WorldWideScience

Sample records for recovery growth induced

  1. Dynamic gene expression in fish muscle during recovery growth induced by a fasting-refeeding schedule

    Directory of Open Access Journals (Sweden)

    Esquerré Diane

    2007-11-01

    Full Text Available Abstract Background Recovery growth is a phase of rapid growth that is triggered by adequate refeeding of animals following a period of weight loss caused by starvation. In this study, to obtain more information on the system-wide integration of recovery growth in muscle, we undertook a time-course analysis of transcript expression in trout subjected to a food deprivation-refeeding sequence. For this purpose complex targets produced from muscle of trout fasted for one month and from muscle of trout fasted for one month and then refed for 4, 7, 11 and 36 days were hybridized to cDNA microarrays containing 9023 clones. Results Significance analysis of microarrays (SAM and temporal expression profiling led to the segregation of differentially expressed genes into four major clusters. One cluster comprising 1020 genes with high expression in muscle from fasted animals included a large set of genes involved in protein catabolism. A second cluster that included approximately 550 genes with transient induction 4 to 11 days post-refeeding was dominated by genes involved in transcription, ribosomal biogenesis, translation, chaperone activity, mitochondrial production of ATP and cell division. A third cluster that contained 480 genes that were up-regulated 7 to 36 days post-refeeding was enriched with genes involved in reticulum and Golgi dynamics and with genes indicative of myofiber and muscle remodelling such as genes encoding sarcomeric proteins and matrix compounds. Finally, a fourth cluster of 200 genes overexpressed only in 36-day refed trout muscle contained genes with function in carbohydrate metabolism and lipid biosynthesis. Remarkably, among the genes induced were several transcriptional regulators which might be important for the gene-specific transcriptional adaptations that underlie muscle recovery. Conclusion Our study is the first demonstration of a coordinated expression of functionally related genes during muscle recovery growth

  2. Metazoan operons accelerate recovery from growth arrested states

    Science.gov (United States)

    Zaslaver, Alon; Baugh, L. Ryan; Sternberg, Paul W.

    2011-01-01

    Summary Existing theories explain why operons are advantageous in prokaryotes, but their occurrence in metazoans is an enigma. Nematode operon genes, typically consisting of growth genes, are significantly up-regulated during recovery from growth-arrested states. This expression pattern is anti-correlated to non-operon genes consistent with a competition for transcriptional resources. We find that transcriptional resources are initially limiting during recovery, and that recovering animals are highly sensitive to any additional decrease in transcriptional resources. Operons become advantageous because by clustering growth genes into operons, fewer promoters compete for the limited transcriptional machinery, effectively increasing the concentration of transcriptional resources, and accelerating recovery. Mathematical modeling reveals how a moderate increase in transcriptional resources can substantially enhance transcription rate and recovery. This design principle occurs in different nematodes and the chordate C. intestinalis. As transition from arrest to rapid growth is shared by many metazoans, operons could have evolved to facilitate these processes. PMID:21663799

  3. Optimization of the purification methods for recovery of recombinant growth hormone from Paralichthys olivaceus

    Science.gov (United States)

    Zang, Xiaonan; Zhang, Xuecheng; Mu, Xiaosheng; Liu, Bin

    2013-03-01

    This study aimed to optimize the purification of recombinant growth hormone from Paralichthys olivaceus. Recombinant flounder growth hormone (r-fGH) was expressed by Escherichia coli in form of inclusion body or as soluble protein under different inducing conditions. The inclusion body was renatured using two recovery methods, i.e., dilution and dialysis. Thereafter, the refolded protein was purified by Glutathione Sepharase 4B affinity chromatography and r-fGH was obtained by cleavage of thrombin. For soluble products, r-fGH was directly purified from the lysates by Glutathione Sepharase 4B affinity chromatography. ELISA-receptor assay demonstrated that despite its low receptor binding activity, the r-fGH purified from refolded inclusion body had a higher yield (2.605 mg L-1) than that from soluble protein (1.964 mg L-1). Of the tested recovery methods, addition of renaturing buffer (pH 8.5) into denatured inclusion body yielded the best recovery rate (17.9%). This work provided an optimized purification method for high recovery of r-fGH, thus contributing to the application of r-fGH to aquaculture.

  4. Elemental Diet Accelerates the Recovery From Oral Mucositis and Dermatitis Induced by 5-Fluorouracil Through the Induction of Fibroblast Growth Factor 2.

    Science.gov (United States)

    Harada, Koji; Ferdous, Tarannum; Kobayashi, Hiroaki; Ueyama, Yoshiya

    2018-06-01

    Mucositis and dermatitis induced by anticancer agents are common complications of anticancer therapies. In this study, we evaluated the efficacy of Elental (Ajinomoto Pharmaceutical Ltd, Tokyo, Japan), an elemental diet with glutamine in the treatment of 5-fluorouracil (5-FU)-induced oral mucositis and dermatitis in vivo and tried to clarify the underlying mechanisms of its action. Oral mucositis and dermatitis was induced through a combination of 5-FU treatment and mild abrasion of the cheek pouch in hamsters and the dorsal skin in nude mice respectively. These animals received saline, dextrin or Elental suspension (18 kcal/100 g) by a gastric tube daily until sacrifice. Elental reduced oral mucositis and dermatitis more effectively than dextrin in the animal model. Moreover, growth facilitating effects of Elental on HaCaT cells were examined in vitro. MTT assay, wound healing assay, and migration assay revealed that Elental could enhance the growth, invasion, and migration ability of HaCaT. ELISA and Western blotting showed upregulated FGF2 in Elental-treated HaCaT. These findings suggest that Elental is effective for the treatment of mucositis and dermatitis, and may accelerate mucosal and skin recovery through FGF2 induction and reepithelization.

  5. Aging is associated with diminished muscle re-growth and myogenic precursor cell expansion in the early recovery phase after immobility-induced atrophy in human skeletal muscle

    DEFF Research Database (Denmark)

    Suetta, Charlotte Arneboe; Frandsen, Ulrik; Mackey, Abigail L

    2013-01-01

    Recovery of skeletal muscle mass from immobilisation-induced atrophy is faster in young than older individuals, yet the cellular mechanisms remain unknown. We examined the cellular and molecular regulation of muscle recovery in young and old human subjects subsequent to 2 weeks of immobility...... expression analysis of key growth and transcription factors associated with local skeletal muscle milieu were performed after 2 weeks immobility (Imm) and following 3 days (+3d) and 4 weeks (+4wks) of re-training. OM demonstrated no detectable gains in MFA (VL muscle) and no increases in number of Pax7......-induced muscle atrophy. Re-training consisted of 4 weeks of supervised resistive exercise in 9 older (OM: 67.3yrs, range 61-74) and 11 young (YM: 24.4yrs, range 21-30) males. Measures of myofiber area (MFA), Pax7-positive satellite cells (SC) associated with type I and type II muscle fibres, as well as gene...

  6. Growth recovery in newly arrived international adoptees in Italy: relation to parenting stress.

    Science.gov (United States)

    Canzi, Elena; Rosnati, Rosa; Miller, Laurie C

    2018-04-12

    Following initial adversities, most internationally adopted children arrive with significant growth delays. Post-placement recovery has been widely documented, but research about risk or protective factors is still limited. Even less is known about the relationship between growth recovery and the quality of the family environment. 28 children in 26 adoptive families were involved in this longitudinal study. A comprehensive evaluation (including anthropometry, cognitive assessment [using the Leiter International Performance Scale-Revised], and completion by both parents of the Parenting Stress Index - Short Form) was done at arrival of the child, and 1 year later. Results evidenced that on arrival nearly half of children had growth measurements in the normal range. All the children showed a significant recovery in height and weight at 6 and 12 months post-placement. Initial and follow up growth measurements correlated strongly. Growth recovery was related to the age of the child at adoption, the proportion of time the child had resided in institutional care, as well as parenting stress. Results suggested that the higher the parenting stress experienced the less improvements occurred in children: for mothers for height and weight, for fathers for all the growth indicators. Results suggested the critical importance of family factor in influencing children's growth recovery.

  7. Repair in schizosaccharomyces pombe as measured by recovery from caffeine enhancement of radiation-induced lethality

    International Nuclear Information System (INIS)

    Gentner, N.E.; Werner, M.M.

    1975-01-01

    Inhibition of DNA repair by caffeine is manifested in Schizosaccharomyces pombe wild-type cells as an enhancement of UV- or γ-irradiation-induced lethality. The progress of DNA repair processes involving one or more caffeine-sensitive steps may be conveniently followed by measuring the concomitant decrease of this lethal enhancement effect. By measuring, during post-irradiation incubation, the ability of cells to overcome susceptibility to repair inhibition by caffeine, we have determined the time course and requirements for repair in S. pombe. Recovery began immediately and took 150-200 min after γ-irradiation and more than 500 min after UV-irradiation, for exposures which gave about 10% survival in the absence of caffeine. An incubation medium capable of supporting growth was required for caffeine-sensitive repair; no recovery occurred under liquid holding conditions. Survival curves after various recovery times indicated that a logarithmic phase cell population was homogeneous with respect to caffeine-sensitive repair of both UV- and γ-ray-induced damage. Recovery from caffeine inhibition was compared for cells of different physiological states (logarithmic and stationary phase); although the importance of the physiological state was not the same for the two types of radiation, recovery was found to occur more rapidly in the more radiation-resistant state, in each case. (orig.) [de

  8. UV-A enhanced growth and UV-B induced positive effects in the recovery of photochemical yield in Gracilaria lemaneiformis (Rhodophyta).

    Science.gov (United States)

    Xu, Juntian; Gao, Kunshan

    2010-09-02

    The effects of solar UV radiation (280-400 nm) on growth, quantum yield and pigmentation in Gracilaria lemaneiformis were investigated when the thalli were cultured under solar radiation with or without UV for a period of 15 days. Presence of UV-A (315-400 nm) enhanced the relative growth rate, while UV-B (218-315 nm) inhibited it. The positive effect of UV-A and negative effect of UV-B counteracted to result in an insignificant impact of UVR on growth. During the noon period, both UV-A and UV-B resulted in the decrease of maximum quantum yield (Fv/Fm), but UV-B aided in the recovery of the yield in the late afternoon, reflecting that UV-B might be used as a signal in photorepair processes. UV induced the accumulation of UV-absorbing compounds (UVAC) to defend against the harmful UVR. However, the accumulation of UVAC took a much longer time compared to that previously reported, which was probably due to the lower levels of solar radiation and water temperature in the early spring period. Unknown UV-absorbing compounds (UVAC), which peaked at 265 nm, probably the precursor of MAAs (UVAC(325)), accumulated under moderate levels of solar radiation and were transformed to MAAs under higher solar radiation. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Effect of exogenous IAA on radiation-induced seedling growth in rice

    International Nuclear Information System (INIS)

    Bhattacharya, Shakuntala; Shama Rao, H.K.

    1978-01-01

    Rice seeds of var. D-6-2-2 were used to ascertain the interaction between exogenous IAA and low and high dose of γ-rays on seedling growth. Low doses of radiation (1,2 kR) and low concentrations of IAA(5,10 ppm) stimulated growth when applied independently. However, they proved inhibitory in combination, indicating the possibility of native IAA involvement at optimum level in radiation-induced stimulation. At a higher dose (5 kR), higher concentrations of exogenous IAA (50,100 ppm) resulted in a significant growth recovery over control. These results suggest that low doses of ionizing radiations probably accelerate the IAA synthesizing system leading to stimulation. (author)

  10. Effects of growth hormone plus a hyperproteic diet on methotrexate-induced injury in rat intestines.

    Science.gov (United States)

    Ortega, M; Gomez-de-Segura, I A; Vázquez, I; López, J M; de Guevara, C L; De-Miguel, E

    2001-01-01

    The aim of this study was to determine whether growth hormone treatment reduces injury to the intestinal mucosa induced by methotrexate (MTX). Wistar rats with intestinal injury induced by methotrexate were treated with daily growth hormone, beginning 3 days before MTX treatment until 3 or 4 days after MTX administration. The rats were killed at 3 or 7 days post-MTX administration. The rats were fed with either a normoproteic diet or a hyperproteic diet. Body weight, mortality, bacterial translocation, intestinal morphometry, proliferation and apoptosis and blood somatostatin and IGF-1 were determined. Combined administration of growth hormone and a hyperproteic diet reduces MTX-induced mortality. This effect was accompanied by increased cell proliferation and decreased apoptosis within the crypt. Morphometric data showed complete recovery of the mucosa by day 7 post-MTX administration. These results indicate a synergistic protective action of growth hormone combined with a hyperproteic diet to MTX-induced injury.

  11. Skeletal muscle mass recovery from atrophy in IL-6 knockout mice.

    Science.gov (United States)

    Washington, T A; White, J P; Davis, J M; Wilson, L B; Lowe, L L; Sato, S; Carson, J A

    2011-08-01

    Skeletal muscle interleukin-6 (IL-6) expression is induced by continuous contraction, overload-induced hypertrophy and during muscle regeneration. The loss of IL-6 can alter skeletal muscle's growth and extracellular matrix remodelling response to overload-induced hypertrophy. Insulin-like growth factor-1 (IGF-1) gene expression and related signalling through Akt/mTOR is a critical regulator of muscle mass. The significance of IL-6 expression during the recovery from muscle atrophy is unclear. This study's purpose was to determine the effect of IL-6 loss on mouse gastrocnemius (GAS) muscle mass during recovery from hindlimb suspension (HS)-induced atrophy. Female C57BL/6 [wild type (WT)] and IL-6 knockout (IL-6 KO) mice at 10 weeks of age were assigned to control, HS or HS followed by normal cage ambulation groups. GAS muscle atrophy was induced by 10 days of HS. HS induced a 20% loss of GAS mass in both WT and IL-6 KO mice. HS+7 days of recovery restored WT GAS mass to cage-control values. GAS mass from IL-6 KO mice did not return to cage-control values until HS+14 days of recovery. Both IGF-1 mRNA expression and Akt/mTOR signalling were increased in WT muscle after 1 day of recovery. In IL-6 KO muscle, IGF-1 mRNA expression was decreased and Akt/mTOR signalling was not induced after 1 day of recovery. MyoD and myogenin mRNA expression were both induced in WT muscle after 1 day of recovery, but not in IL-6 KO muscle.   Muscle IL-6 expression appears important for the initial growth response during the recovery from disuse. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  12. Nickel toxicity on seed germination and growth in radish (Raphanus sativus) and its recovery using copper and boron.

    Science.gov (United States)

    Yadav, Shiv Shankar; Shukla, Rajni; Sharma, Y K

    2009-05-01

    Effect of various concentrations of nickel (100, 200, 500 and 1000 microM) and recovery treatments of boron (50 and 100 microM) and copper (15 and 75 microM) each with 200 microM and 500 microM of nickel on germination, growth, biomass, chlorophyll, carotenoids, pheophytin, amylase, protein, sugar as well as activity of catalase and peroxidase were studied in radish (Raphanus sativus cv. Early menu) seedlings. Nickel treatments caused a considerable reduction in germination percentage, growth and biomass. The different pigments were also decreased with nickel treatments. However boron addition with nickel recovered the negative effect on pigment contents. Among biochemical estimations, amylase activity and total proteins were found to be reduced in nickel treatments. Peroxidase and catalase activity were induced other than higher total sugar with nickel treatments. The combination of nickel with boron resulted into increased protein contents. This combination also reduced the catalase and peroxidase activity. The influence of nickel with copper failed to produce significant recovery except 200 microM nickel in combination with 15 microM copper with regard to catalase and peroxidase activity. The effect of nickel on hydrolyzing enzyme amylase was observed to be inhibitory resulting into poor germination followed by poor seedlings growth. The stress protecting enzymes peroxidase and catalase seem to be induced under the influence of nickel, and providing protection to the seedlings. The application of boron with nickel showed improved germination and growth. The level of catalase and peroxidase were found to be significantly reduced showing normal growth and biomass of seedlings.

  13. Effect of aging on GHRF-induced growth hormone release from anterior pituitary cells in primary culture

    International Nuclear Information System (INIS)

    Spik, K.W.; Boyd, R.L.; Sonntag, W.E.

    1991-01-01

    Five criteria were developed to validate the primary cell culture model for comparison of GRF-induced release of growth hormone in pituitary tissue from aging animals. Pituitaries from young (5-mo), middle-aged (14-mo), and old (24-mo) male Fischer 344 rats were dispersed using either trypsin/trypsin inhibitor or dispase and compared with respect to the number of pituitary cells recovered, cell viability, 3H-leucine incorporation into total protein, time course for recovery of optimal response to GRF, and the dose-relationship for GRF-induced release of growth hormone 2, 4, and 6 days after dispersal. Results indicated that direct comparison of cellular responses between tissues from young, middle-aged, and old rats in primary cell culture is confounded by variations in time for recovery of optimal responses, the effects of the enzymes used for dispersal, and the methods used to express the data

  14. Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise.

    Science.gov (United States)

    Kraemer, William J; Ratamess, Nicholas A; Nindl, Bradley C

    2017-03-01

    The complexity and redundancy of the endocrine pathways during recovery related to anabolic function in the body belie an oversimplistic approach to its study. The purpose of this review is to examine the role of resistance exercise (RE) on the recovery responses of three major anabolic hormones, testosterone, growth hormone(s), and insulin-like growth factor 1. Each hormone has a complexity related to differential pathways of action as well as interactions with binding proteins and receptor interactions. Testosterone is the primary anabolic hormone, and its concentration changes during the recovery period depending on the upregulation or downregulation of the androgen receptor. Multiple tissues beyond skeletal muscle are targeted under hormonal control and play critical roles in metabolism and physiological function. Growth hormone (GH) demonstrates differential increases in recovery with RE based on the type of GH being assayed and workout being used. IGF-1 shows variable increases in recovery with RE and is intimately linked to a host of binding proteins that are essential to its integrative actions and mediating targeting effects. The RE stress is related to recruitment of muscle tissue with the glandular release of hormones as signals to target tissues to support homeostatic mechanisms for metabolism and tissue repair during the recovery process. Anabolic hormones play a crucial role in the body's response to metabolism, repair, and adaptive capabilities especially in response to anabolic-type RE. Changes of these hormones following RE during recovery in the circulatory biocompartment of blood are reflective of the many mechanisms of action that are in play in the repair and recovery process. Copyright © 2017 the American Physiological Society.

  15. Economic Recovery: Sustaining U.S. Economic Growth in a Post-Crisis Economy

    Science.gov (United States)

    2010-07-22

    Mankiw , Principles of Economics (Ft. Worth, Dryden Press, 1998), p556, and Robert J. Barro, “Are Government Bonds Net Wealth?” Journal of Political...CRS Report for Congress Prepared for Members and Committees of Congress Economic Recovery: Sustaining U.S. Economic Growth in a Post...2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Economic Recovery: Sustaining U.S. Economic Growth in a Post

  16. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    Science.gov (United States)

    Kitamura, Kazuya; Fujiyoshi, Kanehiro; Yamane, Jun-Ichi; Toyota, Fumika; Hikishima, Keigo; Nomura, Tatsuji; Funakoshi, Hiroshi; Nakamura, Toshikazu; Aoki, Masashi; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya

    2011-01-01

    Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  17. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Kazuya Kitamura

    Full Text Available Many therapeutic interventions for spinal cord injury (SCI using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF, which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  18. Role of vascular endothelial growth factor and other growth factors in post-stroke recovery

    Directory of Open Access Journals (Sweden)

    Tanu Talwar

    2014-01-01

    Full Text Available Stroke is a major health problem world-wide and its burden has been rising in last few decades. Until now tissue plasminogen activator is only approved treatment for stroke. Angiogenesis plays a vital role for striatal neurogenesis after stroke. Administration of various growth factors in an early post ischemic phase, stimulate both angiogenesis and neurogenesis and lead to improved functional recovery after stroke. However vascular endothelial growth factors (VEGF is the most potent angiogenic factor for neurovascularization and neurogenesis in ischemic injury can be modulated in different ways and thus can be used as therapy in stroke. In response to the ischemic injury VEGF is released by endothelial cells through natural mechanism and leads to angiogenesis and vascularization. This release can also be up regulated by exogenous administration of Mesenchymal stem cells, by various physical therapy regimes and electroacupuncture, which further potentiate the efficacy of VEGF as therapy in post stroke recovery. Recent published literature was searched using PubMed and Google for the article reporting on methods of up regulation of VEGF and therapeutic potential of growth factors in stroke.

  19. The Growth of Sea cucumber Stichopus herrmanni After Transverse Induced Fission in Two and Three Fission Plane

    Directory of Open Access Journals (Sweden)

    Retno Hartati

    2016-06-01

    Full Text Available Transverse induced fission proven could be done in Teripang Tril, Stichopus herrmanni. This present works aimed to analyze wound recovery, regeneration period and growth of Teripang Trill  after asexual reproduction by fission using two and three fission plane. Observations were made every day until the sea cucumber body separated into two or more (depending on treatment and reared for 16 weeks.  The results showed that there are differences in wound recovery, regeneration period and growth of S. herrmanni depend on their different fission plane. The wound recovery and regeneration period (days of anterior, middle and posterior individu S. herrmanni resulted from two and three fission plane were varied but the two fission plane the anterior individu recover for longer period than posterior part and  the wound recover process in both end for thee fission plane was same. Average growth of anterior and posterior fragment were longer for two fission plane than three fission plane.  The middle fragment (M1 and M2 both fission plane was able to grow but very low.  It showed that three fission plane gave very slow growth in every fragment of the body. Keywords: growth, post-fission, fission plane, Stichopus herrmanni

  20. Limits of recovery against slip-induced falls while walking.

    Science.gov (United States)

    Yang, Feng; Bhatt, Tanvi; Pai, Yi-Chung

    2011-10-13

    Slip-induced falls in gait often have devastating consequences. The purposes of this study were 1) to select the determinants that can best discriminate the outcomes (recoveries or falls) of an unannounced slip induced in gait (and to find their corresponding threshold, i.e., the limits of recovery, which can clearly separate these two outcomes), and 2) to verify these results in a subset of repeated-slip trials. Based on the data collected from 69 young subjects during a slip induced in gait, nine different ways of combining the center of mass (COM) stability, the hip height, and its vertical velocity were investigated with the aid of logistic regression. The results revealed that the COM stability (s) and limb support (represented by the quotient of hip vertical velocity to hip height, S(hip)) recorded at the instant immediately prior to the recovery step touchdown were sufficiently sensitive to account for all (100%) variance in falls, and specific enough to account for nearly all (98.3%) variability in recoveries. This boundary (S(hip)=-0.22s-0.25), which quantifies the risk of falls in the stability-limb support quotient (s-S(hip)) domain, was fully verified using second-slip and third-slip trials (n=76) with classification of falls at 100% and recoveries at 98.6%. The severity of an actual fall is likely to be greater further below the boundary, while the likelihood of a fall diminishes above it. Finally, the slope of the boundary also indicates the tradeoff between the stability and limb support, whereby high stability can compensate for the insufficiency in limb support, or vice versa. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Effect of pH on Thermoanaerobacterium thermosaccharolyticum DSM 571 growth, spore heat resistance and recovery.

    Science.gov (United States)

    Mtimet, Narjes; Guégan, Stéphanie; Durand, Lucile; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2016-05-01

    Thermophilic spore-forming bacteria are potential contaminants in several industrial sectors involving high temperatures (40-65 °C) in the manufacturing process. Among those thermophilic spore-forming bacteria, Thermoanaerobacterium thermosaccharolyticum, called "the swelling canned food spoiler", has generated interest over the last decade in the food sector. The aim of this study was to investigate and to model pH effect on growth, heat resistance and recovery abilities after a heat-treatment of T. thermosaccharolyticum DSM 571. Growth and sporulation were conducted on reinforced clostridium media and liver broth respectively. The highest spore heat resistances and the greatest recovery ability after a heat-treatment were obtained at pH condition allowing maximal growth rate. Growth and sporulation boundaries were estimated, then models using growth limits as main parameters were extended to describe and quantify the effect of pH on recovery of injured spores after a heat-treatment. So, cardinal values were used as a single set of parameters to describe growth, sporulation and recovery abilities. Besides, this work suggests that T. thermosaccharolyticum preserve its ability for germination and outgrowth after a heat-treatment at a low pH where other high resistant spore-forming bacteria like Geobacillus stearothermophilus are unable to grow. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Growth factor involvement in tension-induced skeletal muscle growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  3. On the mechanism of rapid postirradiation recovery of yeast

    International Nuclear Information System (INIS)

    Glazunov, A.V.; Kapul'tsevich, Yu.G.

    1983-01-01

    Rapid postirradiation recovery of diploid yeast Saccharomyces cerevisiae is equally effective both in water and in a liquid nutrition medium. In the haploid strains, rapid recovery occurs more readily in the log phase than in the stationary phase of growth. In the diploid strains, rapid recovery is more effective in the log phase than in the stationary phase. Rapid recovery of yeast does not require an additional protein synthesis. Damages induced by UV-light are not sub ected to rapid recovery

  4. Incremental natural gas resources through infield reserve growth/secondary natural gas recovery

    Energy Technology Data Exchange (ETDEWEB)

    Finley, R.J.; Levey, R.A.; Hardage, B.A.

    1993-12-31

    The primary objective of the Infield Reserve Growth/Secondary Natural Gas Recovery (SGR) project is to develop, test, and verify technologies and methodologies with near- to midterm potential for maximizing the recovery of natural gasfrom conventional reservoirs in known fields. Additional technical and technology transfer objectives of the SGR project include: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas gulf coast basin as a natural laboratory for developing concepts and testing applications to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to a wide array of natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow units and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify incremental, or secondary, gas.

  5. Growth recovery lines are more common in infants at high vs. low risk for abuse

    International Nuclear Information System (INIS)

    Zapala, Matthew A.; Tsai, Andy; Kleinman, Paul K.

    2016-01-01

    Growth recovery lines, also known as growth arrest lines, are transverse radiodense metaphyseal bands that develop due to a temporary arrest of endochondral ossification caused by local or systemic insults. To determine if growth recovery lines are more common in infants at high risk versus low risk for abuse. Reports of American College of Radiology compliant skeletal surveys (1999-2013) were reviewed with clinical records. Infants at low risk for abuse had a skull fracture without significant intracranial injury, history of a fall and clinical determination of low risk (child protection team/social work assessment). Infants at high risk had significant intracranial injury, retinal hemorrhages, other skeletal injuries and clinical determination of high risk. There were 52 low-risk infants (mean: 4.7 months, range: 0.4-12 months) and 21 high-risk infants (mean: 4.2 months, range: 0.8-9.1 months). Two blinded radiologists independently evaluated the skeletal survey radiographs of the knees/lower legs for the presence of at least one growth recovery line. When growth recovery lines are scored as probably present or definitely present, their prevalence in the low-risk group was 38% (standard deviation [SD] = 8%; reader 1 = 17/52, reader 2 = 23/52) vs. 71% (SD = 7%; reader 1 = 16/21, reader 2 = 14/21) in the high-risk group (P < 0.001; odds ratio 4.0, 95% CI: 1.7-9.5). Growth recovery lines are encountered at a significantly higher rate in infants at high risk vs. low risk for abuse. This suggests that abused infants are prone to a temporary disturbance in endochondral ossification as a result of episodic physiological stresses. (orig.)

  6. Growth, development, and fertilizer-15N recovery by the coffee plant

    International Nuclear Information System (INIS)

    Fenilli, Tatiele Anete Bergamo; Reichardt, Klaus; Bacchi, Osny Oliveira Santos; Dourado-Neto, Durval; Favarin, Jose Laercio; Trivelim, Paulo Cesar Ocheuze; Costa, Flavio Murilo Pereira da

    2007-01-01

    The relationship between growth and fertilizer nitrogen recovery by perennial crops such as coffee is poorly understood and improved understanding of such relations is important for the establishment of rational crop management practices. In order to characterize the growth of a typical coffee crop in Brazil and quantify the recovery of 15 N labeled ammonium sulfate, and improve information for fertilizer management practices this study presents results for two consecutive cropping years, fertilized with 280 and 350 kg ha -1 of N, respectively, applied in four splittings, using five replicates. Shoot dry matter accumulation was evaluated every 60 days, separating plants into branches, leaves and fruits. Labeled sub-plots were used to evaluate N-total and 15 N abundance by mass spectrometry. During the first year the aerial part reached a recovery of 71% of the fertilizer N applied up to February, but this value was reduced to 34% at harvest and 19% at the beginning of the next flowering period due to leaf fall and fruit export. For the second year the aerial part absorbed 36% of the fertilizer N up to March, 47% up to harvest and 19% up to the beginning of the next flowering period. The splitting into four applications of the used fertilizer rates was adequate for the requirements of the crop at these growth stages of the coffee crop. (author)

  7. The recovery of bladder epithelial hyperplasia caused by a melamine diet-induced bladder calculus in mice.

    Science.gov (United States)

    Sun, Ying; Jiang, Yi-Na; Xu, Chang-Fu; Du, Yun-Xia; Zhang, Jiao-Jiao; Yan, Yang; Gao, Xiao-Li

    2014-02-01

    Applying a model of bladder epithelial hyperplasia (BEH) caused by melamine-induced bladder calculus (BC), the recovery of BEH after melamine withdrawal was investigated. One experiment, comprising untreated, melamine and recovery groups, was conducted in Balb/c mice. Each group included 4 subgroups. Mice were fed normal-diet in untreated or a melamine-diet in other groups. The melamine-diet was then substituted with normal-diet in recovery group. Both of BC and BEH were observed after 14 and 56 days of melamine-diet. The BC is relatively uniform at the same melamine-diet durations. The BEH was diffuse with many mitotic figures, 4-7 rows of nuclei, and well-defined umbrella/intermediate cells. No marked differences in BEH degree were observed in the two different melamine-diet durations. On 4-42 days after melamine withdrawal, BC was not found, as the progressive regression with complete regression of BEH was observed, along with well-defined ageing/apoptotic cells in the superficial regions of BEH regression tissue. Conclusion, the melamine-induced BEH is relatively uniform, may be self-limiting in rows of nuclei, and can return to normal. Melamine withdrawal duration is critical for the BEH regression. Tissue of the BEH and its regression is ideal for exploring the renewal as well as growth biology of mammalian urothelium. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Growth and development in internationally adopted children: extent and timing of recovery after early adversity.

    Science.gov (United States)

    Palacios, Jesús; Román, Maite; Camacho, Carlos

    2011-03-01

    Following initial adversity, internationally adopted children arrive with significant growth and developmental delays. Post-placement recovery has been widely documented, but little has been known about its extent and timing several years after placement and in children with diverse pre-adoptive experiences. A total of 289 children adopted from six countries into Spanish families were studied. Growth and psychological development were considered on arrival and after an average of over 3 years. Growth and developmental initial delays affected a substantial percentage of the children. Post-adoption recovery seemed quicker and more complete in weight and height than in head circumference and psychological development. Initial and later values were correlated, but growth-development relation on arrival subsequently lost significance. Most of the catch-up happened in the first three post-adoption years. Adoption offers an impressive opportunity for recovery after previous adversity, although continuity between past and present persists. The improvement is more marked in some areas than in others and more substantial in the first post-adoption years. © 2010 Blackwell Publishing Ltd.

  9. Daptomycin-Induced Acute Eosinophilic Pneumonia: Late Onset and Quick Recovery

    Directory of Open Access Journals (Sweden)

    Mohamad Rachid

    2017-01-01

    Full Text Available Background. Daptomycin is a cyclic lipopeptide antibiotic that provides great coverage for gram positive cocci. From the early years of daptomycin use, concerns were raised regarding the pulmonary side effects of daptomycin and potential development of acute eosinophilic pneumonia (AEP secondary to daptomycin therapy. Discussion. AEP could be idiopathic or induced by drugs or toxins. It is a distinct entity from atopic diseases and autoimmune, parasitic, or fungal infections that can also cause pulmonary eosinophilia. Multiple medications are associated with acute eosinophilic pneumonia. Multiple cases of daptomycin-induced AEP have been reported in the literature. Diagnosis of AEP is based on clinical history, laboratory tests, and radiographic studies. Obtaining bronchoalveolar lavage or lung biopsy is needed to confirm the diagnosis. Timing of the drug use and clinical presentation is crucial in the diagnosis of drug-induced AEP. Discontinuation of the offending drug and systemic corticosteroids are the mainstay treatment with great outcomes and recovery. Conclusion. We present a case of AEP caused by daptomycin, with complete recovery after discontinuation of daptomycin and administration of steroids. The patient had AEP after almost 6 weeks of daptomycin therapy which has never been reported in literature and our patient achieved complete recovery with appropriate management.

  10. Growth recovery and faltering through early adolescence in low- and middle-income countries: Determinants and implications for cognitive development.

    Science.gov (United States)

    Georgiadis, Andreas; Benny, Liza; Duc, Le Thuc; Galab, Sheikh; Reddy, Prudhvikar; Woldehanna, Tassew

    2017-04-01

    Child chronic undernutrition, as measured by stunting, is prevalent in low- and middle-income countries and is among the major threats to child development. While stunting and its implications for cognitive development have been considered irreversible beyond early childhood there is a lack of consensus in the literature on this, as there is some evidence of recovery from stunting and that this recovery may be associated with improvements in cognition. Less is known however, about the drivers of growth recovery and the aspects of recovery linked to cognitive development. In this paper we investigate the factors associated with growth recovery and faltering through age 12 years and the implications of the incidence, timing, and persistence of post-infancy recovery from stunting for cognitive development using longitudinal data from Ethiopia, India, Peru, and Vietnam. We find that the factors most systematically associated with accelerated growth both before and after early childhood and across countries include mother's height, household living standards and shocks, community wages, food prices, and garbage collection. Our results suggest that post-infancy recovery from stunting is more likely to be systematically associated with higher achievement scores across countries when it is persistent and that associations between growth trajectories and cognitive achievement in middle childhood do not persist through early adolescence across countries. Overall, our findings indicate that growth after early childhood is responsive to changes in the household and community environments and that growth promotion after early childhood may yield improvements in child cognitive development. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Long-term divergent tidal flat benthic community recovery following hypoxia-induced mortality

    NARCIS (Netherlands)

    Colen, van C.; Montserrat, F.; Vincx, M.; Herman, P.M.J.; Ysebaert, T.; Degraer, S.

    2010-01-01

    Macrobenthos recovery after hypoxia-induced mass mortality was assessed in an estuarine tidal mudflat during 3 years. During the first 2 years, a Pearson-Rosenberg type of community recovery took place along with the improving bottom water oxygen conditions. After 3 months, spionid polychaetes

  12. Modeling long recovery early events (LOREs) produced by lightning-induced ionization of the nighttime upper mesosphere

    Science.gov (United States)

    Kotovsky, D. A.; Moore, R. C.

    2017-07-01

    We present results of a cylindrically symmetric, coupled electrodynamic, and photochemical model which simulates diffuse ionization of the middle atmosphere induced by strong lightning discharges (peak currents >150 kA). Scattering of subionospherically propagating, very low frequency radio waves is then evaluated using the Long-Wave Propagation Capability code. Some modeled sprite halos exhibit continued electron density growth up to timescales of seconds due to O- detachment, though it is not yet clear how this might relate to the slower onset durations (>20 ms) of some early VLF events. Modeled electron density enhancements in sprite halos, capable of strong VLF scattering, can persist for long periods of time (greater than hundreds of seconds) even at lower altitudes where their recovery is initially controlled by fast attachment processes. Consequently, our modeling results indicate that both typical recovery (20 to 240 s) and long recovery (LOREs, >300 s) VLF scattering events can be explained by scattering from conductivity changes associated with sprite halos. In contrast, modeled scattered fields resulting from elve-associated conductivity changes, though exhibiting long recovery times, are too weak to sufficiently explain typical LORE observations. Theoretical scattering from structured ionization events (e.g., sprites columns and gigantic jets) is not considered in this work.

  13. Growth Factors and Tension-Induced Skeletal Muscle Growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  14. Theophylline-induced respiratory recovery following cervical spinal cord hemisection is augmented by serotonin 2 receptor stimulation.

    Science.gov (United States)

    Basura, Gregory J; Nantwi, Kwaku D; Goshgarian, Harry G

    2002-11-22

    Cervical spinal cord hemisection leads to a disruption of bulbospinal innervation of phrenic motoneurons resulting in paralysis of the ipsilateral hemidiaphragm. We have previously demonstrated separate therapeutic roles for theophylline, and more recently serotonin (5-HT) as modulators to phrenic nerve motor recovery; mechanisms that likely occur via adenosine A1 and 5-HT2 receptors, respectively. The present study was designed to specifically determine if concurrent stimulation of 5-HT2 receptors may enhance motor recovery induced by theophylline alone. Adult female rats (250-350 g; n=7 per group) received a left cervical (C2) hemisection that resulted in paralysis of the ipsilateral hemidiaphragm. Twenty-four hours later rats were given systemic theophylline (15 mg/kg, i.v.), resulting in burst recovery in the ipsilateral phrenic nerve. Theophylline-induced recovery was enhanced with the 5-HT2A/2C receptor agonist, (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI; 1.0 mg/kg). DOI-evoked augmentation of theophylline-induced recovery was attenuated following subsequent injection of the 5-HT2 receptor antagonist, ketanserin (2.0 mg/kg). In a separate group, rats were pretreated with ketanserin, which did not prevent subsequent theophylline-induced respiratory recovery. However, pretreatment with ketanserin did prevent DOI-induced augmentation of the theophylline-evoked phrenic nerve burst recovery. Lastly, using immunocytochemistry and in situ hybridization, we showed for the first time a positive co-localization of adenosine A1 receptor mRNA and immunoreactivity with phrenic motoneurons of the cervical ventral horns. Taken together, the results of the present study suggest that theophylline may induce motor recovery likely at adenosine A1 receptors located at the level of the spinal cord, and the concurrent stimulation of converging 5-HT2 receptors may augment the response.

  15. Recovery from prolonged deep rocuronium-induced neuromuscular blockade: A randomized comparison of sugammadex reversal with spontaneous recovery.

    Science.gov (United States)

    Rahe-Meyer, N; Berger, C; Wittmann, M; Solomon, C; Abels, E A M; Rietbergen, H; Reuter, D A

    2015-07-01

    Deep neuromuscular blockade (NMB) may not always be maintained to the end of surgery and the depth of block may be allowed to gradually diminish over time, particularly if reversal of NMB is not routinely performed. The current study aimed to assess recovery from deep rocuronium-induced NMB with sugammadex compared with placebo, provide data regarding the extent of residual blockade after deep rocuronium-induced NMB (placebo group), and to determine whether complete and reliable recovery could be provided by sugammadex (sugammadex group). This was a randomized, placebo-controlled, safety-assessor-blinded study in adult patients of American Society of Anesthesiologists Class I to III. Patients with clinically relevant kidney or liver insufficiency were excluded. Anesthesia was administered as routinely practiced at each study site. Rocuronium 0.6 mg/kg was administered for intubation, with maintenance doses of 0.1-0.2 mg/kg as needed. After the last rocuronium dose, at deep NMB (target depth 1-2 post-tetanic counts), patients received a single dose of sugammadex 4.0 mg/kg or placebo as randomized. The primary endpoint was time from sugammadex or placebo administration to recovery of the train-of-four (TOF) ratio to 0.9. Safety was assessed through monitoring of adverse events, vital signs and physical examination. Patients were also assessed for evidence of residual or recurrence of NMB. With this design, the study will provide data regarding the extent of residual blockade under these conditions (placebo group), and determine whether complete and reliable recovery could be provided by sugammadex (sugammadex group). Recovery to a TOF ratio of ≥ 0.9 with sugammadex was significantly faster (~ 40 times) than spontaneous recovery: geometric mean (95 % confidence interval) times were 2.2 (1.9-2.5) and 89.8 (80.1-100.7) min, respectively (p sugammadex, with median time to recovery > 1.5 h in the placebo group and one patient taking 4.8 h to achieve a

  16. Chinese Milk Vetch Improves Plant Growth, Development and 15N Recovery in the Rice-Based Rotation System of South China.

    Science.gov (United States)

    Xie, Zhijian; He, Yaqin; Tu, Shuxin; Xu, Changxu; Liu, Guangrong; Wang, Huimin; Cao, Weidong; Liu, Hui

    2017-06-15

    Chinese milk vetch (CMV) is vital for agriculture and environment in China. A pot experiment combined with 15 N labeling (including three treatments: control, no fertilizer N and CMV; 15 N-labeled urea alone, 15 NU; substituting partial 15 NU with CMV, 15 NU-M) was conducted to evaluate the impact of CMV on plant growth, development and 15 NU recovery in rice-based rotation system. The 15 NU-M mitigated oxidative damage by increasing antioxidant enzymes activities and chlorophyll content while decreased malondialdehyde content in rice root and shoot, increased the biomass, total N and 15 N uptake of plant shoots by 8%, 12% and 39% respectively, thus inducing a noticeable increase of annual 15 N recovery by 77% versus 15 NU alone. Remarkable increases in soil NH 4 + and populations of bacteria, actinomycetes and azotobacter were obtained in legume-rice rotation system while an adverse result was observed in soil NO 3 - content versus fallow-rice. CMV as green manure significantly increased the fungal population which was decreased with cultivating CMV as cover crop. Therefore, including legume cover crop in rice-based rotation system improves plant growth and development, annual N conservation and recovery probably by altering soil nitrogen forms plus ameliorating soil microbial communities and antioxidant system which alleviates oxidative damages in plants.

  17. Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings

    Directory of Open Access Journals (Sweden)

    Daoqian eChen

    2016-01-01

    Full Text Available Non-irrigated crops in temperate climates and irrigated crops in arid climates are subjected to continuous cycles of water stress and re-watering. Thus, fast and efficient recovery from water stress may be among the key determinants of plant drought adaptation. The present study was designed to comparatively analyze the roles of drought resistance and drought recovery in drought adaptation and to investigate the physiological basis of genotypic variation in drought adaptation in maize (Zea mays seedlings. As the seedlings behavior in growth associate with yield under drought, it could partly reflect the potential of drought adaptability. Growth and physiological responses to progressive drought stress and recovery were observed in seedlings of ten maize lines. The results showed that drought adaptability is closely related to drought recovery (r = 0.714**, but not to drought resistance (r = 0.332. Drought induced decreases in leaf water content, water potential, osmotic potential, gas exchange parameters, chlorophyll content, Fv/Fm and nitrogen content, and increased H2O2 accumulation and lipid peroxidation. After recovery, most of these physiological parameters rapidly returned to normal levels. The physiological responses varied between lines. Further correlation analysis indicated that the physiological bases of drought resistance and drought recovery are definitely different, and that maintaining higher chlorophyll content (r = 0.874*** and Fv/Fm (r = 0.626* under drought stress contributes to drought recovery. Our results suggest that both drought resistance and recovery are key determinants of plant drought adaptation, and that drought recovery may play a more important role than previously thought. In addition, leaf water potential, chlorophyll content and Fv/Fm could be used as efficient reference indicators in the selection of drought-adaptive genotypes.

  18. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    International Nuclear Information System (INIS)

    Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo; Endo, Yuko; Dang, Nam H.; Morimoto, Chikao

    2010-01-01

    Research highlights: → TNF-α or IL-1β induces EC proliferation with reduction of CD26 expression. → CD26 siRNA or DPP-4 inhibition enhances TNF-α or IL-1β-induced EC proliferation. → Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-α or IL-1β. → Capillary formation induced by TNF-α or IL-1β is enahced in the CD26 -/- mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is a key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.

  19. Emittance growth caused by bends in the Los Alamos free-electron laser energy recovery experiment

    International Nuclear Information System (INIS)

    Carlsten, B.E.

    1987-01-01

    Experimentally transporting the beam from the wiggler to the decelerators in the energy recovery experiment (ERX) at the Los Alamos National Laboratory free-electron laser was more difficult than expected because of the large initial emittance in the beam. This emittance was apparently caused in an early 60 0 achromatic bend. To get this beam through subsequent bends without wall interception, the quadrupole focusing had to be changed from the design amount; as a result, the emittance grew further. This paper discusses various mechanisms for this emittance growth in the 60 0 bend, including effects caused by path changes in the bend resulting from wake-field-induced energy changes of particles in the beam and examines emittance filters, ranging from a simple aperture near a beam crossover to more complicated telescope schemes designed to regain the original emittance before the 60 0 bend

  20. Flow cytometric detection of growth factor receptors in autografts and analysis of growth factor concentrations in autologous stem cell transplantation: possible significance for platelet recovery

    DEFF Research Database (Denmark)

    Schiødt, I; Jensen, Charlotte Harken; Kjaersgaard, E

    2000-01-01

    In order to improve prediction of hematopoietic recovery, we conducted a pilot study, analyzing the significance of growth factor receptor expression in autografts as well as endogenous growth factor levels in blood before, during and after stem cell transplantation. Three early acting (stem cell......-CSF receptor positive, CD34+ progenitor cells were measured by flow cytometry in the leukapheresis product used for transplantation in a subgroup of 15 patients (NHL, n = 8, MM, n = 7). Three factors were identified as having a significant impact on platelet recovery. First, the level of Tpo in blood...... at the time of the nadir (day +7). Second, the percentage of re-infused thrombopoietin receptor positive progenitors and finally, the percentage of Flt3 receptor positive progenitors. On the other hand, none of the analyzed factors significantly predicted myeloid or erythroid recovery. These findings need...

  1. Optimization of induced crystallization reaction in a novel process of nutrients removal coupled with phosphorus recovery from domestic wastewater

    Directory of Open Access Journals (Sweden)

    Zou Haiming

    2017-12-01

    Full Text Available Phosphorus removal and recovery from domestic wastewater is urgent nowadays. A novel process of nutrients removal coupled with phosphorus recovery from domestic sewage was proposed and optimization of induced crystallization reaction was performed in this study. The results showed that 92.3% of phosphorus recovery via induced Hydroxyapatite crystallization was achieved at the optimum process parameters: reaction time of 80 min, seed crystal loads of 60 g/L, pH of 8.5, Ca/P mole ratio of 2.0 and 4.0 L/min aeration rate when the PO43--P concentration was 10 mg/L in the influent, displaying an excellent phosphorus recovery performance. Importantly, it was found that the effect of reaction temperature on induced Hydroxyapatite crystallization was slight, thus favoring practical application of phosphorus recovery method described in this study. From these results, the proposed method of induced HAP crystallization to recover phosphorus combined with nutrients removal can be an economical and effective technology, probably favoring the water pollution control and phosphate rock recycle.

  2. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  3. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-01-01

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  4. Mechanisms of radiation induced creep and growth

    International Nuclear Information System (INIS)

    Bullough, R.; Wood, M.H.

    1980-01-01

    Irradiation creep occurs primarily because the applied stress causes the evolving microstructure to respond in an anisotropic fashion to the interstitial and vacancy fluxes. On the other hand, irradiation growth requires the response to be naturally anisotropic in the absence of applied stress. Four fundamental mechanisms of irradiation creep have been conjectured: stress induced preferred absorption (SIPA) of the point defects on the dislocations, stress induced preferred nucleation (SIPN) of point defects in planar aggregates (edge dislocation loops), stress induced climb and glide (SICG) of the dislocation network and stress induced gas driven interstitial deposition (SIGD). These mechanisms will be briefly outlined and commented upon. The contributions made by these mechanisms to the total strain are not, in general, mutually separable and also depend on the prevailing (and changing) microstructure during irradiation. The fundamental mechanism of irradiation growth will be discussed: it is believed to arise by the preferred condensation of point defects and climb of dislocation loops and network on certain crystallographic planes. The preferred absorption and nucleation is thus a consequence of natural crystallographic anisotropy and not due to any external stresses. Again the effectiveness of this mechanism depends on the prevailing microstructure in the material. In this connection will be particularly drawn to the significance of solute trapping, segregation at grain boundaries, dislocation bias for interstitials and transport parameters for an understanding of irradiation growth in materials like zirconium and its alloys; the relevance of recent simulation studies of growth in such materials using electrons to the growth under neutron irradiation will be discussed in detail and a consistent model of growth in these materials will be presented. (orig.)

  5. A comparison of test statistics for the recovery of rapid growth-based enumeration tests

    NARCIS (Netherlands)

    van den Heuvel, Edwin R.; IJzerman-Boon, Pieta C.

    This paper considers five test statistics for comparing the recovery of a rapid growth-based enumeration test with respect to the compendial microbiological method using a specific nonserial dilution experiment. The finite sample distributions of these test statistics are unknown, because they are

  6. Morphology-dependent photo-induced polarization recovery in ferroelectric thin films

    Science.gov (United States)

    Wang, J. Y.; Liu, G.; Sando, D.; Nagarajan, V.; Seidel, J.

    2017-08-01

    We investigate photo-induced ferroelectric domain switching in a series of Pb(Zr0.2Ti0.8)O3/La0.7Sr0.3MnO3 (PZT/LSMO) bilayer thin films with varying surface morphologies by piezoresponse force microscopy under light illumination. We demonstrate that reverse poled ferroelectric regions can be almost fully recovered under laser irradiation of the PZT layer and that the recovery process is dependent on the surface morphology on the nanometer scale. The recovery process is well described by the Kolmogorov-Avrami-Ishibashi model, and the evolution speed is controlled by light intensity, sample thickness, and initial write voltage. Our findings shed light on optical control of the domain structure in ferroelectric thin films with different surface morphologies.

  7. Fluoro-sorafenib (Regorafenib) effects on hepatoma cells: growth inhibition, quiescence and recovery

    Science.gov (United States)

    Carr, Brian I.; Cavallini, Aldo; Lippolis, Catia; D’Alessandro, Rosalba; Messa, Caterina; Refolo, Maria Grazia; Tafaro, Angela

    2015-01-01

    To evaluate the growth-inhibitory properties of the potent multi-kinase antagonist Regorafenib (Fluoro-Sorafenib), which was synthesized as a more potent Sorafenib, a Raf inhibitor and to determine whether similar mechanisms were involved, human hepatoma cell lines were grown in the presence or absence of Regorafanib and examined for growth inhibition. Western blots were performed for Raf targets, for apoptosis and autophagy. Regorafenib inhibited growth of human Hep3B, PLC/PRF/5 and HepG2 cells in a concentration- and time-dependent manner. Multiple signaling pathways were altered, including MAP kinases phospho-ERK and phospho-JNK and its target phospho-c-Jun. There was evidence for apoptosis by FACS, cleavage of caspases and increased Bax levels; as well as induction of autophagy, as judged by increased Beclin-1 and LC3 (II) levels. Prolonged drug exposure resulted in cell quiescence. Full growth recovery occurred after drug removal, unlike with doxorubicin chemotherapy. Regorafenib is a potent inhibitor of cell growth. Cells surviving Regorafenib treatment remain viable, but quiescent and capable of regrowth following drug removal. The reversibility of tumor cell growth suppression after drug removal may have clinical implications. PMID:22777740

  8. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy.

    Science.gov (United States)

    Takeda, Kohei; Tobushi, Hisaaki; Pieczyska, Elzbieta A

    2012-05-22

    If the shape memory alloy is subjected to the subloop loading under the stress-controlled condition, creep and creep recovery can appear based on the martensitic transformation. In the design of shape memory alloy elements, these deformation properties are important since the deflection of shape memory alloy elements can change under constant stress. The conditions for the progress of the martensitic transformation are discussed based on the kinetics of the martensitic transformation for the shape memory alloy. During loading under constant stress rate, temperature increases due to the stress-induced martensitic transformation. If stress is held constant during the martensitic transformation stage in the loading process, temperature decreases and the condition for the progress of the martensitic transformation is satisfied, resulting in the transformation-induced creep deformation. If stress is held constant during the reverse transformation stage in the unloading process, creep recovery appears due to the reverse transformation. The details for these thermomechanical properties are investigated experimentally for TiNi shape memory alloy, which is most widely used in practical applications. The volume fraction of the martensitic phase increases in proportion to an increase in creep strain.

  9. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition.

    Science.gov (United States)

    Yang, Zhong-Bao; He, Chunmei; Ma, Yanqi; Herde, Marco; Ding, Zhaojun

    2017-02-01

    Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Mifepristone inhibits MPA-and FGF2-induced mammary tumor growth but not FGF2-induced mammary hyperplasia

    Directory of Open Access Journals (Sweden)

    Juan P. Cerliani

    2010-12-01

    Full Text Available We have previously demonstrated a crosstalk between fibroblast growth factor 2 (FGF2 and progestins inducing experimental breast cancer growth. The aim of the present study was to compare the effects of FGF2 and of medroxyprogesterone acetate (MPA on the mouse mammary glands and to investigate whether the antiprogestin RU486 was able to reverse the MPA- or FGF2-induced effects on both, mammary gland and tumor growth. We demonstrate that FGF2 administered locally induced an intraductal hyperplasia that was not reverted by RU486, suggesting that FGF2-induced effects are progesterone receptor (PR-independent. However, MPA-induced paraductal hyperplasia was reverted by RU486 and a partial agonistic effect was observed in RU486-treated glands. Using C4-HD tumors which only grow in the presence of MPA, we showed that FGF2 administered intratumorally was able to stimulate tumor growth as MPA. The histology of FGF2-treated tumors showed different degrees of gland differentiation. RU486 inhibited both, MPA or FGF2 induced tumor growth. However, only complete regression was observed in MPA-treated tumors. Our results support the hypothesis that stromal FGF2 activates PR inducing hormone independent tumor growth.

  11. A ZnO nanowire-based photo-inverter with pulse-induced fast recovery.

    Science.gov (United States)

    Raza, Syed Raza Ali; Lee, Young Tack; Hosseini Shokouh, Seyed Hossein; Ha, Ryong; Choi, Heon-Jin; Im, Seongil

    2013-11-21

    We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output.

  12. Post-injury stretch promotes recovery in a rat model of muscle damage induced by lengthening contractions.

    Science.gov (United States)

    Mori, Tomohiro; Agata, Nobuhide; Itoh, Yuta; Inoue-Miyazu, Masumi; Mizumura, Kazue; Sokabe, Masahiro; Taguchi, Toru; Kawakami, Keisuke

    2017-06-30

    We investigated the cellular mechanisms and therapeutic effect of post-injury stretch on the recovery process from muscle injury induced by lengthening contractions (LC). One day after LC, a single 15-min bout of muscle stretch was applied at an intensity of 3 mNm. The maximal isometric torque was measured before and at 2-21 days after LC. The myofiber size was analyzed at 21 days after LC. Developmental myosin heavy chain-immunoreactive (dMHC-ir) cells, a marker of regenerating myofibers, were observed in the early recovery stage (2-5 days after LC). We observed that LC-induced injury markedly decreased isometric torque and myofiber size, which recovered faster in rats that underwent stretch than in rats that did not. Regenerating myofiber with dMHC-ir cells was observed earlier in rats that underwent stretch. These results indicate that post-injury stretch may facilitate the regeneration and early formation of new myofibers, thereby promoting structural and functional recovery from LC-induced muscle injury.

  13. Virtual nature environment with nature sound exposure induce stress recovery by enhanced parasympathetic activity

    DEFF Research Database (Denmark)

    Annerstedt, Matilda; Jönsson, Peter; Wallergård, Mattias

    2013-01-01

    . The group that recovered in virtual nature without sound and the control group displayed no particular autonomic activation or deactivation. The results demonstrate a potential mechanistic link between nature, the sounds of nature, and stress recovery, and suggest the potential importance of virtual reality......Experimental research on stress recovery in natural environments is limited, as is study of the effect of sounds of nature. After inducing stress by means of a virtual stress test, we explored physiological recovery in two different virtual natural environments (with and without exposure to sounds...... of nature) and in one control condition. Cardiovascular data and saliva cortisol were collected. Repeated ANOVA measurements indicated parasympathetic activation in the group subjected to sounds of nature in a virtual natural environment, suggesting enhanced stress recovery may occur in such surroundings...

  14. The Acute Effect of Local Vibration As a Recovery Modality from Exercise-Induced Increased Muscle Stiffness

    Directory of Open Access Journals (Sweden)

    Hervé Pournot, Jérémy Tindel, Rodolphe Testa, Laure Mathevon, Thomas Lapole

    2016-03-01

    Full Text Available Exercise involving eccentric muscle contractions is known to decrease range of motion and increase passive muscle stiffness. This study aimed at using ultrasound shear wave elastography to investigate acute changes in biceps brachii passive stiffness following intense barbell curl exercise involving both concentric and eccentric contractions. The effect of local vibration (LV as a recovery modality from exercise-induced increased stiffness was further investigated. Eleven subjects performed 4 bouts of 10 bilateral barbell curl movements at 70% of the one-rep maximal flexion force. An arm-to-arm comparison model was then used with one arm randomly assigned to the passive recovery condition and the other arm assigned to the LV recovery condition (10 min of 55-Hz vibration frequency and 0.9-mm amplitude. Biceps brachii shear elastic modulus measurements were performed prior to exercise (PRE, immediately after exercise (POST-EX and 5 min after the recovery period (POST-REC. Biceps brachii shear elastic modulus was significantly increased at POST-EX (+53 ± 48%; p < 0.001 and POST-REC (+31 ± 46%; p = 0.025 when compared to PRE. No differences were found between passive and LV recovery (p = 0.210. LV as a recovery strategy from exercise-induced increased muscle stiffness was not beneficial, probably due to an insufficient mechanical action of vibrations.

  15. Tyrosine requirement during the rapid catch-up growth phase of recovery from severe childhood undernutrition

    Science.gov (United States)

    The requirement for aromatic amino acids, during the rapid catch-up in weight phase of recovery from severe childhood under nutrition (SCU) is not clearly established. As a first step, the present study aimed to estimate the tyrosine requirement of children with SCU during the catch-up growth phase ...

  16. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Kelly, G.; Thomassen, D.G.

    1988-01-01

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  17. EFFECT OF MODIFIED CONSTRAINT INDUCED THERAPY ON UPPERLIMB FUNCTIONAL RECOVERY IN YOUNG STROKE SUBJECTS

    Directory of Open Access Journals (Sweden)

    Kiran Prakash Pappala

    2014-10-01

    Full Text Available Background: The aim of this study is to evaluate the effect of modified constraint induced therapy on upper limb functional recovery in young stroke subjects. Most of the stroke rehabilitation units following conventional rehabilitation methods for treatment of the stroke patients where these methods have been proved to be less useful especially in the young stroke subjects. Hence the purpose of this study is to see the effect of modified constraint induced therapy which is a task specific training method for upperlimb in young stroke subjects. Methods: Total of 40 young stroke subjects who is having minimal motor criterion and met other inclusion criteria were recruited from department of physiotherapy, g.s.l.general hospital. Pre and post intervention measures were taken using Wolf motor function test and Jebsen Taylor hand function test. Results: In this study had shown significant improvements in the modified constraint induced therapy group when compared to the conventional rehabilitation alone. P value between groups was < 0.05. Conclusion: In this study concludes that addition of 15 minutes modified constraint induced movement therapy to conventional physiotherapy is a useful adjunct in functional recovery of upper limb among young stroke subjects

  18. Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    H.S. El-Sheshtawy

    2015-06-01

    Full Text Available In this study, the bacterium Bacillus licheniformis has been isolated from oil reservoir; the ability of this bacterium to produce a biosurfactant was detected. Surface properties of the produced biosurfactant were confirmed by determining the emulsification power as well as surface and interfacial tension. The crude biosurfactant has been extracted from supernatant culture growth, and the yield of crude biosurfactant was about 1 g/l. Also, chemical structure of the produced biosurfactant was confirmed using FTIR analysis. Results revealed that, the emulsification power has been increased up to 96% and the surface tension decreased from 72 of distilled water to 36 mN/m after 72 h of incubation. The potential application of this bacterial species in microbial-enhanced oil recovery (MEOR was investigated. The percent of oil recovery was 16.6% upon application in a sand pack column designed to stimulate an oil recovery. It also showed antimicrobial activity against the growth of different strains of SRB (sulfate reducing bacteria. Results revealed that a complete inhibition of SRB growth using 1.0% crude biosurfactant is achieved after 3 h.

  19. Growth and physiological response of tomato plants to different periods of nitrogen starvation and recovery

    NARCIS (Netherlands)

    Martinez, V.; Amor, del F.M.; Marcelis, L.F.M.

    2005-01-01

    Young, vegetative-state tomato plants, starved of N for 1, 3 or 7 d, followed, in each case, by a 7-d recovery period with nutrient solution containing N, were examined. Relative growth rate (RGR), leaf photosynthesis and leaf expansion were reduced after only 1 d of N starvation.Tissue N

  20. Segregation of Spontaneous and Training Induced Recovery from Visual Field Defects in Subacute Stroke Patients

    Directory of Open Access Journals (Sweden)

    Douwe P. Bergsma

    2017-12-01

    Full Text Available Whether rehabilitation after stroke profits from an early start is difficult to establish as the contributions of spontaneous recovery and treatment are difficult to tease apart. Here, we use a novel training design to dissociate these components for visual rehabilitation of subacute stroke patients with visual field defects such as hemianopia. Visual discrimination training was started within 6 weeks after stroke in 17 patients. Spontaneous and training-induced recoveries were distinguished by training one-half of the defect for 8 weeks, while monitoring spontaneous recovery in the other (control half of the defect. Next, trained and control regions were swapped, and training continued for another 8 weeks. The same paradigm was also applied to seven chronic patients for whom spontaneous recovery can be excluded and changes in the control half of the defect point to a spillover effect of training. In both groups, field stability was assessed during a no-intervention period. Defect reduction was significantly greater in the trained part of the defect than in the simultaneously untrained part of the defect irrespective of training onset (p = 0.001. In subacute patients, training contributed about twice as much to their defect reduction as the spontaneous recovery. Goal Attainment Scores were significantly and positively correlated with the total defect reduction (p = 0.01, percentage increase reading speed was significantly and positively correlated with the defect reduction induced by training (epoch 1: p = 0.0044; epoch 2: p = 0.023. Visual training adds significantly to the spontaneous recovery of visual field defects, both during training in the early and the chronic stroke phase. However, field recovery as a result of training in this subacute phase was as large as in the chronic phase. This suggests that patients benefited primarily of early onset training by gaining access to a larger visual field sooner.

  1. Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis.

    Science.gov (United States)

    Halder, Sunil K; Beauchamp, R Daniel; Datta, Pran K

    2005-07-01

    Smad proteins play a key role in the intracellular signaling of the transforming growth factor beta (TGF-beta) superfamily of extracellular polypeptides that initiate signaling to regulate a wide variety of biological processes. The inhibitory Smad, Smad7, has been shown to function as intracellular antagonists of TGF-beta family signaling and is upregulated in several cancers. To determine the effect of Smad7-mediated blockade of TGF-beta signaling, we have stably expressed Smad7 in a TGF-beta-sensitive, well-differentiated, and non-tumorigenic cell line, FET, that was derived from human colon adenocarcinoma. Smad7 inhibits TGF-beta-induced transcriptional responses by blocking complex formation between Smad 2/3 and Smad4. While Smad7 has no effect on TGF-beta-induced activation of p38 MAPK and ERK, it blocks the phosphorylation of Akt by TGF-beta and enhances TGF-beta-induced phosphorylation of c-Jun. FET cells expressing Smad7 show anchorage-independent growth and enhance tumorigenicity in athymic nude mice. Smad7 blocks TGF-beta-induced growth inhibition by preventing TGF-beta-induced G1 arrest. Smad7 inhibits TGF-beta-mediated downregulation of c-Myc, CDK4, and Cyclin D1, and suppresses the expression of p21(Cip1). As a result, Smad7 inhibits TGF-beta-mediated downregulation of Rb phosphorylation. Furthermore, Smad7 inhibits the apoptosis of these cells. Together, Smad7 may increase the tumorigenicity of FET cells by blocking TGF-beta-induced growth inhibition and by inhibiting apoptosis. Thus, this study provides a mechanism by which a portion of human colorectal tumors may become refractory to tumor-suppressive actions of TGF-beta that might result in increased tumorigenicity.

  2. Irradiation creep due to SIPA-induced growth

    International Nuclear Information System (INIS)

    Woo, C.H.

    1980-01-01

    An additional contribution to irradiation creep resulting from the stress-induced preferred adsorption (SIPA) effect is described - SIPA-induced growth (SIG). The mechanism of SIG is discussed and an expression for its contribution to irradiation creep developed. It is shown that SIG is very significant in comparison with SIPA. Enhancement of creep by swelling may also occur. (U.K.)

  3. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  4. Mental Health Care Providers' Views of Their Work with Consumers and Their Reports of Recovery-Orientation, Job Satisfaction, and Personal Growth.

    Science.gov (United States)

    Osborn, Lawrence A; Stein, Catherine H

    2016-10-01

    The research examined the role of mental health care providers' perceptions of their professional relationships with consumers in understanding their reports of agency recovery-oriented services and their own sense of job satisfaction and personal growth. Multidisciplinary community mental health care providers (N = 105) responded to an online self-report questionnaire. Providers' reports of higher levels of working alliance and greater provider directiveness in working with consumers was significantly related to providers' reports of higher levels of agency recovery-orientation and higher levels of personal growth. Providers' reports of working alliance accounted for the largest proportion of variance in providers' reports of job satisfaction. Mental health providers' perceptions of relationships with consumers are central to understanding providers' views of agency recovery-orientation and sense of professional and personal well-being.

  5. Ethylene-induced hyponastic growth in Arabidopsis thaliana is controlled by ERECTA

    NARCIS (Netherlands)

    Zanten, van M.; Snoek, L.B.; Eck-Stouten, van E.; Proveniers, M.C.G.; Torii, K.U.; Voesenek, L.A.C.J.; Peeters, A.J.M.; Millenaar, F.F.

    2010-01-01

    Plants can respond quickly and profoundly to detrimental changes in their environment. For example, Arabidopsis thaliana can induce an upward leaf movement response through differential petiole growth (hyponastic growth) to outgrow complete submergence. This response is induced by accumulation of

  6. Potential role of coenzyme Q10 in facilitating recovery from statin-induced rhabdomyolysis.

    Science.gov (United States)

    Wang, L W; Jabbour, A; Hayward, C S; Furlong, T J; Girgis, L; Macdonald, P S; Keogh, A M

    2015-04-01

    Rhabdomyolysis is a rare, but serious complication of statin therapy, and represents the most severe end of the spectrum of statin-induced myotoxicity. We report a case where coenzyme Q10 facilitated recovery from statin-induced rhabdomyolysis and acute renal failure, which had initially persisted despite statin cessation and haemodialysis. This observation is biologically plausible due to the recognised importance of coenzyme Q10 in mitochondrial bioenergetics within myocytes, and the fact that statins inhibit farnesyl pyrophosphate production, a biochemical step crucial for coenzyme Q10 synthesis. Coenzyme Q10 is generally well tolerated, and may potentially benefit patients with statin-induced rhabdomyolysis. © 2015 Royal Australasian College of Physicians.

  7. Dynamics of diffusive bubble growth and pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid

    Science.gov (United States)

    Chouet, Bernard A.; Dawson, Phillip B.; Nakano, Masaru

    2006-01-01

    We present a model of gas exsolution and bubble expansion in a melt supersaturated in response to a sudden pressure drop. In our model, the melt contains a suspension of gas bubbles of identical sizes and is encased in a penny-shaped crack embedded in an elastic solid. The suspension is modeled as a three-dimensional lattice of spherical cells with slight overlap, where each elementary cell consists of a gas bubble surrounded by a shell of volatile-rich melt. The melt is then subjected to a step drop in pressure, which induces gas exsolution and bubble expansion, resulting in the compression of the melt and volumetric expansion of the crack. The dynamics of diffusion-driven bubble growth and volumetric crack expansion span 9 decades in time. The model demonstrates that the speed of the crack response depends strongly on volatile diffusivity in the melt and bubble number density and is markedly sensitive to the ratio of crack thickness to crack radius and initial bubble radius but is relatively insensitive to melt viscosity. The net drop in gas concentration in the melt after pressure recovery represents only a small fraction of the initial concentration prior to the drop, suggesting the melt may undergo numerous pressure transients before becoming significantly depleted of gases. The magnitude of pressure and volume recovery in the crack depends sensitively on the size of the input-pressure transient, becoming relatively larger for smaller-size transients in a melt containing bubbles with initial radii less than 10-5 m. Amplification of the input transient may be large enough to disrupt the crack wall and induce brittle failure in the rock matrix surrounding the crack. Our results provide additional basis for the interpretation of volume changes in the magma conduit under Popocatépetl Volcano during Vulcanian degassing bursts in its eruptive activity in April–May 2000.

  8. The Lemna minor growth inhibition test as basis to evaluate radiation or radionuclide-induced effects on freshwater plants

    Energy Technology Data Exchange (ETDEWEB)

    Horemans, N.; Van Hees, M.; Van Hoeck, A.; Vandenhove, H. [Belgian Nuclear Research Centre, SCK.CEN, Boeretang 200, 2400 Mol (Belgium)

    2014-07-01

    The setting of radiation protection criteria for wildlife is based on tiered Environmental Risk Assessments (ERA) methods. At various points in such a tiered ERA robust and transparent benchmark values are needed to indicate the levels of exposure that are considered safe to the environment. Although not ideal these benchmark values are today mainly based on laboratory-based experiments in which the toxic effects of radiation or radionuclides to one selected species exposed under standardised growth conditions is studied. As such an eco-toxicity test has been developed for the floating macrophyte Lemna minor that can be used to test the effect of different chemicals in freshwater. Here the use of this test to estimate effects of radiation or radionuclides and its relevance to the environment will be discussed. First single dose response curves are shown that were set up according to the guidelines for gamma, uranium and as a reference also cadmium. According to the guidelines growth inhibition can be calculated on different endpoints like frond number and frond area. The choice of this endpoint seems to be of major importance as dependent on the stressor significant shifts in the EC50 values, the concentration giving 50% effect, were observed. For gamma radiation a recovery experiment was set up in irradiated plants were allowed to grow again for 7 days in control conditions. It was shown that plant growth rate did not catch up with that of the non-irradiated group. On the contrary, plant cultures that showed a growth inhibition above 40% immediately after irradiation completely collapsed during the recovery period indicating no recovery from the gamma induced damage and resulting in a 3-fold lower EC50 value after 7 days recovery. The relevance of these data to the environment will be further discussed. Finally the influence of different cations on the uranium speciation and toxicity are studied. These experiments are the first steps to set up a biotic ligand

  9. Recovery from radiation induced changes in some protein end-products in the liver and blood serum of irradiated rats

    International Nuclear Information System (INIS)

    Elkashef, H.S.; Roushdy, H.M.; Saada, H.N.; Abdelsamie, M.A.

    1989-01-01

    When rats were subjected to whole body gamma-irradiation at the dose of 5.5 Gy it caused significant changes in the content of urea and creatine the serum at 7 and 14 days postirradiation. In the liver significant changes were observed in the content of urea, creatine and creatinine at all post-irradiation days except the third day for urea and seventh day for creatine. Ten days pre-irradiation of the rats a mixture of 5 mg testosterone propionate and 10 mg of vitamin E was intraperitoneally injected. The results indicated that this mixture could help in obtaining complete recovery for radiation induced changes in the content of urea in both liver and serum of irradiated protected rats. Also this mixture provided good protection and caused recovery from radiation induced changes in the liver creatine on the third and seventh days after irradiation. But for serum creatine, the recovery was observed only on the third post irradiation day. The applied radiation dose did not induce any significant changes in the level of serum creatinine, while a partial recovery was noticed for liver creatinine in irradiated protected rats. The recovery process seems to be related to the radiosensitivity of the animal tissue, with the chemical structure of the radioprotector substances and the estimated compounds as well as the post-irradiation time intervals.3 tab

  10. Recovery From Exercise-Induced Muscle Damage: Cold-Water Immersion Versus Whole-Body Cryotherapy.

    Science.gov (United States)

    Abaïdia, Abd-Elbasset; Lamblin, Julien; Delecroix, Barthélémy; Leduc, Cédric; McCall, Alan; Nédélec, Mathieu; Dawson, Brian; Baquet, Georges; Dupont, Grégory

    2017-03-01

    To compare the effects of cold-water immersion (CWI) and whole-body cryotherapy (WBC) on recovery kinetics after exercise-induced muscle damage. Ten physically active men performed single-leg hamstring eccentric exercise comprising 5 sets of 15 repetitions. Immediately postexercise, subjects were exposed in a randomized crossover design to CWI (10 min at 10°C) or WBC (3 min at -110°C) recovery. Creatine kinase concentrations, knee-flexor eccentric (60°/s) and posterior lower-limb isometric (60°) strength, single-leg and 2-leg countermovement jumps, muscle soreness, and perception of recovery were measured. The tests were performed before and immediately, 24, 48, and 72 h after exercise. Results showed a very likely moderate effect in favor of CWI for single-leg (effect size [ES] = 0.63; 90% confidence interval [CI] = -0.13 to 1.38) and 2-leg countermovement jump (ES = 0.68; 90% CI = -0.08 to 1.43) 72 h after exercise. Soreness was moderately lower 48 h after exercise after CWI (ES = -0.68; 90% CI = -1.44 to 0.07). Perception of recovery was moderately enhanced 24 h after exercise for CWI (ES = -0.62; 90% CI = -1.38 to 0.13). Trivial and small effects of condition were found for the other outcomes. CWI was more effective than WBC in accelerating recovery kinetics for countermovement-jump performance at 72 h postexercise. CWI also demonstrated lower soreness and higher perceived recovery levels across 24-48 h postexercise.

  11. Serum Growth Hormone and Glucose Levels in Acute Exercise and in the Recovery Period in Athletes

    Directory of Open Access Journals (Sweden)

    Elma Kučukalić-Selimović

    2006-05-01

    Full Text Available Growth hormone exerts several metabolic effects, including effects on proteins, fats and carbohydrates. Among the many metabolic activities of GH, two contradictory actions were described: acute and early insulin-like activity and chronic and late anti-insulin like activity also called diabetogenic activity. A dramatic increase in plasma concentration of GH was found during endurance exercise, but its role during exercise is not well known. According to its metabolic effects a possible role of growth hormone may be in maintenance of glucose level during exercise. The aim of this study was to analyze dynamics of changes in GH and glucose levels during acute workload and in the recovery period, in a group of well trained athletes. All the subjects exercised for 30 minutes on cycle ergometer in sitting position (work intensity 50% of VO2 max, RPM 60/min. Serum GH concentrations were measured by IRMA (immunoradiometric assays method in blood samples obtained at rest and 6-min intervals during exercise, and 15-min intervals during recovery period. Serum glucose levels were determined by standard enzymatic method glucose oxidase (GOD PAP at the same intervals. There were no correlations between serum GH and glucose levels either during exercise or in the recovery period. There were no differences between glucose levels during exercise, so we can not exclude possible role of GH in glucose concentration maintenance.

  12. Infuences of Rice Husk Biochar (RHB on Rice Growth Performance and Fertilizer Nitrogen Recovery up to Maximum Tillering Stage

    Directory of Open Access Journals (Sweden)

    Deniel Anak Sang

    2018-03-01

    Full Text Available A pot study was carried out to investigate the effects of rice husk biochar addition on rice growth performance and fertilizer nitrogen recovery. The biochar effect was studied by using 15N labelled fertilizer urea (10 atom% 15N, as isotopic tracer, until maximum tillering stage (75 days after sowing. Rice husk biochar (RHB was applied at rates of 0, 5, 10 and 20 Mg ha-1 and laid in randomized complete block design with four replications. The result showed that biochar application significantly improved soil chemical properties (pH, total C, total N, and available P compared to control treatment. Biochar addition increased number of tiller and root dry matter weight up to 4% and 35%, respectively, compared to un-amended pot. Likewise, application of biochar significantly increased N, P and K uptake by 3%, 19% and 33%, respectively, as compared to the nutrient uptake from the control treatment. Biochar treatment had no significant impact on fertilizer nitrogen recovery in aboveground biomass, in the range of 41% and 42%, in comparison to the control. However, nitrogen fertilizer recovery in soil significantly increased by 47% over the control at application rate of 20 Mg ha-1 RHB.  Increased fertilizer N recovery in soil possibly reduced N losses to the environment from volatilization and denitrification processes. Total 15N fertilizer recovery also found increase at highest application of RHB biochar with an increment of 16%. In general, addition of biochar appeared to enhance crop growth performance but its effect on fertilizer N recovery in plant requires further study up to maturity of rice plant.

  13. Facebook Surveillance of Former Romantic Partners: Associations with PostBreakup Recovery and Personal Growth

    OpenAIRE

    Marshall, Tara C.

    2012-01-01

    Copyright @ 2012 Mary Ann Liebert, Inc. This article has been made available through the Brunel Open Access Publishing Fund. Previous research has found that continuing offline contact with an ex-romantic partner following a breakup may disrupt emotional recovery. The present study examined whether continuing online contact with an ex-partner through remaining Facebook friends and/or engaging in surveillance of the ex-partner's Facebook page inhibited postbreakup adjustment and growth a...

  14. Meaning reconstruction in the face of terror: An examination of recovery and posttraumatic growth among victims of the 9/11 World Trade Center attacks.

    Science.gov (United States)

    Richardson, Katherine M

    2015-01-01

    This study examines the relationship between meaning reconstruction with posttraumatic growth and depreciation in the aftermath of terrorist trauma and loss. A group of individuals (n=118) who were personally affected by the September 11, 2001 terrorist attacks were surveyed about their experiences and administered the Posttraumatic Growth Inventory and Impact of Event scales. Subjects were volunteer docents at the Tribute World Trade Center Visitor Center. Results revealed that ability to make sense of one's 9/11 experience was related to recovery but not to posttraumatic growth, whereas ability to find some benefit in the experience was related to growth. In addition, location in downtown Manhattan on September 11, 2001 was related to higher levels of posttraumatic depreciation. Findings suggest that two aspects of meaning reconstruction are differentially related to recovery and posttraumatic growth.

  15. Boosting recovery rather than buffering reactivity: Higher stress-induced oxytocin secretion is associated with increased cortisol reactivity and faster vagal recovery after acute psychosocial stress.

    Science.gov (United States)

    Engert, Veronika; Koester, Anna M; Riepenhausen, Antje; Singer, Tania

    2016-12-01

    Animal models and human studies using paradigms designed to stimulate endogenous oxytocin release suggest a stress-buffering role of oxytocin. We here examined the involvement of stress-induced peripheral oxytocin secretion in reactivity and recovery phases of the human psychosocial stress response. Healthy male and female participants (N=114) were subjected to a standardized laboratory stressor, the Trier Social Stress Test. In addition to plasma oxytocin, cortisol was assessed as a marker of hypothalamic-pituitary-adrenal (HPA-) axis activity, alpha-amylase and heart rate as markers of sympathetic activity, high frequency heart rate variability as a marker of vagal tone and self-rated anxiety as an indicator of subjective stress experience. On average, oxytocin levels increased by 51% following psychosocial stress. The stress-induced oxytocin secretion, however, did not reduce stress reactivity. To the contrary, higher oxytocin secretion was associated with greater cortisol reactivity and peak cortisol levels in both sexes. In the second phase of the stress response the opposite pattern was observed, with higher oxytocin secretion associated with faster vagal recovery. We suggest that after an early stage of oxytocin and HPA-axis co-activation, the stress-reducing action of oxytocin unfolds. Due to the time lag it manifests as a recovery-boosting rather than a reactivity-buffering effect. By reinforcing parasympathetic autonomic activity, specifically during stress recovery, oxytocin may provide an important protective function against the health-compromising effects of sustained stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Chronic treatment with epidermal growth factor induces growth of the rat ventral prostate

    DEFF Research Database (Denmark)

    Tørring, N; Jensen, L V; Wen, J G

    2001-01-01

    the hyperplastic growth phase of the prostate in newborn rats.MATERIAL AND METHODS: Newborn rats were treated for 8 weeks with EGF (150 microg/kg body weight per day), administered as daily subcutaneous injections. Sections of the prostate tissue were examined by a stereological technique to determine tissue......OBJECTIVE: The epidermal growth factor (EGF) system is expressed in the rat prostate, and growth factors from this system induce proliferation in prostate epithelial and stromal cell cultures. The aim of the study was to investigate the possible growth-promoting effects of the system during...... of the prostate epithelium, the stroma and the lumen following EGF treatment, in a pattern resembling physiological growth of the ventral prostate. A significant correlation (r = 0.78, p

  17. Global genome response of Escherichia coli O157∶H7 Sakai during dynamic changes in growth kinetics induced by an abrupt downshift in water activity.

    Directory of Open Access Journals (Sweden)

    Chawalit Kocharunchitt

    Full Text Available The present study was undertaken to investigate growth kinetics and time-dependent change in global expression of Escherichia coli O157∶H7 Sakai upon an abrupt downshift in water activity (aw. Based on viable count data, shifting E. coli from aw 0.993 to aw 0.985 or less caused an apparent loss, then recovery, of culturability. Exponential growth then resumed at a rate characteristic for the aw imposed. To understand the responses of this pathogen to abrupt osmotic stress, we employed an integrated genomic and proteomic approach to characterize its cellular response during exposure to a rapid downshift but still within the growth range from aw 0.993 to aw 0.967. Of particular interest, genes and proteins with cell envelope-related functions were induced during the initial loss and subsequent recovery of culturability. This implies that cells undergo remodeling of their envelope composition, enabling them to adapt to osmotic stress. Growth at low aw, however, involved up-regulating additional genes and proteins, which are involved in the biosynthesis of specific amino acids, and carbohydrate catabolism and energy generation. This suggests their important role in facilitating growth under such stress. Finally, we highlighted the ability of E. coli to activate multiple stress responses by transiently inducing the RpoE and RpoH regulons to control protein misfolding, while simultaneously activating the master stress regulator RpoS to mediate long-term adaptation to hyperosmolality. This investigation extends our understanding of the potential mechanisms used by pathogenic E. coli to adapt, survive and grow under osmotic stress, which could potentially be exploited to aid the selection and/or development of novel strategies to inactivate this pathogen.

  18. Recovery characteristics of neutron-irradiated V-Ti alloys

    International Nuclear Information System (INIS)

    Leguey, T.; Pareja, R.

    2000-01-01

    The recovery characteristics of neutron-irradiated pure V and V-Ti alloys with 1.0 and 4.5 at.% Ti have been investigated by positron annihilation spectroscopy. Microvoid formation during irradiation at 320 K is produced in pure V and V-1Ti but not in V-4.5Ti. The results are consistent with a model of swelling inhibition induced by vacancy trapping by solute Ti during irradiation. The temperature dependencies of the parameter S in the range 8-300 K indicate a large dislocation bias for vacancies and solute Ti. This dislocation bias prevents the microvoid nucleation in V-4.5Ti, and the microvoid growth in V-1Ti, when vacancies become mobile during post-irradiation annealing treatments. A characteristic increase of the positron lifetime is found during recovery induced by isochronal annealing. It is attributed to a vacancy accumulation into the lattice of Ti oxides precipitated during cooling down, or at their matrix/precipitate interfaces. These precipitates could be produced by the decomposition of metastable phases of Ti oxides formed during post-irradiation annealing above 1000 K

  19. Facebook surveillance of former romantic partners: associations with postbreakup recovery and personal growth.

    Science.gov (United States)

    Marshall, Tara C

    2012-10-01

    Previous research has found that continuing offline contact with an ex-romantic partner following a breakup may disrupt emotional recovery. The present study examined whether continuing online contact with an ex-partner through remaining Facebook friends and/or engaging in surveillance of the ex-partner's Facebook page inhibited postbreakup adjustment and growth above and beyond offline contact. Analysis of the data provided by 464 participants revealed that Facebook surveillance was associated with greater current distress over the breakup, more negative feelings, sexual desire, and longing for the ex-partner, and lower personal growth. Participants who remained Facebook friends with the ex-partner, relative to those who did not remain Facebook friends, reported less negative feelings, sexual desire, and longing for the former partner, but lower personal growth. All of these results emerged after controlling for offline contact, personality traits, and characteristics of the former relationship and breakup that tend to predict postbreakup adjustment. Overall, these findings suggest that exposure to an ex-partner through Facebook may obstruct the process of healing and moving on from a past relationship.

  20. Mono and sequential ion irradiation induced damage formation and damage recovery in oxide glasses: Stopping power dependence of the mechanical properties

    International Nuclear Information System (INIS)

    Mir, A.H.; Monnet, I.; Toulemonde, M.; Bouffard, S.; Jegou, C.; Peuget, S.

    2016-01-01

    Simple and complex borosilicate glasses were irradiated with single and double ion beams of light and heavy ions over a broad fluence and stopping power range. As a result of the heavy ion irradiation (U, Kr, Au), the hardness was observed to diminish and saturate after a decrease by 35 ± 1%. Unlike slow and swift heavy ion irradiation, irradiation with light ions (He,O) induced a saturation hardness decrease of 18 ± 1% only. During double ion beam irradiation; where glasses were first irradiated with a heavy ion (gold) and then by a light ion (helium), the light ion irradiation induced partial damage recovery. As a consequence of the recovery effect, the hardness of the pre-irradiated glasses increased by 10–15% depending on the chemical composition. These results highlight that the nuclear energy loss and high electronic energy loss (≥4 keV/nm) result in significant and similar modifications whereas light ions with low electronic energy loss (≤1 keV/nm) result in only mild damage formation in virgin glasses and recovery in highly pre-damaged glasses. These results are important to understand the damage formation and recovery in actinide bearing minerals and in glasses subjected to self-irradiation by alpha decays. - Highlights: • Behavior of glasses strongly depends on the electronic energy loss (Se) of the ions. • High Se (≥4 keV/nm) induces large changes in comparison to lower Se values. • Apart from mild damage formation, low Se causes recovery of pre-existing damage. • Alpha induced partial recovery of the damage would occur in nuclear waste glasses.

  1. A novel strategy to identify the critical conditions for growth-induced instabilities.

    Science.gov (United States)

    Javili, A; Steinmann, P; Kuhl, E

    2014-01-01

    Geometric instabilities in living structures can be critical for healthy biological function, and abnormal buckling, folding, or wrinkling patterns are often important indicators of disease. Mathematical models typically attribute these instabilities to differential growth, and characterize them using the concept of fictitious configurations. This kinematic approach toward growth-induced instabilities is based on the multiplicative decomposition of the total deformation gradient into a reversible elastic part and an irreversible growth part. While this generic concept is generally accepted and well established today, the critical conditions for the formation of growth-induced instabilities remain elusive and poorly understood. Here we propose a novel strategy for the stability analysis of growing structures motivated by the idea of replacing growth by prestress. Conceptually speaking, we kinematically map the stress-free grown configuration onto a prestressed initial configuration. This allows us to adopt a classical infinitesimal stability analysis to identify critical material parameter ranges beyond which growth-induced instabilities may occur. We illustrate the proposed concept by a series of numerical examples using the finite element method. Understanding the critical conditions for growth-induced instabilities may have immediate applications in plastic and reconstructive surgery, asthma, obstructive sleep apnoea, and brain development. © 2013 Elsevier Ltd. All rights reserved.

  2. Hepatocyte growth factor limits autoimmune neuroinflammation via glucocorticoid-induced leucine zipper expression in dendritic cells.

    Science.gov (United States)

    Benkhoucha, Mahdia; Molnarfi, Nicolas; Dunand-Sauthier, Isabelle; Merkler, Doron; Schneiter, Gregory; Bruscoli, Stefano; Riccardi, Carlo; Tabata, Yasuhiko; Funakoshi, Hiroshi; Nakamura, Toshikazu; Reith, Walter; Santiago-Raber, Marie-Laure; Lalive, Patrice H

    2014-09-15

    Autoimmune neuroinflammation, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), a prototype for T cell-mediated autoimmunity, is believed to result from immune tolerance dysfunction leading to demyelination and substantial neurodegeneration. We previously showed that CNS-restricted expression of hepatocyte growth factor (HGF), a potent neuroprotective factor, reduced CNS inflammation and clinical deficits associated with EAE. In this study, we demonstrate that systemic HGF treatment ameliorates EAE through the development of tolerogenic dendritic cells (DCs) with high expression levels of glucocorticoid-induced leucine zipper (GILZ), a transcriptional repressor of gene expression and a key endogenous regulator of the inflammatory response. RNA interference-directed neutralization of GILZ expression by DCs suppressed the induction of tolerance caused by HGF. Finally, adoptive transfer of HGF-treated DCs from wild-type but not GILZ gene-deficient mice potently mediated functional recovery in recipient mice with established EAE through effective modulation of autoaggressive T cell responses. Altogether, these results show that by inducing GILZ in DCs, HGF reproduces the mechanism of immune regulation induced by potent immunomodulatory factors such as IL-10, TGF-β1, and glucocorticoids and therefore that HGF therapy may have potential in the treatment of autoimmune dysfunctions. Copyright © 2014 by The American Association of Immunologists, Inc.

  3. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    Science.gov (United States)

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  4. Intermittent fasting prompted recovery from dextran sulfate sodium-induced colitis in mice.

    Science.gov (United States)

    Okada, Toshihiko; Otsubo, Takeshi; Hagiwara, Teruki; Inazuka, Fumika; Kobayashi, Eiko; Fukuda, Shinji; Inoue, Takuya; Higuchi, Kazuhide; Kawamura, Yuki I; Dohi, Taeko

    2017-09-01

    Fasting-refeeding in mice induces transient hyperproliferation of colonic epithelial cells, which is dependent on the lactate produced as a metabolite of commensal bacteria. We attempted to manipulate colonic epithelial cell turnover with intermittent fasting to prompt recovery from acute colitis. Acute colitis was induced in C57BL/6 mice by administration of dextran sulfate sodium in the drinking water for 5 days. From day 6, mice were fasted for 36 h and refed normal bait, glucose powder, or lactylated high-amylose starch. On day 9, colon tissues were subjected to analysis of histology and cytokine expression. The effect of lactate on the proliferation of colonocytes was assessed by enema in vivo and primary culture in vitro . Intermittent fasting resulted in restored colonic crypts and less expression of interleukin-1β and interleukin-17 in the colon than in mice fed ad libitum . Administration of lactate in the colon at refeeding time by enema or by feeding lactylated high-amylose starch increased the number of regenerating crypts. Addition of lactate but not butyrate or acetate supported colony formation of colonocytes in vitro . In conclusion, intermittent fasting in the resolution phase of acute colitis resulted in better recovery of epithelial cells and reduced inflammation.

  5. Transformation-Induced Relaxation and Stress Recovery of TiNi Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Kohei Takeda

    2014-03-01

    Full Text Available The transformation-induced stress relaxation and stress recovery of TiNi shape memory alloy (SMA in stress-controlled subloop loading were investigated based on the local variation in temperature and transformation band on the surface of the tape in the tension test. The results obtained are summarized as follows. (1 In the loading process, temperature increases due to the exothermic martensitic transformation (MT until the holding strain and thereafter temperature decreases while holding the strain constant, resulting in stress relaxation due to the MT; (2 In the unloading process, temperature decreases due to the endothermic reverse transformation until the holding strain and thereafter temperature increases while holding the strain constant, resulting in stress recovery due to the reverse transformation; (3 Stress varies markedly in the initial stage followed by gradual change while holding the strain constant; (4 If the stress rate is high until the holding strain in the loading and unloading processes, both stress relaxation and stress recovery are large; (5 It is important to take into account this behavior in the design of SMA elements, since the force of SMA elements varies even if the atmospheric temperature is kept constant.

  6. Podoplanin enhances lung cancer cell growth in vivo by inducing platelet aggregation.

    Science.gov (United States)

    Miyata, Kenichi; Takemoto, Ai; Okumura, Sakae; Nishio, Makoto; Fujita, Naoya

    2017-06-22

    Podoplanin/Aggrus, known as a platelet aggregation-inducing factor, is frequently overexpressed in lung squamous cell carcinomas (LSCC) and glioblastomas among other tumours, and its expression has been reported to be correlated with poor prognosis. However, the contribution of podoplanin to malignant progression has been elusive. Here we demonstrate that in podoplanin-positive LSCC cells, their growth was abrogated by podoplanin knockout in vivo but not in vitro. Conversely, ectopic expression of podoplanin promoted cell growth in vivo and facilitated intratumoral platelet activation. Consistently, LSCC cells evoked podoplanin-mediated platelet aggregation (PMPA), and the releasates from platelets during PMPA promoted the growth of LSCC cells in vitro. Phospho-receptor-tyrosine-kinase array analysis revealed that epidermal growth factor receptor (EGFR) phosphorylation of LSCC cells was responsible for the growth promotion induced by platelet releasates. Treatment with an antiplatelet agent or podoplanin-neutralizing antibody depressed the growth of an LSCC tumour xenograft via suppression of EGFR phosphorylation. These results suggested that podoplanin in LSCC enhanced cell growth by inducing PMPA in vivo and contributed to malignant progression.

  7. Chronic administration of epidermal growth factor to pigs induces growth, especially of the urinary tract with accumulation of epithelial glycoconjugates

    DEFF Research Database (Denmark)

    Vinter-Jensen, Lars; Juhl, C O; Poulsen, Steen Seier

    1995-01-01

    Epidermal growth factor (EGF) receptor hyperstimulation induced by systemically administered EGF or by the development of transgenic mice overexpressing transforming growth factor alpha (TGF alpha) or other EGF-related ligands is known to induce various effects, such as acceleration of developmen...

  8. Behaviour of postnatally growth-impaired mice during malnutrition and after partial weight recovery

    DEFF Research Database (Denmark)

    Huber, Reinhard C.; Kolb, Andreas F.; Lillico, Simon

    2013-01-01

    Objectives: Early malnutrition is a highly prevalent condition in developing countries. Different rodent models of postnatal early malnutrition have been used to approach the subject experimentally, inducing early malnutrition by maternal malnutrition, temporal maternal separation, manipulation...... of litter size or the surgical nipple ligation to impair lactation. Studies on the behaviour of (previously) malnourished animals using animal models have produced sometimes contradictory results regarding the effects of early postnatal malnutrition and have been criticized for introducing potential...... confounding factors. The present paper is a first report on the behavioural effects of early malnutrition induced by an alternative approach: mice nursed by a-casein-deficient knockout dams showed a severe growth delay during early development and substantial catch-up growth after weaning when compared...

  9. PGE2-induced colon cancer growth is mediated by mTORC1

    International Nuclear Information System (INIS)

    Dufour, Marc; Faes, Seraina; Dormond-Meuwly, Anne; Demartines, Nicolas; Dormond, Olivier

    2014-01-01

    Highlights: • PGE 2 activates mTORC1 in colon cancer cells. • Inhibition of mTORC1 blocks PGE 2 induced colon cancer cell growth. • mTORC1 is a signaling intermediary in PGE 2 induced colon cancer cell responses. - Abstract: The inflammatory prostaglandin E 2 (PGE 2 ) cytokine plays a key role in the development of colon cancer. Several studies have shown that PGE 2 directly induces the growth of colon cancer cells and furthermore promotes tumor angiogenesis by increasing the production of the vascular endothelial growth factor (VEGF). The signaling intermediaries implicated in these processes have however not been fully characterized. In this report, we show that the mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in PGE 2 -induced colon cancer cell responses. Indeed, stimulation of LS174T cells with PGE 2 increased mTORC1 activity as observed by the augmentation of S6 ribosomal protein phosphorylation, a downstream effector of mTORC1. The PGE 2 EP 4 receptor was responsible for transducing the signal to mTORC1. Moreover, PGE 2 increased colon cancer cell proliferation as well as the growth of colon cancer cell colonies grown in matrigel and blocking mTORC1 by rapamycin or ATP-competitive inhibitors of mTOR abrogated these effects. Similarly, the inhibition of mTORC1 by downregulation of its component raptor using RNA interference blocked PGE 2 -induced LS174T cell growth. Finally, stimulation of LS174T cells with PGE 2 increased VEGF production which was also prevented by mTORC1 inhibition. Taken together, these results show that mTORC1 is an important signaling intermediary in PGE 2 mediated colon cancer cell growth and VEGF production. They further support a role for mTORC1 in inflammation induced tumor growth

  10. Radiation induced mitotic delay and stimulation of growth

    International Nuclear Information System (INIS)

    Feldmann, A.

    1974-01-01

    The mechanisms responsible for the radiation induced mitotic delay and stimulation of growth are discussed in connection with the results of studies in Lemna minor and Lepidium sativum. The action of temperature seems to be of major importance. As many authors suggest that various chemical agents and slight intoxications also affect mitosis in a way similar to that induced by ionizing radiation, the radiation induced stimulation has lost its specific character and approaches might be found for further investigations of this phenomenon. (MG) [de

  11. Extremely low-frequency magnetic fields can impair spermatogenesis recovery after reversible testicular damage induced by heat.

    Science.gov (United States)

    Tenorio, Bruno Mendes; Ferreira Filho, Moisés Bonifacio Alves; Jimenez, George Chaves; de Morais, Rosana Nogueira; Peixoto, Christina Alves; Nogueira, Romildo de Albuquerque; da Silva Junior, Valdemiro Amaro

    2014-06-01

    Male infertility is often related to reproductive age couples experiencing fertility-related issues. Men may have fertility problems associated with reversible testicular damage. Considering that men have been increasingly exposed to extremely low-frequency magnetic fields generated by the production, distribution and use of electricity, this study analyzed whether 60 Hz and 1 mT magnetic field exposure may impair spermatogenesis recovery after reversible testicular damage induced by heat shock using rats as an experimental model. Adult male rats were subjected to a single testicular heat shock (HS, 43 °C for 12 min) and then exposed to the magnetic field for 15, 30 and 60 d after HS. Magnetic field exposure during the spermatogenesis recovery induced changes in testis components volume, cell ultrastructure and histomorphometrical parameters. Control animals had a reestablished and active spermatogenesis at 60 d after heat shock, while animals exposed to magnetic field still showed extensive testicular degeneration. Magnetic field exposure did not change the plasma testosterone. In conclusion, extremely low-frequency magnetic field may be harmful to fertility recovery in males affected by reversible testicular damage.

  12. Role of contractile prostaglandins and Rho-kinase in growth factor-induced airway smooth muscle contraction

    Directory of Open Access Journals (Sweden)

    Zaagsma Johan

    2005-07-01

    Full Text Available Abstract Background In addition to their proliferative and differentiating effects, several growth factors are capable of inducing a sustained airway smooth muscle (ASM contraction. These contractile effects were previously found to be dependent on Rho-kinase and have also been associated with the production of eicosanoids. However, the precise mechanisms underlying growth factor-induced contraction are still unknown. In this study we investigated the role of contractile prostaglandins and Rho-kinase in growth factor-induced ASM contraction. Methods Growth factor-induced contractions of guinea pig open-ring tracheal preparations were studied by isometric tension measurements. The contribution of Rho-kinase, mitogen-activated protein kinase (MAPK and cyclooxygenase (COX to these reponses was established, using the inhibitors Y-27632 (1 μM, U-0126 (3 μM and indomethacin (3 μM, respectively. The Rho-kinase dependency of contractions induced by exogenously applied prostaglandin F2α (PGF2α and prostaglandin E2 (PGE2 was also studied. In addition, the effects of the selective FP-receptor antagonist AL-8810 (10 μM and the selective EP1-antagonist AH-6809 (10 μM on growth factor-induced contractions were investigated, both in intact and epithelium-denuded preparations. Growth factor-induced PGF2α-and PGE2-release in the absence and presence of Y-27632, U-0126 and indomethacin, was assessed by an ELISA-assay. Results Epidermal growth factor (EGF-and platelet-derived growth factor (PDGF-induced contractions of guinea pig tracheal smooth muscle preparations were dependent on Rho-kinase, MAPK and COX. Interestingly, growth factor-induced PGF2α-and PGE2-release from tracheal rings was significantly reduced by U-0126 and indomethacin, but not by Y-27632. Also, PGF2α-and PGE2-induced ASM contractions were largely dependent on Rho-kinase, in contrast to other contractile agonists like histamine. The FP-receptor antagonist AL-8810 (10 μM significantly

  13. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats.

    Science.gov (United States)

    You, Si-Wei; Chen, Bing-Yao; Liu, Hui-Ling; Lang, Bing; Xia, Jie-Lai; Jiao, Xi-Ying; Ju, Gong

    2003-01-01

    A major issue in analysis of experimental results after spinal cord injury is spontaneous functional recovery induced by remaining nerve fibers. The authors investigated the relationship between the degree of locomotor recovery and the percentage and location of the fibers that spared spinal cord transection. The spinal cords of 12 adult rats were transected at T9 with a razor blade, which often resulted in sparing of nerve fibers in the ventral spinal cord. The incompletely-transected animals were used to study the degree of spontaneous recovery of hindlimb locomotion, evaluated with the BBB rating scale, in correlation to the extent and location of the remaining fibers. Incomplete transection was found in the ventral spinal cord in 42% of the animals. The degree of locomotor recovery was highly correlated with the percentage of the remaining fibers in the ventral and ventrolateral funiculi. In one of the rats, 4.82% of remaining fibers in unilateral ventrolateral funiculus were able to sustain a certain recovery of locomotion. Less than 5% of remaining ventrolateral white matter is sufficient for an unequivocal motor recovery after incomplete spinal cord injury. Therefore, for studies with spinal cord transection, the completeness of sectioning should be carefully checked before any conclusion can be reached. The fact that the degree of locomotor recovery is correlated with the percentage of remaining fibers in the ventrolateral spinal cord, exclusive of most of the descending motor tracts, may imply an essential role of propriospinal connections in the initiation of spontaneous locomotor recovery.

  14. Molecular hydrogen reduces LPS-induced neuroinflammation and promotes recovery from sickness behaviour in mice.

    Directory of Open Access Journals (Sweden)

    Stefan Spulber

    Full Text Available Molecular hydrogen has been shown to have neuroprotective effects in mouse models of acute neurodegeneration. The effect was suggested to be mediated by its free-radical scavenger properties. However, it has been shown recently that molecular hydrogen alters gene expression and protein phosphorylation. The aim of this study was to test whether chronic ad libitum consumption of molecular hydrogen-enriched electrochemically reduced water (H-ERW improves the outcome of lipopolysaccharide (LPS-induced neuroinflammation. Seven days after the initiation of H-ERW treatment, C57Bl/6 mice received a single injection of LPS (0.33 mg/kg i.p. or an equivalent volume of vehicle. The LPS-induced sickness behaviour was assessed 2 h after the injection, and recovery was assessed by monitoring the spontaneous locomotor activity in the homecage for 72 h after the administration of LPS. The mice were killed in the acute or recovery phase, and the expression of pro- and antiinflammatory cytokines in the hippocampus was assessed by real-time PCR. We found that molecular hydrogen reduces the LPS-induced sickness behaviour and promotes recovery. These effects are associated with a shift towards anti-inflammatory gene expression profile at baseline (downregulation of TNF- α and upregulation of IL-10. In addition, molecular hydrogen increases the amplitude, but shortens the duration and promotes the extinction of neuroinflammation. Consistently, molecular hydrogen modulates the activation and gene expression in a similar fashion in immortalized murine microglia (BV-2 cell line, suggesting that the effects observed in vivo may involve the modulation of microglial activation. Taken together, our data point to the regulation of cytokine expression being an additional critical mechanism underlying the beneficial effects of molecular hydrogen.

  15. Improving Lowland Rice (O. sativa L. cv. MR219 Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    Directory of Open Access Journals (Sweden)

    Perumal Palanivell

    2015-01-01

    Full Text Available High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1. Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1 significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1 and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  16. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    Science.gov (United States)

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  17. VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing

    International Nuclear Information System (INIS)

    Constantino Rosa Santos, Susana; Miguel, Claudia; Domingues, Ines; Calado, Angelo; Zhu Zhenping; Wu Yan; Dias, Sergio

    2007-01-01

    Vascular endothelial growth factor (VEGF) receptor activation regulates endothelial cell (EC) survival, migration and proliferation. Recently, it was suggested the cross-talk between the VEGF receptors-1 (FLT-1) and -2 (KDR) modulated several of these functions, but the detailed molecular basis for such interactions remained unexplained. Here we demonstrate for the first time that VEGF stimulation of EC monolayers induced a rapid FLT-1-mediated internalization of KDR to the nucleus, via microtubules and the endocytic pathway, internalization which required the activation of PI 3-kinase/AKT. KDR deletion mutants were generated in several tyrosine residues; in these, VEGF-induced KDR internalization was impaired, demonstrating this process required activation (phosphorylation) of the receptor. Furthermore, we demonstrate that in vitro wounding of EC monolayers leads to a rapid and transient internalization of VEGF + KDR to the nucleus, which is essential for monolayer recovery. Notably, FLT-1 blockade impedes VEGF and KDR activation and internalization, blocking endothelial monolayer recovery. Our data reveal a previously unrecognized mechanism induced by VEGF on EC, which regulates EC recovery following wounding, and as such indicate novel targets for therapeutic intervention

  18. Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures

    DEFF Research Database (Denmark)

    Haque, Sabibul; Kjær, Katrine Heinsvig; Rosenqvist, Eva

    2014-01-01

    The effect of heat stress on photosystem II (PS II) efficiency and post-stress recovery was studied in four wheat cultivars using chlorophyll fluorescence. The main aim was to examine the cultivar differences in relation to inhibition and recovery of PSII functionality after heat stress...... and 25 °C) and subjected to heat stress (40 °C) for two days at early tillering and three days at anthesis and early grain development stages. The plants were returned to their original growth conditions after heat stress and recovery was observed for three days. The maximum photochemical efficiency (Fv...... heat tolerance characteristics as compared to the other three cultivars. The largest decrease in Fv/Fm and F′q/F′m after heat stress occurred in the cultivar PWS7, which did not recover completely after 72 h. All cultivars grown at 25 °C had a slightly increased heat tolerance and better recovery...

  19. Role of chloride ions in the promotion of auxin-induced growth of maize coleoptile segments.

    Science.gov (United States)

    Burdach, Zbigniew; Kurtyka, Renata; Siemieniuk, Agnieszka; Karcz, Waldemar

    2014-10-01

    The mechanism of auxin action on ion transport in growing cells has not been determined in detail. In particular, little is known about the role of chloride in the auxin-induced growth of coleoptile cells. Moreover, the data that do exist in the literature are controversial. This study describes experiments that were carried out with maize (Zea mays) coleoptile segments, this being a classical model system for studies of plant cell elongation growth. Growth kinetics or growth and pH changes were recorded in maize coleoptiles using two independent measuring systems. The growth rate of the segments was measured simultaneously with medium pH changes. Membrane potential changes in parenchymal cells of the segments were also determined for chosen variants. The question of whether anion transport is involved in auxin-induced growth of maize coleoptile segments was primarily studied using anion channel blockers [anthracene-9-carboxylic acid (A-9-C) and 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS)]. In addition, experiments in which KCl was replaced by KNO3 were also performed. Both anion channel blockers, added at 0·1 mm, diminished indole-3-acetic acid (IAA)-induced elongation growth by ~30 %. Medium pH changes measured simultaneously with growth indicated that while DIDS stopped IAA-induced proton extrusion, A-9-C diminished it by only 50 %. Addition of A-9-C to medium containing 1 mm KCl did not affect the characteristic kinetics of IAA-induced membrane potential changes, while in the presence of 10 mm KCl the channel blocker stopped IAA-induced membrane hyperpolarization. Replacement of KCl with KNO3 significantly decreased IAA-induced growth and inhibited proton extrusion. In contrast to the KCl concentration, the concentration of KNO3 did not affect the growth-stimulatory effect of IAA. For comparison, the effects of the cation channel blocker tetraethylammonium chloride (TEA-Cl) on IAA-induced growth and proton extrusion were also determined. TEA

  20. Effects of Whole-Body Cryotherapy vs. Far-Infrared vs. Passive Modalities on Recovery from Exercise-Induced Muscle Damage in Highly-Trained Runners

    Science.gov (United States)

    Hausswirth, Christophe; Louis, Julien; Bieuzen, François; Pournot, Hervé; Fournier, Jean; Filliard, Jean-Robert; Brisswalter, Jeanick

    2011-01-01

    Enhanced recovery following physical activity and exercise-induced muscle damage (EIMD) has become a priority for athletes. Consequently, a number of post-exercise recovery strategies are used, often without scientific evidence of their benefits. Within this framework, the purpose of this study was to test the efficacy of whole body cryotherapy (WBC), far infrared (FIR) or passive (PAS) modalities in hastening muscular recovery within the 48 hours after a simulated trail running race. In 3 non-adjoining weeks, 9 well-trained runners performed 3 repetitions of a simulated trail run on a motorized treadmill, designed to induce muscle damage. Immediately (post), post 24 h, and post 48 h after exercise, all participants tested three different recovery modalities (WBC, FIR, PAS) in a random order over the three separate weeks. Markers of muscle damage (maximal isometric muscle strength, plasma creatine kinase [CK] activity and perceived sensations [i.e. pain, tiredness, well-being]) were recorded before, immediately after (post), post 1 h, post 24 h, and post 48 h after exercise. In all testing sessions, the simulated 48 min trail run induced a similar, significant amount of muscle damage. Maximal muscle strength and perceived sensations were recovered after the first WBC session (post 1 h), while recovery took 24 h with FIR, and was not attained through the PAS recovery modality. No differences in plasma CK activity were recorded between conditions. Three WBC sessions performed within the 48 hours after a damaging running exercise accelerate recovery from EIMD to a greater extent than FIR or PAS modalities. PMID:22163272

  1. Effects of whole-body cryotherapy vs. far-infrared vs. passive modalities on recovery from exercise-induced muscle damage in highly-trained runners.

    Directory of Open Access Journals (Sweden)

    Christophe Hausswirth

    Full Text Available Enhanced recovery following physical activity and exercise-induced muscle damage (EIMD has become a priority for athletes. Consequently, a number of post-exercise recovery strategies are used, often without scientific evidence of their benefits. Within this framework, the purpose of this study was to test the efficacy of whole body cryotherapy (WBC, far infrared (FIR or passive (PAS modalities in hastening muscular recovery within the 48 hours after a simulated trail running race. In 3 non-adjoining weeks, 9 well-trained runners performed 3 repetitions of a simulated trail run on a motorized treadmill, designed to induce muscle damage. Immediately (post, post 24 h, and post 48 h after exercise, all participants tested three different recovery modalities (WBC, FIR, PAS in a random order over the three separate weeks. Markers of muscle damage (maximal isometric muscle strength, plasma creatine kinase [CK] activity and perceived sensations [i.e. pain, tiredness, well-being] were recorded before, immediately after (post, post 1 h, post 24 h, and post 48 h after exercise. In all testing sessions, the simulated 48 min trail run induced a similar, significant amount of muscle damage. Maximal muscle strength and perceived sensations were recovered after the first WBC session (post 1 h, while recovery took 24 h with FIR, and was not attained through the PAS recovery modality. No differences in plasma CK activity were recorded between conditions. Three WBC sessions performed within the 48 hours after a damaging running exercise accelerate recovery from EIMD to a greater extent than FIR or PAS modalities.

  2. Endurance exercise induces mRNA expression of oxidative enzymes in human skeletal muscle late in recovery

    DEFF Research Database (Denmark)

    Leick, Lotte; Plomgaard, Peter S.; Grønløkke, L.

    2010-01-01

    exercise. To test the hypothesis that mRNA expression of many oxidative enzymes is up-regulated late in recovery (10-24 h) after exercise, male subjects (n=8) performed a 90-min cycling exercise (70% VO(2-max)), with muscle biopsies obtained before exercise (pre), and after 10, 18 and 24 h of recovery....... The mRNA expression of carnitine-palmitoyltransferase (CPT)I, CD36, 3-hydroxyacyl-CoA-dehydrogenase (HAD), cytochrome (Cyt)c, aminolevulinate-delta-synthase (ALAS)1 and GLUT4 was 100-200% higher at 10-24 h of recovery from exercise than in a control trial. Exercise induced a 100-300% increase...... in peroxisome proliferator-activated receptor gamma co-activator (PGC)-1alpha, citrate synthase (CS), CPTI, CD36, HAD and ALAS1 mRNA contents at 10-24 h of recovery relative to before exercise. No protein changes were detected in Cytc, ALAS1 or GLUT4. This shows that mRNA expression of several training...

  3. Environmental enrichment induces behavioral recovery and enhanced hippocampal cell proliferation in an antidepressant-resistant animal model for PTSD.

    Directory of Open Access Journals (Sweden)

    Hendrikus Hendriksen

    Full Text Available BACKGROUND: Post traumatic stress disorder (PTSD can be considered the result of a failure to recover after a traumatic experience. Here we studied possible protective and therapeutic aspects of environmental enrichment (with and without a running wheel in Sprague Dawley rats exposed to an inescapable foot shock procedure (IFS. METHODOLOGY/PRINCIPAL FINDINGS: IFS induced long-lasting contextual and non-contextual anxiety, modeling some aspects of PTSD. Even 10 weeks after IFS the rats showed reduced locomotion in an open field. The antidepressants imipramine and escitalopram did not improve anxiogenic behavior following IFS. Also the histone deacetylase (HDAC inhibitor sodium butyrate did not alleviate the IFS induced immobility. While environmental enrichment (EE starting two weeks before IFS did not protect the animals from the behavioral effects of the shocks, exposure to EE either immediately after the shock or one week later induced complete recovery three weeks after IFS. In the next set of experiments a running wheel was added to the EE to enable voluntary exercise (EE/VE. This also led to reduced anxiety. Importantly, this behavioral recovery was not due to a loss of memory for the traumatic experience. The behavioral recovery correlated with an increase in cell proliferation in hippocampus, a decrease in the tissue levels of noradrenalin and increased turnover of 5-HT in prefrontal cortex and hippocampus. CONCLUSIONS/SIGNIFICANCE: This animal study shows the importance of (physical exercise in the treatment of psychiatric diseases, including post-traumatic stress disorder and points out the possible role of EE in studying the mechanism of recovery from anxiety disorders.

  4. Improved wound healing in pressure-induced decubitus ulcer with controlled release of basic fibroblast growth factor

    International Nuclear Information System (INIS)

    Jiang Wei; Wang Hailun; Jin Faguang; Yu Chunyan; Chu Dongling; Wang Lin; Lu Xian

    2008-01-01

    The purpose was to evaluate the efficacy of the wound dressing containing basic fibroblast growth factor (bFGF)-loaded microspheres on promoting healing in pressure-induced decubitus ulcer. In this study, the pressure-induced ulcer in swine was used as a model to demonstrate the hypothesis that controlled release of bFGF has the potential to provide optimal healing milieu for chronic wounds in the repair process. Average size of the microspheres was 14.36 ± 3.56 μm and the network gelatin sponges were characterized with an average pore size of 80-160 μm. Both the in vitro release efficiency and the protein bioactivity revealed that bFGF was released from the microspheres in a controlled manner and it was biologically active as assessed by its ability to induce the proliferation of fibroblasts. Pressure-induced ulcer was created at 500 g/cm 2 pressure loaded on swine dorsal skin 12 h daily for 2 consecutive days. After removal of the pressure load, the gelatin sponge containing bFGF gelatin microspheres or bFGF in solution was implanted into the wound. Swine were sacrificed at 7, 14, and 21 days after implantation, and a full-thickness biopsy was taken and stained for histological analysis. It was observed that controlled release of bFGF provided an accelerated recovery in the wound areas. Histological investigations showed that the dressings were biocompatible and had capability of proliferating fibroblasts and inducing neovascularisation. The present study implied the clinical potential of gelatin sponge with bFGF microspheres to promote the healing in pressure-induced decubitus ulcer

  5. Improved wound healing in pressure-induced decubitus ulcer with controlled release of basic fibroblast growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Wei [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Wang Hailun [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Faguang [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)], E-mail: nidewenzhang@163.com; Yu Chunyan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Chu Dongling [Department of Respiratory Diseases, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Wang Lin [Department of Internal Medicine, 316 Hospital of PLA, Beijing 100093 (China); Lu Xian [93942 Unit Hospital of PLA, Xianyang 710012 (China)

    2008-07-14

    The purpose was to evaluate the efficacy of the wound dressing containing basic fibroblast growth factor (bFGF)-loaded microspheres on promoting healing in pressure-induced decubitus ulcer. In this study, the pressure-induced ulcer in swine was used as a model to demonstrate the hypothesis that controlled release of bFGF has the potential to provide optimal healing milieu for chronic wounds in the repair process. Average size of the microspheres was 14.36 {+-} 3.56 {mu}m and the network gelatin sponges were characterized with an average pore size of 80-160 {mu}m. Both the in vitro release efficiency and the protein bioactivity revealed that bFGF was released from the microspheres in a controlled manner and it was biologically active as assessed by its ability to induce the proliferation of fibroblasts. Pressure-induced ulcer was created at 500 g/cm{sup 2} pressure loaded on swine dorsal skin 12 h daily for 2 consecutive days. After removal of the pressure load, the gelatin sponge containing bFGF gelatin microspheres or bFGF in solution was implanted into the wound. Swine were sacrificed at 7, 14, and 21 days after implantation, and a full-thickness biopsy was taken and stained for histological analysis. It was observed that controlled release of bFGF provided an accelerated recovery in the wound areas. Histological investigations showed that the dressings were biocompatible and had capability of proliferating fibroblasts and inducing neovascularisation. The present study implied the clinical potential of gelatin sponge with bFGF microspheres to promote the healing in pressure-induced decubitus ulcer.

  6. FGF-2 induces behavioral recovery after early adolescent injury to the motor cortex of rats.

    Science.gov (United States)

    Nemati, Farshad; Kolb, Bryan

    2011-11-20

    Motor cortex injuries in adulthood lead to poor performance in behavioral tasks sensitive to limb movements in the rat. We have shown previously that motor cortex injury on day 10 or day 55 allow significant spontaneous recovery but not injury in early adolescence (postnatal day 35 "P35"). Previous studies have indicated that injection of basic fibroblast growth factor (FGF-2) enhances behavioral recovery after neonatal cortical injury but such effect has not been studied following motor cortex lesions in early adolescence. The present study undertook to investigate the possibility of such behavioral recovery. Rats with unilateral motor cortex lesions were assigned to two groups in which they received FGF-2 or bovine serum albumin (BSA) and were tested in a number of behavioral tests (postural asymmetry, skilled reaching, sunflower seed manipulation, forepaw inhibition in swimming). Golgi-Cox analysis was used to examine the dendritic structure of pyramidal cells in the animals' parietal (layer III) and forelimb (layer V) area of the cortex. The results indicated that rats injected with FGF-2 (but not BSA) showed significant behavioral recovery that was associated with increased dendritic length and spine density. The present study suggests a role for FGF-2 in the recovery of function following injury during early adolescence. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Early application of tail nerve electrical stimulation-induced walking training promotes locomotor recovery in rats with spinal cord injury.

    Science.gov (United States)

    Zhang, S-X; Huang, F; Gates, M; Shen, X; Holmberg, E G

    2016-11-01

    This is a randomized controlled prospective trial with two parallel groups. The objective of this study was to determine whether early application of tail nerve electrical stimulation (TANES)-induced walking training can improve the locomotor function. This study was conducted in SCS Research Center in Colorado, USA. A contusion injury to spinal cord T10 was produced using the New York University impactor device with a 25 -mm height setting in female, adult Long-Evans rats. Injured rats were randomly divided into two groups (n=12 per group). One group was subjected to TANES-induced walking training 2 weeks post injury, and the other group, as control, received no TANES-induced walking training. Restorations of behavior and conduction were assessed using the Basso, Beattie and Bresnahan open-field rating scale, horizontal ladder rung walking test and electrophysiological test (Hoffmann reflex). Early application of TANES-induced walking training significantly improved the recovery of locomotor function and benefited the restoration of Hoffmann reflex. TANES-induced walking training is a useful method to promote locomotor recovery in rats with spinal cord injury.

  8. Facebook Surveillance of Former Romantic Partners: Associations with PostBreakup Recovery and Personal Growth

    Science.gov (United States)

    2012-01-01

    Abstract Previous research has found that continuing offline contact with an ex-romantic partner following a breakup may disrupt emotional recovery. The present study examined whether continuing online contact with an ex-partner through remaining Facebook friends and/or engaging in surveillance of the ex-partner's Facebook page inhibited postbreakup adjustment and growth above and beyond offline contact. Analysis of the data provided by 464 participants revealed that Facebook surveillance was associated with greater current distress over the breakup, more negative feelings, sexual desire, and longing for the ex-partner, and lower personal growth. Participants who remained Facebook friends with the ex-partner, relative to those who did not remain Facebook friends, reported less negative feelings, sexual desire, and longing for the former partner, but lower personal growth. All of these results emerged after controlling for offline contact, personality traits, and characteristics of the former relationship and breakup that tend to predict postbreakup adjustment. Overall, these findings suggest that exposure to an ex-partner through Facebook may obstruct the process of healing and moving on from a past relationship. PMID:22946958

  9. Impact-Induced Muscle Damage and Contact-Sport: Aetiology, Effects on Neuromuscular Function and Recovery, and the Modulating Effects of Adaptation and Recovery Strategies.

    Science.gov (United States)

    Naughton, Mitchell; Miller, Joanna; Slater, Gary J

    2017-11-28

    Athletes involved in contact-sports are habitually exposed to skeletal muscle damage as part of their training and performance environments. This often leads to exercise-induced muscle damage (EIMD) resulting from repeated eccentric and/or high-intensity exercise, and impact-induced muscle damage (IIMD) resulting from collisions with opponents and the playing surface. Whilst EIMD has been an area of extensive investigation, IIMD has received comparatively little research, with the magnitude and timeframe of alterations following IIMD not presently well understood. It is currently thought that EIMD occurs through an overload of mechanical stress causing ultrastructural damage to the cellular membrane constituents. Damage leads to compromised ability to produce force which manifest immediately and persist for up to 14 days following exercise exposure. IIMD has been implicated in attenuated neuromuscular performance and recovery with inflammatory process implicated, although the underlying time course remains unclear. Exposure to EIMD leads to an adaptation to subsequent exposures, a phenomenon known as the repeated-bout effect. An analogous adaptation has been suggested to occur following IIMD, however, to date this contention remains equivocal. Whilst a considerable body of research has explored the efficacy of recovery strategies following EIMD, strategies promoting recovery from IIMD are limited to investigations using animal contusion models. Strategies such as cryotherapy and antioxidant supplementation, which focus on attenuating the secondary inflammatory response may provide additional benefit in IIMD and are explored herein. Further research is required to firstly establish a model of generating IIMD and then explore broader areas around IIMD in athletic populations.

  10. Recovery of prostacyclin synthesis in vascular smooth muscle cells following self-inactivation and requirement for growth factors

    International Nuclear Information System (INIS)

    Bailey, J.M.; Hla, T.T.; Pash, J.M.

    1986-01-01

    The cyclooxygenase enzyme system is a prime example of a metabolic pathway that is regulated by self inactivation. This is believed to occur in part via the irreversible reaction of the endoperoxide intermediate species with the cyclooxygenase enzyme. This inactivation and recovery of activity is similar to the inactivation observed with aspirin which irreversibly acetylates the enzyme. Self inactivation was studied in cultured rat and bovine aorta smooth muscle cells. The production of the prostanoid PGI2 was demonstrated by incubation of a monolayer of cells with 12 μM C-14 labeled arachidonic acid. Products were analyzed by thin layer chromatography and identified by their comigration with authentic standards and confirmed by gas chromatography/mass spectrometry. Preincubation of the cells for 10 minutes with arachidonic acid at concentrations as low as 1 μg/mL inactivated the cells to a second challenge with radiolabeled arachidonic acid. Recovery from self inactivation took place over a three hour time period and was similar to the recovery observed with aspirin pretreatment. Recovery was inhibited by addition of 10 μg/mL cycloheximide to the medium indicating that it involves synthesis of cyclooxygenase protein. Epidermal growth factor was identified as a serum factor responsible for the rapid recovery of cyclooxygenase activity in rat and bovine aorta smooth muscle cells

  11. Heat injury and recovery of Streptococcus faecium associated with the souring of chub-packed luncheon meat.

    Science.gov (United States)

    Bell, R G; De Lacy, K M

    1984-10-01

    The presence of NaCl in the heating medium provided some protection from lethal heat damage for cells of a Streptococcus faecium strain isolated from luncheon meat whereas the presence of NaNO2 either alone or in addition to NaCl, had no significant effect on cell survival. Subsequent recovery and growth of heat-damaged cells was retarded by the presence of NaCl. When NaNO2 was present in addition to NaCl the inhibitory effect of the latter was reduced. These principal components of the luncheon-meat-cure are apparently opposed in their activities on post-heating recovery and growth of Strep. faecium. Product stability, i.e. duration of the lag before growth occurs, is directly related to the severity of the heat treatment and to the concentration of NaCl in the product. Therefore the resistance of pasteurized chub-packed luncheon meat to streptococcal spoilage during storage at temperatures conducive to microbial growth results from a prolonged heat-induced salt-maintained pre-growth adjustment phase rather than to any inherent inhibitory property of the luncheon meat to the growth of non-heat-damaged Strep. faecium cells.

  12. Effect of clone size on submergence tolerance and post-submergence growth recovery in Carex brevicuspis (Cyperaceae

    Directory of Open Access Journals (Sweden)

    Zhengmiao Deng

    2016-12-01

    Full Text Available Clonal plants are prevalent in wetlands and play important roles in maintaining the functions of the ecosystem. In the present study, we determined the effect of clone sizes (R1, R2, and R3 comprising 1, 3, and 5clumping ramets on the tolerance of Carex brevicuspis growing under 30-cm-deep water to three different periods (one, two, and three months of submergence and its growth recovery one month after de-submergence. Our results showed that the relative growth rate (RGR of C. brevicuspis significantly declined with increasing submergence time, and was higher in R3 and R5 than in R1 plants under both submergence and post-submergence conditions. The concentration of water-soluble carbohydrates (WSCs was highest in R3, intermediate in R5, and the lowest in R1 plants during the first two months of submergence, indicating an optimal trade-off between energy investment and vegetative growth (i.e., buds and ramets production in C. brevicuspis. WSCs were significantly reduced with increasing submergence time, while the starch content was significantly reduced only during the third month of submergence, implying that WSCs were a direct energy source for C. brevicuspis during submergence. The number of buds was higher in R5 than in R3 and R1 plants after two and three months of submergence, which directly resulted in a significantly higher post-submergence ramet production in R5 plants. These results indicated that plants with relatively larger clone sizes display better tolerance to submergence stress and post-submergence growth recovery. Therefore, we speculate that the large clone size in C brevicuspis might be an effective adaptive mechanism to survive under submergence stress in floodplain wetlands.

  13. Experimental Study of the Lead Tungstate Scintillator Proton-Induced Damage and Recovery

    CERN Document Server

    Auffray, Etiennette; Singovski , A

    2011-01-01

    Lead tungstate (PbWO4, or PWO) scintillating crystals are used by two of the four experiments at the Large Hadron Collider (LHC): 75848 in CMS and 17920 in ALICE. For the CMS electromagnetic calorimeter, one of the most important crystal properties is its radiation hardness. With the increase of luminosity, the radiation level will increase drastically, particularly in the high pseudorapidity regions of the calorimeter. Beside the effects of color-centre formation caused by gamma-radiation, additional measurable effect originated by hadron irradiation could appear, which will further deteriorate the optical transmission of the crystals and therefore their efficiency. In this paper, we will present results of the proton-induced damage in PWO and a study of optical transmission recovery at different temperatures and under different light-induced "bleaching" conditions for proton-irradiated crystals.

  14. Postirradiation recovery dependent on the uvr-1 Locus in Bacillus subtilis

    International Nuclear Information System (INIS)

    Hadden, C.T.

    1976-01-01

    A mutant (uvr-1) of Bacillus subtilis that is deficient in excision of ultraviolet (uv)-induced pyrimidine dimers from deoxyribonucleic acid (DNA) shows a marked increase in ability to survive uv irradiation when plated on amino acid-supplemented agar medium compared with its survival ability when plated on nutrient agar. Since the extent of killing depends on the richness of the plating medium, the effect is considered to be one of growth-dependent lethality. Irradiated stationary phase uvr-1 cells, incubated in liquid medium lacking amino acids required for growth, recover from this sensitivity to rich medium within 3 to 4 h after irradiation. Recovery is greatly reduced in the absence of glucose or in the presence of NaCN, athough it is not completely eliminated. Exponentially growing cells have a limited ability to recover from sensitivity to rich medium. Growth-dependent lethality can also occur in liquid medium. In nutrient broth the ability of irradiated stationary-phase uvr-1 cells to form colonies on defined agar medium decreases during postirradiation incubation, but treatment with chloramphenicol inhibits the loss of colony-forming ability. Recovery from sensitivity to rich media is inhibited by caffeine but not by 6-(p-hydroxyphenylazo)-uracil, an inhibitor of DNA replication. Alkaline sucrose gradient profiles show that conditions allowing recovery also favor maintaining intact DNA strands, whereas DNA strand breakage or degradation is associated with loss of viability

  15. Limited growth recovery after drought-induced forest dieback in very defoliated trees of two pine species

    Directory of Open Access Journals (Sweden)

    Guillermo eGuada

    2016-04-01

    Full Text Available Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width and intra-annual (xylogenesis scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized three years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die.

  16. Organism-Sediment Interactions Govern Post-Hypoxia Recovery of Ecosystem Functioning

    Science.gov (United States)

    Van Colen, Carl; Rossi, Francesca; Montserrat, Francesc; Andersson, Maria G. I.; Gribsholt, Britta; Herman, Peter M. J.; Degraer, Steven; Vincx, Magda; Ysebaert, Tom; Middelburg, Jack J.

    2012-01-01

    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning. PMID:23185440

  17. Retinal and choroidal expression of BMP-2 in lens-induced myopia and recovery from myopia in guinea pigs.

    Science.gov (United States)

    Li, Honghui; Wu, Juan; Cui, Dongmei; Zeng, Junwen

    2016-03-01

    The present study investigated the retinal and choroidal expression of bone morphogenetic protein-2 (BMP-2) in myopia and in myopia recovery in a guinea pig model. For this investigation, two groups of guinea pigs, lens‑induced myopia and recovery from myopia, were used, and defocused myopia was induced the guinea pigs wearing ‑4.00 D lenses on the right eyes for 3 weeks, with the left eyes serving as the contralateral. In the following week, the lenses of the guinea pigs in the recovery group were removed, and the refractive power and axial length were measured. The expression of BMP‑2 in the eyeballs was observed using immunohistochemistry and analyzed using Western blot analysis. After 3 weeks, the eyes acquired relative myopia and longer axial lengths in the two groups of guinea pigs. After 1 week without lenses in the recovery group, the myopia and axial lengths regressed. Immunofluorescence staining showed that BMP‑2 was expressed in the posterior retina, RPE, choroid and sclera. The expression of BMP‑2 decreased in the myopic retina of the guinea pigs. Following the regression of myopia in the recovery group, no difference in the expression of BMP‑2 was observed between the recovered treated eyes and the contralateral eyes. The choroidal expression level of BMP‑2 in the treated eyes showed no significant changes in either group. Therefore, BMP‑2 may be involved in the development of myopia, however, it does not have a primary role in the retinal and choroidal signals regulating scleral remodeling.

  18. On hydrogen-induced plastic flow localization during void growth and coalescence

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.C.; Sofronis, P. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States); Dodds, R.H. Jr. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801 (United States)

    2007-11-15

    Hydrogen-enhanced localized plasticity (HELP) is recognized as a viable mechanism of hydrogen embrittlement. A possible way by which the HELP mechanism can bring about macroscopic material failure is through hydrogen-induced accelerated void growth and coalescence. Assuming a periodic array of spherical voids loaded axisymmetrically, we investigate the hydrogen effect on the occurrence of plastic flow localization upon void growth and its dependence on macroscopic stress triaxiality. Under a macroscopic stress triaxiality equal to 1 and prior to void coalescence, the finite element calculation results obtained with material data relevant to A533B steel indicate that a hydrogen-induced localized shear band forms at an angle of about 45 {sup circle} from the axis of symmetry. At triaxiality equal to 3, void coalescence takes place by accelerated hydrogen-induced localization of plasticity mainly in the ligament between the voids. Lastly, we discuss the numerical results within the context of experimental observations on void growth and coalescence in the presence of hydrogen. (author)

  19. A comparative study of ethylene growth response kinetics in eudicots and monocots reveals a role for gibberellin in growth inhibition and recovery.

    Science.gov (United States)

    Kim, Joonyup; Wilson, Rebecca L; Case, J Brett; Binder, Brad M

    2012-11-01

    Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa 'Nipponbare') seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics.

  20. Interleukin-Driven Insulin-Like Growth Factor Promotes Prostatic Inflammatory Hyperplasia

    Science.gov (United States)

    Hahn, Alana M.; Myers, Jason D.; McFarland, Eliza K.; Lee, Sanghee

    2014-01-01

    Prostatic inflammation is of considerable importance to urologic research because of its association with benign prostatic hyperplasia and prostate cancer. However, the mechanisms by which inflammation leads to proliferation and growth remain obscure. Here, we show that insulin-like growth factors (IGFs), previously known as critical developmental growth factors during prostate organogenesis, are induced by inflammation as part of the proliferative recovery to inflammation. Using genetic models and in vivo IGF receptor blockade, we demonstrate that the hyperplastic response to inflammation depends on interleukin-1–driven IGF signaling. We show that human prostatic hyperplasia is associated with IGF pathway activation specifically localized to foci of inflammation. This demonstrates that mechanisms of inflammation-induced epithelial proliferation and hyperplasia involve the induction of developmental growth factors, further establishing a link between inflammatory and developmental signals and providing a mechanistic basis for the management of proliferative diseases by IGF pathway modulation. PMID:25292180

  1. Activity of coenzyme Q 10 (Q-Ter multicomposite) on recovery time in noise-induced hearing loss.

    Science.gov (United States)

    Staffa, Paola; Cambi, Jacopo; Mezzedimi, Chiara; Passali, Desiderio; Bellussi, Luisa

    2014-01-01

    A potential consequence of exposure to noise is a temporary reduction in auditory sensitivity known as temporary threshold shift (TTS), which mainly depends on the intensity and duration of exposure to the noise. Recovery time is related to the amount of initial hearing loss, and the most recovery takes place during the first 15 min following exposure. This study evaluated the efficacy in otoprotection against noise-induced hearing loss of an orally administrated food supplement containing coenzyme Q 10 -Ter. This water-soluble formulation of coenzyme Q 10 shows better bioavailability than the native form and has been found to have a protective effect on outer hair cells after exposure to noise in animal models. Thirty volunteers were enrolled, and the right ear of each subject was exposed to a narrow-band noise centered at 3 kHz for 10 min at the intensity of 90 dB HL. In the 30 subjects enrolled, TTS was evaluated after 2, 15, and 30 min and the recovery time was recorded in each subject. The longest recovery time was 45 min. Among the 18 subjects who underwent a second test after treatment with Q-Ter, the mean recovery time was 31.43 min. The results of the present study show that 30 days' treatment with Q-Ter can aid faster recovery after exposure to noise (P < 0.0001). The reduction in the recovery time following treatment can be explained by Q-Ter-mediated improvement of the outer hair cells' response to oxidative stress.

  2. PGE{sub 2}-induced colon cancer growth is mediated by mTORC1

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, Marc, E-mail: Marc.dufour@chuv.ch; Faes, Seraina, E-mail: Seraina.faes@chuv.ch; Dormond-Meuwly, Anne, E-mail: Anne.meuwly-Dormond@chuv.ch; Demartines, Nicolas, E-mail: Demartines@chuv.ch; Dormond, Olivier, E-mail: Olivier.dormond@chuv.ch

    2014-09-05

    Highlights: • PGE{sub 2} activates mTORC1 in colon cancer cells. • Inhibition of mTORC1 blocks PGE{sub 2} induced colon cancer cell growth. • mTORC1 is a signaling intermediary in PGE{sub 2} induced colon cancer cell responses. - Abstract: The inflammatory prostaglandin E{sub 2} (PGE{sub 2}) cytokine plays a key role in the development of colon cancer. Several studies have shown that PGE{sub 2} directly induces the growth of colon cancer cells and furthermore promotes tumor angiogenesis by increasing the production of the vascular endothelial growth factor (VEGF). The signaling intermediaries implicated in these processes have however not been fully characterized. In this report, we show that the mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in PGE{sub 2}-induced colon cancer cell responses. Indeed, stimulation of LS174T cells with PGE{sub 2} increased mTORC1 activity as observed by the augmentation of S6 ribosomal protein phosphorylation, a downstream effector of mTORC1. The PGE{sub 2} EP{sub 4} receptor was responsible for transducing the signal to mTORC1. Moreover, PGE{sub 2} increased colon cancer cell proliferation as well as the growth of colon cancer cell colonies grown in matrigel and blocking mTORC1 by rapamycin or ATP-competitive inhibitors of mTOR abrogated these effects. Similarly, the inhibition of mTORC1 by downregulation of its component raptor using RNA interference blocked PGE{sub 2}-induced LS174T cell growth. Finally, stimulation of LS174T cells with PGE{sub 2} increased VEGF production which was also prevented by mTORC1 inhibition. Taken together, these results show that mTORC1 is an important signaling intermediary in PGE{sub 2} mediated colon cancer cell growth and VEGF production. They further support a role for mTORC1 in inflammation induced tumor growth.

  3. Growth hormone used to control intractable bleeding caused by radiation-induced gastritis.

    Science.gov (United States)

    Zhang, Liang; Xia, Wen-Jie; Zhang, Zheng-Sen; Lu, Xin-Liang

    2015-08-21

    Intractable bleeding caused by radiation-induced gastritis is rare. We describe a 69-year-old man with intractable hemorrhagic gastritis induced by postoperative radiotherapy for the treatment of esophageal carcinoma. Although anti-secretory therapy with or without octreotide was initiated for hemostasis over three months, melena still occurred off and on, and the patient required blood transfusions to maintain stable hemoglobin. Finally growth hormone was used in the treatment of hemorrhage for two weeks, and hemostasis was successfully achieved. This is the first report that growth hormone has been used to control intractable bleeding caused by radiation-induced gastritis.

  4. Insulin priming effect on estradiol-induced breast cancer metabolism and growth.

    Science.gov (United States)

    Wairagu, Peninah M; Phan, Ai N H; Kim, Min-Kyu; Han, Jeongwoo; Kim, Hyun-Won; Choi, Jong-Whan; Kim, Ki Woo; Cha, Seung-Kuy; Park, Kwang Hwa; Jeong, Yangsik

    2015-01-01

    Diabetes is a risk factor for breast cancer development and is associated with poor prognosis for breast cancer patients. However, the molecular and biochemical mechanisms underlying the association between diabetes and breast cancer have not been fully elucidated. Here, we investigated estradiol response in MCF-7 breast cancer cells with or without chronic exposure to insulin. We found that insulin priming is necessary and specific for estradiol-induced cancer cell growth, and induces anaplerotic shunting of glucose into macromolecule biosynthesis in the estradiol treated cells. Treatment with ERK or Akt specific inhibitors, U0126 or LY294002, respectively, suppressed estradiol-induced growth. Interestingly, molecular analysis revealed that estradiol treatment markedly increases expression of cyclin A and B, and decreases p21 and p27 in the insulin-primed cells. In addition, estradiol treatment activated metabolic genes in pentose phosphate (PPP) and serine biosynthesis pathways in the insulin-primed cells while insulin priming decreased metabolic gene expression associated with glucose catabolism in the breast cancer cells. Finally, we found that anti-diabetic drug metformin and AMPK ligand AICAR, but not thiazolidinediones (TZDs), specifically suppress the estradiol-induced cellular growth in the insulin-primed cells. These findings suggest that estrogen receptor (ER) activation under chronic hyperinsulinemic condition increases breast cancer growth through the modulation of cell cycle and apoptotic factors and nutrient metabolism, and further provide a mechanistic evidence for the clinical benefit of metformin use for ER-positive breast cancer patients with diabetes.

  5. Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available When plants are repeatedly injured their growth is stunted and the size of organs such as leaves is greatly reduced. The basis of this effect is not well-understood however, even though it reduces yield of crops injured by herbivory, and produces dramatic effects exemplified in ornamental bonsai plants. We have investigated the genetic and physiological basis of this "bonsai effect" by repeatedly wounding leaves of the model plant Arabidopsis. This treatment stunted growth by 50% and increased the endogenous content of jasmonate (JA, a growth inhibitor, by seven-fold. Significantly, repeated wounding did not stunt the growth of the leaves of mutants unable to synthesise JA, or unable to respond to JA including coi1, jai3, myc2, but not jar1. The stunted growth did not result from reduced cell size, but resulted instead from reduced cell number, and was associated with reduced expression of CycB1;2. Wounding caused systemic disappearance of constitutively expressed JAZ1::GUS. Wounding also activates plant immunity. We show that a gene, 12-oxo-phytodienoate reductase, which catalyses a step in JA biosynthesis, and which we confirm is not required for defence, is however required for wound-induced stunting. Our data suggest that intermediates in the JA biosynthetic pathway activate defence, but a primary function of wound-induced JA is to stunt growth through the suppression of mitosis.

  6. Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis.

    Science.gov (United States)

    Zhang, Yi; Turner, John G

    2008-01-01

    When plants are repeatedly injured their growth is stunted and the size of organs such as leaves is greatly reduced. The basis of this effect is not well-understood however, even though it reduces yield of crops injured by herbivory, and produces dramatic effects exemplified in ornamental bonsai plants. We have investigated the genetic and physiological basis of this "bonsai effect" by repeatedly wounding leaves of the model plant Arabidopsis. This treatment stunted growth by 50% and increased the endogenous content of jasmonate (JA), a growth inhibitor, by seven-fold. Significantly, repeated wounding did not stunt the growth of the leaves of mutants unable to synthesise JA, or unable to respond to JA including coi1, jai3, myc2, but not jar1. The stunted growth did not result from reduced cell size, but resulted instead from reduced cell number, and was associated with reduced expression of CycB1;2. Wounding caused systemic disappearance of constitutively expressed JAZ1::GUS. Wounding also activates plant immunity. We show that a gene, 12-oxo-phytodienoate reductase, which catalyses a step in JA biosynthesis, and which we confirm is not required for defence, is however required for wound-induced stunting. Our data suggest that intermediates in the JA biosynthetic pathway activate defence, but a primary function of wound-induced JA is to stunt growth through the suppression of mitosis.

  7. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype

    Directory of Open Access Journals (Sweden)

    Ruslana Vasylkovska

    2015-01-01

    Full Text Available Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast.

  8. Glucocorticoid-induced effects on the growth plate and the IGF system

    NARCIS (Netherlands)

    Smink, Jeske Johanna

    2003-01-01

    Glucocorticoids (GCs) are widely used as anti-inflammatory and immunosuppressive drugs. The use of these potent drugs, however, often results in side-effects, such as growth retardation in children. For already many years, this GC-induced growth retardation is suggested to involve impaired action of

  9. CSR-induced emittance growth in achromats: Linear formalism revisited

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M.

    2015-09-11

    We review the R-matrix formalism used to describe Coherent Synchrotron Radiation (CSR)-induced projected emittance growth in electron beam transport lines and establish the connection with a description in terms of the dispersion-invariant function.

  10. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Chiaki Murayama

    2015-08-01

    Full Text Available Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH, a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF in cultured rat dorsal root ganglion (DRG neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control, a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in “itch-scratch” animal models is under investigation.

  11. Testosterone-induced adult neurosphere growth is mediated by sexually-dimorphic aromatase expression

    Directory of Open Access Journals (Sweden)

    Mark Ian Ransome

    2015-07-01

    Full Text Available We derived adult neural stem/progenitor cells (NSPCs from the sub-ventricular zone of male and female mice to examine direct responses to principal sex hormones. In the presence of epidermal growth factor (EGF and fibroblast growth factor-2 (FGF2 NSPCs of both sexes expressed nestin and sox2 and could be maintained as neurospheres without addition of any sex hormones. The reverse was not observed; neither testosterone (T, 17β-oestradiol (E2 nor progesterone (P4 was able to support neurosphere growth in the absence of EGF and FGF2. 10nM T, E2 or P4 induced nestin(+ cell proliferation within 20 minutes and enhanced neurosphere growth over 7 days irrespective of sex, which was abolished by Erk inhibition with 20M U0126. Maintaining neurospheres with each sex hormone did not affect subsequent neuronal differentiation. However, 10nM T, E2 or P4 added during differentiation increased III tubulin(+ neuron production with E2 being more potent compared to T and P4 in both sexes. Androgen receptor (AR inhibition with 20M flutamide but not aromatase inhibition with 10M letrozole reduced basal and T-induced neurosphere growth in females, while only concurrent inhibition of AR and aromatase produced the same effect in males. This sex-specific effect was supported by higher aromatase expression in male neurospheres compared to females measured by Western blot and green fluorescent protein reporter. 10M menadione induced oxidative stress, impaired neurosphere growth and up-regulated aromatase expression in both sexes. However, under oxidative stress letrozole significantly exacerbated impaired neurosphere growth in males only. While both E2 and T could prevent oxidative stress-induced growth reduction in both sexes, the effects of T were dependent on innate aromatase activity. We show for the first time that intrinsic androgen and estrogen signalling may impact the capacity of NSPCs to produce neural progenitors under pathological conditions of

  12. Long-term treadmill exercise-induced neuroplasticity and associated memory recovery of streptozotocin-induced diabetic rats: an experimenter blind, randomized controlled study.

    Science.gov (United States)

    You, Joshua Sung H; Kim, Chung-Ju; Kim, Mee Young; Byun, Yong Gwon; Ha, So Young; Han, Bong Suk; Yoon, Bum Chul

    2009-01-01

    We investigated a long-term exercise-induced neuroplasticity and spatial memory recovery in 15 rats in a treadmill as follows: normal control rats (NC), streptozotocin (STZ)-induced diabetic control rats (DC), and STZ-induced diabetic rats exercising in a treadmill (DE). As per the DE group, the running exercise in a treadmill was administered for 30 minutes a day for 6 weeks. Neuronal immediate-early gene (IEG) expression (c-Fos) in the hippocampus and radial arm maze (RAM) tests were measured and revealed that the c-Fos levels in DE were significantly higher than those in NC and DC (p memory performance scores, obtained from the RAM test, were significantly different among the three groups (p memory scores of NC and DE were higher than those of DC (p memory. This is the first experimental evidence in literature that supports the efficacy of exercise-induced neuroplasticity and spatial motor memory in diabetes care.

  13. Interact to survive: Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery.

    Directory of Open Access Journals (Sweden)

    Justine Bresson

    Full Text Available Mutualistic bacteria can alter plant phenotypes and confer new abilities to plants. Some plant growth-promoting rhizobacteria (PGPR are known to improve both plant growth and tolerance to multiple stresses, including drought, but reports on their effects on plant survival under severe water deficits are scarce. We investigated the effect of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on survival, growth and physiological responses of Arabidopsis thaliana to severe water deficits combining destructive and non-destructive high-throughput phenotyping. Soil inoculation with STM196 greatly increased the survival rate of A. thaliana under several scenarios of severe water deficit. Photosystem II efficiency, assessed at the whole-plant level by high-throughput fluorescence imaging (Fv/Fm, was related to the probability of survival and revealed that STM196 delayed plant mortality. Inoculated surviving plants tolerated more damages to the photosynthetic tissues through a delayed dehydration and a better tolerance to low water status. Importantly, STM196 allowed a better recovery of plant growth after rewatering and stressed plants reached a similar biomass at flowering than non-stressed plants. Our results highlight the importance of plant-bacteria interactions in plant responses to severe drought and provide a new avenue of investigations to improve drought tolerance in agriculture.

  14. Suppression of the emittance growth induced by coherent synchrotron radiation in triple-bend achromats

    International Nuclear Information System (INIS)

    Huang Xiyang; Jiao Yi; Xu Gang; Cui Xiaohao

    2015-01-01

    The coherent synchrotron radiation (CSR) effect in a bending path plays an important role in transverse emittance dilution in high-brightness light sources and linear colliders, where the electron beams are of short bunch length and high peak current. Suppression of the emittance growth induced by CSR is critical to preserve the beam quality and help improve the machine performance. It has been shown that the CSR effect in a double-bend achromat (DBA) can be analyzed with the two-dimensional point-kick analysis method. In this paper, this method is applied to analyze the CSR effect in a triple-bend achromat (TBA) with symmetric layout, which is commonly used in the optics designs of energy recovery linacs (ERLs). A condition of cancelling the CSR linear effect in such a TBA is obtained, and is verified through numerical simulations. It is demonstrated that emittance preservation can be achieved with this condition, and to a large extent, has a high tolerance to the fluctuation of the initial transverse phase space distribution of the beam. (authors)

  15. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kanayo [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Sakaguchi, Minoru, E-mail: sakaguti@gly.oups.ac.jp [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Tanaka, Satoshi [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Yoshimoto, Tadashi [Department of Life Science, Setsunan University, 17-8 Ikeda-Nakamachi, Neyagawa, Osaka 572-8508 (Japan); Takaoka, Masanori [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan)

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDK inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.

  16. Repeated Microneedle Stimulation Induces Enhanced Hair Growth in a Murine Model.

    Science.gov (United States)

    Kim, Yoon Seob; Jeong, Kwan Ho; Kim, Jung Eun; Woo, Young Jun; Kim, Beom Joon; Kang, Hoon

    2016-10-01

    Microneedle is a method that creates transdermal microchannels across the stratum corneum barrier layer of skin. No previous study showed a therapeutic effect of microneedle itself on hair growth by wounding. The aim of this study is to investigate the effect of repeated microwound formed by microneedle on hair growth and hair growth-related genes in a murine model. A disk microneedle roller was applied to each group of mice five times a week for three weeks. First, to identify the optimal length and cycle, microneedles of lengths of 0.15 mm, 0.25 mm, 0.5 mm, and 1 mm and cycles of 3, 6, 10, and 13 cycles were applied. Second, the effect of hair growth and hair-growth-related genes such as Wnt3a, β-catenin, vascular endothelial growth factor (VEGF), and Wnt10b was observed using optimized microneedle. Outcomes were observed using visual inspection, real-time polymerase chain reaction, and immunohistochemistry. We found that the optimal length and cycle of microneedle treatment on hair growth was 0.25 mm/10 cycles and 0.5 mm/10 cycles. Repeated microneedle stimulation promoted hair growth, and it also induced the enhanced expression of Wnt3a, β-catenin, VEGF, and Wnt10b. Our study provides evidence that microneedle stimulation can induce hair growth via activation of the Wnt/β-catenin pathway and VEGF. Combined with the drug delivery effect, we believe that microneedle stimulation could lead to new approaches for alopecia.

  17. Summary of radiation-induced transient absorption and recovery in fiber optic waveguides

    International Nuclear Information System (INIS)

    Skoog, C.D.

    1976-11-01

    The absorption induced in fiber optic waveguides by pulsed electron and X-ray radiation has been measured as a function of optical wavelength from 450 to 950 nm, irradiation temperature from -54 to 71 0 C, and dose from 1 to 500 krads. The fibers studied are Ge-doped silica core fibers (Corning Low Loss), ''pure'' vitreous silica core fibers (Schott, Bell Laboratories, Fiberoptic Cable Corp., and Valtec Fiberoptics), polymethyl-methacrylate core fibers (DuPont CROFON and PFX), and polystyrene core fibers (International Fiber Optics and Polyoptics). Models that have been developed to account for the observed absorption recovery are also summarized

  18. P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest.

    Science.gov (United States)

    Shamseddine, A A; Clarke, C J; Carroll, B; Airola, M V; Mohammed, S; Rella, A; Obeid, L M; Hannun, Y A

    2015-10-29

    Neutral sphingomyelinase-2 (nSMase2) is a ceramide-generating enzyme that has been implicated in growth arrest, apoptosis and exosome secretion. Although previous studies have reported transcriptional upregulation of nSMase2 in response to daunorubicin, through Sp1 and Sp3 transcription factors, the role of the DNA damage pathway in regulating nSMase2 remains unclear. In this study, we show that doxorubicin induces a dose-dependent induction of nSMase2 mRNA and protein with concomitant increases in nSMase activity and ceramide levels. Upregulation of nSMase2 was dependent on ATR, Chk1 and p53, thus placing it downstream of the DNA damage pathway. Moreover, overexpression of p53 was sufficient to transcriptionally induce nSMase2, without the need for DNA damage. DNA-binding mutants as well as acetylation mutants of p53 were unable to induce nSMase2, suggesting a role of nSMase2 in growth arrest. Moreover, knockdown of nSMase2 prevented doxorubicin-induced growth arrest. Finally, p53-induced nSMase2 upregulation appears to occur via a novel transcription start site upstream of exon 3. These results identify nSMase2 as a novel p53 target gene, regulated by the DNA damage pathway to induce cell growth arrest.

  19. Growth hormone and nutrition as protective agents against methotrexate induced enteritis.

    Science.gov (United States)

    Ortega, M; de Segura, I A; Vázquez, I; López, J M; De Miguel, E

    2001-03-01

    To determine whether exogenously administered growth hormone can reduce or prevent chemotherapy-induced intestinal mucosa injury. The expected results will allow to consider its potential clinical use. Experimental and randomized study. Experimental Surgery Service, La Paz University Hospital. Adult Wistar rats weighing 250-300 g. A chemotherapy protocol with methotrexate (MTX) (120 mg/kg) was employed. Animals fed either with a normoproteic or a hyperproteic liquid diet were treated with either saline or growth hormone (1 mg/kg/day) since three days before until four days after chemotherapy. Animals were sacrificed seven days after MTX administration for tissue sampling. Co-administration of growth hormone and a hyperproteic diet increased intestinal crypt proliferation and reduced MTX-induced apoptosis. Jejunal mucosal structure (morphometry), proliferation (Ki-67) and apoptosis (TUNNEL) were assessed.

  20. LINKING GABAA RECEPTOR SUBUNITS TO ALCOHOL-INDUCED CONDITIONED TASTE AVERSION AND RECOVERY FROM ACUTE ALCOHOL INTOXICATION

    Science.gov (United States)

    Blednov, Y.A.; Benavidez, J.M.; Black, M.; Chandra, D.; Homanics, G.E.; Rudolph, U.; Harris, R.A.

    2012-01-01

    GABA type A receptors (GABAA-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABAA-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011) and indicate this aversive property of ethanol is dependent on ethanol action on α2-containing GABAA-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor-incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABAA-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 and α3 (-/-) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism. PMID:23147414

  1. Involvement of growth factors and their receptors in radon-induced rat lung tumors

    International Nuclear Information System (INIS)

    Leung, F.C.; Dagle, G.E.; Cross, F.T.

    1992-01-01

    In this paper we examine the role of growth factors (GF) and their receptors (GFR) in radon-induced rat lung tumors. Inhalation exposure of radon and its daughters induced lung tumors in rats, but the molecule/cellular mechanisms are not known. Recent evidence suggests that GF/GFR play a critical role in the growth and development of lung cancer in humans and animals. We have developed immunocytochemical methods for identifying sites of production and action of GF/GFR at the cellular level; for example, the avidin-biotin horseradish peroxidase technique. In radon-induced rat epidermoid carcinomas, epidermal growth factor (EGF), EGF-receptors (EGF-R), transforming growth factor alpha (TGF-α), and bombesin were found to be abnormally expressed. These abnormal expressions, mainly associated with epidermoid carcinomas of the lung, were not found in any other lung tumor types. Our data suggest that EGF, EGF-R, TGF-α, and bombesin are involved in radon oncogenesis in rat lungs, especially in epidermoid carcinomas, possibly through the autocrine/paracrine pathway

  2. Bestatin treatment enhances the recovery of radiation induced impairments of the immunological reactivity of the blood lymphocyte population in bladder cancer patients

    International Nuclear Information System (INIS)

    Blomgren, H.; Edsmyr, F.; Stedingk, L.V. von; Wasserman, J.

    1986-01-01

    Bestatin, an immunostimulating substance of microbial origin, was examined for its capacity to augment immune responses of blood lymphocytes in bladder cancer patients having received a full course of local irradiation (64 Gy). Following irradiation the patients became lymphopenic and the lymphocytes exhibited impaired mitogenic responses to phytohemagglutinin (PHA) and purified protein derivative of tuberculin (PPD) and reduced poke weed mitogen induced secretion of immunoglobulins in vitro. Patients who were randomized to receive daily oral Bestatin treatment exhibited enhanced recoveries of PHA- and PPD- responses and enhanced recovery of the IgM secreting capacity compared to irradiated patients who did not receive Bestatin. Repopulation of the blood lymphocyte population, however, was not enhanced by Bestatin treatment. It is concluded that Bestatin treatment may enhance the recovery of radiation induced functional defects of the immune system in cancer patients

  3. Limitations to CO2-induced growth enhancement in pot studies.

    Science.gov (United States)

    McConnaughay, K D M; Berntson, G M; Bazzaz, F A

    1993-07-01

    Recently, it has been suggested that small pots may reduce or eliminate plant responses to enriched CO 2 atmospheres due to root restriction. While smaller pot volumes provide less physical space available for root growth, they also provide less nutrients. Reduced nutrient availability alone may reduce growth enhancement under elevated CO 2 . To investigate the relative importance of limited physical rooting space separate from and in conjunction with soil nutrients, we grew plants at ambient and double-ambient CO 2 levels in growth containers of varied volume, shape, nutrient concentration, and total nutrient content. Two species (Abutilon theophrasti, a C 3 dicot with a deep tap root andSetaria faberii, a C 4 monocot with a shallow diffuse root system) were selected for their contrasting physiology and root architecture. Shoot demography was determined weekly and biomass was determined after eight and ten weeks of growth. Increasing total nutrients, either by increasing nutrient concentration or by increasing pot size, increased plant growth. Further, increasing pot size while maintaining equal total nutrients per pot resulted in increased total biomass for both species. CO 2 -induced growth and reproductive yield enhancements were greatest in pots with high nutrient concentrations, regardless of total nutrient content or pot size, and were also mediated by the shape of the pot. CO 2 -induced growth and reproductive yield enhancements were unaffected by pot size (growth) or were greater in small pots (reproductive yield), regardless of total nutrient content, contrary to predictions based on earlier studies. These results suggest that several aspects of growth conditions within pots may influence the CO 2 responses of plants; pot size, pot shape, the concentration and total amount of nutrient additions to pots may lead to over-or underestimates of the CO 2 responses of real-world plants.

  4. Induced spawning, survival and growth of an African catfish hybrid ...

    African Journals Online (AJOL)

    Induced spawning, survival and growth of an African catfish hybrid (female Clarias gariepinus and male Clarias anguillaris ) fingerlings relative to their parental species in the mount Cameroon region.

  5. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Linard Filli

    2015-01-01

    Full Text Available Axonal regeneration and fiber regrowth is limited in the adult central nervous system, but research over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance fiber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of structural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The formation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identified as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the existence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic interventions (e.g., fiber-growth enhancing interventions, rehabilitation. This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of propriospinal circuits to maximize functional recovery after spinal cord injury.

  6. Overexpression of antioxidant enzymes in diaphragm muscle does not alter contraction-induced fatigue or recovery

    Science.gov (United States)

    McClung, Joseph M.; DeRuisseau, Keith C.; Whidden, Melissa A.; Van Remmen, Holly; Richardson, Arlan; Song, Wook; Vrabas, Ioannis S.; Powers, Scott K.

    2010-01-01

    Low levels of reactive oxygen species (ROS) production are necessary to optimize muscle force production in unfatigued muscle. In contrast, sustained high levels of ROS production have been linked to impaired muscle force production and contraction-induced skeletal muscle fatigue. Using genetically engineered mice, we tested the hypothesis that the independent transgenic overexpression of catalase (CAT), copper/zinc superoxide dismutase (CuZnSOD; SOD1) or manganese superoxide dismutase (MnSOD; SOD2) antioxidant enzymes would negatively affect force production in unfatigued diaphragm muscle but would delay the development of muscle fatigue and enhance force recovery after fatiguing contractions. Diaphragm muscle from wild-type littermates (WT) and from CAT, SOD1 and SOD2 overexpressing mice were subjected to an in vitro contractile protocol to investigate the force–frequency characteristics, the fatigue properties and the time course of recovery from fatigue. The CAT, SOD1 and SOD2 overexpressors produced less specific force (in N cm−2) at stimulation frequencies of 20–300 Hz and produced lower maximal tetanic force than WT littermates. The relative development of muscle fatigue and recovery from fatigue were not influenced by transgenic overexpression of any antioxidant enzyme. Morphologically, the mean cross-sectional area (in μm2) of diaphragm myofibres expressing myosin heavy chain type IIA was decreased in both CAT and SOD2 transgenic animals, and the percentage of non-contractile tissue increased in diaphragms from all transgenic mice. In conclusion, our results do not support the hypothesis that overexpression of independent antioxidant enzymes protects diaphragm muscle from contraction-induced fatigue or improves recovery from fatigue. Moreover, our data are consistent with the concept that a basal level of ROS is important to optimize muscle force production, since transgenic overexpression of major cellular antioxidants is associated with

  7. Thailand's growth rebalancing

    OpenAIRE

    Jitsuchon, Somchai; Sussangkarn, Chalongphob

    2009-01-01

    This paper reviews Thailand's structural changes, the 1997 crisis experience, and recovery and lessons from the crisis. The paper then discusses the impacts of the subprime crisis on the Thai economy and the policy responses to date. The paper ends by discussing strategies to rebalance growth by reducing the dependence on exports as the main growth engine. The recovery from the 1997 crisis left Thailand more dependent than ever on exports as the main engine of growth, with the ratio of export...

  8. Effects of air-pulsed cryotherapy on neuromuscular recovery subsequent to exercise-induced muscle damage.

    Science.gov (United States)

    Guilhem, Gaël; Hug, François; Couturier, Antoine; Regnault, Stéphanie; Bournat, Laure; Filliard, Jean-Robert; Dorel, Sylvain

    2013-08-01

    Localized cooling has been proposed as an effective strategy to limit the deleterious effects of exercise-induced muscle damage on neuromuscular function. However, the literature reports conflicting results. This randomized controlled trial aimed to determine the effects of a new treatment, localized air-pulsed cryotherapy (-30°C), on the recovery time-course of neuromuscular function following a strenuous eccentric exercise. Controlled laboratory study. A total of 24 participants were included in either a control group (CONT) or a cryotherapy group (CRYO). Immediately after 3 sets of 20 maximal isokinetic eccentric contractions of elbow flexors, and then 1, 2, and 3 days after exercise, the CRYO group received a cryotherapy treatment (3 × 4 minutes at -30°C separated by 1 minute). The day before and 1, 2, 3, 7, and 14 days after exercise, several parameters were quantified: maximal isometric torque and its associated maximal electromyographic activity recorded by a 64-channel electrode, delayed-onset muscle soreness (DOMS), biceps brachii transverse relaxation time (T2) measured using magnetic resonance imaging, creatine kinase activity, interleukin-6, and C-reactive protein. Maximal isometric torque decreased similarly for the CONT (-33% ± 4%) and CRYO groups (-31% ± 6%). No intergroup differences were found for DOMS, electromyographic activity, creatine kinase activity, and T2 level averaged across the whole biceps brachii. C-reactive protein significantly increased for CONT (+93% at 72 hours, P cryotherapy delayed the significant increase of T2 and the decrease of electromyographic activity level for CRYO compared with CONT (between day 1 and day 3) in the medio-distal part of the biceps brachii. Although some indicators of muscle damage after severe eccentric exercise were delayed (ie, local formation of edema and decrease of muscle activity) by repeated air-pulsed cryotherapy, we provide evidence that this cooling procedure failed to improve long

  9. Proces-based modeling of the overflow induced growth of erosional channels

    NARCIS (Netherlands)

    Tuan, T.Q.; Stive, M.J.F.; Verhagen, H.J.; Visser, P.J.

    2008-01-01

    A new process-based approach is introduced for a more efficient computation of the overflow-induced growth of an erosional channel in a noncohesive homogeneous narrow landmass such as the breach growth in a sand-dike. The approach is easy to incorporate in a 1D/2DV morphodynamic model to compute the

  10. Fishery-induced selection for slow somatic growth in European eel.

    Directory of Open Access Journals (Sweden)

    Daniele Bevacqua

    Full Text Available Both theoretical and experimental studies have shown that fishing mortality can induce adaptive responses in body growth rates of fishes in the opposite direction of natural selection. We compared body growth rates in European eel (Anguilla anguilla from three Mediterranean stocks subject to different fishing pressure. Results are consistent with the hypotheses that i fast-growing individuals are more likely to survive until sexual maturity than slow-growing ones under natural conditions (no fishing and ii fishing can select for slow-growing individuals by removing fast-growing ones. Although the possibility of human-induced evolution seems remote for a panmictic species like such as the European eel, further research is desirable to assess the implications of the intensive exploitation on this critically endangered fish.

  11. Chronic Fluoxetine Induces Activity Changes in Recovery From Poststroke Anxiety, Depression, and Cognitive Impairment.

    Science.gov (United States)

    Vahid-Ansari, Faranak; Albert, Paul R

    2018-01-01

    Poststroke depression (PSD) is a common outcome of stroke that limits recovery and is only partially responsive to chronic antidepressant treatment. In order to elucidate changes in the cortical-limbic circuitry associated with PSD and its treatment, we examined a novel mouse model of persistent PSD. Focal endothelin-1-induced ischemia of the left medial prefrontal cortex (mPFC) in male C57BL6 mice resulted in a chronic anxiety and depression phenotype. Here, we show severe cognitive impairment in spatial learning and memory in the stroke mice. The behavioral and cognitive phenotypes were reversed by chronic (4-week) treatment with fluoxetine, alone or with voluntary exercise (free-running wheel), but not by exercise alone. To assess chronic cellular activation, FosB + cells were co-labeled for markers of glutamate/pyramidal (VGluT1-3/CaMKIIα), γ-aminobutyric acid (GAD67), and serotonin (TPH). At 6 weeks poststroke versus sham (or 4 days poststroke), left mPFC stroke induced widespread FosB activation, more on the right (contralesional) than on the left side. Stroke activated glutamate cells of the mPFC, nucleus accumbens, amygdala, hippocampus, and raphe serotonin neurons. Chronic fluoxetine balanced bilateral neuronal activity, reducing total FosB and FosB/CamKII + cells (mPFC, nucleus accumbens), and unlike exercise, increasing FosB/GAD67 + cells (septum, amygdala) or both (hippocampus, raphe). In summary, chronic antidepressant but not exercise mediates recovery in this unilateral ischemic PSD model that is associated with region-specific reversal of stroke-induced pyramidal cell hyperactivity and increase in γ-aminobutyric acidergic activity. Targeted brain stimulation to restore brain activity could provide a rational approach for treating clinical PSD.

  12. Laser induced photoreceptor damage and recovery in the high numerical aperture eye of the garter snake.

    Science.gov (United States)

    Zwick, H; Edsall, P; Stuck, B E; Wood, E; Elliott, R; Cheramie, R; Hacker, H

    2008-02-01

    The garter snake provides a unique model for in-vivo imaging of photoreceptor damage induced by laser retinal exposure. Laser thermal/mechanical retinal injury induced alterations in photoreceptor structure and leukocyte cellular behavior. Photoreceptors turned white, lost mode structure, and swelled; leukocyte activity was observed in the vicinity of photoreceptor cells. Non-thermal alterations were identified with a bio-tag for oxidative stress. Mechanisms of photoreceptor recovery and replacement were observed and evaluated for active cytoskeletal systems by using an anti-actin tag that could detect the presence of active cytoskeletal systems resident in photoreceptors as well as other retinal systems.

  13. Recovery in soccer : part ii-recovery strategies.

    Science.gov (United States)

    Nédélec, Mathieu; McCall, Alan; Carling, Chris; Legall, Franck; Berthoin, Serge; Dupont, Gregory

    2013-01-01

    now do not significantly accelerate the return to initial levels of performance in comparison with a control condition. In conclusion, scientific evidence to support the use of strategies commonly used during recovery is lacking. Additional research is required in this area in order to help practitioners establish an efficient recovery protocol immediately after matchplay, but also for the following days. Future studies could focus on the chronic effects of recovery strategies, on combinations of recovery protocols and on the effects of recovery strategies inducing an anti-inflammatory or a pro-inflammatory response.

  14. Prospect of shale gas recovery enhancement by oxidation-induced rock burst

    Directory of Open Access Journals (Sweden)

    Lijun You

    2017-11-01

    Full Text Available By horizontal well multi-staged fracturing technology, shale rocks can be broken to form fracture networks via hydraulic force and increase the production rate of shale gas wells. Nonetheless, the fracturing stimulation effect may be offset by the water phase trapping damage caused by water retention. In this paper, a technique in transferring the negative factor of fracturing fluid retention into a positive factor of changing the gas existence state and facilitating shale cracking was discussed using the easy oxidation characteristics of organic matter, pyrite and other minerals in shale rocks. Furthermore, the prospect of this technique in tackling the challenges of large retention volume of hydraulic fracturing fluid in shale gas reservoirs, high reservoir damage risks, sharp production decline rate of gas wells and low gas recovery, was analyzed. The organic matter and pyrite in shale rocks can produce a large number of dissolved pores and seams to improve the gas deliverability of the matrix pore throats to the fracture systems. Meanwhile, in the oxidation process, released heat and increased pore pressure will make shale rock burst, inducing expansion and extension of shale micro-fractures, increasing the drainage area and shortening the gas flowing path in matrix, and ultimately, removing reservoir damage and improving gas recovery. To sum up, the technique discussed in the paper can be used to “break” shale rocks via hydraulic force and to “burst” shale rocks via chemical oxidation by adding oxidizing fluid to the hydraulic fracturing fluid. It can thus be concluded that this method can be a favorable supplementation for the conventional hydraulic fracturing of shale gas reservoirs. It has a broad application future in terms of reducing costs and increasing profits, maintaining plateau shale gas production and improving shale gas recovery.

  15. Fishing-induced evolution of growth: concepts, mechanisms and the empirical evidence

    Czech Academy of Sciences Publication Activity Database

    Enberg, K.; Jørgensen, C.; Dunlop, E. S.; Varpe, Ø.; Boukal S., David; Baulier, L.; Eliassen, S.; Heino, M.

    2012-01-01

    Roč. 33, č. 1 (2012), s. 1-25 ISSN 0173-9565 Institutional research plan: CEZ:AV0Z50070508 Keywords : fisheries -induced evolution * fishing-induced evolution * growth Subject RIV: ED - Physiology Impact factor: 2.561, year: 2012 http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0485.2011.00460.x/pdf

  16. Drought-induced legacy effects in wood growth across the Eastern and Midwestern U.S. are mediated by site climate, tree age, and drought sensitivity

    Science.gov (United States)

    Kannenberg, S.; Maxwell, J. T.; Pederson, N.; D'Orangeville, L.; Phillips, R.

    2017-12-01

    While it is widely known that drought reduces carbon (C) uptake in temperate forests, tree growth can also remain stagnant post-drought despite favorable climatic conditions. While such "legacy effects" are well established, the degree to which these effects depend on species identity or variability in site conditions is poorly quantified. We sought to uncover how site, species, climate, and tree age interact to affect the presence and magnitude of legacy effects in temperate trees following drought. To do this, we assembled dendrochronological records of 18 common species across 94 sites in Eastern and Midwestern U.S. forests and quantified drought-induced changes in wood growth in the year of the drought (hereafter "drought sensitivity") and the years after the drought (i.e., legacy effects). We predicted that species particularly prone to hydraulic damage (e.g., oaks) would have the least drought sensitivity yet experience larger legacy effects, and that this effect would be exacerbated at arid sites. Across all species and sites, wood growth was reduced by 14% in the year of the drought and by 7% post-drought. Surprisingly, legacy effects were smaller for oak species and larger across species known to be more drought sensitive (e.g. tulip poplar, maple, birch). As a result, we observed a positive relationship between a species' drought sensitivity and that species' legacy effect. These legacy effects were similar in size across a range of drought severities. Surprisingly, legacy effects were smaller in more arid sites - contrary to previous investigations in dryland ecosystems - perhaps indicating the role of adaptation in mediating a tree's recovery from drought. In addition, many species actually decreased the size of their legacy effects as they aged, despite no change in drought responses. Our results run contrary to our predictions, as species with the greatest drought sensitivity had the least ability to recover, and that younger mesic forests- not arid

  17. Spectral Induced Polarization (SIP) monitoring during Microbial Enhanced Oil Recovery (MEOR)

    Science.gov (United States)

    Heenan, J. W.; Ntarlagiannis, D.; Slater, L. D.

    2010-12-01

    Jeffrey Heenan, Dimitrios Ntarlagiannis, Lee Slater Department of Earth and Environmental Sciences, Rutgers University, Newark NJ Microbial Enhanced Oil Recovery (MEOR) is an established, cost effective, method for enhancing tertiary oil recovery. Although not commonly used for shallow heavy oils, it could be a viable alternative since it can offer sustainable economic recovery and minimal environmental impact. A critical component of successful MEOR treatments is accurate, real time monitoring of the biodegradation processes resulting from the injection of microbial communities into the formation; results of recent biogeophysical research suggest that minimally-invasive geophysical methods could significantly contribute to such monitoring efforts. Here we present results of laboratory experiments, to assess the sensitivity of the spectral induced polarization method (SIP) to MEOR treatments. We used heavy oil, obtained from a shallow oilfield in SW Missouri, to saturate three sand columns. We then followed common industry procedures,and used a commercially available microbial consortia, to treat the oil columns. The active MEOR experiments were performed in duplicate while a control column maintained similar conditions, without promoting microbial activity and oil degradation. We monitored the SIP signatures, between 0.001 Hz and 1000 Hz, for a period of six months. To support the geophysical measurements we also monitored common geochemical parameters, including pH, Eh and fluid conductivity, and collected weekly fluid samples from the outflow and inflow for further analysis; fluid samples were analyzed to confirm that microbes actively degraded the heavy oils in the column while destructive analysis of the solid materials was performed upon termination of the experiment. Preliminary analysis of the results suggests that SIP is sensitive to MEOR processes. In both inoculated columns we recorded an increase in the low frequency polarization with time; measureable

  18. Train-of-four ratio recovery often precedes twitch recovery when neuromuscular block is reversed by sugammadex

    NARCIS (Netherlands)

    Staals, L.M.; Driessen, J.J.; Egmond, J. van; Boer, H.D. de; Klimek, M.; Flockton, E.A.; Snoeck, M.M.J.

    2011-01-01

    BACKGROUND: Sugammadex reverses rocuronium-induced neuromuscular block (NMB). In all published studies investigating sugammadex, the primary outcome parameter was a train-of-four (TOF) ratio of 0.9. The recovery time of T1 was not described. This retrospective investigation describes the recovery of

  19. Co-regulation of water and K(+) transport in sunflower plants during water stress recovery.

    Science.gov (United States)

    Benlloch, Manuel; Benlloch-González, María

    2016-06-01

    16-day-old sunflower (Helianthus annuus L.) plants were subjected to deficit irrigation for 12 days. Following this period, plants were rehydrated for 2 days to study plant responses to post-stress recovery. The moderate water stress treatment applied reduced growth in all plant organs and the accumulation of K(+) in the shoot. After the rehydration period, the stem recovered its growth and reached a similar length to the control, an effect which was not observed in either root or leaves. Moreover, plant rehydration after water stress favored the accumulation of K(+) in the apical zone of the stem and expanding leaves. In the roots of plants under water stress, watering to field capacity, once the plants were de- topped, rapidly favored K(+) and water transport in the excised roots. This quick and short-lived response was not observed in roots of plants recovered from water stress for 2 days. These results suggest that the recovery of plant growth after water stress is related to coordinated water and K(+) transport from the root to the apical zone of the ​​stem and expanding leaves. This stimulation of K(+) transport in the root and its accumulation in the cells of the growing zones of the ​​stem must be one of the first responses induced in the plant during water stress recovery. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Transporter Protein-Coupled DPCPX Nanoconjugates Induce Diaphragmatic Recovery after SCI by Blocking Adenosine A1 Receptors.

    Science.gov (United States)

    Minic, Zeljka; Zhang, Yanhua; Mao, Guangzhao; Goshgarian, Harry G

    2016-03-23

    Respiratory complications in patients with spinal cord injury (SCI) are common and have a negative impact on the quality of patients' lives. Systemic administration of drugs that improve respiratory function often cause deleterious side effects. The present study examines the applicability of a novel nanotechnology-based drug delivery system, which induces recovery of diaphragm function after SCI in the adult rat model. We developed a protein-coupled nanoconjugate to selectively deliver by transsynaptic transport small therapeutic amounts of an A1 adenosine receptor antagonist to the respiratory centers. A single administration of the nanoconjugate restored 75% of the respiratory drive at 0.1% of the systemic therapeutic drug dose. The reduction of the systemic dose may obviate the side effects. The recovery lasted for 4 weeks (the longest period studied). These findings have translational implications for patients with respiratory dysfunction after SCI. The leading causes of death in humans following SCI are respiratory complications secondary to paralysis of respiratory muscles. Systemic administration of methylxantines improves respiratory function but also leads to the development of deleterious side effects due to actions of the drug on nonrespiratory sites. The importance of the present study lies in the novel drug delivery approach that uses nanotechnology to selectively deliver recovery-inducing drugs to the respiratory centers exclusively. This strategy allows for a reduction in the therapeutic drug dose, which may reduce harmful side effects and markedly improve the quality of life for SCI patients. Copyright © 2016 the authors 0270-6474/16/363441-12$15.00/0.

  1. Recovery Spirituality

    Directory of Open Access Journals (Sweden)

    Ernest Kurtz

    2015-01-01

    Full Text Available There is growing interest in Alcoholics Anonymous (A.A. and other secular, spiritual, and religious frameworks of long-term addiction recovery. The present paper explores the varieties of spiritual experience within A.A., with particular reference to the growth of a wing of recovery spirituality promoted within A.A. It is suggested that the essence of secular spirituality is reflected in the experience of beyond (horizontal and vertical transcendence and between (connection and mutuality and in six facets of spirituality (Release, Gratitude, Humility, Tolerance, Forgiveness, and a Sense of Being-at-home shared across religious, spiritual, and secular pathways of addiction recovery. The growing varieties of A.A. spirituality (spanning the “Christianizers” and “Seculizers” reflect A.A.’s adaptation to the larger diversification of religious experience and the growing secularization of spirituality across the cultural contexts within which A.A. is nested.

  2. Tumors induce coordinate growth of artery, vein, and lymphatic vessel triads

    International Nuclear Information System (INIS)

    Ruddell, Alanna; Croft, Alexandra; Kelly-Spratt, Karen; Furuya, Momoko; Kemp, Christopher J

    2014-01-01

    Tumors drive blood vessel growth to obtain oxygen and nutrients to support tumor expansion, and they also can induce lymphatic vessel growth to facilitate fluid drainage and metastasis. These processes have generally been studied separately, so that it is not known how peritumoral blood and lymphatic vessels grow relative to each other. The murine B16-F10 melanoma and chemically-induced squamous cell carcinoma models were employed to analyze large red-colored vessels growing between flank tumors and draining lymph nodes. Immunostaining and microscopy in combination with dye injection studies were used to characterize these vessels. Each peritumoral red-colored vessel was found to consist of a triad of collecting lymphatic vessel, vein, and artery, that were all enlarged. Peritumoral veins and arteries were both functional, as detected by intravenous dye injection. The enlarged lymphatic vessels were functional in most mice by subcutaneous dye injection assay, however tumor growth sometimes blocked lymph drainage to regional lymph nodes. Large red-colored vessels also grew between benign papillomas or invasive squamous cell carcinomas and regional lymph nodes in chemical carcinogen-treated mice. Immunostaining of the red-colored vessels again identified the clustered growth of enlarged collecting lymphatics, veins, and arteries in the vicinity of these spontaneously arising tumors. Implanted and spontaneously arising tumors induce coordinate growth of blood and lymphatic vessel triads. Many of these vessel triads are enlarged over several cm distance between the tumor and regional lymph nodes. Lymphatic drainage was sometimes blocked in mice before lymph node metastasis was detected, suggesting that an unknown mechanism alters lymph drainage patterns before tumors reach draining lymph nodes

  3. Tumors induce coordinate growth of artery, vein, and lymphatic vessel triads.

    Science.gov (United States)

    Ruddell, Alanna; Croft, Alexandra; Kelly-Spratt, Karen; Furuya, Momoko; Kemp, Christopher J

    2014-05-21

    Tumors drive blood vessel growth to obtain oxygen and nutrients to support tumor expansion, and they also can induce lymphatic vessel growth to facilitate fluid drainage and metastasis. These processes have generally been studied separately, so that it is not known how peritumoral blood and lymphatic vessels grow relative to each other. The murine B16-F10 melanoma and chemically-induced squamous cell carcinoma models were employed to analyze large red-colored vessels growing between flank tumors and draining lymph nodes. Immunostaining and microscopy in combination with dye injection studies were used to characterize these vessels. Each peritumoral red-colored vessel was found to consist of a triad of collecting lymphatic vessel, vein, and artery, that were all enlarged. Peritumoral veins and arteries were both functional, as detected by intravenous dye injection. The enlarged lymphatic vessels were functional in most mice by subcutaneous dye injection assay, however tumor growth sometimes blocked lymph drainage to regional lymph nodes. Large red-colored vessels also grew between benign papillomas or invasive squamous cell carcinomas and regional lymph nodes in chemical carcinogen-treated mice. Immunostaining of the red-colored vessels again identified the clustered growth of enlarged collecting lymphatics, veins, and arteries in the vicinity of these spontaneously arising tumors. Implanted and spontaneously arising tumors induce coordinate growth of blood and lymphatic vessel triads. Many of these vessel triads are enlarged over several cm distance between the tumor and regional lymph nodes. Lymphatic drainage was sometimes blocked in mice before lymph node metastasis was detected, suggesting that an unknown mechanism alters lymph drainage patterns before tumors reach draining lymph nodes.

  4. Linking GABA(A) receptor subunits to alcohol-induced conditioned taste aversion and recovery from acute alcohol intoxication.

    Science.gov (United States)

    Blednov, Y A; Benavidez, J M; Black, M; Chandra, D; Homanics, G E; Rudolph, U; Harris, R A

    2013-04-01

    GABA type A receptors (GABA(A)-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABA(A)-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011). All together, they indicate that aversive property of ethanol is dependent on ethanol action on α2-containing GABA(A)-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABA(A)-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 (-/-) and α3 (-/Y) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Promotion of initiated cells by radiation-induced cell inactivation.

    Science.gov (United States)

    Heidenreich, W F; Paretzke, H G

    2008-11-01

    Cells on the way to carcinogenesis can have a growth advantage relative to normal cells. It has been hypothesized that a radiation-induced growth advantage of these initiated cells might be induced by an increased cell replacement probability of initiated cells after inactivation of neighboring cells by radiation. Here Monte Carlo simulations extend this hypothesis for larger clones: The effective clonal expansion rate decreases with clone size. This effect is stronger for the two-dimensional than for the three-dimensional situation. The clones are irregular, far from a circular shape. An exposure-rate dependence of the effective clonal expansion rate could come in part from a minimal recovery time of the initiated cells for symmetric cell division.

  6. A mixture of Lactobacillus species isolated from traditional fermented foods promote recovery from antibiotic-induced intestinal disruption in mice.

    Science.gov (United States)

    Shi, Y; Zhao, X; Zhao, J; Zhang, H; Zhai, Q; Narbad, A; Chen, W

    2018-03-01

    This study evaluated the antibiotic-induced changes in microbial ecology, intestinal dysbiosis and low-grade inflammation; and the combined effect of four different Lactobacillus species on recovery of microbiota composition and improvement of gut barrier function in mice. Administration of the antibiotic ampicillin for 2 weeks decreased microbial community diversity, induced caecum tumefaction and increased gut permeability in mice. Application of a probiotic cocktail of four Lactobacillus species (JUP-Y4) modulated the microbiota community structure and promoted the abundance of potentially beneficial bacteria such as Akkermansia. Ampicillin administration led to a decline in Bacteroidetes from 46·6 ± 3·91% to 0·264 ± 0·0362%; the addition of JUP-Y4 restored this to 41·4 ± 2·87%. This probiotic supplementation was more effective than natural restoration, where the levels of Bacteroidetes were only restored to 29·3 ± 2·07%. Interestingly, JUP-Y4 treatment was more effective in the restoration of microbiota in faecal samples than in caecal samples. JUP-Y4 also significantly reduced the levels of d-lactate and endotoxin (lipopolysaccharide, LPS) in the serum of mice, and increased the expression of tight-junction proteins while reducing the production of inflammatory cytokines (TNF-α, IL-6, MCP-1, IFN-γ and IL-1β) in the ileum and the colon of antibiotic-treated mice. JUP-Y4 not only promoted recovery from antibiotic-induced gut dysbiosis, but also enhanced the function of the gut barrier, reduced inflammation and lowered levels of circulating endotoxin in mice. Consumption of a mixture of Lactobacillus species may encourage faster recovery from antibiotic-induced gut dysbiosis and gut microbiota-related immune disturbance. © 2018 The Society for Applied Microbiology.

  7. p8 inhibits the growth of human pancreatic cancer cells and its expression is induced through pathways involved in growth inhibition and repressed by factors promoting cell growth

    Directory of Open Access Journals (Sweden)

    Vasseur Sophie

    2003-11-01

    Full Text Available Abstract Background p8 is a stress-induced protein with multiple functions and biochemically related to the architectural factor HMG-I/Y. We analyzed the expression and function of p8 in pancreatic cancer-derived cells. Methods Expression of p8 was silenced in the human pancreatic cancer cell lines Panc-1 and BxPc-3 by infection with a retrovirus expressing p8 RNA in the antisense orientation. Cell growth was measured in control and p8-silenced cells. Influence on p8 expression of the induction of intracellular pathways promoting cellular growth or growth arrest was monitored. Results p8-silenced cells grew more rapidly than control cells transfected with the empty retrovirus. Activation of the Ras→Raf→MEK→ERK and JNK intracellular pathways down-regulated p8 expression. In addition, the MEK1/2 inhibitor U0126 and the JNK inhibitor SP600125 up-regulates expression of p8. Conversely, p38 or TGFβ-1 induced p8 expression whereas the specific p38 inhibitor SB203580 down-regulated p8 expression. Finally, TGFβ-1 induction was in part mediated through p38. Conclusions p8 inhibits the growth of human pancreatic cancer cells. p8 expression is induced through pathways involved in growth inhibition and repressed by factors that promote cell growth. These results suggest that p8 belongs to a pathway regulating the growth of pancreatic cancer cells.

  8. Diacylglycerol production induced by growth hormone in Ob1771 preadipocytes arises from phosphatidylcholine breakdown

    International Nuclear Information System (INIS)

    Catalioto, R.M.; Ailhaud, G.; Negrel, R.

    1990-01-01

    Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with [ 3 H]glycerol or [ 3 H]choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in [ 3 H]ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 [ 3 H])phosphatidylcholine also induced the production of labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein

  9. Diacylglycerol production induced by growth hormone in Ob1771 preadipocytes arises from phosphatidylcholine breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Catalioto, R.M.; Ailhaud, G.; Negrel, R. (Universite de Nice-Sophia Antipolis (France))

    1990-12-31

    Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with ({sup 3}H)glycerol or ({sup 3}H)choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in ({sup 3}H)ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 ({sup 3}H))phosphatidylcholine also induced the production of labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein.

  10. Dynamic change of global and local information processing in propofol-induced loss and recovery of consciousness.

    Directory of Open Access Journals (Sweden)

    Martin M Monti

    Full Text Available Whether unique to humans or not, consciousness is a central aspect of our experience of the world. The neural fingerprint of this experience, however, remains one of the least understood aspects of the human brain. In this paper we employ graph-theoretic measures and support vector machine classification to assess, in 12 healthy volunteers, the dynamic reconfiguration of functional connectivity during wakefulness, propofol-induced sedation and loss of consciousness, and the recovery of wakefulness. Our main findings, based on resting-state fMRI, are three-fold. First, we find that propofol-induced anesthesia does not bear differently on long-range versus short-range connections. Second, our multi-stage design dissociated an initial phase of thalamo-cortical and cortico-cortical hyperconnectivity, present during sedation, from a phase of cortico-cortical hypoconnectivity, apparent during loss of consciousness. Finally, we show that while clustering is increased during loss of consciousness, as recently suggested, it also remains significantly elevated during wakefulness recovery. Conversely, the characteristic path length of brain networks (i.e., the average functional distance between any two regions of the brain appears significantly increased only during loss of consciousness, marking a decrease of global information-processing efficiency uniquely associated with unconsciousness. These findings suggest that propofol-induced loss of consciousness is mainly tied to cortico-cortical and not thalamo-cortical mechanisms, and that decreased efficiency of information flow is the main feature differentiating the conscious from the unconscious brain.

  11. Hydrogen induced crack growth in Grade-12 titanium

    International Nuclear Information System (INIS)

    Ahn, T.M.; Lee, K.S.

    1984-01-01

    Internal hydrogen induced crack growth rates were measured in Grade-12 titanium which is a candidate material for high-level nuclear waste containers. As-received and hydrogen charged samples (5 ppM to 330 ppM hydrogen) were used for slow crack growth measurements at constant loads using a Krak Gauge. The testing temperature ranged from room temperature to 148 0 C. The crack growth kinetics under low to moderate loads are linear, but this linear rate is interrupted by discrete fast crack jump segments with parabolic or cubic type kinetics. These fast jump segments are thought to be associated with the passage of the crack front through the alpha-beta interface phase or with the initial loading sequence. By measuring striation spacings on the fracture surface, most crack growth rates observed are found to be in stage II. The striations are considered to be associated with hydride fracture. The crack path is either transgranular in the alpha phase or interfacial in the alpha phase adjacent to the beta phase. For transgranular growth, crack growth rates are constant and slower than those for interfacial growth which is associated with fast crack growth through a high hydrogen concentration region. Most stage II crack growth rates depend slightly on the stress intensity suggesting the contribution of plastic tearing process to stage II kinetics. The activation energies for crack growth are much lower than the activation energy of hydrogen diffusion through the alpha phase, implying that hydrogen is transported along dislocations, grain boundaries or interfaces. When the temperature is increased, the crack velocity first reaches a maximum and then decreases at higher temperatures. These temperature effects come from lower hydrogen concentration trapped at dislocations or from slower hydride nucleation kinetics, both at higher temperatures

  12. The role of Matrix Gla Protein in ossification and recovery of the avian growth plate

    Directory of Open Access Journals (Sweden)

    Harel eDan

    2012-07-01

    Full Text Available ECM mineralization is an essential physiologic process in bone, teeth, and hypertrophic cartilage. Matrix Gla Protein (MGP, an inhibitor of mineralization, is expressed by chondrocytes and vascular smooth muscle cells to inhibit calcification of those soft tissues.Tibial Dyschondroplasia (TD, a skeletal abnormality apparent as a plug of non-vascularized, non-mineralized, white opaque cartilage in the tibial growth plate of avian species can serve as a good model for studying process and genes involved in matrix mineralization and calcification. In this work, we studied the involvement of MGP in the development of TD, as well as in the processes of spontaneous and induced recovery from this syndrome. First, we found that during normal bone development, MGP is expressed in specific time and locations, starting from wide spread expression in the yet un-ossified diaphysis during embryonic development, to specific expression in hypertrophic chondrocytes adjacent to the chondro-osseous junction and the secondary ossification center just prior to calcification. In addition, we show that MGP is not expressed in the impaired TD lesion, however when the lesion begins to heal, it strongly express MGP prior to its calcification. Moreover, we show that when calcification is inhibited, a gap is formed between the expression zones of MGP and BMP2 and that this gap is closed during the healing process. To conclude, we suggest that MGP, directly or through interaction with BMP2, plays a role as ossification regulator, rather then simple inhibitor that acts prior to ossification.

  13. Different effects of ursodeoxycholic acid on intrahepatic cholestasis in acute and recovery stages induced by alpha-naphthylisothiocyanate in mice.

    Science.gov (United States)

    Zhang, Linlin; Su, Huizong; Li, Yue; Fan, Yujuan; Wang, Qian; Jiang, Jian; Hu, Yiyang; Chen, Gaofeng; Tan, Bo; Qiu, Furong

    2018-03-01

    The aim of this study was to determine the effect of ursodeoxycholic acid (UDCA) on the alpha-naphthylisothiocyanate (ANIT)-induced acute and recovery stage of cholestasis model mice. In the acute stage of model mice, pretreatment with UDCA (25, 50, and 100 mg·kg -1 , ig) for 12 days prior to ANIT administration (50 mg·kg -1 , ig) resulted in the dramatic increase in serum biochemistry, with aggrevation of bile infarcts and hepatocyte necrosis. The elevation of beta-muricholic acid (β-MCA), cholic acid (CA), and taurocholic acid (TCA) in serum and liver, and reduction of these bile acids (BAs) in bile was observed. In contrast, in the recovery stage of model mice, treatment with UDCA (25, 50, and 100 mg·kg -1 , ig) for 7 days after ANIT administration (50 mg·kg -1 , ig) resulted in the significant decrease in levels of serum alanine aminotransferase (ALT) and total bile acid (TBA). Liver injury was attenuated, and the levels of TBA, CA, TCA, and β-MCA in the liver were significantly decreased. Additionally, UDCA can upregulate expression of BSEP, but it cannot upregulate expression of AE2. UDCA, which induced BSEP to increase bile acid-dependent bile flow, aggravated cholestasis and liver injury when the bile duct was obstructed in the acute stage of injury in model mice. In contrast, UDCA alleviated cholestasis and liver injury induced by ANIT when the obstruction was improved in the recovery stage. Copyright © 2018. Published by Elsevier Inc.

  14. Growth Recovery of Lemna gibba and Lemna minor Following a 7-Day Exposure to the Herbicide Diuron.

    Science.gov (United States)

    Burns, Mitchell; Hanson, Mark L; Prosser, Ryan S; Crossan, Angus N; Kennedy, Ivan R

    2015-08-01

    In agricultural catchments, aquatic ecosystems can experience a pulse exposure to pesticides. Following such exposure, non-target organisms that are not extirpated may recover. This paper investigates the potential of two duckweed species (Lemna minor and Lemna gibba) to recover from a 7-day exposure to different concentrations (0.4-208 µg L(-1)) of the herbicide diuron. There was significant inhibition in the growth and biomass after the initial 7-day exposure (e.g. frond number EC50=59.2 and 52.2 µg L(-1) for L. minor and L. gibba, respectively). Following transfer to clean media, recovery (the highest concentration yielding no significant difference in the effect endpoint from the control) was observed for all effects endpoints at concentrations ranging 60-111 µg L(-1) for L. minor and 60-208 µg L(-1) for L. gibba. These results suggest that recovery is possible for primary producers at environmentally relevant concentrations considered significant in ecological risk assessment.

  15. Calpain 3 and CaMKIIβ signaling are required to induce HSP70 necessary for adaptive muscle growth after atrophy

    Science.gov (United States)

    Kramerova, Irina; Torres, Jorge A; Eskin, Ascia; Nelson, Stanley F; Spencer, Melissa J

    2018-01-01

    Abstract Mutations in CAPN3 cause autosomal recessive limb girdle muscular dystrophy 2A. Calpain 3 (CAPN3) is a calcium dependent protease residing in the myofibrillar, cytosolic and triad fractions of skeletal muscle. At the triad, it colocalizes with calcium calmodulin kinase IIβ (CaMKIIβ). CAPN3 knock out mice (C3KO) show reduced triad integrity and blunted CaMKIIβ signaling, which correlates with impaired transcriptional activation of myofibrillar and oxidative metabolism genes in response to running exercise. These data suggest a role for CAPN3 and CaMKIIβ in gene regulation that takes place during adaptation to endurance exercise. To assess whether CAPN3- CaMKIIβ signaling influences skeletal muscle remodeling in other contexts, we subjected C3KO and wild type mice to hindlimb unloading and reloading and assessed CaMKIIβ signaling and gene expression by RNA-sequencing. After induced atrophy followed by 4 days of reloading, both CaMKIIβ activation and expression of inflammatory and cellular stress genes were increased. C3KO muscles failed to activate CaMKIIβ signaling, did not activate the same pattern of gene expression and demonstrated impaired growth at 4 days of reloading. Moreover, C3KO muscles failed to activate inducible HSP70, which was previously shown to be indispensible for the inflammatory response needed to promote muscle recovery. Likewise, C3KO showed diminished immune cell infiltration and decreased expression of pro-myogenic genes. These data support a role for CaMKIIβ signaling in induction of HSP70 and promotion of the inflammatory response during muscle growth and remodeling that occurs after atrophy, suggesting that CaMKIIβ regulates remodeling in multiple contexts: endurance exercise and growth after atrophy. PMID:29528394

  16. Transcriptome analysis of Pinus halepensis under drought stress and during recovery.

    Science.gov (United States)

    Fox, Hagar; Doron-Faigenboim, Adi; Kelly, Gilor; Bourstein, Ronny; Attia, Ziv; Zhou, Jing; Moshe, Yosef; Moshelion, Menachem; David-Schwartz, Rakefet

    2018-03-01

    Forest trees use various strategies to cope with drought stress and these strategies involve complex molecular mechanisms. Pinus halepensis Miller (Aleppo pine) is found throughout the Mediterranean basin and is one of the most drought-tolerant pine species. In order to decipher the molecular mechanisms that P. halepensis uses to withstand drought, we performed large-scale physiological and transcriptome analyses. We selected a mature tree from a semi-arid area with suboptimal growth conditions for clonal propagation through cuttings. We then used a high-throughput experimental system to continuously monitor whole-plant transpiration rates, stomatal conductance and the vapor pressure deficit. The transcriptomes of plants were examined at six physiological stages: pre-stomatal response, partial stomatal closure, minimum transpiration, post-irrigation, partial recovery and full recovery. At each stage, data from plants exposed to the drought treatment were compared with data collected from well-irrigated control plants. A drought-stressed P. halepensis transcriptome was created using paired-end RNA-seq. In total, ~6000 differentially expressed, non-redundant transcripts were identified between drought-treated and control trees. Cluster analysis has revealed stress-induced down-regulation of transcripts related to photosynthesis, reactive oxygen species (ROS)-scavenging through the ascorbic acid (AsA)-glutathione cycle, fatty acid and cell wall biosynthesis, stomatal activity, and the biosynthesis of flavonoids and terpenoids. Up-regulated processes included chlorophyll degradation, ROS-scavenging through AsA-independent thiol-mediated pathways, abscisic acid response and accumulation of heat shock proteins, thaumatin and exordium. Recovery from drought induced strong transcription of retrotransposons, especially the retrovirus-related transposon Tnt1-94. The drought-related transcriptome illustrates this species' dynamic response to drought and recovery and unravels

  17. The relation between work-induced neuroendocrine reactivity and recovery, subjective need for recovery, and health status

    NARCIS (Netherlands)

    Sluiter, JK; Frings-Dresen, MHW; van der Beek, AJ; Meijman, TF

    Objectives: The purpose of this cross-sectional study with repeated measurements was to find out to what extent neuroendocrine reactivity during work and neuroendocrine recovery from work, and work characteristics, are related to subjective need for recovery and perceived health status. Methods:

  18. A Comparative Study of Ethylene Growth Response Kinetics in Eudicots and Monocots Reveals a Role for Gibberellin in Growth Inhibition and Recovery1[W][OA

    Science.gov (United States)

    Kim, Joonyup; Wilson, Rebecca L.; Case, J. Brett; Binder, Brad M.

    2012-01-01

    Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa ‘Nipponbare’) seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics. PMID:22977279

  19. Hepatocyte growth factor protects human endothelial cells against advanced glycation end products-induced apoposis

    International Nuclear Information System (INIS)

    Zhou Yijun; Wang Jiahe; Zhang Jin

    2006-01-01

    Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-κB, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-κB, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease

  20. Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth.

    Science.gov (United States)

    Kohnen, Markus V; Schmid-Siegert, Emanuel; Trevisan, Martine; Petrolati, Laure Allenbach; Sénéchal, Fabien; Müller-Moulé, Patricia; Maloof, Julin; Xenarios, Ioannis; Fankhauser, Christian

    2016-12-01

    In response to neighbor proximity, plants increase the growth of specific organs (e.g., hypocotyls) to enhance access to sunlight. Shade enhances the activity of Phytochrome Interacting Factors (PIFs) by releasing these bHLH transcription factors from phytochrome B-mediated inhibition. PIFs promote elongation by inducing auxin production in cotyledons. In order to elucidate spatiotemporal aspects of the neighbor proximity response, we separately analyzed gene expression patterns in the major light-sensing organ (cotyledons) and in rapidly elongating hypocotyls of Arabidopsis thaliana PIFs initiate transcriptional reprogramming in both organs within 15 min, comprising regulated expression of several early auxin response genes. This suggests that hypocotyl growth is elicited by both local and distal auxin signals. We show that cotyledon-derived auxin is both necessary and sufficient to initiate hypocotyl growth, but we also provide evidence for the functional importance of the local PIF-induced response. With time, the transcriptional response diverges increasingly between organs. We identify genes whose differential expression may underlie organ-specific elongation. Finally, we uncover a growth promotion gene expression signature shared between different developmentally regulated growth processes and responses to the environment in different organs. © 2016 American Society of Plant Biologists. All rights reserved.

  1. Helium ion beam induced growth of hammerhead AFM probes

    NARCIS (Netherlands)

    Nanda, G.; Veldhoven, E. van; Maas, D.J.; Sadeghian Marnani, H.; Alkemade, P.F.A.

    2015-01-01

    The authors report the direct-write growth of hammerhead atomic force microscope (AFM) probes by He+ beam induced deposition of platinum-carbon. In order to grow a thin nanoneedle on top of a conventional AFM probe, the authors move a focused He+ beam during exposure to a PtC precursor gas. In the

  2. Short-Term Sleep Disturbance-Induced Stress Does not Affect Basal Pain Perception, but Does Delay Postsurgical Pain Recovery.

    Science.gov (United States)

    Wang, Po-Kai; Cao, Jing; Wang, Hongzhen; Liang, Lingli; Zhang, Jun; Lutz, Brianna Marie; Shieh, Kun-Ruey; Bekker, Alex; Tao, Yuan-Xiang

    2015-11-01

    Chronic sleep disturbance-induced stress is known to increase basal pain sensitivity. However, most surgical patients frequently report short-term sleep disturbance/deprivation during the pre- and postoperation periods and have normal pain perception presurgery. Whether this short-term sleep disturbance affects postsurgical pain is elusive. Here, we report that pre- or postexposure to rapid eye movement sleep disturbance (REMSD) for 6 hours daily for 3 consecutive days did not alter basal responses to mechanical, heat, and cold stimuli, but did delay recovery in incision-induced reductions in paw withdrawal threshold to mechanical stimulation and paw withdrawal latencies to heat and cold stimuli on the ipsilateral side of male or female rats. This short-term REMSD led to stress shown by an increase in swim immobility time, a decrease in sucrose consumption, and an increase in the level of corticosterone in serum. Blocking this stress via intrathecal RU38486 or bilateral adrenalectomy abolished REMSD-caused delay in recovery of incision-induced reductions in behavioral responses to mechanical, heat, and cold stimuli. Moreover, this short-term REMSD produced significant reductions in the levels of mu opioid receptor and kappa opioid receptor, but not Kv1.2, in the ipsilateral L4/5 spinal cord and dorsal root ganglia on day 9 after incision (but not after sham surgery). Our findings show that short-term sleep disturbance either pre- or postsurgery does not alter basal pain perception, but does exacerbate postsurgical pain hypersensitivity. The latter may be related to the reductions of mu and kappa opioid receptors in the spinal cord and dorsal root ganglia caused by REMSD plus incision. Prevention of short-term sleep disturbance may help recovery from postsurgical pain in patients. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  3. Resistance to ursodeoxycholic acid-induced growth arrest can also result in resistance to deoxycholic acid-induced apoptosis and increased tumorgenicity

    International Nuclear Information System (INIS)

    Powell, Ashley A; Akare, Sandeep; Qi, Wenqing; Herzer, Pascal; Jean-Louis, Samira; Feldman, Rebecca A; Martinez, Jesse D

    2006-01-01

    There is a large body of evidence which suggests that bile acids increase the risk of colon cancer and act as tumor promoters, however, the mechanism(s) of bile acids mediated tumorigenesis is not clear. Previously we showed that deoxycholic acid (DCA), a tumorogenic bile acid, and ursodeoxycholic acid (UDCA), a putative chemopreventive agent, exhibited distinct biological effects, yet appeared to act on some of the same signaling molecules. The present study was carried out to determine whether there is overlap in signaling pathways activated by tumorogenic bile acid DCA and chemopreventive bile acid UDCA. To determine whether there was an overlap in activation of signaling pathways by DCA and UDCA, we mutagenized HCT116 cells and then isolated cell lines resistant to UDCA induced growth arrest. These lines were then tested for their response to DCA induced apoptosis. We found that a majority of the cell lines resistant to UDCA-induced growth arrest were also resistant to DCA-induced apoptosis, implying an overlap in DCA and UDCA mediated signaling. Moreover, the cell lines which were the most resistant to DCA-induced apoptosis also exhibited a greater capacity for anchorage independent growth. We conclude that UDCA and DCA have overlapping signaling activities and that disregulation of these pathways can lead to a more advanced neoplastic phenotype

  4. Metabolic recovery of lipodystrophy, liver steatosis, and pancreatic β cell proliferation after the withdrawal of OSI-906.

    Science.gov (United States)

    Tajima, Kazuki; Shirakawa, Jun; Togashi, Yu; Yamazaki, Shunsuke; Okuyama, Tomoko; Kyohara, Mayu; Konishi, Hiromi; Terauchi, Yasuo

    2017-06-23

    Growth factor signaling via insulin receptor (IR) and IGF-1 receptor (IGF1R) plays several important roles in the pathogenesis of metabolic syndrome and diabetes. OSI-906 (linsitinib), an anti-tumor drug, is an orally bioavailable dual inhibitor of IR and IGF1R. To investigate the recovery from metabolic changes induced by the acute inhibition of IR and IGF1R in adult mice, mice were treated with OSI-906 or a vehicle for 7 days and the results were analyzed on the last day of injection (Day 7) or after 7 or 21 days of withdrawal (Day 14 or Day 28). On day 7, the visceral white fat mass was significantly reduced in mice treated with OSI-906 accompanied by a reduced expression of leptin and an increased expression of the lipolysis-related genes Lpl and Atgl. Interestingly, the lipoatrophy and the observed changes in gene expression were completely reversed on day 14. Similarly, liver steatosis and β cell proliferation were transiently observed on day 7 but had disappeared by day 14. Taken together, these results suggest that this model for the acute inhibition of systemic IR/IGF1R signaling may be useful for investigating the recovery from metabolic disorders induced by impaired growth factor signaling.

  5. Recovery High Schools: Opportunities for Support and Personal Growth for Students in Recovery

    Science.gov (United States)

    Finch, Andrew; Wegman, Holly

    2012-01-01

    The time right after treatment for substance abuse is a particularly vulnerable time for adolescents; a time made more difficult by the expectation that they will return to their high school. Traditional high schools are often a high-risk environment for students who are working on maintaining their sobriety. Recovery schools offer an alternative…

  6. Growth hormone-induced insulin resistance in human subjects involves reduced pyruvate dehydrogenase activity

    DEFF Research Database (Denmark)

    Nellemann, B.; Vendelbo, M.H.; Nielsen, Thomas Svava

    2014-01-01

    Insulin resistance induced by growth hormone (GH) is linked to promotion of lipolysis by unknown mechanisms. We hypothesized that suppression of the activity of pyruvate dehydrogenase in the active form (PDHa) underlies GH-induced insulin resistance similar to what is observed during fasting....

  7. Whey Proteins Are More Efficient than Casein in the Recovery of Muscle Functional Properties following a Casting Induced Muscle Atrophy

    Science.gov (United States)

    Martin, Vincent; Ratel, Sébastien; Siracusa, Julien; Le Ruyet, Pascale; Savary-Auzeloux, Isabelle; Combaret, Lydie; Guillet, Christelle; Dardevet, Dominique

    2013-01-01

    The purpose of this study was to investigate the effect of whey supplementation, as compared to the standard casein diet, on the recovery of muscle functional properties after a casting-induced immobilization period. After an initial (I0) evaluation of the contractile properties of the plantarflexors (isometric torque-frequency relationship, concentric power-velocity relationship and a fatigability test), the ankle of 20 male adult rats was immobilized by casting for 8 days. During this period, rats were fed a standard diet with 13% of casein (CAS). After cast removal, rats received either the same diet or a diet with 13% of whey proteins (WHEY). A control group (n = 10), non-immobilized but pair-fed to the two other experimental groups, was also studied and fed with the CAS diet. During the recovery period, contractile properties were evaluated 7 (R7), 21 (R21) and 42 days (R42) after cast removal. The immobilization procedure induced a homogeneous depression of average isometric force at R7 (CAS: − 19.0±8.2%; WHEY: − 21.7±8.4%; P<0.001) and concentric power (CAS: − 26.8±16.4%, P<0.001; WHEY: − 13.5±21.8%, P<0.05) as compared to I0. Conversely, no significant alteration of fatigability was observed. At R21, isometric force had fully recovered in WHEY, especially for frequencies above 50 Hz, whereas it was still significantly depressed in CAS, where complete recovery occurred only at R42. Similarly, recovery of concentric power was faster at R21 in the 500−700°/s range in the WHEY group. These results suggest that recovery kinetics varied between diets, the diet with the whey proteins promoting a faster recovery of isometric force and concentric power output as compared to the casein diet. These effects were more specifically observed at force level and movement velocities that are relevant for functional abilities, and thus natural locomotion. PMID:24069411

  8. Neptunium immobilization and recovery using phase separated glasses

    International Nuclear Information System (INIS)

    Meaker, T.F.

    1997-01-01

    A phase separated (amorphous) glass has been developed which allows very efficient recovery of +4 valence actinides. The total amount of crystal formation in a heat treated vycor-type glass can be controlled with time, temperature and loading. Heat treatments at lower temperatures and for less time inhibit crystal formation while still allowing significant phase separation. If the Thorium loading exceeds 10 weight percent oxide, crystal formation during heat treatment may not be avoided. The total amount of crystal growth has a direct affect on thorium leachability. An increase in crystal formation limits the Th recovery significantly. High thorium loaded glasses (15 weight percent) with heat treatments (increased crystal formation) leach at approximately the same rate as non-heat treated glasses. A phase separated (amorphous) glass has been produced using thorium as a surrogate for neptunium. Two different homogeneous vycor compositions targeting 10 and 15 weight percent thorium oxide have been processed, heat treated and leached with concentrated nitric acid at 110 degrees C. Thorium recovery rates have been shown to be considerably better when the glass has been heat treated inducing phase separation that is relatively crystal free. Non-heat treated and crystalline (due to heat treatment) glasses have similar Th recovery rates with respect to surface area. Phase separated amorphous samples were found to have significantly higher thorium concentrations in the leachate compared to non-heat treated and crystalline glasses for all mesh sizes. All glasses had increased thorium concentration in the leachate as surface area increased

  9. Treadmill exercise induced functional recovery after peripheral nerve repair is associated with increased levels of neurotrophic factors.

    Directory of Open Access Journals (Sweden)

    Jae-Sung Park

    Full Text Available Benefits of exercise on nerve regeneration and functional recovery have been reported in both central and peripheral nervous system disease models. However, underlying molecular mechanisms of enhanced regeneration and improved functional outcomes are less understood. We used a peripheral nerve regeneration model that has a good correlation between functional outcomes and number of motor axons that regenerate to evaluate the impact of treadmill exercise. In this model, the median nerve was transected and repaired while the ulnar nerve was transected and prevented from regeneration. Daily treadmill exercise resulted in faster recovery of the forelimb grip function as evaluated by grip power and inverted holding test. Daily exercise also resulted in better regeneration as evaluated by recovery of compound motor action potentials, higher number of axons in the median nerve and larger myofiber size in target muscles. Furthermore, these observations correlated with higher levels of neurotrophic factors, glial derived neurotrophic factor (GDNF, brain derived neurotrophic factor (BDNF and insulin-like growth factor-1 (IGF-1, in serum, nerve and muscle suggesting that increase in muscle derived neurotrophic factors may be responsible for improved regeneration.

  10. Mechanics of vacuum-enhanced recovery of hydrocarbons

    International Nuclear Information System (INIS)

    Barnes, D.L.; McWhorter, D.B.

    1995-01-01

    A growing body of field data demonstrates the enhancement of product recovery that can be achieved by applying a partial vacuum to recovery wells. Typical explanations for the observed improvement in performance invoke an increased slope of the cone of depression created in the water-table surface. Explanations related to water-table slope do not consider the gradient induced in the hydrocarbon by virtue of the airflow. Also, the airflow may induce a gradient in the aqueous phase that is not reflected in a water-table drawdown. The equations for steady-state flow of three immiscible fluids elucidate the fundamental mechanics of vacuum-enhanced recovery or bioslurping. Airflow to the recovery well causes hydrocarbon to migrate toward the well, independent of any gravity effects that may be created. Also, the relative permeability to hydrocarbon is affected by both water and airflow in the vicinity of the recovery well. Two critical airflow rates delineate the conditions for which only air is recovered, air and hydrocarbon are recovered, and all three phases are recovered

  11. Whole-body fluid distribution in humans during dehydration and recovery, before and after humid-heat acclimation induced using controlled hyperthermia.

    Science.gov (United States)

    Patterson, M J; Stocks, J M; Taylor, N A S

    2014-04-01

    This experiment was designed to test the hypothesis that the plasma volume is not selectively defended during exercise- and heat-induced dehydration following humid-heat acclimation. Eight physically active males were heat acclimated (39.8 °C, relative humidity 59.2%) using 17 days of controlled hyperthermia (core temperature: 38.5 °C). Inter-compartmental fluid losses and movements were tracked (radioisotopes and Evans blue dye) during progressive dehydration (cycling) in these same conditions and also during a resting recovery without fluid replacement (28 °C), before (day 1), during (day 8) and after heat acclimation (day 22). On days 8 and 22, there were significant increases in total body water, interstitial fluid and plasma volume (P 0.05). The baseline plasma volume remained expanded throughout: 43.4 [±2.6 (day 1)], 49.1 [±2.4 (day 8); P recovery, plasma volume restoration commenced, with the intracellular fluid contribution becoming more pronounced as acclimation progressed. It is concluded that the plasma volume was not defended more vigorously following humid-heat acclimation. Indeed, a greater fluid loss may well underlie the mechanisms for enhancing plasma volume recovery when heat acclimation is induced using the controlled-hyperthermia technique. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  12. Combined polymer-curcumin conjugate and ependymal progenitor/stem cell treatment enhances spinal cord injury functional recovery.

    Science.gov (United States)

    Requejo-Aguilar, Raquel; Alastrue-Agudo, Ana; Cases-Villar, Marta; Lopez-Mocholi, Eric; England, Richard; Vicent, María J; Moreno-Manzano, Victoria

    2017-01-01

    Spinal cord injury (SCI) suffers from a lack of effective therapeutic strategies. Animal models of acute SCI have provided evidence that transplantation of ependymal stem/progenitor cells of the spinal cord (epSPCs) induces functional recovery, while systemic administration of the anti-inflammatory curcumin provides neuroprotection. However, functional recovery from chronic stage SCI requires additional enhancements in available therapeutic strategies. Herein, we report on a combination treatment for SCI using epSPCs and a pH-responsive polymer-curcumin conjugate. The incorporation of curcumin in a pH-responsive polymeric carrier mainchain, a polyacetal (PA), enhances blood bioavailability, stability, and provides a means for highly localized delivery. We find that PA-curcumin enhances neuroprotection, increases axonal growth, and can improve functional recovery in acute SCI. However, when combined with epSPCs, PA-curcumin also enhances functional recovery in a rodent model of chronic SCI. This suggests that combination therapy may be an exciting new therapeutic option for the treatment of chronic SCI in humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  14. Nogo-66 receptor antagonist peptide (NEP1-40) administration promotes functional recovery and axonal growth after lateral funiculus injury in the adult rat

    NARCIS (Netherlands)

    Cao, Y.; Shumsky, J. S.; Sabol, M. A.; Kushner, R. A.; Strittmatter, S.; Hamers, F. P. T.; Lee, D. H. S.; Rabacchi, S. A.; Murray, M.

    2008-01-01

    Objective. The myelin protein Nogo inhibits axon regeneration by binding to its receptor (NgR) on axons. Intrathecal delivery of an NgR antagonist (NEP1-40) promotes growth of injured corticospinal axons and recovery of motor function following a dorsal hemisection. The authors used a similar design

  15. Prevention and Treatment of Vaginal Bleeding after Drug-induced Abortion by Yaoliuan Capsule and Its Effects on Menses Recovery

    Institute of Scientific and Technical Information of China (English)

    JIN Zhichun; HUANG Guangying

    2005-01-01

    Summary: In order to explore the effect of Yaoliuan capsule in the prevention and treatment of vaginal bleeding after drug-induced abortion and menses recovery after drug-induced abortion, 323 cases of gestation period ≤ 49 days and without contraindication, were divided randomly into study group (168 cases, taking Yaoliuan capsule) and control group (155 cases, taking placebo capsule). The results showed that in the study group, there were 161 cases (95.8 %) of complete abortion, 7 cases (4.2 %) of incomplete abortion; In the control group, there were 146 cases (94.2 %) of complete abortion, 6 cases (3.9 %) of incomplete abortion, 3 cases (1.9 %) of abortion failure. The vaginal bleeding time was 5-25 days (mean 10.8 days) in study group, while that was 6-62 days (mean 19.1 days) in control group. The menstrual cycle was 30.5±5.2 days and 33.8 d±8.6 days respectively in study and control groups. The menstrual period was 6.1±3.5 days and 9.9±5.1 days respectively in study and control groups. Yaoliuan capsule is an effective drug to prevent and treat vaginal bleeding following drug-induced abortion, promote menstruation recovery and prevent pelvic infection.

  16. Damage of DNA by radiation and it's recovery, 3

    International Nuclear Information System (INIS)

    Narita, Noboru; Matsuura, Tomio; Sato, Hiroyuki.

    1974-01-01

    The damage and recovery of DNA was investigated by the incorporation of thymine derivatives (DHT, I trans, II trans, cis and glycol) into exponentially growing Tetrahymena cells. The strain employed was Tetrahymena pyriformis, Variety I, mating type IV. It is well known that these thymine derivatives are induced in vivo by radiation. The in vivo damage of DNA induced by radiation, and its recovery, were confirmed experimentally by means of gradient separation of sucrose density and by analytical ultra centrifugation (UVC). The recovery of DNA, its excision repair and its recombinational repair were compared with the recovery of Bacillus subtilis whose recovery kinetics were already known. 1) The damage of DNA was more sensitive to glycol than to II trans and cis. On the other hand, DHT is not sensitive for breaking DNA strand. 2) In its recovery damaged DNA was no more sensitive to glycol than to hhp as was true for Bacillus subtilis. (author)

  17. Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993

    Energy Technology Data Exchange (ETDEWEB)

    Levey, R.A.; Finley, R.J.; Hardage, B.A.

    1994-06-01

    The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

  18. Proteomics of post-irradiation recovery in D. radiodurans

    International Nuclear Information System (INIS)

    Basu, Bhakti; Apte, Shree Kumar

    2012-01-01

    An extremophile Deinococcus radiodurans is bestowed with an extraordinary DNA repair ability that renders it virtually resistant to all known forms of DNA damage caused by ionizing radiations (10 kGy of gamma rays), UV (1 kJ/m 2 ) or weeks of desiccation etc. The genome of D. radiodurans encodes a unique combination of DNA repair pathways such as prokaryotic type RecFOR mediated homologous recombination (HR) and nucleotide/base excision repair along with eukaryotic type strand annealing (SA) and non-homologous end joining (NHEJ), but is devoid of universal prokaryotic DNA repair pathways such as RecBCD mediated HR, photo-reactivation and SOS response. Collective evidence obtained so far from multiple approaches, have indicated (i) that all genes essential for DNA repair are not necessarily induced following radiation stress (ii) early RecA independent DNA assembly occurs, and (iii) absolute necessity of RecA dependent HR for final genome restitution. The 6 kGy gamma irradiation inducible proteome dynamics were mapped during the post-irradiation growth arrest phase by 2D protein electrophoresis coupled with mass spectrometry. Radiation inducible expression of at least 33 proteins was evident in the first 1h of post irradiation recovery

  19. Recovery and Growth Potential of Listeria monocytogenes in Temperature Abused Milkshakes Prepared from Naturally Contaminated Ice Cream Linked to a Listeriosis Outbreak.

    Science.gov (United States)

    Chen, Yi; Allard, Emma; Wooten, Anna; Hur, Minji; Sheth, Ishani; Laasri, Anna; Hammack, Thomas S; Macarisin, Dumitru

    2016-01-01

    The recovery and growth potential of Listeria monocytogenes was evaluated in three flavors of milkshakes (vanilla, strawberry, and chocolate) that were prepared from naturally contaminated ice cream linked to a listeriosis outbreak in the U.S. in 2015, and were subsequently held at room temperature for 14 h. The average lag phase duration of L. monocytogenes was 9.05 h; the average generation time was 1.67 h; and the average population level increase per sample at 14 h was 1.14 log CFU/g. Milkshake flavors did not significantly affect these parameters. The average lag phase duration of L. monocytogenes in milkshakes with initial contamination levels ≤ 3 CFU/g (9.50 h) was significantly longer (P 3 CFU/g (8.60 h). The results highlight the value of using samples that are contaminated with very low levels of L. monocytogenes for recovery and growth evaluations. The behavior of L. monocytogenes populations in milkshakes prepared from naturally contaminated ice cream linked to the listeriosis outbreak should be taken into account when performing risk based analysis using this outbreak as a case study.

  20. Simulations of Microbial-Enhanced Oil Recovery: Adsorption and Filtration

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Nesterov, Igor; Shapiro, Alexander

    2014-01-01

    In the context of microbial-enhanced oil recovery (MEOR) with injection of surfactant-producing bacteria into the reservoir, different types of bacteria attachment and growth scenarios are studied using a 1D simulator. The irreversible bacteria attachment due to filtration similar to the deep bed...... applied to filtration model provides formation of two oil banks during recovery. This feature is not reproduced by application of REA model or DBF with growth in attached phase. This makes it possible to select a right model based on the qualitative analysis of the experimental data. A criterion...... is introduced to study the process efficiency: the dimensionless time at which average recovery between pure water injection and maximum surfactant effect is reached. This characteristic recovery period (CRP) was studied as a function of the different MEOR parameters such as bacterial activity, filtration...

  1. Hydroxyapatite growth induced by native extracellular matrix deposition on solid surfaces

    Directory of Open Access Journals (Sweden)

    Pramatarova L.

    2005-02-01

    Full Text Available Biological systems have a remarkable capability to produce perfect fine structures such as seashells, pearls, bones, teeth and corals. These structures are composites of interacting inorganic (calcium phosphate or carbonate minerals and organic counterparts. It is difficult to say with certainty which part has the primary role. For example, the growth of molluscan shell crystals is thought to be initiated from a solution by the extracellular organic matrix (ECM. According to this theory, the matrix induces nucleation of calcium containing crystals. Recently, an alternative theory has been put forward, stating that a class of granulocytic hemocytes would be directly involved in shell crystal production in oysters. In the work presented here the surface of AISI 316 stainless steel was modified by deposition of ECM proteins. The ability of the modified substrates to induce nucleation and growth of hydroxyapatite (HA from simulated body fluid (SBF was examined by a kinetic study using two methods: (1 a simple soaking process in SBF and (2 a laser-liquid-solid interaction (LLSI process which allows interaction between a scanning laser beam and a solid substrate immersed in SBF. The deposited HA layers were investigated by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was found that a coating of stainless steel surface with native ECM proteins induced nucleation and growth of HA and facilitated its crystallization. By the process of simple soaking of the samples, irrespective of their horizontal or vertical position in the solution, HA layers were grown due to the reactive ECM-coated stainless steel surface. It was shown that the process occurring in the first stages of the growth was not only a result of the force of gravity. The application of the LLSI process strongly influenced HA formation on the ECM-modified substrates by promoting and enhancing the HA nucleation and growth through a synergistic effect

  2. Stress and Recovery during Simulated Microgravity

    Science.gov (United States)

    Nicolas, Michel

    The aim of this study was to determine the effects of a 60-day head-down tilt long-term bed rest (HDT) on stress and recovery in sixteen healthy female volunteers during the WISE-2005 study (Women International Space Simulation for Exploration). Participants were randomly assigned to either an exercise group (Exe) that followed a training program combining resistive and aerobic exercises, or to a no-exercise control group (Ctl). Psychological states were assessed using the Rest-Q, a validated questionnaire based on stress-recovery responses. A longitudinal analysis revealed significant changes in the general and specific stress scales for all participants throughout the experiment with a critical stage from supine to standing posture leading to a significant decrease in physical recovery. During HDT, Exe reported higher scores in stress subscales, as well as lower recovery scores compared to the Ctl. During the post HDT ambulatory recovery period, the exercisers still reported higher scores than the non-exercisers on the Lack of energy stress related scale, along with lower scores in general well-being and personal accomplishment. The present findings show that simulated weightlessness such as HDT may induce psychological stress and lead to subsequent alterations in perceived recovery. Exercise did not reduce HDT impaired effects on stress and recovery states. In the perspective of spaceflights of long-duration such as the future missions to Mars, there is a need for additional experiments to further investigate spaceflight-induced changes of stress and recovery parameters and the effects of exercise on these parameters. Further studies might determine and analyze the psychological factors involved, but also how to intervene concerning these factors with efficient psychological preparation which, although not yet fully investigated, may reduce stress, promote recovery and support adaptive responses to such extreme environments.

  3. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    Science.gov (United States)

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury. Copyright © 2016. Published by Elsevier Inc.

  4. Africa's 'Recovery': Economic Growth, Governance and Social Protest

    African Journals Online (AJOL)

    The reality behind the alleged recovery of Africa from the 2008/09 global financial meltdown, which has been well advertised by multilateral financial agencies, needs investigation, partly because the institutions' political agenda appears to be to further integrate the continent into a highly volatile world economy, as well as ...

  5. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    International Nuclear Information System (INIS)

    Lyu, Qing; Tou, Fangfang; Su, Hong; Wu, Xiaoyong; Chen, Xinyi; Zheng, Zhi

    2015-01-01

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway

  6. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Qing [School of Life Sciences, Tsinghua University, Beijing, 100084 (China); Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China); Tou, Fangfang [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China); Su, Hong; Wu, Xiaoyong [First Affiliated Hospital, Guiyang College of Traditional Chinese Medicine, Guiyang, 550002 (China); Chen, Xinyi [Department of Hematology and Oncology, Beijing University of Chinese Medicine, Beijing, 100029 (China); Zheng, Zhi, E-mail: zheng_sheva@hotmail.com [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China)

    2015-06-19

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.

  7. Ketamine-induced bladder fibrosis involves epithelial-to-mesenchymal transition mediated by transforming growth factor-β1.

    Science.gov (United States)

    Wang, Junpeng; Chen, Yang; Gu, Di; Zhang, Guihao; Chen, Jiawei; Zhao, Jie; Wu, Peng

    2017-10-01

    Bladder wall fibrosis is a major complication of ketamine-induced cystitis (KC), but the underlying pathogenesis is poorly understood. The aim of the present study was to elucidate the mechanism of ketamine-induced fibrosis in association with epithelial-to-mesenchymal transition (EMT) mediated by transforming growth factor-β1 (TGF-β1). Sprague-Dawley rats were randomly distributed into four groups, which received saline, ketamine, ketamine combined with a TGF-β receptor inhibitor (SB-505124) for 16 wk, or 12 wk of ketamine and 4 wk of abstinence. In addition, the profibrotic effect of ketamine was confirmed in SV-40 immortalized human uroepithelial (SV-HUC-1) cells. The ketamine-treated rats displayed voiding dysfunction and decreased bladder compliance. Bladder fibrosis was accompanied by the appearance of a certain number of cells expressing both epithelial and mesenchymal markers, indicating that epithelial cells might undergo EMT upon ketamine administration. Meanwhile, the expression level of TGF-β1 was significantly upregulated in the urothelium of bladders in ketamine-treated rats. Treatment of SV-HUC-1 cells with ketamine increased the expression of TGF-β1 and EMT-inducing transcription factors, resulting in the downregulation of E-cadherin and upregulation of fibronectin and α-smooth muscle actin. Administration of SB-505124 inhibited EMT and fibrosis both in vitro and vivo. In addition, withdrawal from ketamine did not lead to recovery of bladder urinary function or decreased fibrosis. Taken together, our study shows for the first time that EMT might contribute to bladder fibrosis in KC. TGF-β1 may have an important role in bladder fibrogenesis via an EMT mechanism. Copyright © 2017 the American Physiological Society.

  8. Single-cell analysis of S. cerevisiae growth recovery after a sublethal heat-stress applied during an alcoholic fermentation.

    Science.gov (United States)

    Tibayrenc, Pierre; Preziosi-Belloy, Laurence; Ghommidh, Charles

    2011-06-01

    Interest in bioethanol production has experienced a resurgence in the last few years. Poor temperature control in industrial fermentation tanks exposes the yeast cells used for this production to intermittent heat stress which impairs fermentation efficiency. Therefore, there is a need for yeast strains with improved tolerance, able to recover from such temperature variations. Accordingly, this paper reports the development of methods for the characterization of Saccharomyces cerevisiae growth recovery after a sublethal heat stress. Single-cell measurements were carried out in order to detect cell-to-cell variability. Alcoholic batch fermentations were performed on a defined medium in a 2 l instrumented bioreactor. A rapid temperature shift from 33 to 43 °C was applied when ethanol concentration reached 50 g l⁻¹. Samples were collected at different times after the temperature shift. Single cell growth capability, lag-time and initial growth rate were determined by monitoring the growth of a statistically significant number of cells after agar medium plating. The rapid temperature shift resulted in an immediate arrest of growth and triggered a progressive loss of cultivability from 100 to 0.0001% within 8 h. Heat-injured cells were able to recover their growth capability on agar medium after a lag phase. Lag-time was longer and more widely distributed as the time of heat exposure increased. Thus, lag-time distribution gives an insight into strain sensitivity to heat-stress, and could be helpful for the selection of yeast strains of technological interest.

  9. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia.

    NARCIS (Netherlands)

    Imel, E.A.; Peacock, M.; Pitukcheewanont, P.; Heller, H.J.; Ward, LM; Shulman, D.; Kassem, M.; Rackoff, P.; Zimering, M.; Dalkin, A.; Drobny, E.; Colussi, G.; Shaker, J.L.; Hoogendoorn, E.H.; Hui, S.L.; Econs, M.J.

    2006-01-01

    CONTEXT: Tumor-induced osteomalacia (TIO) is a paraneoplastic syndrome of hypophosphatemia, decreased renal phosphate reabsorption, normal or low serum 1,25-dihydryxyvitamin-D concentration, myopathy, and osteomalacia. Fibroblast growth factor 23 (FGF23) is a phosphaturic protein overexpressed in

  10. Antibody-induced dimerization activates the epidermal growth factor receptor tyrosine kinase

    NARCIS (Netherlands)

    Spaargaren, M.; Defize, L. H.; Boonstra, J.; de Laat, S. W.

    1991-01-01

    The relationship between epidermal growth factor receptor (EGF-R) protein tyrosine kinase activation and ligand-induced receptor dimerization was investigated using several bivalent anti-EGF-R antibodies directed against various receptor epitopes. In A431 membrane preparations and permeabilized

  11. Functional Recovery After Severe Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Hart, Tessa; Kozlowski, Allan; Whyte, John

    2014-01-01

    recovery was best modeled with linear, cubic, and quadratic components: relatively steep recovery was followed by deceleration of improvement, which attenuated prior to discharge. Slower recovery was associated with older age, longer coma, and interruptions to rehabilitation. Patients admitted at lower...... multi-disciplinary teams were recorded daily in 15-minute units provided to patients and family members, separately. MAIN OUTCOME MEASURES: Motor and Cognitive FIM measured on admission, discharge, and every 2 weeks in between, analyzed with Individual Growth Curve methodology. RESULTS: Inpatient...... functional levels received more treatment and more treatment was associated with slower recovery, presumably because treatment was allocated according to need. Thus, effects of treatment on outcome could not be disentangled from effects of case mix factors. CONCLUSIONS: FIM gain during inpatient recovery...

  12. The Model of Optimum Economic Growth with the Induced Scientific-Technological Progress

    Directory of Open Access Journals (Sweden)

    Dilenko Viktor A.

    2017-07-01

    Full Text Available On the basis of the economic dynamics of the Harrod – Domar model, a model of optimum economic growth in line with the induced scientific-technological progress (STP has been built. In order to reflect the induced scientific-technological progress, with this model is proposed to further allocate the income element that is specially used for the investment of innovation activity, implementation of which reduces the capital intensity in development of the discussed economy. For the simplest way of presenting an economic mechanism for the investment of induced STP, analytical solutions of an appropriate task in optimum management have been obtained. Studying these decisions allowed to reveal the characteristics of the impact of parameters of scientific-technological progress and the analyzed economic system on choosing the best trajectory for its evolution. Possible directions for further developing the results presented can be considered the tasks in building and analyzing models of optimum economic growth that implement different investment options for the induced STP, as well as the models in which this investment mechanism is not exogenouslyed, but rather the result of the corresponding economic-mathematical research.

  13. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia

    DEFF Research Database (Denmark)

    Imel, Erik A; Peacock, Munro; Pitukcheewanont, Pisit

    2006-01-01

    Tumor-induced osteomalacia (TIO) is a paraneoplastic syndrome of hypophosphatemia, decreased renal phosphate reabsorption, normal or low serum 1,25-dihydryxyvitamin-D concentration, myopathy, and osteomalacia. Fibroblast growth factor 23 (FGF23) is a phosphaturic protein overexpressed in tumors t...

  14. Expression of transforming growth factor alpha and epidermal growth factor receptor in rat lung neoplasms induced by plutonium-239

    International Nuclear Information System (INIS)

    Stegelmeier, B.L.; Gillett, N.A.; Hahn, F.F.; Kelly, G.; Rebar, A.H.

    1994-01-01

    Ninety-two rat lung proliferative lesions and neoplasms induced by inhaled 239 PuO 2 were evaluated for aberrant expression of transforming growth factor alpha (TGF-α) and epidermal growth factor receptor (EGFR). Expression of TGF-α protein, measured by immunohistochemistry, was higher in 94% of the squamous cell carcinomas and 87% of the foci of alveolar epithelial squamous metaplasia than that exhibited by the normal-appearing, adjacent lung parenchyma. In contrast, only 20% of adenocarcinomas and foci of epithelial hyperplasia expressed elevated levels of TGF-α. Many neoplasms expressing TGF-α also expressed excessive levels of EGFR mRNA. Southern and DNA slot blot analyses showed that the elevated EGFR expression was not due to amplification of the EGFR gene. These data suggest that increased amounts of TGF-α were early alterations in the progression of plutonium-induced squamous cell carcinoma, and these increases may occur in parallel with overexpression of the receptor for this growth factor. Together, these alterations create a potential autocrine loop for sustaining clonal expansion of cells initiated by high-LET radiation. 44 refs., 4 figs., 1 tab

  15. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  16. Auxin is required for pollination-induced ovary growth in Dendrobium orchids

    NARCIS (Netherlands)

    Ketsa, S.; Wisutiamonkul, A.; Doorn, van W.G.

    2006-01-01

    In Dendrobium and other orchids the ovule becomes mature long after pollination, whereas the ovary starts growing within two days of pollination. The signalling pathway that induces rapid ovary growth after pollination has remained elusive. We placed the auxin antagonist ¿-(p-chlorophenoxy)

  17. Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model.

    Directory of Open Access Journals (Sweden)

    Hong J Lee

    Full Text Available BACKGROUND: Intracerebral hemorrhage (ICH is a lethal stroke type. As mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs selectively migrate to the brain and induce behavioral recovery in rat ICH model, and that combined administration of NSCs and vascular endothelial growth factor (VEGF results in improved structural and functional outcome from cerebral ischemia. METHODS AND FINDINGS: We postulated that human NSCs overexpressing VEGF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs, increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by unilateral injection of bacterial collagenase into striatum. HB1.F3.VEGF human NSC line produced an amount of VEGF four times higher than parental F3 cell line in vitro, and induced behavioral improvement and 2-3 fold increase in cell survival at two weeks and eight weeks post-transplantation. CONCLUSIONS: Brain transplantation of F3 human NSCs over-expressing VEGF near ICH lesion sites provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results suggest a possible application of the human neural stem cell line, which is genetically modified to over-express VEGF, as a therapeutic agent for ICH-stroke.

  18. Effect of substitution on aniline in inducing growth of anionic micelles

    International Nuclear Information System (INIS)

    Garg, Gunjan; Kulshreshtha, S.K.; Hassan, P.A.; Aswal, V.K.

    2004-01-01

    Small-angle neutron scattering (SANS) measurements were carried out on sodium dodecyl sulfate (SDS) micelles in the presence of three different hydrophobic salts, i.e. aniline hydrochloride, o-toluidine hydrochloride and m-toluidine hydrochloride. All these salts induce a uniaxial growth of micelles to form prolate ellipsoidal structures. A progressive decrease in the surface charge of the micelles was observed with the addition of salts followed by a rapid growth of the micelles. The presence of a methyl substitution at the ortho position of aniline does not alter the growth behavior significantly. However, when the substitution is at meta position micellar growth is favored at lower salt concentration than that is observed for aniline. This can be explained in terms of the difference in the chemical environments of the substituents at the ortho and meta positions. (author)

  19. Modulation of Δ9-tetrahydrocannabinol-induced MCF-7 breast cancer cell growth by cyclooxygenase and aromatase

    International Nuclear Information System (INIS)

    Takeda, Shuso; Yamamoto, Ikuo; Watanabe, Kazuhito

    2009-01-01

    Δ 9 -Tetrahydrocannabinol (Δ 9 -THC), a major constituent of marijuana, has been shown to stimulate the growth of MCF-7 breast cancer cells through cannabinoid receptor-independent signaling [Takeda, S., Yamaori, S., Motoya, E., Matsunaga, T., Kimura, T., Yamamoto, I., Watanabe, K., 2008. Δ 9 -Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent signaling. Toxicology 245, 141-146]. Although the growth of MCF-7 cells is known to be stimulated by 17β-estradiol (E 2 ), the interaction of Δ 9 -THC and E 2 in MCF-7 cell growth is not fully clarified so far. In the present study, by using E 2 -sensitive MCF-7 cells that have expressed cyclooxygenase-2 (COX-2) and cytochrome P450 19 (aromatase), we studied whether or not COX-2 and aromatase are involved in Δ 9 -THC-mediated MCF-7 cell proliferation. It was shown that Δ 9 -THC-induced MCF-7 cell growth was inhibited by COX-2 inhibitors and was stimulated by arachidonic acid (a COX substrate). However, the growth of MCF-7 cells induced by Δ 9 -THC was not stimulated by PGE 2 , and the expression of aromatase was not affected by COX-2 inhibitors, arachidonic acid, and PGE 2 , suggesting that there is a disconnection between COX-2 (PGE 2 ) and aromatase in Δ 9 -THC-mediated MCF-7 cell proliferation. On the other hand, Δ 9 -THC-induced MCF-7 cell growth was elevated by two kinds of aromatase inhibitors. Taken together with the evidence that Δ 9 -THC-induced MCF-7 cell proliferation was interfered with testosterone (an aromatase substrate) and exogenously provided E 2 , it is suggested that (1) the growth stimulatory effects of Δ 9 -THC are mediated by the product(s) of COX-2 except for PGE 2 , (2) the action of Δ 9 -THC is modulated by E 2 , and (3) COX-2 and aromatase are individually engaged in the proliferation of MCF-7 cells induced by Δ 9 -THC.

  20. Is the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex important for motor recovery in rats with photochemically induced cortical lesions?

    Science.gov (United States)

    Takata, Kotaro; Yamauchi, Hideki; Tatsuno, Hisashi; Hashimoto, Keiji; Abo, Masahiro

    2006-01-01

    To determine whether the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex is important for motor recovery after brain damage in the photochemically initiated thrombosis (PIT) model. We induced PIT in the sensorimotor cortex in rats and examined the recovery of motor function using the beam-walking test. In 24 rats, the right sensorimotor cortex was lesioned after 2 days of training for the beam-walking test (group 1). After 10 days, PIT was induced in the left sensorimotor cortex. Eight additional rats (group 2) received 2 days training in beam walking, then underwent the beam-walking test to evaluate function. After 10 days of testing, the left sensorimotor cortex was lesioned and recovery was monitored by the beam-walking test for 8 days. In group 1 animals, left hindlimb function caused by a right sensorimotor cortex lesion recovered within 10 days after the operation. Right hindlimb function caused by the left-side lesion recovered within 6 days. In group 2, right hindlimb function caused by induction of the left-side lesion after a total of 12 days of beam-walking training and testing recovered within 6 days as with the double PIT model. The training effect may be relevant to reorganization and neuromodulation. Motor recovery patterns did not indicate whether motor recovery was dependent on the ipsilateral cortex surrounding the lesion or the cortex of the contralateral side. The results emphasize the need for selection of appropriate programs tailored to the area of cortical damage in order to enhance motor functional recovery in this model. Copyright 2006 S. Karger AG, Basel.

  1. Biochemically enhanced oil recovery and oil treatment

    Science.gov (United States)

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  2. Linear ubiquitin chain induces apoptosis and inhibits tumor growth.

    Science.gov (United States)

    Qin, Zhoushuai; Jiang, Wandong; Wang, Guifen; Sun, Ying; Xiao, Wei

    2018-01-01

    Ubiquitination of proliferating cell nuclear antigen (PCNA) plays an important role in DNA damage response. Ectopic expression of PCNA fused at either terminus with ubiquitin (Ub) lacking two C-terminal glycine residues induces translesion DNA synthesis which resembles synthesis mediated by PCNA monoubiquitination. PCNA fused with Ub containing the C-terminal Gly residues at the C-terminus can be further polyubiquitinated in a Gly-dependent manner, which inhibits cell proliferation and induces ATR-dependent replication checkpoint. In this study, we surprisingly found that PCNA fused to a head-to-tail linear Ub chain induces apoptosis in a Ub chain length-dependent manner. Further investigation revealed that the apoptotic effect is actually induced by the linear Ub chain independently from PCNA, as the Ub chain fused to GFP or an epitope tag still efficiently induces apoptosis. It is revealed that the artificial linear Ub chain differs from endogenously encoded linear Ub chains in that its Ubs contain a Ub-G76S substitution, making the Ub chain resistant to cleavage by deubiquitination enzymes. We demonstrated in this study that ectopic expression of the artificial Ub chain alone in cultured human cancer cells is sufficient to inhibit tumor growth in a xenograft mouse model, making the linear Ub chain a putative anti-cancer agent.

  3. The need for recovery scale : Adaption to the Italian context

    NARCIS (Netherlands)

    Pace, F.; Lo Cascio, V.; Civilleri, A.; Guzzo, G.; Foddai, E.; van Veldhoven, M.J.P.M.

    2013-01-01

    Introduction Need for Recovery scale is one of the main scales used to assess work-induced fatigue and quality of workers’ recovery time. In fact, need for recovery is considered relevant as a precursor of prolonged fatigue or psychological distress, an indicator of work stress, and a mediating or

  4. Recovery and growth potential of Listeria monocytogenes in temperature abused milkshakes prepared from naturally contaminated ice cream linked to a listeriosis outbreak

    Directory of Open Access Journals (Sweden)

    Yi eChen

    2016-05-01

    Full Text Available The recovery and growth potential of Listeria monocytogenes was evaluated in three flavors of milkshakes (vanilla, strawberry, and chocolate that were prepared from naturally contaminated ice cream linked to a listeriosis outbreak in the U.S. in 2015, and were subsequently held at room temperature for 14 hours. The average lag phase duration of L. monocytogenes was 9.05 h; the average generation time was 1.67 h; and the average level increase per sample at 14 h was 1.15 log CFU/g. Milkshake flavors did not significantly affect these parameters. The average lag phase duration of L. monocytogenes in milkshakes with initial contamination levels ≤ 3 CFU/g (9.50 h was significantly longer (P 3 CFU/g (8.60 h. The results highlight the value of using samples that are contaminated with very low levels of L. monocytogenes for recovery and growth evaluations. The behavior of L. monocytogenes populations in milkshakes prepared from naturally contaminated ice cream linked to the listeriosis outbreak should be taken into account when performing risk based analysis using this outbreak as a case-study.

  5. Emotion-induced eating and sucrose intake in children : The NHLBI growth and health study

    NARCIS (Netherlands)

    Striegel-Moore, RH; Morrison, JA; Schreiber, G; Schumann, BC; Crawford, PB; Obarzanek, E

    Objective: Emotion-induced eating has been implicated as a risk factor for the development of. obesity, yet no research has been done on emotion-induced eating in children. The National Heart, Lung, and Blood institute Growth and Health Study (NGHS) a multicenter collaborative study of risk factors

  6. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    Science.gov (United States)

    Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen

    2017-01-01

    Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo. PMID:28808357

  7. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    Directory of Open Access Journals (Sweden)

    Andreas Bayer

    2017-01-01

    Full Text Available Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs or their clinically related formulations (e.g., Vivostat PRF® came recently into the physicians’ focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10 and late (transglutaminase-1 and involucrin differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR- dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo.

  8. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Claire [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); Lafosse, Jean-Michel [CHU Toulouse, Hopital Rangueil, Service d' orthopedie et Traumatologie, Toulouse F-31000 (France); Malavaud, Bernard [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); CHU Toulouse, Hopital Rangueil, Service d' Urologie et de Transplantation Renale, Toulouse F-31000 (France); Cuvillier, Olivier, E-mail: olivier.cuvillier@ipbs.fr [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France)

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  9. Reactive oxygen species are involved in lipopolysaccharide-induced intrauterine growth restriction and skeletal development retardation in mice.

    Science.gov (United States)

    Xu, De-Xiang; Chen, Yuan-Hua; Zhao, Lei; Wang, Hua; Wei, Wei

    2006-12-01

    Maternal infection is a cause of adverse developmental outcomes including embryonic resorption, intrauterine fetal death, and preterm labor. Lipopolysaccharide-induced developmental toxicity at early gestational stages has been well characterized. The purpose of the present study was to investigate the effects of maternal lipopolysaccharide exposure at late gestational stages on intrauterine fetal growth and skeletal development and to assess the potential role of reactive oxygen species in lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation. The timed pregnant CD-1 mice were intraperitoneally injected with lipopolysaccharide (25 to 75 microg/kg per day) on gestational day 15 to 17. To investigate the role of reactive oxygen species on lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation, the pregnant mice were injected with alpha-phenyl-N-t-butylnitrone (100 mg/kg, intraperitoneally) at 30 minutes before lipopolysaccharide (75 microg/kg per day, intraperitoneally), followed by an additional dose of alpha-phenyl-N-t-butylnitrone (50 mg/kg, intraperitoneally) at 3 hours after lipopolysaccharide. The number of live fetuses, dead fetuses, and resorption sites was counted on gestational day 18. Live fetuses in each litter were weighed. Crown-rump and tail lengths were examined and skeletal development was evaluated. Maternal lipopolysaccharide exposure significantly increased fetal mortality, reduced fetal weight and crown-rump and tail lengths of live fetuses, and retarded skeletal ossification in caudal vertebrae, anterior and posterior phalanges, and supraoccipital bone in a dose-dependent manner. Alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, almost completely blocked lipopolysaccharide-induced fetal death (63.2% in lipopolysaccharide group versus 6.5% in alpha-phenyl-N-t-butylnitrone + lipopolysaccharide group, P intrauterine growth restriction

  10. Thymosin Beta-4 Induces Mouse Hair Growth.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Gao

    Full Text Available Thymosin beta-4 (Tβ4 is known to induce hair growth and hair follicle (HF development; however, its mechanism of action is unknown. We generated mice that overexpressed Tβ4 in the epidermis, as well as Tβ4 global knockout mice, to study the role of Tβ4 in HF development and explore the mechanism of Tβ4 on hair growth. To study Tβ4 function, we depilated control and experimental mice and made tissue sections stained with hematoxylin and eosin (H&E. To explore the effect of Tβ4 on hair growth and HF development, the mRNA and protein levels of Tβ4 and VEGF were detected by real-time PCR and western blotting in control and experimental mice. Protein expression levels and the phosphorylation of P38, ERK and AKT were also examined by western blotting. The results of depilation indicated that hair re-growth was faster in Tβ4-overexpressing mice, but slower in knockout mice. Histological examination revealed that Tβ4-overexpressing mice had a higher number of hair shafts and HFs clustered together to form groups, while the HFs of control mice and knockout mice were separate. Hair shafts in knockout mice were significantly reduced in number compared with control mice. Increased Tβ4 expression at the mRNA and protein levels was confirmed in Tβ4-overexpressing mice, which also had increased VEGF expression. On the other hand, knockout mice had reduced levels of VEGF expression. Mechanistically, Tβ4-overexpressing mice showed increased protein expression levels and phosphorylation of P38, ERK and AKT, whereas knockout mice had decreased levels of both expression and phosphorylation of these proteins. Tβ4 appears to regulate P38/ERK/AKT signaling via its effect on VEGF expression, with a resultant effect on the speed of hair growth, the pattern of HFs and the number of hair shafts.

  11. Nutritionally-Induced Catch-Up Growth

    Directory of Open Access Journals (Sweden)

    Galia Gat-Yablonski

    2015-01-01

    Full Text Available Malnutrition is considered a leading cause of growth attenuation in children. When food is replenished, spontaneous catch-up (CU growth usually occurs, bringing the child back to its original growth trajectory. However, in some cases, the CU growth is not complete, leading to a permanent growth deficit. This review summarizes our current knowledge regarding the mechanism regulating nutrition and growth, including systemic factors, such as insulin, growth hormone, insulin- like growth factor-1, vitamin D, fibroblast growth factor-21, etc., and local mechanisms, including autophagy, as well as regulators of transcription, protein synthesis, miRNAs and epigenetics. Studying the molecular mechanisms regulating CU growth may lead to the establishment of better nutritional and therapeutic regimens for more effective CU growth in children with malnutrition and growth abnormalities. It will be fascinating to follow this research in the coming years and to translate the knowledge gained to clinical benefit.

  12. Seasonal Patterns of Sporophyte Growth, Fertility, Fouling, and Mortality of Saccharina latissima in Skagerrak, Norway: Implications for Forest Recovery

    Directory of Open Access Journals (Sweden)

    Guri Sogn Andersen

    2011-01-01

    Full Text Available On the Skagerrak coast the kelp Saccharina latissima has suffered severe stand reductions over the last decade, resulting in loss of important habitats. In the present study, healthy kelp plants were transplanted into four deforested areas and their patterns of growth, reproduction, and survival were monitored through subsequent seasons. Our main objective was to establish whether the kelp plants were able to grow and mature in deforested areas. We observed normal patterns of growth and maturation at all study sites. However, heavy fouling by epiphytes occurred each summer, followed by high kelp mortality. The study shows that the seasonal variations and the life stage timing of S. latissima make formation of self-sustainable populations impossible in the present environment. Most noteworthy, we suggest that fouling by epiphytes is involved in the lack of kelp forest recovery in Skagerrak, Norway.

  13. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.

    Science.gov (United States)

    Yamaya, Seiji; Ozawa, Hiroshi; Kanno, Haruo; Kishimoto, Koshi N; Sekiguchi, Akira; Tateda, Satoshi; Yahata, Kenichiro; Ito, Kenta; Shimokawa, Hiroaki; Itoi, Eiji

    2014-12-01

    Extracorporeal shock wave therapy (ESWT) is widely used for the clinical treatment of various human diseases. Recent studies have demonstrated that low-energy ESWT upregulates the expression of vascular endothelial growth factor (VEGF) and promotes angiogenesis and functional recovery in myocardial infarction and peripheral artery disease. Many previous reports suggested that VEGF produces a neuroprotective effect to reduce secondary neural tissue damage after spinal cord injury (SCI). The purpose of the present study was to investigate whether low-energy ESWT promotes VEGF expression and neuroprotection and improves locomotor recovery after SCI. Sixty adult female Sprague-Dawley rats were randomly divided into 4 groups: sham group (laminectomy only), sham-SW group (low-energy ESWT applied after laminectomy), SCI group (SCI only), and SCI-SW group (low-energy ESWT applied after SCI). Thoracic spinal cord contusion injury was inflicted using an impactor. Low-energy ESWT was applied to the injured spinal cord 3 times a week for 3 weeks. Locomotor function was evaluated using the Basso, Beattie, and Bresnahan (BBB) Scale (open field locomotor score) at different time points over 42 days after SCI. Hematoxylin and eosin staining was performed to assess neural tissue damage in the spinal cord. Neuronal loss was investigated by immunostaining for NeuN. The mRNA expressions of VEGF and its receptor, Flt-1, in the spinal cord were assessed using real-time polymerase chain reaction. Immunostaining for VEGF was performed to evaluate VEGF protein expression in the spinal cord. In both the sham and sham-SW groups, no animals showed locomotor impairment on BBB scoring. Histological analysis of H & E and NeuN stainings in the sham-SW group confirmed that no neural tissue damage was induced by the low-energy ESWT. Importantly, animals in the SCI-SW group demonstrated significantly better locomotor improvement than those in the SCI group at 7, 35, and 42 days after injury (p

  14. Inhibition of Estrogen-induced Growth of Breast Cancer by Targeting Mitochondrial Oxidants

    National Research Council Canada - National Science Library

    Roy, Deodutta; Felty, Quentin; Kunkle, Brian

    2008-01-01

    ...) Anchorage-independent cell growth, and (c) tumor spheroid formation using new 3D HuBiogel bioassay whether estrogen induced conversion of normal cells to transformed cells is inhibited by treatment with antioxidants, over expression of MnSOD...

  15. Concept analysis of recovery in mental illness in young adulthood.

    Science.gov (United States)

    McCauley, C O; McKenna, H P; Keeney, S; McLaughlin, D F

    2015-10-01

    Recovery, as a concept, emerged as a core philosophy of the service user movement that began in the late 1960s and 1970s. Previous reviews on recovery in mental health have presented definitions or a conceptual framework; however, over time it has been open to disparate interpretations. The aim of this paper was to conduct the first concept analysis of mental health recovery in young adulthood within various multidisciplinary contexts. Rodgers's (2000) six-stepped evolutionary method enabled the analysis of recovery's conceptual characteristics, the identification of an exemplar and the proposition of a hypothesis with implications for practice. This analysis has revealed the derivation of the term recovery does not convey its identified conceptual characteristics. Identified attributes include the reawakening of hope, reclaiming a positive self and meaning through personal growth. Antecedents include the disruption of illness, stigmatization, internal inventory and contemplative recovery. Identified consequences include the return to normality, reconstruction of self and active social connection. The new conceptual definition is the reawakening of hope and rediscovery of a positive sense of self through finding meaning and purpose within personal growth and connection using creative self-care coping strategies. This paper reveals an apparent disparity between professional and personal interpretations of recovery. Therefore, the implication for mental health nursing is the congruence of recovery-orientated practice with the process of recovery experienced by young adult service users. © 2015 John Wiley & Sons Ltd.

  16. X-ray-induced changes in growth of Mozambique tilapia

    International Nuclear Information System (INIS)

    Jana, B.B.; Basu, M.

    1995-01-01

    Early fry (30 d postfertilization) and 7-8-week-old Mozambique tilapias (Tilapia mossambica) were exposed to X rays in dosages of 50, 100, 200, 300, 400 or 500 roentgens and reared in outdoor culture tanks between May 1981 and October 1988. Fish of either sex that were irradiated as fry grew faster than controls at all test X-ray doses. Among fish irradiated at 7-8 weeks, males grew significantly faster, but females grew significantly slower, than controls at all test doses. X-ray-induced changes in growth were dose-dependent: growth rates of fry (both sexes) and of juvenile males rose relative to those of controls with increased radiation dose. The growth increase per unit of radiation dose was higher for fry than for older juveniles. The length-weight regression was steeper for irradiated males than for controls. The average weights of F 1 offspring of irradiated fish were greatly reduced as compared with controls, which suggests the transfer of the detrimental effects of X rays from irradiated parents to their offspring. 39 refs., 3 figs., 3 tabs

  17. Effects of Sleep Deprivation on Hypoglycemia-Induced Cognitive Impairment and Recovery in Adults With Type 1 Diabetes.

    Science.gov (United States)

    Inkster, Berit E; Zammitt, Nicola N; Ritchie, Stuart J; Deary, Ian J; Morrison, Ian; Frier, Brian M

    2016-05-01

    To ascertain whether hypoglycemia in association with sleep deprivation causes greater cognitive dysfunction than hypoglycemia alone and protracts cognitive recovery after normoglycemia is restored. Fourteen adults with type 1 diabetes underwent a hyperinsulinemic, hypoglycemic clamp on two separate occasions. Before one glucose clamp, the participants stayed awake overnight to induce sleep deprivation. Participants were randomized and counterbalanced to the experimental condition. Cognitive function tests were performed before and during hypoglycemia and for 90 min after restoration of normoglycemia. Cognitive impairment during hypoglycemia did not differ significantly between the sleep-deprived and non-sleep-deprived conditions. However, in the sleep-deprived state, digit symbol substitution scores and choice reaction times were significantly poorer during recovery (P sleep deprivation, such as tiredness, were removed. Hypoglycemia per se produced a significant decrement in cognitive function; coexisting sleep deprivation did not have an additive effect. However, after restoration of normoglycemia, preceding sleep deprivation was associated with persistence of hypoglycemic symptoms and greater and more prolonged cognitive dysfunction during the recovery period. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. Desferrioxamine-induced long bone changes in thalassaemic patients - Radiographic features, prevalence and relations with growth

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Y.L.; Li, C.K.; Pang, L.M.; Chik, K.W

    2000-08-01

    AIM: To study the radiographic findings of desferrioxamine-induced bone dysplasia, its prevalence and relation to growth in thalassaemic patients. MATERIALS AND METHODS: A cross-sectional study was performed in 35 thalassaemic patients on a hypertransfusion scheme and chelation therapy at a dose not exceeding 50 mg/kg/day. Radiographs of the left hand taken for bone age assessment in consecutive patients over the past 12 months were evaluated for signs of desferrioxamine-induced bone dysplasia. The findings were correlated with data on growth, chelation and body iron content. RESULTS: Twelve of 35 patients had evidence of desferrioxamine-induced long bone dysplasia. There was no significant difference in the groups with and without radiographic evidence of bone dysplasia with respect to the height percentile at time of initiation of therapy, height percentile at time of radiography, skeletal age delay, age at starting chelation, chelation dose and duration, units of blood transfused, average chelation dose, and serum ferritin levels at time of radiography. Both groups showed a reduced percentile growth with a significantly greater reduction (P = 0.03) in the patients with dysplastic change. CONCLUSION: Desferrioxamine-induced bone dysplasia is associated with height reduction and can be seen in patients receiving desferrioxamine chelation therapy at doses of less than 50 mg/kg/day. Awareness of the diagnosis is of importance as reduction of the desferrioxamine dose may improve bone growth. Chan, Y. L. (2000)

  19. Negative Effect of Proton-pump Inhibitors (PPIs) on Helicobacter pylori Growth, Morphology, and Urease Test and Recovery after PPI Removal--An In vitro Study.

    Science.gov (United States)

    Saniee, Parastoo; Shahreza, Somayeh; Siavoshi, Farideh

    2016-04-01

    Proton-pump inhibitor (PPI) consumption does lead to false-negative results of Helicobacter pylori diagnostic tests such as biopsy culture and rapid urease test (RUT). Helicobacter pylori isolates from 112 dyspeptic patients with (56.5%) or without (43.5%) PPI consumption were recruited for examining the negative effects of omeprazole (OMP), lansoprazole (LPZ), and pantoprazole (PAN) on H. pylori viability, morphology, and urease, in vitro. The effect of a sublethal concentration of OMP on bacterial features and their recovery after removal of OMP was also assessed. Of 112 culture-positive gastric biopsies, 87.5% were RUT positive and 12.5% RUT negative. There was a significant correlation between negative RUT results and PPI consumption (p urease of 90.3% of isolates between 0 and 40 minutes and 54.4% between 20 and 40 minutes, respectively. PAN did not inhibit H. pylori growth and urease. Three 3-day (9 days) consecutive subcultures of H. pylori on brucella blood agar (BBA) supplemented with OMP resulted in reduced bacterial viability (1+), compared with control (4+), change of spiral morphology to coccoid, and reduction in pink color intensity in urea agar. Bacterial growth (1+), morphology, and urease test did not improve after the first 3-day and second 3-day (6 days) subcultures on BBA. However, relative recovery occurred after the third 3-day (9 days) subculture and complete recovery was observed after the fourth 3-day (12 days) subculture, as confluent growth (4+), 100% spiral cells, and strong urease test. Proton-pump Inhibitors exert transient negative effects on H. pylori viability, morphology, and urease test. Accordingly, cessation of PPI consumption at least 12 days before endoscopy could help avoiding false-negative results of H. pylori diagnostic tests. © 2015 John Wiley & Sons Ltd.

  20. Phenotypic indications of FtsZ inhibition in hok/sok-induced bacterial growth changes and stress response.

    Science.gov (United States)

    Chukwudi, Chinwe Uzoma; Good, Liam

    2018-01-01

    The hok/sok locus has been shown to enhance the growth of bacteria in adverse growth conditions such as high temperature, low starting-culture densities and antibiotic treatment. This is in addition to their well-established plasmid-stabilization effect via post-segregational killing of plasmid-free daughter cells. It delays the onset of growth by prolonging the lag phase of bacterial culture, and increases the rate of exponential growth when growth eventually begins. This enables the cells adapt to the prevailing growth conditions and enhance their survival in stressful conditions. These effects functionally complement defective SOS response mechanism, and appear analogous to the growth effects of FtsZ in the SOS pathway. In this study, the role of FtsZ in the hok/sok-induced changes in bacterial growth and cell division was investigated. Morphologic studies of early growth-phase cultures and cells growing under temperature stress showed elongated cells typical of FtsZ inhibition/deficiency. Both ftsZ silencing and over-expression produced comparable growth effects in control cells, and altered the growth changes observed otherwise in the hok/sok + cells. These changes were diminished in SOS-deficient strain containing mutant FtsZ. The involvement of FtsZ in the hok/sok-induced growth changes may be exploited as drug target in host bacteria, which often propagate antibiotic resistance elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Cancer drug troglitazone stimulates the growth and response of renal cells to hypoxia inducible factors

    Energy Technology Data Exchange (ETDEWEB)

    Taub, Mary, E-mail: biochtau@buffalo.edu

    2016-03-11

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10{sup −5} M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibited the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. - Highlights: • Troglitazone and rosiglitazone stimulate renal proximal tubule cell growth. • Troglitazone and linolenic acid stimulate growth via PPARϒ. • Linolenic acid stimulates growth in the presence of fatty acid free serum albumin. • Rosiglitazone stimulates transcription by a HRE luciferase construct.

  2. Cancer drug troglitazone stimulates the growth and response of renal cells to hypoxia inducible factors

    International Nuclear Information System (INIS)

    Taub, Mary

    2016-01-01

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10"−"5 M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibited the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. - Highlights: • Troglitazone and rosiglitazone stimulate renal proximal tubule cell growth. • Troglitazone and linolenic acid stimulate growth via PPARϒ. • Linolenic acid stimulates growth in the presence of fatty acid free serum albumin. • Rosiglitazone stimulates transcription by a HRE luciferase construct.

  3. Therapeutic intraspinal stimulation to generate activity and promote long-term recovery

    Directory of Open Access Journals (Sweden)

    Sarah E. Mondello

    2014-02-01

    Full Text Available Neuroprosthetic approaches have tremendous potential for the treatment of injuries to the brain and spinal cord by inducing appropriate neural activity in otherwise disordered circuits. Substantial work has demonstrated that stimulation applied to both the central and peripheral nervous system leads to immediate and in some cases sustained benefits after injury. Here we focus on cervical intraspinal microstimulation (ISMS as a promising method of activating the spinal cord distal to an injury site, either to directly produce movements or more intriguingly to improve subsequent volitional control of the paretic extremities. Incomplete injuries to the spinal cord are the most commonly observed in human patients, and these injuries spare neural tissue bypassing the lesion that could be influenced by neural devices to promote recovery of function. In fact, recent results have demonstrated that therapeutic ISMS leads to modest but sustained improvements in forelimb function after an incomplete spinal cord injury. This therapeutic spinal stimulation may promote long-term recovery of function by providing the necessary electrical activity needed for neuron survival, axon growth, and synaptic stability.

  4. Induced plasmon mutations affecting the growth habit of peanuts, A. hypogaea L

    International Nuclear Information System (INIS)

    Levy, A.; Ashri, A.

    1978-01-01

    The effectiveness of the acridines ethidium bromide (EB) and acriflavine in inducing plasmon mutations was compared with the alkylating agents ethyl methanesulphonate (EMS) and diethyl sulphate and to γ-rays. The growth habit (trailing versus bunch) of peanuts (A. hypogaea), controlled by genic-cytoplasmic interactions, was utilized. Breeding tests distinguishing nuclear from plasmon mutations were developed and are described in detail. Plasmon mutations were induced, but there were differences in mutation yields between the cultivars and the mutagens. (Auth.)

  5. Irradiation-induced growth of zircaloy and its effects on the mechanical design of fuel assemblies

    International Nuclear Information System (INIS)

    Yao Pu

    1991-01-01

    Zircaloy growth could be induced due to irradiation. The ammount of growth is described as a function of texture, irradiation temperature, fast neutron fluence and the reduction of cold work, and it should be given great attention in the mechanical design of fuel assemblies

  6. Characteristics of myogenic response and ankle torque recovery after lengthening contraction-induced rat gastrocnemius injury

    Directory of Open Access Journals (Sweden)

    Song Hongsun

    2012-10-01

    Full Text Available Abstract Background Although muscle dysfunction caused by unfamiliar lengthening contraction is one of most important issues in sports medicine, there is little known about the molecular events on regeneration process. The purpose of this study was to investigate the temporal and spatial expression patterns of myogenin, myoD, pax7, and myostatin after acute lengthening contraction (LC-induced injury in the rat hindlimb. Methods We employed our originally developed device with LC in rat gastrocnemius muscle (n = 24. Male Wistar rats were anesthetized with isoflurane (aspiration rate, 450 ml/min, concentration, 2.0%. The triceps surae muscle of the right hindlimb was then electrically stimulated with forced isokinetic dorsi-flexion (180°/sec and from 0 to 45°. Tissue contents of myoD, myogenin, pax7, myostatin were measured by western blotting and localizations of myoD and pax7 was measured by immunohistochemistry. After measuring isometric tetanic torque, a single bout of LC was performed in vivo. Results The torque was significantly decreased on days 2 and 5 as compared to the pre-treatment value, and recovered by day 7. The content of myoD and pax7 showed significant increases on day 2. Myogenin showed an increase from day 2 to 5. Myostatin on days 5 and 7 were significantly increased. Immunohistochemical analysis showed that myoD-positive/pax7-positive cells increased on day 2, suggesting that activated satellite cells play a role in the destruction and the early recovery phases. Conclusion We, thus, conclude that myogenic events associate with torque recovery after LC-induced injury.

  7. Recovery in stroke rehabilitation through the rotation of preferred directions induced by bimanual movements: a computational study.

    Directory of Open Access Journals (Sweden)

    Ken Takiyama

    Full Text Available Stroke patients recover more effectively when they are rehabilitated with bimanual movement rather than with unimanual movement; however, it remains unclear why bimanual movement is more effective for stroke recovery. Using a computational model of stroke recovery, this study suggests that bimanual movement facilitates the reorganization of a damaged motor cortex because this movement induces rotations in the preferred directions (PDs of motor cortex neurons. Although the tuning curves of these neurons differ during unimanual and bimanual movement, changes in PD, but not changes in modulation depth, facilitate such reorganization. In addition, this reorganization was facilitated only when encoding PDs are rotated, but decoding PDs are not rotated. Bimanual movement facilitates reorganization because this movement changes neural activities through inter-hemispheric inhibition without changing cortical-spinal-muscle connections. Furthermore, stronger inter-hemispheric inhibition between motor cortices results in more effective reorganization. Thus, this study suggests that bimanual movement is effective for stroke rehabilitation because this movement rotates the encoding PDs of motor cortex neurons.

  8. Unfolded protein response is required for Aspergillus oryzae growth under conditions inducing secretory hydrolytic enzyme production.

    Science.gov (United States)

    Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2015-12-01

    Unfolded protein response (UPR) is an intracellular signaling pathway for adaptation to endoplasmic reticulum (ER) stress. In yeast UPR, Ire1 cleaves the unconventional intron of HAC1 mRNA, and the functional Hac1 protein translated from the spliced HAC1 mRNA induces the expression of ER chaperone genes and ER-associated degradation genes for the refolding or degradation of unfolded proteins. In this study, we constructed an ireA (IRE1 ortholog) conditionally expressing strain of Aspergillus oryzae, a filamentous fungus producing a large amount of amylolytic enzymes, and examined the contribution of UPR to ER stress adaptation under physiological conditions. Repression of ireA completely blocked A. oryzae growth under conditions inducing the production of hydrolytic enzymes, such as amylases and proteases. This growth defect was restored by the introduction of unconventional intronless hacA (hacA-i). Furthermore, UPR was observed to be induced by amylolytic gene expression, and the disruption of the transcriptional activator for amylolytic genes resulted in partial growth restoration of the ireA-repressing strain. In addition, a homokaryotic ireA disruption mutant was successfully generated using the strain harboring hacA-i as a parental host. These results indicated that UPR is required for A. oryzae growth to alleviate ER stress induced by excessive production of hydrolytic enzymes. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A Mechanobiological model for damage-induced growth in arterial tissue with application to in-stent restenosis

    Science.gov (United States)

    Fereidoonnezhad, B.; Naghdabadi, R.; Sohrabpour, S.; Holzapfel, G. A.

    In-stent restenosis (ISR) is one of the main drawbacks of stent implementation which limits the long-term success of the procedure. Morphological changes occurring within the arterial wall due to stent-induced mechanical injury are a major cause for activation of vascular smooth muscle cells (VSMCs), and the subsequent development of ISR. Considering the theory of volumetric mass growth and adopting a multiplicative decomposition of the deformation gradient into an elastic part and a growth part, we present a mechanobiological model for ISR. An evolution equation is developed for mass growth of the neointima, in which the activation of VSMCs due to stent-induced damage (injury) and the proliferation rate of the activated cells are considered. By introducing the mass evolution into the mass balance equation, we obtain the evolution of the growth tensor over time. The model is implemented in a finite element code and the procedure of angioplasty is simulated, whereby the features of the proposed growth model are illustrated.

  10. Intravenous miR-144 inhibits tumor growth in diethylnitrosamine-induced hepatocellular carcinoma in mice.

    Science.gov (United States)

    He, Quan; Wang, Fangfei; Honda, Takashi; Lindquist, Diana M; Dillman, Jonathan R; Timchenko, Nikolai A; Redington, Andrew N

    2017-10-01

    Previous in vitro studies have demonstrated that miR-144 inhibits hepatocellular carcinoma cell proliferation, invasion, and migration. We have shown that miR-144, injected intravenously, is taken up by the liver and induces endogenous hepatic synthesis of miR-144. We hypothesized that administered miR-144 has tumor-suppressive effects on liver tumor development in vivo. The effects of miR-144 on tumorigenesis and tumor growth were tested in a diethylnitrosamine-induced hepatocellular carcinoma mouse model. MiR-144 injection had no effect on body weight but significantly reduced diethylnitrosamine-induced liver enlargement compared with scrambled microRNA. MiR-144 had no effect on diethylnitrosamine-induced liver tumor number but reduced the tumor size above 50%, as evaluated by magnetic resonance imaging (scrambled microRNA 23.07 ± 5.67 vs miR-144 10.38 ± 2.62, p hepatocellular carcinoma tumorigenesis. Exogenously delivered miR-144 may be a therapeutic strategy to suppress tumor growth in hepatocellular carcinoma.

  11. Effect of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Deng, Chenguang; Wang, Ting; Wu, Jingjing; Xu, Wei; Li, Huasheng; Liu, Min

    2017-01-01

    Highlights: • The radio-adaptive response (RAR) of A. thaliana root growth is modulated in microgravity. • The DNA damage repairs in RAR are regulated by microgravity. • The phytohormone auxin plays a regulatory role in the modulation of microgravity on RAR of root growth. - Abstract: Space particles have an inevitable impact on organisms during space missions; radio-adaptive response (RAR) is a critical radiation effect due to both low-dose background and sudden high-dose radiation exposure during solar storms. Although it is relevant to consider RAR within the context of microgravity, another major space environmental factor, there is no existing evidence as to its effects on RAR. In the present study, we established an experimental method for detecting the effects of gamma-irradiation on the primary root growth of Arabidopsis thaliana, in which RAR of root growth was significantly induced by several dose combinations. Microgravity was simulated using a two-dimensional rotation clinostat. It was shown that RAR of root growth was significantly inhibited under the modeled microgravity condition, and was absent in pgm-1 plants that had impaired gravity sensing in root tips. These results suggest that RAR could be modulated in microgravity. Time course analysis showed that microgravity affected either the development of radio-resistance induced by priming irradiation, or the responses of plants to challenging irradiation. After treatment with the modeled microgravity, attenuation in priming irradiation-induced expressions of DNA repair genes (AtKu70 and AtRAD54), and reduced DNA repair efficiency in response to challenging irradiation were observed. In plant roots, the polar transportation of the phytohormone auxin is regulated by gravity, and treatment with an exogenous auxin (indole-3-acetic acid) prevented the induction of RAR of root growth, suggesting that auxin might play a regulatory role in the interaction between microgravity and RAR of root growth.

  12. Effect of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Chenguang [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province (China); Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Wang, Ting [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province (China); Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); Wu, Jingjing [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province (China); Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Xu, Wei [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province (China); Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); Li, Huasheng; Liu, Min [China Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); and others

    2017-02-15

    Highlights: • The radio-adaptive response (RAR) of A. thaliana root growth is modulated in microgravity. • The DNA damage repairs in RAR are regulated by microgravity. • The phytohormone auxin plays a regulatory role in the modulation of microgravity on RAR of root growth. - Abstract: Space particles have an inevitable impact on organisms during space missions; radio-adaptive response (RAR) is a critical radiation effect due to both low-dose background and sudden high-dose radiation exposure during solar storms. Although it is relevant to consider RAR within the context of microgravity, another major space environmental factor, there is no existing evidence as to its effects on RAR. In the present study, we established an experimental method for detecting the effects of gamma-irradiation on the primary root growth of Arabidopsis thaliana, in which RAR of root growth was significantly induced by several dose combinations. Microgravity was simulated using a two-dimensional rotation clinostat. It was shown that RAR of root growth was significantly inhibited under the modeled microgravity condition, and was absent in pgm-1 plants that had impaired gravity sensing in root tips. These results suggest that RAR could be modulated in microgravity. Time course analysis showed that microgravity affected either the development of radio-resistance induced by priming irradiation, or the responses of plants to challenging irradiation. After treatment with the modeled microgravity, attenuation in priming irradiation-induced expressions of DNA repair genes (AtKu70 and AtRAD54), and reduced DNA repair efficiency in response to challenging irradiation were observed. In plant roots, the polar transportation of the phytohormone auxin is regulated by gravity, and treatment with an exogenous auxin (indole-3-acetic acid) prevented the induction of RAR of root growth, suggesting that auxin might play a regulatory role in the interaction between microgravity and RAR of root growth.

  13. Biotechnology in petroleum recovery. The microbial EOR

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramkrishna [Department of Biotechnology, Indian Institute of Technology (IIT), Kharagpur, West Bengal 721302 (India)

    2008-12-15

    Biotechnology has played a significant role in enhancing crude oil recovery from the depleted oil reservoirs to solve stagnant petroleum production, after a three-stage recovery process employing mechanical, physical and chemical methods. Biotechnologically enhanced oil recovery processes, known as microbial enhanced oil recovery (MEOR), involve stimulating indigenous reservoir microbes or injecting specially selected consortia of natural bacteria into the reservoir to produce specific metabolic events that lead to improved oil recovery. This also involves flooding with oil recovery agents produced ex situ by industrial or pilot scale fermentation. This paper essentially reviews the operating mechanisms and the progress made in enhanced oil recovery through the use of microbes and their metabolic products. Improvement in oil recovery by injecting solvents and gases or by energizing the reservoir microflora to produce them in situ for carbonate rock dissolution and reservoir re-pressurization has been enunciated. The role of biosurfactants in oil mobilization through emulsification and that of biopolymers for selective plugging of oil-depleted zones and for biofilm formation have been delineated. The spoil sport played by sulfate-reducing bacteria (SRB) in MEOR has also been briefly reviewed. The importance of mathematical models used in predicting the applicability of an MEOR strategy and the microbial growth and transport has been qualitatively discussed. The results of some laboratory studies and worldwide field trials applying ex situ and in situ MEOR technologies were compiled and interpreted. However, the potential of the MEOR technologies has not been fully realized due to poor yield of the useful microbial metabolic products, growth inhibition by accumulated toxic metabolites and longer time of incubation. A complete evaluation and assessment of MEOR from an engineering standpoint based on economics, applicability and performance is required to further

  14. Recovery time from radiation-induced xerostomia and impairment of salivary secretion

    International Nuclear Information System (INIS)

    Fukutomi, Yukimi; Kawakami, Toshiaki; Murase, Kenya; Fujii, Takashi; Ikezoe, Junpei

    2000-01-01

    Between June 1995 and August 1997, we treated 23 patients with head and neck malignancies using an x-ray beam and then interviewed the patients to determine the degree of subjective salivary secretion and xerostomia after long-term radiation therapy. Interviews were continued for a maximum 179 weeks (mean, 76.3 weeks) after irradiation. We scored the results as the degree of subjective salivary secretion, then noted the recovery time for salivary secretion and xerostomia. When salivary glands had been irradiated to a total dose of 30 to 60 Gy, salivary secretion and oral dryness recovered within three years in 72% (13/18) and 67% (13/18) of the patients, respectively. However, these symptoms never recovered to their original levels when the total dose was more than 60 Gy. The acute and late effects of radiation therapy may induce a risk of dental caries, oral dryness, and osteoradionecrosis as well as taste impairment. Therefore, education as to dental and oral care is mandatory for patients who will be or who have been treated with radiotherapy. (author)

  15. Recovery and recrystallisation of zircaloy-4

    International Nuclear Information System (INIS)

    Derep, J.L.; Rouby, D.; Fantozzi, G.

    1981-01-01

    Examination of the three mechanisms that control the recovery of zircaloy-4 workhardened by rolling: polygonisation leading to a cellular structure, annihilation of dislocations of opposite sign producing thinning of the cell walls, and growth of subgrains by coalescence [fr

  16. Autolysis of Pichia pastoris induced by cold.

    Science.gov (United States)

    Bartolo-Aguilar, Yaneth; Dendooven, Luc; Chávez-Cabrera, Cipriano; Flores-Cotera, Luis B; Hidalgo-Lara, María E; Villa-Tanaca, Lourdes; Marsch, Rodolfo

    2017-12-01

    The production of recombinant biopharmaceutical proteins is a multi-billion dollar market. Protein recovery represents a major part of the production costs. Pichia pastoris is one of the microbial systems most used for the production of heterologous proteins. The use of a cold-induced promoter to express lytic enzymes in the yeast after the growth stage could reduce protein recovery costs. This study shows that a cold-shock can be applied to induce lysis of the yeast cells. A strain of P. pastoris was constructed in which the endogenous eng gene encoding a putative endo-β-1,3-glucanase was overexpressed using the cold-shock induced promoter of the cctα gene from Saccharomyces cerevisiae. In the transgenic P. pastoris, the expression of eng increased 3.6-fold after chilling the cells from 30 to 4 °C (cold-shock stage) followed by incubation for 6 h (eng expression stage). The culture was heated to 30 °C for 6 h (ENG synthesis stage) and kept at 37 °C for 24 h (lysis stage). After this procedure the cell morphology changed, spheroplasts were obtained and cellular lysis was observed. Thus, a clone of P. pastoris was obtained, which undergoes autolysis after a cold-shock.

  17. Aerobic Interval Exercise Training Induces Greater Reduction in Cardiac Workload in the Recovery Period in Rats

    International Nuclear Information System (INIS)

    Borges, Juliana Pereira; Masson, Gustavo Santos; Tibiriçá, Eduardo; Lessa, Marcos Adriano

    2014-01-01

    Aerobic interval exercise training has greater benefits on cardiovascular function as compared with aerobic continuous exercise training. The present study aimed at analyzing the effects of both exercise modalities on acute and subacute hemodynamic responses of healthy rats. Thirty male rats were randomly assigned into three groups as follows: continuous exercise (CE, n = 10); interval exercise (IE, n = 10); and control (C, n = 10). Both IE and CE groups performed a 30-minute exercise session. The IE group session consisted of three successive 4-minute periods at 60% of maximal velocity (Max Vel), with 4-minute recovery intervals at 40% of Max Vel. The CE group ran continuously at 50% of Max Vel. Heart rate (HR), blood pressure(BP), and rate pressure product (RPP) were measured before, during and after the exercise session. The CE and IE groups showed an increase in systolic BP and RPP during exercise as compared with the baseline values. After the end of exercise, the CE group showed a lower response of systolic BP and RPP as compared with the baseline values, while the IE group showed lower systolic BP and mean BP values. However, only the IE group had a lower response of HR and RPP during recovery. In healthy rats, one interval exercise session, as compared with continuous exercise, induced similar hemodynamic responses during exercise. However, during recovery, the interval exercise caused greater reductions in cardiac workload than the continuous exercise

  18. Aerobic Interval Exercise Training Induces Greater Reduction in Cardiac Workload in the Recovery Period in Rats

    Science.gov (United States)

    Borges, Juliana Pereira; Masson, Gustavo Santos; Tibiriçá, Eduardo; Lessa, Marcos Adriano

    2014-01-01

    Background Aerobic interval exercise training has greater benefits on cardiovascular function as compared with aerobic continuous exercise training. Objective The present study aimed at analyzing the effects of both exercise modalities on acute and subacute hemodynamic responses of healthy rats. Methods Thirty male rats were randomly assigned into three groups as follows: continuous exercise (CE, n = 10); interval exercise (IE, n = 10); and control (C, n = 10). Both IE and CE groups performed a 30-minute exercise session. The IE group session consisted of three successive 4-minute periods at 60% of maximal velocity (Max Vel), with 4-minute recovery intervals at 40% of Max Vel. The CE group ran continuously at 50% of Max Vel. Heart rate (HR), blood pressure(BP), and rate pressure product (RPP) were measured before, during and after the exercise session. Results The CE and IE groups showed an increase in systolic BP and RPP during exercise as compared with the baseline values. After the end of exercise, the CE group showed a lower response of systolic BP and RPP as compared with the baseline values, while the IE group showed lower systolic BP and mean BP values. However, only the IE group had a lower response of HR and RPP during recovery. Conclusion In healthy rats, one interval exercise session, as compared with continuous exercise, induced similar hemodynamic responses during exercise. However, during recovery, the interval exercise caused greater reductions in cardiac workload than the continuous exercise. PMID:24270864

  19. Aerobic Interval Exercise Training Induces Greater Reduction in Cardiac Workload in the Recovery Period in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Juliana Pereira, E-mail: julipborges@gmail.com; Masson, Gustavo Santos; Tibiriçá, Eduardo; Lessa, Marcos Adriano [Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, RJ (Brazil)

    2014-01-15

    Aerobic interval exercise training has greater benefits on cardiovascular function as compared with aerobic continuous exercise training. The present study aimed at analyzing the effects of both exercise modalities on acute and subacute hemodynamic responses of healthy rats. Thirty male rats were randomly assigned into three groups as follows: continuous exercise (CE, n = 10); interval exercise (IE, n = 10); and control (C, n = 10). Both IE and CE groups performed a 30-minute exercise session. The IE group session consisted of three successive 4-minute periods at 60% of maximal velocity (Max Vel), with 4-minute recovery intervals at 40% of Max Vel. The CE group ran continuously at 50% of Max Vel. Heart rate (HR), blood pressure(BP), and rate pressure product (RPP) were measured before, during and after the exercise session. The CE and IE groups showed an increase in systolic BP and RPP during exercise as compared with the baseline values. After the end of exercise, the CE group showed a lower response of systolic BP and RPP as compared with the baseline values, while the IE group showed lower systolic BP and mean BP values. However, only the IE group had a lower response of HR and RPP during recovery. In healthy rats, one interval exercise session, as compared with continuous exercise, induced similar hemodynamic responses during exercise. However, during recovery, the interval exercise caused greater reductions in cardiac workload than the continuous exercise.

  20. The Effect of Taurine on the Recovery from Eccentric Exercise-Induced Muscle Damage in Males

    Directory of Open Access Journals (Sweden)

    Yanita McLeay

    2017-10-01

    daily for 72 h following eccentric exercise-induced muscle damage may help improve eccentric performance recovery of the biceps brachii.

  1. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  2. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    International Nuclear Information System (INIS)

    Nagata, Yosuke; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-01-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  3. Partial drying accelerates bacterial growth recovery to rewetting

    DEFF Research Database (Denmark)

    Meisner, Annelein; Leizeaga, Ainara; Rousk, Johannes

    2017-01-01

    , bacterial growth rates increase immediately in a linear fashion. In the Type 2 pattern, bacterial growth rates increase exponentially after a lag period. However, soils are often only partially dried. Partial drying (higher remaining moisture content before rewetting) may be considered a less harsh...

  4. Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration.

    Science.gov (United States)

    Yin, Anlin; Bowlin, Gary L; Luo, Rifang; Zhang, Xingdong; Wang, Yunbing; Mo, Xiumei

    2016-12-01

    The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/poly (L-lactide-ε-caplacton) (SF/PLLA-CL) vascular graft loaded with platelet-rich growth factor (PRGF) was fabricated by electrospinning. The in vitro results showed that SMCs cultured in the graft grew fast, and the incorporation of PRGF could induce deeper SMCs infiltrating compared to the SF/PLLA-CL graft alone. Mechanical properties measurement showed that PRGF-incorporated graft had proper tensile stress, suture retention strength, burst pressure and compliance which could match the demand of native blood vessel. The success in the fabrication of PRGF-incorporated SF/PLLA-CL graft to induce fast SMCs growth and their strong penetration into graft has important application for tissue-engineered blood vessels.

  5. Recovery of Nicotiana benthamiana plants from a necrotic response induced by a nepovirus is associated with RNA silencing but not with reduced virus titer.

    Science.gov (United States)

    Jovel, Juan; Walker, Melanie; Sanfaçon, Hélène

    2007-11-01

    Recovery of plants from virus-induced symptoms is often described as a consequence of RNA silencing, an antiviral defense mechanism. For example, recovery of Nicotiana clevelandii from a nepovirus (tomato black ring virus) is associated with a decreased viral RNA concentration and sequence-specific resistance to further virus infection. In this study, we have characterized the interaction of another nepovirus, tomato ringspot virus (ToRSV), with host defense responses during symptom induction and subsequent recovery. Early in infection, ToRSV induced a necrotic phenotype in Nicotiana benthamiana that showed characteristics typical of a hypersensitive response. RNA silencing was also activated during ToRSV infection, as evidenced by the presence of ToRSV-derived small interfering RNAs (siRNAs) that could direct degradation of ToRSV sequences introduced into sensor constructs. Surprisingly, disappearance of symptoms was not accompanied by a commensurate reduction in viral RNA levels. The stability of ToRSV RNA after recovery was also observed in N. clevelandii and Cucumis sativus and in N. benthamiana plants carrying a functional RNA-dependent RNA polymerase 1 ortholog from Medicago truncatula. In experiments with a reporter transgene (green fluorescent protein), ToRSV did not suppress the initiation or maintenance of transgene silencing, although the movement of the silencing signal was partially hindered. Our results demonstrate that although RNA silencing is active during recovery, reduction of virus titer is not required for the initiation of this phenotype. This scenario adds an unforeseen layer of complexity to the interaction of nepoviruses with the host RNA silencing machinery. The possibility that viral proteins, viral RNAs, and/or virus-derived siRNAs inactivate host defense responses is discussed.

  6. Knockdown of the placental growth factor gene inhibits laser induced choroidal neovascularization in a murine model.

    Science.gov (United States)

    Nourinia, Ramin; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Akrami, Hassan; Rezaei Kanavi, Mozhgan; Samiei, Shahram

    2013-01-01

    To evaluate the effect of placental growth factor (PlGF) gene knockdown in a murine model of laser-induced choroidal neovascularization. Choroidal neovascularization was induced in the left eyes of 11 mice by infrared laser. Small interfering RNA (siRNA, 20 picomoles/10 μl) corresponding to PlGF mRNA was administered intravitreally by Hamilton syringe in all subjects. One month later, fluorescein angiography and histolologic examination were performed. No leakage was apparent in the 11 eyes treated with siRNA cognate to PlGF. The results of histological evaluation were consistent with angiographic findings showing absence of choroidal neovascularization. Knockdown of the PlGF gene can inhibit the growth of laser-induced choroidal neovascularization in mice.

  7. Recovery from UV-induced potentially lethal damage in systemic lupus erythematosus skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Zamansky, G B

    1986-08-01

    The repair of ultraviolet light-induced potentially lethal damage was investigated in density-inhibited skin fibroblast cell strains derived from patients with systemic lupus erythematosus. The effect of exposure to polychromatic ultraviolet light composed of environmentally relevant wavelengths or to the more commonly studied, short wavelength (254 nm) ultraviolet light was studied. Systemic lupus erythematosus cells, which are hypersensitive to ultraviolet light under growth promoting conditions, were able to repair potentially lethal damage as well as normal cells.

  8. Recovery from UV-induced potentially lethal damage in systemic lupus erythematosus skin fibroblasts

    International Nuclear Information System (INIS)

    Zamansky, G.B.

    1986-01-01

    The repair of ultraviolet light-induced potentially lethal damage was investigated in density-inhibited skin fibroblast cell strains derived from patients with systemic lupus erythematosus. The effect of exposure to polychromatic ultraviolet light composed of environmentally relevant wavelengths or to the more commonly studied, short wavelength (254 nm) ultraviolet light was studied. Systemic lupus erythematosus cells, which are hypersensitive to ultraviolet light under growth promoting conditions, were able to repair potentially lethal damage as well as normal cells. (author)

  9. Liquid holding recovery kinetics in yeast cells with regard to radiation quality

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, Byoung Hun; Petin, Vladislav G.

    2004-01-01

    It is widely accepted that the RBE of ionizing radiation with a high linear energy transfer (LET) is dependent both on the increased probability of primary damage production (physical events) and the reduced ability of a cell for post-irradiation recovery (biological events). A relatively unexpected role of the specific repair pathways in the RBE of high-LET radiation was demonstrated for bacterial, yeast and mammalian cells. It seems to exist a common agreement that high-LET radiations produce more portion of damage that are considered to be irreversible compared with low-LET radiation such as photons. Cellular recovery and repair of radiation-induced DNA double-strand breaks (DSB) could be also dependent upon radiation quality. Studies concerning the rate of the recovery and repair from radiation damage produced with low- and high-LET radiations in cells of various origins on the survival and macromolecular level have also revealed that in general at a high ionization density, these processes may be reduced or even absent. When irradiated yeast cells are held in a liquid non-nutrient media at 30 .deg. C before planting on to a growth medium, their survival increases. This phenomena is known as liquid holding recovery (LHR). A quantitative approach describing the LHR kinetics of the yeast cells was described, which enables the estimation of the probability of the recovery per unit time and the fraction of the irreversible damage. The main goals of this study were (i) to answer the question whether or not high-LET radiation affects the recovery process itself or if it only produces a higher level of severe irreversible damage that cannot be repaired at all; (ii) to elucidate the role of irreversible damage and the probability of recovery in some rad mutants of the yeast Saccharomyces cerevisiae. In this study, the liquid-holing recovery will serve as an indicator of the cellular repair activity

  10. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Lee, Sun Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Bae, Yong Chan [Department of Plastic Surgery, School of Medicine, Pusan National University, Pusan 602-739 (Korea, Republic of); Jung, Jin Sup, E-mail: jsjung@pusan.ac.kr [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Institute, Pusan National University, Pusan 602-739 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  11. Endocide-Induced Abnormal Growth Forms of Invasive Giant Salvinia (Salvinia molesta).

    Science.gov (United States)

    Li, Shiyou; Wang, Ping; Su, Zushang; Lozano, Emily; LaMaster, Olivia; Grogan, Jason B; Weng, Yuhui; Decker, Thomas; Findeisen, John; McGarrity, Monica

    2018-05-22

    Giant salvinia (Salvinia molesta) is one of the most noxious invasive species in the world. The fern is known to have primary, secondary, and tertiary growth forms, which are also commonly hypothesized as growth stages. The identification of these forms is primarily based on the size and folding status of the floating leaves. However, we identified 12 forms in the greenhouse and the field. Our experiments showed that the folding of floating leaves is a reversible trait dependent on water access. The floating leaves quickly fold in response to water shortage, reducing water loss and needs, decreasing growth, and avoiding trichome damage. The leaves re-open to allow trichomes repel water and enhance growth when having adequate water supply. Larger secondary or tertiary forms do not produce small-leaf primary forms without high intensity stress. These results do not support the hypothesis that three growth forms represent sequential growth stages. The abnormal small-leaf forms are the result of endocide-induced autotoxicity and some of them never grow into other forms. The development of abnormal forms and reversible leaf folding strategy in response to high stress along with rapid asexual reproduction are major adaptive traits contributing to the invasiveness of S. molesta.

  12. The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Iris Camehl

    2011-05-01

    Full Text Available Piriformospora indica is an endophytic fungus that colonizes roots of many plant species and promotes growth and resistance to certain plant pathogens. Despite its potential use in agriculture, little is known on the molecular basis of this beneficial plant-fungal interaction. In a genetic screen for plants, which do not show a P. indica- induced growth response, we isolated an Arabidopsis mutant in the OXI1 (Oxidative Signal Inducible1 gene. OXI1 has been characterized as a protein kinase which plays a role in pathogen response and is regulated by H₂O₂ and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1. A genetic analysis showed that double mutants of the two closely related PDK1.1 and PDK1.2 genes are defective in the growth response to P. indica. While OXI1 and PDK1 gene expression is upregulated in P. indica-colonized roots, defense genes are downregulated, indicating that the fungus suppresses plant defense reactions. PDK1 is activated by phosphatidic acid (PA and P. indica triggers PA synthesis in Arabidopsis plants. Under beneficial co-cultivation conditions, H₂O₂ formation is even reduced by the fungus. Importantly, phospholipase D (PLDα1 or PLDδ mutants, which are impaired in PA synthesis do not show growth promotion in response to fungal infection. These data establish that the P. indica-stimulated growth response is mediated by a pathway consisting of the PLD-PDK1-OXI1 cascade.

  13. Human growth hormone may be detrimental when used to accelerate recovery from acute tendon-bone interface injuries.

    Science.gov (United States)

    Baumgarten, Keith M; Oliver, Harvey A; Foley, Jack; Chen, Ding-Geng; Autenried, Peter; Duan, Shanzhong; Heiser, Patrick

    2013-05-01

    There have been few scientific studies that have examined usage of human growth hormone to accelerate recovery from injury. The hypothesis of this study was that human growth hormone would accelerate tendon-to-bone healing compared with control animals treated with placebo in a rat model of acute rotator cuff injury repair. Seventy-two rats underwent repair of acute rotator cuff injuries and were randomized into the following postoperative dosing regimens: placebo, and human growth hormone at 0.1, 1, 2, 5, and 10 mg/kg/day, administered subcutaneously once per day for fourteen days (Protocol 1). An additional twenty-four rats were randomized to receive either (1) placebo or (2) human growth hormone at 5 mg/kg, administered subcutaneously twice per day for seven days preoperatively and twenty-eight days postoperatively (Protocol 2). All rats were killed twenty-eight days postoperatively. Mechanical testing was performed. Ultimate stress, ultimate force, stiffness, energy to failure, and ultimate distension were determined. For Protocol 1, analysis of variance testing showed no significant difference between the groups with regard to ultimate stress, ultimate force, stiffness, energy to failure, or ultimate distension. In Protocol 2, ultimate force to failure was significantly worse in the human growth hormone group compared with the placebo group (21.1 ± 5.85 versus 26.3 ± 5.47 N; p = 0.035). Failure was more likely to occur through the bone than the tendon-bone interface in the human growth hormone group compared with the placebo group (p = 0.001). No significant difference was found for ultimate stress, ultimate force, stiffness, energy to failure, or ultimate distension between the groups in Protocol 2. In this rat model of acute tendon-bone injury repair, daily subcutaneous postoperative human growth hormone treatment for fourteen days failed to demonstrate a significant difference in any biomechanical parameter compared with placebo. Furthermore, subcutaneous

  14. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals

    Science.gov (United States)

    Alikin, D. O.; Ievlev, A. V.; Turygin, A. P.; Lobov, A. I.; Kalinin, S. V.; Shur, V. Ya.

    2015-05-01

    Currently, ferroelectric materials with designed domain structures are considered as a perspective material for new generation of photonic, data storage, and data processing devices. Application of external electric field is the most convenient way of the domain structure formation. Lots of papers are devoted to the investigation of domain kinetics on polar surface of crystals while the forward growth remains one of the most mysterious stages due to lack of experimental methods allowing to study it. Here, we performed tip-induced polarization reversal on X- and Y-non-polar cuts in single-crystal of congruent lithium niobate which allows us to study the forward growth with high spatial resolution. The revealed difference in the shape and length of domains induced on X- and Y-cuts is beyond previously developed theoretical approaches used for the theoretical consideration of the domains growth at non-polar ferroelectric surfaces. To explain experimental results, we used kinetic approach with anisotropy of screening efficiency along different crystallographic directions.

  15. Ionospheric behaviour during storm recovery phase

    Science.gov (United States)

    Buresova, D.; Lastovicka, J.; Boska, J.; Sindelarova, T.; Chum, J.

    2012-04-01

    Intensive ionospheric research, numerous multi-instrumental observations and large-scale numerical simulations of ionospheric F region response to magnetic storm-induced disturbances during the last several decades were primarily focused on the storm main phase, in most cases covering only a few hours of the recovery phase following after storm culmination. Ionospheric behaviour during entire recovery phase still belongs to not sufficiently explored and hardly predictable features. In general, the recovery phase is characterized by an abatement of perturbations and a gradual return to the "ground state" of ionosphere. However, observations of stormy ionosphere show significant departures from the climatology also within this phase. This paper deals with the quantitative and qualitative analysis of the ionospheric behaviour during the entire recovery phase of strong-to-severe magnetic storms at middle latitudes for nowadays and future modelling and forecasting purposes.

  16. The participation of elevated levels of cyclic GMP in the recovery from radiation-induced mitotic delay

    International Nuclear Information System (INIS)

    Daniel, J.W.; Oleinick, N.L.

    1984-01-01

    The levels of cyclic AMP and cyclic GMP have been measured in Physarum plasmodia before and after treatment with gamma-radiation, 2 mM caffeine, or combinations of the two agents compared to the length of the radiation-induced mitotic delay. Caffeine alone produces a rapid transient elevation of cyclic AMP and a slower delayed elevation of cyclic GMP. Irradiation elicits an immediate transient increase in cyclic AMP and a later cyclic GMP increase which accompanies or precedes the delayed mitosis. A composite pattern is produced by combinations of radiation and caffeine, a distinctive feature of which is an elevated level of cyclic GMP near the time of the radiation-delayed and caffeine-promoted mitosis. With pretreatment by caffeine, the least radiation-induced mitotic delay occurs when plasmodia are irradiated during the caffeine-elicited increase in cyclic GMP. The plasmodium becomes refractory to the reduction of mitotic delay by caffeine at approximately the time it becomes refractory to the further elevation of cyclic GMP by caffeine. The data support a role for cyclic AMP in the onset of and for cyclic GMP in the recovery from mitotic delay induced by ionizing radiation. (author)

  17. Conjugated Linoleic Acid Administration Induces Amnesia in Male Sprague Dawley Rats and Exacerbates Recovery from Functional Deficits Induced by a Controlled Cortical Impact Injury.

    Directory of Open Access Journals (Sweden)

    Rastafa I Geddes

    Full Text Available Long-chain polyunsaturated fatty acids like conjugated linoleic acids (CLA are required for normal neural development and cognitive function and have been ascribed various beneficial functions. Recently, oral CLA also has been shown to increase testosterone (T biosynthesis, which is known to diminish traumatic brain injury (TBI-induced neuropathology and reduce deficits induced by stroke in adult rats. To test the impact of CLA on cognitive recovery following a TBI, 5-6 month old male Sprague Dawley rats received a focal injury (craniectomy + controlled cortical impact (CCI; n = 17 or Sham injury (craniectomy alone; n = 12 and were injected with 25 mg/kg body weight of Clarinol® G-80 (80% CLA in safflower oil; n = 16 or saline (n = 13 every 48 h for 4 weeks. Sham surgery decreased baseline plasma progesterone (P4 by 64.2% (from 9.5 ± 3.4 ng/mL to 3.4 ± 0.5 ng/mL; p = 0.068, T by 74.6% (from 5.9 ± 1.2 ng/mL to 1.5 ± 0.3 ng/mL; p 0.05 animals by post-injury day 29, but rapidly reversed by post-injury day 1 the hypoadrenalism in Sham (11-DOC: 372.6 ± 36.6 ng/mL; corticosterone: 202.6 ± 15.6 ng/mL and CCI-injured (11-DOC: 384.2 ± 101.3 ng/mL; corticosterone: 234.6 ± 43.8 ng/mL animals. In Sham surgery animals, CLA did not alter body weight, but did markedly increase latency to find the hidden Morris Water Maze platform (40.3 ± 13.0 s compared to saline treated Sham animals (8.8 ± 1.7 s. In CCI injured animals, CLA did not alter CCI-induced body weight loss, CCI-induced cystic infarct size, or deficits in rotarod performance. However, like Sham animals, CLA injections exacerbated the latency of CCI-injured rats to find the hidden MWM platform (66.8 ± 10.6 s compared to CCI-injured rats treated with saline (30.7 ± 5.5 s, p < 0.05. These results indicate that chronic treatment of CLA at a dose of 25 mg/kg body weight in adult male rats over 1-month 1 does not reverse craniectomy- and craniectomy + CCI-induced hypogonadism, but does reverse

  18. Limonene inhibits Candida albicans growth by inducing apoptosis.

    Science.gov (United States)

    Thakre, Archana; Zore, Gajanan; Kodgire, Santosh; Kazi, Rubina; Mulange, Shradha; Patil, Rajendra; Shelar, Amruta; Santhakumari, Bayitigeri; Kulkarni, Mahesh; Kharat, Kiran; Karuppayil, Sankunny Mohan

    2018-07-01

    Anti-Candida potential of limonene was evaluated against planktonic growth, biofilm (adhesion, development and maturation) and morphogenesis of Candida albicans in this study. Limonene is a major constituent of citrus oil and most frequently used terpene in food and beverage industry due to its pleasant fragrance, nontoxic, and is generally recognized as safe (GRAS) flavoring agent as well as treatment option in many gastrointestinal diseases.Limonene exhibited excellent anti-Candida activity and was equally effective against planktonic growth of C. albicans isolates differentially susceptible to FLC (N = 35). Limonene inhibited morphogenesis significantly at low concentration. However, it showed stage dependent activity against biofilm formation, that is, it was more effective against adhesion followed by development and maturation. Limonene also exhibited excellent synergy with FLC against planktonic and biofilm growth. SWATH-MS analysis led to identification of limonene responsive proteins that provided molecular insight of its anti-Candida activity. Proteomic analysis revealed upregulation of proteins involved in cell wall glucan synthesis (Kre6); oxidative stress (Rhr2, Adh7 and Ebp1); DNA damage stress (Mbf1 and Npl3); nucleolar stress (Rpl11, Rpl7, Rpl29, Rpl15) and down regulation of cytoskeleton organization (Crn1, Pin3, Cct8, Rbl2), and so forth, in response to limonene. Limonene mediated down regulation of Tps3 indicates activation of caspase (CaMca1) and induction of apoptosis in C. albicans. These results suggest that limonene inhibits C. albicans growth by cell wall/membrane damage induced oxidative stress that leads to DNA damage resulting into modulation of cell cycle and induction of apoptosis through nucleolar stress and metacaspase dependent pathway.

  19. Fracture flow due to hydrothermally induced quartz growth

    Science.gov (United States)

    Kling, Tobias; Schwarz, Jens-Oliver; Wendler, Frank; Enzmann, Frieder; Blum, Philipp

    2017-09-01

    Mineral precipitations are a common feature and limitation of initially open, permeable rock fractures by forming sealing structures or secondary roughness in open voids. Hence, the objective of this numerical study is the evaluation of hydraulic properties of fractures sealed by hydrothermally induced needle and compact quartz growth. Phase-field models of progressive syntaxial and idiomorphic quartz growth are implemented into a fluid flow simulation solving the Navier-Stokes equation. Flow simulations for both quartz types indicate an obvious correlation between changes in permeability, fracture properties (e.g. aperture, relative roughness and porosity) and crystal growth behavior, which also forms distinct flow paths. Thus, at lower sealing stages initial fracture permeability significantly drops down for the 'needle fracture' forming highly tortuous flow paths, while the 'compact fracture' records a considerably smaller loss. Fluid flow in both sealing fractures most widely is governed by a ;parallel plate;-like cubic law behavior. However, the 'needle fracture' also reveals flow characteristics of a porous media. A semi-theoretical equation is introduced that links geometrical (am) with hydraulically effective apertures (ah) and the relative fracture roughness. For this purpose, a geometry factor α is introduced being α = 2.5 for needle quartz and α = 1.0 for compact quartz growth. In contrast to most common ah-am-relationships this novel formulation not only reveals more precise predictions for the needle (RMSE = 1.5) and the compact fractures (RMSE = 3.2), but also exhibit a larger range of validity concerning the roughness of the 'needle' (σ/am = 0-2.4) and the 'compact fractures' (σ/am = 0-1.8).

  20. Late post-irradiation phenomena in mammalain cell populations. Pt. 2. Intraclonal recovery in sublines isolated from X-irradiated L5178Y-S cell populations

    International Nuclear Information System (INIS)

    Beer, J.Z.

    1975-01-01

    Clonal analysis of L5178Y-S cell populations irradiated with 300 rads of X-rays indicates occurence of cell sublines with considerably prolonged mean doubling times up to 22 h as compared to 10-11 h for control. Subsequent observations of growth of the handicapped sublines derived from single cells showed capability of all more than 100 studied sublines to recover normal proliferative activity. This process of intraclonal recovery required in many cases longer periods of time, corresponding to many tens, sometimes more than 200, generations. Late intraclonal recovery was further analysed by subcloning. It was found that although cytochemically assayed viability of the handicapped sublines was normal, cloning efficiency strongly depended on the stage of the recovery process. The recovery processes occuring in clones isolated from irradiated cell populations were compared with analogous processes occuring in slowly growing sublines isolated from non-irradiated cell cultures. Marked differences in kinetics of these processes show that either they are different in sublines derived from irradiated and non-irradiated cell populations or that the mechanisms of the late intraclonal recovery are affected by radiation. The results presented allow to conclude that gradual post-irradiation recovery of growth depends primarily on formation, in the developing populations, of cells with higher proliferative activities. Possible nature of the recovery processes is discussed in the light of available information on mammalian somatic cell variants with altered drug or temperature sensitivity, or with nutritional requirements. A sequence is proposed of changes leading from radiation-induced disturbance of the normably existing equilibrium between three basic cell subpopulations to ultimate restoration of this equilibrium. (author)

  1. Recovery of reticulocytes and prevention of radiation-induced weight loss in mice by γ-tocotrienol: possible application to cancer therapy

    International Nuclear Information System (INIS)

    Kumar, K.S.; Srinivasan, V.; Toles, R.E.; Miner, V.L.; Seed, T.M.

    2003-01-01

    Gamma-tocotrienol (GT), an alpha-tocopherol (AT, vitamin E) isomer was found to be better than AT against radiation-induced lethality. CD2F1 male mice (LD 50/30 radiation dose 9 Gy) were injected subcutaneously with 10 mg/mouse each of GT or AT. After 24 hrs, mice were given 11 Gy 60 Cobalt radiation. All mice treated with AT survived; only 50% of the mice treated with GT survived. The mechanism of protection may not involve apoptotic pathway since GT did not affect caspase-3 activity whereas AT suppressed radiation-induced increase in activity. Recovery profiles of blood cells and weight loss were also evaluated. Mice were treated with AT, GT, or vehicle prior to sublethal whole-body gamma irradiation. In the AT- and GT-treated mice, the recovery rates of neutrophils, platelets, erythrocytes, and reticulocytes were greater than in vehicle-treated controls. The highest level (265% of the normal) of reticulocytes in GT or AT treated mice was reached in 15 days postirradiation; the highest level (450% of the normal) in vehicle-treated controls was reached 20 days after irradiation. Recovery profile of erythrocytes suggested that reticulocytes in the irradiated controls matured slowly into erythrocytes; reticulocytes in GT or AT treated mice matured at a faster rate. Radiation-induced weight loss was studied at a supralethal dose of 10.5 Gy. All animals, irrespective of the treatments lost up to 20% weight in 5 days. After a transient increase, irradiated controls and AT-treated mice continued to decline in weight (13 to 17%) till day 16 after irradiation. GT-treated mice lost only 1% to 9% after the initial loss in 5 days. These studies indicate that GT may be preferable than AT not only as a non-toxic radiation protective agent but also as an ideal adjuvant in alleviating anemia and weight loss accompanying radiotherapy or chemotherapy of cancer

  2. Fuel retention and recovery in natural and MGI disruptions on KSTAR

    International Nuclear Information System (INIS)

    Yu, Y.W.; Hong, S.H.; Yoon, S.W.; Kim, K.P.; Kim, W.C.; Seo, D.C.

    2013-01-01

    Fuel retention and recovery are studied during natural and Massive Gas Injection (MGI) induced disruptions in KSTAR with full graphite wall. The amount of released particles in natural disruptions in 15 s after the discharge is ∼5–10 times higher than that of non-disruption shots, but the difference is only ∼ 2 MGI induced disruptions depends on magnetic field (B t ) and MGI amount. The MGI disruption under a low B t and a medium MGI amount shows shorter thermal quench (TQ) and current quench (CQ), thereby higher fuel recovery. High B t plasma requires higher MGI amount for both disruption mitigation and fuel recovery. A high recovery of 4.2 × 10 22 D (∼0.78 monolayers) is obtained by MGI disruption in KSTAR 2011

  3. Venezuela's Economic Recovery: Is It Sustainable?

    OpenAIRE

    Jake Johnston; Mark Weisbrot

    2012-01-01

    Venezuela’s current growth is generally described as unsustainable, with various negative scenarios put forth, including spiraling debt, inflation, and balance of payments crises. However, these pessimistic forecasts have been far off the mark for most of the past decade. This paper looks at the available economic data to see if Venezuela’s economic recovery could be sustained, or even accelerated. It finds that Venezuela’s current economic growth is sustainable and could continue at the curr...

  4. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    International Nuclear Information System (INIS)

    Wang, Bing; Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-01-01

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells

  5. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing, E-mail: wangbin69@yahoo.com; Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.

  6. Varietal differences of wheat for 13C-discrimination and 15N-uptake as affected by drought and its recovery. Final report for the period 1 January 1993 - 31 December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Abou Gabal Mohamed, Al Rabah [Nuclear Research Centre, Cairo (Egypt). Dept. of Plant Research

    1996-01-01

    A Pot experiment was conducted to investigate the varietal differences of wheat for shoot dry weight, {sup 13}C-discrimination, total N-yield and {sup 15}N-uptake as affected by drought and its recovery. Four wheat varieties were exposed to different watering regimes (i.e., W{sub 0} as normal irrigation of W{sub 1} as water stress) during the following growth periods: (i) from 3-leaf stage to third nod stage; (ii) from 3 nod stage to heading; and (iii) from heading to milk-dough stage. For drought recovery study, the experiment included another three water regime treatments induced by varying the irrigation of plants during the selected growth periods (i.e., W{sub 10}, W{sub 100} and W{sub 010}). The results indicated that water stress during the selected growth periods greatly decreased shoot dry weight, nabla value, total N-yield and amount of nitrogen derived from fertilizer. The (i) and (ii) are considered critical growth periods as far as the above-mentioned parameters are considered. Expression of any tested parameter under water stress as percentage of that of the corresponding control indicated that Dalcahue, Sakha-69 and Bonadur were less sensitive to water stress than the other varieties at (i), (ii) and (iii) growth periods, respectively. On the other hand, Bonadur at (i) and (ii) growth periods and Sakha-69 at (iii) growth period were more sensitive than the other varieties. Exposing of wheat varieties to water stress during (i) and (ii) growth periods resulted in severe injury with regard to shoot dry weight, total N-yield and amount of nitrogen derived from fertilizer. Re-irrigation of the stressed wheat varieties, resulted in drought recovery with different magnitude depending on the variety and the growth period in which the plants were exposed to water stress. Generally, the results demonstrated that Bonadur has better capacity than the other varieties for drought recovery. 34 refs, 10 tabs.

  7. Varietal differences of wheat for 13C-discrimination and 15N-uptake as affected by drought and its recovery. Final report for the period 1 January 1993 - 31 December 1994

    International Nuclear Information System (INIS)

    Al Rabah Abou Gabal Mohamed

    1996-01-01

    A Pot experiment was conducted to investigate the varietal differences of wheat for shoot dry weight, 13 C-discrimination, total N-yield and 15 N-uptake as affected by drought and its recovery. Four wheat varieties were exposed to different watering regimes (i.e., W 0 as normal irrigation of W 1 as water stress) during the following growth periods: (i) from 3-leaf stage to third nod stage; (ii) from 3 nod stage to heading; and (iii) from heading to milk-dough stage. For drought recovery study, the experiment included another three water regime treatments induced by varying the irrigation of plants during the selected growth periods (i.e., W 10 , W 100 and W 010 ). The results indicated that water stress during the selected growth periods greatly decreased shoot dry weight, nabla value, total N-yield and amount of nitrogen derived from fertilizer. The (i) and (ii) are considered critical growth periods as far as the above-mentioned parameters are considered. Expression of any tested parameter under water stress as percentage of that of the corresponding control indicated that Dalcahue, Sakha-69 and Bonadur were less sensitive to water stress than the other varieties at (i), (ii) and (iii) growth periods, respectively. On the other hand, Bonadur at (i) and (ii) growth periods and Sakha-69 at (iii) growth period were more sensitive than the other varieties. Exposing of wheat varieties to water stress during (i) and (ii) growth periods resulted in severe injury with regard to shoot dry weight, total N-yield and amount of nitrogen derived from fertilizer. Re-irrigation of the stressed wheat varieties, resulted in drought recovery with different magnitude depending on the variety and the growth period in which the plants were exposed to water stress. Generally, the results demonstrated that Bonadur has better capacity to recover from drought than the other varieties. Therefore, Bonadur may be considered a possible candidate for programs aimed at breeding wheat for

  8. Damage Recovery in Carrara Marble

    Science.gov (United States)

    Meyer, G.; Brantut, N.; Mitchell, T. M.; Meredith, P. G.

    2017-12-01

    We investigate the effect of confining pressure on the recovery of elastic wave velocities following deformation episodes in Carrara Marble. Dry Carrara Marble cores were deformed in the ductile regime (Pc = 40 MPa) up to 3% axial strain. After deformation, samples were held at constant stress conditions for extended periods of time (5-8 days) whilst continuously recording volumetric strain and seismic wave velocities. The velocity data were used to invert for microcrack densities using an effective medium approach. Finally, thin sections were produced to characterise the microstructures after recovery. During deformation, elastic wave speeds decreased with increasing strain by more than 30% of the value for the intact rock due to the formation of distributed microcracks. Under constant hydrostatic pressure, wave speeds progressively recovered 12-90% of the initial drop, depending on the applied confining pressure. In contrast, the strain recovery (deformation towards the initial shape of the sample) during holding time is negligible (of the order of 10-4). Tests performed under nonhydrostatic (triaxial) stress conditions during recovery showed some time-dependent creep deformation together with very significant recovery of wave velocities. The recovery is interpreted as a progressive reduction in crack density within the sample. The process is highly dependent on confining pressure, which favours it. We propose that the driving process for wave speed recovery is the time-dependent increase of contact area between crack surfaces due to the formation and growth of asperity contacts. We develop a micromechanical model for crack closure driven by asperity creep, which shows a good fit to the experimental data. Most of the recovery is achieved in the initial few hours, implying it is the fastest recovery or healing process, and thus occurs prior to any chemical healing or mineral precipitation. Our data corroborate field observations of post-seismic fault behavior.

  9. Targeted deletion of hepatocyte Ikkβ confers growth advantages

    International Nuclear Information System (INIS)

    Koch, Katherine S.; Maeda, Shin; He, Guobin; Karin, Michael; Leffert, Hyam L.

    2009-01-01

    Mice lacking hepatocyte IKKβ (Ikkβ Δhep ) are defective in TNFα-activation of hepatocellular transcription factor NF-κB, and highly susceptible to hepatotoxicity. Following diethylnitrosamine (DEN) exposure, Ikkβ Δhep mice develop more hepatocellular carcinoma (HCC) than control mice due partly to enhanced DEN-induced hepatocyte death. Here we show that Ikkβ Δhep hepatocytes display growth advantages over normal hepatocytes consisting of precocious PCNA and cyclin D1 expression during liver regeneration (shortened hepatocyte G 0 → G 1 transitions), and enhanced recovery efficiency, cyclin D1 expression and cell proliferation after plating. Ex vivo deletion of Ikkβ also accelerates hepatocyte growth. Ikkβ Δhep hepatocyte proliferative responses show heightened sensitivity to TGFα and TNFα, and heightened expression of fibronectin, collagens I/III, nidogen, β-actin and integrin β1 mRNAs. These findings suggest that altered mitogen signaling and expression of extracellular matrix and its associated components underlie growth advantages. Increased HCC development in Ikkβ Δhep mice may also be caused by growth advantages of surviving Ikkβ-deleted hepatocytes.

  10. Radiation-induced damage and recovery effects in GG17 glass irradiated by 1 MeV electrons

    International Nuclear Information System (INIS)

    Wang Qingyan; Zhang Zhonghua; Geng Hongbin; Sun Chengyue; Yang Dezhuang; He Shiyu; Hu Zhaochu

    2012-01-01

    The optical properties and microstructural damage of GG17 glasses, as well as their recovery during annealing at room temperature, are investigated after exposure to 1 MeV electrons with various fluences. Experimental results show that the electrons lead to severe optical degradation in the GG17 glass, and induce the formation of paramagnetic defects which can be mainly attributed to the boron–oxygen hole centers. With increasing annealing time at room temperature their decay serves as long-lived defects following first order kinetics. Except for the strong absorption bands located at 334–352 nm and 480 nm that corresponds to the boron–oxygen hole centers, weaker absorption bands appear at 780 nm or 794.6 nm after irradiation, inducing a decrease in transmittance by approximately 17% for a fluence of 1 × 10 16 cm −2 . It is shown that electron irradiation could cause a harmful effect on rubidium lamps when GG17 glass is used as the lamp envelope material.

  11. Knockdown of the Placental Growth Factor Gene Inhibits Laser Induced Choroidal Neovascularization in a Murine Model

    Directory of Open Access Journals (Sweden)

    Ramin Nourinia

    2013-01-01

    Full Text Available Purpose: To evaluate the effect of placental growth factor (PlGF gene knockdown in a murine model of laser-induced choroidal neovascularization. Methods: Choroidal neovascularization was induced in the left eyes of 11 mice by infrared laser. Small interfering RNA (siRNA, 20 picomoles/10 μl corresponding to PlGF mRNA was administered intravitreally by Hamilton syringe in all subjects. One month later, fluorescein angiography and histolologic examination were performed. Results: No leakage was apparent in the 11 eyes treated with siRNA cognate to PlGF. The results of histological evaluation were consistent with angiographic findings showing absence of choroidal neovascularization. Conclusion: Knockdown of the PlGF gene can inhibit the growth of laser-induced choroidal neovascularization in mice.

  12. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.

    Science.gov (United States)

    Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F

    2018-01-01

    Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue

  13. Music and psychophysiological recovery from stress.

    Science.gov (United States)

    Radstaak, Mirjam; Geurts, Sabine A E; Brosschot, Jos F; Kompier, Michiel A J

    2014-09-01

    This experimental study examined whether listening to self-chosen music after stress exposure improves mood, decreases subjective arousal and rumination, and facilitates cardiovascular recovery. Participants (N = 123) were exposed to a mental arithmetic task with harassment to induce stress. Afterward, participants were randomly assigned to one of four "recovery" conditions where they (1) listened to self-chosen relaxing music, (2) listened to self-chosen happy music, (3) listened to an audio book, or (4) sat in silence. After this 5-minute "recovery manipulation period," participants sat in silence for another 5 minutes. Systolic blood pressure, diastolic blood pressure, and heart rate were continuously measured. The recovery conditions caused differences in positive affect (F(3,119) = 13.13, p music or happy music. The conditions showed no differences in subjective arousal (F(3,117) = 2.03, p = .11) and rumination (F(3,119) = 1.10, p = .35). Systolic blood pressure recovery, however, differed between the conditions (linear time trend: F(3,116) = 4.50, p = .005; quadratic time trend: F(3,115) = 5.24, p = .002). Listening to both relaxing and happy music delayed systolic blood pressure recovery when compared with both control conditions. Listening to self-selected music is an effective mood enhancer, but it delays blood pressure recovery.

  14. Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling.

    Science.gov (United States)

    Scarlatti, Francesca; Sala, Giusy; Somenzi, Giulia; Signorelli, Paola; Sacchi, Nicoletta; Ghidoni, Riccardo

    2003-12-01

    Resveratrol (3,4',5-trans-trihydroxystilbene), a phytoalexin present in grapes and red wine, is emerging as a natural compound with potential anticancer properties. Here we show that resveratrol can induce growth inhibition and apoptosis in MDA-MB-231, a highly invasive and metastatic breast cancer cell line, in concomitance with a dramatic endogenous increase of growth inhibitory/proapoptotic ceramide. We found that accumulation of ceramide derives from both de novo ceramide synthesis and sphingomyelin hydrolysis. More specifically we demonstrated that ceramide accumulation induced by resveratrol can be traced to the activation of serine palmitoyltransferase (SPT), the key enzyme of de novo ceramide biosynthetic pathway, and neutral sphingomyelinase (nSMase), a main enzyme involved in the sphingomyelin/ceramide pathway. However, by using specific inhibitors of SPT, myriocin and L-cycloserine, and nSMase, gluthatione and manumycin, we found that only the SPT inhibitors could counteract the biological effects induced by resveratrol. Thus, resveratrol seems to exert its growth inhibitory/apoptotic effect on the metastatic breast cancer cell line MDA-MB-231 by activating the de novo ceramide synthesis pathway.

  15. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua; Yang, Ying-Hua [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Binmadi, Nada O. [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Oral Basic and Clinical Sciences, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Proia, Patrizia [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Sports Science (DISMOT), University of Palermo, Via Eleonora Duse 2 90146, Palermo (Italy); Basile, John R., E-mail: jbasile@umaryland.edu [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Greenebaum Cancer Center, 22S. Greene Street, Baltimore, MD 21201 (United States)

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  16. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Zhou, Hua; Yang, Ying-Hua; Binmadi, Nada O.; Proia, Patrizia; Basile, John R.

    2012-01-01

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: ► Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. ► Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. ► These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. ► Anti-SEMA4D blocking antibody inhibits Plexin-B1 activation. ► SEMA4D is a valid anti-angiogenic target in the

  17. Electron and photon-beam induced reactions of adsorbed disilane: Low-temperature thin-film growth

    International Nuclear Information System (INIS)

    Bozso, F.; Avouris, Ph.

    1991-01-01

    Electrons and photons of sufficient energy can cause fragmentation and desorption of adsorbed molecules or fragments of them, by inducing electronic excitations to dissociative states. The surface species after such excitations are mostly of highly reactive radical character, which readily react with the substrate and with other molecular or radical species in the adsorbed layer. This paper discusses the adsorption, thermal and electron/photon-beam induced reactions of disilane, oxygen and ammonia on Si(111)-7x7, and the electron/photon-induced growth of silicon, silicon dioxide and silicon nitride films at 100K

  18. SLOWER BUT HEALTHIER GROWTH

    Institute of Scientific and Technical Information of China (English)

    LAN XINZHEN

    2010-01-01

    @@ China's economic growth has slowed,economic statistics released on July 15 show,confirming market expectations.But officials said the country's economy is still on track. The recovery has gained traction in China,which registered a double-digit growth of 11.1 percent in the first half of this year.

  19. A new model for the spectral induced polarization signature of bacterial growth in porous media

    Science.gov (United States)

    Zhang, C.; Revil, A.; Atekwana, E. A.; Jardani, A.; Smith, S.

    2012-12-01

    Recent biogeophysics studies demonstrated the sensitivity of complex conductivity to bacterial growth and microbial mediated mineral transformations in porous media. Frequency-domain induced polarization is a minimally invasive manner to measure the complex conductivity of a material over a broad range of frequencies. The real component of complex conductivity is associated with electromigration of the charge carriers, and the imaginary component represents reversible energy storage of charge carriers at polarization length scales. Quantitative relationship between frequency-domain induced polarization responses and bacterial growth and decay in porous media is analyzed in this study using a new developed model. We focus on the direct contribution of bacteria themselves to the complex conductivity in porous media in the absence of biomineralization. At low frequencies, the induced polarization of bacteria (α-polarization) is related to the properties of the electrical double layer surrounding the membrane surface of bacteria. Surface conductivity and α-polarization are due to the Stern layer of the counterions occurring in a brush of polymers coating the surface of the bacteria, and can be related to the cation exchange capacity of the bacteria. From the modeling results, at low frequencies (model with reactive transport modeling in which the evolution of bacterial populations are usually described by Monod kinetics, we show that the changes in imaginary conductivity with time can be used to determine bacterial growth kinetics parameters such as the growth and endogenous decay coefficient.

  20. VLF Observation of Long Ionospheric Recovery Events

    Science.gov (United States)

    Cotts, B. R.; Inan, U. S.

    2006-12-01

    On the evening of 20 November 1992, three early/fast events were observed on the great circle path (GCP) from the NAU transmitter in Puerto Rico to Gander (GA), Newfoundland. These events were found to have significantly longer recovery times (up to 20 minutes) than any previously documented events. Typical early/fast events and Lightning-induced Electron Precipitation (LEP) events affect the D-region ionosphere near the night-time VLF-reflection height of ~85 km and exhibit recovery to pre-event levels of gigantic jets. In this context, preliminary results indicate that the lightning-associated VLF long recovery events appear to be more common in oceanic thunderstorms. In this paper, we present occurrence statistics and other measured properties of VLF long recovery events, observed on all-sea based and land based VLF great circle paths.

  1. Meaning and Posttraumatic Growth Among Survivors of the September 2013 Colorado Floods.

    Science.gov (United States)

    Dursun, Pinar; Steger, Michael F; Bentele, Christoph; Schulenberg, Stefan E

    2016-12-01

    In the wake of significant adversity, a range of recovery outcomes are possible, from prolonged distress to minimal effects on functioning and even psychological growth. Finding meaning in one's life is thought to facilitate optimal recovery from such adversity. Research on psychological growth and recovery often focuses on the daily hassles or significant traumas of convenience samples or on people's psychological recovery from medical illness. A small body of research is developing to test theories of growth among survivors of natural disasters. The present study of 57 survivors of the 2013 Colorado floods tested the incremental relations between posttraumatic growth (PTG) and dimensions of meaning in life, vitality, and perceived social support. The most consistent relations observed were among the one dimension of meaning-search for meaning-perceived social support, and PTG. Despite the limitations of this study, we conclude that search for meaning in life may be an important part of recovery from natural disasters, floods being one example. © 2016 Wiley Periodicals, Inc.

  2. Establishing endangered species recovery criteria using predictive simulation modeling

    Science.gov (United States)

    McGowan, Conor P.; Catlin, Daniel H.; Shaffer, Terry L.; Gratto-Trevor, Cheri L.; Aron, Carol

    2014-01-01

    Listing a species under the Endangered Species Act (ESA) and developing a recovery plan requires U.S. Fish and Wildlife Service to establish specific and measurable criteria for delisting. Generally, species are listed because they face (or are perceived to face) elevated risk of extinction due to issues such as habitat loss, invasive species, or other factors. Recovery plans identify recovery criteria that reduce extinction risk to an acceptable level. It logically follows that the recovery criteria, the defined conditions for removing a species from ESA protections, need to be closely related to extinction risk. Extinction probability is a population parameter estimated with a model that uses current demographic information to project the population into the future over a number of replicates, calculating the proportion of replicated populations that go extinct. We simulated extinction probabilities of piping plovers in the Great Plains and estimated the relationship between extinction probability and various demographic parameters. We tested the fit of regression models linking initial abundance, productivity, or population growth rate to extinction risk, and then, using the regression parameter estimates, determined the conditions required to reduce extinction probability to some pre-defined acceptable threshold. Binomial regression models with mean population growth rate and the natural log of initial abundance were the best predictors of extinction probability 50 years into the future. For example, based on our regression models, an initial abundance of approximately 2400 females with an expected mean population growth rate of 1.0 will limit extinction risk for piping plovers in the Great Plains to less than 0.048. Our method provides a straightforward way of developing specific and measurable recovery criteria linked directly to the core issue of extinction risk. Published by Elsevier Ltd.

  3. Post-marathon wearing of Masai Barefoot Technology shoes facilitates recovery from race-induced fatigue: an evaluation utilizing a visual analog scale

    Directory of Open Access Journals (Sweden)

    Nakagawa K

    2014-12-01

    Full Text Available Kento Nakagawa, Takashi Obu, Kazuyuki KanosueFaculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan Purpose: To investigate the potential benefit of post-race wearing of unstable shoes (Masai Barefoot Technology [MBT] on recovery from marathon race–induced fatigue.Patients and methods: Forty-five runners who participated in a full marathon race were divided into three groups: 1 MBT shoes, 2 trail running shoes, and 3 control (CON. Participants ran a full marathon with their own running shoes, and then put on the assigned shoes immediately after the race. They continued to wear the assigned shoes for the ensuing 3 days. The CON group wore their usual shoes. Estimates of post-race fatigue were made by the participants on questionnaires that utilized a visual analog scale. Estimates were made just after the race, as well as for the next 3 days.Results: The subjective fatigue of the MBT group was lower than that of the CON (P<0.05 or trail running shoe groups (P<0.05 on day 3.Conclusion: MBT shoe intervention can promote recovery from the fatigue induced by running a full marathon.Keywords: footwear, VAS, full marathon

  4. Promotive effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on recovery from neutropenia induced by fractionated irradiation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kabaya, Koji; Watanabe, Masahiko; Kusaka, Masaru; Seki, Masatoshi (Kirin Brewery Co., Ltd., Gunma (Japan). Pharmaceutical Research Laboratory); Fushiki, Masato

    1994-08-01

    The effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on the recovery from neutropenia induced by fractionated whole-body irradiation was investigated in mice. Male 7-week old C3H/HeN mice received a total of ten exposures of 0.25 Gy/day from day 1 to 5 and from day 8 to 12. Peripheral neutropenia with a nadir on day 17 was caused by the fractionated irradiation. Daily subcutaneous injections of rhG-CSF at 0.25 and 2.5 [mu]g/body/day from day from day 1 to 21 promoted the recovery of neutrophils in a dose-dependent manner. The kinetics of morphologically identifiable bone marrow cells were studied to clarify the mechanism behind the promotive effect of this factor. A slight decrease in mitotic immature granulocytes, such as myeloblasts, promyelocytes and myelocytes on day 5, and a drastic decrease in metamyelocytes and marrow neutrophils on days 5, 9, and 17 were seen in the femur of irradiated mice. Treatment using rhG-CSF caused an increase in immature granulocytes of all differential stages in the femur. Microscopic findings of the femurs and spleens also reveals an increase in immature granulocytes in these organs in mice injected with rhG-CSF. These results indicate that rhG-CSF accelerates granulopoiesis in the femur and spleen, thereby promoting recovery from neutropenia induced by fractionated irradiation. (author).

  5. Promotive effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on recovery from neutropenia induced by fractionated irradiation in mice

    International Nuclear Information System (INIS)

    Kabaya, Koji; Watanabe, Masahiko; Kusaka, Masaru; Seki, Masatoshi; Fushiki, Masato.

    1994-01-01

    The effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on the recovery from neutropenia induced by fractionated whole-body irradiation was investigated in mice. Male 7-week old C3H/HeN mice received a total of ten exposures of 0.25 Gy/day from day 1 to 5 and from day 8 to 12. Peripheral neutropenia with a nadir on day 17 was caused by the fractionated irradiation. Daily subcutaneous injections of rhG-CSF at 0.25 and 2.5 μg/body/day from day from day 1 to 21 promoted the recovery of neutrophils in a dose-dependent manner. The kinetics of morphologically identifiable bone marrow cells were studied to clarify the mechanism behind the promotive effect of this factor. A slight decrease in mitotic immature granulocytes, such as myeloblasts, promyelocytes and myelocytes on day 5, and a drastic decrease in metamyelocytes and marrow neutrophils on days 5, 9, and 17 were seen in the femur of irradiated mice. Treatment using rhG-CSF caused an increase in immature granulocytes of all differential stages in the femur. Microscopic findings of the femurs and spleens also reveals an increase in immature granulocytes in these organs in mice injected with rhG-CSF. These results indicate that rhG-CSF accelerates granulopoiesis in the femur and spleen, thereby promoting recovery from neutropenia induced by fractionated irradiation. (author)

  6. Relationship of DNA repair to chromosome aberrations, sister-chromatid exchanges and survival during liquid-holding recovery in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Nagasawa, H.; Little, J.B.

    1980-01-01

    The repair of X-ray-induced DNA single strand breaks and DNA-protein cross-links was investigated in stationary phase, contact-inhibited mouse cells by the alkaline-elution technique. Approx. 90% of X-ray-induced single strand breaks were rejoined during the first hour of repair, whereas most of the remaining breaks were rejoined more slowly during the next 5 h. At early repair times, the number of residual non-rejoined sungle strand breaks was approx. proportional to the X-ray dose. DNA-protein cross-links were removed at a slower rate (Tsub(1/2) approx. 10-12 h). Cells were held in stationary growth for various periods of time after irradiation before subculture at low density to score for colony survival (potentially lethal damage repair), chromosome aberrations in the first mitosis, and sister-chromatid exchanges in the second mitosis. Both cell killing and the frequency of chromosome aberrations decreased during the first several hours of recovery, reaching a minimum level by 6 h; this decrease correlated temporally with the repair of the slowly rejoining DNA-strand breaks. Relatively few sister-chromatid exchanges were observed when the cells were subcultured immediately after X-ray. The exchange frequency rose to maximum levels after a 4-h recovery interval, and returned to control levels after 12 h of recovery. The possible relationship of DNA repair to these changes in survival, chromosome aberrations, and sister-chromatid exchanges during liquid-holding recovery is discussed. (orig.)

  7. Distinct cytoplasmic domains of the growth hormone receptor are required for glucocorticoid- and phorbol ester-induced decreases in growth hormone (GH) binding. These domains are different from that reported for GH-induced receptor internalization

    DEFF Research Database (Denmark)

    King, A P; Tseng, M J; Logsdon, C D

    1996-01-01

    Glucocorticoids inhibit growth in children and antagonize the growth-promoting action of GH in peripheral tissues. Recently, they have been shown to decrease GH binding. In this study we examine the molecular mechanisms by which the glucocorticoid dexamethasone (DEX) and the phorbol ester phorbol...... of GH binding are also observed in a Chinese hamster ovary (CHO) cell line stably transfected with a rat liver GHR cDNA, further arguing that DEX and PMA act post-translationally on GHR. Using mutant GHRs stably expressed in CHO cells, amino acids 455-506 and tyrosines 333 and/or 338 of GHR were shown...... to be required for maximal DEX-induced inhibition of GH binding. DEX decreased GH binding to a GHR mutant F346A, which is reported to be deficient in ligand-induced internalization, suggesting that DEX decreases GH binding by a mechanism distinct from that of ligand-induced GHR internalization. PMA reduced GH...

  8. Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation.

    Science.gov (United States)

    Negres, Raluca A; Norton, Mary A; Cross, David A; Carr, Christopher W

    2010-09-13

    The growth behavior of laser-induced damage sites is affected by a large number of laser parameters as well as site morphology. Here we investigate the effects of pulse duration on the growth rate of damage sites located on the exit surface of fused silica optics. Results demonstrate a significant dependence of the growth parameters on laser pulse duration at 351 nm from 1 ns to 15 ns, including the observation of a dominant exponential versus linear, multiple-shot growth behavior for long and short pulses, respectively. These salient behaviors are tied to the damage morphology and suggest a shift in the fundamental growth mechanisms for pulses in the 1-5 ns range.

  9. THICK-DISK EVOLUTION INDUCED BY THE GROWTH OF AN EMBEDDED THIN DISK

    International Nuclear Information System (INIS)

    Villalobos, Alvaro; Helmi, Amina; Kazantzidis, Stelios

    2010-01-01

    We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from cosmologically common 5:1 encounters between initially thin primary disk galaxies and infalling satellites. The growing thin disks are modeled as static gravitational potentials and we explore a variety of growing-disk parameters that are likely to influence the response of thick disks. We find that the final thick-disk properties depend strongly on the total mass and radial scale length of the growing thin disk, and much less sensitively on its growth timescale and vertical scale height as well as the initial sense of thick-disk rotation. Overall, the growth of an embedded thin disk can cause a substantial contraction in both the radial and vertical direction, resulting in a significant decrease in the scale lengths and scale heights of thick disks. Kinematically, a growing thin disk can induce a notable increase in the mean rotation and velocity dispersions of thick-disk stars. We conclude that the reformation of a thin disk via gas accretion may play a significant role in setting the structure and kinematics of thick disks, and thus it is an important ingredient in models of thick-disk formation.

  10. Apolipoprotein E Mimetic Promotes Functional and Histological Recovery in Lysolecithin-Induced Spinal Cord Demyelination in Mice.

    Science.gov (United States)

    Gu, Zhen; Li, Fengqiao; Zhang, Yi Ping; Shields, Lisa B E; Hu, Xiaoling; Zheng, Yiyan; Yu, Panpan; Zhang, Yongjie; Cai, Jun; Vitek, Michael P; Shields, Christopher B

    2013-04-01

    Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG112 promotes remyelination and improves functional recovery in lysolecithin induced focal demyelination in the white matter of spinal cord in mice. A focal demyelination model was created by stereotaxically injecting lysolecithin into the bilateral ventrolateral funiculus (VLF) of T8 and T9 mouse spinal cords. Immediately after lysolecithin injection mice were treated with COG112, prefix peptide control or vehicle control for 21 days. The locomotor function of the mice was measured by the beam walking test and Basso Mouse Scale (BMS) assessment. The nerve transmission of the VLF of mice was assessed in vivo by transcranial magnetic motor evoked potentials (tcMMEPs). The histological changes were also examined by by eriochrome cyanine staining, immunohistochemistry staining and electron microscopy (EM) method. The area of demyelination in the spinal cord was significantly reduced in the COG112 group. EM examination showed that treatment with COG112 increased the thickness of myelin sheaths and the numbers of surviving axons in the lesion epicenter. Locomotor function was improved in COG112 treated animals when measured by the beam walking test and BMS assessment compared to controls. TcMMEPs also demonstrated the COG112-mediated enhancement of amplitude of evoked responses. The apoE-mimetic COG112 demonstrates a favorable combination of activities in suppressing inflammatory response, mitigating demyelination and in promoting remyelination and associated functional recovery in animal model

  11. The effects of pulse cycloheximide treatments on the light-induced recovery of mitotic divisions in antheridial filaments of Chara vulgaris

    Directory of Open Access Journals (Sweden)

    Maria Kwiatkowska

    2014-01-01

    Full Text Available Within the proliferative period of spermatogenesis in Chara vulgaris, the progression throughout successive cell divisions in antheridial filaments is greatly influenced by changes in photoperiodic conditions. The extended (4-day period of total darkness brings about cell cycle arrest in the early G2 phase. The recovery of mitosis requires about 20 hours of exposition to light. In the present study, a series of 8 pulse incubations of plants in cycloheximide (Cx; 2.5 mg/I, 2.5 h each pulse were performed within the period elapsing till the resumption of mitotic divisions. Depending on the time of treatment, the effects induced by Cx vary considerably. Within the first 10 hs of exposition to light, incubations with Cx result in the delays of mitoses; within the period between the 10th and the 17th h, mitotic divisions become blocked, and, following the 17.5 h of light-induced recovery, no influence of Cx is noticed on mitotic activity, as compared with the untreaed control plants. The obtained results provide a starting point for the characteristic of proteins synthesized during the G2 phase and a preliminary study on those mechanisms, which become engaged in the regulation of the G1-deficient cell cycle evidenced in antheridial filaments of Chara.

  12. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie; Coppola, Thierry [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France); Mazella, Jean, E-mail: mazella@ipmc.cnrs.fr [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France)

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation in HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.

  13. Desensitization and recovery of phototropic responsiveness in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Janoudi, A.K.; Poff, K.L.

    1993-01-01

    Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of densensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 μmol m -2 s -1 . At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 μmol m -2 s -1 than at 0.3 μmol m -2 s -1 . In addition, seedlings irradiated with blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs. 11 refs., 6 figs

  14. Desensitization and recovery of phototropic responsiveness in Arabidopsis thaliana

    Science.gov (United States)

    Janoudi, A. K.; Poff, K. L.

    1993-01-01

    Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of desensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 micromoles m-2 s-1. At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 micromole m-2 s-1 than at 0.3 micromole m-2 s-1. In addition, seedlings irradiated with blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs.

  15. Examination of the Combined Effects of Chondroitinase ABC, Growth Factors and Locomotor Training following Compressive Spinal Cord Injury on Neuroanatomical Plasticity and Kinematics

    Science.gov (United States)

    Alluin, Olivier; Fehlings, Michael G.; Rossignol, Serge; Karimi-Abdolrezaee, Soheila

    2014-01-01

    While several cellular and pharmacological treatments have been evaluated following spinal cord injury (SCI) in animal models, it is increasingly recognized that approaches to address the glial scar, including the use of chondroitinase ABC (ChABC), can facilitate neuroanatomical plasticity. Moreover, increasing evidence suggests that combinatorial strategies are key to unlocking the plasticity that is enabled by ChABC. Given this, we evaluated the anatomical and functional consequences of ChABC in a combinatorial approach that also included growth factor (EGF, FGF2 and PDGF-AA) treatments and daily treadmill training on the recovery of hindlimb locomotion in rats with mid thoracic clip compression SCI. Using quantitative neuroanatomical and kinematic assessments, we demonstrate that the combined therapy significantly enhanced the neuroanatomical plasticity of major descending spinal tracts such as corticospinal and serotonergic-spinal pathways. Additionally, the pharmacological treatment attenuated chronic astrogliosis and inflammation at and adjacent to the lesion with the modest synergistic effects of treadmill training. We also observed a trend for earlier recovery of locomotion accompanied by an improvement of the overall angular excursions in rats treated with ChABC and growth factors in the first 4 weeks after SCI. At the end of the 7-week recovery period, rats from all groups exhibited an impressive spontaneous recovery of the kinematic parameters during locomotion on treadmill. However, although the combinatorial treatment led to clear chronic neuroanatomical plasticity, these structural changes did not translate to an additional long-term improvement of locomotor parameters studied including hindlimb-forelimb coupling. These findings demonstrate the beneficial effects of combined ChABC, growth factors and locomotor training on the plasticity of the injured spinal cord and the potential to induce earlier neurobehavioral recovery. However, additional

  16. Examination of the combined effects of chondroitinase ABC, growth factors and locomotor training following compressive spinal cord injury on neuroanatomical plasticity and kinematics.

    Directory of Open Access Journals (Sweden)

    Olivier Alluin

    Full Text Available While several cellular and pharmacological treatments have been evaluated following spinal cord injury (SCI in animal models, it is increasingly recognized that approaches to address the glial scar, including the use of chondroitinase ABC (ChABC, can facilitate neuroanatomical plasticity. Moreover, increasing evidence suggests that combinatorial strategies are key to unlocking the plasticity that is enabled by ChABC. Given this, we evaluated the anatomical and functional consequences of ChABC in a combinatorial approach that also included growth factor (EGF, FGF2 and PDGF-AA treatments and daily treadmill training on the recovery of hindlimb locomotion in rats with mid thoracic clip compression SCI. Using quantitative neuroanatomical and kinematic assessments, we demonstrate that the combined therapy significantly enhanced the neuroanatomical plasticity of major descending spinal tracts such as corticospinal and serotonergic-spinal pathways. Additionally, the pharmacological treatment attenuated chronic astrogliosis and inflammation at and adjacent to the lesion with the modest synergistic effects of treadmill training. We also observed a trend for earlier recovery of locomotion accompanied by an improvement of the overall angular excursions in rats treated with ChABC and growth factors in the first 4 weeks after SCI. At the end of the 7-week recovery period, rats from all groups exhibited an impressive spontaneous recovery of the kinematic parameters during locomotion on treadmill. However, although the combinatorial treatment led to clear chronic neuroanatomical plasticity, these structural changes did not translate to an additional long-term improvement of locomotor parameters studied including hindlimb-forelimb coupling. These findings demonstrate the beneficial effects of combined ChABC, growth factors and locomotor training on the plasticity of the injured spinal cord and the potential to induce earlier neurobehavioral recovery. However

  17. A Novel Growth-Promoting Pathway Formed by GDNF-Overexpressing Schwann Cells Promotes Propriospinal Axonal Regeneration, Synapse formation, and Partial Recovery of Function after Spinal Cord Injury

    Science.gov (United States)

    Deng, Lingxiao; Deng, Ping; Ruan, Yiwen; Xu, Zao Cheng; Liu, Naikui; Wen, Xuejun; Smith, George M.; Xu, Xiao-Ming

    2013-01-01

    Descending propriospinal neurons (DPSN) are known to establish functional relays for supraspinal signals, and they display a greater growth response after injury than do the long projecting axons. However, their regenerative response is still deficient due to their failure to depart from growth supportive cellular transplants back into the host spinal cord, which contains numerous impediments to axon growth. Here we report the construction of a continuous growth-promoting pathway in adult rats, formed by grafted Schwann cells (SCs) overexpressing glial cell line-derived neurotrophic factor (GDNF). We demonstrate that such a growth-promoting pathway, extending from the axonal cut ends to the site of innervation in the distal spinal cord, promoted regeneration of DPSN axons through and beyond the lesion gap of a spinal cord hemisection. Within the distal host spinal cord, regenerated DPSN axons formed synapses with host neurons leading to the restoration of action potentials and partial recovery of function. PMID:23536080

  18. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    International Nuclear Information System (INIS)

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-01-01

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC

  19. Multi-bits error detection and fast recovery in RISC cores

    International Nuclear Information System (INIS)

    Wang Jing; Yang Xing; Zhang Weigong; Shen Jiao; Qiu Keni; Zhao Yuanfu

    2015-01-01

    The particles-induced soft errors are a major threat to the reliability of microprocessors. Even worse, multi-bits upsets (MBUs) are ever-increased due to the rapidly shrinking feature size of the IC on a chip. Several architecture-level mechanisms have been proposed to protect microprocessors from soft errors, such as dual and triple modular redundancies (DMR and TMR). However, most of them are inefficient to combat the growing multi-bits errors or cannot well balance the critical paths delay, area and power penalty. This paper proposes a novel architecture, self-recovery dual-pipeline (SRDP), to effectively provide soft error detection and recovery with low cost for general RISC structures. We focus on the following three aspects. First, an advanced DMR pipeline is devised to detect soft error, especially MBU. Second, SEU/MBU errors can be located by enhancing self-checking logic into pipelines stage registers. Third, a recovery scheme is proposed with a recovery cost of 1 or 5 clock cycles. Our evaluation of a prototype implementation exhibits that the SRDP can successfully detect particle-induced soft errors up to 100% and recovery is nearly 95%, the other 5% will inter a specific trap. (paper)

  20. Multi-bits error detection and fast recovery in RISC cores

    Science.gov (United States)

    Jing, Wang; Xing, Yang; Yuanfu, Zhao; Weigong, Zhang; Jiao, Shen; Keni, Qiu

    2015-11-01

    The particles-induced soft errors are a major threat to the reliability of microprocessors. Even worse, multi-bits upsets (MBUs) are ever-increased due to the rapidly shrinking feature size of the IC on a chip. Several architecture-level mechanisms have been proposed to protect microprocessors from soft errors, such as dual and triple modular redundancies (DMR and TMR). However, most of them are inefficient to combat the growing multi-bits errors or cannot well balance the critical paths delay, area and power penalty. This paper proposes a novel architecture, self-recovery dual-pipeline (SRDP), to effectively provide soft error detection and recovery with low cost for general RISC structures. We focus on the following three aspects. First, an advanced DMR pipeline is devised to detect soft error, especially MBU. Second, SEU/MBU errors can be located by enhancing self-checking logic into pipelines stage registers. Third, a recovery scheme is proposed with a recovery cost of 1 or 5 clock cycles. Our evaluation of a prototype implementation exhibits that the SRDP can successfully detect particle-induced soft errors up to 100% and recovery is nearly 95%, the other 5% will inter a specific trap.

  1. Influence of the interplanetary driver type on the durations of main and recovery phases of magnetic storms

    OpenAIRE

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2013-01-01

    We study durations of main and recovery phases of magnetic storms induced by different types of large-scale solar-wind streams (Sheath, magnetic cloud (MC), Ejecta and CIR) on the basis of OMNI data base during 1976-2000. Durations of both main and recovery phases depend on types of interplanetary drivers. On the average, duration of main phase of storms induced by compressed regions (CIR and Sheath) is shorter than by MC and Ejecta while duration of recovery phase of CIR- and Sheath-induced ...

  2. Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5

    International Nuclear Information System (INIS)

    Li, Yang; Fan, Xing; Goodwin, C Rory; Laterra, John; Xia, Shuli

    2008-01-01

    Hepatocyte growth factor (HGF) and its receptor c-MET are commonly expressed in malignant gliomas and embryonic neuroectodermal tumors including medulloblastoma and appear to play an important role in the growth and dissemination of these malignancies. Dependent on cell context and the involvement of specific downstream effectors, both pro- and anti-apoptotic effects of HGF have been reported. Human medulloblastoma cells were treated with HGF for 24–72 hours followed by death receptor ligand TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) for 24 hours. Cell death was measured by MTT and Annexin-V/PI flow cytometric analysis. Changes in expression levels of targets of interest were measured by Northern blot analysis, quantitative reverse transcription-PCR, Western blot analysis as well as immunoprecipitation. In this study, we show that HGF promotes medulloblastoma cell death induced by TRAIL. TRAIL alone triggered apoptosis in DAOY cells and death was enhanced by pre-treating the cells with HGF for 24–72 h prior to the addition of TRAIL. HGF (100 ng/ml) enhanced TRAIL (10 ng/ml) induced cell death by 36% (P < 0.001). No cell death was associated with HGF alone. Treating cells with PHA-665752, a specific c-Met receptor tyrosine kinase inhibitor, significantly abrogated the enhancement of TRAIL-induced cell death by HGF, indicating that its death promoting effect requires activation of its canonical receptor tyrosine kinase. Cell death induced by TRAIL+HGF was predominately apoptotic involving both extrinsic and intrinsic pathways as evidenced by the increased activation of caspase-3, 8, 9. Promotion of apoptosis by HGF occurred via the increased expression of the death receptor DR5 and enhanced formation of death-inducing signal complexes (DISC). Taken together, these and previous findings indicate that HGF:c-Met pathway either promotes or inhibits medulloblastoma cell death via pathway and context specific mechanisms

  3. Fibroblast growth factor-1 improves cardiac functional recovery and enhances cell survival after ischemia and reperfusion: a fibroblast growth factor receptor, protein kinase C, and tyrosine kinase-dependent mechanism

    NARCIS (Netherlands)

    Palmen, Meindert; Daemen, Mat J. A. P.; de Windt, Leon J.; Willems, Jodil; Dassen, Willem R. M.; Heeneman, Sylvia; Zimmermann, Rene; van Bilsen, Marc; Doevendans, Pieter A.

    2004-01-01

    We sought to investigate the role of fibroblast growth factor (FGF)-1 during acute myocardial ischemia and reperfusion. The FGFs display cardioprotective effects during ischemia and reperfusion. We investigated FGF-1-induced cardioprotection during ischemia and reperfusion and the intracellular

  4. Composition and structure of ion-bombardment-induced growth cones on InP

    International Nuclear Information System (INIS)

    Malherbe, J.B.; Lakner, H.; Gries, W.H.

    1991-01-01

    The previously reported effect of low-energy (several keV) ion bombardment on the surface topography of InP was investigated by scanning transmission electron microscopy. Convergent beam electron diffraction patterns of the surface growth 'cones' induced by argon ion bombardment of (100) InP between 7 and 10 keV proved the cones to consist of crystalline InP (and not metallic indium, as has sometimes been claimed). The investigation showed that the irradiated surface region is not rendered completely amorphous but that it recrystallizes from the crystalline/amorphous interface in a columnar growth pattern, often terminating in growth cones protruding above the surface. Weak beam investigations revealed that the overwhelming majority of the cones have the orientation of the substrate. These phenomena were observed at all dose densities from 7 x 10 15 to 2 x 10 17 cm -2 . (author)

  5. Recovery from damage induced by acridine plus near-ultraviolet light in Escherichia coli

    International Nuclear Information System (INIS)

    Wagner, S.; Feldman, A.; Snipes, W.

    1982-01-01

    Escherichia coli cells treated with sublethal doses of acridine plus near-UV light exhibit an effective split-dose recovery response that requires an incubation period of about 30-45 min. Studies of the metabolic requirements for split-dose recovery revealed the following: (a) DNA synthesis is not required for split-dose recovery: (b) inhibition of electron transport or protein synthesis reduces the efficiency of split-dose recovery by about one-half: (c) inhibition of phospholipid synthesis or cell wall synthesis completely eliminates the split-dose recovery response. These results suggest an involvement of membrane repair mechanisms in response to damage by acridine plus near-UV light. Additional evidence for such a process was provided by more direct assays for membrane recovery. It was found that cells treated with sublethal doses of acridine plus near-UV light are sensitive to low concentrations of detergents, and lose that sensitivity upon incubation. Likewise, treated cells are susceptible to lethal osmotic shock, but can recover from this susceptibility if incubated after treatment but prior to exposure to low osmotic conditions. Based on accumulating evidence it is proposed that E. coli cells are capable of repairing membrane damage resulting from exposure to acridine plus near-UV light. (author)

  6. Trichoderma-Induced Acidification Is an Early Trigger for Changes in Arabidopsis Root Growth and Determines Fungal Phytostimulation

    Science.gov (United States)

    Pelagio-Flores, Ramón; Esparza-Reynoso, Saraí; Garnica-Vergara, Amira; López-Bucio, José; Herrera-Estrella, Alfredo

    2017-01-01

    Trichoderma spp. are common rhizosphere inhabitants widely used as biological control agents and their role as plant growth promoting fungi has been established. Although soil pH influences several fungal and plant functional traits such as growth and nutrition, little is known about its influence in rhizospheric or mutualistic interactions. The role of pH in the Trichoderma–Arabidopsis interaction was studied by determining primary root growth and lateral root formation, root meristem status and cell viability, quiescent center (QC) integrity, and auxin inducible gene expression. Primary root growth phenotypes in wild type seedlings and STOP1 mutants allowed identification of a putative root pH sensing pathway likely operating in plant–fungus recognition. Acidification by Trichoderma induced auxin redistribution within Arabidopsis columella root cap cells, causing root tip bending and growth inhibition. Root growth stoppage correlated with decreased cell division and with the loss of QC integrity and cell viability, which were reversed by buffering the medium. In addition, stop1, an Arabidopsis mutant sensitive to low pH, was oversensitive to T. atroviride primary root growth repression, providing genetic evidence that a pH root sensing mechanism reprograms root architecture during the interaction. Our results indicate that root sensing of pH mediates the interaction of Trichoderma with plants. PMID:28567051

  7. Recovery and growth potential of Listeria monocytogenes in temperature abused milkshakes prepared from naturally contaminated ice cream linked to a listeriosis outbreak

    OpenAIRE

    Yi eChen; Emma eAllard; Anna eWooten; Minji eHur; Ishani eSheth; Anna eLassri; Thomas S Hammack; Dumitru eMacarisin

    2016-01-01

    The recovery and growth potential of Listeria monocytogenes was evaluated in three flavors of milkshakes (vanilla, strawberry, and chocolate) that were prepared from naturally contaminated ice cream linked to a listeriosis outbreak in the U.S. in 2015, and were subsequently held at room temperature for 14 h. The average lag phase duration of L. monocytogenes was 9.05 h; the average generation time was 1.67 h; and the average population level increase per sample at 14 h was 1.14 log CFU/g. Mil...

  8. A meta-analysis of functional group responses to forest recovery outside of the tropics.

    Science.gov (United States)

    Spake, Rebecca; Ezard, Thomas H G; Martin, Philip A; Newton, Adrian C; Doncaster, C Patrick

    2015-12-01

    Both active and passive forest restoration schemes are used in degraded landscapes across the world to enhance biodiversity and ecosystem service provision. Restoration is increasingly also being implemented in biodiversity offset schemes as compensation for loss of natural habitat to anthropogenic development. This has raised concerns about the value of replacing old-growth forest with plantations, motivating research on biodiversity recovery as forest stands age. Functional diversity is now advocated as a key metric for restoration success, yet it has received little analytical attention to date. We conducted a meta-analysis of 90 studies that measured differences in species richness for functional groups of fungi, lichens, and beetles between old-growth control and planted or secondary treatment forests in temperate, boreal, and Mediterranean regions. We identified functional-group-specific relationships in the response of species richness to stand age after forest disturbance. Ectomycorrhizal fungi averaged 90 years for recovery to old-growth values (between 45 years and unrecoverable at 95% prediction limits), and epiphytic lichens took 180 years to reach 90% of old-growth values (between 140 years and never for recovery to old-growth values at 95% prediction limits). Non-saproxylic beetle richness, in contrast, decreased as stand age of broadleaved forests increased. The slow recovery by some functional groups essential to ecosystem functioning makes old-growth forest an effectively irreplaceable biodiversity resource that should be exempt from biodiversity offsetting initiatives. © 2015 The Authors Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  9. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    Science.gov (United States)

    Mars, Ruben A T; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Mäder, Ulrike; Völker, Uwe; van Dijl, Jan Maarten; Denham, Emma L

    2015-03-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.

  10. Neuropsychological recovery and quality-of-life in children and adolescents with growth hormone deficiency following TBI: a preliminary study.

    Science.gov (United States)

    Wamstad, Julia B; Norwood, Kenneth W; Rogol, Alan D; Gurka, Matthew J; Deboer, Mark D; Blackman, James A; Buck, Marcia L; Kuperminc, Michelle N; Darring, Jodi G; Patrick, Peter D

    2013-01-01

    To compare neurocognition and quality-of-life (QoL) in a group of children and adolescents with or without growth hormone deficiency (GHD) following moderate-to-severe traumatic brain injury (TBI). Thirty-two children and adolescents were recruited from the TBI clinic at a children's hospital. Growth hormone (GH) was measured by both spontaneous overnight testing and following arginine/glucagon stimulation administration. Twenty-nine subjects participated in extensive neuropsychological assessment. GHD as measured on overnight testing was significantly associated with a variety of neurocognitive and QoL measures. Specifically, subjects with GHD had significantly (p  0.05). GHD noted in response to provocative testing was not associated with any neurocognitive or QoL measures. GHD following TBI is common in children and adolescents. Deficits in neurocognition and QoL impact recovery after TBI. It is important to assess potential neurocognitive and QoL changes that may occur as a result of GHD. It is also important to consider the potential added benefit of overnight GH testing as compared to stimulation testing in predicting changes in neurocognition or QoL.

  11. Degradation of Epidermal Growth Factor Receptor Mediates Dasatinib-Induced Apoptosis in Head and Neck Squamous Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chin Lin

    2012-06-01

    Full Text Available Epidermal growth factor receptor (EGFR is an important oncoprotein that promotes cell growth and proliferation. Dasatinib, a bcr-abl inhibitor, has been approved clinically for the treatment of chronic myeloid leukemia and demonstrated to be effective against solid tumors in vitro through Src inhibition. Here, we disclose that EGFR degradation mediated dasatinib-induced apoptosis in head and neck squamous cell carcinoma (HNSCC cells. HNSCC cells, including Ca9-22, FaDu, HSC3, SAS, SCC-25, and UMSCC1, were treated with dasatinib, and cell viability, apoptosis, and underlying signal transduction were evaluated. Dasatinib exhibited differential sensitivities against HNSCC cells. Growth inhibition and apoptosis were correlated with its inhibition on Akt, Erk, and Bcl-2, irrespective of Src inhibition. Accordingly, we found that down-regulation of EGFR was a determinant of dasatinib sensitivity. Lysosome inhibitor reversed dasatinib-induced EGFR down-regulation, and c-cbl activity was increased by dasatinib, indicating that dasatinib-induced EGFR down-regulation might be through c-cbl-mediated lysosome degradation. Increased EGFR activation by ligand administration rescued cells from dasatinib-induced apoptosis, whereas inhibition of EGFR enhanced its apoptotic effect. Estrogen receptor α (ERα was demonstrated to play a role in Bcl-2 expression, and dasatinib inhibited ERα at the pretranslational level. ERα was associated with EGFR in dasatinib-treated HNSCC cells. Furthermore, the xenograft model showed that dasatinib inhibited HSC3 tumor growth through in vivo down-regulation of EGFR and ERα. In conclusion, degradation of EGFR is a novel mechanism responsible for dasatinib-induced apoptosis in HNSCC cells.

  12. Exposure to nerve growth factor worsens nephrotoxic effect induced by Cyclosporine A in HK-2 cells.

    Directory of Open Access Journals (Sweden)

    Donatella Vizza

    Full Text Available Nerve growth factor is a neurotrophin that promotes cell growth, differentiation, survival and death through two different receptors: TrkA(NTR and p75(NTR. Nerve growth factor serum concentrations increase during many inflammatory and autoimmune diseases, glomerulonephritis, chronic kidney disease, end-stage renal disease and, particularly, in renal transplant. Considering that nerve growth factor exerts beneficial effects in the treatment of major central and peripheral neurodegenerative diseases, skin and corneal ulcers, we asked whether nerve growth factor could also exert a role in Cyclosporine A-induced graft nephrotoxicity. Our hypothesis was raised from basic evidence indicating that Cyclosporine A-inhibition of calcineurin-NFAT pathway increases nerve growth factor expression levels. Therefore, we investigated the involvement of nerve growth factor and its receptors in the damage exerted by Cyclosporine A in tubular renal cells, HK-2. Our results showed that in HK-2 cells combined treatment with Cyclosporine A + nerve growth factor induced a significant reduction in cell vitality concomitant with a down-regulation of Cyclin D1 and up-regulation of p21 levels respect to cells treated with Cyclosporine A alone. Moreover functional experiments showed that the co-treatment significantly up-regulated human p21promoter activity by involvement of the Sp1 transcription factor, whose nuclear content was negatively regulated by activated NFATc1. In addition we observed that the combined exposure to Cyclosporine A + nerve growth factor promoted an up-regulation of p75 (NTR and its target genes, p53 and BAD leading to the activation of intrinsic apoptosis. Finally, the chemical inhibition of p75(NTR down-regulated the intrinsic apoptotic signal. We describe two new mechanisms by which nerve growth factor promotes growth arrest and apoptosis in tubular renal cells exposed to Cyclosporine A.

  13. Proteomic analysis of soybean hypocotyl during recovery after flooding stress.

    Science.gov (United States)

    Khan, Mudassar Nawaz; Sakata, Katsumi; Komatsu, Setsuko

    2015-05-21

    Soybean is a nutritionally important crop, but exhibits reduced growth and yields under flooding stress. To investigate soybean responses during post-flooding recovery, a gel-free proteomic technique was used to examine the protein profile in the hypocotyl. Two-day-old soybeans were flooded for 2 days and hypocotyl was collected under flooding and during the post-flooding recovery period. A total of 498 and 70 proteins were significantly changed in control and post-flooding recovering soybeans, respectively. Based on proteomic and clustering analyses, three proteins were selected for mRNA expression and enzyme activity assays. Pyruvate kinase was increased under flooding, but gradually decreased during post-flooding recovery period at protein abundance, mRNA, and enzyme activity levels. Nucleotidylyl transferase was decreased under flooding and increased during post-flooding recovery at both mRNA expression and enzyme activity levels. Beta-ketoacyl reductase 1 was increased under flooding and decreased during recovery at protein abundance and mRNA expression levels, but its enzyme activity gradually increased during the post-flooding recovery period. These results suggest that pyruvate kinase, nucleotidylyl transferase, and beta-ketoacyl reductase play key roles in post-flooding recovery in soybean hypocotyl by promoting glycolysis for the generation of ATP and regulation of secondary metabolic pathways. This study analyzed post-flooding recovery response mechanisms in soybean hypocotyl, which is a model organ for studying secondary growth, using a gel-free proteomic technique. Mass spectrometry analysis of proteins extracted from soybean hypocotyls identified 20 common proteins between control and flooding-stressed soybeans that changed significantly in abundance over time. The hypocotyl proteins that changed during post-flooding recovery were assigned to protein, development, secondary metabolism, and glycolysis categories. The analysis revealed that three

  14. Phasing of muscle gene expression with fasting-induced recovery growth in Atlantic salmon

    Directory of Open Access Journals (Sweden)

    Bower Neil I

    2009-08-01

    Full Text Available Abstract Background Many fish species experience long periods of fasting in nature often associated with seasonal reductions in water temperature and prey availability or spawning migrations. During periods of nutrient restriction, changes in metabolism occur to provide cellular energy via catabolic processes. Muscle is particularly affected by prolonged fasting as myofibrillar proteins act as a major energy source. To investigate the mechanisms of metabolic reorganisation with fasting and refeeding in a saltwater stage of Atlantic salmon (Salmo salar L. we analysed the expression of genes involved in myogenesis, growth signalling, lipid biosynthesis and myofibrillar protein degradation and synthesis pathways using qPCR. Results Hierarchical clustering of gene expression data revealed three clusters. The first cluster comprised genes involved in lipid metabolism and triacylglycerol synthesis (ALDOB, DGAT1 and LPL which had peak expression 3-14d after refeeding. The second cluster comprised ADIPOQ, MLC2, IGF-I and TALDO1, with peak expression 14-32d after refeeding. Cluster III contained genes strongly down regulated as an initial response to feeding and included the ubiquitin ligases MuRF1 and MAFbx, myogenic regulatory factors and some metabolic genes. Conclusion Early responses to refeeding in fasted salmon included the synthesis of triacylglycerols and activation of the adipogenic differentiation program. Inhibition of MuRF1 and MAFbx respectively may result in decreased degradation and concomitant increased production of myofibrillar proteins. Both of these processes preceded any increase in expression of myogenic regulatory factors and IGF-I. These responses could be a necessary strategy for an animal adapted to long periods of food deprivation whereby energy reserves are replenished prior to the resumption of myogenesis.

  15. Although Abundant in Tumor Tissue, Mast Cells Have No Effect on Immunological Micro-milieu or Growth of HPV-Induced or Transplanted Tumors

    Directory of Open Access Journals (Sweden)

    Shanawaz Mohammed Ghouse

    2018-01-01

    Full Text Available Summary: High numbers of mast cells populate the stroma of many types of neoplasms, including human papilloma virus-induced benign and malignant tumors in man and mouse. Equipped with numerous pattern recognition receptors and capable of executing important pro-inflammatory responses, mast cells are considered innate sentinels that significantly impact tumor biology. Mast cells were reported to promote human papilloma virus (HPV-induced epithelial hyperproliferation and neo-angiogenesis in an HPV-driven mouse model of skin cancer. We analyzed HPV-induced epithelial hyperplasia and squamous cell carcinoma formation, as well as growth of tumors inoculated into the dermis, in mice lacking skin mast cells. Unexpectedly, the absence of mast cells had no effect on HPV-induced epithelial growth or angiogenesis, on growth kinetics of inoculated tumors, or on the immunological tumor micro-milieu. Thus, the conspicuous recruitment of mast cells into tumor tissues cannot necessarily be equated with important mast cell functions in tumor growth. : Mast cells accumulate in high numbers in many human tumors, and they are widely viewed as important promoters of tumor growth. Ghouse et al. show that growth, angiogenesis, and the immunological micro-milieu of tumors growing in mice genetically deficient for mast cells are unchanged compared to control tumors. Keywords: mast cells, HPV-induced skin cancer, tumor angiogenesis, tumor micro-milieu

  16. Characteristics of recovery and resilience in the Romanian regions

    Directory of Open Access Journals (Sweden)

    József BENEDEK

    2017-12-01

    Full Text Available Differences in regional economic growth trajectories and the multiple regional effects of the economic crisis have revived studies dedicated to the subject of resilience. The main goal of this paper is to measure the resilience of the Romanian regions, seeking to answer two basic questions: What was the regional impact of the global crisis from 2008 onwards? How have the Romanian regions recovered following the crisis? We focus our analysis on the region with the highest economic growth in the post-crisis period (South-East in order to understand the main drivers of economic recovery. The methodology of the study involves a multi-dimensional understanding of resilience. This means that we have extended our focus from economic indicators towards a more inclusive methodology related to the measurement of regional well-being. Our main finding is that productivity growth was a critical driver of economic recovery, having a significant impact on income and jobs, as well as influencing non-material elements of well-being.

  17. Empirical links between natural mortality and recovery in marine fishes.

    Science.gov (United States)

    Hutchings, Jeffrey A; Kuparinen, Anna

    2017-06-14

    Probability of species recovery is thought to be correlated with specific aspects of organismal life history, such as age at maturity and longevity, and how these affect rates of natural mortality ( M ) and maximum per capita population growth ( r max ). Despite strong theoretical underpinnings, these correlates have been based on predicted rather than realized population trajectories following threat mitigation. Here, we examine the level of empirical support for postulated links between a suite of life-history traits (related to maturity, age, size and growth) and recovery in marine fishes. Following threat mitigation (medium time since cessation of overfishing = 20 years), 71% of 55 temperate populations had fully recovered, the remainder exhibiting, on average, negligible change (impaired recovery). Singly, life-history traits did not influence recovery status. In combination, however, those that jointly reflect length-based mortality at maturity, M α , revealed that recovered populations have higher M α , which we hypothesize to reflect local adaptations associated with greater r max But, within populations, the smaller sizes at maturity generated by overfishing are predicted to increase M α , slowing recovery and increasing its uncertainty. We conclude that recovery potential is greater for populations adapted to high M but that temporal increases in M concomitant with smaller size at maturity will have the opposite effect. The recovery metric documented here ( M α ) has a sound theoretical basis, is significantly correlated with direct estimates of M that directly reflect r max , is not reliant on data-intensive time series, can be readily estimated, and offers an empirically defensible correlate of recovery, given its clear links to the positive and impaired responses to threat mitigation that have been observed in fish populations over the past three decades. © 2017 The Author(s).

  18. Modeling the recovery of heat-treated Bacillus licheniformis Ad978 and Bacillus weihenstephanensis KBAB4 spores at suboptimal temperature and pH using growth limits.

    Science.gov (United States)

    Trunet, C; Mtimet, N; Mathot, A-G; Postollec, F; Leguerinel, I; Sohier, D; Couvert, O; Carlin, F; Coroller, L

    2015-01-01

    The apparent heat resistance of spores of Bacillus weihenstephanensis and Bacillus licheniformis was measured and expressed as the time to first decimal reduction (δ value) at a given recovery temperature and pH. Spores of B. weihenstephanensis were produced at 30°C and 12°C, and spores of B. licheniformis were produced at 45°C and 20°C. B. weihenstephanensis spores were then heat treated at 85°C, 90°C, and 95°C, and B. licheniformis spores were heat treated at 95°C, 100°C, and 105°C. Heat-treated spores were grown on nutrient agar at a range of temperatures (4°C to 40°C for B. weihenstephanensis and 15°C to 60°C for B. licheniformis) or a range of pHs (between pH 4.5 and pH 9.5 for both strains). The recovery temperature had a slight effect on the apparent heat resistance, except very near recovery boundaries. In contrast, a decrease in the recovery pH had a progressive impact on apparent heat resistance. A model describing the heat resistance and the ability to recover according to the sporulation temperature, temperature of treatment, and recovery temperature and pH was proposed. This model derived from secondary mathematical models for growth prediction. Previously published cardinal temperature and pH values were used as input parameters. The fitting of the model with apparent heat resistance data obtained for a wide range of spore treatment and recovery conditions was highly satisfactory. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Train-of-four recovery precedes twitch recovery during reversal with sugammadex in pediatric patients: A retrospective analysis.

    Science.gov (United States)

    Vieira Carlos, Ricardo; Luis Abramides Torres, Marcelo; de Boer, Hans Donald

    2018-04-01

    After reversal of a rocuronium-induced neuromuscular blockade with sugammadex, the recovery of train-of-four ratio to 0.9 is faster than recovery of first twitch of the train-of-four to 90% in adults. These findings after reversal of neuromuscular blockade with sugammadex have not yet been investigated in pediatric patients. The aim of this retrospective analysis was to investigate the relationship of the recovery of first twitch of the train-of-four height and train-of-four ratio after reversal of rocuronium-induced neuromuscular blockade with sugammadex in pediatric patients. Patients ASA I-III, aged 2-11 years, and who underwent abdominal and/or perineal surgery were included in the analysis. After extracting the necessary data from the hospital database, the patients were divided into 2 groups based on the dose of sugammadex received: group A: 2 mg.kg -1 for reversal of moderate neuromuscular blockade and group B: 4 mg.kg -1 for reversal of deep neuromuscular blockade. The relationship of the recovery of first twitch of the train-of-four height and train-of-four ratio in these 2 groups were analyzed. Data from 43 pediatric patients aged 2-11 years could be analyzed. The first twitch of the train-of-four height at the recovery of train-of-four ratio to 0.9 in group B was statistically significantly lower compared with group A. This height 3 and 5 minutes after the train-of-four ratio reached 0.9 showed no statistically significant differences between groups. The results were in line with the results found in adults and showed that the train-of-four ratio recovered to 0.9 was faster than first twitch of the train-of-four height recovered to the same level. © 2018 John Wiley & Sons Ltd.

  20. Antioxidants enhance the recovery of three cycles of bleomycin, etoposide, and cisplatin-induced testicular dysfunction, pituitary-testicular axis, and fertility in rats.

    Science.gov (United States)

    Kilarkaje, Narayana; Mousa, Alyaa M; Al-Bader, Maie M; Khan, Khalid M

    2013-10-01

    To investigate the effects of an antioxidant cocktail (AC) on bleomycin, etoposide, and cisplatin (BEP)-induced testicular dysfunction. In vivo study. Research laboratory. Adult male and female Sprague-Dawley rats. The rats were treated with three cycles of 21 days each of therapeutically relevant dose levels of BEP (0.75, 7.5, and 1.5 mg/kg) with or without the AC (a mixture of α-tocopherol, L-ascorbic acid, Zn, and Se). Sperm parameters, fertility, serum hormone levels (ELISA), testicular histopathology, and expression of proliferating cell nuclear antigen (PCNA), and transferrin (Western blotting and immunohistochemistry) were evaluated at the end of treatment and a 63-day recovery period. At the end of treatment, the AC improved BEP-induced decrease in sperm motility and increase in abnormality but had no effect on reduced sperm count, fertility, and tubular atrophy, although it up-regulated germ cell proliferation. The AC normalized reduced inhibin B levels, but had no effect on decreased transferrin and testosterone and elevated LH levels. At the end of the recovery period, the AC enhanced the expression of PCNA and transferrin, repopulation of germ cells, LH-testosterone axis, and fertility, but had no effect on reduced FSH and elevated inhibin B levels. The antioxidants protect and then enhance the recovery of testicular and reproductive endocrine functions when administered concomitantly with BEP therapy. The AC may be beneficial to regain testicular functions after chemotherapy. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Marrow-isolated adult multilineage inducible cells embedded within a biologically-inspired construct promote recovery in a mouse model of peripheral vascular disease.

    Science.gov (United States)

    Grau-Monge, Cristina; Delcroix, Gaëtan J-R; Bonnin-Marquez, Andrea; Valdes, Mike; Awadallah, Ead Lewis Mazen; Quevedo, Daniel F; Armour, Maxime R; Montero, Ramon B; Schiller, Paul C; Andreopoulos, Fotios M; D'Ippolito, Gianluca

    2017-02-17

    Peripheral vascular disease is one of the major vascular complications in individuals suffering from diabetes and in the elderly that is associated with significant burden in terms of morbidity and mortality. Stem cell therapy is being tested as an attractive alternative to traditional surgery to prevent and treat this disorder. The goal of this study was to enhance the protective and reparative potential of marrow-isolated adult multilineage inducible (MIAMI) cells by incorporating them within a bio-inspired construct (BIC) made of two layers of gelatin B electrospun nanofibers. We hypothesized that the BIC would enhance MIAMI cell survival and engraftment, ultimately leading to a better functional recovery of the injured limb in our mouse model of critical limb ischemia compared to MIAMI cells used alone. Our study demonstrated that MIAMI cell-seeded BIC resulted in a wide range of positive outcomes with an almost full recovery of blood flow in the injured limb, thereby limiting the extent of ischemia and necrosis. Functional recovery was also the greatest when MIAMI cells were combined with BICs, compared to MIAMI cells alone or BICs in the absence of cells. Histology was performed 28 days after grafting the animals to explore the mechanisms at the source of these positive outcomes. We observed that our critical limb ischemia model induces an extensive loss of muscular fibers that are replaced by intermuscular adipose tissue (IMAT), together with a highly disorganized vascular structure. The use of MIAMI cells-seeded BIC prevented IMAT infiltration with some clear evidence of muscular fibers regeneration.

  2. Integration of Gas Enhanced Oil Recovery in Multiphase Fermentations for the Microbial Production of Fuels and Chemicals.

    Science.gov (United States)

    Pedraza-de la Cuesta, Susana; Keijzers, Lore; van der Wielen, Luuk A M; Cuellar, Maria C

    2018-04-01

    In multiphase fermentations where the product forms a second liquid phase or where solvents are added for product extraction, turbulent conditions disperse the oil phase as droplets. Surface-active components (SACs) present in the fermentation broth can stabilize the product droplets thus forming an emulsion. Breaking this emulsion increases process complexity and consequently the production cost. In previous works, it has been proposed to promote demulsification of oil/supernatant emulsions in an off-line batch bubble column operating at low gas flow rate. The aim of this study is to test the performance of this recovery method integrated to a fermentation, allowing for continuous removal of the oil phase. A 500 mL bubble column is successfully integrated with a 2 L reactor during 24 h without affecting cell growth or cell viability. However, higher levels of surfactants and emulsion stability are measured in the integrated system compared to a base case, reducing its capacity for oil recovery. This is related to release of SACs due to cellular stress when circulating through the recovery column. Therefore, it is concluded that the gas bubble-induced oil recovery method allows for oil separation and cell recycling without compromising fermentation performance; however, tuning of the column parameters considering increased levels of SACs due to cellular stress is required for improving oil recovery. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCHVerlag GmbH & Co. KGaA, Weinheim.

  3. Role for p53 in the Recovery of Transcription and Protection Against Apoptosis Induced by Ultraviolet Light

    Directory of Open Access Journals (Sweden)

    Bruce C. McKay

    1999-08-01

    Full Text Available We have previously suggested that the inhibition of RNA polymerase II-mediated transcription after exposure to UV light promotes the accumulation of p53 and the induction of apoptosis (Oncogene 13, 823–831. However, it was not clear whether p53 induction was contributing to apoptosis. Here we report that apoptosis is triggered at lower UV doses in p53-deficient Li-Fraumeni syndrome (LFS and human papillomavirus (HPV E6 expressing fibroblasts than in normal cells, suggesting that p53 can be protective against UVinduced apoptosis. There is no significant difference in the effect of UV-irradiation on the cell cycle distribution of normal and primary LFS fibroblasts. Importantly, the recovery of nascent mRNA synthesis in all p53-deficient fibroblasts is significantly impaired compared with control cells after exposure to relevant doses of UV light. Taken together, our results suggest that wild-type p53 can protect cells against UV-induced apoptosis by facilitating the recovery of transcription. Furthermore, we suggest that the capacity of cells to recover transcription after genotoxic damage is an important determinant of sensitivity to apoptosis.

  4. Separate and Combined Response to UV-B Radiation and Jasmonic Acid on Photosynthesis and Growth Characteristics of Scutellaria baicalensis

    Directory of Open Access Journals (Sweden)

    Jiaxin Quan

    2018-04-01

    Full Text Available The negative effects of enhanced ultraviolet-B (UV-B on plant growth and development have been reported with many species. Considering the ability of jasmonic acid (JA to improve plant stress tolerance, the hypothesis that JA pretreatment could alleviate the adverse effects of UV-B on S. baicalensis was tested in this study with photosynthesis and growth characteristics. The results showed that UV-B or JA alone both induced photosynthesis inhibition and decreased biomass in stems and leaves. However, the photosynthetic reduction caused by increased UV-B was mainly related to the effect of nonstomatal-limitation, while that of JA was a stomatal-limitation effect. JA pretreatment prior to UV-B could remit the photosynthetic inhibition via the recovery of chlorophyll content, stomatal conductance; and intercellular CO2 concentration (especially the maximum electron transport rate increase. Furthermore, the coaction of JA and enhanced UV-B alleviated some disadvantageous effects on the leaf and did not aggravate the growth damage induced by their separate actions.

  5. Separate and Combined Response to UV-B Radiation and Jasmonic Acid on Photosynthesis and Growth Characteristics of Scutellaria baicalensis.

    Science.gov (United States)

    Quan, Jiaxin; Song, Shanshan; Abdulrashid, Kadir; Chai, Yongfu; Yue, Ming; Liu, Xiao

    2018-04-13

    The negative effects of enhanced ultraviolet-B (UV-B) on plant growth and development have been reported with many species. Considering the ability of jasmonic acid (JA) to improve plant stress tolerance, the hypothesis that JA pretreatment could alleviate the adverse effects of UV-B on S. baicalensis was tested in this study with photosynthesis and growth characteristics. The results showed that UV-B or JA alone both induced photosynthesis inhibition and decreased biomass in stems and leaves. However, the photosynthetic reduction caused by increased UV-B was mainly related to the effect of nonstomatal-limitation, while that of JA was a stomatal-limitation effect. JA pretreatment prior to UV-B could remit the photosynthetic inhibition via the recovery of chlorophyll content, stomatal conductance; and intercellular CO₂ concentration (especially the maximum electron transport rate increase). Furthermore, the coaction of JA and enhanced UV-B alleviated some disadvantageous effects on the leaf and did not aggravate the growth damage induced by their separate actions.

  6. Azadirachtin Affects the Growth of Spodoptera litura Fabricius by Inducing Apoptosis in Larval Midgut.

    Science.gov (United States)

    Shu, Benshui; Zhang, Jingjing; Cui, Gaofeng; Sun, Ranran; Yi, Xin; Zhong, Guohua

    2018-01-01

    Azadirachtin, the environmentally friendly botanical pesticide, has been used as an antifeedant and pest growth regulator in integrated pest management for decades. It has shown strong biological activity against Spodoptera litura , but the mechanism of toxicity remains unclear. The present study showed that azadirachtin inhibited the growth of S. litura larvae, which was resulted by structure destroy and size inhibition of the midgut. Digital gene expression (DGE) analysis of midgut suggested that azadirachtin regulated the transcriptional level of multiple unigenes involved in mitogen-activated protein kinase (MAPK) and calcium apoptotic signaling pathways. Simultaneously, the expression patterns of some differentially expressed unigenes were verified by quantitative real time-PCR (qRT-PCR). In addition, the enhanced terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, the increased expression of caspase family members and apoptosis-binding motif 1 (IBM1) on both gene and protein level and the release of cytochrome c from mitochondria to cytoplasm were induced in midgut after azadirachtin treatment. These results demonstrated that azadirachtin induced structural alteration in S. litura larval midgut by apoptosis activation. These alterations may affect the digestion and absorption of nutrients and eventually lead to the growth inhibition of larvae.

  7. Neurologic state transitions in the eye and brain: kinetics of loss and recovery of vision and consciousness.

    Science.gov (United States)

    Whinnery, Typ; Forster, Estrella M

    2015-01-01

    Visual alterations, peripheral light loss (PLL) and blackout (BO), are components of acceleration (+Gz) induced loss of consciousness (LOC) and recovery of consciousness (ROC). The kinetics of loss of vision (LOV) and recovery of vision (ROV) were determined utilizing ocular pressure induced retinal ischemia and compared to the kinetics of LOC and ROC resulting from +Gz-induced cephalic nervous system (CPNS) ischemia. The time from self-induced retinal ischemia in completely healthy subjects (N = 104) to the onset of PLL and complete BO was measured. The time from release of ocular pressure, with return of normal retinal circulation, to the time for complete recovery of visual fields was also measured. The kinetics of pressure induced LOV and ROV was compared with previously developed kinetics of +Gz-induced LOC and ROC focusing on the rapid onset, vertical arm, of the +Gz-induced LOC and ROC curves. The time from onset of increased ocular pressure, immediately inducing retinal ischemia, to PLL was 5.04 s with the time to BO being 8.73 s. Complete recovery of the visual field from BO following release of ocular pressure, immediately abolishing retinal ischemia, was 2.74 s. These results confirm experimental findings that visual loss is frequently not experienced prior to LOC during exposure to rapid onset, high levels of +Gz-stress above tolerance. Offset of pressure induced retinal ischemia to ROV was 2.74 s, while the time from offset of +Gz-induced CPNS ischemia to ROC was 5.29 s. Recovery of retinal function would be predicted to be complete before consciousness is regained following +Gz-induced LOC. Ischemia onset time normalization in neurologic tissues permits comparison between different stress-induced times to altered function. The +Gz-time tolerance curves for LOV and LOC provide comparison and integration of neurologic state transition kinetics in the retina and CPNS.

  8. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber

    Science.gov (United States)

    Spalding, E. P.; Cosgrove, D. J.

    1989-01-01

    Blue-light (BL)-induced suppression of elongation of etiolated Cucumis sativus L. hypocotyls began after a 30-s lag time, which was halved by increasing the fluence rate from 10 to 100 micromoles m-2 s-1. Prior to the growth suppression, the plasma-membrane of the irradiated cells depolarized by as much as 100 mV, then returned within 2-3 min to near its initial value. The potential difference measured with surface electrodes changed with an identical time course but opposite polarity. The lag time for the change in surface potential showed an inverse dependence on fluence rate, similar to the lag for the growth inhibition. Green light and red light caused neither the electrical response nor the rapid inhibition of growth. The depolarization by BL did not propagate to nonirradiated regions and exhibited a refractory period of about 10 min following a BL pulse. Fluence-response relationships for the electrical and growth responses provide correlational evidence that the plasma-membrane depolarization reflects an event in the transduction chain of this light-growth response.

  9. Summary of radiation-induced transient absorption and recovery in fiber optic waveguides. [Pulsed electrons and x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, C.D.

    1976-11-01

    The absorption induced in fiber optic waveguides by pulsed electron and X-ray radiation has been measured as a function of optical wavelength from 450 to 950 nm, irradiation temperature from -54 to 71/sup 0/C, and dose from 1 to 500 krads. The fibers studied are Ge-doped silica core fibers (Corning Low Loss), ''pure'' vitreous silica core fibers (Schott, Bell Laboratories, Fiberoptic Cable Corp., and Valtec Fiberoptics), polymethyl-methacrylate core fibers (DuPont CROFON and PFX), and polystyrene core fibers (International Fiber Optics and Polyoptics). Models that have been developed to account for the observed absorption recovery are also summarized.

  10. Placental Induced Growth Factor (PIGf) in Coronary Artery Disease

    Science.gov (United States)

    Sundaresan, Alamelu; Carabello, Blaise; Mehta, Satish; Schlegel, Todd; Pellis, Neal; Ott, Mark; Pierson, Duane

    2010-01-01

    Our previous studies on normal human lymphocytes have shown a five-fold increase (p less than 0.001) in angiogenic inducers such as Placental Induced Growth Factor (PIGf) in physiologically stressful environments such as modeled microgravity, a space analog. This suggests de-regulation of cardiovascular signalling pathways indicated by upregulation of PIGf. In the current study, we measured PIGf in the plasma of 33 patients with and without coronary artery disease (CAD) to investigate whether such disease is associated with increased levels of PIGf. A control consisting of 31 sex matched apparently healthy subjects was also included in the study. We observed that the levels of PIGf in CAD patients were significantly increased compared to those in healthy control subjects (p less than 0.001) and usually increased beyond the clinical threshold level (greater than 27ng/L). The mechanisms leading to up-regulation of angiogenic factors and the adaptation of organisms to stressful environments such as isolation, high altitude, hypoxia, ischemia, microgravity, increased radiation, etc are presently unknown and require further investigation in spaceflight and these other physiologically stressed environments.

  11. Arsenic-induced nutrient uptake in As-hyperaccumulator Pteris vittata and their potential role to enhance plant growth.

    Science.gov (United States)

    Liu, Xue; Feng, Hua-Yuan; Fu, Jing-Wei; Chen, Yanshan; Liu, Yungen; Ma, Lena Q

    2018-05-01

    It is known that arsenic (As) promotes growth of As-hyperaccumulator Pteris vittata (PV), however, the associated mechanisms are unclear. Here we examined As-induced nutrient uptake in P. vittata and their potential role to enhance plant growth in sterile agar by excluding microbial effects. As-hyperaccumulator P. multifida (PM) and non-hyperaccumulator P. ensiformis (PE) belonging to the Pteris genus were used as comparisons. The results showed that, after 40 d of growth, As induced biomass increase in hyperaccumulators PV and PM by 5.2-9.4 fold whereas it caused 63% decline in PE. The data suggested that As played a beneficial role in promoting hyperaccumulator growth. In addition, hyperaccumulators PV and PM accumulated 7.5-13, 1.4-3.6, and 1.8-4.4 fold more As, Fe, and P than the non-hyperaccumulator PE. In addition, nutrient contents such as K and Zn were also increased while Ca, Mg, and Mn decreased or unaffected under As treatment. This study demonstrated that As promoted growth in hyperaccumulators and enhanced Fe, P, K, and Zn uptake. Different plant growth responses to As among hyperaccumulators PV and PM and non-hyperaccumulator PE may help to better understand why hyperaccumulators grow better under As-stress. Published by Elsevier Ltd.

  12. The effect of follicular fluid hormones on oocyte recovery after ovarian stimulation: FSH level predicts oocyte recovery

    Directory of Open Access Journals (Sweden)

    Rinaudo Paolo F

    2009-04-01

    Full Text Available Abstract Background Ovarian stimulation for assisted reproductive technology (ART overcomes the physiologic process to develop a single dominant follicle. However, following stimulation, egg recovery rates are not 100%. The objective of this study is to determine if the follicular fluid hormonal environment is associated with oocyte recovery. Methods This is a prospective study involving patients undergoing ART by standard ovarian stimulation protocols at an urban academic medical center. A total of 143 follicular fluid aspirates were collected from 80 patients. Concentrations of FSH, hCG, estradiol, progesterone, testosterone and prolactin were determined. A multivariable regression analysis was used to investigate the relationship between the follicular fluid hormones and oocyte recovery. Results Intrafollicular FSH was significantly associated with oocyte recovery after adjustment for hCG (Adjusted odds ratio (AOR = 1.21, 95%CI 1.03–1.42. The hCG concentration alone, in the range tested, did not impact the odds of oocyte recovery (AOR = 0.99, 95%CI 0.93–1.07. Estradiol was significantly associated with oocyte recovery (AOR = 0.98, 95% CI 0.96–0.99. After adjustment for progesterone, the strength of association between FSH and oocyte recovery increased (AOR = 1.84, 95%CI 1.45–2.34. Conclusion The relationship between FSH and oocyte recovery is significant and appears to work through mechanisms independent of the sex hormones. FSH may be important for the physiologic event of separation of the cumulus-oocyte complex from the follicle wall, thereby influencing oocyte recovery. Current methods for inducing the final stages of oocyte maturation, with hCG administration alone, may not be optimal. Modifications of treatment protocols utilizing additional FSH may enhance oocyte recovery.

  13. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.

  14. IL-13-induced proliferation of airway epithelial cells: mediation by intracellular growth factor mobilization and ADAM17

    Directory of Open Access Journals (Sweden)

    Sandifer Tracy

    2007-07-01

    Full Text Available Abstract Background The pleiotrophic cytokine interleukin (IL-13 features prominently in allergic and inflammatory diseases. In allergic asthma, IL-13 is well established as an inducer of airway inflammation and tissue remodeling. We demonstrated previously that IL-13 induces release of transforming growth factor-α (TGFα from human bronchial epithelial cells, with proliferation of these cells mediated by the autocrine/paracrine action of this growth factor. TGFα exists as an integral membrane protein and requires proteolytic processing to its mature form, with a disintegrin and metalloproteinase (ADAM17 responsible for this processing in a variety of tissues. Methods In this study, normal human bronchial epithelial (NHBE cells grown in air/liquid interface (ALI culture were used to examine the mechanisms whereby IL-13 induces release of TGFα and cellular proliferation. Inhibitors and antisense RNA were used to examine the role of ADAM17 in these processes, while IL-13-induced changes in the intracellular expression of TGFα and ADAM17 were visualized by confocal microscopy. Results IL-13 was found to induce proliferation of NHBE cells, and release of TGFα, in an ADAM17-dependent manner; however, this IL-13-induced proliferation did not appear to result solely from ADAM17 activation. Rather, IL-13 induced a change in the location of TGFα expression from intracellular to apical regions of the NHBE cells. The apical region was also found to be a site of significant ADAM17 expression, even prior to IL-13 stimulation. Conclusion Results from this study indicate that ADAM17 mediates IL-13-induced proliferation and TGFα shedding in NHBE cells. Furthermore, they provide the first example wherein a cytokine (IL-13 induces a change in the intracellular expression pattern of a growth factor, apparently inducing redistribution of intracellular stores of TGFα to the apical region of NHBE cells where expression of ADAM17 is prominent. Thus, IL-13

  15. Platelet-derived growth factor (PDGF)-signaling mediates radiation-induced apoptosis in human prostate cancer cells with loss of p53 function

    International Nuclear Information System (INIS)

    Kim, Harold E.; Han, Sue J.; Kasza, Thomas; Han, Richard; Choi, Hyeong-Seon; Palmer, Kenneth C.; Kim, Hyeong-Reh C.

    1997-01-01

    Platelet-derived growth factor (PDGF) signals a diversity of cellular responses in vitro, including cell proliferation, survival, transformation, and chemotaxis. PDGF functions as a 'competence factor' to induce a set of early response genes expressed in G 1 including p21 WAF1/CIP1 , a functional mediator of the tumor suppressor gene p53 in G 1 /S checkpoint. For PDGF-stimulated cells to progress beyond G 1 and transit the cell cycle completely, progression factors in serum such as insulin and IGF-1 are required. We have recently shown a novel role of PDGF in inducing apoptosis in growth-arrested murine fibroblasts. The PDGF-induced apoptosis is rescued by insulin, suggesting that G 1 /S checkpoint is a critical determinant for PDGF-induced apoptosis. Because recent studies suggest that radiation-induced signal transduction pathways interact with growth factor-mediated signaling pathways, we have investigated whether activation of the PDGF-signaling facilitates the radiation-induced apoptosis in the absence of functional p53. For this study we have used the 125-IL cell line, a mutant p53-containing, highly metastatic, and hormone-unresponsive human prostate carcinoma cell line. PDGF signaling is constitutively activated by transfection with a p28 v-sis expression vector, which was previously shown to activate PDGF α- and β- receptors. Although the basal level of p21 WAF1/CIP1 expression and radiation-induced apoptosis were not detectable in control 125-IL cells as would be predicted in mutant p53-containing cells, activation of PDGF-signaling induced expression of p21 WAF1/CIP1 and radiation-induced apoptosis. Our study suggests that the level of 'competence' growth factors including PDGF may be one of the critical determinants for radiation-induced apoptosis, especially in cells with loss of p53 function at the site of radiotherapy in vivo

  16. Evidence-based post-exercise recovery strategies in basketball.

    Science.gov (United States)

    Calleja-González, Julio; Terrados, Nicolás; Mielgo-Ayuso, Juan; Delextrat, Anne; Jukic, Igor; Vaquera, Alejandro; Torres, Lorena; Schelling, Xavier; Stojanovic, Marko; Ostojic, Sergej M

    2016-01-01

    Basketball can be described as a moderate-to-long duration exercise including repeated bouts of high-intensity activity interspersed with periods of low to moderate active recovery or passive rest. A match is characterized by repeated explosive activities, such as sprints, jumps, shuffles and rapid changes in direction. In top-level modern basketball, players are frequently required to play consecutive matches with limited time to recover. To ensure adequate recovery after any basketball activity (i.e., match or training), it is necessary to know the type of fatigue induced and, if possible, its underlying mechanisms. Despite limited scientific evidence to support their effectiveness in facilitating optimal recovery, certain recovery strategies are commonly utilized in basketball. It is particularly important to optimize recovery because players spend a much greater proportion of their time recovering than they do in training. Therefore, the main aim of this report is to facilitate useful information that may lead to practical application, based on the scientific evidence and applied knowledge specifically in basketball.

  17. Influence of serial electrical stimulations of perifornical and posterior hypothalamic orexin-containing neurons on regulation of sleep homeostasis and sleep-wakefulness cycle recovery from experimental comatose state and anesthesia-induced deep sleep.

    Science.gov (United States)

    Chijavadze, E; Chkhartishvili, E; Babilodze, M; Maglakelidze, N; Nachkebia, N

    2013-11-01

    The work was aimed for the ascertainment of following question - whether Orexin-containing neurons of dorsal and lateral hypothalamic, and brain Orexinergic system in general, are those cellular targets which can speed up recovery of disturbed sleep homeostasis and accelerate restoration of sleep-wakefulness cycle phases during some pathological conditions - experimental comatose state and/or deep anesthesia-induced sleep. Study was carried out on white rats. Modeling of experimental comatose state was made by midbrain cytotoxic lesions at intra-collicular level.Animals were under artificial respiration and special care. Different doses of Sodium Ethaminal were used for deep anesthesia. 30 min after comatose state and/or deep anesthesia induced sleep serial electrical stimulations of posterior and/or perifornical hypothalamus were started. Stimulation period lasted for 1 hour with the 5 min intervals between subsequent stimulations applied by turn to the left and right side hypothalamic parts.EEG registration of cortical and hippocampal electrical activity was started immediately after experimental comatose state and deep anesthesia induced sleep and continued continuously during 72 hour. According to obtained new evidences, serial electrical stimulations of posterior and perifornical hypothalamic Orexin-containing neurons significantly accelerate recovery of sleep homeostasis, disturbed because of comatose state and/or deep anesthesia induced sleep. Speed up recovery of sleep homeostasis was manifested in acceleration of coming out from comatose state and deep anesthesia induced sleep and significant early restoration of sleep-wakefulness cycle behavioral states.

  18. Crisis and economic recovery in the states of the northern border. Analysis of economic cycles

    Directory of Open Access Journals (Sweden)

    Eliseo Díaz González

    2012-01-01

    Full Text Available This paper analyzes the prospect of economic recovery and the comovement of regional and national economy with a focus on business cycles theory in 1997–2010. We estimate the trend and cycle of composition of growth in each entity with the Hodrick–Prescott filter and an autoregressive model, using employment data. The evidence shows that Nuevo Leon has the capacity to return to its trend growth, but Baja California and Chihuahua has less possibility. Finally, short–term dynamics of these economies shows that the degree of synchronization with the national economy seems to play for the recovery of growth.

  19. Bacterial fatty acids enhance recovery from the dauer larva in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Tiffany K Kaul

    Full Text Available The dauer larva is a specialized dispersal stage in the nematode Caenorhabditis elegans that allows the animal to survive starvation for an extended period of time. The dauer does not feed, but uses chemosensation to identify new food sources and to determine whether to resume reproductive growth. Bacteria produce food signals that promote recovery of the dauer larva, but the chemical identities of these signals remain poorly defined. We find that bacterial fatty acids in the environment augment recovery from the dauer stage under permissive conditions. The effect of increased fatty acids on different dauer constitutive mutants indicates a role for insulin peptide secretion in coordinating recovery from the dauer stage in response to fatty acids. These data suggest that worms can sense the presence of fatty acids in the environment and that elevated levels can promote recovery from dauer arrest. This may be important in the natural environment where the dauer larva needs to determine whether the environment is appropriate to support reproductive growth following dauer exit.

  20. Exogenous nitrate induces root branching and inhibits primary root growth in Capsicum chinense Jacq.

    Science.gov (United States)

    Celis-Arámburo, Teresita de Jesús; Carrillo-Pech, Mildred; Castro-Concha, Lizbeth A; Miranda-Ham, María de Lourdes; Martínez-Estévez, Manuel; Echevarría-Machado, Ileana

    2011-12-01

    The effects of nitrate (NO₃⁻) on the root system are complex and depend on several factors, such as the concentration available to the plant, endogenous nitrogen status and the sensitivity of the species. Though these effects have been widely documented on Arabidopsis and cereals, no reports are available in the Capsicum genus. In this paper, we have determined the effect of an exogenous in vitro application of this nutrient on root growth in habanero pepper (Capsicum chinense Jacq.). Exposure to NO₃⁻ inhibited primary root growth in both, dose- and time-dependent manners. The highest inhibition was attained with 0.1 mM NO₃⁻ between the fourth and fifth days of treatment. Inhibition of primary root growth was observed by exposing the root to both homogeneous and heterogeneous conditions of the nutrient; in contrast, ammonium was not able to induce similar changes. NO₃⁻-induced inhibition of primary root growth was reversed by treating the roots with IAA or NPA, a polar auxin transport inhibitor. Heterogeneous NO₃⁻ application stimulated the formation and elongation of lateral roots in the segment where the nutrient was present, and this response was influenced by exogenous phytohormones. These results demonstrate that habanero pepper responds to NO₃⁻ in a similar fashion to other species with certain particular differences. Therefore, studies in this model could help to elucidate the mechanisms by which roots respond to NO₃⁻ in fluctuating soil environments. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  1. Task-induced brain activity in aphasic stroke patients: what is driving recovery?

    Science.gov (United States)

    Brownsett, Sonia L. E.; Wise, Richard J. S.

    2014-01-01

    The estimated prevalence of aphasia in the UK and the USA is 250 000 and 1 000 000, respectively. The commonest aetiology is stroke. The impairment may improve with behavioural therapy, and trials using cortical stimulation or pharmacotherapy are undergoing proof-of-principle investigation, but with mixed results. Aphasia is a heterogeneous syndrome, and the simple classifications according to the Broca-Wernicke-Lichtheim model inadequately describe the diverse communication difficulties with which patients may present. Greater knowledge of how intact neural networks promote recovery after aphasic stroke, either spontaneously or in response to interventions, will result in clearer hypotheses about how to improve the treatment of aphasia. Twenty-five years ago, a pioneering study on healthy participants heralded the introduction of functional neuroimaging to the study of mechanisms of recovery from aphasia. Over the ensuing decades, such studies have been interpreted as supporting one of three hypotheses, which are not mutually exclusive. The first two predate the introduction of functional neuroimaging: that recovery is the consequence of the reconstitution of domain-specific language systems in tissue around the lesion (the ‘perilesional’ hypothesis), or by homotopic cortex in the contralateral hemisphere (the ‘laterality-shift’ hypothesis). The third is that loss of transcallosal inhibition to contralateral homotopic cortex hinders recovery (the ‘disinhibition’ hypothesis). These different hypotheses at times give conflicting views about rehabilitative intervention; for example, should one attempt to activate or inhibit a contralateral homotopic region with cortical stimulation techniques to promote recovery? This review proposes that although the functional imaging data are statistically valid in most cases, their interpretation has often favoured one explanation while ignoring plausible alternatives. In our view, this is particularly evident when

  2. Mechanism of mesenchymal stem cell-induced neuron recovery and anti-inflammation.

    Science.gov (United States)

    Huang, Peng; Gebhart, Nichole; Richelson, Elliott; Brott, Thomas G; Meschia, James F; Zubair, Abba C

    2014-10-01

    After ischemic or hemorrhagic stroke, neurons in the penumbra surrounding regions of irreversible injury are vulnerable to delayed but progressive damage as a result of ischemia and hemin-induced neurotoxicity. There is no effective treatment to rescue such dying neurons. Mesenchymal stem cells (MSCs) hold promise for rescue of these damaged neurons. In this study, we evaluated the efficacy and mechanism of MSC-induced neuro-regeneration and immune modulation. Oxygen-glucose deprivation (OGD) was used in our study. M17 neuronal cells were subjected to OGD stress then followed by co-culture with MSCs. Rescue effects were evaluated using proliferation and apoptosis assays. Cytokine assay and quantitative polymerase chain reaction were used to explore the underlying mechanism. Antibody and small molecule blocking experiments were also performed to further understand the mechanism. We showed that M17 proliferation was significantly decreased and the rate of apoptosis increased after exposure to OGD. These effects could be alleviated via co-culture with MSCs. Tumor necrosis factor-α was found elevated after OGD stress and was back to normal levels after co-culture with MSCs. We believe these effects involve interleukin-6 and vascular endothelial growth factor signaling pathways. Our studies have shown that MSCs have anti-inflammatory properties and the capacity to rescue injured neurons. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Normoxic Recovery Mimicking Treatment of Sleep Apnea Does Not Reverse Intermittent Hypoxia-Induced Bacterial Dysbiosis and Low-Grade Endotoxemia in Mice.

    Science.gov (United States)

    Moreno-Indias, Isabel; Torres, Marta; Sanchez-Alcoholado, Lidia; Cardona, Fernando; Almendros, Isaac; Gozal, David; Montserrat, Josep M; Queipo-Ortuño, Maria I; Farré, Ramon

    2016-10-01

    Intermittent hypoxia (IH) mimicking obstructive sleep apnea (OSA) significantly modifies gut microbiota in mice. However, whether these IH-induced gut microbiome changes are reversible after restoring normal oxygenation (the equivalent of effective OSA therapy) is unknown. The aim of this study was to investigate gut microbiota composition and circulating endotoxemia after a post-IH normoxic period in a mouse model of OSA. Ten mice were subjected to IH (40 sec 21% O2-20 sec 5% O2) for 6 h/day for 6 w and 10 mice breathing normoxic air (NM) were used as controls. After exposures, both groups were subjected to 6 w in normoxia. Microbiome composition of fecal samples was determined by 16S ribosomal RNA (rRNA) pyrosequencing. Bioinformatic analysis was performed by Quantitative Insights into Microbial Ecology. Plasma lipopolysaccharide (LPS) levels were measured by endotoxin assay. After normoxic recovery, the Chao and Shannon indices of each group suggested similar bacterial richness and diversity. 16S rRNA pyrosequencing analysis showed that IH-exposed mice had a significant decrease in the abundance of Bacteroidetes and a significant increase of Firmicutes and Deferribacteres compared to the NM group. After normoxic recovery, circulating LPS concentrations were higher in the IH group (P < 0.009). Moreover, the IH group showed a negative and significant correlation between the abundance of Lactobacillus and Ruminococcus and significant positive correlations between the abundance of Mucispirillum and Desulfovibrio and plasma LPS levels, respectively. Even after prolonged normoxic recovery after IH exposures, gut microbiota and circulating endotoxemia remain negatively altered, suggesting that potential benefits of OSA treatment for reversing OSA-induced changes in gut microbiota may either require a longer period or alternative interventions. © 2016 Associated Professional Sleep Societies, LLC.

  4. Effects of obesity on dynamic stability control during recovery from a treadmill-induced slip among young adults.

    Science.gov (United States)

    Yang, Feng; Kim, JaeEun; Yang, Fei

    2017-02-28

    This study sought to investigate the effects of obesity on falls and dynamic stability control in young adults when subject to a standardized treadmill-induced gait-slip. Forty-four young adults (21 normal-weight and 23 obese) participated in this study. After their muscle strength was assessed at the right knee under maximum voluntary isometric (flexion and extension) contractions, participants were moved to an ActiveStep treadmill. Following 5 normal walking trials on the treadmill, all participants encountered an identical and unexpected slip defined as a perturbation in the anterior direction with the magnitude of 24-cm slip distance and 2.4-m/s peak slip velocity. The trials were categorized as a fall or recovery based on the reliance of the subject on external support following the slip. Compared with the normal-weight group, the obese group demonstrated less relative muscle strength and fell more responding to the slip (78.3% vs. 40.0%, p=0.009). After adjusting the body height and gender, the results indicated that the obese group was 19.1-time (95% confidence interval: [2.06, 177.36]) more prone to a fall than the normal-weight group when experiencing the same treadmill-induced slip. The obese group showed significantly impaired dynamic stability after slip possibly due to the inability of controlling the trunk segment׳s backward lean movement. Obesity measurements explained more slip outcome variance than did the strength measurements (53.4% vs. 18.1%). This study indicates that obesity most likely influences the ability to recover from slip perturbations. It is important to develop interventions to improve the capability of balance recovery among individuals with obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection.

    Science.gov (United States)

    O'Dell, S J; Gross, N B; Fricks, A N; Casiano, B D; Nguyen, T B; Marshall, J F

    2007-02-09

    Forced use of the forelimb contralateral to a unilateral injection of the dopaminergic neurotoxin 6-hydroxydopamine can promote recovery of motor function in that limb and can significantly decrease damage to dopamine terminals. The present study was conducted to determine (1) whether a form of voluntary exercise, wheel running, would improve motor performance in rats with such lesions, and (2) whether any beneficial effects of wheel running are attributable to ameliorating the dopaminergic damage. In experiment 1, rats were allowed to run in exercise wheels or kept in home cages for 2 1/2 weeks, then given stereotaxic infusions of 6-hydroxydopamine into the left striatum. The rats were replaced into their original environments (wheels or home cages) for four additional weeks, and asymmetries in forelimb use were quantified at 3, 10, 17, and 24 days postoperatively. After killing, dopaminergic damage was assessed by both quantifying 3 beta-(4-iodophenyl)tropan-2 beta-carboxylic acid methyl ester ([(125)I]RTI-55) binding to striatal dopamine transporters and counting tyrosine hydroxylase-positive cells in the substantia nigra. Exercised 6-hydroxydopamine-infused rats showed improved motor outcomes relative to sedentary lesioned controls, effects that were most apparent at postoperative days 17 and 24. Despite this behavioral improvement, 6-hydroxydopamine-induced loss of striatal dopamine transporters and tyrosine hydroxylase-positive nigral cells in exercised and sedentary groups did not differ. Since prior studies suggested that forced limb use improves motor performance by sparing nigrostriatal dopaminergic neurons from 6-hydroxydopamine damage, experiment 2 used a combined regimen of forced plus voluntary wheel running. Again, we found that the motor performance of exercised rats improved more rapidly than that of sedentary controls, but that there were no differences between these groups in the damage produced by 6-hydroxydopamine. It appears that voluntary

  6. MicroRNA-146a Regulates Perfusion Recovery in Response to Arterial Occlusion via Arteriogenesis

    Directory of Open Access Journals (Sweden)

    Joshua L. Heuslein

    2018-01-01

    Full Text Available The growth of endogenous collateral arteries that bypass arterial occlusion(s, or arteriogenesis, is a fundamental shear stress-induced adaptation with implications for treating peripheral arterial disease. MicroRNAs (miRs are key regulators of gene expression in response to injury and have strong therapeutic potential. In a previous study, we identified miR-146a as a candidate regulator of vascular remodeling. Here, we tested whether miR-146a regulates in vitro angiogenic endothelial cell (EC behaviors, as well as perfusion recovery, arteriogenesis, and angiogenesis in response to femoral arterial ligation (FAL in vivo. We found miR-146a inhibition impaired EC tube formation and migration in vitro. Following FAL, Balb/c mice were treated with a single, intramuscular injection of anti-miR-146a or scramble locked nucleic acid (LNA oligonucleotides directly into the non-ischemic gracilis muscles. Serial laser Doppler imaging demonstrated that anti-miR-146a treated mice exhibited significantly greater perfusion recovery (a 16% increase compared mice treated with scramble LNA. Moreover, anti-miR-146a treated mice exhibited a 22% increase in collateral artery diameter compared to controls, while there was no significant effect on in vivo angiogenesis or muscle regeneration. Despite exerting no beneficial effects on angiogenesis, the inhibition of mechanosensitive miR-146a enhances perfusion recovery after FAL via enhanced arteriogenesis.

  7. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth.

    Directory of Open Access Journals (Sweden)

    Rumana Khanom

    Full Text Available Keratin subtypes are selectively expressed depending on the cell type. They not only provide structural support, but regulate the metabolic processes and signaling pathways that control the growth of the epithelium. KRT17 (keratin 17 is induced in the regenerative epithelium and acts on diverse signaling pathways. Here, we demonstrate that KRT17 is invariably and permanently induced in oral squamous cell carcinoma (OSCC, as revealed by immunohistochemistry and cDNA microarray analysis. Two representative OSCC cell lines; KRT17-weakly expressing Ca9-22 and KRT17-highly expressing HSC3 were used to establish KRT17-overexpressing Ca9-22 and KRT17-knockdown HSC3 cells. Analysis of these cells revealed that KRT17 promoted cell proliferation and migration by stimulating the Akt/mTOR pathway. KRT17 also upregulated the expression of SLC2A1 (solute carrier family 2 member 1/Glut1 and glucose uptake. To further investigate the effect of KRT17 on tumorigenesis, KRT17-knockout HSC3 cells were established and were transplanted to the cephalic skin of nude mice. The tumors that developed from KRT17-knockout HSC3 cells had a lower Ki-67 labeling index and were significantly smaller compared to the controls. These results indicate that KRT17 stimulates the Akt/mTOR pathway and glucose uptake, thereby facilitating tumor growth. We could not confirm the relationship between KRT17 and SFN (stratifin in the cells examined in this study. However, our study reinforces the concept that the cellular properties of cancer are regulated by a series of molecules similar to those found in wound healing. In OSCC, KRT17 acts as a pathogenic keratin that facilitates tumor growth through the stimulation of multiple signaling pathways, highlighting the importance of KRT17 as a multifunctional promoter of tumorigenesis.

  8. Facilitated beam-walking recovery during acute phase by kynurenic acid treatment in a rat model of photochemically induced thrombosis causing focal cerebral ischemia.

    Science.gov (United States)

    Abo, Masahiro; Yamauchi, Hideki; Suzuki, Masahiko; Sakuma, Mio; Urashima, Mitsuyoshi

    We previously demonstrated the presence of activated areas in the non-injured contralateral sensorimotor cortex in addition to the ipsilateral sensorimotor cortex of the area surrounding a brain infarction, using a rat model of focal photochemically induced thrombosis (PIT) and functional magnetic resonance imaging. Using this model, we next applied gene expression profiling to screen key molecules upregulated in the activated area. RNA was extracted from the ipsilateral and contralateral sensorimotor cortex to the focal brain infarction and from the sham controlled cortex, and hybridized to gene-expression profiling arrays containing 1,322 neurology-related genes. Results showed that glycine receptors were upregulated in both the ipsilateral and contralateral cortex to the focal ischemic lesion. To prove the preclinical significance of upregulated glycine receptors, kynurenic acid, an endogenous antagonist to glycine receptors on neuronal cells, was administered intrathecally. As a result, the kynurenic acid significantly improved behavioral recovery within 10 days from paralysis induced by the focal PIT (p beam walking. These results suggest that intrathecal administration of a glycine receptor antagonist may facilitate behavioral recovery during the acute phase after brain infarction. Copyright (c) 2006 S. Karger AG, Basel.

  9. Posttraumatic growth in post-surgical coronary artery bypass graft patients

    Directory of Open Access Journals (Sweden)

    Catherine A Waight

    2015-02-01

    Full Text Available Recent research in posttraumatic growth has been applied to people with life-threatening illnesses to optimise recovery. There is a lack of research exploring posttraumatic growth in coronary artery bypass graft patients. This article describes the recovery experience of 14 coronary artery bypass graft patients (13 males and 1 female at their first outpatient review post-surgery. Grounded theory analysis was used to develop a model of distinct and shared pathways to growth depending on whether patients were symptomatic or asymptomatic pre-coronary artery bypass graft. Outcomes of posttraumatic growth in this sample included action-based healthy lifestyle growth and two forms of cognitive growth: appreciation of life and new possibilities. The model of posttraumatic growth developed in this study may be helpful in guiding future research into promoting posttraumatic growth and behaviour change in coronary artery bypass graft patients.

  10. Nuclear localization of Src-family tyrosine kinases is required for growth factor-induced euchromatinization

    International Nuclear Information System (INIS)

    Takahashi, Akinori; Obata, Yuuki; Fukumoto, Yasunori; Nakayama, Yuji; Kasahara, Kousuke; Kuga, Takahisa; Higashiyama, Yukihiro; Saito, Takashi; Yokoyama, Kazunari K.; Yamaguchi, Naoto

    2009-01-01

    Src-family kinases (SFKs), which participate in various signaling events, are found at not only the plasma membrane but also several subcellular compartments, including the nucleus. Nuclear structural changes are frequently observed during transcription, cell differentiation, senescence, tumorigenesis, and cell cycle. However, little is known about signal transduction in the alteration of chromatin texture. Here, we develop a pixel imaging method for quantitatively evaluating chromatin structural changes. Growth factor stimulation increases euchromatic hypocondensation and concomitant heterochromatic hypercondensation in G 1 phase, and the levels reach a plateau by 30 min, sustain for at least 5 h and return to the basal levels after 24 h. Serum-activated SFKs in the nucleus were more frequently detected in the euchromatin areas than the heterochromatin areas. Nuclear expression of kinase-active SFKs, but not unrelated Syk kinase, drastically increases both euchromatinization and heterochromatinization in a manner dependent on the levels of nuclear tyrosine phosphorylation. However, growth factor stimulation does not induce chromatin structural changes in SYF cells lacking SFKs, and reintroduction of one SFK member into SYF cells can, albeit insufficiently, induce chromatin structural changes. These results suggest that nuclear tyrosine phosphorylation by SFKs plays an important role in chromatin structural changes upon growth factor stimulation.

  11. Azadirachtin Affects the Growth of Spodoptera litura Fabricius by Inducing Apoptosis in Larval Midgut

    Directory of Open Access Journals (Sweden)

    Benshui Shu

    2018-02-01

    Full Text Available Azadirachtin, the environmentally friendly botanical pesticide, has been used as an antifeedant and pest growth regulator in integrated pest management for decades. It has shown strong biological activity against Spodoptera litura, but the mechanism of toxicity remains unclear. The present study showed that azadirachtin inhibited the growth of S. litura larvae, which was resulted by structure destroy and size inhibition of the midgut. Digital gene expression (DGE analysis of midgut suggested that azadirachtin regulated the transcriptional level of multiple unigenes involved in mitogen-activated protein kinase (MAPK and calcium apoptotic signaling pathways. Simultaneously, the expression patterns of some differentially expressed unigenes were verified by quantitative real time-PCR (qRT-PCR. In addition, the enhanced terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL staining, the increased expression of caspase family members and apoptosis-binding motif 1 (IBM1 on both gene and protein level and the release of cytochrome c from mitochondria to cytoplasm were induced in midgut after azadirachtin treatment. These results demonstrated that azadirachtin induced structural alteration in S. litura larval midgut by apoptosis activation. These alterations may affect the digestion and absorption of nutrients and eventually lead to the growth inhibition of larvae.

  12. The molecular dynamics simulation of ion-induced ripple growth

    International Nuclear Information System (INIS)

    Suele, P.; Heinig, K.-H.

    2009-01-01

    The wavelength-dependence of ion-sputtering induced growth of repetitive nanostructures, such as ripples has been studied by molecular dynamics (MD) simulations in Si. The early stage of the ion erosion driven development of ripples has been simulated on prepatterned Si stripes with a wavy surface. The time evolution of the height function and amplitude of the sinusoidal surface profile has been followed by simulated ion-sputtering. According to Bradley-Harper (BH) theory, we expect correlation between the wavelength of ripples and the stability of them. However, we find that in the small ripple wavelength (λ) regime BH theory fails to reproduce the results obtained by molecular dynamics. We find that at short wavelengths (λ 35 nm is stabilized in accordance with the available experimental results. According to the simulations, few hundreds of ion impacts in λ long and few nanometers wide Si ripples are sufficient for reaching saturation in surface growth for for λ>35 nm ripples. In another words, ripples in the long wavelength limit seems to be stable against ion-sputtering. A qualitative comparison of our simulation results with recent experimental data on nanopatterning under irradiation is attempted.

  13. Regulation of radiation-induced apoptosis by early growth response-1 gene in solid tumors

    International Nuclear Information System (INIS)

    Ahmed, M.

    2003-01-01

    Ionizing radiation exposure is associated with activation of certain immediate-early genes that function as transcription factors. These include members of jun or fos and early growth response (EGR) gene families. In particular, the functional role of EGR-1 in radiation-induced signaling is pivotal since the promoter of EGR-1 contains radiation-inducible CArG DNA sequences. The Egr-1 gene belongs to a family of Egr genes that includes EGR-2, EGR-3, EGR-4, EGR-α and the tumor suppressor, Wilms' tumor gene product, WT1. The Egr-1 gene product, EGR-1, is a nuclear protein that contains three zinc fingers of the C 2 H 2 subtype. The EGR-1 GC-rich consensus target sequence, 5'-GCGT/GGGGCG-3' or 5'-TCCT/ACCTCCTCC-3', has been identified in the promoter regions of transcription factors, growth factors, receptors, cell cycle regulators and pro-apoptotic genes. The gene targets mediated by Egr-1 in response to ionizing radiation include TNF-α , p53, Rb and Bax, all these are effectors of apoptosis. Based on these targets, Egr-1 is a pivotal gene that initiates early signal transduction events in response to ionizing radiation leading to either growth arrest or cell death in tumor cells. There are two potential application of Egr-1 gene in therapy of cancer. First, the Egr-1 promoter contains information for appropriate spatial and temporal expression in-vivo that can be regulated by ionizing radiation to control transcription of genes that have pro-apoptotic and suicidal function. Secondly, EGR-1 protein can eliminate 'induced-radiation resistance' by inhibiting the functions of radiation-induced pro-survival genes (NFκB activity and bcl-2 expression) and activate pro-apoptotic genes (such as bax) to confer a significant radio-sensitizing effect. Together, the reported findings from my laboratory demonstrate clearly that EGR-1 is an early central gene that confers radiation sensitivity and its pro-apoptotic functions are synergized by abrogation of induced radiation

  14. A model for strain hardening, recovery, recrystallization and grain growth with applications to forming processes of nickel base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Hermann, E-mail: hermann.riedel@iwm.fraunhofer.de [Fraunhofer Institute for Materials Mechanics, Wöhlerstr. 11, 79108 Freiburg (Germany); Svoboda, Jiri, E-mail: svobj@ipm.cz [Institute of Physics of Materials, Academy of Science of the Czech Republic, Zizkova 22, Brno (Czech Republic)

    2016-05-17

    An ensemble of n spherical grains is considered, each of which is characterized by its radius r{sub i} and by a hardening variable a{sub i}. The hardening variable obeys a Chaboche-type evolution equation with dynamic and static recovery. The grain growth law includes the usual contribution of the grain boundary energy, a term for the stored energy associated with the hardening variable, and the Zener pinning force exerted by particles on the migrating grain boundaries. New grains develop by recrystallization in grains whose stored energy density exceeds a critical value. The growth or shrinkage of the particles, which restrain grain boundary migration, obeys a thermodynamic/kinetic evolution equation. This set of first order differential equations for r{sub i}, a{sub i} and the particle radius is integrated numerically. Fictitious model parameters for a virtual nickel base alloy are used to demonstrate the properties and capabilities of the model. For a real nickel alloy, model parameters are adjusted using measured stress-strain curves, as well as recrystallized volume fractions and grain size distributions. Finally the model with adjusted parameters is applied to a forming process with complex temperature-strain rate histories.

  15. Phaleria macrocarpa reduces glomerular growth factor expression in alloxan-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Evy Sulistyoningrum

    2013-08-01

    Full Text Available Background Diabetic nephropathy (DN is the most serious complication of diabetes, causing end-stage renal disease throughout the world. Recent studies have reported a direct role of vascular endothelial growth factor (VEGF and transforming growth factor-â (TGF-â in DN pathogenesis. VEGF and TGF-â are expressed early in glomeruli in response to hyperglycemia. Active substances of Phaleria macrocarpa (PM pericarp are known to have nephroprotective effects. This study aimed to evaluate the effects of Phaleria macrocarpa (Scheff. Boerl pericarp extract on VEGF and TGF-â expression in alloxan-induced diabetic rats. Methods An experimental study was conducted on twenty five male albino (Sprague Dawley rats divided into five groups (of five each: normal control; diabetic; diabetic + metformin 100 mg/kgBW; diabetic + methanolic PM extract 250 mg/kgBW; and diabetic + aqueous PM extract 250 mg/kgBW. Diabetes was induced by alloxan monohydrate 150 mg/BW intraperitoneally. Treatment was given for 3 weeks. VEGF and TGF-â expression analysis was performed by means of immunohistochemical technique. Differences between groups were assessed by one-way ANOVA. Results VEGF expression in the PM extract group was significantly lower than that in the diabetic group and even metformin group (p<0.01. TGF-â expression in methanolic PM extract group was significantly lower than in diabetic and metformin group (p<0.01, but aqueous PM extract group only showed significancy when compared with diabetic group (p< 0.01. Conclusions Phaleria macrocarpa pericarp extract reduces glomerular expression of TGF-â and VEGF in alloxan-induced diabetic rats.

  16. Vesicular GABA Uptake Can Be Rate Limiting for Recovery of IPSCs from Synaptic Depression

    Directory of Open Access Journals (Sweden)

    Manami Yamashita

    2018-03-01

    Full Text Available Summary: Synaptic efficacy plays crucial roles in neuronal circuit operation and synaptic plasticity. Presynaptic determinants of synaptic efficacy are neurotransmitter content in synaptic vesicles and the number of vesicles undergoing exocytosis at a time. Bursts of presynaptic firings depress synaptic efficacy, mainly due to depletion of releasable vesicles, whereas recovery from strong depression is initiated by endocytic vesicle retrieval followed by refilling of vesicles with neurotransmitter. We washed out presynaptic cytosolic GABA to induce a rundown of IPSCs at cerebellar inhibitory cell pairs in slices from rats and then allowed fast recovery by elevating GABA concentration using photo-uncaging. The time course of this recovery coincided with that of IPSCs from activity-dependent depression induced by a train of high-frequency stimulation. We conclude that vesicular GABA uptake can be a limiting step for the recovery of inhibitory neurotransmission from synaptic depression. : Recovery of inhibitory synaptic transmission from activity-dependent depression requires refilling of vesicles with GABA. Yamashita et al. find that vesicular uptake rate of GABA is a slow process, limiting the recovery rate of IPSCs from depression.

  17. Galangin inhibits human osteosarcoma cells growth by inducing transforming growth factor-β1-dependent osteogenic differentiation.

    Science.gov (United States)

    Liu, Chunhong; Ma, Mingming; Zhang, Junde; Gui, Shaoliu; Zhang, Xiaohai; Xue, Shuangtao

    2017-05-01

    Osteosarcoma is the most common primary malignancy of the musculoskeletal system, and is associated with excessive proliferation and poor differentiation of osteoblasts. Currently, despite the use of traditional chemotherapy and radiotherapy, no satisfactory and effective agent has been developed to treat the disease. Herein, we found that a flavonoid natural product, galangin, could significantly attenuate human osteosarcoma cells proliferation, without causing obvious cell apoptosis. Moreover, galangin enhanced the expression of osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin and osteopontin) remarkably and elevated the alkaline phosphatase activity in human osteosarcoma cells. And galangin could also attenuated osteosarcoma growth in vivo. These bioactivities of galangin resulted from its selective activation of the transforming growth factor (TGF)-β1/Smad2/3 signaling pathway, which was demonstrated by pathway blocking experiments. These findings suggested that galangin could be a promising agent to treat osteosarcoma. In addition, targeting TGF-β1 to induce osteogenic differentiation might represent a novel therapeutic strategy to treat osteosarcoma with minimal side effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles

    OpenAIRE

    Abedini, Alam; Daud, Abdul Razak; Abdul Hamid, Muhammad Azmi; Kamil Othman, Norinsan; Saion, Elias

    2013-01-01

    This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation ...

  19. Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Lili; Yang, Min; Ding, Wei [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Zhang, Minmin [Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China); Niu, Jianying [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Qiao, Zhongdong [School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240 (China); Gu, Yong, E-mail: yonggu@vip.163.com [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China)

    2016-08-01

    Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. - Highlights: • EGFR was involved in aldosterone-induced renal profibrotic responses. • Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. • EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.

  20. Protein regulation of induced pluripotent stem cells by transplanting in a Huntington's animal model.

    Science.gov (United States)

    Mu, S; Han, L; Zhou, G; Mo, C; Duan, J; He, Z; Wang, Z; Ren, L; Zhang, J

    2016-10-01

    The purpose of this study was to determine the functional recovery and protein regulation by transplanted induced pluripotent stem cells in a rat model of Huntington's disease (HD). In a quinolinic acid-induced rat model of striatal degeneration, induced pluripotent stem cells were transplanted into the ipsilateral lateral ventricle 10 days after the quinolinic acid injection. At 8 weeks after transplantation, fluorodeoxyglucose-PET/CT scan and balance-beam test were performed to evaluate the functional recovery of experimental rats. In addition, immunofluorescence and protein array analysis were used to investigate the regulation of stimulated protein expression in the striatum. At 8 weeks after induced pluripotent stem cell transplantation, motor function was improved in comparison with the quinolinic acid-treated rats. High fluorodeoxyglucose accumulation in the injured striatum was also observed by PET/CT scans. In addition, immunofluorescence analysis demonstrated that implanted cells migrated from the lateral ventricle into the lesioned striatum and differentiated into striatal projection neurons. Array analysis showed a significant upregulation of GFR (Glial cell line-derived neurotrophic factor receptor) alpha-1, Adiponectin/Acrp30, basic-fibroblast growth factors, MIP-1 (Macrophage-inflammatory protein) alpha and leptin, as well as downregulation of cytokine-induced neutrophil chemoattractant-3 in striatum after transplantatation of induced pluripotent stem cells in comparison with the quinolinic acid -treated rats. The findings in this work indicate that transplantation of induced pluripotent stem cells is a promising therapeutic candidate for HD. © 2016 British Neuropathological Society.

  1. Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation

    International Nuclear Information System (INIS)

    Ramabhadran, T.V.; Jagger, J.

    1976-01-01

    Continuously growing cultures of E. coli B/r were irradiated with a fluence of broad-band near-ultraviolet radiation (315 to 405 nm) sufficient to cause extensive growth delay and complete cessation of net RNA synthesis. Chloramphenicol treatment was found to stimulate resumption of RNA synthesis, similar to that observed with chloramphenicol treatment after amino-acid starvation. E. coli strains in which amino-acid starvation does not result in cessation of RNA synthesis (''relaxed'' or rel - strains) show no cessation of growth and only a slight effect on the rate of growth or of RNA synthesis. These findings show that such near-uv fluences do not inactivate the RNA synthetic machinery but affect the regulation of RNA synthesis, in a manner similar to that produced by amino-acid starvation. Such regulation is believed to be mediated through alterations in concentration of guanosine tetraphosphate (ppGpp), and our estimations of ppGpp after near-uv irradiation are consistent with such an interpretation. These data, combined with earlier published data, strongly suggest that the mechanism of near-uv-induced growth delay in E. coli involves partial inactivation of certain tRNA species, which is interpreted by the cell in a manner similar to that of amino-acid starvation, causing a rise in ppGpp levels, a shut-off of net RNA synthesis, and the induction of a growth delay

  2. Effect of heat stress and recovery on viability, oxidative damage, and heat shock protein expression in hepatic cells of grass carp (Ctenopharyngodon idellus).

    Science.gov (United States)

    Cui, Yanting; Liu, Bo; Xie, Jun; Xu, Pao; Habte-Tsion, H-Michael; Zhang, Yuanyuan

    2014-06-01

    In this study, we investigated the effects of hyperthermia and recovery on cell viability, lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD) activity, malondialdehyde (MDA), total antioxidant capacity (T-AOC), and heat shock protein (HSP60, 70, and 90) mRNA expression in the hepatic cells of the grass carp, Ctenopharyngodon idellus. Triplicate groups of cultured cells were exposed to 30, 32, or 34 °C for 0.5 h and then immediately incubated at 27 °C in 5 % CO2 for 6, 12, 24, or 48 h. Hyperthermia stress greatly reduced cell viability and increased LDH release. Cell damage declined after recovery. Hyperthermia stress increased the lipid peroxide levels and reduced the antioxidant capacity (e.g., reduced SOD and T-AOC) of the cells. However, oxidative damage declined as the recovery period increased, and the levels of MDA, SOD, and T-AOC were restored. After cells were exposed to 32 °C, the expression of HSP60 after recovery for 1, 2, and 4 h (P recovery for 0.5 and 1 h (P recovery were significantly higher (P recovery period, the variations in HSP gene expression reflected the transition period from a state of cellular growth to one of the cellular repairs. In conclusion, hyperthermia depresses cell viability, induces oxidative damage, and increases HSP expression, which plays an important role during hyperthermic stress in grass carp hepatic cells.

  3. L-Glycine Alleviates Furfural-Induced Growth Inhibition during Isobutanol Production in Escherichia coli.

    Science.gov (United States)

    Song, Hun-Suk; Jeon, Jong-Min; Choi, Yong Keun; Kim, Jun-Young; Kim, Wooseong; Yoon, Jeong-Jun; Park, Kyungmoon; Ahn, Jungoh; Lee, Hongweon; Yang, Yung-Hun

    2017-12-28

    Lignocellulose is now a promising raw material for biofuel production. However, the lignin complex and crystalline cellulose require pretreatment steps for breakdown of the crystalline structure of cellulose for the generation of fermentable sugars. Moreover, several fermentation inhibitors are generated with sugar compounds, majorly furfural. The mitigation of these inhibitors is required for the further fermentation steps to proceed. Amino acids were investigated on furfural-induced growth inhibition in E. coli producing isobutanol. Glycine and serine were the most effective compounds against furfural. In minimal media, glycine conferred tolerance against furfural. From the IC₅₀ value for inhibitors in the production media, only glycine could alleviate growth arrest for furfural, where 6 mM glycine addition led to a slight increase in growth rate and isobutanol production from 2.6 to 2.8 g/l under furfural stress. Overexpression of glycine pathway genes did not lead to alleviation. However, addition of glycine to engineered strains blocked the growth arrest and increased the isobutanol production about 2.3-fold.

  4. The recovery paradigm - a model of hope and change for alcohol and drug addiction.

    Science.gov (United States)

    Best, David W; Lubman, Dan I

    2012-08-01

    Alcohol and drug disorders remain major health and social problems in Australia, contributing enormously to the global burden of disease and the everyday practice of primary care. A recent growth in recovery research and recovery focused policies are starting to have an impact in Australia, with implications for how we attempt to resolve these problems. In this article we discuss recent international findings in recovery research, and explore their implications for primary care. Research indicates that over half of dependent substance users will eventually achieve stable recovery. Key predictors of recovery are active engagement in the community and immersion in peer support groups and activities. Recovery requires a twin track approach: enabling and supporting individual recovery journeys, while creating environmental conditions that enable and support a 'social contagion' of recovery, in which recovery is transmitted through supportive social networks and dedicated recovery groups, such as mutual aid.

  5. Relationship between DNA repair and cell recovery: Importance of competing biochemical and metabolic processes

    International Nuclear Information System (INIS)

    Van Ankeren, S.C.; Wheeler, K.T.; Kansas Univ., Lawrence

    1985-01-01

    The relationship between the inhibition of repair of radiation-induced DNA damage and the inhibition of recovery from radiation-induced potentially lethal damage (PLD) by hypertonic treatment was compared in 9L/Ro rat brain tumor cells. Fed plateau phase cultures were γ-irradiated with 1500 rad and then immediately treated for 20 min with a 37 0 C isotonic (0.15 M) or hypertonic (0.50 M) salt solution. The kinetics of repair of radiation-induced DNA damage as assayed using alkaline filter elution were compared to those of recovery from radiation-induced PLD as assayed by colony formation. hypertonic treatment of unirradiated cells produced neither DNA damage nor cell kill. Post-irradiation hypertonic treatment inhibited both DNA repair and PLD recovery, while post-irradiation istonic treatment inhibited neither phenomenon. However, by 2 h after irradiation, the amount of DNA damage remaining after a 20 min hypertonic treatment was equivalent to that remaining after a 20 min isotonic treatment. In contrast, cell survival after hypertonic treatment remained 2 logs lower than after isotonic treatment even at times up to 24 h. These results suggest that the repair of radiation-induced DNA damage per per se is not causally related to recovery from radiation-induced PLD. However, the data are consistent with the time of DNA repair as an important parameter in determining cell survival and, therefore, tend to support the hypothesis that imbalances in sets of competing biochemical or metabolic processes determine survival rather than the presence of a single class of unrepaired DNA lesions. (orig.)

  6. Planar elliptic growth

    Energy Technology Data Exchange (ETDEWEB)

    Mineev, Mark [Los Alamos National Laboratory

    2008-01-01

    The planar elliptic extension of the Laplacian growth is, after a proper parametrization, given in a form of a solution to the equation for areapreserving diffeomorphisms. The infinite set of conservation laws associated with such elliptic growth is interpreted in terms of potential theory, and the relations between two major forms of the elliptic growth are analyzed. The constants of integration for closed form solutions are identified as the singularities of the Schwarz function, which are located both inside and outside the moving contour. Well-posedness of the recovery of the elliptic operator governing the process from the continuum of interfaces parametrized by time is addressed and two examples of exact solutions of elliptic growth are presented.

  7. Evaluation of amino acids changes in liver and serum during the recovery from gamma-irradiation in rats

    International Nuclear Information System (INIS)

    Elkashef, H.S.; Saada, H.N.; Roushdy, H.M.; Abdelsamie, M.A.

    1989-01-01

    Recovery from radiation induced changes in glutamic and aspartic acids in both liver and serum was evaluated in rats treated with a mixture of testosterone and vitamin E and subjected to whole body gamma irradiation of 5.5 Gy. The intraperitoneal injection of the mixture 10 days before exposing the rat gamma radiation improved the recovery process from radiation induced changes in the level of aspartic and glutamic acid. The recovery occurred in liver two weeks after irradiation in injected irradiated rats, while in irradiated rats self recovery was noticed on the third week after irradiation for aspartic acid but this mixture has no protective effect on the radiation induced changes in the liver glutamic acid. With respect to changes in blood serum, recovery was recorded in the first week after irradiation in the case of aspartic acid while recovery in glutamic acid was attained latter, in the second week. The results suggested that blood serum is more sensitive to the radiation dose 5.5 Gy than the liver of whole body gamma-irradiated rats. Also, it could be suggested that glutamic acid and aspartic acid have different susceptibility to this radiation dose.2 tab

  8. Light-induced hysteresis and recovery behaviors in photochemically activated solution-processed metal-oxide thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jeong-Wan; Park, Sung Kyu, E-mail: yhkim76@skku.edu, E-mail: skpark@cau.ac.kr [School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Kim, Yong-Hoon, E-mail: yhkim76@skku.edu, E-mail: skpark@cau.ac.kr [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-07-28

    In this report, photo-induced hysteresis, threshold voltage (V{sub T}) shift, and recovery behaviors in photochemically activated solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) are investigated. It was observed that a white light illumination caused negative V{sub T} shift along with creation of clockwise hysteresis in electrical characteristics which can be attributed to photo-generated doubly ionized oxygen vacancies at the semiconductor/gate dielectric interface. More importantly, the photochemically activated IGZO TFTs showed much reduced overall V{sub T} shift compared to thermally annealed TFTs. Reduced number of donor-like interface states creation under light illumination and more facile neutralization of ionized oxygen vacancies by electron capture under positive gate potential are claimed to be the origin of the less V{sub T} shift in photochemically activated TFTs.

  9. Oxygen dependency of epidermal growth factor receptor binding and DNA synthesis of rat hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Tetsuro; Terajima, Hiroaki; Yamauchi, Akira

    1997-01-01

    Background/Aims: Changes in oxygen availability modulate replicative responses in several cell types, but the effects on hepatocyte replication remain unclear. We have studied the effects of transient nonlethal hypoxia on epidermal growth factor receptor binding and epidermal growth factor-induced DNA synthesis of rat hepatocytes. Methods: Lactate dehydrogenase activity in culture supernatant, intracellular adenosine triphosphate content, 125 I-epidermal growth factor specific binding, epidermal growth factor receptor protein expression, and 3 H-thymidine incorporation were compared between hepatocytes cultured in hypoxia and normoxia. Results: Hypoxia up to 3 h caused no significant increase in lactate dehydrogenase activity in the culture supernatant, while intracellular adenosine triphosphate content decreased time-dependently and was restored to normoxic levels by reoxygenation (nonlethal hypoxia). Concomitantly, 125 I-epidermal growth factor specific binding to hepatocytes decreased time-dependently (to 54.1% of normoxia) and was restored to control levels by reoxygenation, although 125 I-insulin specific binding was not affected. The decrease in 125 I-epidermal growth factor specific binding was explained by the decrease in the number or available epidermal growth factor receptors (21.37±3.08 to 12.16±1.42 fmol/10 5 cells), while the dissociation constant of the receptor was not affected. The change in the number of available receptors was not considered to be due to receptor degradation-resynthesis, since immuno-detection of the epidermal growth factor receptor revealed that the receptor protein expression did not change during hypoxia and reoxygenation, and since neither actinomycin D nor cycloheximide affected the recovery of 125 I-epidermal growth factor binding by reoxygenation. Inhibition of epidermal growth factor-induced DNA synthesis after hypoxia (to 75.4% of normoxia by 3 h hypoxia) paralleled the decrease in 125 I-epidermal growth factor binding

  10. Drug-induced thrombocytopenia

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, U; Andersen, M; Hansen, P B

    1997-01-01

    induced by non-cytotoxic drugs is characterised by heterogeneous clinical picture and recovery is generally rapid. Although corticosteroids seem inefficient, we still recommend that severe symptomatic cases of drug-induced thrombocytopenia are treated as idiopathic thrombocytopenic purpura due...

  11. Daily MODIS Data Trends of Hurricane-Induced Forest Impact and Early Recovery

    Science.gov (United States)

    Ramsey, Elijah, III; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri

    2011-01-01

    We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near prehurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.

  12. PIXE analysis showed that the preirradiation enhanced recovery of bone marrow elements after challenging irradiation in C57BL/6N Mice

    International Nuclear Information System (INIS)

    Matsuda, Y.; Yonezawa, M.; Nishiyama, F.

    2000-01-01

    Priming X-irradiation with 0.3-0.5 Gy induces radio-resistance in C57BL/6 strain of mice 2 weeks afterward. Elements in the bone marrow, sampled 11 days after challenging exposure to 5.0 Gy, were determined by PIXE. The challenging irradiation decreased Mg, P, S, K, Ca and Zn as well as dried bone marrow weight. The pre-irradiation enhanced recovery of these levels, indicating stimulated recovery of the metabolism int he tissue. Fe in both control (without pre-irradiation) and experimental groups increased to about twice the original value, showing elevated hemoglobin synthesis after challenging exposure. In previous studies we have reported that recovery of peripheral blood cell counts after sub-lethal irradiation was enhanced by the pre-irradiation. Further, study on accumulation of p53 and Bax proteins, which lead to apoptotic cell death, revealed that the pre-irradiation significantly suppressed accumulation of these proteins in the spleen after challenging irradiation with 3 Gy. These results and our present study suggest that the pre-irradiation decreased the spleen cell death, and favored re-growth of the spleen cells, resulting in stimulated recovery of metabolism for hematopoiesis in the bone marrow as well as in the spleen after challenging high dose irradiation. Stimulated recovery of Mg, P, S, K, Ca and Zn levels might indicate the importance of these elements in hematopoiesis. (author)

  13. Low-Temperature Rapid Fabrication of ZnO Nanowire UV Sensor Array by Laser-Induced Local Hydrothermal Growth

    Directory of Open Access Journals (Sweden)

    Sukjoon Hong

    2013-01-01

    Full Text Available We demonstrate ZnO nanowire based UV sensor by laser-induced hydrothermal growth of ZnO nanowire. By inducing a localized temperature rise using focused laser, ZnO nanowire array at ~15 μm size consists of individual nanowires with ~8 μm length and 200~400 nm diameter is readily synthesized on gold electrode within 30 min at the desired position. The laser-induced growth process is consecutively applied on two different points to bridge the micron gap between the electrodes. The resultant photoconductive ZnO NW interconnections display 2~3 orders increase in the current upon the UV exposure at a fixed voltage bias. It is also confirmed that the amount of photocurrent can be easily adjusted by changing the number of ZnO NW array junctions. The device exhibits clear response to the repeated UV illumination, suggesting that this process can be usefully applied for the facile fabrication of low-cost UV sensor array.

  14. Dynamics of functional failures and recovery in complex road networks

    Science.gov (United States)

    Zhan, Xianyuan; Ukkusuri, Satish V.; Rao, P. Suresh C.

    2017-11-01

    We propose a new framework for modeling the evolution of functional failures and recoveries in complex networks, with traffic congestion on road networks as the case study. Differently from conventional approaches, we transform the evolution of functional states into an equivalent dynamic structural process: dual-vertex splitting and coalescing embedded within the original network structure. The proposed model successfully explains traffic congestion and recovery patterns at the city scale based on high-resolution data from two megacities. Numerical analysis shows that certain network structural attributes can amplify or suppress cascading functional failures. Our approach represents a new general framework to model functional failures and recoveries in flow-based networks and allows understanding of the interplay between structure and function for flow-induced failure propagation and recovery.

  15. Effects of a synthetic bioactive peptide on neurite growth and nerve growth factor release in chondroitin sulfate hydrogels

    OpenAIRE

    Conovaloff, Aaron W.; Beier, Brooke L.; Irazoqui, Pedro P.; Panitch, Alyssa

    2011-01-01

    Previous work has revealed robust dorsal root ganglia neurite growth in hydrogels of chondroitin sulfate. In the current work, it was determined whether addition of a synthetic bioactive peptide could augment neurite growth in these matrices via enhanced binding and sequestering of growth factors. Fluorescence recovery after photobleaching studies revealed that addition of peptide slowed nerve growth factor diffusivity in chondroitin sulfate gels, but not in control gels of hyaluronic acid. F...

  16. Growth performance comparison of intercross-triploid, induced-triploid, and diploid female rainbow trout Oncorhynchus mykiss

    Science.gov (United States)

    Triploidy is used in rainbow trout aquaculture as a means of inducing sterility to avoid the negative impacts of gonadal maturation on growth, fillet quality, and disease resistance; and for genetic isolation. Numerous studies have shown physiological differences between triploid (3N) and diploid (...

  17. Transforming growth factor-β1/Smad/connective tissue growth factor axis: The main pathway in radiation-induced fibrosis of osteoradionecrosis?

    Directory of Open Access Journals (Sweden)

    Qian Wei Zhuang

    2013-01-01

    Full Text Available Introduction: Osteoradionecrosis (ORN of the mandible is a serious complication following radiation therapy for malignancies of the head and neck. Radiation-induced fibrosis (RIF is a new theory that accounts for the damage to normal tissues after radiotherapy, and the radiation-induced fibroatrophic mechanism includes the free-radical formation, endothelial dysfunction, inflammation, microvascular thrombosis, fibrosis and remodeling, and finally bone and tissue necrosis. The Hypothesis: Previous studies revealed that transforming growth factor-β1 (TGF-β1 is the master switch cytokine responsible for the regulation of fibroblast proliferation and differentiation that result in RIF. Among the targets of TGF-β1, connective tissue growth factor (CTGF is a downstream mediator through the Smad3/4 pathway and plays an important role in connective tissue homeostasis and fibroblast proliferation. Studies have proved that the TGF-β1/Smad/CTGF signaling pathway is involved in the RIF of soft tissues, so the authors put forward a hypothesis that the TGF-β1/Smad/CTGF axis is also the main pathway in RIF of ORN. Evaluation of the Hypothesis: The validation of our hypothesis may provide new insights for better understanding the pathogenesis of ORN and open new perspectives for anti-fibrotic therapies, and pioneer novel approaches to treat ORN.

  18. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling

    DEFF Research Database (Denmark)

    Adams, T E; Hansen, J A; Starr, R

    1998-01-01

    Four members (SOCS-1, SOCS-2, SOCS-3, and CIS) of a family of cytokine-inducible, negative regulators of cytokine receptor signaling have recently been identified. To address whether any of these genes are induced in response to growth hormone (GH), serum-starved 3T3-F442A fibroblasts were incuba...

  19. Insulin-like growth factor-1 receptor in mature osteoblasts is required for periosteal bone formation induced by reloading

    Science.gov (United States)

    Kubota, Takuo; Elalieh, Hashem Z.; Saless, Neema; Fong, Chak; Wang, Yongmei; Babey, Muriel; Cheng, Zhiqiang; Bikle, Daniel D.

    2013-11-01

    Skeletal loading and unloading has a pronounced impact on bone remodeling, a process also regulated by insulin-like growth factor-1 (IGF-1) signaling. Skeletal unloading leads to resistance to the anabolic effect of IGF-1, while reloading after unloading restores responsiveness to IGF-1. However, a direct study of the importance of IGF-1 signaling in the skeletal response to mechanical loading remains to be tested. In this study, we assessed the skeletal response of osteoblast-specific Igf-1 receptor deficient (Igf-1r-/-) mice to unloading and reloading. The mice were hindlimb unloaded for 14 days and then reloaded for 16 days. Igf-1r-/- mice displayed smaller cortical bone and diminished periosteal and endosteal bone formation at baseline. Periosteal and endosteal bone formation decreased with unloading in Igf-1r+/+ mice. However, the recovery of periosteal bone formation with reloading was completely inhibited in Igf-1r-/- mice, although reloading-induced endosteal bone formation was not hampered. These changes in bone formation resulted in the abolishment of the expected increase in total cross-sectional area with reloading in Igf-1r-/- mice compared to the control mice. These results suggest that the Igf-1r in mature osteoblasts has a critical role in periosteal bone formation in the skeletal response to mechanical loading.

  20. γ-Tocotrienol prevents 5-FU-induced reactive oxygen species production in human oral keratinocytes through the stabilization of 5-FU-induced activation of Nrf2.

    Science.gov (United States)

    Takano, Hideyuki; Momota, Yukihiro; Kani, Kouichi; Aota, Keiko; Yamamura, Yoshiko; Yamanoi, Tomoko; Azuma, Masayuki

    2015-04-01

    Chemotherapy-induced oral mucositis is a common adverse event in patients with oral squamous cell carcinoma, and is initiated through a variety of mechanisms, including the generation of reactive oxygen species (ROS). In this study, we examined the preventive effect of γ-tocotrienol on the 5-FU-induced ROS production in human oral keratinocytes (RT7). We treated RT7 cells with 5-FU and γ-tocotrienol at concentrations of 10 µg/ml and 10 nM, respectively. When cells were treated with 5-FU alone, significant growth inhibition was observed as compared to untreated cells. This inhibition was, in part, due to the ROS gene-rated by 5-FU treatment, because N-acetyl cysteine (NAC), a ROS scavenger, significantly ameliorated the growth of RT7 cells. γ-tocotrienol showed no cytotoxic effect on the growth of RT7 cells. Simultaneous treatment of cells with these agents resulted in the significant recovery of cell growth, owing to the suppression of ROS generation by γ-tocotrienol. Whereas 5-FU stimulated the expression of NF-E2-related factor 2 (Nrf2) protein in the nucleus up to 12 h after treatment of RT7 cells, γ-tocotrienol had no obvious effect on the expression of nuclear Nrf2 protein. Of note, the combined treatment with both agents stabilized the 5-FU-induced nuclear Nrf2 protein expression until 24 h after treatment. In addition, expression of Nrf2-dependent antioxidant genes, such as heme oxygenase-1 (HO-1) and quinone oxidoreductase-1 (NQO-1), was significantly augmented by treatment of cells with both agents. These findings suggest that γ-tocotrienol could prevent 5-FU-induced ROS generation by stabilizing Nrf2 activation, thereby leading to ROS detoxification and cell survival in human oral keratinocytes.

  1. In induced reconstructions of Si(1 1 1) as superlattice matched epitaxial templates for InN growth

    International Nuclear Information System (INIS)

    Kuyyalil, Jithesh; Tangi, Malleswararao; Shivaprasad, S.M.

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► A novel growth method to form InN at low growth temperatures. ► Use of Si reconstruction as a growth template for group III nitrides. ► Band gap variation of InN – Moss–Burstein shift – non-parabolic conduction band for InN. ► Super lattice matching epitaxy of metal induced reconstructions with III–V unit cell. -- Abstract: Indium induced surface reconstructions of Si(1 1 1)-7 × 7 are used as templates to grow high quality InN. We grow InN on Si(1 1 1)-7 × 7, Si(1 1 1)-4 × 1-In and Si(1 1 1)-1 × 1-In reconstructed surfaces and study the quality of the films formed using complementary characterization tools. InN grown on Si(1 1 1)-1 × 1-In reconstruction shows superior film quality with lowest band-edge emission having a narrow full width at half maximum, intense and narrow 0 0 0 2 X-ray diffraction, low surface roughness and carrier concentration an order lower than other samples. We attribute the high quality of the film formed at 300 °C to the integral matching of InN and super lattice dimensions, we also study the reasons for the band gap variation of InN in the literature. Present study demonstrates the proposed Superlattice Matched Epitaxy can be a general approach to grow good quality InN at much lower growth temperature on compatible In induced reconstructions of the Si surface.

  2. Zinc supplementation during pregnancy protects against lipopolysaccharide-induced fetal growth restriction and demise through its anti-inflammatory effect.

    Science.gov (United States)

    Chen, Yuan-Hua; Zhao, Mei; Chen, Xue; Zhang, Ying; Wang, Hua; Huang, Ying-Ying; Wang, Zhen; Zhang, Zhi-Hui; Zhang, Cheng; Xu, De-Xiang

    2012-07-01

    LPS is associated with adverse developmental outcomes, including preterm delivery, fetal death, teratogenicity, and intrauterine growth restriction (IUGR). Previous reports showed that zinc protected against LPS-induced teratogenicity. In the current study, we investigated the effects of zinc supplementation during pregnancy on LPS-induced preterm delivery, fetal death and IUGR. All pregnant mice except controls were i.p. injected with LPS (75 μg/kg) daily from gestational day (GD) 15 to GD17. Some pregnant mice were administered zinc sulfate through drinking water (75 mg elemental Zn per liter) throughout the pregnancy. As expected, an i.p. injection with LPS daily from GD15 to GD17 resulted in 36.4% (4/11) of dams delivered before GD18. In dams that completed the pregnancy, 63.2% of fetuses were dead. Moreover, LPS significantly reduced fetal weight and crown-rump length. Of interest, zinc supplementation during pregnancy protected mice from LPS-induced preterm delivery and fetal death. In addition, zinc supplementation significantly alleviated LPS-induced IUGR and skeletal development retardation. Further experiments showed that zinc supplementation significantly attenuated LPS-induced expression of placental inflammatory cytokines and cyclooxygenase-2. Zinc supplementation also significantly attenuated LPS-induced activation of NF-κB and MAPK signaling in mononuclear sinusoidal trophoblast giant cells of the labyrinth zone. It inhibited LPS-induced placental AKT phosphorylation as well. In conclusion, zinc supplementation during pregnancy protects against LPS-induced fetal growth restriction and demise through its anti-inflammatory effect.

  3. Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Lee, Seung Joon; Krauthauser, Candice; Maduskuie, Victoria; Fawcett, Paul T; Olson, James M; Rajasekaran, Sigrid A

    2011-01-01

    Medulloblastoma is the most common brain tumor in children, and its prognosis is worse than for many other common pediatric cancers. Survivors undergoing treatment suffer from serious therapy-related side effects. Thus, it is imperative to identify safer, effective treatments for medulloblastoma. In this study we evaluated the anti-cancer potential of curcumin in medulloblastoma by testing its ability to induce apoptosis and inhibit tumor growth in vitro and in vivo using established medulloblastoma models. Using cultured medulloblastoma cells, tumor xenografts, and the Smo/Smo transgenic medulloblastoma mouse model, the antitumor effects of curcumin were tested in vitro and in vivo. Curcumin induced apoptosis and cell cycle arrest at the G2/M phase in medulloblastoma cells. These effects were accompanied by reduced histone deacetylase (HDAC) 4 expression and activity and increased tubulin acetylation, ultimately leading to mitotic catastrophe. In in vivo medulloblastoma xenografts, curcumin reduced tumor growth and significantly increased survival in the Smo/Smo transgenic medulloblastoma mouse model. The in vitro and in vivo data suggest that curcumin has the potential to be developed as a therapeutic agent for medulloblastoma

  4. work hardening, recovery and recrystallization of alloys containing dispersed precipitates

    International Nuclear Information System (INIS)

    Padilha, A.F.

    1989-01-01

    This paper reviews the work hardening, recovery and recrystallization mechanisms in alloys containing dispersed precipitates. In the section on work hardening, the influence od spacing, particle size and shape on the density and distribution of dislocations have been discussed. They represent a large part of the energy stored in the material following drformation, which in turn is driving force for recrystallization. Next, the role of precipitates on recovery, on the formation and the growth of recrystallized regions has been discussed in detail. The competition between recovery and recrystallization and recrystallization of supersaturated solid solutions have also been mentioned. Finally, the technological relevance of the aspects treated in this paper has been discussed. (author) [pt

  5. In vitro growth potential of fibroblasts isolated from pigs with radiation-induced fibrosis

    International Nuclear Information System (INIS)

    Martin, M.; Remy, J.; Daburon, F.

    1986-01-01

    Degenerative processes were studied in pig muscles irradiated with single doses of 30 or 40 Gy. Damaged muscle was gradually replaced by an invasive fibrotic tissue. As a control, surgical muscle exeresis was performed of the same size as the radiation-induced lesions at the same anatomical site. Primary cultures were set up comprising cells freshly extracted from normal dermis, or from tissue exhibiting either normal wound fibrosis or radiation-induced fibrosis. The growth potential of cells taken from the latter region far exceeded that of the two other types; attachment efficiency was higher, and fibronectin was detected early by immunofluorescence. These in vivo and in vitro observations imply that a pathological repair process occurs after localized irradiation. (author)

  6. Effect of infrared and X-ray radiation on thymus cells and the rate of growth of Ehrlich carcinoma.

    Science.gov (United States)

    Dyukina, A R; Zaichkina, S I; Rozanova, O M; Aptikaeva, G F; Romanchenko, S P; Sorokina, S S

    2012-09-01

    We studied the effect of infrared light with a wavelength of 850 nm and modulated frequency of 101 Hz and X-ray radiation on the induction of cross-adaptive and radiation responses in the thymus and on the rate of tumor growth in mice in vivo. Preliminary exposure to infrared and X-ray radiation was shown to result in recovery in thymus weight after irradiation in a dose of 1.5 Gy and also inhibited the growth rate of Ehrlich carcinoma. These data attest to common mechanisms of the adaptive response induced by infrared and X-ray radiation in mice. Infrared light can be used as an adaptogen to adapt the animals to adverse factors.

  7. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    International Nuclear Information System (INIS)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan; Zhang, Jing; Chai, Hongyan; Tang, Tian; Chen, Honglei; Yue, Jiang; Li, Ying; Yang, Jing

    2015-01-01

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  8. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Chen, Honglei [Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yue, Jiang [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Li, Ying, E-mail: lyying0@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  9. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    DEFF Research Database (Denmark)

    Greenberger, Lee M; Horak, Ivan D; Filpula, David

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that plays a critical role in angiogenesis, survival, metastasis, drug resistance, and glucose metabolism. Elevated expression of the alpha-subunit of HIF-1 (HIF-1alpha), which occurs in response to hypoxia or activation of growth facto...

  10. Roles of density-dependent growth and life history evolution in accounting for fisheries-induced trait changes.

    Science.gov (United States)

    Eikeset, Anne Maria; Dunlop, Erin S; Heino, Mikko; Storvik, Geir; Stenseth, Nils C; Dieckmann, Ulf

    2016-12-27

    The relative roles of density dependence and life history evolution in contributing to rapid fisheries-induced trait changes remain debated. In the 1930s, northeast Arctic cod (Gadus morhua), currently the world's largest cod stock, experienced a shift from a traditional spawning-ground fishery to an industrial trawl fishery with elevated exploitation in the stock's feeding grounds. Since then, age and length at maturation have declined dramatically, a trend paralleled in other exploited stocks worldwide. These trends can be explained by demographic truncation of the population's age structure, phenotypic plasticity in maturation arising through density-dependent growth, fisheries-induced evolution favoring faster-growing or earlier-maturing fish, or a combination of these processes. Here, we use a multitrait eco-evolutionary model to assess the capacity of these processes to reproduce 74 y of historical data on age and length at maturation in northeast Arctic cod, while mimicking the stock's historical harvesting regime. Our results show that model predictions critically depend on the assumed density dependence of growth: when this is weak, life history evolution might be necessary to prevent stock collapse, whereas when a stronger density dependence estimated from recent data is used, the role of evolution in explaining fisheries-induced trait changes is diminished. Our integrative analysis of density-dependent growth, multitrait evolution, and stock-specific time series data underscores the importance of jointly considering evolutionary and ecological processes, enabling a more comprehensive perspective on empirically observed stock dynamics than previous studies could provide.

  11. Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ved Parkash [Department of Environment and Vocational Studies, Panjab University, Chandigarh 160014 (India); Department of Zoology, Panjab University, Chandigarh 160014 (India); Singh, Harminder Pal, E-mail: hpsingh_01@yahoo.com [Department of Environment and Vocational Studies, Panjab University, Chandigarh 160014 (India); Kohli, Ravinder Kumar; Batish, Daizy Rani [Department of Botany, Panjab University, Chandigarh 160014 (India)

    2009-10-15

    During the last couple of decades, there has been a tremendous increase in the use of cell phones. It has significantly added to the rapidly increasing EMF smog, an unprecedented type of pollution consisting of radiation in the environment, thereby prompting the scientists to study the effects on humans. However, not many studies have been conducted to explore the effects of cell phone EMFr on growth and biochemical changes in plants. We investigated whether EMFr from cell phones inhibit growth of Vigna radiata (mung bean) through induction of conventional stress responses. Effects of cell phone EMFr (power density: 8.55 {mu}W cm{sup -2}; 900 MHz band width; for 1/2, 1, 2, and 4 h) were determined by measuring the generation of reactive oxygen species (ROS) in terms of malondialdehyde and hydrogen peroxide (H{sub 2}O{sub 2}) content, root oxidizability and changes in levels of antioxidant enzymes. Our results showed that cell phone EMFr significantly inhibited the germination (at {>=}2 h), and radicle and plumule growths ({>=}1 h) in mung bean in a time-dependent manner. Further, cell phone EMFr enhanced MDA content (indicating lipid peroxidation), and increased H{sub 2}O{sub 2} accumulation and root oxidizability in mung bean roots, thereby inducing oxidative stress and cellular damage. In response to EMFr, there was a significant upregulation in the activities of scavenging enzymes, such as superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases, catalases and glutathione reductases, in mung bean roots. The study concluded that cell phone EMFr inhibit root growth of mung bean by inducing ROS-generated oxidative stress despite increased activities of antioxidant enzymes.

  12. Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress

    International Nuclear Information System (INIS)

    Sharma, Ved Parkash; Singh, Harminder Pal; Kohli, Ravinder Kumar; Batish, Daizy Rani

    2009-01-01

    During the last couple of decades, there has been a tremendous increase in the use of cell phones. It has significantly added to the rapidly increasing EMF smog, an unprecedented type of pollution consisting of radiation in the environment, thereby prompting the scientists to study the effects on humans. However, not many studies have been conducted to explore the effects of cell phone EMFr on growth and biochemical changes in plants. We investigated whether EMFr from cell phones inhibit growth of Vigna radiata (mung bean) through induction of conventional stress responses. Effects of cell phone EMFr (power density: 8.55 μW cm -2 ; 900 MHz band width; for 1/2, 1, 2, and 4 h) were determined by measuring the generation of reactive oxygen species (ROS) in terms of malondialdehyde and hydrogen peroxide (H 2 O 2 ) content, root oxidizability and changes in levels of antioxidant enzymes. Our results showed that cell phone EMFr significantly inhibited the germination (at ≥2 h), and radicle and plumule growths (≥1 h) in mung bean in a time-dependent manner. Further, cell phone EMFr enhanced MDA content (indicating lipid peroxidation), and increased H 2 O 2 accumulation and root oxidizability in mung bean roots, thereby inducing oxidative stress and cellular damage. In response to EMFr, there was a significant upregulation in the activities of scavenging enzymes, such as superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases, catalases and glutathione reductases, in mung bean roots. The study concluded that cell phone EMFr inhibit root growth of mung bean by inducing ROS-generated oxidative stress despite increased activities of antioxidant enzymes.

  13. Imaging resilience and recovery in alcohol dependence.

    Science.gov (United States)

    Charlet, Katrin; Rosenthal, Annika; Lohoff, Falk W; Heinz, Andreas; Beck, Anne

    2018-05-09

    Resilience and recovery are of increasing importance in the field of alcohol dependence (AD). This paper describes how imaging studies in man can be used to assess the neurobiological correlates of resilience and, if longitudinal, of disease trajectories, progression rates and markers for recovery to inform treatment and prevention options. Original articles on recovery and resilience in alcohol addiction and its neurobiological correlates were identified from 'PubMed' and have been analyzed and condensed within a systematic literature review. Findings deriving from (f)MRI and PET studies have identified links between increased resilience and less task-elicited neural activation within the basal ganglia, and benefits of heightened neural prefrontal cortex (PFC) engagement regarding resilience in a broader sense, namely resilience against relapse in early abstinence of AD. Furthermore, findings consistently propose at least partial recovery of brain glucose metabolism and executive and general cognitive functioning, as well as structural plasticity effects throughout the brain of alcohol-dependent patients during the course of short, medium and long-term abstinence, even when patients only lowered their alcohol consumption to a moderate level. Additionally, specific factors were found that appear to influence these observed brain recovery processes in AD, e.g. genotype-dependent neuronal (re)growth, gender-specific neural recovery effects, critical interfering effects of psychiatric comorbidities, additional smoking or marijuana influences, or adolescent alcohol abuse. Neuroimaging research has uncovered neurobiological markers that appear to be linked to resilience and improved recovery capacities that are furthermore influenced by various factors such as gender or genetics. Consequently, future system-oriented approaches may help to establish a broad neuroscience-based research framework for alcohol dependence. This article is protected by copyright. All rights

  14. Biomechanical force induces the growth factor production in human periodontal ligament-derived cells.

    Science.gov (United States)

    Ichioka, Hiroaki; Yamamoto, Toshiro; Yamamoto, Kenta; Honjo, Ken-Ichi; Adachi, Tetsuya; Oseko, Fumishige; Mazda, Osam; Kanamura, Narisato; Kita, Masakazu

    2016-01-01

    Although many reports have been published on the functional roles of periodontal ligament (PDL) cells, the mechanisms involved in the maintenance and homeostasis of PDL have not been determined. We investigated the effects of biomechanical force on growth factor production, phosphorylation of MAPKs, and intracellular transduction pathways for growth factor production in human periodontal ligament (hPDL) cells using MAPK inhibitors. hPDL cells were exposed to mechanical force (6 MPa) using a hydrostatic pressure apparatus. The levels of growth factor mRNA and protein were examined by real-time RT-PCR and ELISA. The phosphorylation of MAPKs was measured using BD™ CBA Flex Set. In addition, MAPKs inhibitors were used to identify specific signal transduction pathways. Application of biomechanical force (equivalent to occlusal force) increased the synthesis of VEGF-A, FGF-2, and NGF. The application of biomechanical force increased the expression levels of phosphorylated ERK and p38, but not of JNK. Furthermore, the levels of VEGF-A and NGF expression were suppressed by ERK or p38 inhibitor. The growth factors induced by biomechanical force may play a role in the mechanisms of homeostasis of PDL.

  15. Protein synthesis and the recovery of both survival and cytoplasmic ''petite'' mutation in ultraviolet-treated yeast cells

    International Nuclear Information System (INIS)

    Heude, M.; Chanet, R.

    1975-01-01

    The contribution of mitochondrial proteins in the repair of UV-induced lethal and cytoplasmic genetic damages was studied in dark liquid-held exponential and stationary phase yeast cells. This was performed by using the specific inhibitors, erythromycin and chloramphenicol. It was shown that mitochondrial proteins are involved in the recovery and survival of UV-treated exponential phase cells, but not in the recovery of stationary phase cells. Mitochondrial proteins are partly implicated in the mechanisms leading to the restoration of the e + genotype in UV-irradiated dark liquid-held exponential phase cells. Here again, in stationary phase cells, mitochondrial enzymes do not seem to participate in the negative liquid-holding process for the e - induction, as shown by inhibiting mitochondrial protein synthesis of both mitochondrial and nuclear protein synthesis. When cells are grown in glycerol, the response after dark liquid-holding of the UV-treated cells in the different growth stages are similar to that found for glucose-grown cells. In other words, the fate of cytoplasmic genetic damage in particular is not correlated with the repressed or derepressed state of the mitochondria

  16. Business Recovery Strategies in the Economic Crisis of Recession ...

    African Journals Online (AJOL)

    This paper examines Nigeria's theoretical economic foundation, the consequence of recession generally and specifically on the Gross Domestic Product (GDP) growth rate (2008-2010) and on companies together with customers reaction. Business recovery strategies for an upturn over the economic crisis of recession in ...

  17. Intrauterine growth retardation increases the susceptibility of pigs to high-fat diet-induced mitochondrial dysfunction in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Jingbo Liu

    Full Text Available It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR increases the susceptibility of offspring to high-fat (HF diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW, and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA, and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH and glucose-6-phosphate dehydrogenase (G6PD. These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction.

  18. Intrauterine Growth Retardation Increases the Susceptibility of Pigs to High-Fat Diet-Induced Mitochondrial Dysfunction in Skeletal Muscle

    Science.gov (United States)

    Liu, Jingbo; Chen, Daiwen; Yao, Ying; Yu, Bing; Mao, Xiangbing; He, Jun; Huang, Zhiqing; Zheng, Ping

    2012-01-01

    It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR) increases the susceptibility of offspring to high-fat (HF) diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW), and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA), and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD). These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA) contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. PMID:22523560

  19. Interleukin-24 induces neuroblastoma SH-SY5Y cell differentiation, growth inhibition, and apoptosis by promoting ROS production.

    Science.gov (United States)

    Li, Yuan; Zhang, Hongwei; Zhu, Xiaoyu; Feng, Dongchuan; Gong, Jinchao; Han, Tao

    2013-11-01

    Neuroblastoma is among the most aggressive tumors that occur in childhood and infancy. The clinical prognosis of children with advanced-stage neuroblastoma is still poor. Interleukin-24 (IL-24) is emerging as a new cytokine involved in tumor cellular proliferation, differentiation, and apoptosis and has been widely studied as a tumor inhibitor. However, little is known about this cytokine's role in neuroblastoma. In this study, we investigated the possible effects of IL-24 on inducing neuroblastoma cell differentiation, growth inhibition, and apoptosis in vitro. Our data show that IL-24 promotes neuroblastoma SH-SY5Y cell differentiation, growth inhibition, and apoptosis. Furthermore, we found that the differentiation- and apoptosis-inducing action of IL-24 depends on the accumulation of reactive oxygen species (ROS). These results suggest that IL-24 can induce neuroblastoma cell differentiation and apoptosis and may be a potential therapeutic agent for neuroblastoma.

  20. Methotrexate Toxicity in Growing Long Bones of Young Rats: A Model for Studying Cancer Chemotherapy-Induced Bone Growth Defects in Children

    Directory of Open Access Journals (Sweden)

    Chiaming Fan

    2011-01-01

    Full Text Available The advancement and intensive use of chemotherapy in treating childhood cancers has led to a growing population of young cancer survivors who face increased bone health risks. However, the underlying mechanisms for chemotherapy-induced skeletal defects remain largely unclear. Methotrexate (MTX, the most commonly used antimetabolite in paediatric cancer treatment, is known to cause bone growth defects in children undergoing chemotherapy. Animal studies not only have confirmed the clinical observations but also have increased our understanding of the mechanisms underlying chemotherapy-induced skeletal damage. These models revealed that high-dose MTX can cause growth plate dysfunction, damage osteoprogenitor cells, suppress bone formation, and increase bone resorption and marrow adipogenesis, resulting in overall bone loss. While recent rat studies have shown that antidote folinic acid can reduce MTX damage in the growth plate and bone, future studies should investigate potential adjuvant treatments to reduce chemotherapy-induced skeletal toxicities.

  1. Pressure-induced preferential growth of nanocrystals in amorphous Nd9Fe85B6

    International Nuclear Information System (INIS)

    Wu Wei; Li Wei; Sun Hongyu; Li Hui; Zhang Xiangyi; Li Xiaohong; Liu Baoting

    2008-01-01

    Control over the growth and crystallographic orientation of nanocrystals in amorphous alloys is of particular importance for the development of advanced nanocrystalline materials. In the present study, Nd 2 Fe 14 B nanocrystals with a strong crystallographic texture along the [410] direction have been produced in Nd-lean amorphous Nd 9 Fe 85 B 6 under a high pressure of 6 GPa at 923 K. This is attributed to the high pressure inducing the preferential growth of Nd 2 Fe 14 B nanocrystals in the alloy. The present study demonstrates the potential application of high-pressure technology in controlling nanocrystalline orientation in amorphous alloys

  2. Relationship Between Blood Flow and Performance Recovery: A Randomized, Placebo-Controlled Study.

    Science.gov (United States)

    Borne, Rachel; Hausswirth, Christophe; Bieuzen, François

    2017-02-01

    To investigate the effect of different limb blood-flow levels on cycling-performance recovery, blood lactate concentration, and heart rate. Thirty-three high-intensity intermittent-trained athletes completed two 30-s Wingate anaerobic test sessions, 3 × 30-s (WAnT 1-3) and 1 × 30-s (WAnT 4), on a cycling ergometer. WAnT 1-3 and WAnT 4 were separated by a randomly assigned 24-min recovery intervention selected from among blood-flow restriction, passive rest, placebo stimulation, or neuromuscular electrical-stimulation-induced blood flow. Calf arterial inflow was measured by venous occlusion plethysmography at regular intervals throughout the recovery period. Performance was measured in terms of peak and mean power output during WAnT 1 and WAnT 4. After the recovery interventions, a large (r = .68 [90% CL .42; .83]) and very large (r = .72 (90% CL .49; .86]) positive correlation were observed between the change in calf arterial inflow and the change in mean and peak power output, respectively. Calf arterial inflow was significantly higher during the neuromuscular-electrical-stimulation recovery intervention than with the blood-flow-restriction, passive-rest, and placebo-stimulation interventions (P .05). No recovery effect was linked to heart rate or blood lactate concentration levels. For the first time, these data support the existence of a positive correlation between an increase in blood flow and performance recovery between bouts of high-intensity exercise. As a practical consideration, this effect can be obtained by using neuromuscular electrical stimulation-induced blood flow since this passive, simple strategy could be easily applied during short-term recovery.

  3. Herbicide effects on the growth and photosynthetic efficiency of Cassiopea maremetens.

    Science.gov (United States)

    Rowen, David J; Templeman, Michelle A; Kingsford, Michael J

    2017-09-01

    Herbicides from agricultural run-off have been measured in coastal systems of the Great Barrier Reef over many years. Non-target herbicide exposure, especially photosystem II herbicides has the potential to affect seagrasses and other marine species. The symbiotic benthic jellyfish Cassiopea maremetens is present in tropical/sub-tropical estuarine and marine environments. Jellyfish (n = 8 per treatment) were exposed to four separate concentrations of agricultural formulations of diuron or hexazinone to determine their sensitivity and potential for recovery to pulsed herbicide exposure. Jellyfish growth, symbiont photosynthetic activity and zooxanthellae density were analysed for herbicide-induced changes for 7 days followed by a 7 day recovery period. Both the jellyfish and endosymbiont were more sensitive to diuron than hexazinone. The 7-day EC 50 for jellyfish growth was 0.35 μg L -1 for Diuron and 17.5 μg L -1 for Hexazinone respectively. Diuron exposure caused a significant decrease (p diuron and hexazinone caused significant decreases in photosynthetic efficiency (effective quantum yield) in all treatment concentrations (0.1 μg L -1 and above) and this effect continued in the post-exposure period. As this species is frequently found in near-shore environments, they may be particularly vulnerable to herbicide run-off. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury.

    Science.gov (United States)

    Goganau, Ioana; Sandner, Beatrice; Weidner, Norbert; Fouad, Karim; Blesch, Armin

    2018-02-01

    Activity dependent plasticity is a key mechanism for the central nervous system (CNS) to adapt to its environment. Whether neuronal activity also influences axonal regeneration in the injured CNS, and whether electrical stimulation (ES) can activate regenerative programs in the injured CNS remains incompletely understood. Using KCl-induced depolarization, in vivo ES followed by ex-vivo neurite growth assays and ES after spinal cord lesions and cell grafting, we aimed to identify parameters important for ES-enhanced neurite growth and axonal regeneration. Using cultures of sensory neurons, neurite growth was analyzed after KCl-induced depolarization for 1-72h. Increased neurite growth was detected after short-term stimulation and after longer stimulation if a sufficient delay between stimulation and growth measurements was provided. After in vivo ES (20Hz, 2× motor threshold, 0.2ms, 1h) of the intact sciatic nerve in adult Fischer344 rats, sensory neurons showed a 2-fold increase in in vitro neurite length one week later compared to sham animals, an effect not observed one day after ES. Longer ES (7h) and repeated ES (7days, 1h each) also increased growth by 56-67% one week later, but provided no additional benefit. In vivo growth of dorsal column sensory axons into a graft of bone marrow stromal cells 4weeks after a cervical spinal cord lesion was also enhanced with a single post-injury 1h ES of the intact sciatic nerve and was also observed after repeated ES without inducing pain-like behavior. While ES did not result in sensory functional recovery, our data indicate that ES has time-dependent influences on the regenerative capacity of sensory neurons and might further enhance axonal regeneration in combinatorial approaches after SCI. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Growth rate analysis and protein identification of Kappaphycus alvarezii (Rhodophyta, Gigartinales under pH induced stress culture

    Directory of Open Access Journals (Sweden)

    Mian Zi Tee

    2015-11-01

    Full Text Available Environmental pH is one of the factors contributing to abiotic stress which in turn influences the growth and development of macroalgae. This study was conducted in order to assess the growth and physiological changes in Kappaphycus alvarezii under different pH conditions: pHs 6, ∼8.4 (control and 9. K. alvarezii explants exhibited a difference in the daily growth rate (DGR among the different pH treatments (p ≤ 0.05. The highest DGR was observed in control culture with pH ∼8.4 followed by alkaline (pH 9 and acidic (pH 6 induced stress cultures. Protein expression profile was generated from different pH induced K. alvarezii cultures using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE followed by protein identification and analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS and Mascot software. Ribulose bisphosphate carboxylase (Rubisco large chain was identified to be up-regulated under acidic (pH 6 condition during the second and fourth week of culture. The findings indicated that Rubisco can be employed as a biomarker for pH induced abiotic stress. Further study on the association between the expression levels of Rubisco large chain and their underlying mechanisms under pH stress conditions is recommended.

  6. Piezoelectric ceramic (PZT) modulates axonal guidance growth of rat cortical neurons via RhoA, Rac1, and Cdc42 pathways.

    Science.gov (United States)

    Wen, Jianqiang; Liu, Meili

    2014-03-01

    Electrical stimulation is critical for axonal connection, which can stimulate axonal migration and deformation to promote axonal growth in the nervous system. Netrin-1, an axonal guidance cue, can also promote axonal guidance growth, but the molecular mechanism of axonal guidance growth under indirect electric stimulation is still unknown. We investigated the molecular mechanism of axonal guidance growth under piezoelectric ceramic lead zirconate titanate (PZT) stimulation in the primary cultured cortical neurons. PZT induced marked axonal elongation. Moreover, PZT activated the excitatory postsynaptic currents (EPSCs) by increasing the frequency and amplitude of EPSCs of the cortical neurons in patch clamp assay. PZT downregulated the expression of Netrin-1 and its receptor Deleted in Colorectal Cancer (DCC). Rho GTPase signaling is involved in interactions of Netrin-1 and DCC. PZT activated RhoA. Dramatic decrease of Cdc42 and Rac1 was also observed after PZT treatment. RhoA inhibitor Clostridium botulinum C3 exoenzyme (C3-Exo) prevented the PZT-induced downregulation of Netrin-1 and DCC. We suggest that PZT can promote axonal guidance growth by downregulation of Netrin-1 and DCC to mediate axonal repulsive responses via the Rho GTPase signaling pathway. Obviously, piezoelectric materials may provide a new approach for axonal recovery and be beneficial for clinical therapy in the future.

  7. Hepatic mitochondrial and microsomal recovery of rats intoxicated with CCl/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Hirai, Y.; Koga, N.; Tomokuni, K.

    1983-01-01

    The hepatic mitochondrial and microsomal recovery of rats intoxicated with CCl/sub 4/ was investigated with specific reference to the oxygen utilization of liver slices. In control rats, the major oxygen utilization of the liver slices was attributed to mitochondrial particles. Since the mitochondrial oxygen utilization was inhibited by cyanide, the microsomal oxygen utilization was induced by NADPH and phenobarbital (a substrate for microsomal mixed function oxidase). Changes in oxygen utilization were observed in the recovery course of rats intoxicated with CCl/sub 4/, and the recovery of mitochondria was found to be faster than that of microsomes. A sex difference was present in the recovery mechanism of the microsomes.

  8. Bobath Concept versus constraint-induced movement therapy to improve arm functional recovery in stroke patients: a randomized controlled trial.

    Science.gov (United States)

    Huseyinsinoglu, Burcu Ersoz; Ozdincler, Arzu Razak; Krespi, Yakup

    2012-08-01

    To compare the effects of the Bobath Concept and constraint-induced movement therapy on arm functional recovery among stroke patients with a high level of function on the affected side. A single-blinded, randomized controlled trial. Outpatient physiotherapy department of a stroke unit. A total of 24 patients were randomized to constraint-induced movement therapy or Bobath Concept group. The Bobath Concept group was treated for 1 hour whereas the constraint-induced movement therapy group received training for 3 hours per day during 10 consecutive weekdays. Main measures were the Motor Activity Log-28, the Wolf Motor Function Test, the Motor Evaluation Scale for Arm in Stroke Patients and the Functional Independence Measure. The two groups were found to be homogeneous based on demographic variables and baseline measurements. Significant improvements were seen after treatment only in the 'Amount of use' and 'Quality of movement' subscales of the Motor Activity Log-28 in the constraint-induced movement therapy group over the the Bobath Concept group (P = 0.003; P = 0.01 respectively). There were no significant differences in Wolf Motor Function Test 'Functional ability' (P = 0.137) and 'Performance time' (P = 0.922), Motor Evaluation Scale for Arm in Stroke Patients (P = 0.947) and Functional Independence Measure scores (P = 0.259) between the two intervention groups. Constraint-induced movement therapy and the Bobath Concept have similar efficiencies in improving functional ability, speed and quality of movement in the paretic arm among stroke patients with a high level of function. Constraint-induced movement therapy seems to be slightly more efficient than the Bobath Concept in improving the amount and quality of affected arm use.

  9. Growth decline linked to warming-induced water limitation in hemi-boreal forests.

    Science.gov (United States)

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A; Badmaeva, Natalya K; Sandanov, Denis V

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.

  10. Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata.

    Science.gov (United States)

    Liu, Xue; Fu, Jing-Wei; Tang, Ni; da Silva, E B; Cao, Yue; Turner, Benjamin L; Chen, Yanshan; Ma, Lena Q

    2017-07-01

    Phytate is abundant in soils, which is stable and unavailable for plant uptake. However, it occurs in root exudates of As-hyperaccumulator Pteris vittata (PV). To elucidate its effect on As uptake and growth, P. vittata were grown on agar media (63 μM P) containing 50 μM As and/or 50 or 500 μM phytate with non As-hyperaccumulator Pteris ensiformis (PE) as a congeneric control for 60 d. Phytate induced efficient As and P uptake, and enhanced growth in PV, but had little effects on PE. The As concentrations in PV fronds and roots were 157 and 31 mg kg -1 in As 50 +phytate 50 , 2.2- and 3.1-fold that of As 50 treatment. Phosphorus uptake by PV was reduced by 27% in As treatment than the control (P vs. P+As) but increased by 73% comparing phytate 500 to phytate 500 +As, indicating that PV effectively took up P from phytate. Neither As nor phytate affected Fe accumulation in PV, but phytate reduced root Fe concentration in PE (46-56%). As such, the increased As and P and the unsuppressed Fe uptake in PV probably promoted PV growth. Thus, supplying phytate to As-contaminated soils may promote As uptake and growth in PV and its phytoremediation ability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Improved microbial growth inhibition activity of bio-surfactant induced Ag–TiO{sub 2} core shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nithyadevi, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Kumar, P. Suresh [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Ponpandian, N.; Viswanathan, C. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046 (India); Meena, P. [Department of Physics, PSGR Krishnammal college for women, Coimbatore 641 004 (India)

    2015-02-01

    Graphical abstract: - Highlights: • TiO{sub 2} nanoparticles were synthesized by hydrolysis process and Ag nanoparticles were prepared by using hydrazine reduction method. • Ag–TiO{sub 2} core shell nanoparticles were synthesized by reverse micelle method. • Coatings of TiO{sub 2} shell leads to decrease the usage of silver particles and also it reduces the release of silver ions from the matrix. • Optimum ratio of TiO{sub 2} particles: Ag atoms are needed for better antibacterial activity. • Sodium alginate (Bio-copolymer) induced core shell nanoparticles results 100% cell growth inhibition toward Staphylococcus aureus. - Abstract: Surfactant induced silver–titanium dioxide core shell nanoparticles within the size range of 10–50 nm were applied in the antibacterial agent to inhibit the growth of bacterial cells. The single crystalline silver was located in the core part of the composite powder and the titanium dioxide components were uniformly distributed in the shell part. HRTEM and XRD results indicated that silver was completely covered by titanium dioxide and its crystal structure was not affected after being coated by titanium dioxide. The effect of silver–titanium dioxide nanoparticles in the inhibition of bacterial cell growth was studied by means of disk diffusion method. The inhibition zone results reveal that sodium alginate induced silver–titanium dioxide nanoparticles exhibit 100% more antibacterial activity than that with cetyltrimethylbromide or without surfactant. UV–vis spectroscopic analysis showed a large concentration of silver was rapidly released into phosphate buffer solution (PBS) within a period of 1 day, with a much smaller concentration being released after this 1-day period. It was concluded that sodium alginate induced silver–titanium dioxide core shell nanoparticles could enhance long term cell growth inhibition in comparison with cetyltrimethylbromide or without surfactant. The surfactant mediated core shell

  12. Measuring disaster recovery: bouncing back or reaching the counterfactual state?

    Science.gov (United States)

    Cheng, Shaoming; Ganapati, Emel; Ganapati, Sukumar

    2015-07-01

    How should one measure the recovery of a locale from a disaster? The measurement is crucial from a public policy and administration standpoint to determine which places should receive disaster assistance, and it affects the performance evaluation of disaster recovery programmes. This paper compares two approaches to measuring recovery: (i) bouncing back to pre-disaster conditions; and (ii) attaining the counterfactual state. The former centres on returning to normalcy following disaster-induced losses, whereas the latter focuses on attaining the state, using quasi-experimental design, which would have existed if the disaster had not occurred. Both are employed here to assess two housing recovery indicators (total new units and their valuations) in Hurricane Katrina-affected counties (rural and urban). The examination reveals significantly different outcomes for the two approaches: counties have not returned to their pre-disaster housing conditions, but they do exhibit counterfactual recovery. Moreover, rural counties may not be as vulnerable as assumed in the disaster recovery literature. © 2015 The Author(s). Disasters © Overseas Development Institute, 2015.

  13. Postirradiation recovery of a reactor pressure vessel steel investigated by positron annihilation and microhardness measurements

    International Nuclear Information System (INIS)

    Pareja, R.; Diego, N. De; Cruz, R.M. de la; Del Rio, J.

    1993-01-01

    Positron lifetime and microhardness measurements have been performed on untreated, thermal-aged, neutron-irradiated, and postirradiation-annealed samples of reactor pressure vessel steels with the purpose of investigating the mechanisms of irradiation-induced hardening and recovery of the mechanical properties in these materials. The positron lifetime experiments have not revealed any evidence of the formation of a significant concentration of voids or vacancy clusters in samples irradiated at ∼290 C with fluences ≤2.71 x 10 23 n/m 2 (E>1 MeV), but they suggest a dislocation annealing induced by the irradiation. Isochronal annealing experiments with neutron-irradiated samples show a simultaneous recovery in their positron lifetime and microhardness at ∼340 C. From the microhardness measurements, the yield strength of the irradiated material has been estimated. The results appear to be consistent with a model of hardening due to irradiation-induced dissolution of precipitates with formation of small metastable precipitates after postirradiation aging and recovery induced by the disappearance of these metastable precipitates

  14. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures.

    Science.gov (United States)

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2010-02-01

    The influence of growth temperature and acidification of the culture medium up to pH 4.25 with acetic, citric, lactic and hydrochloric acids on the growth and subsequent acid resistance at pH 3.0 of Salmonella typhimurium CECT 443 was studied. The minimum pH value which allowed for S. typhimurium growth within the temperature range of 25-37 degrees C was 4.5 when the pH was reduced using citric and hydrochloric acids, and 5.4 and 6.4 when lactic acid and acetic acid were used, respectively. At high (45 degrees C) or low (10 degrees C) temperatures, the growth pH boundary was increased about 1 pH unit. The growth temperature markedly modified the acid resistance of the resulting cells. In all cases, D-values were lower for cells grown at 10 degrees C and significantly increased with increasing growth temperature up to 37 degrees C, at which D-values obtained were up to 10 times higher. Cells grown at 45 degrees C showed D-values similar to those found for cells grown at 25 degrees C. The growth of cells in acidified media, regardless of the pH value, caused an increase in their acid resistance at the four incubation temperatures, although the magnitude of the Acid Tolerance Response (ATR) observed depended on the growth temperature. Acid adapted cultures at 10 degrees C showed D-values ranging from 5.75 to 6.91 min, which turned out to be about 2 times higher than those corresponding to non-acid adapted cultures, while higher temperatures induced an increase in D-values of at least 3.5 times. Another finding was that, while at 10 and 45 degrees C no significant differences among the effect of the different acids tested in inducing an ATR were observed, when cells were grown at 25 and 37 degrees C citric acid generally turned out to be the acid which induced the strongest ATR. Results obtained in this study show that growth temperature is an important factor affecting S. typhimurium acid resistance and could contribute to find new strategies based on intelligent

  15. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse.

    Science.gov (United States)

    Nair, Deepti; Ramesh, Vijay; Li, Richard C; Schally, Andrew V; Gozal, David

    2013-11-01

    Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea (OSA), leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in adult mice. In both patients and murine models of OSA, the disease is associated with suppression of growth hormone (GH) secretion, which is actively involved in the growth, development, and function of the central nervous system (CNS). Recent work showed that exogenous GH therapy attenuated neurocognitive deficits elicited by IH during sleep in rats. Here, we show that administration of the Growth Hormone Releasing Hormone (GHRH) agonist JI-34 attenuates IH-induced neurocognitive deficits, anxiety, and depression in mice along with reduction in oxidative stress markers such as MDA and 8-hydroxydeoxyguanosine, and increases in hypoxia inducible factor-1α DNA binding and up-regulation of insulin growth factor-1 and erythropoietin expression. In contrast, treatment with a GHRH antagonist (MIA-602) during intermittent hypoxia did not affect any of the IH-induced deleterious effects in mice. Thus, exogenous GHRH administered as the formulation of a GHRH agonist may provide a viable therapeutic intervention to protect IH-vulnerable brain regions from OSA-associated neurocognitive dysfunction. Sleep apnea, characterized by chronic intermittent hypoxia (IH), is associated with substantial cognitive and behavioral deficits. Here, we show that administration of a GHRH agonist (JI-34) reduces oxidative stress, increases both HIF-1α nuclear binding and downstream expression of IGF1 and erythropoietin (EPO) in hippocampus and cortex, and markedly attenuates water maze performance deficits in mice exposed to intermittent hypoxia during sleep. © 2013 International Society for Neurochemistry.

  16. A re-assessment of the effects of a Nogo-66 receptor antagonist on regenerative growth of axons and locomotor recovery after spinal cord injury in mice

    OpenAIRE

    Steward, Oswald; Sharp, Kelli; Yee, Kelly Matsudaira; Hofstadter, Maura

    2007-01-01

    This study was undertaken as part of the NIH “Facilities of Research-Spinal Cord Injury” project to support independent replication of published studies. Here, we repeated a study reporting that treatment with the NgR antagonist peptide NEP1-40 results in enhanced growth of corticospinal and serotonergic axons and enhanced locomotor recovery after thoracic spinal cord injury. Mice received dorsal hemisection injuries at T8 and then received either NEP1-40, Vehicle, or a Control Peptide beginn...

  17. Inhibitory effects of omega-3 fatty acids on injury-induced epidermal growth factor receptor transactivation contribute to delayed wound healing.

    Science.gov (United States)

    Turk, Harmony F; Monk, Jennifer M; Fan, Yang-Yi; Callaway, Evelyn S; Weeks, Brad; Chapkin, Robert S

    2013-05-01

    Epidermal growth factor receptor (EGFR)-mediated signaling is required for optimal intestinal wound healing. Since n-3 polyunsaturated fatty acids (PUFA), specifically docosahexaenoic acid (DHA), alter EGFR signaling and suppress downstream activation of key signaling pathways, we hypothesized that DHA would be detrimental to the process of intestinal wound healing. Using a mouse immortalized colonocyte model, DHA uniquely reduced EGFR ligand-induced receptor activation, whereas DHA and its metabolic precursor eicosapentaenoic acid (EPA) reduced wound-induced EGFR transactivation compared with control (no fatty acid or linoleic acid). Under wounding conditions, the suppression of EGFR activation was associated with a reduction in downstream activation of cytoskeletal remodeling proteins (PLCγ1, Rac1, and Cdc42). Subsequently, DHA and EPA reduced cell migration in response to wounding. Mice were fed a corn oil-, DHA-, or EPA-enriched diet prior to intestinal wounding (2.5% dextran sodium sulfate for 5 days followed by termination after 0, 3, or 6 days of recovery). Mortality was increased in EPA-fed mice and colonic histological injury scores were increased in EPA- and DHA-fed mice compared with corn oil-fed (control) mice. Although kinetics of colonic EGFR activation and downstream signaling (PLCγ1, Rac1, and Cdc42) were delayed by both n-3 PUFA, colonic repair was increased in EPA- relative to DHA-fed mice. These results indicate that, during the early response to intestinal wounding, DHA and EPA uniquely delay the activation of key wound-healing processes in the colon. This effect is mediated, at least in part, via suppression of EGFR-mediated signaling and downstream cytoskeletal remodeling.

  18. Phase I study of transforming growth factor-beta 3 mouthwashes for prevention of chemotherapy-induced mucositis

    NARCIS (Netherlands)

    Wymenga, ANM; van der Graaf, WTA; Hofstra, LS; Spijkervet, FKL; Timens, W; Timmer-Bosscha, H; Sluiter, WJ; van Buuren, AHJAW; Mulder, NH; de Vries, EGE

    The purpose of this study was to establish the safety and tolerability of recombinant transforming growth factor-beta 3 (TGF-beta 3; CGP 46614) mouthwashes intended for prevention of chemotherapy-induced mucositis. Local effects were especially analyzed by objective and subjective measurements of

  19. Effect of a longitudinally applied voltage upon the growth of Zea mays seedlings

    Science.gov (United States)

    Desrosiers, M. F.; Bandurski, R. S.

    1988-01-01

    The electrical parameters that affect young seedling growth were investigated. Voltages ranging from 5 to 40 volts were applied longitudinally along the mesocotyl region of 4-day old Zea mays L. (cv Silver Queen) seedlings for periods of 3 or 4 hours. It was determined that: (a) making the tips of the seedlings electrically positive relative to the base strongly inhibited shoot growth at 5 volts, whereas the reverse polarity had no effect; (b) at higher voltages, making the tip of the seedlings negative caused less growth inhibition than the reverse polarity at each voltage level; (c) the higher the applied voltage the greater the degree of inhibition; and, (d) the more growth inhibition experienced by the plants the poorer, and slower, their recovery. Previous observations of a relationship between the amount of free indole-3-acetic acid in the mesocotyl cortex and the growth rate of the mesocotyl and of gravitropism-induced movement of labeled indole-3-acetic acid from the seed to the shoot lead to the prediction of a voltage-dependent gating of the movement of indole-3-acetic acid from the stele to the cortex. This provided the basis for attempting to alter the growth rate of seedlings by means of an applied voltage.

  20. Orphan nuclear receptor NR4A1 is a negative regulator of DHT-induced rat preantral follicular growth.

    Science.gov (United States)

    Xue, Kai; Liu, Jia-yin; Murphy, Bruce D; Tsang, Benjamin K

    2012-12-01

    Nuclear receptor subfamily 4 group A member1 (NR4A1), an orphan nuclear receptor, is involved in the transcriptional regulation of thecal cell androgen biosynthesis and paracrine factor insulin-like 3 (INSL3) expression. Androgens are known to play an important regulatory role in ovarian follicle growth. Using a chronically androgenized rat model, a preantral follicle culture model and virus-mediated gene delivery, we examined the role and regulation of NR4A1 in the androgenic control of preantral follicular growth. In the present study, Ki67 staining was increased in preantral follicles on ovarian sections from 5α-dihydrotestosterone (DHT)-treated rats. Preantral follicles from DHT-treated rats cultured for 4 d exhibited increased growth and up-regulation of mRNA abundance of G(1)/S-specific cyclin-D2 (Ccnd2) and FSH receptor (Fshr). Similarly, DHT (1 μm) increased preantral follicular growth and Ccnd2 and Fshr mRNA abundance in vitro. The NR4A1 expression was high in theca cells and was down-regulated by DHT in vivo and in vitro. Forced expression of NR4A1 augmented preantral follicular growth, androstenedione production, and Insl3 expression in vitro. Inhibiting the action of androgen (with androgen receptor antagonist flutamide) or INSL3 (with INSL3 receptor antagonist INSL3 B-chain) reduced NR4A1-induced preantral follicular growth. Furthermore, NR4A1 overexpression enhanced DHT-induced preantral follicular growth, a response attenuated by inhibiting INSL3. In conclusion, DHT promotes preantral follicular growth and attenuates thecal NR4A1 expression in vivo and in vitro. Our findings are consistent with the notion that NR4A1 serves as an important point of negative feedback to minimize the excessive preantral follicle growth in hyperandrogenism.

  1. The role of life histories and trophic interactions in population recovery.

    Science.gov (United States)

    Audzijonyte, Asta; Kuparinen, Anna

    2016-08-01

    Factors affecting population recovery from depletion are at the focus of wildlife management. Particularly, it has been debated how life-history characteristics might affect population recovery ability and productivity. Many exploited fish stocks have shown temporal changes towards earlier maturation and reduced adult body size, potentially owing to evolutionary responses to fishing. Whereas such life-history changes have been widely documented, their potential role on stock's ability to recover from exploitation often remains ignored by traditional fisheries management. We used a marine ecosystem model parameterized for Southeastern Australian ecosystem to explore how changes towards "faster" life histories might affect population per capita growth rate r. We show that for most species changes towards earlier maturation during fishing have a negative effect (3-40% decrease) on r during the recovery phase. Faster juvenile growth and earlier maturation were beneficial early in life, but smaller adult body sizes reduced the lifetime reproductive output and increased adult natural mortality. However, both at intra- and inter-specific level natural mortality and trophic position of the species were as important in determining r as species longevity and age of maturation, suggesting that r cannot be predicted from life-history traits alone. Our study highlights that factors affecting population recovery ability and productivity should be explored in a multi-species context, where both age-specific fecundity and survival schedules are addressed simultaneously. It also suggests that contemporary life-history changes in harvested species are unlikely to increase their resilience and recovery ability. © 2016 Society for Conservation Biology.

  2. Disaster Debris Recovery Database - Recovery

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Disaster Debris Recovery Database (DDRD) promotes the proper recovery, recycling, and disposal of disaster debris for emergency responders at the federal,...

  3. PET measurements of hyperthermia-induced suppression of protein synthesis in tumors in relation to effects on tumor growth

    International Nuclear Information System (INIS)

    Daemen, B.J.; Elsinga, P.H.; Mooibroek, J.; Paans, A.M.; Wieringa, A.R.; Konings, A.W.; Vaalburg, W.

    1991-01-01

    Hyperthermia-induced metabolic changes in tumor tissue have been monitored by PET. Uptake of L-[1-11C]tyrosine in rhabdomyosarcoma tissue of Wag/Rij rats was dose-dependently reduced after local hyperthermia treatment at 42, 45, or 47 degrees C. Tumor blood flow, as measured by PET with 13NH3, appeared to be unchanged. The L-[1-11C]tyrosine uptake data were compared to uptake data of L-[1-14C]tyrosine and with data on the incorporation of L-[1-14C]tyrosine into tumor proteins. After intravenous injection, the 14C data were obtained from dissected tumor tissue. Heat-induced inhibition of the incorporation of L-[1-14C]tyrosine into tumor proteins tallied with the L-[1-11C]tyrosine uptake data. Heat-induced inhibition of amino acid uptake in the tumor correlated well with regression of tumor growth. It is concluded that PET using L-[1-11C]tyrosine is eligible for monitoring the effect of hyperthermia on tumor growth

  4. Causal Link between the Cortico-Rubral Pathway and Functional Recovery through Forced Impaired Limb Use in Rats with Stroke

    Science.gov (United States)

    Ishida, Akimasa; Isa, Kaoru; Umeda, Tatsuya; Kobayashi, Kazuto; Kobayashi, Kenta; Hida, Hideki

    2016-01-01

    Intensive rehabilitation is believed to induce use-dependent plasticity in the injured nervous system; however, its causal relationship to functional recovery is unclear. Here, we performed systematic analysis of the effects of forced use of an impaired forelimb on the recovery of rats after lesioning the internal capsule with intracerebral hemorrhage (ICH). Forced limb use (FLU) group rats exhibited better recovery of skilled forelimb functions and their cortical motor area with forelimb representation was restored and enlarged on the ipsilesional side. In addition, abundant axonal sprouting from the reemerged forelimb area was found in the ipsilateral red nucleus after FLU. To test the causal relationship between the plasticity in the cortico-rubral pathway and recovery, loss-of-function experiments were conducted using a double-viral vector technique, which induces selective blockade of the target pathway. Blockade of the cortico-rubral tract resulted in deficits of the recovered forelimb function in FLU group rats. These findings suggest that the cortico-rubral pathway is a substrate for recovery induced by intensive rehabilitation after ICH. SIGNIFICANCE STATEMENT The research aimed at determining the causal linkage between reorganization of the motor pathway induced by intensive rehabilitative training and recovery after stroke. We clarified the expansion of the forelimb representation area of the ipsilesional motor cortex by forced impaired forelimb use (FLU) after lesioning the internal capsule with intracerebral hemorrhaging (ICH) in rats. Anterograde tracing showed robust axonal sprouting from the forelimb area to the red nucleus in response to FLU. Selective blockade of the cortico-rubral pathway by the novel double-viral vector technique clearly revealed that the increased cortico-rubral axonal projections had causal linkage to the recovery of reaching movements induced by FLU. Our data demonstrate that the cortico-rubral pathway is responsible for the

  5. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence.

    Science.gov (United States)

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-10-04

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.

  6. Gene regulation by growth factors

    International Nuclear Information System (INIS)

    Metz, R.; Gorham, J.; Siegfried, Z.; Leonard, D.; Gizang-Ginsberg, E.; Thompson, M.A.; Lawe, D.; Kouzarides, T.; Vosatka, R.; MacGregor, D.; Jamal, S.; Greenberg, M.E.; Ziff, E.B.

    1988-01-01

    To coordinate the proliferation and differentiation of diverse cell types, cells of higher eukaryotes communicate through the release of growth factors. These peptides interact with specific transmembrane receptors of other cells and thereby generate intracellular messengers. The many changes in cellular physiology and activity that can be induced by growth factors imply that growth factor-induced signals can reach the nucleus and control gene activity. Moreover, current evidence also suggests that unregulated signaling along such pathways can induce aberrant proliferation and the formation of tumors. This paper reviews investigations of growth factor regulation of gene expression conducted by the authors' laboratory

  7. The impact of rickets on growth and morbidity during recovery among children with complicated severe acute malnutrition in Kenya: A cohort study

    Science.gov (United States)

    Thitiri, Johnstone; Mwalekwa, Laura; Timbwa, Molline; Iversen, Per Ole; Fegan, Greg W.; Berkley, James A.

    2017-01-01

    Abstract The effects of rickets on children recovery from severe acute malnutrition (SAM) are unknown. Rickets may affect both growth and susceptibility to infectious diseases. We investigated the associations of clinically diagnosed rickets with life‐threatening events and anthropometric recovery during 1 year following inpatient treatment for complicated SAM. This was a secondary analysis of clinical trial data among non‐human immunodeficiency virus‐infected Kenyan children with complicated SAM (2–59 months) followed for 1 year posthospital discharge (ClinicalTrials.gov ID NCT00934492). The outcomes were mortality, hospital readmissions, and growth during 12 months. The main exposure was clinically diagnosed rickets at baseline. Of 1,778 children recruited, 230 (12.9%, 95% CI [11.4, 14 .6]) had clinical signs of rickets at baseline. Enrolment at an urban site, height‐for‐age and head circumference‐for‐age z scores were associated with rickets. Rickets at study enrolment was associated with increased mortality (adjusted Hazard Ratio [aHR] 1.61, 95% CI [1.14, 2.27]), any readmission (aHR 1.37, 95% CI [1.09, 1.72]), readmission for severe pneumonia (aHR 1.37, 95% CI [1.05, 1.79]), but not readmission with diarrhoea (aHR 1.05, 95% CI [0.73, 1.51]). Rickets was associated with increased height gain (centimetres), adjusted regression coefficient 0.19 (95% CI [0.10, 0.28]), but not changes in head circumference, mid‐upper arm circumference, or weight. Rickets was common among children with SAM at urban sites and associated with increased risks of severe pneumonia and death. Increased height gain may have resulted from vitamin D and calcium treatment. Future work should explore possibility of other concurrent micronutrient deficiencies and optimal treatment of rickets in this high‐risk population. PMID:29178404

  8. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    Energy Technology Data Exchange (ETDEWEB)

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 of 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.

  9. Effect of stress induced by suboptimal growth factors on survival of Escherichia coli O157:H7.

    Science.gov (United States)

    Uyttendaele, M; Taverniers, I; Debevere, J

    2001-05-21

    This study investigated the growth and survival of E. coli O157:H7 exposed to a combination of suboptimal factors (22 degrees C, 7 degrees C, -18 degrees C/0.5% NaCl, 5.0% NaCl/pH 7.0, pH 5.4, pH 4.5/addition of lactic acid) in a simulation medium for red meat (beef gravy). Prolonged survival was noted as the imposed stress was more severe, and as multiple growth factors became suboptimal. At a defined temperature (7 degrees C or -18 degrees C), survival was prolonged at the more acid, more suboptimal pH (pH 4.5 > pH 5.4 > pH 7.0) while at a defined pH (pH 4.5), better survival was observed at 7 degrees C than at 22 degrees C. This suggests that application of the hurdle concept for preservation of food may inhibit outgrowth but induce prolonged survival of E. coli O157:H7 in minimal processed foods. At both 22 degrees C and 7 degrees C, the addition of lactic acid instead of HCl to reduce pH (to pH 4.5) resulted in a more rapid decrease of E. coli O157:H7. High survival was observed in beef gravy, pH 5.4 at -18 degrees C (simulation of frozen meat)-reduction of log 3.0 to log 1.9 after 43 days--and in beef gravy, pH 4.5 and 5% NaCl at 7 degrees C (simulation of a fermented dried meat product kept in refrigeration)--less than 1 log reduction in 43 days. In these circumstances, however, a high degree of sublethal damage of the bacterial cells was noted. The degree of sublethal damage can be estimated from the difference in recovery of the pathogen on the non-selective TSA medium and the selective SMAC medium.

  10. Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection.

    Science.gov (United States)

    Manske, Sarah L; Boyd, Steven K; Zernicke, Ronald F

    2010-01-01

    when muscle atrophy is induced through BTX injection. To understand the nature of the interaction between muscle and bone, future work should focus on the functional recovery of individual muscles in relation to bone. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  11. Indications for an inducible component of error-prone DNA repair in yeast

    International Nuclear Information System (INIS)

    Siede, W.; Eckardt, F.

    1984-01-01

    In a thermoconditional mutant of mutagenic DNA repair (rev 2sup(ts) = rad5-8) of Saccharomyces cerevisiae recovery of survival and mutation frequencies can be monitored by incubating UV-irradiated cells in growth medium at a permissive temperature (23 0 C) before plating and a shift to restrictive temperature (36 0 C). Inhibition of protein synthesis with cycloheximide during incubation at permissive conditions blocks this REV 2 dependent recovery process in stationary phase rev 2sup(ts) cells, whereas it can be reduced but not totally abolished in exponentially growing cells. These results indicate a strict dependence on post-irradiation protein synthesis in stationary phase cells and argue for a considerable constitutive level and only limited inducibility in logarithmic phase cells. The UV inducibility of the REV 2 coded function in stationary phase cells could be confirmed by analysis of dose-response pattern of the his 5-2 reversion: in stationary phase rev 2sup(ts) cells, the quadratic component of the biphasic linear-quadratic induction kinetics found at 23 0 C, which is interpreted as the consequence of induction of mutagenic repair, is eliminated at 36 0 C. (author)

  12. Indications for an inducible component of error-prone DNA repair in yeast.

    Science.gov (United States)

    Siede, W; Eckardt, F

    1984-01-01

    In a thermoconditional mutant of mutagenic DNA repair (rev 2ts = rad 5-8) of Saccharomyces cerevisiae recovery of survival and mutation frequencies can be monitored by incubating UV-irradiated cells in growth medium at a permissive temperature (23 degrees C) before plating and a shift to restrictive temperature (36 degrees C). Inhibition of protein synthesis with cycloheximide during incubation at permissive conditions blocks this REV 2 dependent recovery process in stationary phase rev 2ts cells, whereas it can be reduced but not totally abolished in exponentially growing cells. These results indicate a strict dependence on post-irradiation protein synthesis in stationary phase cells and argue for a considerable constitutive level and only limited inducibility in logarithmic phase cells. The UV inducibility of the REV 2 coded function in stationary phase cells could be confirmed by analysis of the dose-response pattern of the his 5-2 reversion: in stationary phase rev 2ts cells, the quadratic component of the biphasic linear-quadratic induction kinetics found at 23 degrees C, which is interpreted as the consequence of induction of mutagenic repair, is eliminated at 36 degrees C.

  13. Transgenerational effects and recovery of microplastics exposure in model populations of the freshwater cladoceran Daphnia magna Straus.

    Science.gov (United States)

    Martins, Alexandra; Guilhermino, Lúcia

    2018-08-01

    The environmental contamination by microplastics is a global challenge to ecosystem and human health, and the knowledge on the long-term effects of such particles is limited. Thus, the effects of microplastics and post-exposure recovery were investigated over 4 generations (F 0 , F 1 , F 2 , F 3 ) using Daphnia magna as model. Effect criteria were parental mortality, growth, several reproductive parameters, and population growth rate. Microplastics exposure (0.1mg/l of pristine polymer microspheres 1-5μm diameter) caused parental mortality (10-100%), and significantly (p≤0.05) decreased growth, reproduction, and population growth rate leading to the extinction of the microplastics-exposed model population in the F 1 generation. Females descending from those exposed to microplastics in F 0 and exposed to clean medium presented some recovery but up to the F 3 generation they still had significantly (p≤0.05) reduced growth, reproduction, and population growth rate. Overall, these results indicate that D. magna recovery from chronic exposure to microplastics may take several generations, and that the continuous exposure over generations to microplastics may cause population extinction. These findings have implications to aquatic ecosystem functioning and services, and raise concern on the long-term animal and human exposure to microplastics through diverse routes. Copyright © 2018. Published by Elsevier B.V.

  14. Serotonin(2) receptors mediate respiratory recovery after cervical spinal cord hemisection in adult rats.

    Science.gov (United States)

    Zhou, S Y; Basura, G J; Goshgarian, H G

    2001-12-01

    The aim of the present study was to specifically investigate the involvement of serotonin [5-hydroxytryptamine (5-HT(2))] receptors in 5-HT-mediated respiratory recovery after cervical hemisection. Experiments were conducted on C(2) spinal cord-hemisected, anesthetized (chloral hydrate, 400 mg/kg ip), vagotomized, pancuronium- paralyzed, and artificially ventilated female Sprague-Dawley rats in which CO(2) levels were monitored and maintained. Twenty-four hours after spinal hemisection, the ipsilateral phrenic nerve displayed no respiratory-related activity indicative of a functionally complete hemisection. Intravenous administration of the 5-HT(2A/2C)-receptor agonist (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) induced respiratory-related activity in the phrenic nerve ipsilateral to hemisection under conditions in which CO(2) was maintained at constant levels and augmented the activity induced under conditions of hypercapnia. The effects of DOI were found to be dose dependent, and the recovery of activity could be maintained for up to 2 h after a single injection. DOI-induced recovery was attenuated by the 5-HT(2)-receptor antagonist ketanserin but not with the 5-HT(2C)-receptor antagonist RS-102221, suggesting that 5-HT(2A) and not necessarily 5-HT(2C) receptors may be involved in the induction of respiratory recovery after cervical spinal cord injury.

  15. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required

  16. The expression and proangiogenic effect of nucleolin during the recovery of heat-denatured HUVECs.

    Science.gov (United States)

    Liang, Pengfei; Jiang, Bimei; Lv, Chunliu; Huang, Xu; Sun, Li; Zhang, Pihong; Huang, Xiaoyuan

    2013-10-01

    The present study aims to examine the expression patterns and roles of nucleolin during the recovery of heat-denatured human umbilical vein endothelial cells (HUVECs). Deep partial thickness burn model in Sprague-Dawley rats and the heat denatured cell model (52°C, 35s) were used. The expression of nucleolin was measured using Western blot analysis and real-time PCR. Angiogenesis was assessed using in vitro parameters including endothelial cell proliferation, transwell migration assay, and scratched wound healing. Gene transfection and RNA interference approaches were employed to investigate the roles of nucleolin. Nucleolin mRNA and protein expression showed a time-dependent increase during the recovery of heat-denatured dermis and HUVECs. Heat-denaturation time-dependently promoted cell growth, adhesion, migration, scratched wound healing and formation of tube-like structures in HUVECs. These effects of heat denaturation on endothelial wound healing and formation of tube-like structures were prevented by knockdown of nucleolin, whereas over-expression of nucleolin increased cell growth, migration, and formation of tube-like structures in cultured HUVEC endothelial cells. In addition, we found that the expression of vascular endothelial growth factor (VEGF) increased during the recovery of heat-denatured dermis and HUVECs, and nucleolin up-regulated VEGF in HUVECs. The present study reveals that the expression of nucleolin is up-regulated, and plays a pro-angiogenic role during the recovery of heat-denatured dermis and its mechanism is probably dependent on production of VEGF. We find a novel and important pro-angiogenic role of nucleolin during the recovery of heat-denatured dermis. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Olson James M

    2011-04-01

    Full Text Available Abstract Background Medulloblastoma is the most common brain tumor in children, and its prognosis is worse than for many other common pediatric cancers. Survivors undergoing treatment suffer from serious therapy-related side effects. Thus, it is imperative to identify safer, effective treatments for medulloblastoma. In this study we evaluated the anti-cancer potential of curcumin in medulloblastoma by testing its ability to induce apoptosis and inhibit tumor growth in vitro and in vivo using established medulloblastoma models. Methods Using cultured medulloblastoma cells, tumor xenografts, and the Smo/Smo transgenic medulloblastoma mouse model, the antitumor effects of curcumin were tested in vitro and in vivo. Results Curcumin induced apoptosis and cell cycle arrest at the G2/M phase in medulloblastoma cells. These effects were accompanied by reduced histone deacetylase (HDAC 4 expression and activity and increased tubulin acetylation, ultimately leading to mitotic catastrophe. In in vivo medulloblastoma xenografts, curcumin reduced tumor growth and significantly increased survival in the Smo/Smo transgenic medulloblastoma mouse model. Conclusions The in vitro and in vivo data suggest that curcumin has the potential to be developed as a therapeutic agent for medulloblastoma.

  18. Maternal L-glutamine supplementation prevents prenatal alcohol exposure-induced fetal growth restriction in an ovine model.

    Science.gov (United States)

    Sawant, Onkar B; Wu, Guoyao; Washburn, Shannon E

    2015-06-01

    Prenatal alcohol exposure is known to cause fetal growth restriction and disturbances in amino acid bioavailability. Alterations in these parameters can persist into adulthood and low birth weight can lead to altered fetal programming. Glutamine has been associated with the synthesis of other amino acids, an increase in protein synthesis and it is used clinically as a nutrient supplement for low birth weight infants. The aim of this study was to explore the effect of repeated maternal alcohol exposure and L-glutamine supplementation on fetal growth and amino acid bioavailability during the third trimester-equivalent period in an ovine model. Pregnant sheep were randomly assigned to four groups, saline control, alcohol (1.75-2.5 g/kg), glutamine (100 mg/kg, three times daily) or alcohol + glutamine. In this study, a weekend binge drinking model was followed where treatment was done 3 days per week in succession from gestational day (GD) 109-132 (normal term ~147). Maternal alcohol exposure significantly reduced fetal body weight, height, length, thoracic girth and brain weight, and resulted in decreased amino acid bioavailability in fetal plasma and placental fluids. Maternal glutamine supplementation successfully mitigated alcohol-induced fetal growth restriction and improved the bioavailability of glutamine and glutamine-related amino acids such as glycine, arginine, and asparagine in the fetal compartment. All together, these findings show that L-glutamine supplementation enhances amino acid availability in the fetus and prevents alcohol-induced fetal growth restriction.

  19. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells

    International Nuclear Information System (INIS)

    Lin, Y.-J.; Hou, Y.C.; Lin, C.-H.; Hsu, Y.-A.; Sheu, Jim J.C.; Lai, C.-H.; Chen, B.-H.; Lee Chao, Pei-Dawn; Wan Lei; Tsai, F.-J.

    2009-01-01

    Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, we observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI 50 ) concentration of 2.35 μM. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.

  20. Association of malignancy with rapid growth in early lesions induced by irradiation of rat skin

    International Nuclear Information System (INIS)

    McGregor, J.F.

    1979-01-01

    Epithelial lesions induced by irradiation of rat skin were studied to determine (a) the relationship of malignancy to dose, (b) the types of lesions and circumstances leading to overt malignancy, and (c) the growth rates of lesions progressing to malignancy versus those of lesions remaining benign. High doses of radiation were shown to be associated with the production of epidermal cancers, the maximum yield being obtained at 6,400 rads. Conversely, a peak yield of noncancerous lesions was obtained at 1,600 rads. This association between malignancy and high dose was consistent for cancers evolving from warts, cysts, and chronic ulcers. Although the proportion of warts among the induced lesions was much higher than that of the cysts or chronic ulcers (76, 14, and 10%, respectively), the likelihood of warts becoming cancerous was substantially lower (14, 23, and 21%). The combined data for all doses showed that the latency period of the epidermal cancers was significantly (P = 0.015) shorter than that of the benign tumors. Rapid growth rates were observed for warts, cysts, and chronic ulcers progressing to overt cancer, and these did not overlap at any point on the growth scale with rates for benign tumors. This finding suggested that the potential for malignant development had been established early in the carcinogenic process, very likely at induction

  1. The influence of maternal care and overprotection on youth adrenocortical stress response: a multiphase growth curve analysis.

    Science.gov (United States)

    Vergara-Lopez, Chrystal; Chaudoir, Stephenie; Bublitz, Margaret; O'Reilly Treter, Maggie; Stroud, Laura

    2016-11-01

    We examined the association between two dimensions of maternal parenting style (care and overprotection) and cortisol response to an acute laboratory-induced stressor in healthy youth. Forty-three participants completed the Parental Bonding Instrument and an adapted version of the Trier Social Stress Test-Child (TSST-C). Nine cortisol samples were collected to investigate heterogeneity in different phases of youth's stress response. Multiphase growth-curve modeling was utilized to create latent factors corresponding to individual differences in cortisol during baseline, reactivity, and recovery to the TSST-C. Youth report of maternal overprotection was associated with lower baseline cortisol levels, and a slower cortisol decline during recovery, controlling for maternal care, puberty, and gender. No additive or interactive effects involving maternal care emerged. These findings suggest that maternal overprotection may exert a unique and important influence on youth's stress response.

  2. Mindful attention predicts greater recovery from negative emotions, but not reduced reactivity.

    Science.gov (United States)

    Cho, Sinhae; Lee, Hyejeen; Oh, Kyung Ja; Soto, José A

    2017-09-01

    This study investigated the role of dispositional mindful attention in immediate reactivity to, and subsequent recovery from, laboratory-induced negative emotion. One hundred and fourteen undergraduates viewed blocks of negative pictures followed by neutral pictures. Participants' emotional responses to negative pictures and subsequent neutral pictures were assessed via self-reported ratings. Participants' emotional response to negative pictures was used to index level of emotional reactivity to unpleasant stimuli; emotional response to neutral pictures presented immediately after the negative pictures was used to index level of emotional recovery from pre-induced negative emotion (residual negativity). Results indicated that mindful attention was not associated with the emotional response to negative pictures, but it was associated with reduced negative emotion in response to the neutral pictures presented immediately after the negative pictures, suggesting better recovery as opposed to reduced reactivity. This effect was especially pronounced in later experimental blocks when the accumulation of negative stimuli produced greater negative emotion from which participants had to recover. The current study extends previous findings on the relationship between dispositional mindfulness and reduced negative emotion by demonstrating that mindful attention may facilitate better recovery from negative emotion, possibly through more effective disengagement from previous stimuli.

  3. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Stephen J A Davies

    2011-03-01

    Full Text Available Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human

  4. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Directory of Open Access Journals (Sweden)

    Abel Martin-Garrido

    Full Text Available In adult tissue, vascular smooth muscle cells (VSMCs exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ and the pro-proliferative cytokine platelet derived growth factor (PDGF. In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  5. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Science.gov (United States)

    Martin-Garrido, Abel; Williams, Holly C; Lee, Minyoung; Seidel-Rogol, Bonnie; Ci, Xinpei; Dong, Jin-Tang; Lassègue, Bernard; Martín, Alejandra San; Griendling, Kathy K

    2013-01-01

    In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  6. The Antimicrobial Peptide Human Beta-Defensin-3 Is Induced by Platelet-Released Growth Factors in Primary Keratinocytes

    OpenAIRE

    Andreas Bayer; Justus Lammel; Mersedeh Tohidnezhad; Sebastian Lippross; Peter Behrendt; Tim Klüter; Thomas Pufe; Jochen Cremer; Holger Jahr; Franziska Rademacher; Regine Gläser; Jürgen Harder

    2017-01-01

    Platelet-released growth factors (PRGF) and its related clinically used formulations (e.g., Vivostat Platelet-Rich Fibrin (PRF?)) contain a variety of chemokines, cytokines, and growth factors and are therefore used to support healing of chronic, hard-to-heal, or infected wounds. Human beta-defensin-3 (hBD-3) is an antimicrobial peptide inducibly expressed in human keratinocytes especially upon wounding. The potent antimicrobial activity of hBD-3 together with its wound closure-promoting acti...

  7. Functional recovery in rat spinal cord injury induced by hyperbaric oxygen preconditioning.

    Science.gov (United States)

    Lu, Pei-Gang; Hu, Sheng-Li; Hu, Rong; Wu, Nan; Chen, Zhi; Meng, Hui; Lin, Jiang-Kai; Feng, Hua

    2012-12-01

    It is a common belief that neurosurgical interventions can cause inevitable damage resulting from the procedure itself in surgery especially for intramedullary spinal cord tumors. The present study was designed to examine if hyperbaric oxygen preconditioning (HBO-PC) was neuroprotective against surgical injuries using a rat model of spinal cord injury (SCI). Sprague-Dawley rats were randomly divided into three groups: HBO-PC group, hypobaric hypoxic preconditioning (HH-PC) control group, and normobaric control group. All groups were subjected to SCI by weight drop device. Rats from each group were examined for neurological behavior and electrophysiological function. Tissue sections were analyzed by using immunohistochemistry, TdT-mediated dUTP-biotin nick end labeling, and axonal tract tracing. Significant neurological deficits were observed after SCI and HBO-PC and HH-PC improved neurological deficits 1 week post-injury. The latencies of motor-evoked potential and somatosensory-evoked potential were significantly delayed after SCI, which was attenuated by HBO-PC and HH-PC. Compared with normobaric control group, pretreatment with HBO and hypobaric hypoxia significantly reduced the number of TdT-mediated dUTP-biotin nick end labeling-positive cells, and increased nestin-positive cells. HBO-PC and HH-PC enhanced axonal growth after SCI. In conclusion, preconditioning with HBO and hypobaric hypoxia can facilitate functional recovery and suppress cell apoptosis after SCI and may prove to be a useful preventive strategy to neurosurgical SCI.

  8. Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots.

    Science.gov (United States)

    Khan, Mudassar Nawaz; Sakata, Katsumi; Hiraga, Susumu; Komatsu, Setsuko

    2014-12-05

    Soybean is an important legume crop that exhibits markedly reduced growth and yields under flooding conditions. To unravel the mechanisms involved in recovery after flooding in soybean root, gel-free proteomic analysis was performed. Morphological analysis revealed that growth suppression was more severe with increased flooding duration. Out of a total of 1645 and 1707 identified proteins, 73 and 21 proteins were changed significantly during the recovery stage following 2 and 4 days flooding, respectively. Based on the proteomic, clustering, and in silico protein-protein interaction analyses, six key enzymes were analyzed at the mRNA level. Lipoxygenase 1, which was increased at the protein level during the recovery period, was steadily down-regulated at the mRNA level. The peroxidase superfamily protein continuously increased in abundance during the course of recovery and was up-regulated at the mRNA level. HAD acid phosphatase was decreased at the protein level and down-regulated at the transcript level, while isoflavone reductase and an unknown protein were increased at both the protein and mRNA levels. Consistent with these findings, the enzymatic activity of peroxidase was decreased under flooding stress but increased significantly during the recovery sage. These results suggest that peroxidases might play key roles in post-flooding recovery in soybean roots through the scavenging of toxic radicals.

  9. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta

    Directory of Open Access Journals (Sweden)

    Thomas eWichard

    2015-03-01

    Full Text Available Green macroalgae, such as Ulvales, lose their typical morphology completely when grown under axenic conditions or in the absence of the appropriate microbiome. As a result, slow growing aberrant phenotypes or even callus-like morphotypes are observed in Ulvales. The cross-kingdom interactions between marine algae and microorganisms are hence not only restricted by the exchange of macronutrients, including vitamins and nutrients, but also by infochemicals such as bacterial morphogenetic compounds. The latter are a fundamental trait mediating the mutualism within the chemosphere where the organisms interact with each other via compounds in their surroundings.Approximately 60 years ago, pilot studies demonstrated that certain bacteria promote growth, whereas other bacteria induce morphogenesis; this is particularly true for the order of Ulvales. However, only slow progress was made towards the underlying mechanism due to the complexity of, for example, algal cultivation techniques, and the lack of standardized experiments in the laboratory.A breakthrough in this research was the discovery of the morphogenetic compound thallusin, which was isolated from an epiphytic bacterium and induces normal germination and restores the foliaceous morphotypes of Monostroma. Owing to the low concentration, the purification and structure elucidation of highly biologically active morphogenetic compounds is still challenging. Recently, it was found that only the combination of two specific bacteria from the Rhodobacteraceae and Flavobacteriaceae can completely recover the growth and morphogenesis of axenic Ulva mutabilis cultures forming a symbiotic tripartite community by chemical communication.This review combines literature detailing evidence of bacteria-induced morphogenesis in Ulvales. A set of standardized experimental approaches is further proposed for the preparation of axenic algal tissues, bacteria isolation, co-cultivation experiments, and the analysis of

  10. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta)

    Science.gov (United States)

    Wichard, Thomas

    2015-01-01

    Green macroalgae, such as Ulvales, lose their typical morphology completely when grown under axenic conditions or in the absence of the appropriate microbiome. As a result, slow growing aberrant phenotypes or even callus-like morphotypes are observed in Ulvales. The cross-kingdom interactions between marine algae and microorganisms are hence not only restricted by the exchange of macronutrients, including vitamins and nutrients, but also by infochemicals such as bacterial morphogenetic compounds. The latter are a fundamental trait mediating the mutualism within the chemosphere where the organisms interact with each other via compounds in their surroundings. Approximately 60 years ago, pilot studies demonstrated that certain bacteria promote growth, whereas other bacteria induce morphogenesis; this is particularly true for the order of Ulvales. However, only slow progress was made towards the underlying mechanism due to the complexity of, for example, algal cultivation techniques, and the lack of standardized experiments in the laboratory. A breakthrough in this research was the discovery of the morphogenetic compound thallusin, which was isolated from an epiphytic bacterium and induces normal germination restoring the foliaceous morphotypes of Monostroma. Owing to the low concentration, the purification and structure elucidation of highly biologically active morphogenetic compounds are still challenging. Recently, it was found that only the combination of two specific bacteria from the Rhodobacteraceae and Flavobacteriaceae can completely recover the growth and morphogenesis of axenic Ulva mutabilis cultures forming a symbiotic tripartite community by chemical communication. This review combines literature detailing evidences of bacteria-induced morphogenesis in Ulvales. A set of standardized experimental approaches is further proposed for the preparation of axenic algal tissues, bacteria isolation, co-cultivation experiments, and the analysis of the chemosphere

  11. Shape Recovery of Elastic Red Blood Cells from Shear Flow Induced Deformation in Three Dimensions

    Science.gov (United States)

    Peng, Yan; Gounley, John

    2015-11-01

    Red blood cells undergo substantial shape changes in vivo. Modeled as an elastic capsule, the shape recovery of a three dimensional biconcave capsule from shear flow is studied for different preferred elastic and bending configuration. The fluid-structure interaction is modeled using the multiple-relaxation time lattice Boltzmann (LBM) and immersed boundary (IBM) methods. Based on the studies of the limited shape memory observed in three dimensions, the shape recovery is caused by the preferred elastic configuration, at least when paired with a constant spontaneous curvature. For these capsules, the incompleteness of the shape recovery observed precludes any conjecture about whether a single or multiple phase(s) are necessary to describe the recovery process. Longer simulations and a more stable methodology will be necessary. Y. Peng acknowledges support from Old Dominion University Research Foundation Grant #503921 and National Science Foundation Grant DMS-1319078.

  12. Transforming growth factor β1 inhibition protects from noise-induced hearing loss

    Directory of Open Access Journals (Sweden)

    Silvia eMurillo-Cuesta

    2015-03-01

    Full Text Available Excessive exposure to noise damages the principal cochlear structures leading to hearing impairment. Inflammatory and immune responses are central mechanisms in cochlear defensive response to noise but, if unregulated, they contribute to inner ear damage and hearing loss. Transforming growth factor ß (TGF-ß is a key regulator of both responses and high levels of this factor have been associated with cochlear injury in hearing loss animal models. To evaluate the potential of targeting TGF-ß as a therapeutic strategy for preventing or ameliorating noise-induced hearing loss, we studied the auditory function, cochlear morphology, gene expression and oxidative stress markers in mice exposed to noise and treated with TGF-ß1 peptidic inhibitors P17 and P144, just before or immediately after noise insult. Our results indicate that systemic administration of both peptides significantly improved both the evolution of hearing thresholds and the degenerative changes induced by noise-exposure in lateral wall structures. Moreover, treatments ameliorated the inflammatory state and redox balance. These therapeutic effects were dose-dependent and more effective if the TGF-ß1 inhibitors were administered prior to inducing the injury. In conclusion, inhibition of TGF-ß1 actions with antagonistic peptides represents a new, promising therapeutic strategy for the prevention and repair of noise-induced cochlear damage.

  13. SPRY4-mediated ERK1/2 signaling inhibition abolishes 17β-estradiol-induced cell growth in endometrial adenocarcinoma cell.

    Science.gov (United States)

    Li, Mingjiang; Zhang, Hui; Zhao, Xingbo; Yan, Lei; Wang, Chong; Li, Chunyan; Li, Changzhong

    2014-08-01

    Basic fibroblast growth factor (FGF2)-mediated Extracellular signal-regulated kinases1/2 (ERK1/2) signaling is a critical modulator in angiogenesis. SPRY4 has been reported to be a feedback negative regulator of FGFs-induced ERK1/2 signaling. The aim of this study was to explore the role of SPRY4 in endometrial adenocarcinoma cell. The effect of SPRY4 expression on FGF2-mediated ERK1/2 signaling was detected by luciferase assay and Western blot analysis. The growth of Ishikawa cells was detected using colony formation assay and cell number counting experiment. We found that plasmid-driven SPRY4 expression efficiently blocked the activity of FGF2-induced ERK1/2 signaling in Ishikawa cells. SPRY4 expression significantly reduced the proliferation and 17β-estradiol-induced proliferation of Ishikawa cells. SPRY4 may function as a tumor suppressor in endometrial adenocarcinoma.

  14. Delayed Growth Suppression and Radioresistance Induced by Long-Term Continuous Gamma Irradiation.

    Science.gov (United States)

    Nakajima, Hiroo; Furukawa, Chiharu; Chang, Young-Chae; Ogata, Hiromitsu; Magae, Junji

    2017-08-01

    Biological response to ionizing radiation depends not only on the type of radiation and dose, but also on the duration and dose rate of treatment. For a given radiation dose, the biological response may differ based on duration and dose rate. We studied the properties of two human cell lines, M059K glioma and U2OS osteosarcoma, continuously exposed to γ rays for long time periods of more than five months. Growth inhibition in both cell lines was dependent on total dose when exposed to acute radiation over several minutes, whereas prolonged growth inhibition was dependent on dose rate after continuous irradiation over several months. The minimum dose rate for growth inhibition was 53.6 mGy/h. Cell cycle analysis showed G 1 phase accumulation in cell populations continuously exposed to γ rays, and G 2 phase accumulation in cells acutely exposed to high-dose-rate γ rays. Cells continuously exposed to γ rays continued to exhibit delayed growth suppression even after one month in an environment of background radiation, and maintained a high-level expression of c-Jun and its phosphorylation forms, as well as resistance to apoptosis induced by staurosporine and chemotherapeutic agents. These delayed effects were not observed in cells acutely exposed to 5 Gy of radiation. These results suggest that optimization of the irradiation schedule is crucial for risk estimation, protection and therapeutic utilization of ionizing radiation.

  15. Growth decline linked to warming-induced water limitation in hemi-boreal forests.

    Directory of Open Access Journals (Sweden)

    Xiuchen Wu

    Full Text Available Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii, sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.

  16. Bortezomib induces apoptosis and suppresses cell growth and metastasis by inactivation of Stat3 signaling in chondrosarcoma.

    Science.gov (United States)

    Bao, Xing; Ren, Tingting; Huang, Yi; Ren, Chongmin; Yang, Kang; Zhang, Hongliang; Guo, Wei

    2017-02-01

    Bortezomib, formerly known as PS341, is a novel proteasome inhibitor with in vitro and in vivo antineoplastic effects in many malignancies. However, diverse antitumor mechanisms of bortezomib have been identified in many investigations and preclinical studies. Understanding the molecular and cellular mechanisms through which bortezomib acts will improve the therapeutic utility of this drug in different cancer types. In the present study, we investigated the in vitro and in vivo effects of bortezomib on chondrosarcoma. Bortezomib selectively inhibited cell growth in chondrosarcoma cells but not in normal articular cartilage cells. In addition to growth inhibition, apoptosis and cell cycle arrest, bortezomib triggered alleviation of migratory and invasive properties of chondrosarcoma cells. Mechanistically, signal transducer and activator of transcription 3 (Stat3) and its downstream targets Bcl-2, cyclin D1 and c-Myc was inactivated by bortezomib treatment. Accordingly, small interfering RNA (siRNA)-mediated Stat3 knockdown enhanced bortezomib-induced apoptosis, and concomitantly enhanced the inhibitory effect of bortezomib on cell viability, migration and invasion. Moreover, while Slug, MMP9, MMP2, CD44, N-cadherin and vimentin, the mesenchymal cell markers, were repressed by bortezomib concomitant increased expression of E-cadherin was observed. In vivo, bortezomib downregulated Stat3 activity and mesenchymal cell marker expression, induced apoptosis and inhibition of metastasis and tumor growth. Together, inactivation of Stat3 signaling contributes to bortezomib-induced inhibition of tumor growth, migration and invation on chondrosarcoma. Bortezomib demonstrates an antineoplastic role on chondrosarcoma both in vitro and in vivo. These beneficial effects can be explained by bortezomib-mediated Stat3 supression. The present study suggests a promising therapeutics target in chondrosarcoma and probably in other kinds of metastatic malignant tumors.

  17. Connective tissue growth factor mediates TGF-β1-induced low-grade serous ovarian tumor cell apoptosis.

    Science.gov (United States)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C K

    2017-10-17

    Ovarian low-grade serous carcinoma (LGSC) is a rare disease and is now considered to be a distinct entity from high-grade serous carcinoma (HGSC), which is the most common and malignant form of epithelial ovarian cancer. Connective tissue growth factor (CTGF) is a secreted matricellular protein that has been shown to modulate many biological functions by interacting with multiple molecules in the microenvironment. Increasing evidence indicates that aberrant expression of CTGF is associated with cancer development and progression. Transforming growth factor-β1 (TGF-β1) is a well-known molecule that can strongly up-regulate CTGF expression in different types of normal and cancer cells. Our previous study demonstrated that TGF-β1 induces apoptosis of LGSC cells. However, the effect of TGF-β1 on CTGF expression in LGSC needs to be defined. In addition, whether CTGF mediates TGF-β1-induced LGSC cell apoptosis remains unknown. In the present study, we show that TGF-β1 treatment up-regulates CTGF expression by activating SMAD3 signaling in two human LGSC cell lines. Additionally, siRNA-mediated CTGF knockdown attenuates TGF-β1-induced cell apoptosis. Moreover, our results show that the inhibitory effect of the CTGF knockdown on TGF-β1-induced cell apoptosis is mediated by down-regulating SMAD3 expression. This study demonstrates an important role for CTGF in mediating the pro-apoptotic effects of TGF-β1 on LGCS.

  18. Effect of Ti solute on the recovery of cold-rolled V-Ti alloys

    International Nuclear Information System (INIS)

    Leguey, T.; Munoz, A.; Pareja, R.

    1999-01-01

    The recovery characteristics of cold-rolled pure V and V-Ti alloys with compositions of 0.3, 1 and 4.5 at.% Ti have been investigated by positron annihilation spectroscopy. The recovery is accomplished in two stages. Fifty percent cold rolling induces the formation of microvoids in V-0.3Ti and V-1Ti but not in V-4.5Ti. The first recovery stage in pure V, V-0.3Ti and V-1Ti starts with the dissolution of microvoids. The recovery curves of the annihilation parameters for the alloys indicate the formation of Ti-rich precipitates during the first recovery stage. These precipitates act as very efficient vacancy sinks. The second recovery stage starting for annealing temperatures above ≅1150 K is attributed to annealing of vacancies associated to the precipitates. (orig.)

  19. Reserve growth during financial volatility in a technologically challenging world

    Science.gov (United States)

    Klett, Timothy R.; Gautier, Donald L.

    2010-01-01

    Reserve growth (growth-to-known) is the addition of oil and gas quantities to reported proved or proved-plus-probable reserves in discovered fields. The amount of reserve growth fluctuates through time with prevailing economic and technological conditions. Most reserve additions are the result of investment in field operations and in development technology. These investments can be justified by higher prices of oil and gas, the desire to maintain cash flow, and by greater recovery efficiency in well established fields. The price/cost ratio affects decisions for field abandonment and (or) implementation of improved recovery methods. Although small- to medium-size fields might show higher percentages of reserve growth, a relatively few giant fields contribute most volumetric reserve growth, indicating that companies may prefer to invest in existing fields with low geologic and production risk and an established infrastructure in order to increase their price/cost relationship. Whereas many previous estimates of reserve growth were based on past trends of reported reserves, future reserve growth is expected to be greatly affected by financial volatility and fluctuating economic and technological conditions.

  20. Obestatin Accelerates the Recovery in the Course of Ischemia/Reperfusion-Induced Acute Pancreatitis in Rats.

    Directory of Open Access Journals (Sweden)

    Jakub Bukowczan

    pancreatic exocrine secretion. Administration of obestatin at doses used was without significant effect with regard to daily food intake or pancreatic exocrine secretion in sham-operated rats, as well as in rats with acute pancreatitis. On the other hand, obestatin abolished a statistical significance of difference in food intake between animals with AP and control animals without pancreatic fistula and induction of AP.Treatment with the exogenous obestatin reduces severity of ischemia/reperfusion-induced acute pancreatitis and accelerates recovery in this disease. The involved mechanisms are likely to be multifactorial, and are mediated, at least in part, by anti-inflammatory properties of obestatin.

  1. Catch-up growth or regression to the mean? Recovery from stunting revisited.

    Science.gov (United States)

    Cameron, Noël; Preece, Michael A; Cole, Tim J

    2005-01-01

    An important question for policy is the extent to which catch-up growth can ease the impact of early stunting. Martorell et al. (1992) showed that stunted Guatemalan infants remain stunted into adulthood, whereas Adair (1999) found appreciable catch-up growth in Filipino children from 2-12 years. Both groups defined catch-up as an inverse correlation between early height and subsequent growth, but Martorell based the correlation on height, whereas Adair used height z scores. The statistical phenomenon of regression to the mean is much like catch-up growth, an inverse correlation between initial height and later height gain. The objective of this study was to reexamine the relationship between stunting and later catch-up growth in the context of regression to the mean. The design was a theoretical analysis showing that catch-up growth is more evident based on height z scores than on height, validated using data on 495 stunted South African children seen at 2 and 5 years of age. The correlation between height at 2 and height change from 2 to 5 was small based on height (-0.11) but large and highly significant based on height z score (-0.58), providing strong evidence of catch-up growth. We argue that catch-up growth should be estimated using height z score not height and that catch-up is present only when the change in z score exceeds that predicted by regression to the mean. This leads to a compact definition of catch-up growth: if z1 and z2 are the initial and final (mean) height z scores, and r is the correlation between them, then catch-up growth for groups or individuals is given by (z2 - rz1). Copyright 2005 Wiley-Liss, Inc

  2. Stored energy recovery of irradiated copper

    International Nuclear Information System (INIS)

    Richard, R.T.; Chaplin, R.L.; Coltman, R.R. Jr.; Kerchner, H.R.; Klabunde, C.E.

    1990-01-01

    The stored energy released in Stage I recovery of reactor neutron irradiated copper was measured by differential thermal analysis calorimetry for three fluences up to a maximum of 3.5 x 10 18 n/cm 2 (E>0.1 MeV) after irradiation at temperatures of less than 10 K. The dependence of the stored energy upon fluence, and a tendency toward saturation, were observed. Theoretical reaction rate processes were compared directly with the experimental rates of stored energy release, and the parameters associated with the theory were compared with results from previous resistivity measurements. Good agreement was found for several parameters, but major differences with previous D + E substage results lead to the conclusion that the point defect model may not describe materials experiencing severe neutron damage. Computer studies of warmup rates were made for first and second order and for correlated recovery processes as a function of defect concentration and of external power input. First and second order processes show definite distortion in their recovery rate curves for high defect concentrations; the correlated recovery process shows a much less pronounced effect. This investigation of stored energy used several new approaches. The use of induced radioactivity within the sample as the heating source, and the use of computer generated theoretical stored energy release curves to analyze the data were unique. (author)

  3. Recovery from swimming-induced hypothermia in king penguins: effects of nutritional condition.

    Science.gov (United States)

    Halsey, L G; Handrich, Y; Rey, B; Fahlman, A; Woakes, A J; Butler, P J

    2008-01-01

    We investigated changes in the rate of oxygen consumption (V O2) and body temperature of wild king penguins (Aptenodytes patagonicus) in different nutritional conditions during recovery after exposure to cold water. Over time, birds undertook an identical experiment three times, each characterized by different nutritional conditions: (1) having recently completed a foraging trip, (2) after fasting for many days, and (3) having been refed one meal after the fast. The experiments consisted of a 2-h session in a water channel followed by a period of recovery in a respirometer chamber on land. Refed birds recovered significantly more quickly than fed birds, in terms of both time to reach resting V O2 on land and time to reach recovery of lower abdominal temperature. Previous work found that when penguins are in cold water, abdominal temperatures decrease less in refed birds than in fed or fasted birds, suggesting that refed birds may be vasoconstricting the periphery while perfusing the gut region to access nutrients. This, alongside an increased resting [V O2], seems the most reasonable explanation for why refed birds recovered more quickly subsequent to cold-water exposure in this study; that is, vasoconstriction of the insulative periphery meant that they lost less heat generated by the body core.

  4. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    Science.gov (United States)

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  5. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    International Nuclear Information System (INIS)

    Deng, Yu; Cao, Hong; Cu, Fenglong; Xu, Dan; Lei, Youying; Tan, Yang; Magdalou, Jacques; Wang, Hui; Chen, Liaobin

    2013-01-01

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes

  6. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yu; Cao, Hong; Cu, Fenglong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Lei, Youying [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Tan, Yang [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China)

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  7. The recovery of the hypothalamo-pituitary-adrenal axis after transsphenoidal operation in three patients with Cushing's disease

    International Nuclear Information System (INIS)

    Lamberts, S.W.J.; Klijn, J.G.M.; Jong, F.H. de; Birkenhager, J.C.

    1981-01-01

    The recovery of the hypothalamo-pituitary-adrenal axis after selective transsphenoidal adenomectomy was studied in 3 patients with Cushing's disease by measuring basal plasma ACTH and cortisol concentrations, cortisol secretion rate, the diurnal rhythm of cortisol, and the reaction of cortisol to lysine vasopressin (LVP), of compound S to metyrapone and of cortisol and growth hormone to an insulin-induced hypoglycaemia. The third patient had been treated previously by external pituitary irradiation. In 2 patients basal plasma ACTH levels returned within normal values before plasma cortisol, but no supra-physiological plasma concentrations of ACTH were seen as has been observed after withdrawal of exogenous glucocorticoids. With regard to the different stimulation tests: at first the normal reaction of plasma cortisol to LVP returned after 3 months, at the same time as the restoration of growth hormone secretion in response to hypoglycaemia. A normalization of the reaction to metyrapone was seen thereafter while finally the reaction of cortisol to an insulin-induced hypoglycaemia and the diurnal rhythm of plasma cortisol returned 15 to 18 months after operation in the first patient and after 12 months in the second patient. Selective adenomectomy had also been carried out in the third patient, as evidenced by normal TSH, LH and FSH secretion. Hypocortisolism, and a deficient ACTH and growth hormone secretion in response to the stimuli mentioned, however, did not normalize up till 22 months after operation. The restoration of the hypothalamo-pituitary-adrenal axis after selective pituitary adenomectomy in Cushing's disease was prevented in this patient by prior external pituitary irradiation. (author)

  8. Automorphosis-like growth in etiolated pea seedlings is induced by the application of chemicals affecting perception of gravistimulation and its signal transduction

    Science.gov (United States)

    Miyamoto, Kensuke; Hoshino, Tomoki; Hitotsubashi, Reiko; Yamashita, Masamichi; Ueda, Junichi

    Both microgravity conditions in space and simulated microgravity using a 3-dimensional clinostat resulted in: (1) automorphosis of etiolated pea seedlings, (2) epicotyls bending ca. 45° from the vertical line to the direction away from cotyledons, (3) inhibition of hook formation and (4) alternation of growth direction of roots. These facts indicate that the growth and development of etiolated pea seedlings on earth is under the influence of gravistimulation. Lanthanum and gadolinium ions, blockers of stretch-activated mechanosensitive ion channels, induced automorphosis-like epicotyl bending. Cantharidin, an inhibitor of protein phosphatase, also phenocopied automorphosis-like growth. On the other hand, cytochalasin B, cytochalasin D and brefeldin A did not induce automorphological epicotyl bending and inhibition of hook formation, although these compounds strikingly inhibited elongation of etiolated pea epicotyls. These results strongly suggest that stretch-activated mechanosensitive ion channels are involved in the perception of signals of gravistimuli in plants, and they are transduced by protein phosphorylation and dephosphorylation cascades by changing levels of calcium ions. Possible mechanisms to induce automorphosis-like growth in relation to gravity signals in etiolated pea seedlings are discussed.

  9. KAEMPFEROL, A FLAVONOID COMPOUND FROM GYNURA MEDICA INDUCED APOPTOSIS AND GROWTH INHIBITION IN MCF-7 BREAST CANCER CELL.

    Science.gov (United States)

    Yi, Xiaofang; Zuo, Jiangcheng; Tan, Chao; Xian, Sheng; Luo, Chunhua; Chen, Sai; Yu, Liangfang; Luo, Yucheng

    2016-01-01

    Kaempferol, a natural flavonoid, has been shown to induce cancer cell apoptosis and cell growth inhibition in several tumors. Previously we have conducted a full investigation on the chemical constituents of Gynura medica , kaempferol and its glycosides are the major constituents of G. medica . Here we investigated the growth inhibition and apoptosis induction effect of kaempferol extracted from G. medica . The inhibition effects of kaempferol were evaluated by MTS assay and soft agar colony formation assay. Fluorescence staining and western blotting were be used to study the apoptosis. The structure was identified by 1 H- NMR), 13 C-NMR and ESI-MS analyses. Our results showed that kaempferol's inhibition of MCF-7 breast cancer cell growth may through inducing apoptosis and downregulation of Bcl2 expression. Kaempferol is a promising cancer preventive and therapeutic agent for breast cancer. List of non-standard abbreviations: MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, HPLC: High-performance liquid chromatography, NMR: Nuclear Magnetic Resonance, ESI-MS Electrospray Ionization Mass Spectral, PARP: Poly ADP-ribose polymerase.

  10. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  11. Endurance exercise modulates levodopa induced growth hormone release in patients with Parkinson's disease.

    Science.gov (United States)

    Müller, Thomas; Welnic, Jacub; Woitalla, Dirk; Muhlack, Siegfried

    2007-07-11

    Acute levodopa (LD) application and exercise release human growth hormone (GH). An earlier trial showed, that combined stimulus of exercise and LD administration is the best provocative test for GH response in healthy participants. Objective was to show this combined effect of LD application and exercise on GH response and to investigate the impact on LD metabolism in 20 previously treated patients with Parkinson's disease (PD). We measured GH- and LD plasma concentrations following soluble 200 mg LD/50 mg benserazide administration during endurance exercise and rest on two separate consecutive days. GH concentrations significantly increased on both days, but GH release was significantly delayed during rest. LD metabolism was not altered due to exercise in a clinical relevant manner. Exercise induced a significant faster LD stimulated GH release in comparison with the rest condition. We did not find the supposed increase of LD induced GH release by endurance exercise. We assume, that only a limited amount of GH is available for GH release in the anterior pituitary following an acute 200 mg LD administration. GH disposal also depends on growth hormone releasing hormone (GHRH), which is secreted into hypothalamic portal capillaries. During the exercise condition, the resulting higher blood pressure supports blood flow and thus GHRH transport towards the GH producing cells in the pituitary. This might additionally have caused the significant faster GH release during exercise.

  12. PPARγ induces growth inhibition and apoptosis through upregulation of insulin-like growth factor-binding protein-3 in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.Y. [Department of Pediatrics, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Biomedical Research Institute, School of Medicine, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, M.S.; Lee, M.K. [Department of Pediatrics, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, J.S.; Yi, H.K. [Department of Biochemistry, School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Nam, S.Y. [Department of Alternative Therapy, Jeonju University, Jeonju (Korea, Republic of); Lee, D.Y.; Hwang, P.H. [Department of Pediatrics, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Biomedical Research Institute, School of Medicine, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2015-01-13

    Peroxisome proliferator activator receptor-gamma (PPARγ) is a ligand-activated transcriptional factor involved in the carcinogenesis of various cancers. Insulin-like growth factor-binding protein-3 (IGFBP-3) is a tumor suppressor gene that has anti-apoptotic activity. The purpose of this study was to investigate the anticancer mechanism of PPARγ with respect to IGFBP-3. PPARγ was overexpressed in SNU-668 gastric cancer cells using an adenovirus gene transfer system. The cells in which PPARγ was overexpressed exhibited growth inhibition, induction of apoptosis, and a significant increase in IGFBP-3 expression. We investigated the underlying molecular mechanisms of PPARγ in SNU-668 cells using an IGFBP-3 promoter/luciferase reporter system. Luciferase activity was increased up to 15-fold in PPARγ transfected cells, suggesting that PPARγ may directly interact with IGFBP-3 promoter to induce its expression. Deletion analysis of the IGFBP-3 promoter showed that luciferase activity was markedly reduced in cells without putative p53-binding sites (-Δ1755, -Δ1795). This suggests that the critical PPARγ-response region is located within the p53-binding region of the IGFBP-3 promoter. We further demonstrated an increase in PPARγ-induced luciferase activity even in cells treated with siRNA to silence p53 expression. Taken together, these data suggest that PPARγ exhibits its anticancer effect by increasing IGFBP-3 expression, and that IGFBP-3 is a significant tumor suppressor.

  13. Structural alterations in rat liver proteins due to streptozotocin-induced diabetes and the recovery effect of selenium: Fourier transform infrared microspectroscopy and neural network study

    Science.gov (United States)

    Bozkurt, Ozlem; Haman Bayari, Sevgi; Severcan, Mete; Krafft, Christoph; Popp, Jürgen; Severcan, Feride

    2012-07-01

    The relation between protein structural alterations and tissue dysfunction is a major concern as protein fibrillation and/or aggregation due to structural alterations has been reported in many disease states. In the current study, Fourier transform infrared microspectroscopic imaging has been used to investigate diabetes-induced changes on protein secondary structure and macromolecular content in streptozotocin-induced diabetic rat liver. Protein secondary structural alterations were predicted using neural network approach utilizing the amide I region. Moreover, the role of selenium in the recovery of diabetes-induced alterations on macromolecular content and protein secondary structure was also studied. The results revealed that diabetes induced a decrease in lipid to protein and glycogen to protein ratios in diabetic livers. Significant alterations in protein secondary structure were observed with a decrease in α-helical and an increase in β-sheet content. Both doses of selenium restored diabetes-induced changes in lipid to protein and glycogen to protein ratios. However, low-dose selenium supplementation was not sufficient to recover the effects of diabetes on protein secondary structure, while a higher dose of selenium fully restored diabetes-induced alterations in protein structure.

  14. Energy analysis of human stumbling: the limitations of recovery

    NARCIS (Netherlands)

    Forner Cordero, A.; Koopman, Hubertus F.J.M.; van der Helm, F.C.T.

    2005-01-01

    This study has analyzed the segmental energy changes in the recovery from a stumble induced during walking on a treadmill. Three strategies emerged according to the behavior of the perturbed limb, elevating, lowering, and delayed lowering. These three strategies showed different changes in the

  15. No Differences Between Alter G-Trainer and Active and Passive Recovery Strategies on Isokinetic Strength, Systemic Oxidative Stress and Perceived Muscle Soreness After Exercise-Induced Muscle Damage.

    Science.gov (United States)

    Cooke, Matthew B; Nix, Carrie M; Greenwood, Lori D; Greenwood, Mike C

    2018-03-01

    Cooke, MB, Nix, C, Greenwood, L, and Greenwood, M. No Differences Between Alter G-Trainer and Active and Passive Recovery Strategies on Isokinetic Strength, Systemic Oxidative Stress and Perceived Muscle Soreness After Exercise-Induced Muscle Damage. J Strength Cond Res 32(3): 736-747, 2018-The incidence of muscle injuries is prevalent in elite sport athletes and weekend warriors and strategies that safely and effectively hasten recovery are highly desirable. The purpose of this study was to examine the differences between 3 recovery methods after eliciting muscle damage in recreationally active men relative to maximal isokinetic contractions, perceived muscle soreness, and psychological mood states. Twenty-five recreationally active men (22.15 ± 3.53 years, 75.75 ± 11.91 kg, 180.52 ± 7.3 cm) were randomly matched by V[Combining Dot Above]O2 peak (53.86 ± 6.65 ml·kg·min) and assigned to one of 3 recovery methods: anti-gravity treadmill (G-Trainer) (N = 8), conventional treadmill (N = 8) or static stretching (N = 9). Recovery methods were performed 30 minutes, 24, 48, and 72 hours after a 45-minute downhill run. Following eccentrically biased running, no significant differences were noted in isokinetic knee flexion and extension peak torque, systemic markers of muscle damage, oxidative stress and lipid peroxidation such as serum creatine kinase (CK), superoxide dismutase (SOD), and malondialdehyde (MDA), respectively, and subjective ratings of perceived muscle soreness between recovery methods. The G-Trainer group did however display a higher mood state as indicated by the Profile of Mood State global scores at 24 hours postexercise when compared to the conventional treadmill recovery group (p = 0.035). The improved mood state after the use of the anti-gravity treadmill may provide clinical relevance to other populations.

  16. ECONOMIC GROWTH AND SALMON RECOVERY: AN IRRECONCILABLE CONFLICT?

    Science.gov (United States)

    Throughout the southern region of western North America, many wild salmon stocks have declined and some have disappeared. The decline was induced by an extensively studied and reasonably well understood combination of causal agents. The public appears to support reversing the d...

  17. KAEMPFEROL, A FLAVONOID COMPOUND FROM GYNURA MEDICA INDUCED APOPTOSIS AND GROWTH INHIBITION IN MCF-7 BREAST CANCER CELL

    OpenAIRE

    Yi, Xiaofang; Zuo, Jiangcheng; Tan, Chao; Xian, Sheng; Luo, Chunhua; Chen, Sai; Yu, Liangfang; Luo, Yucheng

    2016-01-01

    Background: Kaempferol, a natural flavonoid, has been shown to induce cancer cell apoptosis and cell growth inhibition in several tumors. Previously we have conducted a full investigation on the chemical constituents of Gynura medica, kaempferol and its glycosides are the major constituents of G. medica. Here we investigated the growth inhibition and apoptosis induction effect of kaempferol extracted from G. medica. Materials and Methods: The inhibition effects of kaempferol were evaluated by...

  18. Chemoprevention of LA7-Induced Mammary Tumor Growth by SM6Met, a Well-Characterized Cyclopia Extract

    Directory of Open Access Journals (Sweden)

    Omolola R. Oyenihi

    2018-06-01

    Full Text Available Breast cancer (BC is the leading cause of cancer-related deaths in women. Chemoprevention of BC by using plant extracts is gaining attention. SM6Met, a well-characterized extract of Cyclopia subternata with reported selective estrogen receptor subtype activity, has shown tumor suppressive effects in a chemically induced BC model in rats, which is known to be estrogen responsive. However, there is no information on the estrogen sensitivity of the relatively new orthotopic model of LA7 cell-induced mammary tumors. In the present study, the potential chemopreventative and side-effect profile of SM6Met on LA7 cell-induced tumor growth was evaluated, as was the effects of 17β-estradiol and standard-of-care (SOC endocrine therapies, such as tamoxifen (TAM, letrozole (LET, and fulvestrant (FUL. Tumor growth was observed in the tumor-vehicle control group until day 10 post tumor induction, which declined afterward on days 12–14. SM6Met suppressed tumor growth to the same extent as TAM, while LET, but not FUL, also showed substantial anti-tumor effects. Short-term 17β-estradiol treatment reduced tumor volume on days prior to day 10, whereas tumor promoting effects were observed during long-term treatment, which was especially evident at later time points. Marked elevation in serum markers of liver injury, which was further supported by histological evaluation, was observed in the vehicle-treated tumor control, TAM, LET, and long-term 17β-estradiol treatment groups. Alterations in the lipid profiles were also observed in the 17β-estradiol treatment groups. In contrast, SM6Met did not augment the increase in serum levels of liver injury biomarkers caused by tumor induction and no effect was observed on lipid profiles. In summary, the results from the current study demonstrate the chemopreventative effect of SM6Met on mammary tumor growth, which was comparable to that of TAM, without eliciting the negative side-effects observed with this SOC endocrine

  19. DRG axon elongation and growth cone collapse rate induced by Sema3A are differently dependent on NGF concentration.

    Science.gov (United States)

    Kaselis, Andrius; Treinys, Rimantas; Vosyliūtė, Rūta; Šatkauskas, Saulius

    2014-03-01

    Regeneration of embryonic and adult dorsal root ganglion (DRG) sensory axons is highly impeded when they encounter neuronal growth cone-collapsing factor semaphorin3A (Sema3A). On the other hand, increasing evidence shows that DRG axon's regeneration can be stimulated by nerve growth factor (NGF). In this study, we aimed to evaluate whether increased NGF concentrations can counterweight Sema3A-induced inhibitory responses in 15-day-old mouse embryo (E15) DRG axons. The DRG explants were grown in Neurobasal-based medium with different NGF concentrations ranging from 0 to 100 ng/mL and then treated with Sema3A at constant 10 ng/mL concentration. To evaluate interplay between NGF and Sema3A number of DRG axons, axon outgrowth distance and collapse rate were measured. We found that the increased NGF concentrations abolish Sema3A-induced inhibitory effect on axon outgrowth, while they have no effect on Sema3A-induced collapse rate.

  20. Root-induced decomposer growth and plant N uptake are not positively associated among a set of grassland plants

    DEFF Research Database (Denmark)

    Saj, S.; Mikola, J.; Ekelund, Flemming

    2008-01-01

    It is known that plant species can induce development of different soil decomposer communities and that they differ in their influence on organic matter decomposition and N mineralization in soil. However, no study has so far assessed whether these two observations are related to each other. Base...... that plant traits such as competitive ability for soil mineral N were more important for plant uptake of litter-N than those that directly affected the growth of soil decomposers.......It is known that plant species can induce development of different soil decomposer communities and that they differ in their influence on organic matter decomposition and N mineralization in soil. However, no study has so far assessed whether these two observations are related to each other. Based...... on the hypothesis that root-induced growth of soil decomposers leads to accelerated decomposition of SOM and increased plant N availability in soil, we predicted that (1) among a set of grassland plants the abundance of soil decomposers in the plant rhizosphere is positively associated with plant N uptake from soil...