials for Ciprofloxacin-HCl Delivery

    Directory of Open Access Journals (Sweden)

    Lyndon Jones

    2012-01-01

    Full Text Available Contact lenses, as an alternative drug delivery vehicle for the eye compared to eye drops, are desirable due to potential advantages in dosing regimen, bioavailability and patient tolerance/compliance. The challenge has been to engineer and develop these materials to sustain drug delivery to the eye for a long period of time. In this study, model silicone hydrogel materials were created using a molecular imprinting strategy to deliver the antibiotic ciprofloxacin. Acetic and acrylic acid were used as the functional monomers, to interact with the ciprofloxacin template to efficiently create recognition cavities within the final polymerized material. Synthesized materials were loaded with 9.06 mM, 0.10 mM and 0.025 mM solutions of ciprofloxacin, and the release of ciprofloxacin into an artificial tear solution was monitored over time. The materials were shown to release for periods varying from 3 to 14 days, dependent on the loading solution, functional monomer concentration and functional monomer:template ratio, with materials with greater monomer:template ratio (8:1 and 16:1 imprinted tending to release for longer periods of time. Materials with a lower monomer:template ratio (4:1 imprinted tended to release comparatively greater amounts of ciprofloxacin into solution, but the release was somewhat shorter. The total amount of drug released from the imprinted materials was sufficient to reach levels relevant to inhibit the growth of common ocular isolates of bacteria. This work is one of the first to demonstrate the feasibility of molecular imprinting in model silicone hydrogel-type materials.

  12. Exploitation of molecular mobilities for advanced organic optoelectronic and photonic nano-materials

    Science.gov (United States)

    Gray, Tomoko O.

    Electro-optically active organic materials have shown great potential in advanced technologies such as ultrafast electro-optical switches for broadband communication, light-emitting diodes, and photovoltaic cells. Currently, the maturity of chemical synthesis enables a sophisticated integration of the active elements into complex macromolecules. Also, the structure-property relationships of the isolated single electrically/optically active elements are well established. Unfortunately, such correlations involving single molecule are not applicable to complex unstructured condensed systems, in which unique mesoscale properties and complex dynamics of super-/supra-molecular structures are present. Our current challenge arises, in particular, from a deficiency of appropriate characterization tools that close the gap between phenomenological measurements and theoretical models. This work addresses submolecular mobilities relevant for opto-electronic functionalities of photoluminescent polymers and non-linear optical (NLO) materials. Thereby, I will introduce novel nanoscale thermomechanical characterization tools that are based on scanning force microscopy. From nanoscale thermomechanical measurements sub-/super-molecular mobilities of novel optoelectronic materials can be inferred and to some degree controlled. For instance, we have explored interfacial constraints as a engineering tool to control molecular mobility. This will be illustrated with electroluminescent polymers, which are prone to undesired pi-pi aggregation due to the rod-like structure---intrinsic to all conjugated polymers. The nanoscale confinement is used to reduced chain mobility, and thus, hinders undesired aggregation, and consequently, yields superior spectral stability. From the nanomaterial design perspective, I will also address mobility control with targeted molecular designs. This involves two classes of novel NLO materials, side-chain dendronized polymers and self-assembling molecular

  13. In-situ preparation of functionalized molecular sieve material and a methodology to remove template

    Science.gov (United States)

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-03-01

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

  14. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands

    Science.gov (United States)

    Trautner, Stefan; Jasik, Juraj; Parigger, Christian G.; Pedarnig, Johannes D.; Spendelhofer, Wolfgang; Lackner, Johannes; Veis, Pavel; Heitz, Johannes

    2017-03-01

    Laser-induced breakdown spectroscopy (LIBS) for composition analysis of polymer materials results in optical spectra containing atomic and ionic emission lines as well as molecular emission bands. In the present work, the molecular bands are analyzed to obtain spectroscopic information about the plasma state in an effort to quantify the content of different elements in the polymers. Polyethylene (PE) and a rubber material from tire production are investigated employing 157 nm F2 laser and 532 nm Nd:YAG laser ablation in nitrogen and argon gas background or in air. The optical detection reaches from ultraviolet (UV) over the visible (VIS) to the near infrared (NIR) spectral range. In the UV/VIS range, intense molecular emissions, C2 Swan and CN violet bands, are measured with an Echelle spectrometer equipped with an intensified CCD camera. The measured molecular emission spectra can be fitted by vibrational-rotational transitions by open access programs and data sets with good agreement between measured and fitted spectra. The fits allow determining vibrational-rotational temperatures. A comparison to electronic temperatures Te derived earlier from atomic carbon vacuum-UV (VUV) emission lines show differences, which can be related to different locations of the atomic and molecular species in the expanding plasma plume. In the NIR spectral region, we also observe the CN red bands with a conventional CDD Czerny Turner spectrometer. The emission of the three strong atomic sulfur lines between 920 and 925 nm is overlapped by these bands. Fitting of the CN red bands allows a separation of both spectral contributions. This makes a quantitative evaluation of sulfur contents in the start material in the order of 1 wt% feasible.

  15. Molecular Engineering of Simple Benzene-Arylamine Hole-Transporting Materials for Perovskite Solar Cells.

    Science.gov (United States)

    Liu, Xuepeng; Kong, Fantai; Jin, Shengli; Chen, Wangchao; Yu, Ting; Hayat, Tasawar; Alsaedi, Ahmed; Wang, Hongxia; Tan, Zhan'ao; Chen, Jian; Dai, Songyuan

    2017-08-23

    Three benzene-arylamine hole-transporting materials (HTMs) with different numbers of terminal groups were prepared. It is noted that the molecule with three arms (H-Tri) shows a lower highest occupied molecular orbital level and a better film morphology on perovskite layer than the molecules with two or four arms (H-Di, H-Tetra). When these molecules were applied to the perovskite solar cells, the H-Tri-based one showed better performance compared with the H-Di- or H-Tetra-based ones. Photoluminescence and impedance spectroscopy demonstrate that H-Tri can improve the hole-electron separation efficiency and decrease the charge recombination, thus leading to a better performance. Moreover, the H-Tri-based device shows a comparable performance and a much less materials cost than the conventional spiro-OMeTAD. Therefore, we have presented a new low-cost and high-performance HTM through simple molecular engineering.

  16. Characterization of organic materials by LIBS for exploration of correlation between molecular and elemental LIBS signals

    Directory of Open Access Journals (Sweden)

    Shikha Rai

    2011-12-01

    Full Text Available The present study is performed for the preparation of a database by accumulating LIBS spectra of 4-nitroaniline and 4-nitrotoluene in air and argon. Changes in the behavior of the molecular bands of the C2 Swan system and CN violet system as well as of atomic lines of C, H and N in the LIBS signal are appreciable in argon. In order to explore the correlation between observed LIBS signal and molecular composition of these materials, normalized intensities of the emission lines have been estimated for each compound. It has been found that the relative rates of increase/decrease in the normalized intensities for all sets are higher for 4-nitrotoluene in argon. The cause of the higher rate for 4-nitrotoluene might be due to the possession of a distinctive functional group. The ultimate goal behind the whole study is to use this data-base as input for the discrimination of energetic materials.

  17. When biomolecules meet graphene: from molecular level interactions to material design and applications.

    Science.gov (United States)

    Li, Dapeng; Zhang, Wensi; Yu, Xiaoqing; Wang, Zhenping; Su, Zhiqiang; Wei, Gang

    2016-12-01

    Graphene-based materials have attracted increasing attention due to their atomically-thick two-dimensional structures, high conductivity, excellent mechanical properties, and large specific surface areas. The combination of biomolecules with graphene-based materials offers a promising method to fabricate novel graphene-biomolecule hybrid nanomaterials with unique functions in biology, medicine, nanotechnology, and materials science. In this review, we focus on a summarization of the recent studies in functionalizing graphene-based materials using different biomolecules, such as DNA, peptides, proteins, enzymes, carbohydrates, and viruses. The different interactions between graphene and biomolecules at the molecular level are demonstrated and discussed in detail. In addition, the potential applications of the created graphene-biomolecule nanohybrids in drug delivery, cancer treatment, tissue engineering, biosensors, bioimaging, energy materials, and other nanotechnological applications are presented. This review will be helpful to know the modification of graphene with biomolecules, understand the interactions between graphene and biomolecules at the molecular level, and design functional graphene-based nanomaterials with unique properties for various applications.

  18. Cross-linkable molecular glasses: low dielectric constant materials patternable in hydrofluoroethers.

    Science.gov (United States)

    Murotani, Eisuke; Lee, Jin-Kyun; Chatzichristidi, Margarita; Zakhidov, Alexander A; Taylor, Priscilla G; Schwartz, Evan L; Malliaras, George G; Ober, Christopher K

    2009-10-01

    We report a new approach to solution-processable low-dielectric-constant (low-k) materials including photolithographic patterning of these materials in chemically benign and environmentally friendly solvents. A series of semiperfluorinated molecular glasses with styrenic substituents were successfully synthesized. These small molecular materials were thermally stable up to 400 degrees C and also exhibited an amorphous nature, which is essential to forming uniform films. Differential scanning calorimetry studies revealed that a cross-linking reaction occurred in the presence of acid, resulting in the formation of robust polymeric films. Atomic force microscopy images of the cross-linked films showed uniform and pinhole-free surface properties. Dielectric constants determined by a capacitance measurement were 2.6-2.8 (100 kHz) at ambient conditions, which are comparable to other polymeric low-k materials. The incorporation of semiperfluorinated substituents was effective in decreasing the dielectric constant; in particular, the fluorinated alkyl ether structure proved best. In addition, the fluorinated substituents contributed to good solubility in hydrofluoroether (HFE) solvents, which enabled the successful photolithographic patterning of those materials in HFEs down to a submicrometer scale.

  19. Update on N2O4 Molecular Sieving with 3A Material at NASA/KSC

    Science.gov (United States)

    Davis, Chuck; Dorn, Claudia

    2000-01-01

    During its operational life, the Shuttle Program has experienced numerous failures in the Nitrogen Tetroxide (N2O4) portion of Reaction Control System (RCS), many of which were attributed to iron-nitrate contamination. Since the mid-1980's, N2O4 has been processed through a molecular sieve at the N2O4 manufacturer's facility which results in an iron content typically less than 0.5 parts-per-million-by-weight (ppmw). In February 1995, a Tiger Team was formed to attempt to resolve the iron nitrate problem. Eighteen specific actions were recommended as possibly reducing system failures. Those recommended actions include additional N2O4 molecular sieving at the Shuttle launch site. Testing at NASA White Sands Test Facility (WSTF) determined an alternative molecular sieve material could also reduce the water-equivalent content (free water and HNO3) and thereby further reduce the natural production of iron nitrate in N2O4 while stored in iron-alloy storage tanks. Since April '96, NASA Kennedy Space Center (KSC) has been processing N2O4 through the alternative molecular sieve material prior to delivery to Shuttle launch pad N2O4 storage tanks. A new, much larger capacity molecular sieve unit has also been used. This paper will evaluate the effectiveness of N2O4 molecular sieving on a large-scale basis and attempt to determine if the resultant lower-iron and lower-water content N2O4 maintains this new purity level in pad storage tanks and shuttle flight systems.

  20. Pathways to Structure-Property Relationships of Peptide-Materials Interfaces: Challenges in Predicting Molecular Structures.

    Science.gov (United States)

    Walsh, Tiffany R

    2017-07-18

    An in-depth appreciation of how to manipulate the molecular-level recognition between peptides and aqueous materials interfaces, including nanoparticles, will advance technologies based on self-organized metamaterials for photonics and plasmonics, biosensing, catalysis, energy generation and harvesting, and nanomedicine. Exploitation of the materials-selective binding of biomolecules is pivotal to success in these areas and may be particularly key to producing new hierarchically structured biobased materials. These applications could be accomplished by realizing preferential adsorption of a given biomolecule onto one materials composition over another, one surface facet over another, or one crystalline polymorph over another. Deeper knowledge of the aqueous abiotic-biotic interface, to establish clear structure-property relationships in these systems, is needed to meet this goal. In particular, a thorough structural characterization of the surface-adsorbed peptides is essential for establishing these relationships but can often be challenging to accomplish via experimental approaches alone. In addition to myriad existing challenges associated with determining the detailed molecular structure of any molecule adsorbed at an aqueous interface, experimental characterization of materials-binding peptides brings new, complex challenges because many materials-binding peptides are thought to be intrinsically disordered. This means that these peptides are not amenable to experimental techniques that rely on the presence of well-defined secondary structure in the peptide when in the adsorbed state. To address this challenge, and in partnership with experiment, molecular simulations at the atomistic level can bring complementary and critical insights into the origins of this abiotic/biotic recognition and suggest routes for manipulating this phenomenon to realize new types of hybrid materials. For the reasons outlined above, molecular simulation approaches also face

  1. Research on harmonized molecular materials; Bunshi kyocho zairyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Harmonized molecular materials (HMM) were researched to create functional materials adaptable to needs such as environmental harmony and high-efficient conversion in post-industrial society and aging society. Superior mechanisms function efficiently in organisms for perception, transmission and processing of information, and transport and conversion of substances. These functions are caused by harmonization between organic molecules, or organic molecule and metal or inorganic substance. HMM is a key substance to realize these functions similar to those of organisms artificially. It is the purpose of this research to develop HMMs, reform production process by innovating separation and conversion technologies, and finally realize molecular chemical plants. This research also develops high-efficient devices to contribute to the information society, and progresses the industry of bio-functional materials such as high-sensitive bio-sensor. The functions, applications and creation technologies of three kinds of HMM such as assembly, mesophase and microporous materials were researched in fiscal 1995. 956 refs., 128 figs., 13 tabs.

  2. Thermally modulated nano-trampoline material as smart skin for gas molecular mass detection

    Science.gov (United States)

    Xia, Hua

    2012-06-01

    Conventional multi-component gas analysis is based either on laser spectroscopy, laser and photoacoustic absorption at specific wavelengths, or on gas chromatography by separating the components of a gas mixture primarily due to boiling point (or vapor pressure) differences. This paper will present a new gas molecular mass detection method based on thermally modulated nano-trampoline material as smart skin for gas molecular mass detection by fiber Bragg grating-based gas sensors. Such a nanomaterial and fiber Bragg grating integrated sensing device has been designed to be operated either at high-energy level (highly thermal strained status) or at low-energy level (low thermal strained status). Thermal energy absorption of gas molecular trigs the sensing device transition from high-thermal-energy status to low-thermal- energy status. Experiment has shown that thermal energy variation due to gas molecular thermal energy absorption is dependent upon the gas molecular mass, and can be detected by fiber Bragg resonant wavelength shift with a linear function from 17 kg/kmol to 32 kg/kmol and a sensitivity of 0.025 kg/kmol for a 5 micron-thick nano-trampoline structure and fiber Bragg grating integrated gas sensing device. The laboratory and field validation data have further demonstrated its fast response characteristics and reliability to be online gas analysis instrument for measuring effective gas molecular mass from single-component gas, binary-component gas mixture, and multi-gas mixture. The potential industrial applications include fouling and surge control for gas charge centrifugal compressor ethylene production, gas purity for hydrogen-cooled generator, gasification for syngas production, gasoline/diesel and natural gas fuel quality monitoring for consumer market.

  3. Polymorphism and Elastic Response of Molecular Materials from First Principles: How Hard Can it Be?

    Science.gov (United States)

    Reilly, Anthony; Tkatchenko, Alexandre

    2014-03-01

    Molecular materials are of great fundamental and applied importance in science and industry, with numerous applications in pharmaceuticals, electronics, sensing, and catalysis. A key challenge for theory has been the prediction of their stability, polymorphism and response to perturbations. While pairwise models of van der Waals (vdW) interactions have improved the ability of density functional theory (DFT) to model these systems, substantial quantitative and even qualitative failures remain. In this contribution we show how a many-body description of vdW interactions can dramatically improve the accuracy of DFT for molecular materials, yielding quantitative description of stabilities and polymorphism for these challenging systems. Moreover, the role of many-body vdW interactions goes beyond stabilities to response properties. In particular, we have studied the elastic properties of a series of molecular crystals, finding that many-body vdW interactions can account for up to 30% of the elastic response, leading to quantitative and qualitative changes in elastic behavior. We will illustrate these crucial effects with the challenging case of the polymorphs of aspirin, leading to a better understanding of the conflicting experimental and theoretical studies of this system.

  4. Materials for organic photovoltaics: insights from detailed structural models and molecular simulations

    Science.gov (United States)

    Casalegno, Mosè; Baggioli, Alberto; Famulari, Antonino; Meille, Stefano V.; Nicolini, Tommaso; Po, Riccardo; Raos, Guido

    2012-10-01

    This paper contains a brief discussion of the role of detailed structural and computational studies, within the general field of organic photovoltaics. We review some of our recent work on poly(3-butylthiophene) (P3BT) and on [6,6]phenyl-C61-butyric acid methyl ester (PCBM). The first is a prototypical hole-transporting material, whose crystal forms I.' and II were solved by us through the combined use of powder Xray diffraction, electron diffraction and molecular modelling. PCBM is a widely used fullerene derivative with electron-transporting properties. It has a rich polymorphism, which to date remains largely unexplored. Our molecular dynamics simulations have revealed interesting features of its solid-state organization, including that in the amorphous phase.

  5. Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments.

    Science.gov (United States)

    Pizzarello, Sandra; Davidowski, Stephen K; Holland, Gregory P; Williams, Lynda B

    2013-09-24

    The composition of the Sutter's Mill meteorite insoluble organic material was studied both in toto by solid-state NMR spectroscopy of the powders and by gas chromatography-mass spectrometry analyses of compounds released upon their hydrothermal treatment. Results were compared with those obtained for other meteorites of diverse classifications (Murray, GRA 95229, Murchison, Orgueil, and Tagish Lake) and found to be so far unique in regard to the molecular species released. These include, in addition to O-containing aromatic compounds, complex polyether- and ester-containing alkyl molecules of prebiotic appeal and never detected in meteorites before. The Sutter's Mill fragments we analyzed had likely been altered by heat, and the hydrothermal conditions of the experiments realistically mimic early Earth settings, such as near volcanic activity or impact craters. On this basis, the data suggest a far larger availability of meteoritic organic materials for planetary environments than previously assumed and that molecular evolution on the early Earth could have benefited from accretion of carbonaceous meteorites both directly with soluble compounds and, for a more protracted time, through alteration, processing, and release from their insoluble organic materials.

  6. Final Report: Photo-Directed Molecular Assembly of Multifunctional Inorganic Materials

    Energy Technology Data Exchange (ETDEWEB)

    B.G. Potter, Jr.

    2010-10-15

    This final report details results, conclusions, and opportunities for future effort derived from the study. The work involved combining the molecular engineering of photoactive Ti-alkoxide systems and the optical excitation of hydrolysis and condensation reactions to influence the development of the metal-oxygen-metal network at the onset of material formation. Selective excitation of the heteroleptic alkoxides, coupled with control of alkoxide local chemical environment, enabled network connectivity to be influenced and formed the basis for direct deposition and patterning of Ti-oxide-based materials. The research provided new insights into the intrinsic photoresponse and assembly of these complex, alkoxide molecules. Using a suite of electronic, vibrational, and nuclear spectroscopic probes, coupled with quantum chemical computation, the excitation wavelength and fluence dependence of molecular photoresponse and the nature of subsequent hydrolysis and condensation processes were probed in pyridine-carbinol-based Ti-alkoxides with varied counter ligand groups. Several methods for the patterning of oxide material formation were demonstrated, including the integration of this photoprocessing approach with conventional, dip-coating methodologies.

  7. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    Science.gov (United States)

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  8. Molecular simulations for energy, environmental and pharmaceutical applications of nanoporous materials: from zeolites, metal-organic frameworks to protein crystals.

    Science.gov (United States)

    Jiang, Jianwen; Babarao, Ravichandar; Hu, Zhongqiao

    2011-07-01

    Nanoporous materials have widespread applications in chemical industry, but the pathway from laboratory synthesis and testing to practical utilization of nanoporous materials is substantially challenging and requires fundamental understanding from the bottom up. With ever-growing computational resources, molecular simulations have become an indispensable tool for material characterization, screening and design. This tutorial review summarizes the recent simulation studies in zeolites, metal-organic frameworks and protein crystals, and provides a molecular overview for energy, environmental and pharmaceutical applications of nanoporous materials with increasing degree of complexity in building blocks. It is demonstrated that molecular-level studies can bridge the gap between physical and engineering sciences, unravel microscopic insights that are otherwise experimentally inaccessible, and assist in the rational design of new materials. The review is concluded with major challenges in future simulation exploration of novel nanoporous materials for emerging applications.

  9. Hybrid Light-Matter States in a Molecular and Material Science Perspective.

    Science.gov (United States)

    Ebbesen, Thomas W

    2016-11-15

    The notion that light and matter states can be hybridized the way s and p orbitals are mixed is a concept that is not familiar to most chemists and material scientists. Yet it has much potential for molecular and material sciences that is just beginning to be explored. For instance, it has already been demonstrated that the rate and yield of chemical reactions can be modified and that the conductivity of organic semiconductors and nonradiative energy transfer can be enhanced through the hybridization of electronic transitions. The hybridization is not limited to electronic transitions; it can be applied for instance to vibrational transitions to selectively perturb a given bond, opening new possibilities to change the chemical reactivity landscape and to use it as a tool in (bio)molecular science and spectroscopy. Such results are not only the consequence of the new eigenstates and energies generated by the hybridization. The hybrid light-matter states also have unusual properties: they can be delocalized over a very large number of molecules (up to ca. 10 5 ), and they become dispersive or momentum-sensitive. Importantly, the hybridization occurs even in the absence of light because it is the zero-point energies of the molecular and optical transitions that generate the new light-matter states. The present work is not a review but rather an Account from the author's point of view that first introduces the reader to the underlying concepts and details of the features of hybrid light-matter states. It is shown that light-matter hybridization is quite easy to achieve: all that is needed is to place molecules or a material in a resonant optical cavity (e.g., between two parallel mirrors) under the right conditions. For vibrational strong coupling, microfluidic IR cells can be used to study the consequences for chemistry in the liquid phase. Examples of modified properties are given to demonstrate the full potential for the molecular and material sciences. Finally an

  10. Hexabenzo[4.4.4]propellane: a helical molecular platform for the construction of electroactive materials.

    Science.gov (United States)

    Debroy, Paromita; Lindeman, Sergey V; Rathore, Rajendra

    2007-10-11

    Helical hexabenzo[4.4.4]propellane (a relative of hexaphenylethane) and its derivatives are synthesized and their structures are established by X-ray crystallography. Isolation and X-ray crystallographic characterization of a robust trication-radical salt of hexamethoxypropellane derivative confirms that its framework is stable toward oxidative (aliphatic) C-C bond cleavage. It is also demonstrated that propellane can be easily brominated at the 4,4'-positions of the biphenyl linkages for its usage as a molecular platform for the preparation of electroactive materials.

  11. Gas-Transport-Property Performance of Hybrid Carbon Molecular Sieve−Polymer Materials

    KAUST Repository

    Das, Mita

    2010-10-06

    High-performance hybrid materials using carbon molecular sieve materials and 6FDA-6FpDA were produced. A detailed analysis of the effects of casting processes and the annealing temperature is reported. Two existing major obstacles, sieve agglomeration and residual stress, were addressed in this work, and subsequently a new membrane formation technique was developed to produce high-performing membranes. The successfully improved interfacial region of the hybrid membranes allows the sieves to increase the selectivity of the membranes above the neat polymer properties. Furthermore, an additional performance enhancement was seen with increased sieve loading in the hybrid membranes, leading to an actual performance above the upper bound for pure polymer membranes. The membranes were also tested under a mixed-gas environment, which further demonstrated promising results. © 2010 American Chemical Society.

  12. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications

    KAUST Repository

    Beaujuge, Pierre

    2011-12-21

    Organic electronics are broadly anticipated to impact the development of flexible thin-film device technologies. Among these, solution-processable π-conjugated polymers and small molecules are proving particularly promising in field-effect transistors and bulk heterojunction solar cells. This Perspective analyzes some of the most exciting strategies recently suggested in the design and structural organization of π-functional materials for transistor and solar cell applications. Emphasis is placed on the interplay between molecular structure, self-assembling properties, nanoscale and mesoscale ordering, and device efficiency parameters. A critical look at the various approaches used to optimize both materials and device performance is provided to assist in the identification of new directions and further advances. © 2011 American Chemical Society.

  13. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials

    Science.gov (United States)

    Kwon, Min Sang; Yu, Youngchang; Coburn, Caleb; Phillips, Andrew W.; Chung, Kyeongwoon; Shanker, Apoorv; Jung, Jaehun; Kim, Gunho; Pipe, Kevin; Forrest, Stephen R.; Youk, Ji Ho; Gierschner, Johannes; Kim, Jinsang

    2015-12-01

    Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin-orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels-Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage.

  14. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.

    Science.gov (United States)

    Zhao, Qing; Zhu, Zhiqiang; Chen, Jun

    2017-12-01

    Organic carbonyl electrode materials that have the advantages of high capacity, low cost and being environmentally friendly, are regarded as powerful candidates for next-generation stationary and redox flow rechargeable batteries (RFBs). However, low carbonyl utilization, poor electronic conductivity and undesired dissolution in electrolyte are urgent issues to be solved. Here, we summarize a molecular engineering approach for tuning the capacity, working potential, concentration of active species, kinetics, and stability of stationary and redox flow batteries, which well resolves the problems of organic carbonyl electrode materials. As an example, in stationary batteries, 9,10-anthraquinone (AQ) with two carbonyls delivers a capacity of 257 mAh g -1 (2.27 V vs Li + /Li), while increasing the number of carbonyls to four with the formation of 5,7,12,14-pentacenetetrone results in a higher capacity of 317 mAh g -1 (2.60 V vs Li + /Li). In RFBs, AQ, which is less soluble in aqueous electrolyte, reaches 1 M by grafting -SO 3 H with the formation of 9,10-anthraquinone-2,7-disulphonic acid, resulting in a power density exceeding 0.6 W cm -2 with long cycling life. Therefore, through regulating substituent groups, conjugated structures, Coulomb interactions, and the molecular weight, the electrochemical performance of carbonyl electrode materials can be rationally optimized. This review offers fundamental principles and insight into designing advanced carbonyl materials for the electrodes of next-generation rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis of ultra high molecular weight polyethylene: A differentiate material for specialty applications

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, Sudhakar, E-mail: sudhakar.padmanabhan@ril.co [Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited, Vadodara, 391 346, Gujarat (India); Sarma, Krishna R.; Rupak, Kishor; Sharma, Shashikant [Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited, Vadodara, 391 346, Gujarat (India)

    2010-04-15

    Tailoring the synthesis of a suitable Ziegler-Natta (ZN) catalyst coupled with optimized polymerization conditions using a suitable activator holds the key for an array of differentiated polymers with diverse and unique properties. Ultra high molecular weight polyethylene (UHMWPE) is one such polymer which we have synthesized using TiCl{sub 4} anchored on MgCl{sub 2} as the support and activated using AlRR'{sub 2} (where R, R' = iso-prenyl or isobutyl) under specific conditions. Here in we have accomplished a process for synthesizing UHMWPE in hydrocarbon as the medium with molecular weights ranging from 5 to 10 million g/mole. The differentiated polymers exhibited the desired properties such as particle size distribution (PSD), average particle size (APS), bulk density (BD) and molecular weight (MW) with controlled amount of fine and coarse particles. Scanning electron micrographs (SEM) reflected the material to have uniform particle size distribution with a spherical morphology. The extent of entanglement was determined from thermal studies and it was found to be highly entangled.

  16. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    Science.gov (United States)

    Xiao, Xueliang; Hu, Jinlian

    2016-05-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.

  17. Molecular association of adsorbed water with lignocellulosic materials examined by micro-FTIR spectroscopy.

    Science.gov (United States)

    Guo, Xin; Qing, Yan; Wu, Yiqiang; Wu, Qinglin

    2016-02-01

    For lignocellulosic materials, water adsorption is extremely important for its product performance. For gaining a deeper understanding of moisture adsorption mechanisms, the molecular interactions between adsorbed water and a typical lignocellulosic material (i.e., wood) were studied using in-situ microscopic Fourier transform infrared (micro-FTIR) spectroscopy and a specially designed sample cell. The spectral shifts of 1733 cm(-1), 1604 cm(-1) and 1236 cm(-1) and different spectra between the moist and dry spectra indicated that carbonyl CO and CO groups preferred to combine with water molecules to form hydrogen bonds. From component band analysis of the spectral range of 2900-3700 cm(-1), three peaks at 3178 cm(-1), 3514 cm(-1) and 3602 cm(-1) were identified and assigned to strongly, moderately and weakly hydrogen-bonded water molecules, respectively. According to the variation trend of these hydrogen-bonded water molecules, three sections were divided for the adsorption process. Furthermore, the molecular structure of water absorbed by hydrophilic groups of wood in each section was demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Multifunctional Material with Efficient Optoelectronic Integrated Molecular Switches Based on a Flexible Thin Film/Crystal.

    Science.gov (United States)

    Xu, Chang; Zhang, Wan-Ying; Ye, Qiong; Fu, Da-Wei

    2017-12-04

    Switchable materials, due to their potential applications in the fields of sensors, photonic devices, digital processing, etc., have been developed drastically. However, they still face great challenges in effectively inducing multiple molecular switching. Herein organic-inorganic hybrid compounds, an emerging class of hydrosoluble optoelectronic-active materials, welcome a new member with smart unique optical/electrical (fluorescence/dielectric) dual switches (switching ON/OFF), that is, [C 5 H 13 NBr][Cd 3 Br 7 ] (1) in the form of both a bulk crystal and an ultraflexible monodirectional thin film, which simultaneously exhibits fast dielectric/fluorescent dual switching triggered by an optical/thermal/electric signal with a high signal-to-noise ratio of 35 (the highest one in the known optical/dielectric dual molecular switches). Additionally, the exceptional stability/fatigue resistance as well as the fantastic extensibility/compactness of thin films (more than 10000 times folding over 90°), makes 1 an ideal candidate for single-molecule intelligent wearable devices and seamlessly integrated optoelectronic multiswitchable devices. This opens up a new route toward advanced light/electric high-performance switches/memories based on organic-inorganic hybrid compounds.

  19. Switchable guest molecular dynamics in a perovskite-like coordination polymer toward sensitive thermoresponsive dielectric materials.

    Science.gov (United States)

    Du, Zi-Yi; Xu, Ting-Ting; Huang, Bo; Su, Yu-Jun; Xue, Wei; He, Chun-Ting; Zhang, Wei-Xiong; Chen, Xiao-Ming

    2015-01-12

    A new perovskite-like coordination polymer [(CH3)2NH2][Cd(N3)3] is reported which undergoes a reversible ferroelastic phase transition. This transition is due to varied modes of motion of the [(CH3)2NH2](+) guest accompanied by a synergistic deformation of the [Cd(N3)3](-) framework. The unusual two-staged switchable dielectric relaxation reveals the molecular dynamics of the polar cation guest, which are well controlled by the variable confined space of the host framework. As the material switches from the ferroelastic phase to the paraelastic phase, a remarkable increase of the rotational energy barrier is detected. As a result, upon heating at low temperature, this compound shows a notable change from a low to a high dielectric state in the ferroelastic phase. This thermoresponsive host-guest system may serve as a model compound for the development of sensitive thermoresponsive dielectric materials and may be key to understanding and modulating molecular/ionic dynamics of guest molecules in confined space. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Sevov, Christo S; Brooner, Rachel E M; Chénard, Etienne; Assary, Rajeev S; Moore, Jeffrey S; Rodríguez-López, Joaquín; Sanford, Melanie S

    2015-11-18

    The integration of renewable energy sources into the electric grid requires low-cost energy storage systems that mediate the variable and intermittent flux of energy associated with most renewables. Nonaqueous redox-flow batteries have emerged as a promising technology for grid-scale energy storage applications. Because the cost of the system scales with mass, the electroactive materials must have a low equivalent weight (ideally 150 g/(mol·e(-)) or less), and must function with low molecular weight supporting electrolytes such as LiBF4. However, soluble anolyte materials that undergo reversible redox processes in the presence of Li-ion supports are rare. We report the evolutionary design of a series of pyridine-based anolyte materials that exhibit up to two reversible redox couples at low potentials in the presence of Li-ion supporting electrolytes. A combination of cyclic voltammetry of anolyte candidates and independent synthesis of their corresponding charged-states was performed to rapidly screen for the most promising candidates. Results of this workflow provided evidence for possible decomposition pathways of first-generation materials and guided synthetic modifications to improve the stability of anolyte materials under the targeted conditions. This iterative process led to the identification of a promising anolyte material, N-methyl 4-acetylpyridinium tetrafluoroborate. This compound is soluble in nonaqueous solvents, is prepared in a single synthetic step, has a low equivalent weight of 111 g/(mol·e(-)), and undergoes two reversible 1e(-) reductions in the presence of LiBF4 to form reduced products that are stable over days in solution.

  1. Microbes on building materials - Evaluation of DNA extraction protocols as common basis for molecular analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ettenauer, Joerg D., E-mail: joerg.ettenauer@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Pinar, Guadalupe, E-mail: Guadalupe.Pinar@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Lopandic, Ksenija, E-mail: Ksenija.Lopandic@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Spangl, Bernhard, E-mail: Bernhard.Spangl@boku.ac.at [University of Natural Resources and Life Sciences, Department of Landscape, Spatial and Infrastructure Science, Institute of Applied Statistics and Computing (IASC), Gregor Mendel-Str. 33, A-1180 Vienna (Austria); Ellersdorfer, Guenther, E-mail: Guenther.Ellersdorfer@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Voitl, Christian, E-mail: Christian.Voitl@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria); Sterflinger, Katja, E-mail: Katja.Sterflinger@boku.ac.at [VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 11, A-1190 Vienna (Austria)

    2012-11-15

    The study of microbial life in building materials is an emerging topic concerning biodeterioration of materials as well as health risks in houses and at working places. Biodegradation and potential health implications associated with microbial growth in our residues claim for more precise methods for quantification and identification. To date, cultivation experiments are commonly used to gain insight into the microbial diversity. Nowadays, molecular techniques for the identification of microorganisms provide efficient methods that can be applied in this field. The efficiency of DNA extraction is decisive in order to perform a reliable and reproducible quantification of the microorganisms by qPCR or to characterize the structure of the microbial community. In this study we tested thirteen DNA extraction methods and evaluated their efficiency for identifying (1) the quantity of DNA, (2) the quality and purity of DNA and (3) the ability of the DNA to be amplified in a PCR reaction using three universal primer sets for the ITS region of fungi as well as one primer pair targeting the 16S rRNA of bacteria with three typical building materials - common plaster, red brick and gypsum cardboard. DNA concentration measurements showed strong variations among the tested methods and materials. Measurement of the DNA yield showed up to three orders of magnitude variation from the same samples, whereas A260/A280 ratios often prognosticated biases in the PCR amplifications. Visualization of the crude DNA extracts and the comparison of DGGE fingerprints showed additional drawbacks of some methods. The FastDNA Spin kit for soil showed to be the best DNA extraction method and could provide positive results for all tests with the three building materials. Therefore, we suggest this method as a gold standard for quantification of indoor fungi and bacteria in building materials. -- Highlights: Black-Right-Pointing-Pointer Up to thirteen extraction methods were evaluated with three

  2. The molecular characteristics of pyrogenic organic materials and their aqueous leachates

    Science.gov (United States)

    Wozniak, A. S.; Hatcher, P.; Mitra, S.; Bostick, K. W.; Zimmerman, A. R.

    2016-12-01

    Pyrogenic organic matter (Py-OM), or black carbon, is known to impact soil chemistry, pollutant transport, regional and global carbon cycling, and climate. Py-OM is incorporated into soils via atmospheric deposition (e.g., from biomass, fossil fuel combustion) or direct applications by humans (e.g., biochars applied for agricultural production). Due to its presumed refractory and immobile nature, soil Py-OM is thought to be efficiently buried, sequestering atmospheric CO2. However, tracers of dissolved Py-OM (Py-DOM) have been detected in appreciable quantities in riverine, estuarine, and oceanic waters suggesting that Py-OM is more mobile in the environment than expected. The molecular characteristics of Py-OM are likely to be a controlling factor in the quantities and impacts of Py-DOM released to aqueous systems. Yet, little is known about the detailed molecular composition of these materials, let alone how those molecular characteristics vary with combustion conditions or are altered by environmental processes. Here, we examine oak and grass Py-OM (combusted over a range of temperatures), natural Py-OM (chars aged in the environment for variable lengths of time), and their Py-DOM leachates via nuclear magnetic resonance spectroscopy (NMR) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Multi-CP 13C NMR analyses of Py-OM materials and 1H NMR analyses of corresponding Py-DOM leachates reveal that Py-OM combustion temperature, environmental exposure, and molecular characteristics are reflected in Py-DOM quantities and characteristics. The relative amounts of aromatic C in Py-OM 1) decreases with environmental exposure, the relative oxygen-content in both Py-OM and Py-DOM, and the amount of Py-DOC released per g of Py-OC but 2) is positively correlated with combustion temperature and the relative contributions of acetate and aliphatic hydrogens (CH2) in Py-DOM. Preliminary FTICR-MS analyses show Py-DOM produced from oak at 400 °C to

  3. Multi-scale calculation based on dual domain material point method combined with molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Tilak Raj [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-27

    This dissertation combines the dual domain material point method (DDMP) with molecular dynamics (MD) in an attempt to create a multi-scale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically non-equilibrium state, and conventional constitutive relations are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a MD simulation of a group of atoms surrounding the material point. Rather than restricting the multi-scale simulation in a small spatial region, such as phase interfaces, or crack tips, this multi-scale method can be used to consider non-equilibrium thermodynamic e ects in a macroscopic domain. This method takes advantage that the material points only communicate with mesh nodes, not among themselves; therefore MD simulations for material points can be performed independently in parallel. First, using a one-dimensional shock problem as an example, the numerical properties of the original material point method (MPM), the generalized interpolation material point (GIMP) method, the convected particle domain interpolation (CPDI) method, and the DDMP method are investigated. Among these methods, only the DDMP method converges as the number of particles increases, but the large number of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the

  4. Neat monolayer tiling of molecularly thin two-dimensional materials in 1 min.

    Science.gov (United States)

    Matsuba, Kazuaki; Wang, Chengxiang; Saruwatari, Kazuko; Uesusuki, Yusuke; Akatsuka, Kosho; Osada, Minoru; Ebina, Yasuo; Ma, Renzhi; Sasaki, Takayoshi

    2017-06-01

    Controlled arrangement of molecularly thin two-dimensional (2D) materials on a substrate, particularly into precisely organized mono- and multilayer structures, is a key to design a nanodevice using their unique and enhanced physical properties. Several techniques such as mechanical transfer process and Langmuir-Blodgett deposition have been applied for this purpose, but they have severe restrictions for large-scale practical applications, for example, limited processable area and long fabrication time, requiring skilled multistep operations. We report a facile one-pot spin-coating method to realize dense monolayer tiling of various 2D materials, such as graphene and metal oxide nanosheets, within 1 min over a wide area (for example, a 30-mmφ substrate). Centrifugal force drives the nanosheets in a thin fluid layer to the substrate edge where they are packed edge to edge all the way to the central region, without forming overlaps. We investigated the relationship between precursor concentration, rotation speed, and ultraviolet-visible absorbance and developed an effective method to optimize the parameters for neat monolayer films. The multilayer buildup is feasible by repeating the spin-coating process combined with a heat treatment at moderate temperature. This versatile solution-based technique will provide both fundamental and practical advancements in the rapid large-scale production of artificial lattice-like films and nanodevices based on 2D materials.

  5. A molecularly engineered hole-transporting material for efficient perovskite solar cells

    Science.gov (United States)

    Saliba, Michael; Orlandi, Simonetta; Matsui, Taisuke; Aghazada, Sadig; Cavazzini, Marco; Correa-Baena, Juan-Pablo; Gao, Peng; Scopelliti, Rosario; Mosconi, Edoardo; Dahmen, Klaus-Hermann; de Angelis, Filippo; Abate, Antonio; Hagfeldt, Anders; Pozzi, Gianluca; Graetzel, Michael; Nazeeruddin, Mohammad Khaja

    2016-02-01

    Solution-processable perovskite solar cells have recently achieved certified power conversion efficiencies of over 20%, challenging the long-standing perception that high efficiencies must come at high costs. One major bottleneck for increasing the efficiency even further is the lack of suitable hole-transporting materials, which extract positive charges from the active light absorber and transmit them to the electrode. In this work, we present a molecularly engineered hole-transport material with a simple dissymmetric fluorene-dithiophene (FDT) core substituted by N,N-di-p-methoxyphenylamine donor groups, which can be easily modified, providing the blueprint for a family of potentially low-cost hole-transport materials. We use FDT on state-of-the-art devices and achieve power conversion efficiencies of 20.2% which compare favourably with control devices with 2,2‧,7,7‧-tetrakis(N,N-di-p-methoxyphenylamine)-9,9‧-spirobifluorene (spiro-OMeTAD). Thus, this new hole transporter has the potential to replace spiro-OMeTAD.

  6. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    KAUST Repository

    Habuchi, Satoshi

    2014-06-12

    Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology.

  7. Designing and preparation of cytisine alkaloid surface-imprinted material and its molecular recognition characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Baojiao, E-mail: gaobaojiao@126.com [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China); Bi, Concon [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China); Fan, Li [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China)

    2015-03-30

    Highlights: • An elaborate molecular design was well done for molecule surface-imprinting. • The new method of “pre-graft polymerizing and post-imprinting” was used. • Cytisine molecule surface-imprinted material was prepared. • Cytisine surface-imprinting depends on electrostatic interaction between host–guest. • The imprinted material has special recognition selectivity for template cytisine. - Abstract: Based on molecular design, a cytisine surface-imprinted material was prepared using the new surface-imprinting technique of “pre-graft polymerizing and post-imprinting”. The graft-polymerization of glycidyl methacrylate (GMA) on the surfaces of micron-sized silica gel particles was first performed with a surface-initiating system, preparing the grafted particles PGMA/SiO{sub 2}. Subsequently, a polymer reaction, the ring-opening reaction of the epoxy groups of the grafted PGMA, was conducted with sodium 2,4-diaminobenzene sulfonate (SAS) as reagent, resulting in the functional grafted particles SAS-PGMA/SiO{sub 2}. The adsorption of cytisine on SAS-PGMA/SiO{sub 2} particles reached saturation via strong electrostatic interaction between the sulfonate groups of SAS-PGMA/SiO{sub 2} particles and the protonated N atoms in cytisine molecule. Finally, cytisine surface-imprinting was successfully carried out with glutaraldehyde as crosslinker, obtaining cytisine surface-imprinted material MIP-SASP/SiO{sub 2}. The binding and recognition characteristics of MIP-SASP/SiO{sub 2} towards cytisine were investigated in depth. The experimental results show that there is strong electrostatic interaction between particles and cytisine molecules, and on this basis, cytisine surface-imprinting can be smoothly performed. The surface-imprinted MIP-SASP/SiO{sub 2} has special recognition selectivity and excellent binding affinity for cytisine, and the selectivity coefficients of MIP-SASP/SiO{sub 2} particles for cytisine relative to matrine and oxymatrine, which

  8. Molecular dynamics based study and characterization of deformation mechanisms near a crack in a crystalline material

    Science.gov (United States)

    Zhang, Jiaxi; Ghosh, Somnath

    2013-08-01

    Modeling crack propagation in crystalline materials is a challenging enterprise due to complexities induced by the interaction of the crack with various deformation mechanisms such as dislocation, micro twin, stacking faults etc.. As a first step toward the development of physics-based models of deformation in the presence of a crack, this paper proposes a comprehensive approach based on molecular dynamics simulations of a crystalline material with an embedded crack. The MD-based framework invokes a sequence of four tasks to accomplish the overall goal, viz. (i) MD simulation, (ii) characterization of atomic-level crack and deformation mechanisms, (iii) quantification of atomic-level deformation mechanisms and crack, and (iv) response analysis. Effective characterization methods like CNA, DXA and deformation gradient analysis followed by quantification are able to delineate the crack length/opening, dislocation structure and microtwins at a high resolution. Interactions of the crack with the dislocation networks and microtwins under mode I loading conditions are investigated for different lattice orientations. Crystal orientation has significant effect on the mechanisms activation and evolution. An important study is made through partitioning of the total energy into recoverable elastic energy, defect energy and inelastic dissipation, and correlating them with deformation characteristics such as dislocation density and twin volume fraction. Finally, a simple mechanistic model of deformation is developed, which associates dislocation density evolution with the stress-strain response in a crystalline material in the presence of a crack. Results show good quantitative agreement of material softening and hardening behavior with direct MD simulation results. The model can be further used to estimate the range of strain-rates that may be applied for physically meaningful MD simulations.

  9. Ultra high molecular weight polyethylene as a base material for shielding cosmic radiation in aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Marlon A., E-mail: marlon@ieav.cta.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Fisica Aplicada; Goncalez, Odair L. [Instituto Tecnologico de Aeronautica (PG/CTE/ITA), Sao Jose dos Campos, SP (Brazil). Programa de Pos-Graduacao em Ciencias e Tecnologias Espaciais

    2013-07-01

    Materials with high content of hydrogen have good properties of shielding against the effects of cosmic rays (CR) because are less effective than materials with high nuclear masses in the generation of secondary radiation. Beside the Aluminum, Polyethylene has been used as a reference and as a base material for composites applied in structures and in shielding of ionizing radiation for aerospace applications. Ultra high molecular weight polyethylene (UHMWPE), pure and doped 10% by mass with cadmium chloride, had its shielding properties for CR evaluated in this paper. Methodology used was based in conventional radioactive sources employed on simple geometries experiments and then computational simulation for isotropic fluxes of cosmic-ray high energy particles. Transmission experiments were performed with a3.7GBq (100 mCi){sup 241}Am-Be neutron source and a set of conventional calibration gamma radiation sources. Samples were characterized according to their gamma total attenuation coefficients from 59 to 1,408 keV, dose deposition curve for {sup 60}Co gamma-rays, fast neutron transmission coefficient, generation and self-absorption of thermal neutrons as well as their generation of internal cascades of secondary electrons and gamma-rays by nuclear interactions of fast neutrons with shielding material. Main effects of the additive in the polyethylene base were the most effective removal of gamma radiation and of secondary electrons with energies below 200 keV, the reduction of the albedo as well as the thermal neutrons transmission. Dose reduction due to primary CR were not significant, since the largest contribution to the doses due to high energy ionizing particles transmitted and, also, due to secondary radiation with energy above 1 MeV produced in shielding. (author)

  10. Synthesis of Disentangled Ultra-High Molecular Weight Polyethylene: Influence of Reaction Medium on Material Properties

    Directory of Open Access Journals (Sweden)

    Giuseppe Forte

    2017-01-01

    Full Text Available The polymerization of ethylene to Ultra-High Molecular Weight Polyethylene (UHMWPE in certain reaction conditions allows synthesis of nascent powders with a considerably lower amount of entanglements: the material obtained is of great interest from both academic and industrial viewpoints. From an academic point of view, it is interesting to follow the evolution of the metastable melt state with the progressive entanglements formation. Industrially, it is valuable to have a solvent-free processing route for the production of high modulus, high strength tapes. Since the polymer synthesis is performed in the presence of a solvent, it is interesting to investigate the influence that the reaction medium can have on the catalyst activity, resultant molecular characteristics, and polymer morphology at the macroscopic as wells as microscopic level. In this paper, we present the effect that two typical polymerization solvents, toluene and heptane, and mixtures of them, have on the catalytic performance and on the polymer properties. The observations are that an unexpected increase of catalyst activity, accompanied by a significant improvement in mechanical properties, is found when using a carefully chosen mixture of solvents. A tentative explanation is given on the basis of the presented results.

  11. The Building Blocks of Materials: Gathering Knowledge at the Molecular Level

    Science.gov (United States)

    2003-01-01

    Two start-up positions were created within SD46 to pursue developments in the rapidly expanding areas of biomineralization and nano-technology. As envisioned by Dr. Sandor Lehoczy, the new laboratories to be developed must have the capacity to investigate not only processes associated with the self-assembly of molecules but also the examination of self-assembled structures. For these purposes, laboratories capable of performing the intended function, particularly light scattering spectroscopy and atomic force microscopy were created. What follows then are recent advances arising from the development of these new laboratories. With the implementation of the Atomic Force Microscopy Facility, examples of investigations that determine a correlation between the molecular structure of materials and their macroscopic physical properties are provided. In addition, examples of investigations with particular emphasis on the physical properties of protein crystals, at the molecular level, and subsequent macroscopic characteristics are as provided. Finally, progress in fabrication of technology at the nano-scale levels at the developmental stage is also presented.

  12. Molecular modeling of nanotube composite materials: Interface formation, interfacial strength, and thermal expansion

    Science.gov (United States)

    Marietta-Tondin, Olivier

    Carbon nanotubes (CNTs) are one of the wonders of modern science. Discovered a little over 15 years ago, they have shown the research community an outstanding set of properties. In terms of mechanical properties, they exhibit extremely high young's modulus, which, coupled with a high strain to break, leads to unsurpassed strength to break. CNTs also demonstrate superior thermal conductivity, good electrical capacity and high thermal stability. In light of these properties, CNTs are expected to be introduced into a wide variety of new materials aimed at applications for various fields, such as high-performance composites, biological and chemical sensors, magnetic recording, nanoelectronic devices and flat panel displays. One such promising application is CNT-reinforced composite materials, exhibiting the possibility of outstanding mechanical properties. In practice, however, many reports indicate that nanocomposites are weaker or only slightly stronger than the neat resins. Several factors are believed to be the primary source of this discrepancy, namely poor nanotube dispersion in resin, inadequate alignment of the nanotubes, and weak interfacial bonding between nanotubes and resins. As a result, these have become crucial investigation issues for developing high-performance nanocomposites. In this dissertation, fundamental understanding of the interfacial phenomena between carbon nanotubes and polymer matrices are studied. Both molecular dynamics (MD) simulation, an effective approach to investigate nanoscale behaviors, and experimental investigation, are utilized to achieve this goal. First, we examine the interface formation phenomena between a Single Wall Carbon Nanotube (SWNT) and the resin, prior to curing, in the case of the Epon862 resin system. The MD simulation results outline the validity of some of the current theories, such as molecular migration and reduction of molecular mobility of the resin, while they seem to indicate some other mechanisms are not

  13. Synthesis and Self-Assembly of Chiral Cylindrical Molecular Complexes: Functional Heterogeneous Liquid-Solid Materials Formed by Helicene Oligomers

    Directory of Open Access Journals (Sweden)

    Nozomi Saito

    2018-01-01

    Full Text Available Chiral cylindrical molecular complexes of homo- and hetero-double-helices derived from helicene oligomers self-assemble in solution, providing functional heterogeneous liquid-solid materials. Gels and liotropic liquid crystals are formed by fibril self-assembly in solution; molecular monolayers and fibril films are formed by self-assembly on solid surfaces; gels containing gold nanoparticles emit light; silica nanoparticles aggregate and adsorb double-helices. Notable dynamics appears during self-assembly, including multistep self-assembly, solid surface catalyzed double-helix formation, sigmoidal and stairwise kinetics, molecular recognition of nanoparticles, discontinuous self-assembly, materials clocking, chiral symmetry breaking and homogeneous-heterogeneous transitions. These phenomena are derived from strong intercomplex interactions of chiral cylindrical molecular complexes.

  14. Molecular dynamics study of water molecule diffusion in oil-paper insulation materials

    Science.gov (United States)

    Liao, Rui-Jin; Zhu, Meng-Zhao; Yang, Li-Jun; Zhou, Xin; Gong, Chun-Yan

    2011-03-01

    Moisture is an important factor that influences the safe operation of transformers. In this study, molecular dynamics was employed to investigate the diffusion behavior of water molecules in the oil-paper insulation materials of transformers. Two oil-cellulose models were built. In the first model, water molecules were initially distributed in oil, and in the second model, water molecules were distributed in cellulose. The non-bonding energies of interaction between water molecules and oil, and between water molecules and cellulose, were calculated by the Dreiding force field. The interaction energy was found to play a dominant role in influencing the equilibrium distribution of water molecules. The radial direction functions of water molecules toward oil and cellulose indicate that the hydrogen bonds between water molecules and cellulose are sufficiently strong to withstand the operating temperature of the transformer. Mean-square displacement analysis of water molecules diffusion suggests that water molecules initially distributed in oil showed anisotropic diffusion; they tended to diffuse toward cellulose. Water molecules initially distributed in cellulose diffused isotropically. This study provides a theoretical contribution for improvements in online monitoring of water in transformers, and for subsequent research on new insulation materials.

  15. Custom-tailored adsorbers: A molecular dynamics study on optimal design of ion exchange chromatography material.

    Science.gov (United States)

    Lang, Katharina M H; Kittelmann, Jörg; Pilgram, Florian; Osberghaus, Anna; Hubbuch, Jürgen

    2015-09-25

    The performance of functionalized materials, e.g., ion exchange resins, depends on multiple resin characteristics, such as type of ligand, ligand density, the pore accessibility for a molecule, and backbone characteristics. Therefore, the screening and identification process for optimal resin characteristics for separation is very time and material consuming. Previous studies on the influence of resin characteristics have focused on an experimental approach and to a lesser extent on the mechanistic understanding of the adsorption mechanism. In this in silico study, a previously developed molecular dynamics (MD) tool is used, which simulates any given biomolecule on resins with varying ligand densities. We describe a set of simulations and experiments with four proteins and six resins varying in ligand density, and show that simulations and experiments correlate well in a wide range of ligand density. With this new approach simulations can be used as pre-experimental screening for optimal adsorber characteristics, reducing the actual number of screening experiments, which results in a faster and more knowledge-based development of custom-tailored adsorbers. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Cyclo-biphenalenyl Biradicaloid Molecular Materials: Conformation, Tautomerization, Magnetism, and Thermochromism

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jingsong [ORNL; Meunier, Vincent [ORNL; Tian, Yong-Hui [Georgetown University; Kertesz, Prof. Miklos [Georgetown University

    2010-01-01

    Phenalenyl and its derivatives have recently attracted a great deal of interest as a result of a two-electron multicenter (2e/mc) - bonding between two -stacked phenalenyl units. The 2e/mc bonded -dimers are close in energy to the -dimers of phenalenyl and therefore fickle properties may emerge from bond fluctuation, yielding smart -functional materials. Here, we examine the valence tautomerization of two cyclo-biphenalenyl biradicaloid molecular materials with chair and boat conformations by spin-restricted (R) and unrestricted (U) DFT using the M06 and B3LYP functionals. We found that the chair conformation involves a 2e/4c - bonded structure, whereas the boat conformation involves a 2e/12c - bonded structure on their potential energy surfaces. The global minimum for the chair conformation is the -bonded structure, whereas it is the - bonded structure for the boat conformation. The chair conformation exhibits a stepwise [3,3]-sigmatropic rearrangement, and calculations predict a negligible paramagnetic susceptibility near room temperature. In comparison, the paramagnetism of the boat conformation should be observable by SQUID and ESR. According to the energy differences of the respective - and -dimers of the two conformations and the UV-vis calculations, the color of the chair conformation is expected to become darker, whereas that of the boat conformation should become lighter with increasing temperature.

  17. Evaluation of electronic states of implanted materials by molecular orbital calculation

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Jun-ichi; Kano, Shigeki [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-07-01

    In order to understand the effect of implanted atom in ceramics and metals on the sodium corrosion, the electronic structures of un-implanted and implanted materials were calculated using DV-X{alpha} cluster method which was one of molecular orbital calculations. The calculated materials were {beta}-Si{sub 3}N{sub 4}, {alpha}-SiC and {beta}-SiC as ceramics, and f.c.c. Fe, b.c.c. Fe and b.c.c. Nb as metals. An Fe, Mo and Hf atom for ceramics, and N atom for metals were selected as implanted atoms. Consequently, it is expected that the corrosion resistance of {beta}-Si{sub 3}N{sub 4} is improved, because the ionic bonding reduced by the implantation. When the implanted atom is occupied at interstitial site in {alpha}-SiC and {beta}-SiC, the ionic bonding reduced. Hence, there is a possibility to improve the corrosion resistance of {alpha}-SiC and {beta}-SiC. It is clear that Hf is most effective element among implanted atoms in this study. As the covalent bond between N atom and surrounding Fe atoms increased largely in f.c.c. Fe by N implantation, it was expected that the corrosion resistance of f.c.c. Fe improved in liquid sodium. (J.P.N.)

  18. Validation of intermolecular transfer integral and bandwidth calculations for organic molecular materials.

    Science.gov (United States)

    Huang, Jingsong; Kertesz, Miklos

    2005-06-15

    We present an interpretation of the intermolecular transfer integral that is independent from the origin of the energy scale allowing convergence studies of this important parameter of organic molecular materials. We present extensive numerical studies by using an ethylene pi dimer to investigate the dependence of transfer integrals on the level of theory and intermolecular packing. Transfer integrals obtained from semiempirical calculations differ substantially from one another and from ab initio results. The ab initio results are consistent across all the levels used including Hartree-Fock, outer valence Green's function, and various forms of density functional theory (DFT). Validation of transfer integrals and bandwidths is performed by comparing the calculated values with the experimental values of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ), bis[1,2,5]thiadiazolo-p-quinobis(1,3-dithiole), (BTQBT) K-TCNQ, and hexagonal graphite. DFT in one of its presently popular forms, such as Perdew-Wang functionals (PW91), in combination with sufficient basis sets provides reliable transfer integrals, and therefore can serve as a basis for energy band calculations for soft organic materials with van der Waals gaps.

  19. Elongational viscometry and bubble inflation experiments of two HDPE materials with different molecular structures

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Eggen, Svein; Malmberg, Anneli

    2002-01-01

    The most common materials used for manufacturing of bottles and containers for household and industrial packaging has been single reactor Chromium-catalyst HDPE materials. These materials etc.......The most common materials used for manufacturing of bottles and containers for household and industrial packaging has been single reactor Chromium-catalyst HDPE materials. These materials etc....

  20. Designing and preparation of cytisine alkaloid surface-imprinted material and its molecular recognition characteristics

    Science.gov (United States)

    Gao, Baojiao; Bi, Concon; Fan, Li

    2015-03-01

    Based on molecular design, a cytisine surface-imprinted material was prepared using the new surface-imprinting technique of "pre-graft polymerizing and post-imprinting". The graft-polymerization of glycidyl methacrylate (GMA) on the surfaces of micron-sized silica gel particles was first performed with a surface-initiating system, preparing the grafted particles PGMA/SiO2. Subsequently, a polymer reaction, the ring-opening reaction of the epoxy groups of the grafted PGMA, was conducted with sodium 2,4-diaminobenzene sulfonate (SAS) as reagent, resulting in the functional grafted particles SAS-PGMA/SiO2. The adsorption of cytisine on SAS-PGMA/SiO2 particles reached saturation via strong electrostatic interaction between the sulfonate groups of SAS-PGMA/SiO2 particles and the protonated N atoms in cytisine molecule. Finally, cytisine surface-imprinting was successfully carried out with glutaraldehyde as crosslinker, obtaining cytisine surface-imprinted material MIP-SASP/SiO2. The binding and recognition characteristics of MIP-SASP/SiO2 towards cytisine were investigated in depth. The experimental results show that there is strong electrostatic interaction between particles and cytisine molecules, and on this basis, cytisine surface-imprinting can be smoothly performed. The surface-imprinted MIP-SASP/SiO2 has special recognition selectivity and excellent binding affinity for cytisine, and the selectivity coefficients of MIP-SASP/SiO2 particles for cytisine relative to matrine and oxymatrine, which were used as two contrast alkaloids, are 9.5 and 6.5, respectively.

  1. Cyclo-biphenalenyl biradicaloid molecular materials: conformation, tautomerization, magnetism, and thermochromism

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Tian, Yong-Hui [Georgetown University; Kertesz, Prof. Miklos [Georgetown University

    2011-01-01

    Phenalenyl and its derivatives have recently attracted a great deal of interest as a result of a 2-electron multicenter (2e/mc) covalent pi-pi bonding between two pi-stacked phenalenyl units. The 2e/mc bonded pi-dimers are close in energy to the sigma-dimers of phenalenyl and therefore fickle properties may emerge from bond fluctuation, yielding smart pi-functional materials. Here we examine the valence tautomerization of two cyclo-biphenalenyl biradicaloid molecular materials with chair- and boat-conformations by spin-restricted (R) and unrestricted (U) DFT using the M06 and B3LYP functionals. We found that the chair-conformation involves a 2e/4c pi-pi bonded structure while the boat-conformation involves a 2e/12c pi-pi bonded structure on their potential energy surfaces. The global minimum for the chair-conformation is the sigma-bonded structure while it is the pi-pi bonded structure for the boat-conformation. The chair-conformation exhibits a stepwise [3,3]-sigmatropic rearrangement, and calculations predict a negligible paramagnetic susceptibility near room temperature. In comparison, the paramagnetism of the boat-conformation should be observable by SQUID and/or ESR. According to the difference of the global minima of the two conformations and the parameterized UV-Vis calculations, the color of the chair-conformation is expected to become darker while that of the boat-conformation become lighter with increasing temperature.

  2. Stepwise transformation of the molecular building blocks in a porphyrin-encapsulating metal-organic material

    KAUST Repository

    Zhang, ZhenJie

    2013-04-24

    When immersed in solutions containing Cu(II) cations, the microporous metal-organic material P11 ([Cd4(BPT)4]·[Cd(C 44H36N8)(S)]·[S], BPT = biphenyl-3,4′,5-tricarboxylate) undergoes a transformation of its [Cd 2(COO)6]2- molecular building blocks (MBBs) into novel tetranuclear [Cu4X2(COO)6(S) 2] MBBs to form P11-Cu. The transformation occurs in single-crystal to single-crystal fashion, and its stepwise mechanism was studied by varying the Cd2+/Cu2+ ratio of the solution in which crystals of P11 were immersed. P11-16/1 (Cd in framework retained, Cd in encapsulated porphyrins exchanged) and other intermediate phases were thereby isolated and structurally characterized. P11-16/1 and P11-Cu retain the microporosity of P11, and the relatively larger MBBs in P11-Cu permit a 20% unit cell expansion and afford a higher surface area and a larger pore size. © 2013 American Chemical Society.

  3. Stochastic polarity formation in molecular crystals, composite materials and natural tissues

    Directory of Open Access Journals (Sweden)

    Jürg Hulliger

    2017-07-01

    Full Text Available This topical review summarizes the theoretical and experimental findings obtained over the last 20 years on the subject of growth-induced polarity formation driven by a Markov chain process. When entering the growing surface of a molecular crystal, an inorganic–organic composite or a natural tissue, the building blocks may undergo 180° orientational disorder. Driven by configurational entropy, faulted orientations can promote the conversion of a growing non-polar seed into an object showing polar domains. Similarly, orientational disorder at the interface may change a polar seed into a two-domain state. Analytical theory and Monte Carlo simulations were used to model polarity formation. Scanning pyroelectric, piezoresponse force and phase-sensitive second-harmonic microscopies are methods for investigating the spatial distribution of polarity. Summarizing results from different types of materials, a general principle is provided for obtaining growth-induced polar domains: a non-zero difference in the probabilities for 180° orientational misalignments of building blocks, together with uni-directional growth, along with Markov chain theory, can produce objects showing polar domains.

  4. Stochastic polarity formation in molecular crystals, composite materials and natural tissues.

    Science.gov (United States)

    Hulliger, Jürg; Burgener, Matthias; Hesterberg, Rolf; Sommer, Martin; Brahimi, Khadidja; Aboulfadl, Hanane

    2017-07-01

    This topical review summarizes the theoretical and experimental findings obtained over the last 20 years on the subject of growth-induced polarity formation driven by a Markov chain process. When entering the growing surface of a molecular crystal, an inorganic-organic composite or a natural tissue, the building blocks may undergo 180° orientational disorder. Driven by configurational entropy, faulted orientations can promote the conversion of a growing non-polar seed into an object showing polar domains. Similarly, orientational disorder at the interface may change a polar seed into a two-domain state. Analytical theory and Monte Carlo simulations were used to model polarity formation. Scanning pyroelectric, piezoresponse force and phase-sensitive second-harmonic microscopies are methods for investigating the spatial distribution of polarity. Summarizing results from different types of materials, a general principle is provided for obtaining growth-induced polar domains: a non-zero difference in the probabilities for 180° orientational misalignments of building blocks, together with uni-directional growth, along with Markov chain theory, can produce objects showing polar domains.

  5. Molecular and physiological characteristics of a grape yeast strain containing atypical genetic material.

    Science.gov (United States)

    Cappello, M S; Poltronieri, P; Blaiotta, G; Zacheo, G

    2010-11-15

    The knowledge about wine yeasts remains largely dominated by the extensive studies on Saccharomyces (S.) cerevisiae. Molecular methods, allowing discrimination of both species and strains in winemaking, can profitably be applied for characterization of the microflora occurring in winemaking and for monitoring the fermentation process. Recently, some novel yeast isolates have been described as hybrid between S. cerevisiae and Saccharomyces species, leaving the Saccharomyces strains containing non-Saccharomyces hybrids essentially unexplored. In this study, we have analyzed a yeast strain isolated from "Primitivo" grape (http://www.ispa.cnr.it/index.php?page=collezioni&lang=en accession number 12998) and we found that, in addition to the S. cerevisiae genome, it has acquired genetic material from a non-Saccharomyces species. The study was focused on the analysis of chromosomal and mitochondrial gene sequences (ITS and 26S rRNA, SSU and COXII, ACTIN-1 and TEF), 2D-PAGE mitochondrial proteins, and spore viability. The results allowed us to formulate the hypothesis that in the MSH199 isolate a DNA containing an rDNA sequence from Hanseniaspora vineae, a non-Saccharomyces yeast, was incorporated through homologous recombination in the grape environment where yeast species are propagated. Moreover, physiological characterization showed that the MSH199 isolate possesses high technological quality traits (fermentation performance) and glycerol production, resistance to ethanol, SO₂ and temperature) useful for industrial application. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials.

    Science.gov (United States)

    Asada, Chikako; Basnet, Sunita; Otsuka, Masaya; Sasaki, Chizuru; Nakamura, Yoshitoshi

    2015-03-01

    A low molecular weight lignin from various lignocellulosic materials was used for the synthesis of bio-based epoxy resins. The lignin extracted with methanol from steam-exploded samples (steaming time of 5 min at steam pressure of 3.5 MPa) from different biomasses (i.e., cedar, eucalyptus, and bamboo) were functionalized by the reaction with epichlorohydrin, catalyzed by a water-soluble phase transfer catalyst tetramethylammonium chloride, which was further reacted with 30 wt% aqueous NaOH for ring closure using methyl ethyl ketone as a solvent. The glycidylated products of the lignin with good yields were cured to epoxy polymer networks with bio-based curing agents i.e., lignin itself and a commercial curing agent TD2131. Relatively good thermal properties of the bio-based epoxy network was obtained and thermal decomposition temperature at 5% weight loss (Td5) of cedar-derived epoxy resin was higher than that derived from eucalyptus and bamboo. The bio-based resin satisfies the stability requirement of epoxy resin applicable for electric circuit boards. The methanol-insoluble residues were enzymatically hydrolyzed to produce glucose. This study indicated that the biomass-derived methanol-soluble lignin may be a promising candidate to be used as a substitute for petroleum-based epoxy resin derived from bisphenol A, while insoluble residues may be processed to give a bioethanol precursor i.e., glucose. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Holographic investigations of azobenzene-containing low-molecular-weight compounds in pure materials and binary blends with polystyrene.

    Science.gov (United States)

    Audorff, Hubert; Walker, Roland; Kador, Lothar; Schmidt, Hans-Werner

    2011-11-04

    This paper reports on the synthesis and the thermal and optical properties of photochromic low-molecular-weight compounds, especially with respect to the formation of holographic volume gratings in the pure materials and in binary blends with polystyrene. Its aim is to provide a basic understanding of the holographic response with regard to the molecular structure, and thus to show a way to obtain suitable rewritable materials with high sensitivity for holographic data storage. The photoactive low-molecular-weight compounds consist of a central core with three or four azobenzene-based arms attached through esterification. Four different cores were investigated that influence the glass transition temperature and the glass-forming properties. Additional structural variations were introduced by the polar terminal substituent at the azobenzene chromophore to fine-tune the optical properties and the holographic response. Films of the neat compounds were investigated in holographic experiments, especially with regard to the material sensitivity. In binary blends of the low-molecular-weight compounds with polystyrene, the influence of a polymer matrix on the behavior in holographic experiments was studied. The most promising material combination was also investigated at elevated temperatures, at which the holographic recording sensitivity is even higher. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. HIGH-MOLECULAR-WEIGHT COPOLYMERS OF L-LACTIDE AND EPSILON-CAPROLACTONE AS BIODEGRADABLE ELASTOMERIC IMPLANT MATERIALS

    NARCIS (Netherlands)

    GRIJPMA, DW; ZONDERVAN, GJ; PENNINGS, AJ

    High molecular weight copolymers of L-lactide and epsilon-caprolactone have been synthesized by ring opening copolymerization with stannous octoate as catalyst. The good mechanical properties of the 50/50 copolymers make it a suitable material for biomedical applications such as nerve guides etc.,

  9. Investigating the relative influences of molecular dimensions and binding energies on diffusivities of guest species inside nanoporous crystalline materials

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.

    2012-01-01

    The primary objective of this article is to investigate the relative influences of molecular dimensions and adsorption binding energies on unary diffusivities of guest species inside nanoporous crystalline materials such as zeolites and metal-organic frameworks (MOFs). The investigations are based

  10. Study of the amorphous glibenclamide drug: analysis of the molecular dynamics of quenched and cryomilled material.

    Science.gov (United States)

    Wojnarowska, Z; Grzybowska, K; Adrjanowicz, K; Kaminski, K; Paluch, M; Hawelek, L; Wrzalik, R; Dulski, M; Sawicki, W; Mazgalski, J; Tukalska, A; Bieg, T

    2010-10-04

    Glibenclamide (GCM) is an oral hypoglycemic agent of the sulfonylurea group used in the treatment of non-insulin-dependent diabetes. Crystalline GCM is characterized by low bioavailability, which is attributed to its poor dissolution properties. It prompted us to prepare this drug in its amorphous form as a means to enhance its dissolution characteristics. Two different methods were used to convert crystalline GCM into the glassy form: quench-cooling of the melt and cryogenic milling. To monitor solid-state properties of the amorphous samples, X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), ultraperformance liquid chromatography (UPLC) and spectroscopy, and broadband dielectric spectroscopy (BDS) were applied. The results of UPLC separations along with associated infrared and NMR measurements unambiguously showed that the thermal degradation of the quenched GCM, as suggested in literature reports, does not occur. A similar analysis performed on the cryomilled material also did not indicate any chemical decomposition. On the other hand, both methods confirmed that the conversion to the amorphous form is connected with the amide-imidic acid tautomerism of the examined drug. Moreover it was shown that this transformation occurs regardless of the manner of amorphization. Finally, dielectric spectroscopy was employed to study the molecular dynamics of vitrified GCM. The analysis of the ε''(f) in terms of the KWW function from the dielectric measurements revealed the existence of an "excess wing" attributed to the true Johari-Goldstein process based on Ngai's coupling model. The dielectric properties of GCM obtained in the amorphous form both by rapid cooling of the melt and the cryogenic grinding of crystalline sample were also compared.

  11. Methoxydiphenylamine-substituted fluorene derivatives as hole transporting materials: role of molecular interaction on device photovoltaic performance.

    Science.gov (United States)

    Tiazkis, Robertas; Paek, Sanghyun; Daskeviciene, Maryte; Malinauskas, Tadas; Saliba, Michael; Nekrasovas, Jonas; Jankauskas, Vygintas; Ahmad, Shahzada; Getautis, Vytautas; Khaja Nazeeruddin, Mohammad

    2017-03-10

    The molecular structure of the hole transporting material (HTM) play an important role in hole extraction in a perovskite solar cells. It has a significant influence on the molecular planarity, energy level, and charge transport properties. Understanding the relationship between the chemical structure of the HTM's and perovskite solar cells (PSCs) performance is crucial for the continued development of the efficient organic charge transporting materials. Using molecular engineering approach we have constructed a series of the hole transporting materials with strategically placed aliphatic substituents to investigate the relationship between the chemical structure of the HTMs and the photovoltaic performance. PSCs employing the investigated HTMs demonstrate power conversion efficiency values in the range of 9% to 16.8% highlighting the importance of the optimal molecular structure. An inappropriately placed side group could compromise the device performance. Due to the ease of synthesis and moieties employed in its construction, it offers a wide range of possible structural modifications. This class of molecules has a great potential for structural optimization in order to realize simple and efficient small molecule based HTMs for perovskite solar cells application.

  12. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds

    Science.gov (United States)

    Luo, Wen; Feng, Yiyu; Qin, Chengqun; Li, Man; Li, Shipei; Cao, Chen; Long, Peng; Liu, Enzuo; Hu, Wenping; Yoshino, Katsumi; Feng, Wei

    2015-10-01

    An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high storage capacity of 138 Wh kg-1 by optimizing intermolecular H-bonds with a good cycling stability for 50 cycles induced by visible light at 520 nm. Our work opens up a new method for making advanced molecular solar thermal storage materials by tuning molecular interactions on a nano-template.An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high

  13. Determining Molecular Orientations in Disordered Materials from X-ray Linear Dichroism at the Iodine L1-Edge.

    Science.gov (United States)

    Palmer, Benjamin A; Collins, Stephen P; Hulliger, Jürg; Hughes, Colan E; Harris, Kenneth D M

    2016-12-21

    To demonstrate that measurements of X-ray linear dichroism are effective for determining bond orientations in disordered materials, we report the first observation of X-ray linear dichroism at the iodine L1-edge. The iodine-containing molecular solid studied in this work was the inclusion compound containing 4,4'-diiodobiphenyl guest molecules in the perhydrotriphenylene host structure. In this material, the guest substructure does not exhibit three-dimensional ordering, and thus diffraction-based techniques do not provide insights on the orientational properties of the guest molecules. Iodine L1-edge X-ray absorption spectra, recorded as a function of orientation of a single crystal of the material, exhibit significant dichroism (whereas no dichroism is observed at the iodine L2- and L3-edges). From quantitative analysis of the X-ray dichroism, the orientational properties of the C-I bonds within this material are established. The results pave the way for applying X-ray dichroism to determine molecular orientational properties of other materials, especially for partially ordered materials such as liquid crystals, confined liquids, and disordered crystalline phases, for which diffraction techniques may not be applicable.

  14. Silylated melamine and cyanuric acid as precursors for imprinted and hybrid silica materials with molecular recognition properties.

    Science.gov (United States)

    Arrachart, Guilhem; Carcel, Carole; Trens, Philippe; Moreau, Jöel J E; Wong Chi Man, Michel

    2009-06-15

    Two monotrialkoxysilylated compounds that consist of complementary fragments of melamine (M) and cyanuric acid (CA) have been synthesised. The molecular recognition properties of the M and CA fragments through complementary hydrogen bonds (DAD and ADA; D=donor, A=acceptor) are the key factor used to direct the formation of hybrid silica materials by using a sol-gel process. These materials were synthesised following two methods: First, an organo-bridged silsesquioxane was obtained by the hydrolysis of the two complementary monotrialkoxysilylated melamine and cyanuric acid derivatives, with fluoride ions as a catalyst. The hydrogen-bonding interactions between the two organic fragments are responsible for the formation of the bridging unit. The transcription of the assembly into the hybrid material was characterised and evidenced by solid-state NMR (29Si, 13C) and FTIR spectroscopic experiments. Second, the molecular recognition was exploited to synthesise an imprinted hybrid silica. This material was prepared by co-condensation of tetraethyl orthosilicate (TEOS) with the monosilylated cyanuric acid derivative (CA) templated by nonsilylated melamine. The melamine template was completely removed by treating the solid material with hydrochloric acid. The reintroduction of the template was performed by treating the resulting material with an aqueous suspension of melamine. These steps were monitored and analysed by several techniques, such as solid-state NMR (29Si, 13C) and FTIR spectroscopic analysis and nitrogen adsorption-desorption isotherms.

  15. Thin films of molecular materials synthesized from fisher's carbene ferrocenyl: Film formation and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Vergara, M.E. [Coordinacion de Ingenieria Mecatronica. Escuela de Ingenieria, Universidad Anahuac del Norte. Avenida Lomas de la Anahuac s/n, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico)], E-mail: elena.sanchez@anahuac.mx; Ortiz, A. [Instituto de Investigaciones en Materiales. Universidad Nacional Autonoma de Mexico. A. P. 70-360, 04510, Mexico, DF (Mexico); Alvarez-Toledano, C.; Moreno, A. [Instituto de Quimica, Universidad Nacional Autonoma de Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Mexico, DF (Mexico); Alvarez, J.R. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Ciudad de Mexico. Calle del Puente 222, Col. Ejidos de Huipulco, 14380, Mexico, DF (Mexico)

    2008-07-31

    The synthesis of materials from Fisher's carbene ferrocenyl of the elements chromium, molybdenum and tungsten was carried out. The Fisher's compounds that were synthesized included the following combinations of two different metallic atoms: iron with chromium, iron with molybdenum and iron with tungsten. The molecular solids' preparation was done in electro-synthesis cells with platinum electrodes. Thin films were prepared by vacuum thermal evaporation on quartz substrates and crystalline silicon wafers. Pellets and thin films from these compounds were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive spectroscopy, atomic force microscopy and ellipsometry. The powder and thin films synthesized from these materials show the same intra-molecular bonds shown by infrared spectroscopy results, suggesting that thermal evaporation does not alter these bonds in spite of the thin films being amorphous, in contrast with other bimetallic complexes where material decomposition occurs. The differences in the conductivity values of the prepared films are very small, so they may be attributed to the different metallic ions employed in each case. The tungsten complex exhibits a higher conductivity than the molybdenum and chromium complexes at room temperature. Electrical conductivity values found for thin films are higher than for pellets made of the same molecular materials.

  16. Digital learning material for experimental design and model building in molecular biology

    NARCIS (Netherlands)

    Aegerter-Wilmsen, T.

    2005-01-01

    Designing experimental approaches is a major cognitive skill in molecular biology research, and building models, including quantitative ones, is a cognitive skill which is rapidly gaining importance. Since molecular biology education at university level is aimed at educating future researchers, we

  17. Noncovalent Intermolecular Interactions in Organic Electronic Materials: Implications for the Molecular Packing vs Electronic Properties of Acenes

    KAUST Repository

    Sutton, Christopher

    2015-10-30

    Noncovalent intermolecular interactions, which can be tuned through the toolbox of synthetic chemistry, determine not only the molecular packing but also the resulting electronic, optical, and mechanical properties of materials derived from π-conjugated molecules, oligomers, and polymers. Here, we provide an overview of the theoretical underpinnings of noncovalent intermolecular interactions and briefly discuss the computational chemistry approaches used to understand the magnitude of these interactions. These methodologies are then exploited to illustrate how noncovalent intermolecular interactions impact important electronic properties-such as the electronic coupling between adjacent molecules, a key parameter for charge-carrier transport-through a comparison between the prototype organic semiconductor pentacene with a series of N-substituted heteropentacenes. Incorporating an understanding of these interactions into the design of organic semiconductors can assist in developing novel materials systems from this fascinating molecular class. © 2015 American Chemical Society.

  18. Electron-Vibration Coupling in Molecular Materials: Assignment of Vibronic Modes from Photoelectron Momentum Mapping.

    Science.gov (United States)

    Graus, M; Grimm, M; Metzger, C; Dauth, M; Tusche, C; Kirschner, J; Kümmel, S; Schöll, A; Reinert, F

    2016-04-08

    Electron-phonon coupling is one of the most fundamental effects in condensed matter physics. We here demonstrate that photoelectron momentum mapping can reveal and visualize the coupling between specific vibrational modes and electronic excitations. When imaging molecular orbitals with high energy resolution, the intensity patterns of photoelectrons of the vibronic sidebands of molecular states show characteristic changes due to the distortion of the molecular frame in the vibronically excited state. By comparison to simulations, an assignment of specific vibronic modes is possible, thus providing unique information on the coupling between electronic and vibronic excitation.

  19. Miscanthus plants used as an alternative biofuel material. The basic studies on ecology and molecular evolution

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chang-Hung [Graduate Institute of Ecology and Evolutionary Biology, College of Life Sciences, China Medical University, Taichung 404 (China)

    2009-08-15

    Miscanthus Anderss, widely distributed in Asia and Pacific Islands, possesses 20 species. Of which 8 species and 1 variety were recorded in Chinese Mainland; 6 species and 1 variety found in Japan; 5 species and 3 varieties distributed in Taiwan; 3 species documented in the Philippines; and rest of species have been recorded in Jawa, eastern Himalaya, and Sikkim. The plant is a C{sub 4} perennial grass with high productivity of biomass. In the 19th and early 20th centuries in Taiwan, Miscanthus was a very important crop used for forage grass, clothing, and shelter, etc. The relatively high germination, and high yield of biomass made the plant available for people of Taiwan including aboriginal. The taxonomic study of Miscanthus plants was much done by several scientists, and its ecological study has been only taken by the present author since 1972. Chou and his associates paid a great attention to elucidate the mechanism of dominance of Miscanthus vegetation and found that allelopathy plays an important role. In addition, the population biology of Miscanthus taxa by using polyacrylamide gel electrophoreses technique to examine the patterns of peroxidase and esterase among populations (over 100) of Miscanthus in Taiwan were conducted. They also elucidated the phylogenetic relationship among species and varieties in Taiwan. Chou and Ueng proposed an evolutionary trend of Miscanthus species, indicating that the Miscanthus sinensis was assumed to be the origin of Miscanthus Anderss, which evolved to M. sinensis var. formosana, and M. sinensis var. flavidus, and M. sinensis var. transmorrisonensis, and Miscanthus floridulus was thought to be an out group of M. sinensis complex. Moreover, molecular phylogeny was attempted to clarify the population heterogeneity of M. sinensis complex, resulting in a substantial information. It would be available for making hybridization between Miscanthus species and its related species, such as Saccharum (sugar cane) spp. which is a

  20. Electrode Materials, Thermal Annealing Sequences, and Lateral/Vertical Phase Separation of Polymer Solar Cells from Multiscale Molecular Simulations

    KAUST Repository

    Lee, Cheng-Kuang

    2014-12-10

    © 2014 American Chemical Society. The nanomorphologies of the bulk heterojunction (BHJ) layer of polymer solar cells are extremely sensitive to the electrode materials and thermal annealing conditions. In this work, the correlations of electrode materials, thermal annealing sequences, and resultant BHJ nanomorphological details of P3HT:PCBM BHJ polymer solar cell are studied by a series of large-scale, coarse-grained (CG) molecular simulations of system comprised of PEDOT:PSS/P3HT:PCBM/Al layers. Simulations are performed for various configurations of electrode materials as well as processing temperature. The complex CG molecular data are characterized using a novel extension of our graph-based framework to quantify morphology and establish a link between morphology and processing conditions. Our analysis indicates that vertical phase segregation of P3HT:PCBM blend strongly depends on the electrode material and thermal annealing schedule. A thin P3HT-rich film is formed on the top, regardless of bottom electrode material, when the BHJ layer is exposed to the free surface during thermal annealing. In addition, preferential segregation of P3HT chains and PCBM molecules toward PEDOT:PSS and Al electrodes, respectively, is observed. Detailed morphology analysis indicated that, surprisingly, vertical phase segregation does not affect the connectivity of donor/acceptor domains with respective electrodes. However, the formation of P3HT/PCBM depletion zones next to the P3HT/PCBM-rich zones can be a potential bottleneck for electron/hole transport due to increase in transport pathway length. Analysis in terms of fraction of intra- and interchain charge transports revealed that processing schedule affects the average vertical orientation of polymer chains, which may be crucial for enhanced charge transport, nongeminate recombination, and charge collection. The present study establishes a more detailed link between processing and morphology by combining multiscale molecular

  1. Research study on harmonized molecular materials (HMM); Bunshi kyocho zairyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As functional material to satisfy various needs for environmental harmonization and efficient conversion for information-oriented and aging societies, HMM were surveyed. Living bodies effectively carry out transmission/processing of information, and transport/conversion of substances, and these functions are based on harmonization between organic molecules, and between those and metal or inorganic ones. HMM is a key substance to artificially realize these bio-related functions. Its R & D aims at (1) Making a breakthrough in production process based on innovation of material separation/conversion technology, (2) Contribution to an information-oriented society by high-efficiency devices, and (3) Growth of a functional bio-material industry. HMM is classified into three categories: (1) Assembly materials such as organic ultra-thin films (LB film, self-organizing film), and organic/inorganic hybrid materials for optoelectronics, sensors and devices, (2) Mesophase materials such as functional separation membrane and photo-conductive material, and (3) Microporous materials such as synthetic catalyst using guest/host materials. 571 refs., 88 figs., 21 tabs.

  2. Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials

    Directory of Open Access Journals (Sweden)

    Roman V. Tsyshevsky

    2016-02-01

    Full Text Available This review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our own first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.

  3. Chaperone-Assisted Formation of Cucurbit[8]uril-Based Molecular Porous Materials with One-Dimensional Channel Structure.

    Science.gov (United States)

    Zhu, Wei; Wang, Chen; Lan, Yue; Li, Jian; Wang, Hui; Gao, Ning; Ji, Jingwei; Li, Guangtao

    2016-09-06

    Exploiting "chaperone molecule" to navigate the successful assembly energy landscapes has been extensively used in biological systems, whereas in artifical supramolecular systems the "chaperone-assisted" assembly strategy to be used for the synthesis of materials with novel structures or the structures to be hardly prepared by "conventional" methods are still far from realizing the potential functions. In this work, we present a new example of small organic molecule acting as "chaperone molecule" in the facile formation of organic molecular porous materials. This porous material is composed of pure cucurbit[8]uril (CB[8]) macrocycle and possesses a honeycomb-like structure with an isolated and relatively large one-dimensional (1D) nanochannel. Moreover, it has good chemical and thermal stability, and shows a good adsorption capability for large molecule loading. Importantly, with the assistance of chaperone molecules, pure CB[8] could also be recycled even from a complex aqueous solution, demonstrating a powerful purification method of CB[8] from complex systems.

  4. Processing and structuring of molecular materials for enviromental and biomedical applications

    OpenAIRE

    Díez Gil, César

    2010-01-01

    Descripció del recurs: el 13 setembre 2011 Durante las últimas décadas la construcción de dispositivos basados en materiales moleculares funcionales se ha convertido en uno de los principales objetivos para la ciencia de los materiales. Aunque las propiedades fundamentales de dichos materiales (electrónicas, magnéticas, ópticas, mecánicas, etc) vienen determinadas por las propiedades de sus constituyentes moleculares, la funcionalidad final de dichos dispositivos vendrá determinada en gr...

  5. Studies of molecular properties of polymeric materials: Aerospace environmental effects on three linear polymers (polymer durability)

    Science.gov (United States)

    1985-01-01

    Aerospace environmental effects on polymeric materials were studied. The polymers under study are being considered for use as structural materials for spacecraft and advanced aircraft. It is necessary to understand the durability of these polymers to the environment in which they are to be used.

  6. Kinetic isotope effect for H2 and D2 quantum molecular sieving in adsorption/desorption on porous carbon materials.

    Science.gov (United States)

    Zhao, Xuebo; Villar-Rodil, Silvia; Fletcher, Ashleigh J; Thomas, K Mark

    2006-05-25

    Adsorption and desorption of H(2) and D(2) from porous carbon materials, such as activated carbon at 77 K, are usually fully reversible with very rapid adsorption/desorption kinetics. The adsorption and desorption of H(2) and D(2) at 77 K on a carbon molecular sieve (Takeda 3A), where the kinetic selectivity was incorporated by carbon deposition, and a carbon, where the pore structure was modified by thermal annealing to give similar pore structure characteristics to the carbon molecular sieve substrate, were studied. The D(2) adsorption and desorption kinetics were significantly faster (up to x1.9) than the corresponding H(2) kinetics for specific pressure increments/decrements. This represents the first experimental observation of kinetic isotope quantum molecular sieving in porous materials due to the larger zero-point energy for the lighter H(2), resulting in slower adsorption/desorption kinetics compared with the heavier D(2). The results are discussed in terms of the adsorption mechanism.

  7. Digital Learning Material for Student-Directed Model Building in Molecular Biology

    Science.gov (United States)

    Aegerter-Wilmsen, Tinri; Coppens, Marjolijn; Janssen, Fred; Hartog, Rob; Bisseling, Ton

    2005-01-01

    The building of models to explain data and make predictions constitutes an important goal in molecular biology research. To give students the opportunity to practice such model building, two digital cases had previously been developed in which students are guided to build a model step by step. In this article, the development and initial…

  8. Using molecular mechanics to predict bulk material properties of fibronectin fibers.

    Directory of Open Access Journals (Sweden)

    Mark J Bradshaw

    Full Text Available The structural proteins of the extracellular matrix (ECM form fibers with finely tuned mechanical properties matched to the time scales of cell traction forces. Several proteins such as fibronectin (Fn and fibrin undergo molecular conformational changes that extend the proteins and are believed to be a major contributor to the extensibility of bulk fibers. The dynamics of these conformational changes have been thoroughly explored since the advent of single molecule force spectroscopy and molecular dynamics simulations but remarkably, these data have not been rigorously applied to the understanding of the time dependent mechanics of bulk ECM fibers. Using measurements of protein density within fibers, we have examined the influence of dynamic molecular conformational changes and the intermolecular arrangement of Fn within fibers on the bulk mechanical properties of Fn fibers. Fibers were simulated as molecular strands with architectures that promote either equal or disparate molecular loading under conditions of constant extension rate. Measurements of protein concentration within micron scale fibers using deep ultraviolet transmission microscopy allowed the simulations to be scaled appropriately for comparison to in vitro measurements of fiber mechanics as well as providing estimates of fiber porosity and water content, suggesting Fn fibers are approximately 75% solute. Comparing the properties predicted by single molecule measurements to in vitro measurements of Fn fibers showed that domain unfolding is sufficient to predict the high extensibility and nonlinear stiffness of Fn fibers with surprising accuracy, with disparately loaded fibers providing the best fit to experiment. This work shows the promise of this microstructural modeling approach for understanding Fn fiber properties, which is generally applicable to other ECM fibers, and could be further expanded to tissue scale by incorporating these simulated fibers into three dimensional

  9. Molecular Packing and Arrangement Govern the Photo-Oxidative Stability of Organic Photovoltaic Materials

    KAUST Repository

    Mateker, William R.

    2015-08-19

    For long-term performance chemically robust materials are desired for organic solar cells (OSCs). Illuminating neat films of OSC materials in air and tracking the rate of absorption loss, or photobleaching, can quickly screen a material’s photo-chemical stability. In this report, we photobleach neat films of OSC materials including polymers, solution-processed oligomers, solution-processed small molecules, and vacuum-deposited small molecules. Across the materials we test, we observe photobleaching rates that span seven orders of magnitude. Furthermore, we find that the film morphology of any particular material impacts the observed photobleaching rate, and that amorphous films photobleach faster than crystalline ones. In an extreme case, films of amorphous rubrene photobleach at a rate 2500 times faster than polycrystalline films. When we compare density to photobleaching rate, we find that stability increases with density. We also investigate the relationship between backbone planarity and chemical reactivity. The polymer PBDTTPD is more photostable than it’s more twisted and less ordered furan derivitative, PBDFTPD. Finally, we relate our work to what is known about the chemical stability of structural polymers, organic pigments, and organic light emitting diode materials. For the highest chemical stability, planar materials that form dense, crystalline film morphologies should be designed for OSCs.

  10. Effect of gas adsorption on acoustic wave propagation in MFI zeolite membrane materials: experiment and molecular simulation.

    Science.gov (United States)

    Manga, Etoungh D; Blasco, Hugues; Da-Costa, Philippe; Drobek, Martin; Ayral, André; Le Clezio, Emmanuel; Despaux, Gilles; Coasne, Benoit; Julbe, Anne

    2014-09-02

    The present study reports on the development of a characterization method of porous membrane materials which consists of considering their acoustic properties upon gas adsorption. Using acoustic microscopy experiments and atomistic molecular simulations for helium adsorbed in a silicalite-1 zeolite membrane layer, we showed that acoustic wave propagation could be used, in principle, for controlling the membranes operando. Molecular simulations, which were found to fit experimental data, showed that the compressional modulus of the composite system consisting of silicalite-1 with adsorbed He increases linearly with the He adsorbed amount while its shear modulus remains constant in a large range of applied pressures. These results suggest that the longitudinal and Rayleigh wave velocities (VL and VR) depend on the He adsorbed amount whereas the transverse wave velocity VT remains constant.

  11. Plant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite

    Directory of Open Access Journals (Sweden)

    Mathias Sorieul

    2016-07-01

    Full Text Available Plant cell walls form an organic complex composite material that fulfils various functions. The hierarchical structure of this material is generated from the integration of its elementary components. This review provides an overview of wood as a composite material followed by its deconstruction into fibres that can then be incorporated into biobased composites. Firstly, the fibres are defined, and their various origins are discussed. Then, the organisation of cell walls and their components are described. The emphasis is on the molecular interactions of the cellulose microfibrils, lignin and hemicelluloses in planta. Hemicelluloses of diverse species and cell walls are described. Details of their organisation in the primary cell wall are provided, as understanding of the role of hemicellulose has recently evolved and is likely to affect our perception and future study of their secondary cell wall homologs. The importance of the presence of water on wood mechanical properties is also discussed. These sections provide the basis for understanding the molecular arrangements and interactions of the components and how they influence changes in fibre properties once isolated. A range of pulping processes can be used to individualise wood fibres, but these can cause damage to the fibres. Therefore, issues relating to fibre production are discussed along with the dispersion of wood fibres during extrusion. The final section explores various ways to improve fibres obtained from wood.

  12. Synthesis and energy band characterization of hybrid molecular materials based on organic–polyoxometalate charge-transfer salts

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Chunxia [Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province (China); Traditional Chinese Medicine College of Gansu, Gansu (China); Bu, Weifeng, E-mail: buwf@lzu.edu.cn [Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province (China)

    2014-11-15

    A cationic amphiphilic molecule was synthesized and employed to encapsulate Lindqvist ([M{sub 6}O{sub 19}]{sup 2−}) and Keggin polyoxometalates ([SiM{sub 12}O{sub 40}]{sup 4−}, M=Mo, W) to form hybrid molecules through electrostatic interaction. The X-ray diffraction results illustrate that the former hybrids possess lamellar nanostructures in their solid states, while the latter hybrids show a cubic Im3m packing model with low intensities and poor long-range order. These hybrids have clear charge-transfer characters as shown in their deeper colors and UV–vis diffuse reflectance spectra. According to the reported reduction potentials of the POM acceptors and the band gaps deduced from their diffuse reflectance spectra, we have calculated the theoretical values of the lowest unoccupied molecular orbital (LUMO) position similar to the electron affinity (E{sub A}) of solid materials. Such energy level parameters are comparable to those of electroluminescence and electron-transport materials commonly used in organic electroluminescence devices. These organic–polyoxometalate charge-transfer salts have more advantages, such as higher decomposition temperatures, easier film fabrication and better electron affinities, which presumably would be used for electron-transport materials in the area of the electroluminescence. - Graphical abstract: Hybrid molecular materials with charge-transfer characters formed by a positively charged donor L and acceptors of the Lindqvist-type and Keggin-type POMs have lamellar and cubic structures in their solid state. - Highlights: • Charge-transfer salts are obtained by self-assembling POMs with an anthracene cation. • Their energy parameters are comparable to those of optoelectronic materials in OLEDs. • These POM-based hybrids could be applied in the area of optoelectronic devices.

  13. Exploiting Mycosporines as Natural Molecular Sunscreens for the Fabrication of UV-Absorbing Green Materials.

    Science.gov (United States)

    Fernandes, Susana C M; Alonso-Varona, Ana; Palomares, Teodoro; Zubillaga, Verónica; Labidi, Jalel; Bulone, Vincent

    2015-08-05

    Ultraviolet radiations have many detrimental effects in living organisms that challenge the stability and function of cellular structures. UV exposure also alters the properties and durability of materials and affects their lifetime. It is becoming increasingly important to develop new biocompatible and environmentally friendly materials to address these issues. Inspired by the strategy developed by fish, algae, and microorganisms exposed to UV radiations in confined ecosystems, we have constructed novel UV-protective materials that exclusively consist of natural compounds. Chitosan was chosen as the matrix for grafting mycosporines and mycosporine-like amino acids as the functional components of the active materials. Here, we show that these materials are biocompatible, photoresistant, and thermoresistant, and exhibit a highly efficient absorption of both UV-A and UV-B radiations. Thus, they have the potential to provide an efficient protection against both types of UV radiations and overcome several shortfalls of the current UV-protective products. In practice, the same concept can be applied to other biopolymers than chitosan and used to produce multifunctional materials. Therefore, it has a great potential to be exploited in a broad range of applications in living organisms and nonliving systems.

  14. Nonperiodic stochastic boundary conditions for molecular dynamics simulations of materials embedded into a continuum mechanics domain.

    Science.gov (United States)

    Rahimi, Mohammad; Karimi-Varzaneh, Hossein Ali; Böhm, Michael C; Müller-Plathe, Florian; Pfaller, Sebastian; Possart, Gunnar; Steinmann, Paul

    2011-04-21

    A scheme is described for performing molecular dynamics simulations on polymers under nonperiodic, stochastic boundary conditions. It has been designed to allow later the embedding of a particle domain treated by molecular dynamics into a continuum environment treated by finite elements. It combines, in the boundary region, harmonically restrained particles to confine the system with dissipative particle dynamics to dissipate energy and to thermostat the simulation. The equilibrium position of the tethered particles, the so-called anchor points, are well suited for transmitting deformations, forces and force derivatives between the particle and continuum domains. In the present work the particle scheme is tested by comparing results for coarse-grained polystyrene melts under nonperiodic and regular periodic boundary conditions. Excellent agreement is found for thermodynamic, structural, and dynamic properties.

  15. Molecular and Supramolecular Engineering of Thiophene Based Materials for Application in Organic Electronics and Bioimaging

    OpenAIRE

    Di Maria, Francesca Giulia

    2016-01-01

    Thiophene based oligomers and polymers are of great current interest from a scientific and technological point of view for their numerous properties: they are electroactive, fluorescent, chemically stable and allow a great diversity in molecular structures and a fine tuning of functional characteristics. They display ‘plasticity’ in adapting their geometry to the environment in the solid state and in creating supramolecular architectures by self-organization. Moreover, they have the capabilit...

  16. Synthetic and Computational Approach on novel Transitional metal and 3d-4f Molecular Magnetic Materials

    OpenAIRE

    Radhakrishnan, Vignesh Kuduva

    2017-01-01

    This thesis deals with the design, synthesis, structures and modeling of spin-Hamiltonian parameters (such as J, D and g–tensors) in manganese complexes and mixed transition metal-lanthanide (3d-4f) based complexes using both experimental and computational tools. Certain mononuclear/polynuclear complexes are capable of retaining their magnetization even in the absence of magnetic field which gives rise to magnetic hysteresis at a molecular level and an ability to act as m...

  17. Molecular dynamics simulation with weak coupling to heat and material baths.

    Science.gov (United States)

    Eslami, Hossein; Mojahedi, Fatemeh; Moghadasi, Jalil

    2010-08-28

    A method for performing molecular dynamics simulation in the grand canonical ensemble is developed. The molecular dynamics, with coupling to an external bath, simulation method of [Berendsen et al., J. Chem. Phys. 81, 3684 (1984)] is extended for this purpose. Here the physical system of interest consists of real indistinguishable particles plus one fractional particle, whose potential energy of interaction with the rest of particles is scaled by a coupling parameter, ranging dynamically between zero and one. This coupling changes the number of particles in the system gradually and dynamically, depending on the target values of the excess chemical potential, temperature, and volume. A nonlinear scaling scheme has been adopted to scale the potential energy of interaction of the fractional particle with the rest of the system. The method has been employed to predict the density of compressed Lennard-Jones fluid, compatible with the target values of temperature and the excess chemical potential, over a wide range of temperatures and densities. The method has further been applied to do molecular dynamics simulation in the grand canonical ensemble for water and to predict its vapor-liquid phase coexistence point. The results obtained using this method are in complete agreement with previously reported results in the literature.

  18. Nanopatterning of functional materials by gas phase pattern deposition of self-assembled molecular thin films in combination with electrodeposition.

    Science.gov (United States)

    George, Antony; Maijenburg, A Wouter; Nguyen, Minh Duc; Maas, Michiel G; Blank, Dave H A; ten Elshof, Johan E

    2011-10-18

    We present a general methodology to pattern functional materials on the nanometer scale using self-assembled molecular templates on conducting substrates. A soft lithographic gas phase edge patterning process using poly(dimethylsiloxane) molds was employed to form electrically isolating organosilane patterns of a few nanometer thickness and a line width that could be tuned by varying the time of deposition. Electrodeposition was employed to deposit patterns of Ni and ZnO on these prepatterned substrates. Deposition occurred only on patches of the substrate where no organosilane monolayer was present. The process is simple, inexpensive, and scalable to large areas. We achieved formation of metallic and oxide material patterns with a lateral resolution of 80 nm. © 2011 American Chemical Society

  19. Molecular organization of hydrophobic molecules and co-adsorbed water in SBA-15 ordered mesoporous silica material.

    Science.gov (United States)

    Mellaerts, Randy; Roeffaers, Maarten B J; Houthoofd, Kristof; Van Speybroeck, Michiel; De Cremer, Gert; Jammaer, Jasper A G; Van den Mooter, Guy; Augustijns, Patrick; Hofkens, Johan; Martens, Johan A

    2011-02-21

    The purpose of this study was to improve our understanding of the molecular organization of hydrophobic guest molecules in the presence of co-adsorbed water inside SBA-15 ordered mesoporous silica material. Understanding this adsorption competition is essential in the development of applications of controlled adsorption and desorption. The poorly water soluble drug compound itraconazole and the fluorescent probe Nile red were selected for the study. The interaction between itraconazole and SBA-15 was investigated using FT-IR, (1)H MAS NMR and (29)Si MAS NMR spectroscopy, by determination of adsorption isotherms and release kinetics in simulated gastric fluid. The distribution and migration of the hydrophobic fluorescent probe Nile red was visualized in situ using confocal fluorescence microscopy. For both molecules, there was a pronounced influence of the co-adsorbed water on adsorption, hydrophobic aggregation and migration in SBA-15 pores. These insights contribute to the development of practical methods for loading ordered mesoporous silica materials with hydrophobic molecules.

  20. Magnetic materials at finite temperatures: thermodynamics and combined spin and molecular dynamics derived from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Eisenbach, Markus [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perera, Meewanage Dilina N. [Univ. of Georgia, Athens, GA (United States). Center for Simulational Physics; Landau, David P [Univ. of Georgia, Athens, GA (United States). Center for Simulational Physics; Nicholson, Don M. [Univ. of North Carolina, Asheville, NC (United States). Dept. of Physics; Yin, Junqi [Univ. of Tennessee, Knoxville, TN (United States). National Inst. for Computational Sciences; Brown, Greg [Florida State Univ., Tallahassee, FL (United States). Dept. of Physics

    2015-01-01

    We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles-derived simulations.

  1. Clean synthesis of molecular recognition polymeric materials with chiral sensing capability using supercritical fluid technology. Application as HPLC stationary phases.

    Science.gov (United States)

    da Silva, Mara Soares; Vão, Eva R; Temtem, Márcio; Mafra, Luís; Caldeira, Jorge; Aguiar-Ricardo, Ana; Casimiro, Teresa

    2010-03-15

    Molecularly imprinted polymers (MIPs) of poly(ethylene glycol dimethacrylate) and poly(N-isopropylacrylamide-co-ethylene glycol dimethacrylate) were synthesized for the first time in supercritical carbon dioxide (scCO(2)), using Boc-L-tryptophan as template. Supercritical fluid technology provides a clean and one-step synthetic route for the preparation of affinity polymeric materials with sensing capability for specific molecules. The polymeric materials were tested as stationary HPLC phases for the enantiomeric separation of L- and D-tryptophan. HPLC results prove that the synthesized MIPs are able to recognize the template molecule towards its enantiomer which opens up potential applications in chromatographic chiral separation. (c) 2009 Elsevier B.V. All rights reserved.

  2. Design considerations for multi component molecular-polymeric nonlinear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Singer, K.D. (Case Western Reserve Univ., Cleveland, OH (USA). Dept. of Physics); Kuzyk, M.G. (Washington State Univ., Pullman, WA (USA). Dept. of Physics); Fang, T.; Holland, W.R. (AT and T Bell Labs., Princeton, NJ (USA)); Cahill, P.A. (Sandia National Labs., Albuquerque, NM (USA))

    1990-01-01

    We review our work on multi component polymeric nonlinear optical materials. These materials consist of nonlinear optical molecules incorporated in a polymeric host. A cross-linked triazine polymer incorporating a dicyanovinyl terminated azo dye was found to be relatively stable at 85{degree} and posses an electro-optic coefficient of 11pm/V. We have also observed the zero dispersion condition in a new anomalous dispersion dye for phase matched second harmonic generation, and expect efficient conversion to the blue. A squarylium dye, ISQ, has been found to posses a large third order nonlinearity, and may display two-level behavior. 24 refs., 11 figs.

  3. Molecular Building Blocks for Nanotechnology From Diamondoids to Nanoscale Materials and Applications

    CERN Document Server

    Mansoori, G. Ali; Assoufid, Lahsen; Zhang, Guoping

    2007-01-01

    This book is a result of the research and educational activities of a group of outstanding scientists worldwide who have authored the chapters of this book dealing with the behavior of nanoscale building blocks. It contains a variety of subjects covering computational, dry and wet nanotechnology. The state-of-the-art subject matters presented here provide the reader with the latest developments on ongoing nanoscience and nanotechnology research from the bottom-up approach, which starts with with atoms and molecules as molecular building blocks.

  4. Solid state photochemistry. Subpanel A-2(a): Design of molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Wells, R.L. [Duke Univ., Durham, NC (United States)

    1996-09-01

    Recent achievements of synthetic chemistry in the field of electronic materials are presented in three categories; viz, precursor design for improved processing, new chemistry for selective growth, and new growth techniques. This is followed by a discussion of challenges and opportunities in two general areas designated as composition and structure, and growth and processing.

  5. Influence of molecular structure on the photoluminescence of 2-methyl benzimidazolium picrate: A new fluorescent material

    Science.gov (United States)

    Obulichetty, M.; Saravanabharathi, D.

    2014-01-01

    This work reports the structural and photo luminescent characterization of the 2-methyl benzimidazolium picrate salt for the first time. This new material exhibits the π-π stacking of aromatic rings involving the benzimidazolium cation and picrate anion, which is additionally supported with a rare n → π interaction as well as with the extended networks of intermolecular hydrogen bonds in the solid state. The FT-IR and UV characterizations further support the solid state structural features of the salt. However, the spectroscopic results reveal that the stacking of ion pairs, which is observed in the solid state, is not maintained in solution. The DSC result indicates that the material is stable under ambient temperature conditions. Interestingly, upon photo excitation at 325 nm in the solid state, the material shows an unusual red emission around 615 nm, which is probably attributed to the supramolecular stacked nature of the ion pairs, along with a usual picrate centered green emission at 530 nm. However, the fluorescence measurement in solution, wherein the stacking of ion pairs are not maintained, shows only a single peak at lower wavelength. These observations highlight the influencing role of the supramolecular stacking interactions on the photoluminescence of the material, due to which, a chemical sensing action may be envisaged.

  6. An equal force theory for network models of soft materials with arbitrary molecular weight distribution

    Science.gov (United States)

    Verron, E.; Gros, A.

    2017-09-01

    Most network models for soft materials, e.g. elastomers and gels, are dedicated to idealized materials: all chains admit the same number of Kuhn segments. Nevertheless, such standard models are not appropriate for materials involving multiple networks, and some specific constitutive equations devoted to these materials have been derived in the last few years. In nearly all cases, idealized networks of different chain lengths are assembled following an equal strain assumption; only few papers adopt an equal stress assumption, although some authors argue that such hypothesis would reflect the equilibrium of the different networks in contact. In this work, a full-network model with an arbitrary chain length distribution is derived by considering that chains of different lengths satisfy the equal force assumption in each direction of the unit sphere. The derivation is restricted to non-Gaussian freely jointed chains and to affine deformation of the sphere. Firstly, after a proper definition of the undeformed configuration of the network, we demonstrate that the equal force assumption leads to the equality of a normalized stretch in chains of different lengths. Secondly, we establish that the network with chain length distribution behaves as an idealized full-network of which both chain length and density of are provided by the chain length distribution. This approach is finally illustrated with two examples: the derivation of a new expression for the Young modulus of bimodal interpenetrated polymer networks, and the prediction of the change in fluorescence during deformation of mechanochemically responsive elastomers.

  7. Molecular engineering with artificial atoms: designing a material platform for scalable quantum spintronics and photonics

    Science.gov (United States)

    Doty, Matthew F.; Ma, Xiangyu; Zide, Joshua M. O.; Bryant, Garnett W.

    2017-09-01

    Self-assembled InAs Quantum Dots (QDs) are often called "artificial atoms" and have long been of interest as components of quantum photonic and spintronic devices. Although there has been substantial progress in demonstrating optical control of both single spins confined to a single QD and entanglement between two separated QDs, the path toward scalable quantum photonic devices based on spins remains challenging. Quantum Dot Molecules, which consist of two closely-spaced InAs QDs, have unique properties that can be engineered with the solid state analog of molecular engineering in which the composition, size, and location of both the QDs and the intervening barrier are controlled during growth. Moreover, applied electric, magnetic, and optical fields can be used to modulate, in situ, both the spin and optical properties of the molecular states. We describe how the unique photonic properties of engineered Quantum Dot Molecules can be leveraged to overcome long-standing challenges to the creation of scalable quantum devices that manipulate single spins via photonics.

  8. [Teaching research of Molecular Pharmacognosy for talent development in industry of Chinese medicinal materials under new situation].

    Science.gov (United States)

    Guo, Wan-Li; Qi, Zhe-Chen; Zhang, Xiao-Dan; Sheng, Qing; Liang, Zong-Suo

    2017-01-01

    The industry of Chinese medicinal materials is going through another high-level development stage with some important files issued by Chinese government in the past months, such as "the protection and development plans of Chinese medicinal materials (2015-2020)" and "the strategic development plans of Chinese medicine (2016-2030)". In addition, the effect of "TU Youyou" will not only improve the industry development, but also indicates the increasing international competition intensely. Therefore, one of the core problems of the sustainable-development industry is the training of senior talents under the "New Situation" with opportunity and intense competition. As one of the forefront courses of Chinese Pharmacology, Molecular Pharmacognosy (MP) is a new interdisciplinary science, which integrates the pharmacognosy and molecular biology, and combines many discipline theories and technological systems. MP not only inherits the traditional concepts,but also makes up for the shortages of pharmacognosy, and improves the development of pharmacognosy. Thus, these are importance of MP for cultivation of senior talents, and also the difficult teaching points of MP with no unified teaching mode. We will, in this paper, discuss the possible teaching modes through several aspects for talent cultivation and meeting the needs of social and industry development, such as teaching state of MP, the education of undergraduate and graduate students, social identity, and self renewal of curriculum theories and practice. Copyright© by the Chinese Pharmaceutical Association.

  9. Novel restricted access materials combined to molecularly imprinted polymers for selective solid-phase extraction of organophosphorus pesticides from honey.

    Science.gov (United States)

    He, Juan; Song, Lixin; Chen, Si; Li, Yuanyuan; Wei, Hongliang; Zhao, Dongxin; Gu, Keren; Zhang, Shusheng

    2015-11-15

    A novel restricted access materials (RAM) combined to molecularly imprinted polymers (MIPs), using malathion as template molecule and glycidilmethacrylate (GMA) as pro-hydrophilic co-monomer, were prepared for the first time. RAM-MIPs with hydrophilic external layer were characterized by scanning electron microscopy and recognition and selectivity properties were compared with the restricted access materials-non-molecularly imprinted polymers (RAM-NIPs) and unmodified MIPs. RAM-MIPs were used as the adsorbent enclosed in solid phase extraction column and several important extraction parameters were comprehensively optimized to evaluate the extraction performance. Under the optimum extraction conditions, RAM-MIPs exhibited comparable or even higher selectivity with greater extraction capacity toward six kinds of organophosphorus pesticides (including malathion, ethoprophos, phorate, terbufos, dimethoate, and fenamiphos) compared with the MIPs and commercial solid phase extraction columns. The RAM-MIPs solid phase extraction coupled with gas chromatography was successfully applied to simultaneously determine six kinds of organophosphorus pesticides from honey sample. The new established method showed good linearity in the range of 0.01-1.0 μg mL(-1), low limits of detection (0.0005-0.0019 μg mL(-1)), acceptable reproducibility (RSD, 2.26-4.81%, n = 6), and satisfactory relative recoveries (90.9-97.6%). It was demonstrated that RAM-MIPs solid phase extraction with excellent selectivity and restricted access function was a simple, rapid, selective, and effective sample pretreatment method. Copyright © 2015. Published by Elsevier Ltd.

  10. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Materials for Pharmaceutical Dosage Forms: Molecular Pharmaceutics and Controlled Release Drug Delivery Aspects

    Directory of Open Access Journals (Sweden)

    Patrick P. DeLuca

    2010-09-01

    Full Text Available Controlled release delivery is available for many routes of administration and offers many advantages (as microparticles and nanoparticles over immediate release delivery. These advantages include reduced dosing frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are well accepted by patients. Advances in polymer material science, particle engineering design, manufacture, and nanotechnology have led the way to the introduction of several marketed controlled release products and several more are in pre-clinical and clinical development.

  12. Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects.

    Science.gov (United States)

    Mansour, Heidi M; Sohn, Minji; Al-Ghananeem, Abeer; Deluca, Patrick P

    2010-09-15

    Controlled release delivery is available for many routes of administration and offers many advantages (as microparticles and nanoparticles) over immediate release delivery. These advantages include reduced dosing frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are well accepted by patients. Advances in polymer material science, particle engineering design, manufacture, and nanotechnology have led the way to the introduction of several marketed controlled release products and several more are in pre-clinical and clinical development.

  13. CCC7-119 Reactive Molecular Dynamics Simulations of Hot Spot Growth in Shocked Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The purpose of this work is to understand how defects control initiation in energetic materials used in stockpile components; Sequoia gives us the core-count to run very large-scale simulations of up to 10 million atoms and; Using an OpenMP threaded implementation of the ReaxFF package in LAMMPS, we have been able to get good parallel efficiency running on 16k nodes of Sequoia, with 1 hardware thread per core.

  14. Molecular dynamics simulations of interactions between energetic dust and plasma-facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Guo-jian, E-mail: niugj@ipp.ac.cn [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Li, Xiao-chun; Xu, Qian; Yang, Zhong-shi [Hefei Center Physical Science and Technology, Hefei (China); Luo, Guang-nan [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Hefei Center Physical Science and Technology, Hefei (China); Hefei Science Center of CAS, Hefei (China)

    2015-11-15

    The interactions between dust and plasma-facing material (PFM) relate to the lifetime of PFM and impurity production. Series results have been obtained theoretically and experimentally but more detailed studies are needed. In present research, we investigate the evolution of kinetic, potential and total energy of plasma-facing material (PFM) in order to understand the dust/PFM interaction process. Three typical impacting energy are selected, i.e., 1, 10 and 100 keV/dust for low-, high- and hyper-energy impacting cases. For low impacting energy, dust particles stick on PFM surface without damaging it. Two typical time points exist and the temperature of PFM grows all the time but PFM structure experience a modifying process. Under high energy case, three typical points appear. The temperature curve fluctuates in the whole interaction process which indicates there are dust/PFM and kinetic/potential energy exchanges. In the hyper-energy case in present simulation, the violence dust/PFM interactions cause sputtering and crater investigating on energy evolution curves. We further propose the statistics of energy distribution. Results show that about half of impacting energy consumes on heating plasma-facing material meanwhile the other half on PFM structure deformation. Only a small proportion becomes kinetic energy of interstitial or sputtering atoms.

  15. Sialic Acid-Responsive Polymeric Interface Material: From Molecular Recognition to Macroscopic Property Switching

    Science.gov (United States)

    Xiong, Yuting; Jiang, Ge; Li, Minmin; Qing, Guangyan; Li, Xiuling; Liang, Xinmiao; Sun, Taolei

    2017-01-01

    Biological systems that utilize multiple weak non-covalent interactions and hierarchical assemblies to achieve various bio-functions bring much inspiration for the design of artificial biomaterials. However, it remains a big challenge to correlate underlying biomolecule interactions with macroscopic level of materials, for example, recognizing such weak interaction, further transforming it into regulating material’s macroscopic property and contributing to some new bio-applications. Here we designed a novel smart polymer based on polyacrylamide (PAM) grafted with lactose units (PAM-g-lactose0.11), and reported carbohydrate-carbohydrate interaction (CCI)-promoted macroscopic properties switching on this smart polymer surface. Detailed investigations indicated that the binding of sialic acid molecules with the grafted lactose units via the CCIs induced conformational transformation of the polymer chains, further resulted in remarkable and reversible switching in surface topography, wettability and stiffness. With these excellent recognition and response capacities towards sialic acid, the PAM-g-lactose0.11 further facilitated good selectivity, strong anti-interference and high adsorption capacity in the capture of sialylated glycopeptides (important biomarkers for cancers). This work provides some enlightenment for the development of biointerface materials with tunable property, as well as high-performance glycopeptide enrichment materials.

  16. Synthesis, structure and properties of hierarchical nanostructured porous materials studied by molecular dynamics simulations

    Science.gov (United States)

    Chae, Kisung

    For applications of porous materials in many fields of technological importance, such as catalysis, filtration, separation, energy storage and conversion, the efficiency is often limited by chemical kinetics, and/or diffusion of reactants and products to and from the active sites. Hierarchical nanostructured porous materials (HNPMs) that possess both mesopores (2 nm gas transport in HNPCs, a computationally efficient reflecting particle method (RPM) together with a perturbation-relaxation loop was developed in this work to make the pressure drop consistent for various structures and transport conditions. The mimetic nanocasting technique and the RPM method can be easily extended to study the synthesis-structure-transport properties relations in many other HNPMs. A complete feedback loop among synthesis, structure and properties will help identify the proper synthesis parameters to design the optimal porous structures for a particular application. This will speed up the applications of HNPMs in many fields, such as electrodes for supercapacitors, lithium ion batteries and fuel cells, catalyst supports, materials for gas sensing and hydrogen storage, etc.

  17. Molecular Dynamics Simulation of Fission Fragment Damage in Nuclear Fuel and Surrogate Material

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ram

    2017-01-01

    ABSTRACT

    We have performed classical molecular dynamics simulations of swift heavy ion damage, typical of fission fragments, in nuclear fuel (UO2) for energy deposition per unit length of 3.9 keV/nm. We did not observe amorphization. The damage mainly consisted of isolated point defects. Only about 1% of the displacements occur on the uranium sublattice. Oxygen Frenkel pairs are an order of magnitude more numerous than uranium Frenkel pairs in the primary damage state. In contrast, previous results show that the ratio of Frenkel pairs on the two sublattices is close to the stoichiometric ratio in ceria. These differences in the primary damage state may lead to differences in radiation response of UO2and CeO2.

  18. Extended First-Principles Molecular Dynamics Method From Cold Materials to Hot Dense Plasmas

    CERN Document Server

    Zhang, Shen; Kang, Wei; Zhang, Ping; He, Xian-Tu

    2016-01-01

    An extended first-principles molecular dynamics (FPMD) method based on Kohn-Sham scheme is proposed to elevate the temperature limit of the FPMD method in the calculation of dense plasmas. The extended method treats the wave functions of high energy electrons as plane waves analytically, and thus expands the application of the FPMD method to the region of hot dense plasmas without suffering from the formidable computational costs. In addition, the extended method inherits the high accuracy of the Kohn-Sham scheme and keeps the information of elec- tronic structures. This gives an edge to the extended method in the calculation of the lowering of ionization potential, X-ray absorption/emission spectra, opacity, and high-Z dense plasmas, which are of particular interest to astrophysics, inertial confinement fusion engineering, and laboratory astrophysics.

  19. Molecular Self-Assembly of Short Aromatic Peptides: From Biology to Nanotechnology and Material Science

    Science.gov (United States)

    Gazit, Ehud

    2013-03-01

    The formation of ordered amyloid fibrils is the hallmark of several diseases of unrelated origin. In spite of grave clinical consequence, the mechanism of amyloid formation is not fully understood. We have suggested, based on experimental and bioinformatic analysis, that aromatic interactions may provide energetic contribution as well as order and directionality in the molecular-recognition and self-association processes that lead to the formation of these assemblies. This is in line with the well-known central role of aromatic-stacking interactions in self-assembly processes. Our works on the mechanism of aromatic peptide self-assembly, lead to the discovery that the diphenylalanine recognition motif self-assembles into peptide nanotubes with a remarkable persistence length. Other aromatic homodipeptides could self-assemble in nano-spheres, nano-plates, nano-fibrils and hydrogels with nano-scale order. We demonstrated that the peptide nanostructures have unique chemical, physical and mechanical properties including ultra-rigidity as aramides, semi-conductive, piezoelectric and non-linear optic properties. We also demonstrated the ability to use these peptide nanostructures as casting mold for the fabrication of metallic nano-wires and coaxial nano-cables. The application of the nanostructures was demonstrated in various fields including electrochemical biosensors, tissue engineering, and molecular imaging. Finally, we had developed ways for depositing of the peptide nanostructures and their organization. We had use inkjet technology as well as vapour deposition methods to coat surface and from the peptide ``nano-forests''. We recently demonstrated that even a single phenylalanine amino-acid can form well-ordered fibrilar assemblies.

  20. Embedding effects on charge-transport parameters in molecular organic materials.

    Science.gov (United States)

    Lipparini, Filippo; Mennucci, Benedetta

    2007-10-14

    We present a generalized version of the tight-binding approach to determine the electronic coupling parameter in charge (hole) transport phenomena in organic materials. The main novelty of this approach is that the "embedding effects" of the environment (either a solvent or a crystal packing) can be explicitly included in the calculation by considering an embedded dimer. One of the main features shown by the application of the method to both model systems and oligoacene crystals is that the routinely used "energy splitting in a dimer" approximation gives reasonable results even if the transfer units are not equivalent by symmetry but the embedding effects are properly taken into account.

  1. Embedding effects on charge-transport parameters in molecular organic materials

    Science.gov (United States)

    Lipparini, Filippo; Mennucci, Benedetta

    2007-10-01

    We present a generalized version of the tight-binding approach to determine the electronic coupling parameter in charge (hole) transport phenomena in organic materials. The main novelty of this approach is that the "embedding effects" of the environment (either a solvent or a crystal packing) can be explicitly included in the calculation by considering an embedded dimer. One of the main features shown by the application of the method to both model systems and oligoacene crystals is that the routinely used "energy splitting in a dimer" approximation gives reasonable results even if the transfer units are not equivalent by symmetry but the embedding effects are properly taken into account.

  2. Antiferromagnetic Mott insulating state in the single-component molecular material Pd(tmdt)2

    Science.gov (United States)

    Takagi, Rina; Sari, Dita Puspita; Mohd-Tajudin, Saidah Sakinah; Ashi, Retno; Watanabe, Isao; Ishibashi, Shoji; Miyagawa, Kazuya; Ogura, Satomi; Zhou, Biao; Kobayashi, Akiko; Kanoda, Kazushi

    2017-12-01

    A family of compounds built by a single molecular species, M (tmdt) 2, with a metal ion, M , and organic ligands, tmdt, affords diverse electronic phases due to M -dependent interplays between d electrons in M , and π electrons in tmdt. We investigated the spin state in Pd (tmdt) 2 , a π -electron system without a d -electron contribution, through 1H nuclear magnetic resonance (NMR) and muon-spin resonance experiments. The temperature profiles of the NMR linewidth, relaxation rate, and asymmetry parameter in muon decay show an inhomogeneous antiferromagnetic order with moments distributed around ˜0.1 μB that onsets at above 100 K. This result provides an example of the antiferromagnetic order in a pure π -electron system in M (tmdt) 2, and it demonstrates that correlation among the π electrons is so strong as to give the Néel temperature over 100 K. The small and inhomogeneous moments are understandable as the crucial disorder effect in correlated electrons situated near the Mott transition.

  3. Molecular dynamics simulations of void defects in the energetic material HMX.

    Science.gov (United States)

    Duan, Xiao Hui; Li, Wen Peng; Pei, Chong Hua; Zhou, Xiao Qing

    2013-09-01

    A molecular dynamics (MD) simulation was carried out to characterize the dynamic evolution of void defects in crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX). Different models were constructed with the same concentration of vacancies (10 %) to discuss the size effects of void. Energetic ground state properties were determined by annealing simulations. The void formation energy per molecule removed was found to be 55-63 kcal/mol(-1), and the average binding energy per molecule was between 32 and 34 kcal/mol(-1) according to the change in void size. Voids with larger size had lower formation energy. Local binding energies for molecules directly on the void surface decreased greatly compared to those in defect-free lattice, and then gradually increased until the distance away from the void surface was around 10 Å. Analysis of 1 ns MD simulations revealed that the larger the void size, the easier is void collapse. Mean square displacements (MSDs) showed that HMX molecules that had collapsed into void present liquid structure characteristics. Four unique low-energy conformers were found for HMX molecules in void: two whose conformational geometries corresponded closely to those found in HMX polymorphs and two, additional, lower energy conformers that were not seen in the crystalline phases. The ratio of different conformers changed with the simulated temperature, in that the ratio of α conformer increased with the increase in temperature.

  4. Ammonia borane with polyvinylpyrrolidone as a hydrogen storage material: Comparison of different molecular weights

    Science.gov (United States)

    Seemaladinne, Ramanjaneyulu; Pati, Sahithya; Kharel, Krishna; Bafana, Adarsh; al-Wahish, Amal; Wujcik, Evan K.; Günaydın-Şen, Özge

    2017-11-01

    We report thermal and infrared transmission measurements on ammonia borane (NH3BH3, AB), and its bulk composites with polyvinylpyrrolidone (PVP) as a function of temperature. X-ray studies reveal an amorphous phase combined the AB crystalline with the addition of the polymer. We determine the activation energies in the temperature range from 25 °C to 300 °C with various ramp rates via kinetic studies. These activation energies of AB:PVP bulk composites were found to be lower than the pristine AB. Overall, the composites with higher molecular weight and high polymer content revealed the greatest decrease in Ea. The weight loss provided similar results, it decreased from ∼57.8% for AB to ∼10.5% for the polymer composite. The FT-IR studies of AB and the bulk composites showed evidence of the interaction between the boron atom of AB and the oxygen atom of the carbonyl group in PVP. An explanation of the hydrogen release pattern during decomposition at higher temperatures ranging from 25 °C to 300 °C is also provided.

  5. Nanostructuring molecular materials as particles and vesicles for drug delivery, using compressed and supercritical fluids.

    Science.gov (United States)

    Elizondo, Elisa; Veciana, Jaume; Ventosa, Nora

    2012-09-01

    The structuring of synthetic and biological therapeutic actives as micro- and nano-particulate materials is a widely accepted formulation strategy to improve efficacy and reduce the toxicity of drugs. However, the development of efficient production platforms that enable the formulation of these nanomedicines at an industrial scale and with the quality requirements imposed by regulatory agencies remains a challenge. In this framework, compressed fluid-based methods are promising technologies for the controlled and reproducible preparation of uniform micro- and nano-particulate nanomedicines at a large scale. This review provides an overall but practical knowledge about what has been achieved so far in the field of compressed fluids applied to the preparation of solid micro- and nanoparticles and vesicles as drug delivery systems. In addition, recent examples of application of these technologies to the production of polymeric nanostructured microparticles highly loaded with gentamicin and to the preparation of uniform cholesterol-rich vesicular systems are explained.

  6. Gigantic swelling of inorganic layered materials: a bridge to molecularly thin two-dimensional nanosheets.

    Science.gov (United States)

    Geng, Fengxia; Ma, Renzhi; Ebina, Yasuo; Yamauchi, Yusuke; Miyamoto, Nobuyoshi; Sasaki, Takayoshi

    2014-04-09

    Platy microcrystals of a typical layered material, protonated titanate, have been shown to undergo an enormous degree of swelling in aqueous solutions of various amines, including tertiary amines, quaternary ammonium hydroxides, and primary amines. Introducing these solutions expanded the crystal gallery height by up to ~100-fold. Through systematic analysis, we determined that ammonium ion intercalation is predominantly affected by the acid-base equilibrium and that the degree of swelling or inflow of H2O is controlled by the osmotic pressure balance between the gallery and the solution environment, both of which are relatively independent of electrolyte identity but substantially dependent on molarity. In solutions of tertiary amines and quaternary ammonium hydroxides, the uptake of ammonium ions increases nearly linearly with increasing external concentration before reaching a saturation plateau, i.e., ~40% relative to the cation-exchange capacity of the crystals used. The only exception is tetrabutylammonium ions, which yield a lower saturation value, ~30%, owing to steric effects. The swelling behaviors in some primary amine solutions differ as a result of the effect of attractive forces between amine solute molecules on the solution osmotic pressure. Although the swelling is essentially colligative in nature, the stability of the resultant swollen structure is heavily dependent on the chemical nature of the guest ions. Intercalated ions of higher polarity and smaller size help stabilize the swollen structure, whereas ions of lower polarity and larger size lead readily to exfoliation. The insight gained from this study sheds new light on both the incorporation of guest molecules into a gallery of layered structures in general and the exfoliation of materials into elementary single-layer nanosheets.

  7. Molecular and Material Approaches to Overcome Kinetic and Energetic Constraints in Dye-Sensitized Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Thomas [Michigan State Univ., East Lansing, MI (United States)

    2016-08-14

    Dye-sensitized solar cells (DSSCs) have attracted a lot of interest as they proffer the possibility of extremely inexpensive and efficient solar energy conversion. The excellent performance of the most efficient DSSCs relies on two main features: 1) a high surface area nanoparticle semiconductor photoanode to allow for excellent light absorption with moderate extinction molecular dyes and 2) slow recombination rates from the photoanode to I3- allowing good charge collection. The I3-/I- couple, however, has some disadvantages, notably the redox potential limits the maximum open-circuit voltage, and the dye regeneration requires a large driving force which constrains the light harvesting ability. Thus, the design features that allow DSSCs to perform as well as they do also prevent further significant improvements in performance. As a consequence, the most efficient device configuration, and the maximum efficiency, has remained essentially unchanged over the last 16 years. Significant gains in performance are possible; however it will likely require a substantial paradigm shift. The general goal of this project is to understand the fundamental role of dye-sensitized solar cell, DSSC, components (sensitizer, redox shuttle, and photoanode) involved in key processes in order to overcome the kinetic and energetic constraints of current generation DSSCs. For example, the key to achieving high energy conversion efficiency DSSCs is the realization of a redox shuttle which fulfills the dual requirements of 1) efficient dye regeneration with a minimal driving force and 2) efficient charge collection. In current generation DSSCs, however, only one or the other of these requirements is met. We are currently primarily interested in understanding the physical underpinnings of the regeneration and recombination reactions. Our approach is to systematically vary the components involved in reactions and interrogate them with a

  8. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.

    Science.gov (United States)

    Li, Yongfang

    2012-05-15

    Bulk heterojunction (BHJ) polymer solar cells (PSCs) sandwich a blend layer of conjugated polymer donor and fullerene derivative acceptor between a transparent ITO positive electrode and a low work function metal negative electrode. In comparison with traditional inorganic semiconductor solar cells, PSCs offer a simpler device structure, easier fabrication, lower cost, and lighter weight, and these structures can be fabricated into flexible devices. But currently the power conversion efficiency (PCE) of the PSCs is not sufficient for future commercialization. The polymer donors and fullerene derivative acceptors are the key photovoltaic materials that will need to be optimized for high-performance PSCs. In this Account, I discuss the basic requirements and scientific issues in the molecular design of high efficiency photovoltaic molecules. I also summarize recent progress in electronic energy level engineering and absorption spectral broadening of the donor and acceptor photovoltaic materials by my research group and others. For high-efficiency conjugated polymer donors, key requirements are a narrower energy bandgap (E(g)) and broad absorption, relatively lower-lying HOMO (the highest occupied molecular orbital) level, and higher hole mobility. There are three strategies to meet these requirements: D-A copolymerization for narrower E(g) and lower-lying HOMO, substitution with electron-withdrawing groups for lower-lying HOMO, and two-dimensional conjugation for broad absorption and higher hole mobility. Moreover, better main chain planarity and less side chain steric hindrance could strengthen π-π stacking and increase hole mobility. Furthermore, the molecular weight of the polymers also influences their photovoltaic performance. To produce high efficiency photovoltaic polymers, researchers should attempt to increase molecular weight while maintaining solubility. High-efficiency D-A copolymers have been obtained by using benzodithiophene (BDT), dithienosilole

  9. Molecular-Level Processing of Si-(B)-C Materials with Tailored Nano/Microstructures.

    Science.gov (United States)

    Schmidt, Marion; Durif, Charlotte; Acosta, Emanoelle Diz; Salameh, Chrystelle; Plaisantin, Hervé; Miele, Philippe; Backov, Rénal; Machado, Ricardo; Gervais, Christel; Alauzun, Johan G; Chollon, Georges; Bernard, Samuel

    2017-12-01

    The design of Si-(B)-C materials is investigated, with detailed insight into the precursor chemistry and processing, the precursor-to-ceramic transformation, and the ceramic microstructural evolution at high temperatures. In the early stage of the process, the reaction between allylhydridopolycarbosilane (AHPCS) and borane dimethyl sulfide is achieved. This is investigated in detail through solid-state NMR and FTIR spectroscopy and elemental analyses for Si/B ratios ranging from 200 to 30. Boron-based bridges linking AHPCS monomeric fragments act as crosslinking units, extending the processability range of AHPCS and suppressing the distillation of oligomeric fragments during the low-temperature pyrolysis regime. Polymers with low boron contents display appropriate requirements for facile processing in solution, leading to the design of monoliths with hierarchical porosity, significant pore volume, and high specific surface area after pyrolysis. Polymers with high boron contents are more appropriate for the preparation of dense ceramics through direct solid shaping and pyrolysis. We provide a comprehensive study of the thermal decomposition mechanisms, and a subsequent detailed study of the high-temperature behavior of the ceramics produced at 1000 °C. The nanostructure and microstructure of the final SiC-based ceramics are intimately linked to the boron content of the polymers. B4 C/C/SiC nanocomposites can be obtained from the polymer with the highest boron content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Quantification of encapsulated bioburden in spacecraft polymer materials by cultivation-dependent and molecular methods.

    Directory of Open Access Journals (Sweden)

    Anja Bauermeister

    Full Text Available Bioburden encapsulated in spacecraft polymers (such as adhesives and coatings poses a potential risk to jeopardize scientific exploration of other celestial bodies. This is particularly critical for spacecraft components intended for hard landing. So far, it remained unclear if polymers are indeed a source of microbial contamination. In addition, data with respect to survival of microbes during the embedding/polymerization process are sparse. In this study we developed testing strategies to quantitatively examine encapsulated bioburden in five different polymers used frequently and in large quantities on spaceflight hardware. As quantitative extraction of the bioburden from polymerized (solid materials did not prove feasible, contaminants were extracted from uncured precursors. Cultivation-based analyses revealed <0.1-2.5 colony forming units (cfu per cm3 polymer, whereas quantitative PCR-based detection of contaminants indicated considerably higher values, despite low DNA extraction efficiency. Results obtained from this approach reflect the most conservative proxy for encapsulated bioburden, as they give the maximum bioburden of the polymers irrespective of any additional physical and chemical stress occurring during polymerization. To address the latter issue, we deployed an embedding model to elucidate and monitor the physiological status of embedded Bacillus safensis spores in a cured polymer. Staining approaches using AlexaFluor succinimidyl ester 488 (AF488, propidium monoazide (PMA, CTC (5-cyano-2,3-diotolyl tetrazolium chloride demonstrated that embedded spores retained integrity, germination and cultivation ability even after polymerization of the adhesive Scotch-Weld 2216 B/A. Using the methods presented here, we were able to estimate the worst case contribution of encapsulated bioburden in different polymers to the bioburden of spacecraft. We demonstrated that spores were not affected by polymerization processes. Besides Planetary

  11. A New Integrated Approach to Taxonomy: The Fusion of Molecular and Morphological Systematics with Type Material in Benthic Foraminifera.

    Science.gov (United States)

    Roberts, Angela; Austin, William; Evans, Katharine; Bird, Clare; Schweizer, Magali; Darling, Kate

    2016-01-01

    A robust and consistent taxonomy underpins the use of fossil material in palaeoenvironmental research and long-term assessment of biodiversity. This study presents a new integrated taxonomic protocol for benthic foraminifera by unequivocally reconciling the traditional taxonomic name to a specific genetic type. To implement this protocol, a fragment of the small subunit ribosomal RNA (SSU rRNA) gene is used in combination with 16 quantitative morphometric variables to fully characterise the benthic foraminiferal species concept of Elphidium williamsoni Haynes, 1973. A combination of live contemporary topotypic specimens, original type specimens and specimens of genetic outliers were utilised in this study. Through a series of multivariate statistical tests we illustrate that genetically characterised topotype specimens are morphologically congruent with both the holotype and paratype specimens of E. williamsoni Haynes, 1973. We present the first clear link between morphologically characterised type material and the unique SSU rRNA genetic type of E. williamsoni. This example provides a standard framework for the benthic foraminifera which bridges the current discontinuity between molecular and morphological lines of evidence, allowing integration with the traditional Linnaean roots of nomenclature to offer a new prospect for taxonomic stability.

  12. Non-extensivity of thermodynamics at the nanoscale in molecular spin crossover materials: a balance between surface and volume.

    Science.gov (United States)

    Félix, Gautier; Nicolazzi, William; Mikolasek, Mirko; Molnár, Gábor; Bousseksou, Azzedine

    2014-04-28

    The spin transition behavior in nanoparticles of molecular spin crossover (SCO) materials is investigated theoretically using a two-variable microscopic Ising-like model solved by Monte Carlo simulations. The extensive nature of the energy, and therefore the whole thermodynamics is affected by the increasing role of surface energetic parameters. As a consequence the pressure inside the nanoparticle is different from the external pressure of the bath. The difference of the surface energies between the low spin (LS) and the high spin (HS) states is the origin of the modification of the SCO properties at finite sizes (downshift of the transition temperature and loss of the hysteresis). On the other hand, the extensivity of the system can be controlled by the form of the nanoparticle. Hollow particles allow control of the surface to volume ratio. An important consequence of this effect is the conservation of the SCO properties as a function of size. A modification of the intermolecular interactions at the surface leads to a modification of the surface rigidity, and will impact also on the extensivity of the system. When increasing/decreasing the surface rigidity the global elasticity of the nanoparticle raises/decreases and enhances/reduces the cooperativity of the SCO material.

  13. Abordagem citogenética e molecular em material de abortos espontâneos Cytogenetic and molecular evaluation of spontaneous abortion samples

    Directory of Open Access Journals (Sweden)

    Andréa Cristina de Moraes

    2005-09-01

    Full Text Available OBJETIVOS: avaliar o desempenho da citogenética e das técnicas de hibridização in situ fluorescente (FISH e reação em cadeia da polimerase (PCR no estudo das aneuploidias cromossômicas numéricas e na determinação do sexo fetal em amostras de abortos espontâneos. MÉTODOS: duzentos e dezenove amostras de produtos de abortos espontâneos foram submetidas a estudo citogenético. Deste total, 40 amostras foram também submetidas à técnica de PCR-nested para a determinação do sexo fetal: 32 foram selecionadas devido à falha de crescimento no estudo citogenético e oito foram escolhidas ao acaso. Vinte amostras foram selecionadas para detecção de aneuploidias cromossômicas pela técnica de FISH, utilizando-se sondas para os cromossomos 13, 18, 21, X e Y: 13 casos foram submetidos a FISH devido à falha de crescimento no estudo citogenético e sete foram escolhidos ao acaso. Foi calculada a taxa de sucesso (obtenção de cariótipo de cada técnica. Para comparação das taxas de sucesso foi utilizado o teste de chi2, sendo considerados significantes resultados com pPURPOSE: to evaluate the performance of cytogenetic analysis, fluorescent in situ hybridization (FISH and polymerase chain reaction (PCR in the study of numerical chromosomal anomalies and in fetal sex determination of spontaneous abortion material. METHODS: cytogenetic analysis was performed on 219 spontaneous abortion specimens. Forty of these cases were also submitted to fetal sex determination using nested-PCR. Thirty-two of these cases were selected due to failed cytogenetic culture and the other eight were selected randomly. Twenty samples were submitted to the FISH technique, using probes for chromosomes 13, 18, 21, X and Y. Thirteen of these samples were selected due to failed cytogenetic culture and the other seven were randomly selected. The success rates of each technique were compared using the chi2 test and an established p<0.05 level of significance. The

  14. Understanding the influence of buckwheat bran on wheat dough baking performance: Mechanistic insights from molecular and material science approaches.

    Science.gov (United States)

    Zanoletti, Miriam; Marti, Alessandra; Marengo, Mauro; Iametti, Stefania; Pagani, M Ambrogina; Renzetti, Stefano

    2017-12-01

    A molecular and material science approach is used to describe the influence of coarse and fine buckwheat bran on wheat dough properties and bread textural quality. Focus is given on (i) gluten solvation and structural arrangements in presence of bran as studied by front-face fluorescence; (ii) thermo-mechanical behavior of dough during heating studied by dynamic mechanical thermal analysis and (iii) texture of bread crumb analyzed in terms of a cellular solid. The thermo-mechanical behavior of dough was found to be largely related to starch phase transitions during heating. The use of thermodynamic approaches to biopolymer melting revealed that key transitions such as the onset of starch gelatinization were function of the interplay of water and bran volume fractions in the dough. Front-face fluorescence studies in wheat dough revealed that gluten solvation and structural arrangements were delayed by increasing bran addition level and reduction in particle size, as indicated by the drastic decrease in the protein surface hydrophobicity index. Variations in gluten structure could be strongly related to dough baking performance, i.e. specific volume. With regards to texture, the approach revealed that crumb texture was controlled by variations in density, moisture and bran volume fractions. Overall, this study elucidates a number of physical mechanisms describing the influence of buckwheat bran addition to dough and bread quality. These mechanisms strongly pointed at the influence of bran on water partitioning among the main polymeric components. In the future, these mechanisms should be investigated with bran material of varying source, composition and structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cysteamine-based cell-permeable Zn(2+)-specific molecular bioimaging materials: from animal to plant cells.

    Science.gov (United States)

    Sinha, Sougata; Dey, Gourab; Kumar, Sunil; Mathew, Jomon; Mukherjee, Trinetra; Mukherjee, Subhrakanti; Ghosh, Subrata

    2013-11-27

    Structure-interaction/fluorescence relationship studies led to the development of a small chemical library of Zn(2+)-specific cysteamine-based molecular probes. The probe L5 with higher excitation/emission wavelengths, which absorbs in the visible region and emits in the green, was chosen as a model imaging material for biological studies. After successful imaging of intracellular zinc in four different kinds of cells including living organisms, plant, and animal cells, in vivo imaging potential of L5 was evaluated using plant systems. In vivo imaging of translocation of zinc through the stem of a small herb with a transparent stem, Peperomia pellucida, confirmed the stability of L5 inside biological systems and the suitability of L5 for real-time analysis. Similarly, fluorescence imaging of zinc in gram sprouts revealed the efficacy of the probe in the detection and localization of zinc in cereal crops. This imaging technique will help in knowing the efficiency of various techniques used for zinc enrichment of cereal crops. Computational analyses were carried out to better understand the structure, the formation of probe-Zn(2+) complexes, and the emission properties of these complexes.

  16. Coupled molecular dynamics-Monte Carlo model to study the role of chemical processes during laser ablation of polymeric materials

    Science.gov (United States)

    Prasad, Manish; Conforti, Patrick F.; Garrison, Barbara J.

    2007-08-01

    The coarse grained chemical reaction model is enhanced to build a molecular dynamics (MD) simulation framework with an embedded Monte Carlo (MC) based reaction scheme. The MC scheme utilizes predetermined reaction chemistry, energetics, and rate kinetics of materials to incorporate chemical reactions occurring in a substrate into the MD simulation. The kinetics information is utilized to set the probabilities for the types of reactions to perform based on radical survival times and reaction rates. Implementing a reaction involves changing the reactants species types which alters their interaction potentials and thus produces the required energy change. We discuss the application of this method to study the initiation of ultraviolet laser ablation in poly(methyl methacrylate). The use of this scheme enables the modeling of all possible photoexcitation pathways in the polymer. It also permits a direct study of the role of thermal, mechanical, and chemical processes that can set off ablation. We demonstrate that the role of laser induced heating, thermomechanical stresses, pressure wave formation and relaxation, and thermochemical decomposition of the polymer substrate can be investigated directly by suitably choosing the potential energy and chemical reaction energy landscape. The results highlight the usefulness of such a modeling approach by showing that various processes in polymer ablation are intricately linked leading to the transformation of the substrate and its ejection. The method, in principle, can be utilized to study systems where chemical reactions are expected to play a dominant role or interact strongly with other physical processes.

  17. Molecular dynamics simulations of the lattice thermal conductivity of thermoelectric material CuInTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J. [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong (Hong Kong); Liu, H.J., E-mail: phlhj@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Cheng, L.; Zhang, J.; Jiang, P.H.; Liang, J.H.; Fan, D.D.; Shi, J. [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2017-05-10

    Highlights: • A simple but effective Morse potential is constructed to accurately describe the interatomic interactions of CuInTe{sub 2}. • The lattice thermal conductivity of CuInTe{sub 2} predicted by MD agrees well with those measured experimentally, as well as those calculated from phonon BTE. • Introducing Cd impurity or Cu vacancy can effectively reduce the lattice thermal conductivity of CuInTe{sub 2} and thus further enhance its thermoelectric performance. - Abstract: The lattice thermal conductivity of thermoelectric material CuInTe{sub 2} is predicted using classical molecular dynamics simulations, where a simple but effective Morse-type interatomic potential is constructed by fitting first-principles total energy calculations. In a broad temperature range from 300 to 900 K, our simulated results agree well with those measured experimentally, as well as those obtained from phonon Boltzmann transport equation. By introducing the Cd impurity or Cu vacancy, the thermal conductivity of CuInTe{sub 2} can be effectively reduced to further enhance the thermoelectric performance of this chalcopyrite compound.

  18. Molecular dynamics study of nano-porous materials-Enhancement of mobility of Li ions in lithium disilicate.

    Science.gov (United States)

    Habasaki, Junko

    2016-11-28

    In several nano-porous materials and their composites, enhancement of ionic conductivity has been reported and several mechanisms having different origins have been proposed so far. In the present work, ionic motion of Li ions in porous lithium disilicates is examined by molecular dynamics simulation in the constant volume conditions and the enhancement of the dynamics is predicted. Structures and dynamics of ions in a nano-porous system were characterized and visualized to clarify the mechanism of the enhancement. The diffusion coefficient of Li ions has shown the maximum in the medium density (and porosity) region, and near the maximum, shortening of the nearly constant loss region in the mean squared displacement of ions as well as changes of the structures of the coordination polyhedra, LiOx is found. It suggests that the loosening of the cage, which increases the jump rate of ions, is an origin of the enhancement. When larger (but still in a nano-scale) voids are formed with a further decrease of density, more tight cages are reconstructed and the diffusion coefficient decreases again. These behaviors are closely related to the residual stress in the system. It is noteworthy that the explanation is not based on the percolation of the path only or formation of boundaries, although the former also affects the dynamics.

  19. Rational molecular dynamics scheme for predicting optimum concentration loading of nano-additive in phase change materials

    Directory of Open Access Journals (Sweden)

    Monisha Rastogi

    2015-10-01

    Full Text Available The present study deals with the diffusion and phase transition behaviour of paraffin reinforced with carbon nano-additives namely graphene oxide (GO and surface functionalized single walled carbon nanotubes (SWCNT. Bulk disordered systems of paraffin hydrocarbons impregnated with carbon nano-additives have been generated in realistic equilibrium conformations for potential application as latent heat storage systems. Ab initio molecular dynamics(MD in conjugation with COMPASS forcefield has been implemented using periodic boundary conditions. The proposed scheme allows determination of optimum nano-additive loading for improving thermo-physical properties through analysis of mass, thermal and transport properties; and assists in determination of composite behaviour and related performance from microscopic point of view. It was observed that nanocomposites containing 7.8 % surface functionalised SWCNT and 55% GO loading corresponds to best latent heat storage system. The propounded methodology could serve as a by-pass route for economically taxing and iterative experimental procedures required to attain the optimum composition for best performance. The results also hint at the large unexplored potential of ab-initio classical MD techniques for predicting performance of new nanocomposites for potential phase change material applications.

  20. Ionic Liquid-Hybrid Molecularly Imprinted Material-Filter Solid-Phase Extraction Coupled with HPLC for Determination of 6-Benzyladenine and 4-Chlorophenoxyacetic Acid in Bean Sprouts.

    Science.gov (United States)

    Han, Yehong; Yang, Chunliu; Zhou, Yang; Han, Dandan; Yan, Hongyuan

    2017-03-01

    A new method involving ionic liquid-hybrid molecularly imprinted material-filter solid-phase extraction coupled to high-performance liquid chromatography (IL-HIM-FSPE-HPLC) was developed for the simultaneous isolation and determination of 6-benzyladenine (6-BA) and 4-chlorophenoxyacetic acid (4-CPA) in bean sprouts. Sample preconcentration was performed using a modified filter, with the new IL-HIM as the adsorbent, which shows double adsorption. The first adsorption involves special recognition of molecular imprinting, and the second involves ion exchange and electrostatic attraction caused by the ionic liquid. This method combines the advantages of ionic liquids, hybrid materials, and molecularly imprinted polymers and was successfully applied to determine 6-BA and 4-CPA in bean sprouts. The adsorption of 6-BA to IL-HIM is based on selective imprinted recognition, whereas the adsorption of 4-CPA is mainly dependent on ion-exchange interactions.

  1. Solution Processed Organic Photovoltaic Cells Using D-A-D-A-D Type Small Molecular Donor Materials with Benzodithiophene and Diketopyrrolopyrrole Units.

    Science.gov (United States)

    Park, Sangman; Nam, So Yeon; Suh, Dong Hack; Lee, Jaemin; Lee, Changjin; Yoon, Sung Cheol

    2016-03-01

    Organic photovoltaic Cells (OPVs) have been considered to be a next-generation energy source to overcome exhaustion of resources. Currently, OPVs are developed based on two types of donor material with polymer and small molecule. Polymeric donor materials have shown better power conversion efficiency (PCE) than small molecular donor materials, since it's easy to control the morphology of photoactive film. However, the difficulty in synthetic reproducibility and purification of polymeric donor were main drawback to overcome. And then, recently small molecule donor materials have been overcome bad morphology of OPVs film by using appropriate alkyl substituents and relatively long conjugation system. In this study, we designed and synthesized D-A-D-A-D type small molecular donor materials containing alternatively linked benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) units. Also, we studied on the effect of photovoltaic performance of prepared small molecular D-A-D-A-D type donor with variation of thiophene links and with/without hexyl substituent. Our small molecular donors showed HOMO energy levels from -5.26 to -5.34 eV and optical bandgaps from 1.70 to 1.87 eV by CV (cyclic voltammetry) and UV/Vis spectroscopy, respectively. Finally, 3.4% of PCE can be obtained using a mixture of BDT(DPP)2-T2 and PCBM as an active layer with a Voc of 0.78 V, a Jsc of 9.72 mA/cm2, and a fill factor of 0.44 under 100 mW/cm2 AM 1.5G simulated light. We will discuss the performance of D-A-D-A-D type small molecular donor based OPVs with variation of both terminal substituents.

  2. Electrosíntesis y caracterización de materiales moleculares a partir de derivados n-trifluorometansulfonil-1-azahexa-1,3,5-trienos. // Electrosintesis and characterization of molecular materials starting from having derived.

    Directory of Open Access Journals (Sweden)

    M. E. Sánchez Vergara

    2008-01-01

    Full Text Available Actualmente existe un interés creciente en los Materiales Moleculares, ya que estos pueden presentar diferentescomportamientos eléctricos que van desde aislantes, semiconductores o bien conductores. En el presente estudio fueronsintetizados materiales de este tipo, a partir de derivados N-Trifluorometansulfonil-1-azahexa-1,3,5-trienos yK3[Cr(C2O43]•3H2O debido a que estos compuestos representan un gran interés por sus variadas aplicaciones en camposcomo la química analítica, además los derivados N-Trifluorometansulfonil-1-azahexa-1,3,5-trienos resultan especialmenteatractivos desde el punto de vista estructural ya que en su forma neutra presentan una extensa deslocalización electrónica locual les confiere un comportamiento químico muy particular. En esta comunicación, se forman mediante electrosíntesisconvencional y mediante electrosíntesis en el módulo de electrocristalización del microscopio de fuerza atómica (AFM,algunos materiales moleculares. Una vez obtenidos dichos materiales, se caracterizan por análisis elemental sobresuperficies (SEM-EDS.Palabras claves: Materiales moleculares, anisotropía, electrocristalización._____________________________________________________________________________Abstract.Recently, molecular materials have been developed because of their electrical properties which give conductor,semiconductor, or superconductor behavior. In this work, the synthesis of new materials formed from Ntrifluoromethanesulfonyl-1-azahexa-1, 3, 5-triene species and K3[Cr(C2O43]•3H2O is reported. NTrifluoromethanesulfonyl-1-azahexa-1,3,5-trienes compounds, which are highly functionalised pentametines, have alsobeen studied due to its interesting physical and chemical properties. These compounds are especially interesting from astructural point of view for some reasons; in a neutral form, they show an extensive electronic delocalisation, which confersthem a very particular chemical behaviour. This study is focused on

  3. Ni-O4 species anchored on N-doped graphene-based materials as molecular entities and electrocatalytic performances for oxygen reduction reaction

    Science.gov (United States)

    Jang, Dawoon; Lee, Seungjun; Shin, Yunseok; Ohn, Saerom; Park, Sunghee; Lim, Donggyu; Park, Gilsoo; Park, Sungjin

    2017-12-01

    The generation of molecular active species on the surface of nano-materials has become promising routes to produce efficient electrocatalysts. Development of cost-effective catalysts with high performances for oxygen reduction reaction (ORR) is an important challenge for fuel cell and metal-air battery applications. In this work, we report a novel hybrid produced by room-temperature solution processes using Ni-based organometallic molecules and N-doped graphene-based materials. Chemical and structural characterizations reveal that Ni-containing species are well-dispersed on the surface of graphene network as molecular entity. The hybrid shows excellent electrocatalytic performances for ORR in basic medium with an onset potential of 0.87 V (vs. RHE), superior durability and good methanol tolerance.

  4. First-Principle Framework for Total Charging Energies in Electrocatalytic Materials and Charge-Responsive Molecular Binding at Gas-Surface Interfaces.

    Science.gov (United States)

    Tan, Xin; Tahini, Hassan A; Seal, Prasenjit; Smith, Sean C

    2016-05-04

    Heterogeneous charge-responsive molecular binding to electrocatalytic materials has been predicted in several recent works. This phenomenon offers the possibility of using voltage to manipulate the strength of the binding interaction with the target gas molecule and thereby circumvent thermochemistry constraints, which inhibit achieving both efficient binding and facile release of important targets such as CO2 and H2. Stability analysis of such charge-induced molecular adsorption has been beyond the reach of existing first-principle approaches. Here, we draw on concepts from semiconductor physics and density functional theory to develop a first principle theoretical approach that allows calculation of the change in total energy of the supercell due to charging. Coupled with the calculated adsorption energy of gas molecules at any given charge, this allows a complete description of the energetics of the charge-induced molecular adsorption process. Using CO2 molecular adsorption onto negatively charged h-BN (wide-gap semiconductor) and g-C4N3 (half metal) as example cases, our analysis reveals that - while adsorption is exothermic after charge is introduced - the overall adsorption processes are not intrinsically spontaneous due to the energetic cost of charging the materials. The energies needed to overcome the barriers of these processes are 2.10 and 0.43 eV for h-BN and g-C4N3, respectively. This first principle approach opens up new pathways for a more complete description of charge-induced and electrocatalytic processes.

  5. Magnetismo Molecular (Molecular Magentism)

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Mario S [Universidade Federal Fluminense, Brasil; Moreira Dos Santos, Antonio F [ORNL

    2010-07-01

    The new synthesis processes in chemistry open a new world of research, new and surprising materials never before found in nature can now be synthesized and, as a wonderful result, observed a series of physical phenomena never before imagined. Among these are many new materials the molecular magnets, the subject of this book and magnetic properties that are often reflections of the quantum behavior of these materials. Aside from the wonderful experience of exploring something new, the theoretical models that describe the behavior these magnetic materials are, in most cases, soluble analytically, which allows us to know in detail the physical mechanisms governing these materials. Still, the academic interest in parallel this subject, these materials have a number of properties that are promising to be used in technological devices, such as in computers quantum magnetic recording, magnetocaloric effect, spintronics and many other devices. This volume will journey through the world of molecular magnets, from the structural description of these materials to state of the art research.

  6. Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures

    KAUST Repository

    Pahovnik, David

    2015-09-01

    Different synthetic approaches utilizing ring-opening polymerization of N-carboxyanhydrides for preparation of polypeptide and polypeptide-based hybrid materials with various molecular architectures are described. An overview of polymerization mechanisms using conventional (various amines) as well as some recently developed initiators (hexamethyldisilazane, N-heterocyclic persistent carbenes, etc.) is presented, and their benefits and drawbacks for preparation of polypeptides with well-defined chain lengths and chain-end functionality are discussed. Recent examples from literature are used to illustrate different possibilities for synthesis of pure polypeptide materials with different molecular architectures bearing various functional groups, which are introduced either by modification of amino acids, before they are transformed into corresponding Ncarboxyanhydrides, or by post-polymerization modifications using protective groups and/or orthogonal functional groups. Different approaches for preparation of polypeptide-based hybrid materials are discussed as well using examples from recent literature. Syntheses of simple block copolymers or copolymers with more complex molecular architectures (graft and star copolymers) as well as modifications of nanoparticles and other surfaces with polypeptides are described.

  7. The laboratory technology of discrete molecular separation: the historical development of gel electrophoresis and the material epistemology of biomolecular science, 1945-1970.

    Science.gov (United States)

    Chiang, Howard Hsueh-hao

    2009-01-01

    Preparative and analytical methods developed by separation scientists have played an important role in the history of molecular biology. One such early method is gel electrophoresis, a technique that uses various types of gel as its supporting medium to separate charged molecules based on size and other properties. Historians of science, however, have only recently begun to pay closer attention to this material epistemological dimension of biomolecular science. This paper substantiates the historiographical thread that explores the relationship between modern laboratory practice and the production of scientific knowledge. It traces the historical development of gel electrophoresis from the mid-1940s to the mid-1960s, with careful attention to the interplay between technical developments and disciplinary shifts, especially the rise of molecular biology in this time-frame. Claiming that the early 1950s marked a decisive shift in the evolution of electrophoretic methods from moving boundary to zone electrophoresis, I reconstruct various trajectories in which scientists such as Oliver Smithies sought out the most desirable solid supporting medium for electrophoretic instrumentation. Biomolecular knowledge, I argue, emerged in part from this process of seeking the most appropriate supporting medium that allowed for discrete molecular separation and visualization. The early 1950s, therefore, marked not only an important turning point in the history of separation science, but also a transformative moment in the history of the life sciences as the growth of molecular biology depended in part on the epistemological access to the molecular realm available through these evolving technologies.

  8. Design and fabrication of a new class of nano hybrid materials based on reactive polymeric molecular cages.

    Science.gov (United States)

    Zhang, De Suo; Liu, Xiang Yang; Li, Jing Liang; Xu, Hong Yao; Lin, Hong; Chen, Yu Yue

    2013-09-10

    This paper describes a strategy of fabricating a new class of nano hybrid particles in terms of the "nanocages" of reactive molecular matrices/networks. The concept is to design molecular matrices functionalized with particular reactive groups, which can on-site synthesize and fix nanoparticles at the designated positions of the molecular networks. The cages of the molecular networks impose the confinement and protection to the nanoparticles so that the size and the stability of nano hybrid particles can be better controlled. To this end, polyamide network polymers (PNP) were synthesized and adopted as the reactive molecular cages for the control of silver nanoparticles formation. It follows that the silver nano hybrid particles fabricated by this method have an average diameter of 4.34 nm much smaller than any other or similar methods ie by a hyperbranched polyamide polymer (HB-PA). As per our design, the size of the silver nano hybrid particles can also be tuned by controlling the molar ratio between silver ions and the functional groups in the polymeric matrices. The silver nano hybrid particles reveal the substantially enhanced stability in aqueous solutions, which gives rise to the long stable performance of localized surface plasmon resonance. As the nano hybrid particles display long eminent nanoeffects, they exert broad implications for a wide range of applications such as biomedicine, catalysis, and optoelectronics.

  9. Dynamic quantum molecular sieving separation of D2 from H2-D2 mixture with nanoporous materials.

    Science.gov (United States)

    Niimura, Subaru; Fujimori, Toshihiko; Minami, Daiki; Hattori, Yoshiyuki; Abrams, Lloyd; Corbin, Dave; Hata, Kenji; Kaneko, Katsumi

    2012-11-14

    Quantum molecular sieving separability of D(2) from an H(2)-D(2) mixture was measured at 77 K for activated carbon fiber, carbon molecular sieve, zeolite and single wall carbon nanotube using a flow method. The amount of adsorbed D(2) was evidently larger than H(2) for all samples. The maximum adsorption ratio difference between D(2) and H(2) was 40% for zeolite (MS13X), yielding a selectivity for D(2) with respect to H(2) of 3.05.

  10. Designing topological defects in 2D materials using scanning probe microscopy and a self-healing mechanism: a density functional-based molecular dynamics study

    Science.gov (United States)

    Popov, Igor; Đurišić, Ivana; Belić, Milivoj R.

    2017-12-01

    Engineering of materials at the atomic level is one of the most important aims of nanotechnology. The unprecedented ability of scanning probe microscopy to address individual atoms opened up the possibilities for nanomanipulation and nanolitography of surfaces and later on of two-dimensional materials. While the state-of-the-art scanning probe lithographic methods include, primarily, adsorption, desorption and repositioning of adatoms and molecules on substrates or tailoring nanoribbons by etching of trenches, the precise modification of the intrinsic atomic structure of materials is yet to be advanced. Here we introduce a new concept, scanning probe microscopy with a rotating tip, for engineering of the atomic structure of membranes based on two-dimensional materials. In order to indicate the viability of the concept, we present our theoretical research, which includes atomistic modeling, molecular dynamics simulations, Fourier analysis and electronic transport calculations. While stretching can be employed for fabrication of atomic chains only, our comprehensive molecular dynamics simulations indicate that nanomanipulation by scanning probe microscopy with a rotating tip is capable of assembling a wide range of topological defects in two-dimensional materials in a rather controllable and reproducible manner. We analyze two possibilities. In the first case the probe tip is retracted from the membrane while in the second case the tip is released beneath the membrane allowing graphene to freely relax and self-heal the pore made by the tip. The former approach with the tip rotation can be achieved experimentally by rotation of the sample, which is equivalent to rotation of the tip, whereas irradiation of the membrane by nanoclusters can be utilized for the latter approach. The latter one has the potential to yield a yet richer diversity of topological defects on account of a lesser determinacy. If successfully realized experimentally the concept proposed here could

  11. Molecular pharmacognosy.

    Science.gov (United States)

    Huang, LuQi; Xiao, PeiGen; Guo, LanPing; Gao, WenYuan

    2010-06-01

    This article analyzes the background and significance of molecular pharmacognosy, including the molecular identification of medicinal raw materials, phylogenetic evolution of medicinal plants and animals, evaluation and preservation of germplasm resources for medicinal plants and animals, etiology of endangerment and protection of endangered medicinal plants and animals, biosynthesis and bioregulation of active components in medicinal plants, and characteristics and the molecular bases of top-geoherbs.

  12. Spectroscopic mapping and selective electronic tuning of molecular orbitals in phosphorescent organometallic complexes – a new strategy for OLED materials

    Directory of Open Access Journals (Sweden)

    Pascal R. Ewen

    2014-11-01

    Full Text Available The improvement of molecular electronic devices such as organic light-emitting diodes requires fundamental knowledge about the structural and electronic properties of the employed molecules as well as their interactions with neighboring molecules or interfaces. We show that highly resolved scanning tunneling microscopy (STM and spectroscopy (STS are powerful tools to correlate the electronic properties of phosphorescent complexes (i.e., triplet emitters with their molecular structure as well as the local environment around a single molecule. We used spectroscopic mapping to visualize several occupied and unoccupied molecular frontier orbitals of Pt(II complexes adsorbed on Au(111. The analysis showed that the molecules exhibit a peculiar localized strong hybridization that leads to partial depopulation of a dz² orbital, while the ligand orbitals are almost unchanged. We further found that substitution of functional groups at well-defined positions can alter specific molecular orbitals without influencing the others. The results open a path toward the tailored design of electronic and optical properties of triplet emitters by smart ligand substitution, which may improve the performance of future OLED devices.

  13. Bone-tissue-engineering material poly(propylene fumarate): correlation between molecular weight, chain dimensions, and physical properties.

    Science.gov (United States)

    Wang, Shanfeng; Lu, Lichun; Yaszemski, Michael J

    2006-06-01

    Poly(propylene fumarate) (PPF) is an important biodegradable and cross-linkable polymer designed for bone-tissue-engineering applications. For the first time we report the extensive characterization of this biomaterial including molecular weight dependences of physical properties such as glass transition temperature Tg, thermal degradation temperature Td, density rho, melt viscosity eta0, hydrodynamic radius RH, and intrinsic viscosity [eta]. The temperature dependence of eta0 changes progressively with molecular weight, whereas it can be unified when the temperature is normalized to Tg. The plateau modulus and entanglement molecular weight Me have been obtained from the rheological master curves. A variety of chain microstructure parameters such as the Mark-Houwink-Sakurada constants K and alpha, characteristic ratio Cinfinity, unperturbed chain dimension r0(2)/M, packing lengthp, Kuhn length b, and tube diameter a have been deduced. Further correlation between the microstructure and macroscopic physical properties has been discussed in light of recent progress in polymer dynamics to supply a better understanding about this unsaturated polyester to advance its biomedical uses. The molecular weight dependence of Tg for six polymer species including PPF has been summarized to support that Me is irrelevant for the finite length effect on the glass transition, whereas surprisingly these polymers can be divided into two groups when their normalized Tg is plotted simply against Mw to indicate the deciding roles of inherent chain properties such as chain fragility, intermolecular cooperativity, and chain end mobility.

  14. Bone Tissue-Engineering Material Poly(propylene fumarate): Correlation between Molecular Weight, Chain Dimensions, and Physical Properties

    Science.gov (United States)

    Wang, Shanfeng; Lu, Lichun; Yaszemski, Michael J.

    2008-01-01

    Poly(propylene fumarate) (PPF) is an important biodegradable and crosslinkable polymer designed for bone tissue-engineering applications. For the first time we report the extensive characterization of this biomaterial including molecular weight dependences of physical properties such as glass transition temperature Tg, thermal degradation temperature Td, density ρ melt viscosity η0, hydrodynamic radius RH, and intrinsic viscosity [η]. The temperature dependence of η0 changes progressively with molecular weight, while it can be unified when the temperature is normalized to Tg. The plateau modulus GN0 and entanglement molecular weight Me have been obtained from the rheological master curves. A variety of chain microstructure parameters such as the Mark-Houwink-Sakurada constants K and α, characteristic ratio C∞, unperturbed chain dimension r02/M, packing length p, Kuhn length b, and tube diameter a have been deduced. Further correlation between the microstructure and macroscopic physical properties has been discussed in light of recent progress in polymer dynamics to supply a better understanding about this unsaturated polyester to advance its biomedical uses. The molecular weight dependence of Tg for six polymer species including PPF has been summarized to support that Me is irrelevant for the finite length effect on glass transition, while surprisingly these polymers can be divided into two groups when their normalized Tg is plotted simply against Mw to indicate the deciding roles of inherent chain properties such as chain fragility, intermolecular cooperativity, and chain end mobility. PMID:16768422

  15. Influence of the highest occupied molecular orbital energy level of the donor material on the effectiveness of the anode buffer layer in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bernede, J.C.; Leriche, P.; Roncali, J. [UNAM, Moltech Anjou, CNRS, UMR 6200, Groupe Systemes Conjugues Lineaires, Angers (France); Cattin, L. [UNAM, Institut Jean Rouxel (IMN), UMR 6502, Nantes (France); Djobo, S. Ouro; Morsli, M. [Universite de Nantes, LAMP, EA 3825, Faculte des Sciences et des Techniques, Nantes (France); Kanth, S.R.B.; Patil, S. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore (India); Godoy, A. [University San Sebastian, Prog. Bachiller, Cs. Biolog. Qcas, Bellavista (Chile); Diaz, F.R.; Del Valle, M.A. [University Catolica Chile, Fac. Quimica, Santiago (Chile)

    2011-08-15

    Efficiency of organic photovoltaic cells based on organic electron donor/organic electron acceptor junctions can be strongly improved when the transparent conductive Anode is coated with a Buffer Layer (ABL). Here, the effects of a metal (gold) or oxide (molybdenum oxide) ABL are reported, as a function of the Highest Occupied Molecular Orbital (HOMO) of different electron donors. The results indicate that a good matching between the work function of the anode and the highest occupied molecular orbital of the donor material is the major factor limiting the hole transfer efficiency. Indeed, gold is efficient as ABL only when the HOMO of the organic donor is close to its work function {phi}{sub Au}. Therefore we show that the MoO{sub 3} oxide has a wider field of application as ABL than gold. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Development of high-toughness low-viscosity nano-molecular resins for reinforcing pothole patching materials

    Science.gov (United States)

    Yuan, Wei; Yuan, Matt; Zou, Linhua; Yang, Jenn-Ming; Ju, Woody; Kao, Wei; Carlson, Larry; Edgecombe, Brian; Stephen, Tony; Villacorta, Ricardo; Solamon, Ray

    2011-04-01

    As the nation's asphalt pavements age and deteriorate, the need for corrective measures to restore safety and rideability increases. The potholes and alligator cracks in the asphalt pavement of our country's roadways have become an annoying part of our daily life and no innovative technologies are available to improve the safety of US drivers, reduce the cost of road maintenance. We have identified a polymeric material, dicyclopentadiene (DCPD) resin, which can be cured by Grubb's catalyst and other commercially available catalysts to become an ultratough material with all the desired properties for pothole repair. We have characterized DCPD infiltration characteristics using non-destructive CT scan, and the mechanical properties using indirect tensile test under hot, cold or wet conditions. The preliminary results show that DCPD is a promising material for applications in reinforced pothole patching materials.

  17. Car-Parrinello molecular dynamics study of the charge-discharge cycle in lithium-ion battery materials

    Science.gov (United States)

    Kung, Y. F.; Jia, C. J.; Gent, W. E.; Lee, I.; Moritz, B.; Devereaux, T. P.

    Lithium-ion transition metal oxide compounds have shown great potential for use as battery electrodes. However, the underlying structural modifications which accompany delithiation during battery charging remain less well understood. Formation of peroxide-like species and cation migration between layers comprise two promising candidates for describing numerous experimental observations. Taking Li2RuO3 as a model system, we use Car-Parrinello molecular dynamics to examine the structural changes that occur during delithiation and lithiation. We compare our results to existing experimental observations in other compounds and provide guidance for future experiments, including resonant inelastic x-ray scattering (RIXS).

  18. Linking molecular level chemistry to macroscopic combustion behavior for nano-energetic materials with halogen containing oxides.

    Science.gov (United States)

    Farley, Cory W; Pantoya, Michelle L; Losada, Martin; Chaudhuri, Santanu

    2013-08-21

    Coupling molecular scale reaction kinetics with macroscopic combustion behavior is critical to understanding the influences of intermediate chemistry on energy propagation, yet bridging this multi-scale gap is challenging. This study integrates ab initio quantum chemical calculations and condensed phase density functional theory to elucidate factors contributing to experimentally measured high flame speeds (i.e., >900 m∕s) associated with halogen based energetic composites, such as aluminum (Al) and iodine pentoxide (I2O5). Experiments show a direct correlation between apparent activation energy and flame speed suggesting that flame speed is directly influenced by chemical kinetics. Toward this end, the first principle simulations resolve key exothermic surface and intermediate chemistries contributing toward the kinetics that promote high flame speeds. Linking molecular level exothermicity to macroscopic experimental investigations provides insight into the unique role of the alumina oxide shell passivating aluminum particles. In the case of Al reacting with I2O5, the alumina shell promotes exothermic surface chemistries that reduce activation energy and increase flame speed. This finding is in contrast to Al reaction with metal oxides that show the alumina shell does not participate exothermically in the reaction.

  19. Matrix-free and material-enhanced laser desorption/ionization mass spectrometry for the analysis of low molecular weight compounds.

    Science.gov (United States)

    Rainer, Matthias; Qureshi, Muhammad Nasimullah; Bonn, Günther Karl

    2011-06-01

    The application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) for the analysis of low molecular weight (LMW) compounds, such as pharmacologically active constituents or metabolites, is usually hampered by employing conventional MALDI matrices owing to interferences caused by matrix molecules below 700 Da. As a consequence, interpretation of mass spectra remains challenging, although matrix suppression can be achieved under certain conditions. Unlike the conventional MALDI methods which usually suffer from background signals, matrix-free techniques have become more and more popular for the analysis of LMW compounds. In this review we describe recently introduced materials for laser desorption/ionization (LDI) as alternatives to conventionally applied MALDI matrices. In particular, we want to highlight a new method for LDI which is referred to as matrix-free material-enhanced LDI (MELDI). In matrix-free MELDI it could be clearly shown, that besides chemical functionalities, the material's morphology plays a crucial role regarding energy-transfer capabilities. Therefore, it is of great interest to also investigate parameters such as particle size and porosity to study their impact on the LDI process. Especially nanomaterials such as diamond-like carbon, C(60) fullerenes and nanoparticulate silica beads were found to be excellent energy-absorbing materials in matrix-free MELDI.

  20. Novel sponge-like molecularly imprinted mesoporous silica material for selective isolation of bisphenol A and its analogues from sediment extracts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiajia [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Yun; Wang, Jincheng [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Sun, Xiaoli [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shah, Syed Mazhar [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Cao, Rong [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jiping, E-mail: chenjp@dicp.ac.cn [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China)

    2015-01-01

    Highlights: • Novel sponge-like molecularly imprinted mesoporous silica was synthesized. • Extraordinarily large specific surface area and highly interconnected 3-D porous network. • High specific adsorption capacity and fast adsorption kinetics for BPA. • Good class-selectivity and clean-up effect for bisphenols in sediment under SPE mode. • Good recoveries and sensitivity for bisphenols using the MISMS–SPE coupled with HPLC–DAD method. - Abstract: Bisphenol A (BPA) imprinted sponge mesoporous silica was synthesized using a combination of semi-covalent molecular imprinting and simple self-assembly process. The molecularly imprinted sponge mesoporous silica (MISMS) material obtained was characterized by FT-IR, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption measurements. The results show that the MISMS possessed a large specific surface area (850.55 m{sup 2} g{sup −1}) and a highly interconnected 3-D porous network. As a result, the MISMS demonstrated a superior specific adsorption capacity of 169.22 μmol g{sup −1} and fast adsorption kinetics (reaching equilibrium within 3 min) for BPA. Good class selectivity for BPA and its analogues (bisphenol F, bisphenol B, bisphenol E and bisphenol AF) was also demonstrated by the sorption experiment. The MISMS as solid-phase extraction (SPE) material was then evaluated for isolation and clean-up of these bisphenols (BPs) from sediment samples. An accurate and sensitive analytical method based on the MISMS–SPE coupled with HPLC–DAD has been successfully established for simultaneous determination of five BPs in river sediments with detection limits of 0.43–0.71 ng g{sup −1} dry weight (dw). The recoveries of BPs for lyophilizated sediment samples at two spiking levels (50 and 500 ng g{sup −1} dw for each BP) were in the range of 75.5–105.5% with RSD values below 7.5%.

  1. Molecular Analysis of Ammonia-Oxidizing Bacteria of the β Subdivision of the Class Proteobacteria in Compost and Composted Materials

    Science.gov (United States)

    Kowalchuk, George A.; Naoumenko, Zinaida S.; Derikx, Piet J. L.; Felske, Andreas; Stephen, John R.; Arkhipchenko, Irina A.

    1999-01-01

    Although the practice of composting animal wastes for use as biofertilizers has increased in recent years, little is known about the microorganisms responsible for the nitrogen transformations which occur in compost and during the composting process. Ammonia is the principle available nitrogenous compound in composting material, and the conversion of this compound to nitrite in the environment by chemolithotrophic ammonia-oxidizing bacteria is an essential step in nitrogen cycling. Therefore, the distribution of ammonia-oxidizing members of the β subdivision of the class Proteobacteria in a variety of composting materials was assessed by amplifying 16S ribosomal DNA (rDNA) and 16S rRNA by PCR and reverse transcriptase PCR (RT-PCR), respectively. The PCR and RT-PCR products were separated by denaturing gradient gel electrophoresis (DGGE) and were identified by hybridization with a hierarchical set of oligonucleotide probes designed to detect ammonia oxidizer-like sequence clusters in the genera Nitrosospira and Nitrosomonas. Ammonia oxidizer-like 16S rDNA was detected in almost all of the materials tested, including industrial and experimental composts, manure, and commercial biofertilizers. A comparison of the DGGE and hybridization results after specific PCR and RT-PCR suggested that not all of the different ammonia oxidizer groups detected in compost are equally active. amoA, the gene encoding the active-site-containing subunit of ammonia monooxygenase, was also targeted by PCR, and template concentrations were estimated by competitive PCR. Detection of ammonia-oxidizing bacteria in the composts tested suggested that such materials may not be biologically inert with respect to nitrification and that the fate of nitrogen during composting and compost storage may be affected by the presence of these organisms. PMID:9925559

  2. Crystallization processes in the phase change material Ge2Sb2Te5 : Unbiased density functional/molecular dynamics simulations

    Science.gov (United States)

    Kalikka, J.; Akola, J.; Jones, R. O.

    2016-10-01

    Three extensive density functional/molecular dynamics simulations of the crystallization of amorphous Ge2Sb2Te5 (460 atoms) [Phys. Rev. B 90, 184109 (2014), 10.1103/PhysRevB.90.184109] have been completed with simulation times of up to 8.2 ns. Together with the results of earlier simulations with and without a crystallite seed, the results clarify essential features of a complicated process. They emphasize, in particular, the stochastic nature of crystallization, the effect of bond orientations and percolation, and the importance of extended simulations of sufficiently large samples. This is particularly evident in describing the role of crystallites that can merge to form larger units or hinder complete crystallization by the formation of grain boundaries. The total pair distribution functions for the final structures are compared with available neutron and x-ray diffraction data.

  3. A novel molecular sieve supporting material for enhancing activity and stability of Ag3PO4 photocatalyst

    Science.gov (United States)

    Wu, Qiang; Wang, Peifu; Niu, Futao; Huang, Cunping; Li, Yang; Yao, Weifeng

    2016-08-01

    A small-pore silicon-substituted silicon aluminum phosphate (SAPO-34) molecular sieve, for the first time, is reported to significantly increase both the activity and life span of Ag3PO4 photocatalyst for visible-light degradation of methylene blue (MB) and rhodamine B (RhB). Results show that 60 wt.% Ag3PO4/SAPO-34 exhibits the highest photocatalytic degradation efficiencies for both MB (91.0% degradation within 2.0 min) and RhB (91.0% degradation within 7.0 min). In comparison, pure Ag3PO4 powder photocatalyst requires 8.0 min and 12.0 min for decomposing 91.0% of MB and RhB, respectively. During MB degradation the rate constant for 60 wt.% Ag3PO4/SAPO-34 increases 317.2% in comparison with the rate constant of pure Ag3PO4. This activity is also much higher than literature reported composite or supported Ag3PO4 photocatalysts. In three photocatalytic runs for the degradation of RhB, the rate constant for 60 wt.% Ag3PO4/SAPO-34 reduces from 0.33 to 0.18 min-1 (45.5% efficiency loss). In contrast, the rate constant of pure Ag3PO4 catalyst decreases from 0.2 to 0.07 min-1 (80.0% efficiency loss). All experimental results have shown that small pores and zero light absorption loss of SAPO-34 molecular sieves minimize Ag3PO4 loading, enhance photocatalytic activity and prolong the lifespan of Ag3PO4 photocatalyst.

  4. Solution-processed, molecular photovoltaics that exploit hole transfer from non-fullerene, n-type materials

    KAUST Repository

    Douglas, Jessica D.

    2014-05-12

    Solution-processed organic photovoltaic devices containing p-type and non-fullerene n-type small molecules obtain power conversion efficiencies as high as 2.4%. The optoelectronic properties of the n-type material BT(TTI-n12)2 allow these devices to display high open-circuit voltages (>0.85 V) and generate significant charge carriers through hole transfer in addition to the electron-transfer pathway, which is common in fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Isolation and molecular identification of landfill bacteria capable of growing on di-(2-ethylhexyl) phthalate and deteriorating PVC materials.

    Science.gov (United States)

    Latorre, Isomar; Hwang, Sangchul; Montalvo-Rodriguez, Rafael

    2012-01-01

    Waste materials containing Di-(2-ethylhexyl) phthalate (DEHP), a suspected endocrine disruptor and reasonably anticipated human carcinogen, are typically disposed of in landfills. Despite this, very few studies had been conducted to isolate and identify DEHP-degrading bacteria in landfill leachate. Therefore, this study was conducted to isolate and characterize bacteria in landfill leachate growing on DEHP as the sole carbon source and deteriorating PVC materials. Four strains LHM1, LHM2, LHM3 and LHM4, not previously reported as DEHP-degraders, were identified via 16S rRNA gene sequence. Gram-positive strains LHM1 and LHM2 had a greater than 97% similarity with Chryseomicrobium imtechense MW 10(T) and Lysinibacillus fusiformis NBRC 15717(T), respectively. Gram-negative strains LHM3 and LHM4 were related to Acinetobacter calcoaceticus DSM 30006(T) (90.7% similarity) and Stenotrophomonas pavanii ICB 89(T) (96.0% similarity), respectively. Phylogenetic analysis also corroborated these similarities of strains LHM1 and LHM2 to the corresponding bacteria species. Strains LHM2 and LHM4 grew faster than strains LHM1 and LHM3 in the enrichment where DEHP was the sole carbon source. When augmented to the reactors with PVC shower curtains containing DEHP, strains LHM1 and LHM2 developed greater optical densities in the solution phase and thicker biofilm on the surfaces of the shower curtains.

  6. Understanding the interface between silicon-based materials and water: Molecular-dynamics exploration of infrared spectra

    Directory of Open Access Journals (Sweden)

    José A. Martinez-Gonzalez

    2017-11-01

    Full Text Available Molecular-dynamics simulations for silicon, hydrogen- and hydroxyl-terminated silicon in contact with liquid water, at 220 and 300 K, display water-density ‘ordering’ along the laboratory z-axis, emphasising the hydrophobicity of the different systems and the position of this first adsorbed layer. Density of states (DOS of the oxygen and proton velocity correlation functions (VACFs and infrared (IR spectra of the first monolayer of adsorbed water, calculated via Fourier transformation, indicate similarities to more confined, ice-like dynamical behaviour (redolent of ice. It was observed that good qualitative agreement is obtained between the DOS for this first layer in all systems. The DOS for the lower-frequency zone indicates that for the interface studied (i.e., the first layer near the surface, the water molecules try to organise in a similar form, and that this form is intermediate between liquid water and ice. For IR spectra, scrutiny of the position of the highest-intensity peaks for the stretching and bending bands indicate that such water molecules in the first solvating layer are organised in an intermediate fashion between ice and liquid water.

  7. Langevin and Fokker-Planck analyses of inhibited molecular passing processes controlling transport and reactivity in nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chi-Jen [Ames Laboratory; Ackerman, David M. [Ames Laboratory; Slowing, Igor I. [Ames Laboratory; Evans, James W. [Ames Laboratory

    2014-07-14

    Inhibited passing of reactant and product molecules within the linear pores of nanoporous catalytic materials strongly reduces reactivity. The dependence of the passing propensity P on pore radius R is analyzed utilizing Langevin dynamics to account for solvent effects. We find that P~(R-Rc)σ, where passing is sterically blocked for R≤Rc, with σ below the transition state theory value. Deeper insight comes from analysis of the corresponding high-dimensional Fokker-Planck equation, which facilitates an effective small-P approximation, and dimensional reduction enabling utilization of conformal mapping ideas. We analyze passing for spherical molecules and also assess the effect of rotational degrees of freedom for elongated molecules.

  8. Molecular precursors for the phase-change material germanium-antimony-telluride, Ge{sub 2}Sb{sub 2}Te{sub 5} (GST)

    Energy Technology Data Exchange (ETDEWEB)

    Harmgarth, Nicole; Zoerner, Florian; Engelhardt, Felix; Edelmann, Frank T. [Chemisches Institut, Otto-von-Guericke-Universitaet Magdeburg (Germany); Liebing, Phil [Laboratorium fuer Anorganische Chemie, ETH Zuerich (Switzerland); Burte, Edmund P.; Silinskas, Mindaugas [Institut fuer Mikro- und Sensorsysteme, Otto-von-Guericke-Universitaet Magdeburg (Germany)

    2017-10-04

    This review provides an overview of the precursor chemistry that has been developed around the phase-change material germanium-antimony-telluride, Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Thin films of GST can be deposited by employing either chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques. In both cases, the success of the layer deposition crucially depends on the proper choice of suitable molecular precursors. Previously reported processes mainly relied on simple alkoxides, alkyls, amides and halides of germanium, antimony, and tellurium. More sophisticated precursor design provided a number of promising new aziridinides and guanidinates. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. ZnO nanotubes supported molecularly imprinted polymers arrays as sensing materials for electrochemical detection of dopamine.

    Science.gov (United States)

    Wang, Hai-Hui; Chen, Xuan-Jie; Li, Wei-Tian; Zhou, Wen-Hui; Guo, Xiu-Chun; Kang, Wen-Yi; Kou, Dong-Xing; Zhou, Zheng-Ji; Meng, Yue-Na; Tian, Qing-Wen; Wu, Si-Xin

    2018-01-01

    In this study, ZnO nanotubes (ZNTs) were prepared onto fluorine-doped tin oxide (FTO) glass and used as supports for MIPs arrays fabrication. Due to the imprinted cavities are always located at both inner and outer surface of ZNTs, these ZNTs supported MIPs arrays have good accessibility towards template and can be used as sensing materials for chemical sensors with high sensitivity, excellent selectivity and fast response. Using K3[Fe(CN)6] as electron probe, the fabricated electrochemical sensor shows two linear dynamic ranges (0.02-5μM and 10-800μM) towards dopamine. This proposed electrochemical sensor has been applied for dopamine determination with satisfied recoveries and precision. More complex human urine samples also confirmed that the proposed method has good accuracy for dopamine determination in real biological samples. These results suggest potential applicability of the proposed method and sensor in important molecule analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Smart materials on the way to theranostic nanorobots: Molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery.

    Science.gov (United States)

    Sokolov, Ilya L; Cherkasov, Vladimir R; Tregubov, Andrey A; Buiucli, Sveatoslav R; Nikitin, Maxim P

    2017-06-01

    Theranostics, a fusion of two key parts of modern medicine - diagnostics and therapy of the organism's disorders, promises to bring the efficacy of medical treatment to a fundamentally new level and to become the basis of personalized medicine. Extrapolating today's progress in the field of smart materials to the long-run prospect, we can imagine future intelligent agents capable of performing complex analysis of different physiological factors inside the living organism and implementing a built-in program thereby triggering a series of therapeutic actions. These agents, by analogy with their macroscopic counterparts, can be called nanorobots. It is quite obscure what these devices are going to look like but they will be more or less based on today's achievements in nanobiotechnology. The present Review is an attempt to systematize highly diverse nanomaterials, which may potentially serve as modules for theranostic nanorobotics, e.g., nanomotors, sensing units, and payload carriers. Biocomputing-based sensing, externally actuated or chemically "fueled" autonomous movement, swarm inter-agent communication behavior are just a few inspiring examples that nanobiotechnology can offer today for construction of truly intelligent drug delivery systems. The progress of smart nanomaterials toward fully autonomous drug delivery nanorobots is an exciting prospect for disease treatment. Synergistic combination of the available approaches and their further development may produce intelligent drugs of unmatched functionality. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Studies of synthetic protein models designed for biomolecular materials applications and model ion channels via molecular dynamics simulations

    Science.gov (United States)

    Zou, Hongling

    MD simulation has become an established and powerful tool to study large macromolecular systems including proteins in explicit solvent. Here simulation is applied to two types of synthetic protein models developed for biomolecular materials applications and for understanding complex biological problems, respectively. The simulation work presented in this thesis aims to facilitate the interpretation of experimental data and to provide detailed structural and dynamic information of protein models inaccessible by experiments. Several synthetic protein models have been investigated in this thesis. Firstly, the structure and dynamics of a de novo designed amphiphilic 4-alpha-helix bundle protein model capable of binding biological metallo-porphyrin cofactors are examined. The simulation results are in agreement with the experimental structural determinations available at lower resolution and limited dimension. Then the work proceeds to incorporate a more comprehensive nonbiological conjugated chromophore into this peptide model. The results show that the protein module plays an important role in controlling the chromophore's conformation and dynamics that are critical to optimize its functionality. Secondly, based on the success of the first work, simulation is utilized to test the viability and help improve the design of two computational designed multi-metalloporphyrins binding protein assemblies, which have different structural features and potential applications. Thirdly, the protein model idea is applied to study the mechanism of the general anesthetic binding as well. The simplified model allows for more sophisticated physical techniques, such as infrared spectroscopy, to be used. MD simulation correctly predicts the infrared frequency shift of the vibrational probes at the binding site in the presence of anesthetics. It also provides the interpretation to the experimental results and reveals the nature of the weak bonding between anesthetics and the model ion

  12. Enhanced heat transfer through filler-polymer interface by surface-coupling agent in heat-dissipation material: A non-equilibrium molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kouichi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan); Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Kitsunezuka, Masashi; Shinma, Atsushi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan)

    2013-11-21

    Developing a composite material of polymers and micrometer-sized fillers with higher heat conductance is crucial to realize modular packaging of electronic components at higher densities. Enhancement mechanisms of the heat conductance of the polymer-filler interfaces by adding the surface-coupling agent in such a polymer composite material are investigated through the non-equilibrium molecular dynamics (MD) simulation. A simulation system is composed of α-alumina as the filler, bisphenol-A epoxy molecules as the polymers, and model molecules for the surface-coupling agent. The inter-atomic potential between the α-alumina and surface-coupling molecule, which is essential in the present MD simulation, is constructed to reproduce the calculated energies with the electronic density-functional theory. Through the non-equilibrium MD simulation runs, we find that the thermal resistance at the interface decreases significantly by increasing either number or lengths of the surface-coupling molecules and that the effective thermal conductivity of the system approaches to the theoretical value corresponding to zero thermal-resistance at the interface. Detailed analyses about the atomic configurations and local temperatures around the interface are performed to identify heat-transfer routes through the interface.

  13. Molecular beam epitaxy growth of [CrGe/MnGe/FeGe] superlattices: Toward artificial B20 skyrmion materials with tunable interactions

    Science.gov (United States)

    Ahmed, Adam S.; Esser, Bryan D.; Rowland, James; McComb, David W.; Kawakami, Roland K.

    2017-06-01

    Skyrmions are localized magnetic spin textures whose stability has been shown theoretically to depend on material parameters including bulk Dresselhaus spin orbit coupling (SOC), interfacial Rashba SOC, and magnetic anisotropy. Here, we establish the growth of a new class of artificial skyrmion materials, namely B20 superlattices, where these parameters could be systematically tuned. Specifically, we report the successful growth of B20 superlattices comprised of single crystal thin films of FeGe, MnGe, and CrGe on Si(1 1 1) substrates. Thin films and superlattices are grown by molecular beam epitaxy and are characterized through a combination of reflection high energy electron diffraction, X-ray diffraction, and cross-sectional scanning transmission electron microscopy (STEM). X-ray energy dispersive spectroscopy (XEDS) distinguishes layers by elemental mapping and indicates good interface quality with relatively low levels of intermixing in the [CrGe/MnGe/FeGe] superlattice. This demonstration of epitaxial, single-crystalline B20 superlattices is a significant advance toward tunable skyrmion systems for fundamental scientific studies and applications in magnetic storage and logic.

  14. A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan Province 410082 (China); College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan Province 410082 (China); Fang, Qihong, E-mail: fangqh1327@hnu.edu.cn [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan Province 410082 (China); College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan Province 410082 (China); Liu, Youwen [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan Province 410082 (China); College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan Province 410082 (China); Zhang, Liangchi [School of Mechanical and Manufacturing Engineering, The University of New South Wales, NSW 2052 (Australia)

    2014-06-01

    This paper investigates the mechanisms of subsurface damage and material removal of monocrystalline copper when it is under a nanoscale high speed grinding of a diamond tip. The analysis was carried out with the aid of three-dimensional molecular dynamics simulations. The key factors that would influence the deformation of the material were carefully explored by analyzing the chip, dislocation movement, and workpiece deformation, which include grinding speed, depth of cut, grid tip radius, crystal orientation and machining angle of copper. An analytical model was also established to predict the emission of partial dislocations during the nanoscale high speed grinding. The investigation showed that a higher grinding velocity, a larger tip radius or a larger depth of cut would result in a larger chipping volume and a greater temperature rise in the copper workpiece. A lower grinding velocity would produce more intrinsic stacking faults. It was also found that the transition of deformation mechanisms depends on the competition between the dislocations and deformation twinning. There is a critical machining angle, at which a higher velocity, a smaller tip radius, or a smaller depth of cut will reduce the subsurface damage and improve the smoothness of a ground surface. The established analytical model showed that the Shockley dislocation emission is most likely to occur with the crystal orientations of (0 0 1)[1 0 0] at 45° angle.

  15. Síntesis de materiales moleculares a partir de donadores electrónicos orgánicos y aceptores electrónicos inorgánicos. // Synthesis of molecular materials starting from organic electronic donors and inorganic electronic receivers.

    Directory of Open Access Journals (Sweden)

    A. Cázares Sánchez

    2003-09-01

    Full Text Available Los materiales moleculares están formados por un donador electrónico y un aceptor electrónico condensados en una fase.La síntesis de nuevos materiales moleculares se puede realizar por electrosíntesis o por síntesis química convencional. Eneste trabajo se presentan los resultados obtenidos de la síntesis de nuevos materiales moleculares por electrosíntesis a partirde los donadores electrónicos orgánicos: BETS y BEDT; y aceptores electrónicos inorgánicos de fierro y cobalto. Laposibilidad de síntesis de los materiales a partir de los donadores y aceptores utilizados fue analizada con voltametríacíclica; mientras que los materiales fueron caracterizados mediante espectrometría infrarroja (IR y por microscopioelectrónico de barrido (MEB.Palabras claves: Donador electrónico, aceptor electrónico, electrosíntesis, material molecular.____________________________________________________________________________Abstract.Molecular materials are constituted of an electronic donor and an aceptor organized in a condensed phase. A synthetizednew molecular material is posible using electrosynthesis or conventional chemistry synthesis. In this job, we reported theresults to the synthesis of new molecular materials that have been prepared by electrosynthesis from organics electronicsdonors: BETS and BEDT; and inorganics electronics aceptors of iron and cobalt. The possibility to sinthetizes the materialsfrom the donors and aceptors used was analized with ciclic voltametry; while the materials were characteryzed with thehelp of infrared spectrometry and scanning electronic microscopy.Key words: electronic donor, electronic aceptor, electrosynthesis, molecular material.

  16. Consequences of Molecular-Scale Non-Equilibrium Activity on the Dynamics and Mechanics of Self-Assembled Actin-Based Structures and Materials

    Science.gov (United States)

    Marshall Mccall, Patrick

    Living cells are hierarchically self-organized forms of active soft matter: molecules on the nanometer scale form functional structures and organelles on the micron scale, which then compose cells on the scale of 10s of microns. While the biological functions of intracellular organelles are defined by the composition and properties of the structures themselves, how those bulk properties emerge from the properties and interactions of individual molecules remains poorly understood. Actin, a globular protein which self-assembles into dynamic semi-flexible polymers, is the basic structural material of cells and the major component of many functional organelles. In this thesis, I have used purified actin as a model system to explore the interplay between molecular-scale dynamics and organelle-scale functionality, with particular focus on the role of molecular-scale non-equilibrium activity. One of the most canonical forms of molecular-scale non-equilibrium activity is that of mechanoenzymes, also called motor proteins. These proteins utilized the free energy liberated by hydrolysis of ATP to perform mechanical work, thereby introducing non-equilibrium "active" stresses on the molecular scale. Combining experiments with mathematical modeling, we demonstrate in this thesis that non-equilibrium motor activity is sufficient to drive self-organization and pattern formation of the multimeric actin-binding motor protein Myosin II on 1D reconstituted actomyosin bundles. Like myosin, actin is itself an ATPase. However, nono-equilibrium ATP hydrolysis on actin is known to regulate the stability and assembly kinetics of actin filaments rather than generate active stresses per se. At the level of single actin filaments, the inhomogeneous nucleotide composition generated along the filament length by hydrolysis directs binding of regulatory proteins like cofilin, which mediate filament disassembly and thereby accelerate actin filament turnover. The concequences of this non

  17. A novel method for room temperature distribution and conservation of RNA and DNA reference materials for guaranteeing performance of molecular diagnostics in onco-hematology: A GBMHM study.

    Science.gov (United States)

    Cayuela, Jean-Michel; Mauté, Carole; Fabre, Anne-Lise; Nibourel, Olivier; Dulucq, Stéphanie; Delabesse, Eric; Villarèse, Patrick; Hayette, Sandrine; Mozziconacci, Marie-Joelle; Macintyre, Elizabeth

    2015-10-01

    Performance of methods used for molecular diagnostics must be closely controlled by regular analysis of internal quality controls. However, conditioning, shipping and long lasting storage of nucleic acid controls remain problematic. Therefore, we evaluated the minicapsule-based innovative process developed by Imagene (Evry, France) for implementing DNA and RNA controls designed for clonality assessment of lymphoproliferations and BCR-ABL1 mRNA quantification, respectively. DNA samples were extracted from 12 cell lines selected for giving specific amplifications with most BIOMED-2 PCR tubes. RNA samples were extracted from 8 cell line mixtures expressing various BCR-ABL1 transcript levels. DNA and RNA were encapsulated by Imagene and shipped at room temperature to participating laboratories. Biologists were asked to report quality data of recovered nucleic acids as well as PCR results. Encapsulated nucleic acids samples were easily and efficiently recovered from minicapsules. The expected rearrangements at immunoglobulin, T-cell receptor and BCL2 loci were detected in DNA samples by all laboratories. Quality of RNA was consistent between laboratories and met the criteria requested for quantification of BCR-ABL1 transcripts. Expression levels measured by the 5 laboratories were within ±2 fold interval from the corresponding pre-encapsulation reference value. Moreover aging studies of encapsulated RNA simulating up to 100 years storage at room temperature show no bias in quantitative outcome. Therefore, Imagene minicapsules are suitable for storage and distribution at room temperature of genetic material designed for proficiency control of molecular diagnostic methods based on end point or real-time quantitative PCR. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  18. Direct determination of bromine in plastic materials by means of solid sampling high-resolution continuum source graphite furnace molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Flórez, M.R.; Resano, M., E-mail: mresano@unizar.es

    2013-10-01

    This work investigates the potential of high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers, which could be interesting in view of the current regulations restricting the use of organobrominated compounds. The method developed is based on the addition of Ca (300 μg) and Pd (30 μg) to favor the formation of CaBr, which is monitored at the main molecular “lines” (rotational spectra) found in the vicinity of 625.315 nm. It was found that accurate results could be obtained for all the samples investigated (polyethylene, polypropylene and acrylonitrile butadiene styrene certified reference materials) using any of the lines studied and constructing the calibration curve with aqueous standards. Furthermore, the combined use of the main four CaBr lines available in the spectral area simultaneously monitored permits to easily expand the linear range up to 2000 ng, provides a limit of detection of 1.8 ng (1.8 μg g{sup −1} for a mass of 1 mg) and further improves precision to values between 3–7% RSD. Overall, the method proposed seems suited for the fast and simple control of these types of samples (approximately 10 min for sample are required), circumventing the traditional problems associated with sample digestion (e.g., losses of volatile compounds), and providing sufficient sensitivity to easily comply with regulations. - Highlights: • Owing to the extended use of BFRs, Br determination in plastics is of great interest. • Solid sampling HR CS GFMAS permits the direct determination of Br, as CaBr, in plastics. • A fast and simple methodology with aqueous standards for calibration is proposed. • A LOD of 1.8 μg g{sup −1} and precision values in the 3–7% RSD range are achieved.

  19. Heterometallic molecular precursors for a lithium-iron oxide material: synthesis, solid state structure, solution and gas-phase behaviour, and thermal decomposition.

    Science.gov (United States)

    Han, Haixiang; Wei, Zheng; Barry, Matthew C; Filatov, Alexander S; Dikarev, Evgeny V

    2017-05-02

    Three heterometallic single-source precursors with a Li : Fe = 1 : 1 ratio for a LiFeO2 oxide material are reported. Heterometallic compounds LiFeL3 (L = tbaoac (1), ptac (2), and acac(3)) have been obtained on a large scale, in nearly quantitative yields by one-step reactions that employ readily available reagents. The heterometallic precursor LiFe(acac)3 (3) with small, symmetric substituents on the ligand (acac = pentane-2,4-dionate), maintains a 1D polymeric structure in the solid state that limits its volatility and prevents solubility in non-coordinating solvents. The application of the unsymmetrical ligands, tbaoac (tert-butyl acetoacetate) and ptac (1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedionate), that exhibit different bridging properties at the two ends of the ligand, allowed us to change the connectivity pattern within the heterometallic assembly. The latter was demonstrated by structural characterization of heterometallic complexes LiFe(tbaoac)3 (1) and LiFe(ptac)3 (2) that consist of discrete heterocyclic tetranuclear molecules Li2Fe2L6. The compounds are highly volatile and exhibit a congruent sublimation character. DART mass spectrometric investigation revealed the presence of heterometallic molecules in the gas phase. The positive mode spectra are dominated by the presence of [M - L]+ peaks (M = Li2Fe2L6). In accord with their discrete molecular structure, complexes 1 and 2 are highly soluble in nearly all common solvents. In order to test the retention of the heterometallic structure in solution, the diamagnetic analog of 1, LiMg(tbaoac)3 (4), has been isolated. Its tetranuclear molecular structure was found to be isomorphous to that of the iron counterpart. 1H and 7Li NMR spectroscopy unambiguously confirmed the presence of heterometallic molecules in solutions of non-coordinating solvents. The heterometallic precursor 1 was shown to exhibit clean thermal decomposition in air that results in phase-pure α-modification of layered oxide Li

  20. Comparison of the molecular mass and optical properties of colored dissolved organic material in two rivers and coastal waters by flow field-flow fractionation.

    Science.gov (United States)

    Zanardi-Lamardo, Eliete; Clark, Catherine D; Moore, Cynthia A; Zika, Rod G

    2002-07-01

    Colored dissolved organic material (CDOM) is an important sunlight absorbing substance affecting the optical properties of natural waters. However, little is known about its structural and optical properties mainly due to its complex matrix and the limitation of the techniques available. A comparison of two southwestern Florida rivers [the Caloosahatchee River (CR) and the Shark River (SR)] was done in terms of molecular mass (MM) and diffusion coefficients (D). The novel technique Frit inlet/frit outlet-flow field-flow fractionation (FIFO-FIFFF) with absorbance and fluorescence detectors was used to determine these properties. The SR receives organic material from the Everglades. By contrast, the CR arises from Lake Okeechobee in central Florida, receiving anthropogenic inputs, farming runoff, and natural organics. Both rivers discharge to the Gulf of Mexico. Fluorescence identified, for both rivers, two different MM distributions in low salinity water samples: the first was centered at approximately 1.7 kDa (CR) and approximately 2 kDa (SR); the second centered at approximately 13 kDa for both rivers, which disappeared gradually in the river plumes to below detection limit in coastal waters. Absorbance detected only one MM distribution centered at approximately 2 kDa (CR) and 2.2-2.4 kDa (SR). Fluorescence in general peaked at a lower MM than absorbance, suggesting a different size distribution for fluorophores vs chromophores. A photochemical study showed that, after sunlight, irradiated freshwater samples have similar characteristics to more marine waters, including a shift in MM distribution of chromophores. The differences observed between the rivers in the optical characteristics, MM distributions, and D values suggest that the CDOM sources, physical, and photochemical degradation processes are different for these two rivers.

  1. Myoglobin-biomimetic electroactive materials made by surface molecular imprinting on silica beads and their use as ionophores in polymeric membranes for potentiometric transduction.

    Science.gov (United States)

    Moreira, Felismina T C; Dutra, Rosa A F; Noronha, Joao P C; Sales, M Goreti F

    2011-08-15

    Myoglobin (Mb) is among the cardiac biomarkers playing a major role in urgent diagnosis of cardiovascular diseases. Its monitoring in point-of-care is therefore fundamental. Pursuing this goal, a novel biomimetic ionophore for the potentiometric transduction of Mb is presented. It was synthesized by surface molecular imprinting (SMI) with the purpose of developing highly efficient sensor layers for near-stereochemical recognition of Mb. The template (Mb) was imprinted on a silane surface that was covalently attached to silica beads by means of self-assembled monolayers. First the silica was modified with an external layer of aldehyde groups. Then, Mb was attached by reaction with its amine groups (on the external surface) and subsequent formation of imine bonds. The vacant places surrounding Mb were filled by polymerization of the silane monomers 3-aminopropyltrimethoxysilane (APTMS) and propyltrimethoxysilane (PTMS). Finally, the template was removed by imine cleavage after treatment with oxalic acid. The results materials were finely dispersed in plasticized PVC selective membranes and used as ionophores in potentiometric transduction. The best analytical features were found in HEPES buffer of pH 4. Under this condition, the limits of detection were of 1.3 × 10(-6)mol/L for a linear response after 8.0 × 10(-7) mol/L with an anionic slope of -65.9 mV/decade. The imprinting effect was tested by preparing non-imprinted (NI) particles and employing these materials as ionophores. The resulting membranes showed no ability to detect Mb. Good selectivity was observed towards creatinine, sacarose, fructose, galactose, sodium glutamate, and alanine. The analytical application was conducted successfully and showed accurate and precise results. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Molecular Machines: Nanoscale gadgets

    Science.gov (United States)

    Garcia-Garibay, Miguel A.

    2008-06-01

    Meeting their biological counterparts halfway, artificial molecular machines embedded in liquid crystals, crystalline solids and mesoporous materials are poised to meet the demands of the next generation of functional materials.

  3. MOLECULAR STRUCTURE AND MATERIALS CHARACTERIZATION

    Science.gov (United States)

    monocarboxylic acids and organosulfur compounds; solid state mass spectrometric studies; and the characterization of polyurethane elastomers with special reference to those used as binders for solid propellants.

  4. Synthesis of Narrow Molecular Weight Distribution Norbornene-Lactone Functionalized Polymers by Nitroxide-Mediated Polymerization: Candidates for 193-nm Photoresist Materials

    Directory of Open Access Journals (Sweden)

    Zi Jun Wang

    2014-02-01

    Full Text Available One hundred ninety three-nanometer candidate photoresist materials were synthesized by nitroxide-mediated polymerization (NMP. Statistical copolymerizations of 5-methacryloyloxy-2,6-norboranecarbolactone (NLAM with 5–10 mol% of controlling co-monomers (which are necessary for controlled polymerizations of methacrylates by NMP with the initiator used in the feed, such as styrene (ST, p-acetoxystyrene (AcOST, 2-vinyl naphthalene (VN and pentafluorostyrene (PFS, using the unimolecular BlocBuilder® initiator in 35 wt% dioxane solution at 90 °C were performed. As little as 5 mol% controlling comonomer in the feed was demonstrated to be sufficient to lead to linear evolution of number average molecular weight  with respect to conversion up to 50%, and the resulting copolymers had dispersities  of ~1.3 in most cases, an attractive feature for reducing line width roughness (LWR in photoresists. The copolymers generally showed relatively low absorbance at 193 nm, comparable to other 193-nm candidate photoresists reported previously, despite the inclusion of a small amount of the styrenic co-monomers in the copolymer.

  5. DESCRIPTION OF TWO NEW MONOECIOUS SPECIES OF VOLVOX SECT. VOLVOX (VOLVOCACEAE, CHLOROPHYCEAE), BASED ON COMPARATIVE MORPHOLOGY AND MOLECULAR PHYLOGENY OF CULTURED MATERIAL(1).

    Science.gov (United States)

    Isaka, Nanako; Kawai-Toyooka, Hiroko; Matsuzaki, Ryo; Nakada, Takashi; Nozaki, Hisayoshi

    2012-06-01

    Species of Volvox sect. Volvox (Volvocaceae, Chlorophyceae) are unique because they have thick cytoplasmic bridges between somatic cells and spiny-walled zygotes. This section is taxonomically important because the genus Volvox is polyphyletic. However, taxonomic studies of species in Volvox sect. Volvox have not been carried out on cultured material. Here, we performed a taxonomic study of monoecious species of Volvox sect. Volvox based on the comparative morphology and molecular phylogeny of chloroplast genes and the internal transcribed spacer (ITS) regions of nuclear rDNA using various strains originating from Japan and two preserved strains from the USA. The strains were clearly divided into four species, V. globator L., V. barberi W. Shaw, V. kirkiorum sp. nov., and V. ferrisii sp. nov., on the basis of differences in numbers of zygotes (eggs) in the sexual spheroids, form of zygote wall, and somatic cell shape. Sequences for ITS of nuclear rDNA resolved that the two new species have phylogenetic positions separated from V. globator, V. barberi, V. capensis F. Rich et Pocock, and V. rousseletii G. S. West UTEX 1862 within Volvox sect. Volvox. © 2012 Phycological Society of America.

  6. Tailoring the Pore Environment of Metal-Organic and Molecular Materials Decorated with Inorganic Anions: Platforms for Highly Selective Carbon Capture

    Science.gov (United States)

    Nugent, Patrick S.

    Due to their high surface areas and structural tunability, porous metal-organic materials, MOMs, have attracted wide research interest in areas such as carbon capture, as the judicious choice of molecular building block (MBB) and linker facilitates the design of MOMs with myriad topologies and allows for a systematic variation of the pore environment. Families of MOMs with modular components, i.e. MOM platforms, are eminently suitable for targeting the selective adsorption of guest molecules such as CO2 because their pore size and pore functionality can each be tailored independently. MOMs with saturated metal centers (SMCs) that promote strong yet reversible CO2 binding in conjunction with favorable adsorption kinetics are an attractive alternative to MOMs containing unsaturated metal centers (UMCs) or amines. Whereas MOMs with SMCs and exclusively organic linkers typically have poor CO2 selectivity, it has been shown that a versatile, long known platform with SMCs, pillared square grids with inorganic anion pillars and pcu topology, exhibits high and selective CO 2 uptake, a moderate CO2 binding affinity, and good stability under practical conditions. As detailed herein, the tuning of pore size and pore functionality in this platform has modulated the CO2 adsorption properties and revealed variants with unprecedented selectivity towards CO 2 under industrially relevant conditions, even in the presence of moisture. With the aim of tuning pore chemistry while preserving pore size, we initially explored the effect of pillar substitution upon the carbon capture properties of a pillared square grid, [Cu(bipy)2(SiF6)] (SIFSIX-1-Cu). Room temperature CO2, CH4, and N 2 adsorption isotherms revealed that substitution of the SiF6 2- ("SIFSIX") inorganic pillar with TiF6 2- ("TIFSIX") or SnF62- ("SNIFSIX") modulated CO2 uptake, CO2 affinity (heat of adsorption, Qst), and selectivity vs. CH4 and N2. TIFSIX-1-Cu and SNIFSIX-1-Cu were calculated to exhibit the highest CO2/N 2

  7. Selective molecularly imprinted polymer combined with restricted access material for in-tube SPME/UHPLC-MS/MS of parabens in breast milk samples

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Israel D.; Melo, Lidervan P. [Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Jardim, Isabel C.S.F. [Instituto de Química, Universidade Estadual de Campinas, Campinas, SP (Brazil); Monteiro, Juliana C.S.; Nakano, Ana Marcia S. [Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Queiroz, Maria Eugênia C., E-mail: mariaeqn@ffclrp.usp.br [Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2016-08-17

    A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL{sup −1} (LLOQ) to 400 ng mL{sup −1} with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from −1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective. - Highlights: • Molecularly imprinted polymer modified with a hydrophilic external layer (RAM-MIP) was synthesized in a silica capillary. • RAM-MIP capillary, used as sorbent for in-tube SPME, established specific interaction with parabens present in milk samples. • The matrix components that interacted only with the hydrophilic external layer (non-adsorptive network) were excluded.

  8. Molecular beam epitaxy of GeTe-Sb{sub 2}Te{sub 3} phase change materials studied by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shayduk, Roman

    2010-05-20

    The integration of phase change materials into semiconductor heterostructures may lead to the development of a new generation of high density non-volatile phase change memories. Epitaxial phase change materials allow to study the detailed structural changes during the phase transition and to determine the scaling limits of the memory. This work is dedicated to the epitaxial growth of Ge-Sb-Te phase change alloys on GaSb(001). We deposit Ge-Sb-Te (GST) films on GaSb(001) substrates by means of molecular beam epitaxy (MBE). The film orientation and lattice constant evolution is determined in real time during growth using grazing incidence X-ray diffraction (GID). The nucleation stage of the growth is studied in situ using reflection high energy electron diffraction (RHEED). Four growth regimes of GST on GaSb(001) were observed: amorphous, polycrystalline, incubated epitaxial and direct epitaxial. Amorphous film grows for substrate temperatures below 100 C. For substrate temperatures in the range 100-160 C, the film grows in polycrystalline form. Incubated epitaxial growth is observed at temperatures from 180 to 210 C. This growth regime is characterized by an initial 0.6nm thick amorphous layer formation, which crystallizes epitaxially as the film thickness increases. The determined lattice constant of the films is 6.01 A, very close to that of the metastable GST phase. The films predominantly possess an epitaxial cube-on-cube relationship. At higher temperatures the films grow epitaxially, however the growth rate is rapidly decreasing with temperature. At temperatures above 270 C the growth rate is zero. The composition of the grown films is close to 2:2:5 for Ge, Sb and Te, respectively. The determined crystal structure of the films is face centered cubic (FCC) with a rhombohedral distortion. The analysis of X-ray peak widths gives a value for the rhombohedral angle of 89.56 . We observe two types of reflections in reciprocal space indicating two FCC sublattices in

  9. Selective molecularly imprinted polymer combined with restricted access material for in-tube SPME/UHPLC-MS/MS of parabens in breast milk samples.

    Science.gov (United States)

    Souza, Israel D; Melo, Lidervan P; Jardim, Isabel C S F; Monteiro, Juliana C S; Nakano, Ana Marcia S; Queiroz, Maria Eugênia C

    2016-08-17

    A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL(-1) (LLOQ) to 400 ng mL(-1) with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from -1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Preparation and optical and electrical evaluation of bulk SiO{sub 2} sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vergara, Maria Elena [Coordinacion de Ingenieria Mecatronica, Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786 Huixquilucan, Estado de Mexico (Mexico); Morales-Saavedra, Omar G. [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico)], E-mail: omar.morales@ccadet.unam.mx; Ontiveros-Barrera, Fernando G.; Torres-Zuniga, Vicente; Ortega-Martinez, Roberto [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico); Ortiz Rebollo, Armando [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, IIM-UNAM, A.P. 70-360, Coyoacan, 04510 Mexico, D.F. (Mexico)

    2009-02-25

    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (E{sub g}) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO{sub 2} sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively.

  11. Analysis of nano-sized irradiation-induced defects in Fe-base materials by means of small angle neutron scattering and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yu, G.

    2008-12-15

    of RAFM steels with Molecular Dynamics (MD) simulations of main expected nano-sized defects in irradiated pure Fe and Fe-He alloys, as model materials for RAFM steels, and simulations of their corresponding TEM images and SANS signals. In particular, the SANS signal of various types of defects was simulated for the first time. The methodology used in this work was the following: (i) SANS experiments were performed by applying a strong saturating magnetic field to unirradiated and irradiated specimens of three types of RAFM steels, namely the European EUROFER 97, the Japanese F82H and the Swiss OPTIMAX A steels. The available irradiated specimens included specimens which had been irradiated with 590 MeV protons in the Proton IRradiation EXperiment (PIREX) facility at the Paul Scherrer Institute (PSI) at temperatures in the range of 50-350 °C to doses in the range of 0.3-2.0 dpa. SANS spectra as well as values of the so-called A ratio, which represents the ratio of the total scattered intensity to the nuclear scattered intensity, were obtained for the various irradiation doses and temperatures investigated. (ii) MD simulations of atomic displacement cascades in pure Fe and in Fe-He alloys were performed using Embedded Atom Method (EAM) many-body interatomic potentials. The main nano-sized defects that should be produced in RAFM steels under irradiation were created by means of MD in pure Fe. These included dislocation loops of various types, voids, helium bubbles with various He concentration and Cr precipitates. (iii) TEM images of cascade damage and all the defects created by MD were simulated in the dark field/weak beam imaging modes by using the Electron Microscopy Software (EMS) developed by P.A. Stadelmann (EPFL) and analyzed in terms of variations of contrast intensities versus depth inside the specimen. (iv) The SANS signal provided by cascade damage and all the defects created by MD was simulated by using a slightly modified version of EMS, accounting for

  12. Studi Eksperimental Stick-Slip Friction Akibat Multi-Directional Contact Friction dengan Material Uji Ultra High Molecular Weight Polyethylene (UHMWPE Terhadap Stainless Steel (AISI 304

    Directory of Open Access Journals (Sweden)

    Roy Yamsi Kurnia

    2017-01-01

    Full Text Available Apabila dua buah atau lebih benda yang mengalami kontak dan bergerak relatif satu sama lain maka akan menimbulkan gaya gesek yang dapat menyebabkan terjadinya   keausan. Pada kecepatan tertentu, sering terjadi suatu fenomena dimana keausan yang terjadi lebih besar dibandingkan yang lain. Fenomena tersebut disebabkan oleh adanya Stick-Slip Friction. Namun, masih sedikit penelitian mengenai gesekan tersebut. Penelitian dilakukan dengan menganalisa kinematika gerakan spesimen untuk menentukan pada rasio kecepatan berapakah stick-slip terjadi. Kemudian, hal tersebut dibuktikan dengan pengambilan data volume keausan menggunakan tribometer tipe Pin-on-disk dengan material Ultra high molecular weight polyethylene (UHMWPE sebagai pin uji dan Stainless steel sebagai disk, dimana masing-masing pin dan disk akan bergerak secara rotasi. Masing-masing pengujian divariasikan berdasarkan rasio kecepatan antara pin dengan disk, yaitu rasio kecepatan antara 4,2; 5; 6,5; 10; dan 20 rpm/rpm. Pengujian dilakukan dengan pin digesekkan sepanjang 2000 meter dan diberikan pembebanan 4kg serta diberikan variasi dari radius pin. Selanjutnya spesimen diamati struktur permukaannya menggunakan mikroskop optis dengan perbesaran 5x dan 10x sehingga diketahui mekanisme keausannya, sedangkan data hasil pengujian selanjutnya diolah untuk diketahui laju keausan (wear coefficient dari spesimen uji. Hasil dari penelitian ini adalah Pada saat rasio kecepatan 4,2 daerah yang mengalami stick-slip terjadi pada radius 9 mm dari pusat pin, ketika rasio kecepatan 5 daerah yang mengalami stick-slip terjadi pada radius 8 mm dari pusat pin, saat rasio kecepatan 6,5 daerah yang mengalami stick-slip terjadi pada radius 6 mm dari pusat pin, kemudian saat rasio kecepatan 10 daerah yang mengalami stick-slip terjadi pada radius 4 mm dari pusat pin, dan saat rasio kecepatan 20 daerah yang mengalami stick-slip terjadi pada radius 2 mm dari pusat pin. Laju keausan benda yang mengalami stick

  13. Thin films of molecular materials synthesized from C{sub 32}H{sub 20}N{sub 10}M (M Co, Pb, Fe): Film formation, electrical and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360, Coyoacan, 04510 Mexico, D.F. (Mexico); Sanchez Vergara, M.E., E-mail: elena.sanchez@anahuac.mx [Coordinacion de Ingenieria Mecatronica, Facultad de Ingenieria, Universidad Anahuac del Norte, Avenida Lomas Anahuac 46, Colonia Lomas Anahuac, 52786, Huixquilucan, Estado de Mexico (Mexico); Garcia Montalvo, V. [Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Ortiz, A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360, Coyoacan, 04510 Mexico, D.F. (Mexico); Alvarez, J.R. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Ciudad de Mexico, Calle del Puente 222, Colonia Ejidos de Huipulco, 14380 Mexico, D.F. (Mexico)

    2010-03-15

    In this work, the synthesis of molecular materials formed from metallic phthalocyanines and 1,4-phenylenediamine is reported. The powder and thin film ({approx}80-115 nm thickness) samples of the synthesized materials, deposited by vacuum thermal evaporation, show the same intra-molecular bonds in the IR spectroscopy studies, which suggests that the thermal evaporation process does not alter these bonds. The morphology of the deposited films was studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and their optical and electrical properties were studied as well. The optical parameters have been investigated using spectrophotometric measurements of transmittance in the wavelength range 200-1200 nm. The absorption spectra recorded in the UV-vis region for the deposited samples showed two bands, namely the Q and Soret bands. The optical activation energy was calculated and found to be 3.41 eV for the material with cobalt, 3.34 eV for the material including lead and 3.5 eV for the material with iron. The effect of temperature on conductivity was measured for the thin films and the corresponding conduction processes are discussed in this work.

  14. Fiscal 1997 project on the R and D of industrial scientific technology under consignment form NEDO. Report on the results of the R and D of technologies to invent original high-functional materials (technical development of structure control materials / R and D of molecular harmonized materials); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Dokusoteki kokino zairyo sosei gijutsu no kenkyu kaihatsu (kozo seigyo zairyo gijutsu kaihatsu) bunshi kyocho zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    By establishing microtechnology using molecular-level bottoming-up (molecular harmonization) by imitating the system of living organism, the paper described the R and D of molecular harmonized materials aiming at developing high-functional/high-performance materials such as high-performance catalyst, photo-information functional materials and sensing materials. Under consignment from NEDO, Japan Chemical innovation Institute started the 5-year plan in fiscal 1997. Self-assembled molecular films, in which organic molecules are orderly arranged by self-assembly, aim at developing new memory/optical/sensing materials. Mesophase materials which are such materials as liquid crystal showing the intermediate state between solid and liquid, develop optical/photoconductive materials using precise molecular orientation controllability. Macroporous materials are such substances as zeolite having molecular size micro pores. The paper aims at establishment of synthesis techniques of them and development of high-performance catalyst, etc. using them. In the comprehensive investigational research, conducted was a survey of the trend overseas in addition to a study of subjects in question. Further, the supporting basic study was reconsigned to universities, etc. 57 refs., 62 figs., 17 tabs.

  15. Molecular plasmonics

    CERN Document Server

    Fritzsche, Wolfgang

    2014-01-01

    Adopting a novel approach, this book provides a unique ""molecular perspective"" on plasmonics, concisely presenting the fundamentals and applications in a way suitable for beginners entering this hot field as well as for experienced researchers and practitioners. It begins by introducing readers to the optical effects that occur at the nanoscale and particularly their modification in the presence of biomolecules, followed by a concise yet thorough overview of the different methods for the actual fabrication of nanooptical materials. Further chapters address the relevant nanooptics, as well as

  16. Molecular phosphates and siloxanes

    Indian Academy of Sciences (India)

    Administrator

    There has been immense interest and enthusiasm recently among chemists to develop materials at low temperatures through molecular routes. Especially interesting are the studies carried out on molecular phosphonates 1 and siloxanes 2,3 by Roesky, Tilley,. Mason, Feher and others. This presentation focuses on the ...

  17. Assessment of Molecular Modeling & Simulation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  18. A well-defined Pd hybrid material for the Z-selective semihydrogenation of alkynes characterized at the molecular level by DNP SENS.

    Science.gov (United States)

    Conley, Matthew P; Drost, Ruben M; Baffert, Mathieu; Gajan, David; Elsevier, Cornelis; Franks, W Trent; Oschkinat, Hartmut; Veyre, Laurent; Zagdoun, Alexandre; Rossini, Aaron; Lelli, Moreno; Lesage, Anne; Casano, Gilles; Ouari, Olivier; Tordo, Paul; Emsley, Lyndon; Copéret, Christophe; Thieuleux, Chloé

    2013-09-09

    Direct evidence of the conformation of a Pd-N heterocyclic carbene (NHC) moiety imbedded in a hybrid material and of the Pd-NHC bond were obtained by dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) at natural abundance in short experimental times (hours). Overall, this silica-based hybrid material containing well-defined Pd-NHC sites in a uniform environment displays high activity and selectivity in the semihydrogenation of alkynes into Z-alkenes (see figure). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sitting Phase Monolayers of Polymerizable Phospholipids Create Dimensional, Molecular-Scale Wetting Control for Scalable Solution-Based Patterning of Layered Materials.

    Science.gov (United States)

    Choong, Shi Wah; Russell, Shane R; Bang, Jae Jin; Patterson, Justin K; Claridge, Shelley A

    2017-06-07

    The use of dimensionally ordered ligands on layered materials to direct local electronic structure and interactions with the environment promises to streamline integration into nanostructured electronic, optoelectronic, sensing, and nanofluidic interfaces. Substantial progress has been made in using ligands to control substrate electronic structure. Conversely, using the exposed face of the ligand layer to structure wetting and binding interactions, particularly with scalable solution- or spray-processed materials, remains a significant challenge. However, nature routinely utilizes wetting control at scales from nanometer to micrometer to build interfaces of striking geometric precision and functional complexity, suggesting the possibility of leveraging similar control in synthetic materials. Here, we assemble striped "sitting" phases of polymerizable phospholipids on highly oriented pyrolytic graphite, producing a surface consisting of 1 nm wide hydrophilic stripes alternating with 5 nm wide hydrophobic stripes. Protruding, strongly wetting headgroup chemistries in these monolayers enable formation of rodlike wetted patterns with widths as little as ∼6 nm and lengths up to 100 nm from high-surface-tension liquids (aqueous solutions of glycerol) commonly utilized to assess interfacial wetting properties at larger length scales. In contrast, commonly used lying-down phases of diynoic acids with in-plane headgroups do not promote droplet sticking or directional spreading. These results point to a broadly applicable strategy for achieving high-resolution solution-based patterning on layered materials, utilizing nanometer-wide patterns of protruding, charged functional groups in a noncovalent monolayer to define pattern edges.

  20. Synthesis, crystal growth and characterization of bioactive material: 2- Amino-1H-benzimidazolium pyridine-3-carboxylate single crystal- a proton transfer molecular complex

    Science.gov (United States)

    Fathima, K. Saiadali; Kavitha, P.; Anitha, K.

    2017-09-01

    The 1:1 molecular adducts 2- Amino-1H-benzimidazolium pyridine-3-carboxylate (2ABPC) was synthesized and grown as single crystal where 2-aminobenzimidazole (ABI) acts as a donor and nicotinic acid (NA) acts as an acceptor. The presence of proton and carbon were predicted using 1H and 13C NMR spectral analysis. The molecular structure of the crystal was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R = 0.038 for 2469 reflections. The vibrational modes of functional group have been studied using FTIR and Raman spectroscopic analysis. The UV-Vis spectrum exhibited a visible band at 246 nm for 2ABPC due to the nicotinate anion of the molecule. Further, the antimicrobial activity of 2ABPC complex against B. subtilis, klebsiella pneumonia, Pseudomonas eruginos and E. coli pathogens was investigated. Minimum Inhibitory Concentration (MIC) for this crystal was obtained using UV spectrometer against MRSA pathogen. It was found that the benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of 2ABPC crystal.

  1. Bioengineering materials: insights into smart materials designs

    Science.gov (United States)

    Kaplan, David L.

    1996-02-01

    We have focused our research on biologically derived materials to gain insight into new types of materials with novel functions and new assembly and processing methods associated with these materials. Biological systems offer prototypical capabilities in sensing and responding to the environmental changes. The material designs, synthesis, regulation and assembly involved in these sensing and response processes should offer materials engineers incredible opportunities in the molecular-level design of new 'smart' materials with functions not achievable today. Specific examples are cited from our own studies that explore the biosynthesis, processing and properties of novel biological materials. It is our expectation that through the elucidation of the nature of these materials and the processes by which these materials are formed that new directions to the design of 'smart' functions may be garnered.

  2. Synthesis and spin-crossover characteristics of polynuclear 4-(2´-hydroxy-ethyl)-1,2,4-triazole Fe(II) molecular materials

    NARCIS (Netherlands)

    Garcia, Yann; Koningsbruggen, Petra J. van; Lapouyade, René; Rabardel, Louis; Kahn, Olivier; Wieczorek, Maciej; Bronisz, Robert; Ciunik, Zbigniew; Rudolf, Mikolaj F.

    1998-01-01

    A new series of Fe(II) spin-crossover materials of formula [Fe(hyetrz)3](Anion)2•xH2O, where hyetrz = 4-(2´-hydroxy-ethyl)-1,2,4-triazole and Anion = Cl–, NO3–, Br–, I–, BF4–, ClO4–, PF6–, have been prepared and the spin transition characteristics studied. The structure of these compounds consists

  3. Determination of high-molecular weight polycyclic aromatic hydrocarbons in high performance liquid chromatography fractions of coal tar standard reference material 1597a via solid-phase nanoextraction and laser-excited time-resolved Shpol'skii spectroscopy.

    Science.gov (United States)

    Wilson, Walter B; Alfarhani, Bassam; Moore, Anthony F T; Bisson, Cristina; Wise, Stephen A; Campiglia, Andres D

    2016-02-01

    This article presents an alternative approach for the analysis of high molecular weight - polycyclic aromatic hydrocarbons (HMW-PAHs) with molecular mass 302 Da in complex environmental samples. This is not a trivial task due to the large number of molecular mass 302 Da isomers with very similar chromatographic elution times and similar, possibly even virtually identical, mass fragmentation patterns. The method presented here is based on 4.2K laser-excited time-resolved Shpol'skii spectroscopy, a high resolution spectroscopic technique with the appropriate selectivity for the unambiguous determination of PAHs with the same molecular mass. The potential of this approach is demonstrated here with the analysis of a coal tar standard reference material (SRM) 1597a. Liquid chromatography fractions were submitted to the spectroscopic analysis of five targeted isomers, namely dibenzo[a,l]pyrene, dibenzo[a,e]pyrene, dibenzo[a,i]pyrene, naphtho[2,3-a]pyrene and dibenzo[a,h]pyrene. Prior to analyte determination, the liquid chromatographic fractions were pre-concentrated with gold nanoparticles. Complete analysis was possible with microliters of chromatographic fractions and organic solvents. The limits of detection varied from 0.05 (dibenzo[a,l]pyrene) to 0.24 µg L(-1) (dibenzo[a,e]pyrene). The excellent analytical figures of merit associated to its non-destructive nature, which provides ample opportunity for further analysis with other instrumental methods, makes this approach an attractive alternative for the determination of PAH isomers in complex environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A Ballistic Material Model for Cross-Plied Unidirectional Ultra-High Molecular-Weight Polyethylene Fiber-Reinforced Armor-Grade Composites

    Science.gov (United States)

    2008-01-01

    strength polymeric fibers such as aramid (e.g. Kevlar®, Twaron®, etc.) or oriented polyethy- lene fibers (e.g. Spectra®, Dyneema ®, etc.) with an...are: (a) poly-aramids (e.g. Kevlar®, Twaron®, Technora®); (b) highly oriented ultra-highmolecular-weight polyethylene, UHMWPE (e.g. Spectra®, Dyneema ...physically based computationally efficient material model for UHMWPE filament (e.g. Spectra®, Dyneema ®, etc.)-based armor-grade composites is developed

  5. Molecular Modeling

    Science.gov (United States)

    Holmes, Jon L.

    1999-06-01

    Molecular modeling has trickled down from the realm of pharmaceutical and research laboratories into the realm of undergraduate chemistry instruction. It has opened avenues for the visualization of chemical concepts that previously were difficult or impossible to convey. I am sure that many of you have developed exercises using the various molecular modeling tools. It is the desire of this Journal to become an avenue for you to share these exercises among your colleagues. It is to this end that Ron Starkey has agreed to edit such a column and to publish not only the description of such exercises, but also the software documents they use. The WWW is the obvious medium to distribute this combination and so accepted submissions will appear online as a feature of JCE Internet. Typical molecular modeling exercise: finding conformation energies. Molecular Modeling Exercises and Experiments is the latest feature column of JCE Internet, joining Conceptual Questions and Challenge Problems, Hal's Picks, and Mathcad in the Chemistry Curriculum. JCE Internet continues to seek submissions in these areas of interest and submissions of general interest. If you have developed materials and would like to submit them, please see our Guide to Submissions for more information. The Chemical Education Resource Shelf, Equipment Buyers Guide, and WWW Site Review would also like to hear about chemistry textbooks and software, equipment, and WWW sites, respectively. Please consult JCE Internet Features to learn more about these resources at JCE Online. Email Announcements Would you like to be informed by email when the latest issue of the Journal is available online? when a new JCE Software title is shipping? when a new JCE Internet article has been published or is available for Open Review? when your subscription is about to expire? A new feature of JCE Online makes this possible. Visit our Guestbook to learn how. When you submit the form on this page, which includes your email address

  6. Gas source molecular beam epitaxy and thermal stability of Si{sub 1-x} Ge{sub x}/Si superlattice materials

    Energy Technology Data Exchange (ETDEWEB)

    Zou, L.F.; Acosta-Ortiz, S.E. [Centro de Investigaciones en Optica A.C. Unidad Aguascalientes. Juan de Montoro No. 207. Zona Centro, 20000 Aguascalientes (Mexico); Zou, L.X. [Computer Science Department, Zhongnan University for Nationalities Wuhan, Hubei 430074 (China); Regalado, L.E. [Centro de Investigaciones en Optica, Loma del Bosque No. 115, Loma del Campestre C.P. 37000, Leon, Guanajuato (Mexico); Sun, D.Z.; Wang, Z.G. [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    1998-12-31

    Gas source molecular beam epitaxy has been used to grow Si{sub 1-x} Ge{sub x} alloys and Si{sub 1-x} Ge{sub x}/Si multi-quantum wells (MQWs) on (100) Si substrates with Si{sub 2}H{sub 6} and GeH{sub 4} as sources. Heterostructures and MQWs with mirror-like surface morphology, good crystalline quality, and abrupt interfaces have been studied by a variety of in situ and ex situ techniques. The structural stability and strain relaxation in Si{sub 1-x} Ge{sub x}/ Si heterostructures have been investigated, and compared to that in the As ion-implanted Si{sub 1-x} Ge{sub x} epilayers. The results show that the strain relaxation mechanism of the non-implanted Si{sub 1-x} Ge{sub x} epilayers is different form that of the As ion-implanted Si{sub 1-x} Ge{sub x} epilayers. (Author)

  7. Preparation and evaluation of a molecularly imprinted sol-gel material as the solid-phase extraction adsorbents for the specific recognition of cloxacilloic acid in cloxacillin.

    Science.gov (United States)

    Du, Kangli; Luo, Zhimin; Guo, Pengqi; Tang, Weili; Wu, Ningli; Zheng, Penglei; Du, Wei; Zeng, Aiguo; Jing, Wanghui; Chang, Chun; Fu, Qiang

    2016-02-01

    Highly selective molecularly imprinted polymers on the surface of silica gels were prepared by a sol-gel process and used as solid-phase extraction adsorbents for the specific recognition, enrichment and detection of cloxacilloic acid in cloxacillin. The obtained polymers were characterized by scanning electron microscopy, FTIR spectroscopy, nitrogen adsorption and desorption, elemental analysis and thermogravimetric analysis. The imprinted polymers not only possessed high adsorption capacity (6.5 μg/mg), but also exhibited fast adsorption kinetics (they adsorb 80% of the maximum amount within 20 min) and excellent selectivity (the imprinted factor was 3.6). A method using the imprinted polymers as solid-phase extraction adsorbents coupled with high-performance liquid chromatography was established with good specificity, linearity (r = 0.9962), precision (ranging from 0.5 to 6.7%), accuracy (ranging from 93.9 to 97.7%) and extraction recoveries (ranging from 78.8 to 89.8%). The limits of detection and quantification were 0.07 and 0.25 mg/g, respectively. This work could provide a promising method in the enrichment, extraction and detection of allergenic impurities in the manufacture, storage and application of cloxacillin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Responses of Cell Renewal Systems to Long-term Low-Level Radiation Exposure: A Feasibility Study Applying Advanced Molecular Biology Techniques on Available Histological and Cytological Material of Exposed Animals and Men

    Energy Technology Data Exchange (ETDEWEB)

    Fliedner Theodor M.; Feinendegen Ludwig E.; Meineke Viktor; Fritz Thomas E.

    2005-02-28

    First results of this feasibility study showed that evaluation of the stored material of the chronically irradiated dogs with modern molecular biological techniques proved to be successful and extremely promising. Therefore an in deep analysis of at least part of the huge amount of remaining material is of outmost interest. The methods applied in this feasibility study were pathological evaluation with different staining methods, protein analysis by means of immunohistochemistry, strand break analysis with the TdT-assay, DNA- and RNA-analysis as well as genomic examination by gene array. Overall more than 50% of the investigated material could be used. In particular the results of an increased stimulation of the immune system within the dogs of the 3mSv group as both compared to the control and higher dose groups gives implications for the in depth study of the cellular events occurring in context with low dose radiation. Based on the findings of this study a further evaluation and statistically analysis of more material can help to identify promising biomarkers for low dose radiation. A systematic evaluation of a correlation of dose rates and strand breaks within the dog tissue might moreover help to explain mechanisms of tolerance to IR. One central problem is that most sequences for dog specific primers are not known yet. The discovery of the dog genome is still under progress. In this study the isolation of RNA within the dog tissue was successful. But up to now there are no gene arrays or gene chips commercially available, tested and adapted for canine tissue. The uncritical use of untested genomic test systems for canine tissue seems to be ineffective at the moment, time consuming and ineffective. Next steps in the investigation of genomic changes after IR within the stored dog tissue should be limited to quantitative RT-PCR of tested primer sequences for the dog. A collaboration with institutions working in the field of the discovery of the dog genome could

  9. Theoretical molecular biophysics

    CERN Document Server

    Scherer, Philipp O J

    2017-01-01

    This book gives an introduction to molecular biophysics. It starts from material properties at equilibrium related to polymers, dielectrics and membranes. Electronic spectra are developed for the understanding of elementary dynamic processes in photosynthesis including proton transfer and dynamics of molecular motors. Since the molecular structures of functional groups of bio-systems were resolved, it has become feasible to develop a theory based on the quantum theory and statistical physics with emphasis on the specifics of the high complexity of bio-systems. This introduction to molecular aspects of the field focuses on solvable models. Elementary biological processes provide as special challenge the presence of partial disorder in the structure which does not destroy the basic reproducibility of the processes. Apparently the elementary molecular processes are organized in a way to optimize the efficiency. Learning from nature by means exploring the relation between structure and function may even help to b...

  10. Confirmation of Anopheles (Anopheles calderoni Wilkerson, 1991 (Diptera: Culicidae in Colombia and Ecuador through molecular and morphological correlation with topotypic material

    Directory of Open Access Journals (Sweden)

    Ranulfo González

    2010-12-01

    Full Text Available The morphologically similar taxa Anopheles calderoni, Anopheles punctimacula, Anopheles malefactor and Anopheles guarao are commonly misidentified. Isofamilies collected in Valle de Cauca, Colombia, showed morphological characters most similar to An. calderoni, a species which has never previously been reported in Colombia. Although discontinuity of the postsubcostal pale spots on the costa (C and first radial (R1 wing veins is purportedly diagnostic for An. calderoni, the degree of overlap of the distal postsubcostal spot on C and R1 were variable in Colombian specimens (0.003-0.024. In addition, in 98.2% of larvae, seta 1-X was located off the saddle and seta 3-C had 4-7 branches in 86.7% of specimens examined. Correlation of DNA sequences of the second internal transcribed spacer and mtDNA cytochrome c oxidase subunit I gene (COI barcodes (658 bp of the COI gene generated from Colombian progeny material and wild-caught mosquitoes from Ecuador with those from the Peruvian type series of An. calderoni confirmed new country records. DNA barcodes generated for the closely related taxa, An. malefactor and An. punctimacula are also presented for the first time. Examination of museum specimens at the University of the Valle, Colombia, revealed the presence of An. calderoni in inland localities across Colombia and at elevations up to 1113 m.

  11. A new mixed halide, Cs2HgI2Cl2: molecular engineering for a new nonlinear optical material in the infrared region.

    Science.gov (United States)

    Zhang, Gang; Li, Yanjun; Jiang, Kui; Zeng, Huiyi; Liu, Tao; Chen, Xingguo; Qin, Jingui; Lin, Zheshuai; Fu, Peizhen; Wu, Yicheng; Chen, Chuangtian

    2012-09-12

    A new mixed halide, Cs(2)HgI(2)Cl(2), which contains the highly polar tetrahedron of anion (HgI(2)Cl(2))(2-), has been designed and synthesized by reaction in solution. In its single crystal, the isolated (HgCl(2)I(2))(2-) groups are arranged to form chains. The chains are then further connected into a three-dimensional framework through the Cs atoms that occupy the empty spaces surrounded by halide atoms. All the polar (HgCl(2)I(2))(2-) groups align in such a way that gives a net polarization, leading it to show a phase matchable second harmonic generation (SHG) effect as strong as that of KH(2)PO(4) (KDP) based on the powder SHG measurement. It also displays excellent transparency in the range of 0.4-41 μm with relatively high thermal stability. A preliminary measurement indicates that its laser-induced damage threshold is about 83 MW/cm(2), about twice that of AgGaS(2). This study demonstrates that Cs(2)HgI(2)Cl(2) is a promising nonlinear optical material in the infrared region.

  12. Molecular hematology

    National Research Council Canada - National Science Library

    Provan, Drew; Gribben, John

    2010-01-01

    ... The molecular basis of hemophilia, 219 Paul LF Giangrande 4 The genetics of acute myeloid leukemias, 42 Carolyn J Owen & Jude Fitzgibbon 19 The molecular basis of von Willebrand disease, 233 Luciano Baronc...

  13. Tailored Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  14. Understanding molecular simulation: from algorithms to applications

    NARCIS (Netherlands)

    Frenkel, D.; Smit, B.

    2002-01-01

    Second and revised edition Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique

  15. Molecularly Imprinted Polymer Technology: A Powerful, Generic ...

    African Journals Online (AJOL)

    determined analyte (called template) in a polymeric matrix. The template directs the molecular positioning and orientation of the material's functional monomers. Cross-linking ensures polymer rigidity that “freezes” the 3-D molecular architecture of the ...

  16. Device and materials modeling in PEM fuel cells

    National Research Council Canada - National Science Library

    Paddison, Stephen J; Promislow, Keith

    2009-01-01

    .... Materials modeling include subjects relating to the membrane and the catalyst such as proton conduction, atomistic structural modeling, quantum molecular dynamics, and molecular-level modeling...

  17. An ab initio molecular

    Indian Academy of Sciences (India)

    Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. bSchool of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China e-mail: ... and formation of first products of two molecular crystals pentaerythritol tetranitrate (PETN) and 5-nitro-2,4-.

  18. Multiphotochromic molecular systems

    NARCIS (Netherlands)

    Fihey, Arnaud; Perrier, Aurélie; Browne, Wesley R; Jacquemin, Denis

    2015-01-01

    Molecular systems encompassing more than one photochromic entity can be used to build highly functional materials, thanks to their potential multi-addressability and/or multi-response properties. Over the last decade, the synthesis and spectroscopic and kinetic characterisation as well as the

  19. Mesoporous molecular sieve catalysts

    DEFF Research Database (Denmark)

    Højholt, Karen Thrane

    This thesis deals with a very specific class of molecular sieves known as zeolites. Zeolites are a class of crystalline aluminosilicates characterised by pores or cavities of molecular dimensions as part of their crystal structure. In this work zeolites were modified for the use and understanding...... of different catalytic applications. Primarily the zeolites were modified regarding the porosity and the introduction of metals to the framework. The obtained materials were used as solid acid catalysts, as an inert matrix for stabilising metal nanoparticles and as an anchoring material for molecular metal...... be used as solid acid catalysts but can also be used as a size-selective matrix. It was shown that it is possible to encapsulate 1-2 nm sized gold nanoparticles by silicalite-1 or ZSM-5 zeolite crystals thereby forming a sintering-stable and substrate size-selective oxidation catalyst. After carrying out...

  20. Supramolecular biofunctional materials.

    Science.gov (United States)

    Zhou, Jie; Li, Jie; Du, Xuewen; Xu, Bing

    2017-06-01

    This review discusses supramolecular biofunctional materials, a novel class of biomaterials formed by small molecules that are held together via noncovalent interactions. The complexity of biology and relevant biomedical problems not only inspire, but also demand effective molecular design for functional materials. Supramolecular biofunctional materials offer (almost) unlimited possibilities and opportunities to address challenging biomedical problems. Rational molecular design of supramolecular biofunctional materials exploit powerful and versatile noncovalent interactions, which offer many advantages, such as responsiveness, reversibility, tunability, biomimicry, modularity, predictability, and, most importantly, adaptiveness. In this review, besides elaborating on the merits of supramolecular biofunctional materials (mainly in the form of hydrogels and/or nanoscale assemblies) resulting from noncovalent interactions, we also discuss the advantages of small peptides as a prevalent molecular platform to generate a wide range of supramolecular biofunctional materials for the applications in drug delivery, tissue engineering, immunology, cancer therapy, fluorescent imaging, and stem cell regulation. This review aims to provide a brief synopsis of recent achievements at the intersection of supramolecular chemistry and biomedical science in hope of contributing to the multidisciplinary research on supramolecular biofunctional materials for a wide range of applications. We envision that supramolecular biofunctional materials will contribute to the development of new therapies that will ultimately lead to a paradigm shift for developing next generation biomaterials for medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Molecular semiconductors photoelectrical properties and solar cells

    CERN Document Server

    Rees, Ch

    1985-01-01

    During the past thirty years considerable efforts have been made to design the synthesis and the study of molecular semiconductors. Molecular semiconductors - and more generally molecular materials - involve interactions between individual subunits which can be separately synthesized. Organic and metallo-organic derivatives are the basis of most of the molecular materials. A survey of the literature on molecular semiconductors leaves one rather confused. It does seem to be very difficult to correlate the molecular structure of these semiconductors with their experimental electrical properties. For inorganic materials a simple definition delimits a fairly homogeneous family. If an inorganic material has a conductivity intermediate between that of an 12 1 1 3 1 1 insulator « 10- n- cm- ) and that of a metal (> 10 n- cm- ), then it is a semiconductor and will exhibit the characteristic properties of this family, such as junction formation, photoconductivity, and the photovoltaic effect. For molecular compounds,...

  2. Molecular Gastronomy

    OpenAIRE

    Burke, Roisin; This, Herve; Kelly, Alan

    2016-01-01

    Molecular gastronomy may be defined as the scientific discipline that explores the phenomena occurring during culinary transformations. In contrast with traditional approaches of food science and technology, which considered mostly the chemistry, physics, or biology of food ingredients and industrial transformations, the focus is on phenomena occurring during the preparation of dishes. Applications building on the principles of molecular gastronomy, such as ‘Molecular Cooking’ and ‘Note-by-No...

  3. Molecular design of materials for cell separation.

    Science.gov (United States)

    Kataoka, K

    1988-12-01

    There has been a strong demand in biomedical sciences to isolate viable cell populations with high yield and purity. An important facet of this work was to develop new polymeric adsorbent for the separation of lymphocyte subpopulations. Based on our strategy of separating cells through their differential ionic affinity toward multiphase-structured adsorbent with ionically derivatized microdomains, a series of poly(2-hydroxyethyl methacrylate)/polyamine graft copolymers (HA copolymers) was prepared. HA copolymer columns were found to show specific adsorption affinity toward B lymphocytes, and allows for separation of B and T lymphocytes in high yield and purity with a short operating time. Separation mechanism involved in the resolution of B and T lymphocytes by HA copolymer column is discussed in this paper. Further, photo-induced desorption of cells from the adsorbent derivatized with photo-responsive functional group (azobenzene group) was demonstrated to emphasize the feasibility of photo-regulated chromatography as a novel tool in cell separation technology.

  4. Towards Magnetic Carbo-meric Molecular Materials.

    Science.gov (United States)

    Poidevin, Corentin; Malrieu, Jean-Paul; Trinquier, Georges; Lepetit, Christine; Allouti, Faycal; Alikhani, M Esmail; Chauvin, Remi

    2016-04-04

    Numerous studies have underlined the putative diradical character of π-conjugated molecules that can be described by closed-shell Lewis structures, for instance, p-dimethylene p-n phenylenes, or long polyacenes. In the latter compounds, the only way to save the aromaticity of the six-membered rings is to give up the Lewis electron pairing in the singlet biradical ground state. The present work considers the possibility of doing the same by using the basic C2 units of carbo-meric architectures. A series of acyclic and cyclic carbo-meric architectures is studied by using UB3LYP DFT broken-symmetry calculations, including spin decontaminations and subsequent geometry optimization of the singlet diradical. The C2 units are shown to stabilize the singlet biradical by spin delocalization, two of them playing approximately the same role as one radical-insulating 1,4 phenylene moiety. The results are generalized to the investigation of open-shell polyradical singlet states of rigid hydrocarbon structures, the symmetry and rigidity of which can assist cooperativity and self spin polarization effect. Several synthesis targets with challenging magnetic/spin properties are suggested in the carbo-mer series. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Development of novel molecularly imprinted magnetic solid-phase extraction materials based on magnetic carbon nanotubes and their application for the determination of gatifloxacin in serum samples coupled with high performance liquid chromatography.

    Science.gov (United States)

    Xiao, Deli; Dramou, Pierre; Xiong, Nanqian; He, Hua; Li, Hui; Yuan, Danhua; Dai, Hao

    2013-01-25

    A novel composite imprinted material, on the basis of magnetic carbon nanotubes (MCNTs)-incorporated layer using gatifloxacin as a template, methacrylic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linker, was successfully synthesized by a surface imprinting technique. Adsorption dynamics and a Scatchard adsorption model were employed to evaluate the adsorption process. The results showed that magnetic carbon nanotubes molecularly imprinted polymers (MCNTs@MIP) displayed a rapid dynamic adsorption and a high adsorption capacity of 192.7 μg/mg toward GTFX. Applied MCNTs@MIP as a sorbent, a magnetic solid phase extraction method coupled with high performance liquid chromatography (MSPE-HPLC) was developed for the determination of GTFX in serum samples. The recoveries from 79.1±4.8% to 85.3±4.2% were obtained. MCNTs@MIP can not only be collected and separated fast by external magnetic field but also have high surface-to-volume ratio, outstanding mechanical properties and specific recognition toward template molecule. In addition, the MCNTs@MIP could be regenerated, which could be used for five cycles with lost of less than 7.8% of its recovery on average. These analytical results of serum samples display that the proposed method based on MCNTs@MIP is applicable for fast and selective extraction of therapeutic agents from biological fluids. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. NASA Applications of Molecular Nanotechnology

    Science.gov (United States)

    Globus, Al; Bailey, David; Han, Jie; Jaffe, Richard; Levit, Creon; Merkle, Ralph; Srivastava, Deepak

    1998-01-01

    Laboratories throughout the world are rapidly gaining atomically precise control over matter. As this control extends to an ever wider variety of materials, processes and devices, opportunities for applications relevant to NASA's missions will be created. This document surveys a number of future molecular nanotechnology capabilities of aerospace interest. Computer applications, launch vehicle improvements, and active materials appear to be of particular interest. We also list a number of applications for each of NASA's enterprises. If advanced molecular nanotechnology can be developed, almost all of NASA's endeavors will be radically improved. In particular, a sufficiently advanced molecular nanotechnology can arguably bring large scale space colonization within our grasp.

  7. Molecular dynamics

    NARCIS (Netherlands)

    Bergstra, J.A.; Bethke, I.

    2002-01-01

    Molecular dynamics is a model for the structure and meaning of object based programming systems. In molecular dynamics the memory state of a system is modeled as a fluid consisting of a collection of molecules. Each molecule is a collection of atoms with bindings between them. A computation is

  8. Molecular motors

    Science.gov (United States)

    Allemand, Jean François Desbiolles, Pierre

    2015-10-01

    How do we move? More precisely, what are the molecular mechanisms that can explain that our muscles, made of very small components can move at a osopic scale? To answer these questions we must introduce molecular motors. Those motors are proteins, or small protein assemblies that, in our cells, transform chemical energy into mechanical work. Then, like we could do for a oscopic motor, used in a car or in a fan, we are going to study the basic behavior of these molecular machines, present what are their energy sources, calculate their power, their yield. If molecular motors are crucial for our oscopic movements, we are going to see that they are also essential to cellular transport and that considering the activity of some enzymes as molecular motors bring some interesting new insights on their activity.

  9. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  10. Molecular geometry

    CERN Document Server

    Rodger, Alison

    1995-01-01

    Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans

  11. Molecular Haeckel.

    Science.gov (United States)

    Elinson, Richard P; Kezmoh, Lorren

    2010-07-01

    More than a century ago, Ernst Haeckel created embryo drawings to illustrate the morphological similarity of vertebrate early embryos. These drawings have been both widely presented and frequently criticized. At the same time that the idea of morphological similarity was recently attacked, there has been a growing realization of molecular similarities in the development of tissues and organs. We have surveyed genes expressed in vertebrate embryos, and we have used them to construct drawings that we call Molecular Haeckels. The Molecular Haeckels emphasize that, based on gene expression, there is a greater similarity among vertebrate embryos than even Haeckel might have imagined. (c) 2010 Wiley-Liss, Inc.

  12. Molecules to Materials

    Indian Academy of Sciences (India)

    This article presents several examples to illustrate the power of a molecular level approach to material properties. An overview of liquid crystals is presented followed by a brief account of ... Liquid crystals are broadly classified as thermotropic and lyotropic based on whether temperature or presence of solvent stabilises the ...

  13. Molecules to Materials

    Indian Academy of Sciences (India)

    are electroluminiscent device, thin fIlm transistor and an electro-optic device. Introduction. The past few decades have witnessed the realisation of a variety of electrical, magnetic and optical properties in molecular materials. This has been described in the earlier articles in this series. The traditionai view of organic solids as ...

  14. Molecular Origami

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9. Molecular Origami - Modular Construction of Platonic Solids as Models for Reversible Assemblies. Subramania Ranganathan. General Article Volume 5 Issue 9 September 2000 pp 82-91 ...

  15. Computational materials science: Nanoscale plasticity

    DEFF Research Database (Denmark)

    Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2002-01-01

    How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour.......How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour....

  16. Why are carbon molecular sieves interesting?

    Directory of Open Access Journals (Sweden)

    Oliveira Erica C. de

    2006-01-01

    Full Text Available This paper describes the production methods and the prospective uses of carbon molecular sieves. The main route to these materials is replication synthesis, where a silica or aluminosilicate molecular sieve is used as template to grow the carbonaceous phase in the voids. These materials may have applications as varied as in separation, adsorption and storage of gases, as electrodes in batteries, and as catalyst supports, all of them highly dependent on the molecular sieve porosity.

  17. Primer on molecular genetics

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  18. Conducting polymer materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2003-01-01

    Full Text Available Conducting polymers represent a very interesting group of polymer materials Investigation of the synthesis, structure and properties of these materials has been the subject of considerable research efforts in the last twenty years. A short presentating of newer results obtained by investigating of the synthesis, structure and properties of two basic groups of conducting polymers: a conducting polymers the conductivity of which is the result of their molecular structure, and b conducting polymer composites (EPC, is given in this paper. The applications and future development of this group of polymer materials is also discussed.

  19. Molecular fountain.

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, Kevin E.; Chandler, David W.

    2009-09-01

    A molecular fountain directs slowly moving molecules against gravity to further slow them to translational energies that they can be trapped and studied. If the molecules are initially slow enough they will return some time later to the position from which they were launched. Because this round trip time can be on the order of a second a single molecule can be observed for times sufficient to perform Hz level spectroscopy. The goal of this LDRD proposal was to construct a novel Molecular Fountain apparatus capable of producing dilute samples of molecules at near zero temperatures in well-defined user-selectable, quantum states. The slowly moving molecules used in this research are produced by the previously developed Kinematic Cooling technique, which uses a crossed atomic and molecular beam apparatus to generate single rotational level molecular samples moving slowly in the laboratory reference frame. The Kinematic Cooling technique produces cold molecules from a supersonic molecular beam via single collisions with a supersonic atomic beam. A single collision of an atom with a molecule occurring at the correct energy and relative velocity can cause a small fraction of the molecules to move very slowly vertically against gravity in the laboratory. These slowly moving molecules are captured by an electrostatic hexapole guiding field that both orients and focuses the molecules. The molecules are focused into the ionization region of a time-of-flight mass spectrometer and are ionized by laser radiation. The new molecular fountain apparatus was built utilizing a new design for molecular beam apparatus that has allowed us to miniaturize the apparatus. This new design minimizes the volumes and surface area of the machine allowing smaller pumps to maintain the necessary background pressures needed for these experiments.

  20. The Dark Molecular Gas

    Science.gov (United States)

    Wolfire, Mark G.; Hollenbach, David; McKee, Christopher F.

    2010-06-01

    The mass of molecular gas in an interstellar cloud is often measured using line emission from low rotational levels of CO, which are sensitive to the CO mass, and then scaling to the assumed molecular hydrogen H2 mass. However, a significant H2 mass may lie outside the CO region, in the outer regions of the molecular cloud where the gas-phase carbon resides in C or C+. Here, H2 self-shields or is shielded by dust from UV photodissociation, whereas CO is photodissociated. This H2 gas is "dark" in molecular transitions because of the absence of CO and other trace molecules, and because H2 emits so weakly at temperatures 10 K mass such as gamma rays produced in cosmic-ray collisions with the gas and far-infrared/submillimeter wavelength dust continuum radiation. In this paper, we theoretically model this dark mass and find that the fraction of the molecular mass in this dark component is remarkably constant (~0.3 for average visual extinction through the cloud \\bar{A}_V ≃ 8) and insensitive to the incident ultraviolet radiation field strength, the internal density distribution, and the mass of the molecular cloud as long as \\bar{A}_V, or equivalently, the product of the average hydrogen nucleus column and the metallicity through the cloud, is constant. We also find that the dark mass fraction increases with decreasing \\bar{A}_V, since relatively more molecular H2 material lies outside the CO region in this case.

  1. Molecular Electronics

    DEFF Research Database (Denmark)

    Jennum, Karsten Stein

    This thesis includes the synthesis and characterisation of organic compounds designed for molecular electronics. The synthesised organic molecules are mainly based on two motifs, the obigo(phenyleneethynylenes) (OPE)s and tetrathiafulvalene (TTF) as shown below. These two scaffolds (OPE and TTF...... transistors (Part 2). The synthetic protocols rely on stepwise Sonogashira coupling reactions. Conductivity studies on various OPE-based molecular wires reveal that mere OPE compounds have a higher electrical resistance compared to the cruciform based wires (up to 9 times higher). The most spectacular result...... be potential candidates for future molecular electronics Synthesis of a new donor-acceptor chromophore based on a benzoquinone- TTF motif (QuinoneDTF) is also described herein (Part 2). Reaction of this molecule with acid induces a colour change from purple to orange. The purple colour can be restored...

  2. Molecular pathways

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine Terra

    2014-01-01

    that 45% of deaths in the developed world are linked to fibrotic disease. Fibrosis and cancer are known to be inextricably linked; however, we are only just beginning to understand the common and overlapping molecular pathways between the two. Here, we discuss what is known about the intersection...... of fibrosis and cancer, with a focus on cancer metastasis, and highlight some of the exciting new potential clinical targets that are emerging from analysis of the molecular pathways associated with these two devastating diseases. Clin Cancer Res; 20(14); 3637-43. ©2014 AACR....

  3. Molecular modeling

    Directory of Open Access Journals (Sweden)

    Aarti Sharma

    2009-01-01

    Full Text Available The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and the exponential growth of the knowledge of protein structures have made it possible for organic compounds to be tailored to decrease the harmful side effects and increase the potency. This article provides a detailed description of the techniques employed in molecular modeling. Molecular modeling is a rapidly developing discipline, and has been supported by the dramatic improvements in computer hardware and software in recent years.

  4. Functional organic materials for electronics industries

    Science.gov (United States)

    Shibayama, K.; Ono, H.

    1982-01-01

    Topics closely related with organic, high molecular weight material synthesis are discussed. These are related to applications such as display, recording, sensors, semiconductors, and I.C. correlation. New materials are also discussed. General principles of individual application are not included. Materials discussed include color, electrochromic, thermal recording, organic photoconductors for electrophotography, and photochromic materials.

  5. Handbook of Molecular Force Spectroscopy

    CERN Document Server

    Noy, Aleksandr

    2008-01-01

    "...Noy's Handbook of Molecular Force Spectroscopy is both a timely and useful summary of fundamental aspects of molecular force spectroscopy, and I believe it would make a worthwhile addition to any good scientific library. New research groups that are entering this field would be well advisedto study this handbook in detail before venturing into the exciting and challenging world of molecular force spectroscopy." Matthew F. Paige, University of Saskatchewan, Journal of the American Chemical Society Modern materials science and biophysics are increasingly focused on studying and controlling intermolecular interactions on the single-molecule level. Molecular force spectroscopy was developed in the past decade as the result of several unprecedented advances in the capabilities of modern scientific instrumentation, and defines a number of techniques that use mechanical force measurements to study interactions between single molecules and molecular assemblies in chemical and biological systems. Examples of these...

  6. Molecular gastronomy

    Science.gov (United States)

    This, Hervé

    2005-01-01

    For centuries, cooks have been applying recipes without looking for the mechanisms of the culinary transformations. A scientific discipline that explores these changes from raw ingredients to eating the final dish, is developing into its own field, termed molecular gastronomy. Here, one of the founders of the discipline discusses its aims and importance.

  7. Molecular farming

    NARCIS (Netherlands)

    Merck, K.B.; Vereijken, J.M.

    2006-01-01

    Molecular Farming is a new and emerging technology that promises relatively cheap and flexible production of large quantities of pharmaceuticals in genetically modified plants. Many stakeholders are involved in the production of pharmaceuticals in plants, which complicates the discussion on the

  8. [Application of molecular biotechnology in Pharmacognosy].

    Science.gov (United States)

    Tong, Yuan-Yuan; Liu, Yang; Wang, Jun-Wen; Yang, Ce; Huang, Man-Ting; Li, Hai-Yan

    2016-02-01

    Using the methods of informetrics analysis, articles retrieved from the database of CNKI were statistically analyzed on development course and knowledge system, so as to reflect the overall situation of pharmacognostical studies by molecular biotechnology. The result shows that the research on pharmacognosy by molecular biotechnology is an inter-disciplinary research area, the major research fields can be divided into 7 categories, including molecular identification of Chinese medicinal materials, molecular systematics and genetic diversity analysis of Chinese medicinal materials, biosynthesis and bioregulation of secondary metabolites in medicinal plants, molecular mechanism and genetic basis of Dao-di Herbs, and tissue culture and molecular breeding in medicinal plants. The research on pharmacognosy by molecular have achieved remarkable progress in recent 20 years, and have broad development prospects. Copyright© by the Chinese Pharmaceutical Association.

  9. Molecular studies of achondroplasia

    Directory of Open Access Journals (Sweden)

    Nahar Risha

    2009-01-01

    Full Text Available Background: Achondroplasia (ACH is the most frequent form of short-limbed dwarfi sm, caused by mutations in the FGFR3 gene. It follows an autosomal dominant inheritance, though most cases are sporadic. The molecular techniques are the only available methods to confi rm the diagnosis of a skeletal dysplasia. Clinical and radiological features are only suggestive and not confi rmatory. The present study was conducted to fi nd out how often the clinical diagnosis of achondroplasia is verifi ed on molecular studies. Materials and Methods: From 1998 through 2007, we carried out molecular analysis for the two common mutations in the FGFR3 gene in 130 cases clinically suspected to have ACH. Results: A diagnostic mutation was identifi ed in 53 (40.8% cases. The common mutation (1138G>A was present in 50 (94.7% of the positive cases, while the rare 1138 G>C substitution was found in three (5.3%. Conclusion: This study shows that confi rmation of clinical diagnosis of ACH by molecular genetic testing is essential to distinguish it from other skeletal dysplasias, to plan therapeutic options, and to offer genetic counseling. Management (medical and surgical in patients confi rmed to have ACH, is briefl y discussed.

  10. Molecular Adsorber Coating

    Science.gov (United States)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  11. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  12. Molecular cytogenetics.

    Science.gov (United States)

    Carpenter, N J

    2001-09-01

    In the past decade, clinical cytogenetics has undergone remarkable advancement as molecular biology techniques have been applied to conventional chromosome analysis. The limitations of conventional banding analysis in the accurate diagnosis and interpretation of certain chromosome abnormalities have largely been overcome by these new technologies, which include fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and multicolor FISH (M-FISH, SKY, and Rx-FISH). Clinical applications include diagnosis of microdeletion and microduplication syndromes, detection of subtelomeric rearrangements in idiopathic mental retardation, identification of marker and derivative chromosomes, prenatal diagnosis of trisomy syndromes, and gene rearrangements and gene amplification in tumors. Molecular cytogenetic methods have expanded the possibilities for precise genetic diagnoses, which are extremely important for clinical management of patients and appropriate counseling of their families.

  13. Molecular Modelling

    Directory of Open Access Journals (Sweden)

    Aarti Sharma

    2009-12-01

    Full Text Available

    The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important
    tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and
    the exponential growth of the knowledge of protein structures have made it possible for organic compounds to tailored to
    decrease harmful side effects and increase the potency. This article provides a detailed description of the techniques
    employed in molecular modeling. Molecular modelling is a rapidly developing discipline, and has been supported from
    the dramatic improvements in computer hardware and software in recent years.

  14. Polarons in advanced materials

    CERN Document Server

    Alexandrov, Alexandre Sergeevich

    2008-01-01

    Polarons in Advanced Materials will lead the reader from single-polaron problems to multi-polaron systems and finally to a description of many interesting phenomena in high-temperature superconductors, ferromagnetic oxides, conducting polymers and molecular nanowires. The book divides naturally into four parts. Part I introduces a single polaron and describes recent achievements in analytical and numerical studies of polaron properties in different electron-phonon models. Part II and Part III describe multi-polaron physics, and Part IV describes many key physical properties of high-temperature superconductors, colossal magnetoresistance oxides, conducting polymers and molecular nanowires, which were understood with polarons and bipolarons. The book is written in the form of self-consistent reviews authored by well-established researchers actively working in the field and will benefit scientists and postgraduate students with a background in condensed matter physics and materials sciences.

  15. Molecular belts.

    Science.gov (United States)

    Evans, Paul J; Jasti, Ramesh

    2014-01-01

    Rigid hydrocarbon macrocycles with radially-oriented π-systems and continuous conjugation have attracted great interest in recent years. These molecular belts have novel optoelectronic properties and host-guest behavior. Certain belts may also ultimately lead to a rational synthesis of carbon nanotubes. The high strain associated with the nonplanar, conjugated backbones requires the development of new synthetic methods, and clever synthetic design. Herein we describe the synthetic history and properties of these structurally simple but synthetically challenging molecules.

  16. Molecular Imprinting

    Science.gov (United States)

    Dufaud, V.; Bonneviot, L.

    Our senses of smell and taste are able to recognise molecules selectively, to the point where they can even discriminate between different chiral states. This property, called molecular recognition, is essential to all forms of life [1]. It is based on the principle of a specific interaction between a receptor or host and a target molecule, which will be identified among a multitude of others, then selectively adsorbed. If the host is endowed with reactive functions, the attached molecule may be transported or transformed. Enzymes are the archetypal host molecules exploiting the idea of molecular recognition. Their complexation sites comprise a hydrophobic pocket with definite shape within which amino acid residues are located in a precisely defined way. The combined effect of these different characteristics underlies not only the affinity for some specific substrate, but also the transformation of this substrate into the desired product [2]. In fact, the phenomena actually brought into play are much more involved, being made up of an ensemble of physicochemical events that act together in a cooperative way, either simultaneously or sequentially, and in which the molecular processes are difficult to follow in detail.

  17. Organic nonlinear optical materials

    Science.gov (United States)

    Umegaki, S.

    1987-01-01

    Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.

  18. Periodontal materials

    National Research Council Canada - National Science Library

    Darby, I

    2011-01-01

    .... However, the last 30 years have seen the development of materials used in regeneration of the periodontal tissues following periodontal disease, guided tissue regeneration, and the use of these materials in bone...

  19. Analytic materials.

    Science.gov (United States)

    Milton, Graeme W

    2016-11-01

    The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p. If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p. For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90(°) rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.

  20. Hazardous materials

    Science.gov (United States)

    ... words like: Acid Alkali Carcinogenic Caution Corrosive Danger Explosive Flammable Irritant Radioactive Unstable Warning A label called the Material Safety Data Sheet (MSDS) will tell you if a material is ...

  1. Contrast Materials

    Science.gov (United States)

    ... safe are contrast materials? Contrast materials are safe drugs; adverse reactions ranging from mild to severe do occur but ... the use of medications such as Beta blockers , NSAIDs , interleukin 2 having received a large amount of ...

  2. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    materials. Numerical procedures are outlined which facilitate the practical analysis of any feature considered in this book. Examples are presented which illustrate the analysis of well-known materials such as concrete, hardening cement paste, ceramics, tile, wood, impregnated and reinforced materials...

  3. Molecular nanomagnets

    CERN Document Server

    Gatteschi, Dante; Villain, Jacques

    2006-01-01

    Nanomagnetism is a rapidly expanding area of research which appears to be able to provide novel applications. Magnetic molecules are at the very bottom of the possible size of nanomagnets and they provide a unique opportunity to observe the coexistence of classical and quantum properties. The discovery in the early 90's that a cluster comprising twelve manganese ions shows hysteresis of molecular origin, and later proved evidence of quantum effects, opened a new research area whichis still flourishing through the collaboration of chemists and physicists. This book is the first attempt to cover

  4. Molecular Origami

    Indian Academy of Sciences (India)

    The assembly of even the most complicated structure is achieved by Nature using a modular protocol wherein each of the mod- ules holds latent information. Thus, minerals - related to materials, and DNA, polysaccharides and proteins - related to cellular life, are assembled from simple monomers. The infor- mation content ...

  5. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...... materials. Numerical procedures are outlined which facilitate the practical analysis of any feature considered in this book. Examples are presented which illustrate the analysis of well-known materials such as concrete, hardening cement paste, ceramics, tile, wood, impregnated and reinforced materials...

  6. Aerospace materials and material technologies

    CERN Document Server

    Wanhill, R

    2017-01-01

    This book is a comprehensive compilation of chapters on materials (both established and evolving) and material technologies that are important for aerospace systems. It considers aerospace materials in three Parts. Part I covers Metallic Materials (Mg, Al, Al-Li, Ti, aero steels, Ni, intermetallics, bronzes and Nb alloys); Part II deals with Composites (GLARE, PMCs, CMCs and Carbon based CMCs); and Part III considers Special Materials. This compilation has ensured that no important aerospace material system is ignored. Emphasis is laid in each chapter on the underlying scientific principles as well as basic and fundamental mechanisms leading to processing, characterization, property evaluation and applications. A considerable amount of materials data is compiled and presented in appendices at the end of the book. This book will be useful to students, researchers and professionals working in the domain of aerospace materials.

  7. Tellurium molecular model and chemical bond

    Directory of Open Access Journals (Sweden)

    Azcheulov A. A.

    2010-10-01

    Full Text Available The molecular model of tellurium was considered which explains the complex structure of the chemical bond. Its force bearing and energy characteristics which stipulated the appearance the number of technological solutions of new materials obtaining are defined.

  8. Activation of molecular catalysts using semiconductor quantum dots

    Science.gov (United States)

    Meyer, Thomas J [Chapel Hill, NC; Sykora, Milan [Los Alamos, NM; Klimov, Victor I [Los Alamos, NM

    2011-10-04

    Photocatalytic materials based on coupling of semiconductor nanocrystalline quantum dots (NQD) and molecular catalysts. These materials have capability to drive or catalyze non-spontaneous chemical reactions in the presence of visible radiation, ultraviolet radiation, or both. The NQD functions in these materials as a light absorber and charge generator. Following light absorption, the NQD activates a molecular catalyst adsorbed on the surface of the NQD via transfer of one or more charges (either electrons or electron-holes) from the NQD to the molecular catalyst. The activated molecular catalyst can then drive a chemical reaction. A photoelectrolytic device that includes such photocatalytic materials is also described.

  9. Molecular self-assembly advances and applications

    CERN Document Server

    Dequan, Alex Li

    2012-01-01

    In the past several decades, molecular self-assembly has emerged as one of the main themes in chemistry, biology, and materials science. This book compiles and details cutting-edge research in molecular assemblies ranging from self-organized peptide nanostructures and DNA-chromophore foldamers to supramolecular systems and metal-directed assemblies, even to nanocrystal superparticles and self-assembled microdevices

  10. Natural Composite Systems for Bioinspired Materials.

    Science.gov (United States)

    Frezzo, Joseph A; Montclare, Jin Kim

    2016-01-01

    From a relatively limited selection of base materials, nature has steered the development of truly remarkable materials. The simplest and often overlooked organisms have demonstrated the ability to manufacture multi-faceted, molecular-level hierarchical structures that combine mechanical properties rarely seen in synthetic materials. Indeed, these natural composite systems, composed of an array of intricately arranged and functionally relevant organic and inorganic substances serve as inspiration for materials design. A better understanding of these composite systems, specifically at the interface of the hetero-assemblies, would encourage faster development of environmentally friendly "green" materials with molecular level specificities.

  11. Molecular tailoring of solid surfaces

    CERN Document Server

    Evenson, S A

    1997-01-01

    The overall performance of a material can be dramatically improved by tailoring its surface at the molecular level. The aim of this project was to develop a universal technique for attaching dendrimers (well-defined, nanoscale, functional polymers) and Jeffamines (high molecular weight polymer chains) to the surface of any shaped solid substrate. This desire for controlled functionalization is ultimately driven by the need to improve material compatibility in various biomedical applications. Atomic force microscopy (AFM) was used initially to study the packing and structure of Langmuir-Blodgett films on surfaces, and subsequently resulted in the first visualization of individual, spherically shaped, nanoscopic polyamidoamine dendrimers. The next goal was to develop a methodology for attaching such macromolecules to inert surfaces. Thin copolymer films were deposited onto solid substrates to produce materials with a fixed concentration of surface anhydride groups. Vapor-phase functionalization reactions were t...

  12. Nano Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu; and others

    2006-02-15

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  13. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...

  14. Material Systems

    DEFF Research Database (Denmark)

    Jensen, Mads Brath; Mortensen, Henrik Rubæk; Mullins, Michael

    2009-01-01

    This paper describes and reflects upon the results of an investigative project which explores the setting up of a material system - a parametric and generative assembly consisting of and taking into consideration material properties, manufacturing constraints and geometric behavior. The project...

  15. Ferroic Materials

    Indian Academy of Sciences (India)

    reasonably nontechnical language. The vast application potential of ferroic materials is highlighted. Introduction. Materials possess symmetry, and sometimes .... tive sign, and even of variable magnitude. Thus the magnetisation is no more a single-valued function of the applied field. This behaviour, brought about by the ...

  16. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    . The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior......, viscoelastic behavior, and internal stress states. Other physical properties considered are thermal and electrical conductivities, diffusion coefficients, dielectric constants and magnetic permeability. Special attention is given to the effect of pore shape on the mechanical and physical behavior of porous...... materials. Numerical procedures are outlined which facilitate the practical analysis of any feature considered in this book. Examples are presented which illustrate the analysis of well-known materials such as concrete, hardening cement paste, ceramics, tile, wood, impregnated and reinforced materials...

  17. Material Programming

    DEFF Research Database (Denmark)

    Vallgårda, Anna; Boer, Laurens; Tsaknaki, Vasiliki

    2017-01-01

    , and color, but additionally being capable of sensing, actuating, and computing. Indeed, computers will not be things in and by themselves, but embedded into the materials that make up our surroundings. This also means that the way we interact with computers and the way we program them, will change....... Consequently we ask what the practice of programming and giving form to such materials would be like? How would we be able to familiarize ourselves with the dynamics of these materials and their different combinations of cause and effect? Which tools would we need and what would they look like? Will we program...... these computational composites through external computers and then transfer the code them, or will the programming happen closer to the materials? In this feature we outline a new research program that floats between imagined futures and the development of a material programming practice....

  18. Periodontal materials.

    Science.gov (United States)

    Darby, I

    2011-06-01

    Periodontics is more associated with debridement of periodontal pockets and not generally thought of as using dental materials in the treatment of patients. However, the last 30 years have seen the development of materials used in regeneration of the periodontal tissues following periodontal disease, guided tissue regeneration, and the use of these materials in bone regeneration more recently, guided bone regeneration. The materials used include bone grafts and membranes, but also growth factors and cells-based therapies. This review provides an overview of the materials currently used and looks at contemporary research with a view to what may be used in the future. It also looks at the clinical effectiveness of these regenerative therapies with an emphasis on what is available in Australia. © 2011 Australian Dental Association.

  19. Composite material

    Science.gov (United States)

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  20. Bioresponsive materials

    Science.gov (United States)

    Lu, Yue; Aimetti, Alex A.; Langer, Robert; Gu, Zhen

    2017-01-01

    'Smart' bioresponsive materials that are sensitive to biological signals or to pathological abnormalities, and interact with or are actuated by them, are appealing therapeutic platforms for the development of next-generation precision medications. Armed with a better understanding of various biologically responsive mechanisms, researchers have made innovations in the areas of materials chemistry, biomolecular engineering, pharmaceutical science, and micro- and nanofabrication to develop bioresponsive materials for a range of applications, including controlled drug delivery, diagnostics, tissue engineering and biomedical devices. This Review highlights recent advances in the design of smart materials capable of responding to the physiological environment, to biomarkers and to biological particulates. Key design principles, challenges and future directions, including clinical translation, of bioresponsive materials are also discussed.

  1. Touching Materiality

    DEFF Research Database (Denmark)

    Rasmussen, Lisa Rosén

    2012-01-01

    . Drawing on anthropological writings, the article argues that the objects of materiality are part of important but non-verbalised memories of schooling. The Dutch philosopher Eelco Runia’s notions of presence and metonymy are incorporated as tools for approaching objects of materiality in memory studies.......Dripping ink pens, colourful paint on skin, vegetables pots on a school roof. In interviews with three generations of former school pupils, memories of material objects bore a relation to everyday school life in the past. Interwoven, these objects entered the memorising processes, taking...... the interviewer and interviewee beyond an exclusively linguistic understanding of memory. This article analyses how the shifting objects of materiality in personal and generational school memories connects to material as well as sensuous experiences of everyday school life and its complex processes of learning...

  2. Molecular robots with sensors and intelligence.

    Science.gov (United States)

    Hagiya, Masami; Konagaya, Akihiko; Kobayashi, Satoshi; Saito, Hirohide; Murata, Satoshi

    2014-06-17

    -based computations. They also introduce novel computational models behind various kinds of molecular computers necessary for designing such computers. The amoeba robot team aims at constructing amoeba-like robots. The team is trying to incorporate motor proteins, including kinesin and microtubules (MTs), for use as actuators implemented in a liposomal compartment as a robot body. They are also developing a methodology to link DNA-based computation and molecular motor control. The slime robot team focuses on the development of slime-like robots. The team is evaluating various gels, including DNA gel and BZ gel, for use as actuators, as well as the body material to disperse various molecular devices in it. They also try to control the gel actuators by DNA signals coming from molecular computers.

  3. Utopian Materialities

    DEFF Research Database (Denmark)

    Elgaard-Jensen, Torben

    2004-01-01

    In various ways, this paper makes the counter-intuitive claim that the utopian and the material are thoroughlyinterdependent, rather than worlds apart. First, through a reading of Thomas More's Utopia, it is argued thatUtopia is the product of particular kinds of relations, rather than merely...... to its persuasive image of being the office of the future.The notion that utopia is achieved through material arrangements is finally related to the analysis of facts andfictions in ANT. It is argued, that even though Utopias are neither fact nor fiction, they are both material andeffective...

  4. Advanced Materials Growth and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This most extensive of U.S. Army materials growth and processing facilities houses seven dedicated, state-of-the-art, molecular beam epitaxy and three metal organic...

  5. Reference Materials

    Science.gov (United States)

    Merkus, Henk G.

    Reference materials for measurement of particle size and porosity may be used for calibration or qualification of instruments or for validation of operating procedures or operators. They cover a broad range of materials. On the one hand there are the certified reference materials, for which governmental institutes have certified one or more typical size or porosity values. Then, there is a large group of reference materials from commercial companies. And on the other hand there are typical products in a given line of industry, where size or porosity values come from the analysis laboratory itself or from some round-robin test in a group of industrial laboratories. Their regular application is essential for adequate quality control of particle size and porosity measurement, as required in e.g., ISO 17025 on quality management. In relation to this, some quality requirements for certification are presented.

  6. Propulsion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Edward J. [U.S. Dept. of Energy, Washington, D.C. (United States); Sullivan, Rogelio A. [U.S. Dept. of Energy, Washington, D.C. (United States); Gibbs, Jerry L. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  7. Background Material

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Hyytiäinen, Kari; Saraiva, Sofia

    This document serves as a background material to the BONUS Pilot Scenario Workshop, which aims to develop harmonised regional storylines of socio-ecological futures in the Baltic Sea region in a collaborative effort together with other BONUS projects and stakeholders.......This document serves as a background material to the BONUS Pilot Scenario Workshop, which aims to develop harmonised regional storylines of socio-ecological futures in the Baltic Sea region in a collaborative effort together with other BONUS projects and stakeholders....

  8. Encountering Materiality

    DEFF Research Database (Denmark)

    Svabo, Connie

    2016-01-01

    DHT researcher Connie Svabo and artist Charlotte Grum did a joint performance presentation titled Becoming Sheep, Becoming Animal at the international conference Encountering Materiality – Transdisciplinary Conversations, held in Geneve, Schwitzerland, June 23-25 2016.......DHT researcher Connie Svabo and artist Charlotte Grum did a joint performance presentation titled Becoming Sheep, Becoming Animal at the international conference Encountering Materiality – Transdisciplinary Conversations, held in Geneve, Schwitzerland, June 23-25 2016....

  9. Polymeric Materials

    Science.gov (United States)

    2009-06-01

    Sandia)-funded programs and two approved proposals for neutron scattering time at NIST. To enable future growth, optically adaptive materials for...Nanophase Particle ( SNAP ) Coatings.” Progress in Organic Coatings, 47(3-4), 337, 2003. Jong-Beom Baek and Loon-Seng Tan, “Linear-Hyperbranched...Silicates”, Materials Research Society Symposium Proceedings, Volume Date 2004, 840( Neutron and X-Ray Scattering as Probes of Multiscale Phenomena), 57

  10. Materials informatics

    OpenAIRE

    Krishna Rajan

    2005-01-01

    Seeking structure-property relationships is an accepted paradigm in materials science, yet these relationships are often not linear, and the challenge is to seek patterns among multiple lengthscales and timescales. There is rarely a single multiscale theory or experiment that can meaningfully and accurately capture such information. In this article, we outline a process termed ‘materials informatics’ that allows one to survey complex, multiscale information in a high-throughput, statistically...

  11. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    , viscoelastic behavior, and internal stress states. Other physical properties considered are thermal and electrical conductivities, diffusion coefficients, dielectric constants and magnetic permeability. Special attention is given to the effect of pore shape on the mechanical and physical behavior of porous......This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry...

  12. Raman imaging of extraterrestrial materials

    Science.gov (United States)

    Wang, Alian; Korotev, Randy L.; Jolliff, Bradley L.; Ling, Zongcheng

    2015-07-01

    Laser Raman Spectroscopy has been proposed and is under extensive development for surface exploration missions to planetary bodies of our Solar System. It reveals information on molecular structure and chemistry. The spatial distribution of molecular species in natural geological samples and planetary materials has significance for the geological processes by which they formed. Raman imaging is the best way to combine the molecular identification and characterization of geologic materials with their spatial distribution. This paper reports Raman imaging studies of five types of extraterrestrial materials and three terrestrial samples using a state-of-the-art Raman imaging system. The Raman spectral features of major, minor, and trace species in these samples, together with their spatial correlations revealed by these Raman imaging studies indicate the genetic relationships and the geological processes that these materials have been experienced. For robotic planetary surface exploration mission, a simple yet very useful molecular map of a sample can be generated by using line-scan or grid-scan of an in situ Raman system with tightly focused laser beam.

  13. Molecular Contamination Investigation Facility (MCIF) Capabilities

    Science.gov (United States)

    Soules, David M.

    2013-01-01

    This facility was used to guide the development of ASTM E 1559 center dot Multiple Quartz Crystal Microbalances (QCMs), large sample and spectral effects capability center dot Several instrumented, high vacuum chamber systems are used to evaluate the molecular outgassing characteristics of materials, flight components and other sensitive surfaces. Test materials for spacecraft/instrument selection center.Test flight components for acceptable molecular outgas levels center dot Determine time/temperature vacuum bake-out requirements center. Data used to set limits for use of materials and specific components center. Provide Input Data to Contamination Transport Models -Applied to numerous flight projects over the past 20 years.

  14. Raw materials for wood-polymer composites.

    Science.gov (United States)

    Craig Clemons

    2008-01-01

    To understand wood-plastic composites (WPCs) adequately, we must first understand the two main constituents. Though both are polymer based, they are very different in origin, structure, and performance. Polymers are high molecular weight materials whose performance is largely determined by its molecular architecture. In WPCs, a polymer matrix forms the continuous phase...

  15. A combinatorial chemistry approach to new materials for non-linear optics. II. 4-(Dimethylamino)cinnamaldehyde and a molecular complex of 4-methoxycinnamaldehyde with 2,4-dinitroaniline

    Science.gov (United States)

    Nesterov; Timofeeva; Antipin; Clark

    2000-08-01

    The combinatorial chemistry approach has been used to synthesize an array of Schiff bases. The structures of five of these Schiff bases have been confirmed by X-ray analysis [Nesterov, Timofeeva, Borbulevych, Antipin & Clark (2000). Acta Cryst. C56, 971-975]. In two cases, the reaction conditions were not sufficient to obtain the products in question. In one case, a molecular complex, C(10)H(10)O(2).C(6)H(5)N(3)O(4), of the starting products 4-methoxycinnamaldehyde and 2,4-dinitroaniline was found. X-ray analysis revealed hydrogen-bond formation between the molecules of these reagents in the crystal. In the other case, X-ray analysis demonstrated that no chemical reaction occurred under the reaction conditions, and only one starting reagent, 4-(dimethylamino)cinnamaldehyde, C(11)H(13)NO, was found in the precipitate.

  16. Thermal decomposition of a molecular material {N(n-C4H94[FeIIFeIII(C2O43]}∞ leading to ferrite: A reaction kinetics study

    Directory of Open Access Journals (Sweden)

    Bhattacharjee Ashis

    2013-01-01

    Full Text Available A multi-step thermal decomposition of a molecular precursor, {N(n-C4H94[FeIIFeIII(C2O43}∞ has been studied using non-isothermal thermogravimetry (TG measurements in the temperature range 300 to ~800 K at multiple heating rates (5, 10 and 20 K min-1. The thermal decomposition of the oxalate-based complex proceeds stepwise through a series of intermediate reactions. Two different isoconversional methods, namely, improved iterative method and model-free method are employed to evaluate the kinetic parameters: activation energy and rate of reaction, and the most probable reaction mechanism of thermal decomposition is also determined. The different reaction pathways leading to different steps in the TG profile have also been explored which are supplemented by earlier experimental observations of the present authors.

  17. Síntese e caracterização de poliuretanos segmentados contendo blocos de peso molecular controlado: parte 1 preparação e caracterização dos materiais Synthesis and characterization of segmented polyurethanes containing blocks of controlled molecular weight: 1. Materials preparation and characterization

    Directory of Open Access Journals (Sweden)

    C. L. Almeida

    1999-06-01

    Full Text Available Um novo método de síntese de poliuretanos segmentados foi desenvolvido, no qual segmentos de características bem definidas foram preparados separadamente e acoplados em uma etapa seguinte. O segmento flexível (SS foi preparado a partir da reação entre glicol polipropilênico comercial de peso molecular 3800 e diisocianato de 1,6 hexametileno (HDI. O peso molecular destes blocos variou de acordo com a razão NCO/OH usada nas sínteses, que foi sempre maior do que a unidade, fornecendo blocos com terminação NCO. O HDI não reagido foi removido à vácuo (10-6-10-8mbar. O peso molecular dos produtos SS foi determinado por GPC. O segmento rígido (HS foi preparado a partir da reação de HDI e 1,4 butanodiol (BDO usando-se razão NCO/OH igual à unidade. Ao término desta reação os produtos foram funcionalizados pela adição de um excesso de BDO, fornecendo segmentos com terminação -OH. O BDO não reagido foi removido por extração com solvente. O peso molecular dos produtos correspondentes aos segmentos HS foi determinado através da técnica de dessorção à laser (MALDI - Matrix Assisted Laser Desorption. O acoplamento dos segmentos flexíveis com os rígidos fornecendo os produtos SPU foi feito em solução de DMF. Um poliuretano convencional foi preparado pela técnica em duas etapas (produto PU para comparação de efeitos estrutura-propriedades. A espectroscopia no infravermelho foi usada com o intuito de se observar diferenças em interações intermoleculares referentes aos produtos PU e SPU, mas estas diferenças só foram acessíveis através de estudos morfológicos que serão publicados em continuação a este estudo.A new method for segmented polyurethanes synthesis (SPU was developed, in which segments of well-defined characteristics were prepared separately and coupled together in a further step. The soft segment was prepared from the reaction of commercially available anionic polyol-polyether, with an average

  18. Molecular-dynamics analysis of the diffusion of molecular hydrogen in all-silica sodalite

    NARCIS (Netherlands)

    Van den Berg, A.W.C.; Bromley, S.T.; Flikkema, E.; Wojdel, J.; Maschmeyer, T.; Jansen, J.C.

    2004-01-01

    In order to investigate the technical feasibility of crystalline porous silicates as hydrogen storage materials, the self-diffusion of molecular hydrogen in all-silica sodalite is modeled using large-scale classical molecular-dynamics simulations employing full lattice flexibility. In the

  19. Space station molecular sieve development

    Science.gov (United States)

    Chang, C.; Rousseau, J.

    1986-01-01

    An essential function of a space environmental control system is the removal of carbon dioxide (CO2) from the atmosphere to control the partial pressure of this gas at levels lower than 3 mm Hg. The use of regenerable solid adsorbents for this purpose was demonstrated effectively during the Skylab mission. Earlier sorbent systems used zeolite molecular sieves. The carbon molecular sieve is a hydrophobic adsorbent with excellent potential for space station application. Although carbon molecular sieves were synthesized and investigated, these sieves were designed to simulate the sieving properties of 5A zeolite and for O2/N2 separation. This program was designed to develop hydrophobic carbon molecular sieves for CO2 removal from a space station crew environment. It is a first phase effort involved in sorbent material development and in demonstrating the utility of such a material for CO2 removal on space stations. The sieve must incorporate the following requirements: it must be hydrophobic; it must have high dynamic capacity for carbon dioxide at the low partial pressure of the space station atmosphere; and it must be chemiclly stable and will not generate contaminants.

  20. Gastronomic botany and molecular gastronomy

    OpenAIRE

    Pérez-Urria Carril, Elena; Gómez Garay, Aranzazu; Ávalos García, Adolfo; Martín Calvarro, Luisa; Pintos López, Beatriz; Saco Sierra, M. Dolores; Martín Gómez, M. Soledad; Pérez Alonso, M. José; Puelles Gallo, María; Palá Paúl, Jesús; Cifuentes Cuencas, Blanca; Llamas Ramos, José Eugenio

    2011-01-01

    Complutense University of Madrid through the "Vicerrectorado de Calidad" develops projects to innovate and improve teaching quality. Among these projects is "Gastronomic Botany and Molecular Gastronomy" which aims to develop new materials and tools for the Virtual Campus and consequently offer new possibilities for teaching and training. Also this project organize and structure a new teaching matter for post-graduate education that will be an example of approach, relationship and cooper...

  1. Virtual materiality

    DEFF Research Database (Denmark)

    Søndergaard, Dorte Marie

    . Butler, J. (1993) Bodies that Matter. On the Discursive Limits of “Sex”. London: Routledge. Durkin, K. et al. (1998) Children, Media and Agression. Current Research in Australia and New Zealand. In: Carlson, U. & von Feilitzen, C. (red): Children and Media Violence. Yearbook from the UNESCO International...... be discarded as analytical input to discussions about materiality? How far can we develop and stretch our conceptual understanding of the material? (Søndergaard 2009b) Theorizing creates new patterns of visibility and invisibility - with all the potentialities in between. Bullying research is a field that begs...... for new theorizing and new analytical tools. (Søndergaard 2008, 2009a) It is a field that deals with children’s individual and collective processes of becoming, of materializing and of entering in and as agentic part(ner)s of the human and non-human world. But current theoretical premises in that field...

  2. Atmospheric materiality

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2016-01-01

    A disjunction between the material and the immaterial has been at the heart of the architectural debate for decades. In this dialectic tension, the notion of atmosphere which increasingly claims attention in architectural discourse seems to be parallactic, leading to the re-evaluation of perceptual...... experience and, consequently, to the conceptual and methodological shifts in the production of space, and hence in the way we think about materiality. In this context, architectural space is understood as a contingent construction – a space of engagement that appears to us as a result of continuous...... and complex interferences revealed through our perception; ‘the atmospheric’ is explored as a spatial and affective quality as well as a sensory background, and materiality as a powerful and almost magical agency in shaping of atmosphere. Challenging existing dichotomies and unraveling intrinsic...

  3. Molecularly Imprinted Filtering Adsorbents for Odor Sensing

    Directory of Open Access Journals (Sweden)

    Sho Shinohara

    2016-11-01

    Full Text Available Versatile odor sensors that can discriminate among huge numbers of environmental odorants are desired in many fields, including robotics, environmental monitoring, and food production. However, odor sensors comparable to an animal’s nose have not yet been developed. An animal’s olfactory system recognizes odor clusters with specific molecular properties and uses this combinatorial information in odor discrimination. This suggests that measurement and clustering of odor molecular properties (e.g., polarity, size using an artificial sensor is a promising approach to odor sensing. Here, adsorbents composed of composite materials with molecular recognition properties were developed for odor sensing. The selectivity of the sensor depends on the adsorbent materials, so specific polymeric materials with particular solubility parameters were chosen to adsorb odorants with various properties. The adsorption properties of the adsorbents could be modified by mixing adsorbent materials. Moreover, a novel molecularly imprinted filtering adsorbent (MIFA, composed of an adsorbent substrate covered with a molecularly imprinted polymer (MIP layer, was developed to improve the odor molecular recognition ability. The combination of the adsorbent and MIP layer provided a higher specificity toward target molecules. The MIFA thus provides a useful technique for the design and control of adsorbents with adsorption properties specific to particular odor molecules.

  4. Layered materials

    Science.gov (United States)

    Johnson, David; Clarke, Simon; Wiley, John; Koumoto, Kunihito

    2014-06-01

    Layered compounds, materials with a large anisotropy to their bonding, electrical and/or magnetic properties, have been important in the development of solid state chemistry, physics and engineering applications. Layered materials were the initial test bed where chemists developed intercalation chemistry that evolved into the field of topochemical reactions where researchers are able to perform sequential steps to arrive at kinetically stable products that cannot be directly prepared by other approaches. Physicists have used layered compounds to discover and understand novel phenomena made more apparent through reduced dimensionality. The discovery of charge and spin density waves and more recently the remarkable discovery in condensed matter physics of the two-dimensional topological insulating state were discovered in two-dimensional materials. The understanding developed in two-dimensional materials enabled subsequent extension of these and other phenomena into three-dimensional materials. Layered compounds have also been used in many technologies as engineers and scientists used their unique properties to solve challenging technical problems (low temperature ion conduction for batteries, easy shear planes for lubrication in vacuum, edge decorated catalyst sites for catalytic removal of sulfur from oil, etc). The articles that are published in this issue provide an excellent overview of the spectrum of activities that are being pursued, as well as an introduction to some of the most established achievements in the field. Clusters of papers discussing thermoelectric properties, electronic structure and transport properties, growth of single two-dimensional layers, intercalation and more extensive topochemical reactions and the interleaving of two structures to form new materials highlight the breadth of current research in this area. These papers will hopefully serve as a useful guideline for the interested reader to different important aspects in this field and

  5. Magnetic Materials

    Science.gov (United States)

    1985-03-01

    L -:• •.1 S..+.: s• S,’S .+m • , ++ d ’N .,.++.+ ii L+ i+- -..’ *4’.. ’-t. COMM4ITTEE ON MAGNETIC MATERIALS Chairman ROBERT M. WRITE, Principal...Motors; Sung Ho Jin, AT&T Bell Labs; G. Rodrigue, ... -- =.• Georgia Tech; J. Houze , Allegheny-Ludlum; R. Sundahl, AT&T Bell Labs; (. I... R. O’Handley...this report. Robert M. White Chairman *’-’ . ,i-.. .- ABSTRACT Magnetic materials play a fundamental role in many of the electrical and electronic

  6. Electronic materials

    CERN Document Server

    Kwok, H L

    2010-01-01

    The electronic properties of solids have become of increasing importance in the age of information technology. The study of solids and materials, while having originated from the disciplines of physics and chemistry, has evolved independently over the past few decades. The classical treatment of solid-state physics, which emphasized classifications, theories and fundamental physical principles, is no longer able to bridge the gap between materials advances and applications. In particular, the more recent developments in device physics and technology have not necessarily been driven by new conc

  7. [Application of molecular pharmacognosy in research of Mongolian medicine].

    Science.gov (United States)

    Li, Qianquan; Zhou, Lishe; Guo, Lanping; Li, Minhui; Zhang, Na; Yuan, Qingjun; Yuan, Yuan

    2011-10-01

    Molecular pharmacognosy has developed as a new borderline discipline. Using the method and technology of molecular pharmacognosy, a wide range of challenging problems were resolved, such as the identification of Mongolian medicinal raw materials, etiology of endangerment and protection of endangered Mongolian medicinal plants and animals, biosynthesis and bioregulation of active components in Mongolian medicinal plants, and characteristics and the molecular bases of Dao-di Herbs. So molecular pharmacognosy will provide the new methods and insights for modernization of Mongolian medicine.

  8. Nucleic acid based molecular devices.

    Science.gov (United States)

    Krishnan, Yamuna; Simmel, Friedrich C

    2011-03-28

    In biology, nucleic acids are carriers of molecular information: DNA's base sequence stores and imparts genetic instructions, while RNA's sequence plays the role of a messenger and a regulator of gene expression. As biopolymers, nucleic acids also have exciting physicochemical properties, which can be rationally influenced by the base sequence in myriad ways. Consequently, in recent years nucleic acids have also become important building blocks for bottom-up nanotechnology: as molecules for the self-assembly of molecular nanostructures and also as a material for building machinelike nanodevices. In this Review we will cover the most important developments in this growing field of nucleic acid nanodevices. We also provide an overview of the biochemical and biophysical background of this field and the major "historical" influences that shaped its development. Particular emphasis is laid on DNA molecular motors, molecular robotics, molecular information processing, and applications of nucleic acid nanodevices in biology. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Emerging Materiality

    DEFF Research Database (Denmark)

    Bertelsen, Olav Wedege; Breinbjerg, Morten; Pold, Søren

    2009-01-01

    The authors examine how materiality emerges from complex chains of mediation in creative software use. The primarily theoretical argument is inspired and illustrated by interviews with two composers of electronic music. The authors argue that computer mediated activity should not primarily...

  10. Creating Materials.

    Science.gov (United States)

    Yin, Mary

    1990-01-01

    Describes practical materials that relate to places within the English-as-a-Second-Language learner's own community, such as the supermarket, local fast food restaurants, pharmacy, and library. Each literacy booklet contains approximately 35 pages of activities that can be used as classroom handouts. (LB)

  11. Supplementary Material

    Indian Academy of Sciences (India)

    mraga

    1. Supplementary Material. A soluble-lead Redox Flow Battery with corrugated graphite sheet and reticulated vitreous carbon as positive and negative current collectors by A Banerjee et al (pp 163-. 170). Figure S1. SEM images for bare substrates: (a) graphite sheet, (b) 20 ppi RVC, (c) 30 ppi. RVC and (d) 45 ppi RVC.

  12. Rigid molecular foams

    Energy Technology Data Exchange (ETDEWEB)

    Steckle, W.P. Jr. [Los Alamos National Lab., NM (United States); Mitchell, M.A. [Chemidal Corp., Palatine, IL (United States); Aspen, P.G. [Simula Inc., Phoenix, AZ (United States)

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Organic analogues to inorganic zeolites would be a significant step forward in engineered porous materials and would provide advantages in range, selectivity, tailorability, and processing. Rigid molecular foams or {open_quotes}organic zeolites{close_quotes} would not be crystalline materials and could be tailored over a broader range of pore sizes and volumes. A novel process for preparing hypercrosslinked polymeric foams has been developed via a Friedel-Crafts polycondensation reaction. A series of rigid hypercrosslinked foams have been prepared using simple rigid polyaromatic hydrocarbons including benzene, biphenyl, m-terphenyl, diphenylmethane, and polystyrene, with dichloroxylene (DCX) as the pore size. After drying the foams are robust and rigid. Densities of the resulting foams can range from 0.15 g/cc to 0.75 g/cc. Nitrogen adsorption studies have shown that by judiciously selecting monomers and the crosslinking agent along with the level of crosslinking and the cure time of the resulting gel, the pore size, pore size distribution, and the total surface area of the foam can be tailored. Surface areas range from 160 to 1,200 m{sup 2}/g with pore sizes ranging from 6 {angstrom} to 2,000 {angstrom}.

  13. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  14. SimCP3—An Advanced Homologue of SimCP2 as a Solution-Processed Small Molecular Host Material for Blue Phosphorescence Organic Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Yi-Ting Lee

    2016-09-01

    Full Text Available We have overcome the synthetic difficulty of 9,9′,9′′,9′′′,9′′′′,9′′′′′-((phenylsilanetriyltris(benzene-5,3,1-triylhexakis(9H-carbazole (SimCP3 an advanced homologue of previously known SimCP2 as a solution-processed, high triplet gap energy host material for a blue phosphorescence dopant. A series of organic light-emitting diodes based on blue phosphorescence dopant iridium (III bis(4,6-difluorophenylpyridinatopicolate, FIrpic, were fabricated and tested to demonstrate the validity of solution-processed SimCP3 in the device fabrication.

  15. Synthesis and electrical, spectroscopic and nonlinear optical properties of cobalt molecular materials obtained from PcCo(CN)L (L = ethylenediamine, 1,4-diaminebutane, 1,12-diaminododecane and 2,6-diamineanthraquinone)

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Saavedra, O.G., E-mail: omar.morales@ccadet.unam.mx [Lab. of Nonlinear Optics, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, CCADET-UNAM, Apdo, Postal 70-186, C.P. 04510 Coyoacan, Cd. Universitaria, Mexico D. F. (Mexico); Sanchez-Vergara, M.E. [Coordinacion de Ingenieria Mecatronica, Facultad de Ingenieria, Universidad Anahuac del Norte, Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786 Huixquilucan, Estado de Mexico (Mexico); Rodriguez-Rosales, A.A.; Ortega-Martinez, R. [Lab. of Nonlinear Optics, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, CCADET-UNAM, Apdo, Postal 70-186, C.P. 04510 Coyoacan, Cd. Universitaria, Mexico D. F. (Mexico); Ortiz-Rebollo, A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, IIM-UNAM, A.P. 70-360 Coyoacan, 04510 Mexico D. F. (Mexico); Frontana-Uribe, B.A. [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM Km. 14.5, Carretera Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de Mexico (Mexico); Garcia-Montalvo, V. [Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico D. F. 04510 (Mexico)

    2010-10-01

    Novel PcCo(CN)L monomeric complexes were synthesized from [PcCoCN]{sub n} compounds and bidentate axial ligands (L) such as ethylenediamine, 1,4-diaminebutane, 1,12-diaminedodecane and 2,6-diamineanthraquinone. These complexes were implemented to fabricate pellets and thin films by the vacuum thermal evaporation technique. The obtained compounds and deposited thin films were characterized by different spectroscopic techniques. Measurements of the electrical conductivity and the electrical current as a function of temperature were also carried out. IR-spectroscopy studies showed that the ligand attaches to the [PcCoCN]{sub n} unit. The C=N vibrational band is found in the PcCo(et)CN and PcCo(bu)CN molecular solids, although it is displaced with respect to other reported values. Compounds PcCo(do){sub 2} and PcCo(an){sub 2} do not show C=N vibrational bands. This fact suggests a double bond between the ligand and the macrocycle and a coordination at the fifth and sixth position on the Co(III) atom. UV-vis spectra of the thin films exhibited higher conjugation degree for the CN-based samples. Electrical conductivity for the PcCo(an){sub 2} complex was consistently low for all temperature ranges under measurement, whereas the other synthesized compounds showed a semiconductor-like dependence of electric current with temperature. Additionally, cubic nonlinear optical (NLO) characterizations of the film samples were performed with the Z-Scan and third harmonic generation (THG) techniques, all samples exhibit outstandingly high nonlinear activity.

  16. Analysis of molecular interactions in solid dosage forms; challenge to molecular pharmaceutics.

    Science.gov (United States)

    Yamamoto, Keiji; Limwikrant, Waree; Moribe, Kunikazu

    2011-01-01

    The molecular states of active pharmaceutical ingredients (APIs) in pharmaceutical dosage forms strongly affect the properties and quality of a drug. Various important fundamental physicochemical studies were reviewed from the standpoint of molecular pharmaceutics. Mechanochemical effects were evaluated in mixtures of APIs and pharmaceutical additives. Amorphization, complex formation and nanoparticle formation are observed after grinding process depending on the combination of APIs and pharmaceutical additives. Sealed-heating method and mesoporous materials have been used to investigate drug molecular interactions in dosage forms. Molecular states have been investigated using powder X-ray diffraction, thermal analysis, IR, solid state fluorometry, and NMR. © 2011 Pharmaceutical Society of Japan

  17. Materials Science

    Science.gov (United States)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In

  18. Magnetocaloric materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeppesen, Stinus

    2008-10-15

    New and improved magnetocaloric materials are one of the cornerstones in the development of room temperature magnetic refrigeration. Magnetic refrigeration has been used since the 1930ies in cryogenic applications, but has since the discovery of room temperature refrigerants received enormous attention. This Ph.D. work has been mainly concerned with developing a new technique to characterize the magnetocaloric effect (MCE) and using this technique in the investigations on new and improved magnetocaloric materials. For this purpose a novel differential scanning calorimeter (DSC) with applied magnetic fields was developed for measuring heat capacity as function of magnetic field. Measurements using the developed DSC demonstrate a very high sensitivity, fast measurements and good agreement with results obtained by other techniques. Furthermore, two material systems have been described in this work. Both systems take basis in the mixed-valence manganite system La{sub 1-x}Ca{sub x}MnO{sub 3} well known from research on colossal magnetoresistance (CMR). The mixed-valence manganite crystallizes in the perovskite structure of general formula ABO{sub 3}. The first material system is designed to investigate the influence of low level Cu doping on the B-site. Six different samples were prepared with over-stoichiometric compositions La{sub 0.67}Ca{sub 0.33}Mn{sub 1.05}Cu{sub x}O{sub 3}, x=0, 1, 2, 3, 4 and 5%. All compositions crystallized well in the same perovskite structure, but the morphology of the samples changed drastically with doping. Investigation on the magnetocaloric properties revealed that small levels of Cu up to around 3% could improve the magnetocaloric performance of the materials. Furthermore, Cu could be used to tune the temperature interval without deteriorating the MCE, which is a much desired characteristic for potential use in magnetic refrigerators. A less comprehensive part of the work has been concerned with the investigation of doping on the A

  19. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B P Singh. Articles written in Bulletin of Materials Science. Volume 23 Issue 1 February 2000 pp 11-16 Molecular Magnets. Synthesis and magnetic properties of one-dimensional metal oxalate networks as molecular-based magnets · B P Singh B Singh · More Details Abstract ...

  1. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  2. Understanding molecular simulation from algorithms to applications

    CERN Document Server

    Frenkel, Daan

    2001-01-01

    Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the ""recipes"" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practic

  3. EDTA-Reduction of Water to Molecular Hydrogen Catalyzed by Visible-Light-Response TiO2-Based Materials Sensitized by Dawson- and Keggin-Type Rhenium(V-Containing Polyoxotungstates

    Directory of Open Access Journals (Sweden)

    Yusuke Kataoka

    2010-02-01

    Full Text Available The synthesis and characterization of a Keggin-type mono-rhenium(V-substituted polyoxotungstate are described. The dimethylammonium salt [Me2NH2]4[PW11ReVO40] was obtained as analytically pure homogeneous black-purple crystals by reacting mono-lacunary Keggin polyoxotungstate with [ReIVCl6]2- in water, followed by crystallization from acetone at ca. 5 °C. Single-crystal X-ray structural analysis of [PW11ReVO40]4- revealed a monomeric structure with overall Td symmetry. Characterization of [Me2NH2]4[PW11ReVO40] was also accomplished by elemental analysis, magnetic susceptibility, TG/DTA, FTIR, UV-vis, diffuse reflectance (DR UV-vis, and solution 31P-NMR spectroscopy. Furthermore, [PW11ReVO40]4- and the Dawson-type dirhenium(V-oxido-bridged polyoxotungstate [O{ReV(OH(α2-P2W17O61}2]14- were supported onto anatase TiO2 surface by the precipitation methods using CsCl and Pt(NH34Cl2. With these materials, hydrogen evolution from water in the presence of EDTA⋅2Na (ethylenediamine tetraacetic acid disodium salt under visible light irradiation (≥400 nm was achieved.

  4. Modeling hybrid perovskites by molecular dynamics.

    Science.gov (United States)

    Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia

    2017-02-01

    The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.

  5. Fast method for quantum mechanical molecular dynamics

    Science.gov (United States)

    Niklasson, Anders M. N.; Cawkwell, Marc J.

    2012-11-01

    As the processing power available for scientific computing grows, first-principles Born-Oppenheimer molecular dynamics simulations are becoming increasingly popular for the study of a wide range of problems in materials science, chemistry, and biology. Nevertheless, the computational cost of Born-Oppenheimer molecular dynamics still remains prohibitively large for many potential applications. Here we show how to avoid a major computational bottleneck: the self-consistent-field optimization prior to force calculations. The optimization-free quantum mechanical molecular dynamics method gives trajectories that are almost indistinguishable from an “exact” microcanonical Born-Oppenheimer molecular dynamics simulation even when low-prefactor linear scaling sparse matrix algebra is used. Our findings show that the computational gap between classical and quantum mechanical molecular dynamics simulations can be significantly reduced.

  6. Molecular Nanotechnology and Designs of Future

    Science.gov (United States)

    Srivastava, Deepak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Reviewing the status of current approaches and future projections, as already published in the scientific journals and books, the talk will summarize the direction in which computational and experimental molecular nanotechnologies are progressing. Examples of nanotechnological approach to the concepts of design and simulation of atomically precise materials in a variety of interdisciplinary areas will be presented. The concepts of hypothetical molecular machines and assemblers as explained in Drexler's and Merckle's already published work and Han et. al's WWW distributed molecular gears will be explained.

  7. Position Assignment and Oxidation State Recognition of Fe and Co Centers in Heterometallic Mixed-Valent Molecular Precursors for the Low-Temperature Preparation of Target Spinel Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, Craig M. [Department of Chemistry, University at Albany, Albany, New York 12222, United States; Barry, Matthew C. [Department of Chemistry, University at Albany, Albany, New York 12222, United States; Wei, Zheng [Department of Chemistry, University at Albany, Albany, New York 12222, United States; Rogachev, Andrey Yu. [Department; Wang, Xiaoping [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Liu, Jun-Liang [CNRS, CRPP, UPR 8641, F-33600 Pessac, France; Univ. Bordeaux, UPR 8641, F-33600 Pessac, France; MOE Key Lab of Bioinorganic and Synthetic Chemistry,; Clérac, Rodolphe [CNRS, CRPP, UPR 8641, F-33600 Pessac, France; Univ. Bordeaux, UPR 8641, F-33600 Pessac, France; Chen, Yu-Sheng [ChemMatCARS, Center for Advanced Radiation; Filatov, Alexander S. [Department; Dikarev, Evgeny V. [Department of Chemistry, University at Albany, Albany, New York 12222, United States

    2017-07-31

    A series of mixed-valent, heterometallic (mixed-transition metal) diketonates that can be utilized as prospective volatile single-source precursors for the low-temperature preparation of MxM'3–xO4 spinel oxide materials is reported. Three iron–cobalt complexes with Fe/Co ratios of 1:1, 1:2, and 2:1 were synthesized by several methods using both solid-state and solution reactions. On the basis of nearly quantitative reaction yields, elemental analyses, and comparison of metal–oxygen bonds with those in homometallic analogues, heterometallic compounds were formulated as [FeIII(acac)3][CoII(hfac)2] (1), [CoII(hfac)2][FeIII(acac)3][CoII(hfac)2] (2), and [FeII(hfac)2][FeIII(acac)3][CoII(hfac)2] (3). In the above heteroleptic complexes, the Lewis acidic, coordinatively unsaturated CoII/FeII centers chelated by two hexafluoroacetylacetonate (hfac) ligands maintain bridging interactions with oxygen atoms of acetylacetonate (acac) groups that chelate the neighboring FeIII metal ion. Preliminary assignment of Fe and Co positions/oxidation states in 1–3 drawn from X-ray structural investigation was corroborated by a number of complementary techniques. Single-crystal resonant synchrotron diffraction and neutron diffraction experiments unambiguously confirmed the location of Fe and Co sites in the molecules of dinuclear (1) and trinuclear (2) complexes, respectively. Direct analysis in real time mass spectrometry revealed the presence of FeIII- and CoII-based fragments in the gas phase upon evaporation of precursors 1 and 2 as well as of FeIII, FeII, and CoII species for complex 3. Theoretical investigation of two possible “valent isomers”, [FeIII(acac)3

  8. Casting materials

    Science.gov (United States)

    Chaudhry, Anil R [Xenia, OH; Dzugan, Robert [Cincinnati, OH; Harrington, Richard M [Cincinnati, OH; Neece, Faurice D [Lyndurst, OH; Singh, Nipendra P [Pepper Pike, OH

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  9. Energy materials

    CERN Document Server

    Bruce, Duncan W; Walton, Richard I

    2011-01-01

    In an age of global industrialisation and population growth, the area of energy is one that is very much in the public consciousness. Fundamental scientific research is recognised as being crucial to delivering solutions to these issues, particularly to yield novel means of providing efficient, ideally recyclable, ways of converting, transporting and delivering energy. This volume considers a selection of the state-of-the-art materials that are being designed to meet some of the energy challenges we face today. Topics are carefully chosen that show how the skill of the synthetic chemist can

  10. Construction material

    Science.gov (United States)

    Wagh, Arun S [Orland Park, IL; Antink, Allison L [Bolingbrook, IL

    2008-07-22

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  11. NATO Conference on Molecular Metals

    CERN Document Server

    1979-01-01

    During the past few years there has been intense research activity in the design, synthesis, and characterization of materials which are formed from molecular precursors, and which have high or metal-like electrical conductivities, i.e. dcr/dT < O. It has been widely supposed that these new materials, which are commonly called molecular metals, would be pressed into service, for example as devices. Up to now, widespread, practical applications of these sub­ stances have not developed. The NATO Advanced Research Institute on Molecular Metals at Les Arcs, France, September 10-16, 1978 was organized to discuss the scientific and technological potential of research and development in this field. The proceedings of the Institute constitute this book. Several lectures were devoted to the assessment of the present status of research on systems which serve to define major components of the field. The systems which were discussed included TTF-TCNQ, platinum chain compounds, (SN)x, polyacetylene, polydiacetylene, g...

  12. The molecular composition of ambers

    Science.gov (United States)

    Grimalt, J.O.; Simoneit, B.R.T.; Hatcher, P.G.; Nissenbaum, A.

    1988-01-01

    Bulk (elemental composition, IR, CP/MAS 13C NMR) and molecular (GC-MS) analyses have been performed on a series of ambers and resins derived from different locations (Dominican Republic, Philippines, Canada, Israel, New Zealand, Chile) having diverse botanical affinities (Araucariaceae, Hymenaea) and variable age (from Holocene to Early Cretaceous). No major differences have been observed from the elemental composition and the spectroscopic data; however, the molecular analyses of the solvent extractable fraction show that a specific mixture of components is present in each sample. These are mainly diterpenoid products that in general are also found abundantly in the higher plants from which the ambers and resins originate. Nevertheless, a direct relationship between major terpenoid constituents in fossil resins and precursor plant materials can only be established for the younger samples. Irrespective of the geographical or botanical origin of the ambers and resins, several common age-dependent molecular transformation trends can be recognized: (1) progressive loss of olefinic bonds (especially those located in exocyclic positions), (2) decrease of functionalized products, and (3) increasing proportion of aromatized components. However, even in the samples of older age (Cretaceous) the degree of aromatization is very low when compared with that of other higher-plant related materials such as fossilized woods or low rank coals. This indicates that maturation must involve essentially olefin polymerization processes instead of extensive aromatization. ?? 1988.

  13. Charged hydrogels for post-loading, release, and molecular imprinting of proteins

    NARCIS (Netherlands)

    Schillemans, J.P.|info:eu-repo/dai/nl/304835137

    2010-01-01

    Molecular imprinting is a technique to create template-shaped cavities in polymer matrices with memory of the template molecules, to be used in molecular recognition. Molecular imprinting of low molecular weight compounds is a well established technique used to create high affinity materials. On the

  14. Natural materials for carbon capture.

    Energy Technology Data Exchange (ETDEWEB)

    Myshakin, Evgeniy M. (National Energy Technology Laboratory, Pittsburgh, PA); Romanov, Vyacheslav N. (National Energy Technology Laboratory, Pittsburgh, PA); Cygan, Randall Timothy

    2010-11-01

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

  15. Molecular studies of Planetary Nebulae

    Science.gov (United States)

    Zhang, Yong

    2017-10-01

    Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition of PNe is rather different from those of AGB and PPNe, suggesting that the molecules synthesized in PN progenitors have been heavily processed by strong ultraviolet radiation from the central star. Intriguingly, fullerenes and complex organic compounds having aromatic and aliphatic structures can be rapidly formed and largely survive during the PPN/PN evolution. The similar molecular compositions in PNe and diffuse clouds as well as the detection of C60 + in the ISM reinforce the view that the mass-loss from PNe can significantly enrich the ISM with molecular species, some of which may be responsible for the diffuse interstellar bands. In this contribution, I briefly summarize some recent observations of molecules in PNe, with emphasis on their implications on circumstellar chemistry.

  16. Dynamics of Structural Phase Transformations Using Molecular Dynamics

    Science.gov (United States)

    2013-12-08

    corresponding to a universal molecular simulation method, Journal of Fluid Mechanics, (12 2011): 0. doi: 10.1017/jfm.2011.483 Amin Aghaei, Kaushik...Materials Science at the Center for Nonlinear Analysis, June 2013. -- Fluids and Materials Seminar in the School of Mathematics, University of Bristol... Mecanique des Materiaux Seminar, University of Metz, June 2010. Contributed conference proceedings: -- European Materials Research Society

  17. MateriApps — a Portal Site of Materials Science Simulation

    Science.gov (United States)

    Konishi, Yusuke; Igarashi, Ryo; Kasamatsu, Shusuke; Kato, Takeo; Kawashima, Naoki; Kawatsu, Tsutomu; Kouta, Hikaru; Noda, Masashi; Sasaki, Shoichi; Terada, Yayoi; Todo, Synge; Tsuchida, Shigehiro; Yoshimi, Kazuyoshi; Yoshizawa, Kanako

    "MateriApps" is a portal website of computational materials science simulation that has a database containing over 100 application software including density functional theory calculation, quantum chemistry, molecular dynamics, etc. On the MateriApps website, researchers can find applications suitable for their own research in materials science by browsing the website or searching by keywords. We also provide forums and tutorial courses of applications. In order to avoid troublesome installation procedures and provide users an environment in which they can try out various applications easily, we develop and freely distribute "MateriApps LIVE!," a live Linux system, in which several applications introduced in MateriApps are pre-installed.

  18. Materializing ideas

    DEFF Research Database (Denmark)

    Strandvad, Sara Malou

    2011-01-01

    Based on a qualitative study of development processes in the Danish film industry, this article sketches a socio-material perspective for analysing the production of culture. Whereas previous studies of cultural production have identified social factors in cultural production, this article sets out...... to investigate how the evolving object may form an active part in the collaborative process of its making. The article identifies three moments when the evolving object becomes decisive for the collaboration: the idea has to be detached to enable collaboration; attachments between collaborators are made via...... the evolving object; and closure of the product is postponed to enhance creative development. Thus, the article suggests that cultural objects and the processes of their making are co-produced, evolve simultaneously and are mutually constitutive. In this way, the object may have effects even while...

  19. Ferroelastic Materials

    Science.gov (United States)

    Salje, Ekhard K. H.

    2012-08-01

    Large elastic nonlinearities can lead to elastic hysteresis behavior, which defines ferroelasticity in analogy to its sister ferroics: ferromagnetism and ferroelectricity. Ferroelasticity is the most common nonlinear effect in natural materials and plays a major role in the mineralogical behavior of the Earth's crust and mantle. It produces interfacial twin walls that act as sinks and sources for defects and that show localized effects such as superconducting twin boundaries and ferroelectricity, even when such effects do not exist in the bulk. The movement of twin walls under elastic forcing is creep-like, with some superimposed jerks due to pinning and unpinning by defects and jamming by other twin boundaries. This review applies Landau theory and discusses some aspects of the emerging field of domain boundary engineering.

  20. Molecular, cellular, and tissue engineering

    CERN Document Server

    Bronzino, Joseph D

    2015-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...

  1. Engineered monodisperse mesoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, R.S.; Small, J.H.; Lagasse, R.R.; Schroeder, J.L.; Jamison, G.M.

    1997-08-01

    Porous materials technology has developed products with a wide variety of pore sizes ranging from 1 angstrom to 100`s of microns and beyond. Beyond 15{angstrom} it becomes difficult to obtain well ordered, monodisperse pores. In this report the authors describe efforts in making novel porous material having monodisperse, controllable pore sizes spanning the mesoporous range (20--500 {angstrom}). They set forth to achieve this by using unique properties associated with block copolymers--two linear homopolymers attached at their ends. Block copolymers phase separate into monodisperse mesophases. They desired to selectively remove one of the phases and leave the other behind, giving the uniform monodisperse pores. To try to achieve this the authors used ring-opening metathesis polymerization to make the block copolymers. They synthesized a wide variety of monomers and surveyed their polymers by TGA, with the idea that one phase could be made thermally labile while the other phase would be thermally stable. In the precipitated and sol-gel processed materials, they determined by porosimetry measurements that micropores, mesopores, and macropores were created. In the film processed sample there was not much porosity present. They moved to a new system that required much lower thermal treatments to thermally remove over 90% of the labile phase. Film casting followed by thermal treatment and solvent extraction produced the desired monodisperse materials (based solely on SEM results). Modeling using Density Functional Theory was also incorporated into this project. The modeling was able to predict accurately the domain size and spacing vs. molecular weight for a model system, as well as accurate interfacial thicknesses.

  2. Photovoltaic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational

  3. Basic molecular spectroscopy

    CERN Document Server

    Gorry, PA

    1985-01-01

    BASIC Molecular Spectroscopy discusses the utilization of the Beginner's All-purpose Symbolic Instruction Code (BASIC) programming language in molecular spectroscopy. The book is comprised of five chapters that provide an introduction to molecular spectroscopy through programs written in BASIC. The coverage of the text includes rotational spectra, vibrational spectra, and Raman and electronic spectra. The book will be of great use to students who are currently taking a course in molecular spectroscopy.

  4. PREFACE: Superconducting materials Superconducting materials

    Science.gov (United States)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  5. Combinatorial synthesis of inorganic or composite materials

    Science.gov (United States)

    Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An

    2010-08-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  6. Artificial molecular motors

    NARCIS (Netherlands)

    Kassem, Salma; van Leeuwen, Thomas; Lubbe, Anouk S.; Wilson, Miriam R.; Feringa, Ben L.; Leigh, David A.

    2017-01-01

    Motor proteins are nature's solution for directing movement at the molecular level. The field of artificial molecular motors takes inspiration from these tiny but powerful machines. Although directional motion on the nanoscale performed by synthetic molecular machines is a relatively new

  7. Molecular mechanisms of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Youvan, D.C.; Marrs, B.L.

    1987-06-01

    Knowledge of the molecular interactions, structure and genetic basis of the photosynthetic reaction center makes it possible to ask more detailed questions about its function. Spectroscopy, X-ray crystallography and molecular genetics combine to give a detailed picture of events in photosynthesis and shown how particular molecules contribute to the process. The molecular biology of the photosynthesis center of Rhodopseudomonas is investigated.

  8. Mapping the Materials Genome through Combinatorial Informatics

    Science.gov (United States)

    Rajan, Krishna

    2012-02-01

    The recently announced White House Materials Genome Initiative provides an exciting challenge to the materials science community. To meet that challenge one needs to address a critical question, namely what is the materials genome? Some guide on how to the answer this question can be gained by recognizing that a ``gene'' is a carrier of information. In the biological sciences, discovering how to manipulate these genes has generated exciting discoveries in fundamental molecular biology as well as significant advances in biotechnology. Scaling that up to molecular, cellular length scales and beyond, has spawned from genomics, fields such as proteomics, metabolomics and essentially systems biology. The ``omics'' approach requires that one needs to discover and track these ``carriers of information'' and then correlate that information to predict behavior. A similar challenge lies in materials science, where there is a diverse array of modalities of materials ``discovery'' ranging from new materials chemistries and molecular arrangements with novel properties, to the development and design of new micro- and mesoscale structures. Hence to meaningfully adapt the spirit of ``genomics'' style research in materials science, we need to first identify and map the ``genes'' across different materials science applications On the experimental side, combinatorial experiments have opened a new approach to generate data in a high throughput manner, but without a clear way to link that to models, the full value of that data is not realized. Hence along with experimental and computational materials science, we need to add a ``third leg'' to our toolkit to make the ``Materials Genome'' a reality, the science of Materials Informatics. In this presentation we provide an overview of how information science coupled to materials science can in fact achieve the goal of mapping the ``Materials Genome''.

  9. Molecular diagnostics of periodontitis.

    Science.gov (United States)

    Korona-Głowniak, Izabela; Siwiec, Radosław; Berger, Marcin; Malm, Anna; Szymańska, Jolanta

    2017-01-28

    The microorganisms that form dental plaque are the main cause of periodontitis. Their identification and the understanding of the complex relationships and interactions that involve these microorganisms, environmental factors and the host's health status enable improvement in diagnostics and targeted therapy in patients with periodontitis. To this end, molecular diagnostics techniques (both techniques based on the polymerase chain reaction and those involving nucleic acid analysis via hybridization) come increasingly into use. On the basis of a literature review, the following methods are presented: polymerase chain reaction (PCR), real-time polymerase chain reaction (real-time PCR), 16S rRNA-encoding gene sequencing, checkerboard and reverse-capture checkerboard hybridization, microarrays, denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), as well as terminal restriction fragment length polymorphism (TRFLP) and next generation sequencing (NGS). The advantages and drawbacks of each method in the examination of periopathogens are indicated. The techniques listed above allow fast detection of even small quantities of pathogen present in diagnostic material and prove particularly useful to detect microorganisms that are difficult or impossible to grow in a laboratory.

  10. Molecular diagnostics of periodontitis

    Directory of Open Access Journals (Sweden)

    Izabela Korona-Głowniak

    2017-01-01

    Full Text Available The microorganisms that form dental plaque are the main cause of periodontitis. Their identification and the understanding of the complex relationships and interactions that involve these microorganisms, environmental factors and the host’s health status enable improvement in diagnostics and targeted therapy in patients with periodontitis. To this end, molecular diagnostics techniques (both techniques based on the polymerase chain reaction and those involving nucleic acid analysis via hybridization come increasingly into use. On the basis of a literature review, the following methods are presented: polymerase chain reaction (PCR, real-time polymerase chain reaction (real-time PCR, 16S rRNA-encoding gene sequencing, checkerboard and reverse-capture checkerboard hybridization, microarrays, denaturing gradient gel electrophoresis (DGGE, temperature gradient gel electrophoresis (TGGE, as well as terminal restriction fragment length polymorphism (TRFLP and next generation sequencing (NGS. The advantages and drawbacks of each method in the examination of periopathogens are indicated. The techniques listed above allow fast detection of even small quantities of pathogen present in diagnostic material and prove particularly useful to detect microorganisms that are difficult or impossible to grow in a laboratory.

  11. Molecular computing origins and promises

    CERN Document Server

    Rambidi, Nicholas G

    2014-01-01

    Molecular Computing explores whether molecular primitives can prove to be real alternatives to contemporary semiconductor means. The text discusses molecular primitives and circuitry for information processing devices.

  12. Molecular magnets physics and applications

    CERN Document Server

    Bartolomé, Juan; Fernández, Julio F

    2013-01-01

    This book provides an overview of the physical phenomena discovered in magnetic molecular materials over the last 20 years. It is written by leading scientists having made the most important contributions to this active area of research. The main topics of this book are the principles of quantum tunneling and quantum coherence of single-molecule magnets (SMMs), phenomena which go beyond the physics of individual molecules, such as the collective behavior of arrays of SMMs, the physics of one-dimensional singleâ€"chain magnets and magnetism of SMMs grafted on substrates.

  13. Mesoporous titanium phosphates and related molecular sieves ...

    Indian Academy of Sciences (India)

    Unknown

    in the chemical and petrochemical industries. Phosphate-based molecular sieves 4–6 ... industry because of their interesting 2D and 3D framework topologies. On the other hand, commercial anion ... mesoporous aluminophosphate derived from polyoxometalate clusters 8,9 are the only examples of such a class of material.

  14. Solvothermal synthesis of high molecular weight dithienogermole ...

    Indian Academy of Sciences (India)

    Solvothermal synthesis of high molecular weight dithienogermole containing conjugated polymers. FEI-BAO ZHANG∗, SU-FANG LV, JIANG-XIONG JIANG and YONG NI∗. Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou. Normal University, Hangzhou 310012, China.

  15. Molecular Electronics of Self-Assembled Monolayers

    DEFF Research Database (Denmark)

    Wang, Xintai

    This thesis deals withmolecular electronic investigations on self-assembledmonolayers. The thesis is divided into seven chapters, as outlined below.Chapter 1 is a general introduction of the history of molecular electronics and its current state.Chapter 2 is separated into three parts. Part I...... material: graphene, and how such material can be incorporated intothe field of molecular electronics.Chapter 3 is a brief introduction of important instruments used in this thesis.Chapter 4, 5 and 6 describe the major experimental work in this thesis. Chapter 4 introduces two novel anchoring...... with voltage triggering functions, includesthe triggering by bias voltage and electrochemical gate. Chapter 6 introduces some method thatcould enhance the reliability of data obtained from different molecular electronic measurement techniques.Chapter 7 gives a brief summary of this thesis and tentatively point...

  16. Preparation and screening of crystalline inorganic materials

    Science.gov (United States)

    Schultz, Peter G [La Jolla, CA; Xiang, Xiaodong [Danville, CA; Goldwasser, Isy [Palo Alto, CA; Brice{hacek over }o, Gabriel; Sun, Xiao-Dong [Fremont, CA; Wang, Kai-An [Cupertino, CA

    2008-10-28

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  17. Photoactive energetic materials: linear and nonlinear photochemistry of chromophore linked energetic materials

    Science.gov (United States)

    Greenfield, Margo; McGrane, Shawn; Bolme, Cindy; Chavez, David; Veauthier, Jacqueline; Hanson, Susan; Myers, Thomas; Scharff, Jason

    2015-06-01

    In general, conventional molecular explosives are white to off-white in color and only absorb ultraviolet light. A novel approach to synthetically link optically active energetic chromophores to existing molecular energetic materials has resulted in increased photoactivity in the visible (532 nm) region of the electromagnetic spectrum. Tetrazine, an energetic optically active chromophore, which absorbs around 532 nm, has been derivatized with various energetic materials including pentaeythritol tetranitrate (PETN), nitroglycerine (NG) and dinitroazetidine (DNAZ). We report the corresponding photochemistry and photochemical quantum yields of these new materials under various wavelength and intensity regimes.

  18. Geopolymer resin materials, geopolymer materials, and materials produced thereby

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle; Mesgar, Milad

    2018-01-09

    A product formed from a first material including a geopolymer resin material, a geopolymer material, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress), thereby forming particles having an external dimension in a range between 1 nm and 2 cm.

  19. Synthesis and characterization of core–shell magnetic molecularly ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3. Synthesis and characterization of core–shell magnetic molecularly imprinted polymer nanoparticles for selective extraction of tizanidine in human plasma. GOLALEH SHEYKHAGHAEI MOAYAD HOSSAINI SADR SALAH KHANAHMADZADEH. Volume 39 ...

  20. Difunctional polyisobutylene prepared by polymerization of monomer on molecular sieve

    Science.gov (United States)

    Midler, J. A., Jr.

    1970-01-01

    Process yields difunctional isobutylene polymers ranging in molecular weight from 1150 to 3600. These polymers have the potential for copolymerization and cross-linking with other monomers to form elastomeric materials.

  1. Molecular biodiversity of Red Sea demosponges

    KAUST Repository

    Erpenbeck, Dirk

    2016-01-07

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters.

  2. Enhanced Molecular Sieve CO2 Removal Evaluation

    Science.gov (United States)

    Rose, Susan; ElSherif, Dina; MacKnight, Allen

    1996-01-01

    The objective of this research is to quantitatively characterize the performance of two major types of molecular sieves for two-bed regenerative carbon dioxide removal at the conditions compatible with both a spacesuit and station application. One sorbent is a zeolite-based molecular sieve that has been substantially improved over the materials used in Skylab. The second sorbent is a recently developed carbon-based molecular sieve. Both molecular sieves offer the potential of high payoff for future manned missions by reducing system complexity, weight (including consumables), and power consumption in comparison with competing concepts. The research reported here provides the technical data required to improve CO2 removal systems for regenerative life support systems for future IVA and EVA missions.

  3. Gas Sensors Based on Molecular Imprinting Technology.

    Science.gov (United States)

    Zhang, Yumin; Zhang, Jin; Liu, Qingju

    2017-07-04

    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological macromolecules. Owing to its unique features of structure specificity; predictability; recognition and universal application; there has been exploration of the possible application of MIPs in the field of highly selective gas sensors. In this present study; we outline the recent advances in gas sensors based on MIT; classify and introduce the existing molecularly imprinted gas sensors; summarize their advantages and disadvantages; and analyze further research directions.

  4. EDITORIAL: Focus on Molecular Electronics FOCUS ON MOLECULAR ELECTRONICS

    Science.gov (United States)

    Scheer, Elke; Reineker, Peter

    2008-06-01

    The notion 'molecular electronics' has been used more frequently since the 1970s and summarizes a series of physical phenomena and ideas for their application in connection with organic molecules, oligomers, polymers, organic aggregates and solids. The properties studied in this field were connected to optical and electrical phenomena, such as optical absorption, fluorescence, nonlinear optics, energy transport, charge transfer, electrical conductance, and electron and nuclear spin-resonance. The final goal was and is to build devices which can compete or surpass some aspects of inorganic semiconductor devices. For example, on the basis of organic molecules there exist rectifiers, transistors, molecular wires, organic light emitting diodes, elements for photovoltaics, and displays. With respect to applications, one aspect of the organic materials is their broad variability and the lower effort and costs for their processability. The step from microstructures to the investigation of nanostructures is a big challenge also in this field and has lead to what nowadays is called molecular electronics in its narrow sense. In this field the subjects of the studies are often single molecules, e.g. single molecule optical spectroscopy, electrical conductance, i.e. charge transport through a single molecule, the influence of vibrational degrees of freedom, etc. A challenge here is to provide the techniques for addressing in a reproducible way the molecular scale. In another approach small molecular ensembles are studied in order to avoid artefacts from particular contact situations. The recent development of the field is presented in [1-8]. In this Focus Issue we present new results in the field of 'molecular electronics', both in its broad and specialized sense. One of the basic questions is the distribution of the energy levels responsible for optical absorption on the one hand and for the transport of charge on the other. A still unanswered question is whether the Wannier

  5. Fracture as a material sink

    Science.gov (United States)

    Volokh, K. Y.

    2017-12-01

    Cracks are created by massive breakage of molecular or atomic bonds. The latter, in its turn, leads to the highly localized loss of material, which is the reason why even closed cracks are visible by a naked eye. Thus, fracture can be interpreted as the local material sink. Mass conservation is violated locally in the area of material failure. We consider a theoretical formulation of the coupled mass and momenta balance equations for a description of fracture. Our focus is on brittle fracture and we propose a finite strain hyperelastic thermodynamic framework for the coupled mass-flow-elastic boundary value problem. The attractiveness of the proposed framework as compared to the traditional continuum damage theories is that no internal parameters (like damage variables, phase fields, etc.) are used while the regularization of the failure localization is provided by the physically sound law of mass balance.

  6. Molecular structure and motion in zero field magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  7. Nonlinear Electromagnetic Interactions in Energetic Materials

    Science.gov (United States)

    Wood, M. A.; Dalvit, D. A. R.; Moore, D. S.

    2016-01-01

    We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for the nonionizing identification of explosives. We use molecular-dynamics simulations to compute such two-dimensional THz spectra for planar slabs made of pentaerythritol tetranitrate and ammonium nitrate. We discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for standoff explosive detection.

  8. Molecular spintronics: from magnetic materials to light emitting spintronic devices

    OpenAIRE

    Prieto Ruiz, Juan Pablo

    2014-01-01

    En el campo de la electrónica tradicional de semiconductores, la detección de cambios en la corriente eléctrica bajo la influencia de estímulos externos es el principio operacional de los dispositivos fabricados. La manipulación activa del grado de libertad de espín de los portadores de carga, sumado al control sobre la carga eléctrica, es el tema central que concierne a un campo de investigación relativamente joven denominado espintrónica. En el área de la nanotecnología, la espintrónica es ...

  9. Separating mixtures by exploiting molecular packing effects in microporous materials

    NARCIS (Netherlands)

    Krishna, R.

    2014-01-01

    We examine mixt. sepns. with microporous adsorbents such as zeolites, metal-​org. frameworks (MOFs) and zeolitic imidazolate frameworks (ZIFs)​, operating under conditions close to pore satn. Pore satn. is realized, for example, when sepg. bulk liq. phase mixts. of polar compds. such as water, alcs.

  10. Luminescence in Conjugated Molecular Materials under Sub-bandgap Excitation

    Energy Technology Data Exchange (ETDEWEB)

    So, Franky [University of Florida

    2014-05-08

    Light emission in semiconductors occurs when they are under optical and electrical excitation with energy larger than the bandgap energy. In some low-dimensional semiconductor heterostructure systems, this thermodynamic limit can be violated due to radiative Auger recombination (AR), a process in which the sub-bandgap energy released from a recombined electron-hole pair is transferred to a third particle leading to radiative band-to-band recombination.1 Thus far, photoluminescence up-conversion phenomenon has been observed in some low dimensional semiconductor systems, and the effect is very weak and it can only be observed at low temperatures. Recently, we discovered that efficient electroluminescence in poly[2-methoxy-5-(2’-ethylhexyloxy)-1, phenylenevinylene] (MEH-PPV) polymer light-emitting devices (PLEDs) at drive voltages below its bandgap voltage could be observed when a ZnO nanoparticles (NPs) electron injection layer was inserted between the polymer and the aluminum electrode. Specifically, emitted photons with energy of 2.13 eV can be detected at operating voltages as low as 1.2 V at room temperature. Based on these data, we propose that the sub-bandgap turn-on in the MEH-PPV device is due to an Auger-assisted energy up-conversion process. The significance of this discovery is three-fold. First, radiative recombination occurs at operating voltages below the thermodynamic bandgap voltage. This process can significantly reduce the device operating voltage. For example, the current density of the device with the ZnO NC layer is almost two orders of magnitude higher than that of the device without the NC layer. Second, a reactive metal is no longer needed for the cathode. Third, this electroluminescence up-conversion process can be applied to inorganic semiconductors systems as well and their operation voltages of inorganic LEDs can be reduced to about half of the bandgap energy. Based on our initial data, we propose that the sub-bandgap turn-on in MEH-PPV devices is due to Auger-assisted energy up-conversion process. Specifically, we propose that the up-conversion process is due to charge accumulation at the polymer/NPs interface. This model requires that holes should be the dominant carriers in the polymer and the polymer/ZnO NCs heterojunction should be a type II alignment. In order to determine the mechanism of the up-conversion process, we will characterize devices fabricated using polymers with different carrier transporting properties to determine whether hole accumulation at the polymer/nanocrystals is required. Likewise, we will also use NPs with different electronic structures to fabricate devices to determine how electron accumulation affects the up-conversion process. Finally, we will measure quantitatively the interface charge accumulation by electroabsorption and correlate the results with the up-conversion photoluminescence efficiency measurements under an applied electric field.

  11. Modular Approaches to Flouride-Bridged Molecular Magnetic Materials

    DEFF Research Database (Denmark)

    Pedersen, Kasper Steen

    interactions in a lower total spin polynuclear complex had a larger magnetic entropy change during a adiabatic demagnetization than an, all ferromagnetically coupled, complex with a larger spin ground state. Diffuse orbitals and strong magnetic anisotropy resulting from large values of the spinorbit coupling...... of the relevance of the thermally activated Orbach process for magnetization relaxation that is commonly a priori assumed to be of importance in related systems. Furthermore, the chemical robustness of the Er(trensal) system has allowed for outof-crystal studies of vapor- and solution-deposited films...

  12. Molecular materials for the transduction of chemical information by CHEMFETs

    NARCIS (Netherlands)

    Haak, Jan R.; van der Wal, P.D.; van der Wal, Peter D.; Reinhoudt, David

    1992-01-01

    This paper describes a strategy to overcome the problems associated with the use of MEMFETs as selective chemical sensors. The problems arising from the thermodynamically ill-defined insulator-membrane interface have been eliminated by a new sensor design, viz., the introduction of an intermediate

  13. Polymeric and Molecular Materials for Advanced Organic Electronics

    Science.gov (United States)

    2014-10-20

    Photonics 2013, 7(10), 825-833. 5. Everaerts, K.; Emery, J.D.; Jariwala, D.; Karmel, H.J.; Prabhumirashi, P.L.; Geier , M.L.; Bedzy, M.J.; Facchetti...1173-1175. xi Everaerts, K.; Emery, J. D.; Jariwala, D.; Karmel, H. J.; Sangwan, V. K.; Prabhumirashi, P. L.; Geier , M. L.; McMorrow, J. J. E.; Bedzyk

  14. Characterisation of amorphous and nanocrystalline molecular materials by total scattering

    Energy Technology Data Exchange (ETDEWEB)

    Billinge, Simon J.L.; Dykhne, Timur; Juhás, Pavol; Boin, Emil; Taylor, Ryan; Florence, Alastair J.; Shankland, Kenneth (Reading); (Strathclyde); (Columbia)

    2010-09-17

    The use of high-energy X-ray total scattering coupled with pair distribution function analysis produces unique structural fingerprints from amorphous and nanostructured phases of the pharmaceuticals carbamazepine and indomethacin. The advantages of such facility-based experiments over laboratory-based ones are discussed and the technique is illustrated with the characterisation of a melt-quenched sample of carbamazepine as a nanocrystalline (4.5 nm domain diameter) version of form III.

  15. Molecular diodes in optical rectennas

    Science.gov (United States)

    Duché, David; Palanchoke, Ujwol; Terracciano, Luigi; Dang, Florian-Xuan; Patrone, Lionel; Le Rouzo, Judikael; Balaban, Téodore Silviu; Alfonso, Claude; Charai, Ahmed; Margeat, Olivier; Ackermann, Jorg; Gourgon, Cécile; Simon, Jean-Jacques; Escoubas, Ludovic

    2016-09-01

    The photo conversion efficiencies of the 1st and 2nd generat ion photovoltaic solar cells are limited by the physical phenomena involved during the photo-conversion processes. An upper limit around 30% has been predicted for a monojunction silicon solar cell. In this work, we study 3rd generation solar cells named rectenna which could direct ly convert visible and infrared light into DC current. The rectenna technology is at odds with the actual photovoltaic technologies, since it is not based on the use of semi-conducting materials. We study a rectenna architecture consist ing of plasmonic nano-antennas associated with rectifying self assembled molecular diodes. We first opt imized the geometry of plasmonic nano-antennas using an FDTD method. The optimal antennas are then realized using a nano-imprint process and associated with self assembled molecular diodes in 11- ferrocenyl-undecanethiol. Finally, The I(V) characterist ics in darkness of the rectennas has been carried out using an STM. The molecular diodes exhibit averaged rect ification ratios of 5.

  16. Geopolymer resin materials, geopolymer materials, and materials produced thereby

    Science.gov (United States)

    Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle; Mesgar, Milad

    2016-03-29

    A product formed from a first material including a geopolymer resin material, a geopolymer resin, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress), thereby forming particles having an external dimension in a range between 1 nm and 2 cm.

  17. Molecularly Imprinted Nanomaterials for Sensor Applications

    Science.gov (United States)

    Irshad, Muhammad; Iqbal, Naseer; Mujahid, Adnan; Afzal, Adeel; Hussain, Tajamal; Sharif, Ahsan; Ahmad, Ejaz; Athar, Muhammad Makshoof

    2013-01-01

    Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors. PMID:28348356

  18. Approximation of quantum observables by molecular dynamics simulations

    KAUST Repository

    Sandberg, Mattias

    2016-01-06

    In this talk I will discuss how to estimate the uncertainty in molecular dynamics simulations. Molecular dynamics is a computational method to study molecular systems in materials science, chemistry, and molecular biology. The wide popularity of molecular dynamics simulations relies on the fact that in many cases it agrees very well with experiments. If we however want the simulation to predict something that has no comparing experiment, we need a mathematical estimate of the accuracy of the computation. In the case of molecular systems with few particles, such studies are made by directly solving the Schrodinger equation. In this talk I will discuss theoretical results on the accuracy between quantum mechanics and molecular dynamics, to be used for systems that are too large to be handled computationally by the Schrodinger equation.

  19. Molecular methods for biofilms

    KAUST Repository

    Ferrera, Isabel

    2014-08-30

    other cell components into the organic phase. The last step is the purification of nucleic acids, which may dramatically reduce the efficiency of the recovery. The method used should, therefore, result in a compromise between yield and purity. PCR and DNA sequencing: Application of DNA polymerase chain reaction (PCR) amplification and DNA sequencing in order to amplify and determine the DNA of microbial marker genes, allows the understanding of microbial diversity with an ever-increasing resolution and accuracy. This chapter provides an overview over DNA PCR amplification and DNA sequencing methods. It discusses protocols and analysis software as well as potential pitfalls associated with application of these methods. While PCR is a molecular technique to amplify virtually unlimited amounts of a particular DNA sequence from only a few DNA copies of input material, DNA sequencing refers to the actual determination of the sequence of nucleotides of a strand of DNA (or RNA). In phylogeny-based analyses, taxa are operationally defined by relatedness to another sequence in a phylogenetic tree. Similarly to representative operational taxonomic units (OTU) sequences, all sequenced 16S fragments can be assigned to a species or taxon in a database. Community comparison by genetic fingerprinting techniques: This chapter discusses community fingerprinting analyses that can be used to compare multiple microbial communities. It focuses on denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP) and automated rRNA intergenic spacer analysis (ARISA) methods. DGGE discriminates DNA fragments having different sequences and different AT/GC content. Terminal restriction fragment length polymorphism (T-RFLP) involves the extraction of DNA from environmental samples. The ARISA technique uses the highly variable internal transcribed (ITS) regions of rDNA. All fingerprinting techniques have the advantage of being able to process many samples

  20. Molecular Population Genetics

    OpenAIRE

    Casillas, S?nia; Barbadilla, Antonio

    2017-01-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theo...

  1. [Molecular diagnostics in melanoma].

    Science.gov (United States)

    Lang, R; Bauer, J W; Laimer, M

    2015-04-01

    The molecular landscape of melanoma is changing more rapidly than ever since new molecular technology approaches have made it possible to examine human melanoma for genetic alterations underlying the disease. In recent years, these approaches have identified new familial melanoma susceptibility genes, most of them also conferring risk to other cancers. This has implications for clinical testing and surveillance. Furthermore, molecular testing of melanoma to determine therapeutic eligibility for targeted therapies is now standard of care and should be familiar to the dermatologist.

  2. Molecular heat pump

    OpenAIRE

    Segal, Dvira; Nitzan, Abraham

    2005-01-01

    We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the...

  3. Translational Molecular Nuclear Cardiology.

    Science.gov (United States)

    Thackeray, James T; Bengel, Frank M

    2016-02-01

    Increased rollout and availability of preclinical imaging provides a foundation for development of novel molecular nuclear imaging agents. The current armamentarium of radiotracers available for nuclear cardiology allows for the interrogation of critical molecular processes involved in a myriad of cardiovascular disorders, including altered metabolism, ventricular remodeling, sympathetic neuronal activation, and systemic inflammation. Effective translational molecular imaging requires coordination of clinical need with tracer development and molecular biology, leading to the identification of ideal translational imaging compounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The modern molecular clock.

    Science.gov (United States)

    Bromham, Lindell; Penny, David

    2003-03-01

    The discovery of the molecular clock--a relatively constant rate of molecular evolution--provided an insight into the mechanisms of molecular evolution, and created one of the most useful new tools in biology. The unexpected constancy of rate was explained by assuming that most changes to genes are effectively neutral. Theory predicts several sources of variation in the rate of molecular evolution. However, even an approximate clock allows time estimates of events in evolutionary history, which provides a method for testing a wide range of biological hypotheses ranging from the origins of the animal kingdom to the emergence of new viral epidemics.

  5. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  6. Towards Materials Sustainability through Materials Stewardship

    Directory of Open Access Journals (Sweden)

    Christopher D. Taylor

    2016-10-01

    Full Text Available Materials sustainability requires a concerted change in philosophy across the entire materials lifecycle, orienting around the theme of materials stewardship. In this paper, we address the opportunities for improved materials conservation through dematerialization, durability, design for second life, and diversion of waste streams through industrial symbiosis.

  7. Charge Transport Processes in Molecular Junctions

    Science.gov (United States)

    Smith, Christopher Eugene

    Molecular electronics (ME) has evolved into a rich area of exploration that combines the fields of chemistry, materials, electronic engineering and computational modeling to explore the physics behind electronic conduction at the molecular level. Through studying charge transport properties of single molecules and nanoscale molecular materials the field has gained the potential to bring about new avenues for the miniaturization of electrical components where quantum phenomena are utilized to achieve solid state molecular device functionality. Molecular junctions are platforms that enable these studies and consist of a single molecule or a small group of molecules directly connected to electrodes. The work presented in this thesis has built upon the current understanding of the mechanisms of charge transport in ordered junctions using self-assembled monolayer (SAM) molecular thin films. Donor and acceptor compounds were synthesized and incorporated into SAMs grown on metal substrates then the transport properties were measured with conducting probe atomic force microscopy (CP-AFM). In addition to experimentally measured current-voltage (I-V) curves, the transport properties were addressed computationally and modeled theoretically. The key objectives of this project were to 1) investigate the impact of molecular structure on hole and electron charge transport, 2) understand the nature of the charge carriers and their structure-transport properties through long (electronic coupling from experimental I-V curves. Here, we lay ground work for creating a more complete picture of charge transport in macroscopically ordered molecular junctions of controlled architecture, length and charge carrier. The polaronic nature of hopping transport has been predicted in long, conjugated molecular wires. Using quantum-based calculations, we modeled 'p-type' polaron transport through oligophenylenethiophene (OPTI) wires and assigned transport activation energies to specific modes of

  8. The materials physics companion

    CERN Document Server

    Fischer-Cripps, Anthony C

    2014-01-01

    Introduction to Materials Physics: Structure of matter. Solid state physics. Dynamic properties of solids. Dielectric Properties of Materials: Dielectric properties. Ferroelectric and piezoelectric materials. Dielectric breakdown. Applications of dielectrics. Magnetic Properties of Materials: Magnetic properties. Magnetic moment. Spontaneous magnetization. Superconductivity.

  9. Mean excitation energies for molecular ions

    DEFF Research Database (Denmark)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens

    2017-01-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase...... with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state...... contributing to the mean excitation energy....

  10. Mean excitation energies for molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Phillip W.K.; Sauer, Stephan P.A. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Oddershede, Jens [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States); Sabin, John R., E-mail: sabin@qtp.ufl.edu [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States)

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  11. Molecular Stirrers in Action

    NARCIS (Netherlands)

    Chen, Jiawen; Kistemaker, Jos C. M.; Robertus, Jort; Feringa, Ben L.

    2014-01-01

    A series of first-generation light-driven molecular motors with rigid substituents of varying length was synthesized to act as "molecular stirrers". Their rotary motion was studied by H-1 NMR and UV-vis absorption spectroscopy in a variety of solvents with different polarity and viscosity.

  12. Molecular microbial ecology manual

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Bruijn, de F.J.; Head, I.M.; Akkermans, A.D.L.

    2004-01-01

    The field of microbial ecology has been revolutionized in the past two decades by the introduction of molecular methods into the toolbox of the microbial ecologist. This molecular arsenal has helped to unveil the enormity of microbial diversity across the breadth of the earth's ecosystems, and has

  13. Ionic and Molecular Liquids

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Prezhdo, Oleg

    2013-01-01

    applications of RTILs in combination with molecular liquids, concentrating on three significant areas: (1) the use of molecular liquids to decrease the viscosity of RTILs; (2) the role of RTIL micelle formation in water and organic solvents; and (3) the ability of RTILs to adsorb pollutant gases. Current...

  14. Principles of molecular oncology

    National Research Council Canada - National Science Library

    Bronchud, Miguel H

    2008-01-01

    ...-threatening diseases. Many new molecularly targeted diagnostics and therapeutics described in this text, developed based on the rapid growth in our understanding of the molecular basis of cancer, already substantially improve survival of patients with previously lethal malignancies, and also improve quality of life because of fewer toxicities. Clearly re...

  15. Making molecular machines work

    NARCIS (Netherlands)

    Browne, Wesley R.; Feringa, Ben L.

    2006-01-01

    In this review we chart recent advances in what is at once an old and very new field of endeavour the achievement of control of motion at the molecular level including solid-state and surface-mounted rotors, and its natural progression to the development of synthetic molecular machines. Besides a

  16. Enhanced Electromagnetic and Chemical/Biological Sensing. Properties of Atomic Cluster-Derived Materials

    National Research Council Canada - National Science Library

    Schatz, George

    2003-01-01

    The Center for Atomic Clusters-derived Materials performed a broad range of research concerned with synthesizing, characterizing and utilizing atomic and molecular clusters, nanoparticles and nanomaterial...

  17. Mechanically Active Electrospun Materials

    Science.gov (United States)

    Robertson, Jaimee M.

    Electrospinning, a technique used to fabricate small diameter polymer fibers, has been employed to develop unique, active materials falling under two categories: (1) shape memory elastomeric composites (SMECs) and (2) water responsive fiber mats. (1) Previous work has characterized in detail the properties and behavior of traditional SMECs with isotropic fibers embedded in an elastomer matrix. The current work has two goals: (i) characterize laminated anisotropic SMECs and (ii) develop a fabrication process that is scalable for commercial SMEC manufacturing. The former ((i)) requires electrospinning aligned polymer fibers. The aligned fibers are similarly embedded in an elastomer matrix and stacked at various fiber orientations. The resulting laminated composite has a unique response to tensile deformation: after stretching and releasing, the composite curls. This curling response was characterized based on fiber orientation. The latter goal ((ii)) required use of a dual-electrospinning process to simultaneously electrospin two polymers. This fabrication approach incorporated only industrially relevant processing techniques, enabling the possibility of commercial application of a shape memory rubber. Furthermore, the approach had the added benefit of increased control over composition and material properties. (2) The strong elongational forces experienced by polymer chains during the electrospinning process induce molecular alignment along the length of electrospun fibers. Such orientation is maintained in the fibers as the polymer vitrifies. Consequently, residual stress is stored in electrospun fiber mats and can be recovered by heating through the polymer's glass transition temperature. Alternatively, the glass transition temperature can be depressed by introducing a plasticizing agent. Poly(vinyl acetate) (PVAc) is plasticized by water, and its glass transition temperature is lowered below room temperature. Therefore, the residual stress can be relaxed at room

  18. Materials Meets Concepts in Molecule-Based Electronics

    KAUST Repository

    Ortmann, Frank

    2014-10-14

    In this contribution, molecular materials are highlighted as an important topic in the diverse field of condensed matter physics, with focus on their particular electronic and transport properties. A better understanding of their performance in various applications and devices demands for an extension of basic theoretical approaches to describe charge transport in molecular materials, including the accurate description of electron-phonon coupling. Starting with the simplest case of a molecular junction and moving on to larger aggregates of bulk organic semiconductors, charge-transport regimes from ballistic motion to incoherent hopping, which are frequently encountered in molecular systems under respective conditions, are discussed. Transport features of specific materials are described through ab initio material parameters whose determination is addressed. © 2014 Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Molecularly Imprinted Polymers: Present and Future Prospective

    Science.gov (United States)

    Vasapollo, Giuseppe; Sole, Roberta Del; Mergola, Lucia; Lazzoi, Maria Rosaria; Scardino, Anna; Scorrano, Sonia; Mele, Giuseppe

    2011-01-01

    Molecular Imprinting Technology (MIT) is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs), the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented. PMID:22016636

  20. Molecularly Imprinted Polymers: Present and Future Prospective

    Directory of Open Access Journals (Sweden)

    Giuseppe Vasapollo

    2011-09-01

    Full Text Available Molecular Imprinting Technology (MIT is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs, the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented.

  1. Materials Informatics: Fast Track to New Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, Kim F.; Peurrung, Loni M.; Marder, James M.

    2007-01-01

    Current methods for new materials development focus on either deeper fundamental-level studies or generation of large quantities of data. The data challenge in materials science is not only the volume of data being generated by many independent investigators, but its heterogeneity and also its complexity that must be transformed, analyzed, correlated and communicated. Materials informatics addresses these issues. Materials informatics is an emerging information-based field combining computational, statistical, and mathematical approaches with materials sciences for accelerating discovery and development of new materials. Within the informatic framework, the various different forms of information form a system architecture, an iterative cycle for transforming data into knowledge.

  2. Photorefractive Materials and Their Applications 2 Materials

    CERN Document Server

    Günter, Peter

    2007-01-01

    Photorefractive Materials and Their Applications 2: Materials is the second of three volumes within the Springer Series in Optical Sciences. The book gives a comprehensive review of the most important photorefractive materials and discusses the physical properties of organic and inorganic crystals as well as poled polymers. In this volume, photorefractive effects have been investigated at wavelengths covering the UV, visible and near infrared. Researchers in the field and graduate students of solid-state physics and engineering will gain a thorough understanding of the properties of materials in photorefractive applications. The other two volumes are: Photorefractive Materials and Their Applications 1: Basic Effects. Photorefractive Materials and Their Applications 3: Applications.

  3. Contact models for very loose granular materials

    NARCIS (Netherlands)

    Luding, Stefan; Eberhard, Peter

    2007-01-01

    One challenge of todays research on particle systems is the realistic simulation of granular materials consisting of many thousands of particles with peculiar contact interactions. In this study, molecular dynamics (MD, also called discrete element method, DEM) is introduced for the simulation of

  4. Neutron scattering of advanced magnetic materials

    Science.gov (United States)

    Yusuf, S. M.; Kumar, Amit

    2017-09-01

    An overview of notable contributions of neutron scattering in the advancement of magnetic materials has been presented. A brief description of static neutron scattering techniques, viz., diffraction, depolarization, small angle scattering, and reflectivity, employed in the studies of advanced magnetic materials, is given. Apart from providing the up-to-date literature, this review highlights the importance of neutron scattering techniques in achieving microscopic as well as mesoscopic understanding of static magnetic properties of the following selective classes of advanced magnetic materials: (i) magnetocaloric materials, (ii) permanent magnets, (iii) multiferroic materials, (iv) spintronic materials, and (v) molecular magnetic materials. In the area of magnetocaloric materials, neutron diffraction studies have greatly improved the understanding of magneto-structural coupling by probing (i) atomic site distribution, (ii) evolution of structural phases and lattice parameters across the TC, and (iii) microscopic details of magnetic ordering in several potential magnetocaloric materials. Such an understanding is vital to enhance the magnetocaloric effect. Structural and magnetic investigations, employing neutron diffraction and allied techniques, have helped to improve the quality of permanent magnets by tailoring (understanding) structural phases, magnetic ordering, crystallinity, microstructure (texture), and anisotropy. The neutron diffraction studies of structural distortions/instabilities and magnetic ordering in multiferroic materials have improved the microscopic understanding of magnetoelectric coupling that allows one to control magnetic order by an electric field and electric order by a magnetic field in multiferroic materials. In the field of molecular magnetic materials, neutron diffraction studies have enhanced the understanding of (i) structural and magnetic ordering, (ii) short-range structural and magnetic correlations, (iii) spin density distribution

  5. Molecular Programming with DNA

    Science.gov (United States)

    Winfree, Erik

    2009-05-01

    Information can be stored in molecules and processed by molecular reactions. Molecular information processing is at the heart of all biological systems; might it soon also be at the heart of non-biological synthetic chemical systems? Perhaps yes. One technological approach comes from DNA nanotechnology and DNA computing, where DNA is used as a non-biological informational polymer that can be rationally designed to create a rich class of molecular systems -- for example, DNA molecules that self-assemble precisely, that fold into complex nanoscale objects, that act as mechanical actuators and molecular motors, and that make decisions based on digital and analog logic. I will argue that to fully exploit their design potential, we will need to invent programming languages for specifying the behavior of information-based molecular systems, to create theoretical tools for understanding and analyzing the behavior of molecular programs, to develop compilers that automate the design of molecules with the desired behaviors, and to expand experimental techniques so that the implementation and debugging of complex molecular systems becomes as commonplace and practical as computer programming.

  6. Molecular markers in melanoma.

    Science.gov (United States)

    Kashani-Sabet, M

    2014-01-01

    The last few years have witnessed the dawn of the molecular era in melanoma treatment. With the advent of successful therapy targeting mutant BRAF, melanoma is leading the field of cancer research in the molecular approach to therapy of advanced disease. Attempting to keep pace with advances in therapy are advances in the molecular assessment of melanoma progression, facilitated by the availability of genome-wide approaches to interrogate the malignant phenotype. At the DNA level, this has included approaches such as comparative genomic hybridization. At the RNA level, this has consisted of gene expression profiling using various assay methodologies. In certain instances, markers identified using these platforms have been further examined and developed using fluorescence in situ hybridization and immunohistochemical analysis. In this article, we will review recent progress in the development of novel molecular markers for melanoma that are nearing clinical application. We will review developments in the molecular classification of melanoma, in the molecular diagnosis of melanoma, and in the molecular assessment of melanoma prognosis. © 2013 British Association of Dermatologists.

  7. Molecular Population Genetics.

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  8. Gear materials, properties, and manufacture

    National Research Council Canada - National Science Library

    Davis, J. R

    2005-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Gear Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  9. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  10. Phospholipid Vesicles in Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Granick, Steve [Univ. of Illinois, Champaign, IL (United States)

    2016-05-11

    The objective of this research was to develop the science basis needed to deploy phospholipid vesicles as functional materials in energy contexts. Specifically, we sought to: (1) Develop an integrated molecular-level understanding of what determines their dynamical shape, spatial organization, and responsiveness to complex, time-varying environments; and (2) Develop understanding of their active transportation in crowded environments, which our preliminary measurements in cells suggest may hold design principles for targeting improved energy efficiency in new materials systems. The methods to do this largely involved fluorescence imaging and other spectroscopy involving single particles, vesicles, particles, DNA, and endosomes. An unexpected importance outcome was a new method to image light-emitting diodes during actual operation using super-resolution spectroscopy.

  11. Atomic mass spectrometry of materials

    Science.gov (United States)

    Anthony, J. M.; Matteson, S.; Duggan, J. L.; Elliott, P.; Marble, D.; McDaniel, F. D.; Weathers, D.

    1990-12-01

    Texas Instruments and the University of North Texas (UNT) are collaborating on the design of an accelerator mass spectrometry (AMS) system dedicated primarily to the analysis of impurities in electronic materials and metals. An AMS beamline consisting of high-resolution magnetic ( {M}/{dM } > 350) and electrostatic ( {E}/{dE } > 700) analysis followed by a surface barrier detector has been installed on the NEC 9SDH pelletron at UNT, and a "clean" ion source is under development. An existing ion source (NEC Cs sputter source) has been used in conjunction with the AMS beamline to generate computer controlled molecule-free mass analyses of solid samples. Through a careful choice of isotopes and charge states a robust algorithm can be developed for removing molecular interferences from the mass analysis for essentially all materials. Examples using graphite, Si and CdZnTe are discussed.

  12. Molecular heat pump.

    Science.gov (United States)

    Segal, Dvira; Nitzan, Abraham

    2006-02-01

    We propose a molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation wave forms, thus making it possible to optimize the device performance.

  13. Molecularly Imprinted Membranes

    Science.gov (United States)

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  14. A dimension map for molecular aggregates.

    Science.gov (United States)

    Jian, Cuiying; Tang, Tian; Bhattacharjee, Subir

    2015-05-01

    A pair of gyradius ratios, defined from the principal radii of gyration, are used to generate a dimension map that describes the geometry of molecular aggregates in water and in organic solvents. Molecular dynamics simulations were performed on the aggregation of representative biomolecules and polyaromatic compounds to demonstrate application of the dimension map. It was shown that molecular aggregate data on the dimension map were bounded by two boundary curves, and that the map could be separated into three regions representing three groups of structures: one-dimensional rod-like structures; two-dimensional planar structures or short-cylinder-like structures; and three-dimensional sphere-like structures. Examining the location of the aggregates on the dimension map and how the location changes with solvent type and solute material parameter provides a simple yet effective way to infer the aggregation manner and to study solubility and mechanism of aggregation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Ultrathin Shape Change Smart Materials.

    Science.gov (United States)

    Xu, Weinan; Kwok, Kam Sang; Gracias, David H

    2018-01-23

    With the discovery of graphene, significant research has focused on the synthesis, characterization, and applications of ultrathin materials. Graphene has also brought into focus other ultrathin materials composed of organics, polymers, inorganics, and their hybrids. Together, these ultrathin materials have unique properties of broad significance. For example, ultrathin materials have a large surface area and high flexibility which can enhance conformal contact in wearables and sensors leading to improved sensitivity. When porous, the short transverse diffusion length in these materials allows rapid mass transport. Alternatively, when impermeable, these materials behave as an ultrathin barrier. Such controlled permeability is critical in the design of encapsulation and drug delivery systems. Finally, ultrathin materials often feature defect-free and single-crystal-like two-dimensional atomic structures resulting in superior mechanical, optical, and electrical properties. A unique property of ultrathin materials is their low bending rigidity, which suggests that they could easily be bent, curved, or folded into 3D shapes. In this Account, we review the emerging field of 2D to 3D shape transformations of ultrathin materials. We broadly define ultrathin to include materials with a thickness below 100 nm and composed of a range of organic, inorganic, and hybrid compositions. This topic is important for both fundamental and applied reasons. Fundamentally, bending and curving of ultrathin films can cause atomistic and molecular strain which can alter their physical and chemical properties and lead to new 3D forms of matter which behave very differently from their planar precursors. Shape change can also lead to new 3D architectures with significantly smaller form factors. For example, 3D ultrathin materials would occupy a smaller space in on-chip devices or could permeate through tortuous media which is important for miniaturized robots and smart dust applications. Our

  16. Transporting particulate material

    Science.gov (United States)

    Aldred, Derek Leslie [North Hollywood, CA; Rader, Jeffrey A [North Hollywood, CA; Saunders, Timothy W [North Hollywood, CA

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  17. Reduced graphene oxide molecular sensors.

    Science.gov (United States)

    Robinson, Jeremy T; Perkins, F Keith; Snow, Eric S; Wei, Zhongqing; Sheehan, Paul E

    2008-10-01

    We demonstrate reduced graphene oxide as the active material for high-performance molecular sensors. Sensors are fabricated from exfoliated graphene oxide platelets that are deposited to form an ultrathin continuous network. These graphene oxide networks are tunably reduced toward graphene by varying the exposure time to a hydrazine hydrate vapor. The conductance change of the networks upon exposure to trace levels of vapor is measured as a function of the chemical reduction. The level of reduction affects both the sensitivity and the level of 1/ f noise. The sensors are capable of detecting 10 s exposures to simulants of the three main classes of chemical-warfare agents and an explosive at parts-per-billion concentrations.

  18. Variational methods in molecular modeling

    CERN Document Server

    2017-01-01

    This book presents tutorial overviews for many applications of variational methods to molecular modeling. Topics discussed include the Gibbs-Bogoliubov-Feynman variational principle, square-gradient models, classical density functional theories, self-consistent-field theories, phase-field methods, Ginzburg-Landau and Helfrich-type phenomenological models, dynamical density functional theory, and variational Monte Carlo methods. Illustrative examples are given to facilitate understanding of the basic concepts and quantitative prediction of the properties and rich behavior of diverse many-body systems ranging from inhomogeneous fluids, electrolytes and ionic liquids in micropores, colloidal dispersions, liquid crystals, polymer blends, lipid membranes, microemulsions, magnetic materials and high-temperature superconductors. All chapters are written by leading experts in the field and illustrated with tutorial examples for their practical applications to specific subjects. With emphasis placed on physical unders...

  19. Molecular Imaging Challenges With PET

    CERN Document Server

    Lecoq, P

    2010-01-01

    The future trends in molecular imaging and associated challenges for in-vivo functional imaging are illustrated on the basis of a few examples, such as atherosclerosis vulnerable plaques imaging or stem cells tracking. A set of parameters are derived to define the specifications of a new generation of in-vivo imaging devices in terms of sensitivity, spatial resolution and signal-to-noise ratio. The limitations of strategies used in present PET scanners are discussed and new approaches are proposed taking advantage of recent progress on materials, photodetectors and readout electronics. A special focus is put on metamaterials, as a new approach to bring more functionality to detection devices. It is shown that the route is now open towards a fully digital detector head with very high photon counting capability over a large energy range, excellent timing precision and possibility of imaging the energy deposition process.

  20. Chemical characterization of selected LDEF polymeric materials

    Science.gov (United States)

    Young, Philip R.; Slemp, Wayne S.

    1992-01-01

    The chemical characterization of selected polymeric materials which received exposure on the LDEF is reported. The specimens examined include silvered fluorinated ethylene propylene (FEP) teflon thermal blanket material, polysulfone matrix resin/graphite fiber reinforced composites, and several high performance polymer films. These specimens came from numerous LDEF locations and, thus, received different environmental exposures. The results of infrared, thermal, x ray photoelectron, and various solution property analyses have shown no significant change at the molecular level in the polymer that survived exposure. However, scanning electron and scanning tunneling microscopies show resin loss and a texturing of the surface of some specimens which resulted in a change in optical properties. The potential effect of a silicon containing molecular contamination on these materials is addressed. The possibility of continued post-exposure degradation of some polymeric films is also proposed.