WorldWideScience

Sample records for reconstruction control system

  1. The BaBar Data Reconstruction Control System

    International Nuclear Information System (INIS)

    Ceseracciu, A

    2005-01-01

    The BaBar experiment is characterized by extremely high luminosity and very large volume of data produced and stored, with increasing computing requirements each year. To fulfill these requirements a Control System has been designed and developed for the offline distributed data reconstruction system. The control system described in this paper provides the performance and flexibility needed to manage a large number of small computing farms, and takes full benefit of OO design. The infrastructure is well isolated from the processing layer, it is generic and flexible, based on a light framework providing message passing and cooperative multitasking. The system is distributed in a hierarchical way: the top-level system is organized in farms, farms in services, and services in subservices or code modules. It provides a powerful Finite State Machine framework to describe custom processing models in a simple regular language. This paper describes the design and evolution of this control system, currently in use at SLAC and Padova on ∼450 CPUs organized in 9 farms

  2. Reconstruction of instrumentation and control system (SKR)

    International Nuclear Information System (INIS)

    Wiening, K.-H.

    2001-01-01

    For the first time extensive upgrades have been performed in all safety related areas of units with WWER 440/230 reactors. One of the most important actions was the replacement of the safety and safety related instrumentation and control. The state of the art digital safety instrumentation and control system TELEPERM XS has been implemented in units 1 and 2 of the Bohunice V1 power plant. The requirements as deduced from safety assessments conducted by commissions of international experts have been fulfilled, so that Bohunice V1 after this gradual reconstruction has been upgraded to an internationally accepted safety level for the remainder of its service life. (author)

  3. The New BaBar Data Reconstruction Control System

    International Nuclear Information System (INIS)

    Ceseracciu, Antonio

    2003-01-01

    The BaBar experiment is characterized by extremely high luminosity, a complex detector, and a huge data volume, with increasing requirements each year. To fulfill these requirements a new control system has been designed and developed for the offline data reconstruction system. The new control system described in this paper provides the performance and flexibility needed to manage a large number of small computing farms, and takes full benefit of OO design. The infrastructure is well isolated from the processing layer, it is generic and flexible, based on a light framework providing message passing and cooperative multitasking. The system is actively distributed, enforces the separation between different processing tiers by using different naming domains, and glues them together by dedicated brokers. It provides a powerful Finite State Machine framework to describe custom processing models in a simple regular language. This paper describes this new control system, currently in use at SLAC and Padova on ∼450 CPUs organized in 12 farms

  4. Biomechanical Reconstruction Using the Tacit Learning System: Intuitive Control of Prosthetic Hand Rotation.

    Science.gov (United States)

    Oyama, Shintaro; Shimoda, Shingo; Alnajjar, Fady S K; Iwatsuki, Katsuyuki; Hoshiyama, Minoru; Tanaka, Hirotaka; Hirata, Hitoshi

    2016-01-01

    Background: For mechanically reconstructing human biomechanical function, intuitive proportional control, and robustness to unexpected situations are required. Particularly, creating a functional hand prosthesis is a typical challenge in the reconstruction of lost biomechanical function. Nevertheless, currently available control algorithms are in the development phase. The most advanced algorithms for controlling multifunctional prosthesis are machine learning and pattern recognition of myoelectric signals. Despite the increase in computational speed, these methods cannot avoid the requirement of user consciousness and classified separation errors. "Tacit Learning System" is a simple but novel adaptive control strategy that can self-adapt its posture to environment changes. We introduced the strategy in the prosthesis rotation control to achieve compensatory reduction, as well as evaluated the system and its effects on the user. Methods: We conducted a non-randomized study involving eight prosthesis users to perform a bar relocation task with/without Tacit Learning System support. Hand piece and body motions were recorded continuously with goniometers, videos, and a motion-capture system. Findings: Reduction in the participants' upper extremity rotatory compensation motion was monitored during the relocation task in all participants. The estimated profile of total body energy consumption improved in five out of six participants. Interpretation: Our system rapidly accomplished nearly natural motion without unexpected errors. The Tacit Learning System not only adapts human motions but also enhances the human ability to adapt to the system quickly, while the system amplifies compensation generated by the residual limb. The concept can be extended to various situations for reconstructing lost functions that can be compensated.

  5. Real time equilibrium reconstruction for tokamak discharge control

    International Nuclear Information System (INIS)

    Ferron, J.R.; Walker, M.L.; Lao, L.L.; St John, H.E.; Humphreys, D.A.; Leuer, J.A.

    1998-01-01

    A practical method for performing a tokamak equilibrium reconstruction in real time for arbitrary time varying discharge shapes and current profiles is described. An approximate solution to the Grad-Shafranov equilibrium relation is found which best fits the diagnostic measurements. Thus, a solution for the spatial distribution of poloidal flux and toroidal current density is available in real time that is consistent with plasma force balance, allowing accurate evaluation of parameters such as discharge shape and safety factor profile. The equilibrium solutions are produced at a rate sufficient for discharge control. This equilibrium reconstruction algorithm has been implemented on the digital plasma control system for the DIII-D tokamak. The first application of real time equilibrium reconstruction to discharge shape control is described. (author)

  6. Analysis of PWR control rod ejection accident with the coupled code system SKETCH-INS/TRACE by incorporating pin power reconstruction model

    International Nuclear Information System (INIS)

    Nakajima, T.; Sakai, T.

    2010-01-01

    The pin power reconstruction model was incorporated in the 3-D nodal kinetics code SKETCH-INS in order to produce accurate calculation of three-dimensional pin power distributions throughout the reactor core. In order to verify the employed pin power reconstruction model, the PWR MOX/UO_2 core transient benchmark problem was analyzed with the coupled code system SKETCH-INS/TRACE by incorporating the model and the influence of pin power reconstruction model was studied. SKETCH-INS pin power distributions for 3 benchmark problems were compared with the PARCS solutions which were provided by the host organisation of the benchmark. SKETCH-INS results were in good agreement with the PARCS results. The capability of employed pin power reconstruction model was confirmed through the analysis of benchmark problems. A PWR control rod ejection benchmark problem was analyzed with the coupled code system SKETCH-INS/ TRACE by incorporating the pin power reconstruction model. The influence of pin power reconstruction model was studied by comparing with the result of conventional node averaged flux model. The results indicate that the pin power reconstruction model has significant effect on the pin powers during transient and hence on the fuel enthalpy

  7. Spectrum reconstruction of quasi-zero stiffness floating raft systems

    International Nuclear Information System (INIS)

    Li, Yingli; Xu, Daolin

    2016-01-01

    Chaos control can be utilized to reform the response spectra of a dynamic system, potentially useful for the acoustic reconstruction of underwater vehicles. Introduction of the quasi-zero stiffness (QZS) isolators into the chaotification system can greatly reduce the emission of vibration signals from vehicles. In this study, the QZS isolators is adopted with combination of chaotification expecting to achieve excellent performances in both vibration isolation and the camouflage of vibration signal features. A nonlinear time delay control scheme is proposed to chaotify the QZS system in order to reconstruct the output spectrum features of the acoustic noise induced by the machinery vibration. A high dimensional nonlinear model of the QZS system is developed to understand the spectrum characteristics of the system. From the spectrum patterns, a specific performance index is formulated to evaluate the significance of signal-noise ratio. Based on this index, the Generic Algorithm method is employed to seek the optimal control parameters which enable to eliminate the feature of line spikes emerged from broad-band spectra. The results show that the unique combination of QZS system and time delay control can effectively reform the power spectra, especially for the case with relatively high frequency.

  8. Estimation of 3D reconstruction errors in a stereo-vision system

    Science.gov (United States)

    Belhaoua, A.; Kohler, S.; Hirsch, E.

    2009-06-01

    The paper presents an approach for error estimation for the various steps of an automated 3D vision-based reconstruction procedure of manufactured workpieces. The process is based on a priori planning of the task and built around a cognitive intelligent sensory system using so-called Situation Graph Trees (SGT) as a planning tool. Such an automated quality control system requires the coordination of a set of complex processes performing sequentially data acquisition, its quantitative evaluation and the comparison with a reference model (e.g., CAD object model) in order to evaluate quantitatively the object. To ensure efficient quality control, the aim is to be able to state if reconstruction results fulfill tolerance rules or not. Thus, the goal is to evaluate independently the error for each step of the stereo-vision based 3D reconstruction (e.g., for calibration, contour segmentation, matching and reconstruction) and then to estimate the error for the whole system. In this contribution, we analyze particularly the segmentation error due to localization errors for extracted edge points supposed to belong to lines and curves composing the outline of the workpiece under evaluation. The fitting parameters describing these geometric features are used as quality measure to determine confidence intervals and finally to estimate the segmentation errors. These errors are then propagated through the whole reconstruction procedure, enabling to evaluate their effect on the final 3D reconstruction result, specifically on position uncertainties. Lastly, analysis of these error estimates enables to evaluate the quality of the 3D reconstruction, as illustrated by the shown experimental results.

  9. Tomographic reconstruction by using FPSIRT (Fast Particle System Iterative Reconstruction Technique)

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Icaro Valgueiro M.; Melo, Silvio de Barros; Dantas, Carlos; Lima, Emerson Alexandre; Silva, Ricardo Martins; Cardoso, Halisson Alberdan C., E-mail: ivmm@cin.ufpe.br, E-mail: sbm@cin.ufpe.br, E-mail: rmas@cin.ufpe.br, E-mail: hacc@cin.ufpe.br, E-mail: ccd@ufpe.br, E-mail: eal@cin.ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2015-07-01

    The PSIRT (Particle System Iterative Reconstruction Technique) is a method of tomographic image reconstruction primarily designed to work with configurations suitable for industrial applications. A particle system is an optimization technique inspired in real physical systems that associates to the reconstructing material a set of particles with certain physical features, subject to a force eld, which can produce movement. The system constantly updates the set of particles by repositioning them in such a way as to approach the equilibrium. The elastic potential along a trajectory is a function of the difference between the attenuation coefficient in the current configuration and the corresponding input data. PSIRT has been successfully used to reconstruct simulated and real objects subject to sets of parallel and fanbeam lines in different angles, representing typical gamma-ray tomographic arrangements. One of PSIRT's limitation was its performance, too slow for real time scenarios. In this work, it is presented a reformulation in PSIRT's computational model, which is able to grant the new algorithm, the FPSIRT - Fast System Iterative Reconstruction Technique, a performance up to 200-time faster than PSIRT's. In this work a comparison of their application to real and simulated data from the HSGT, High Speed Gamma Tomograph, is presented. (author)

  10. Tomographic reconstruction by using FPSIRT (Fast Particle System Iterative Reconstruction Technique)

    International Nuclear Information System (INIS)

    Moreira, Icaro Valgueiro M.; Melo, Silvio de Barros; Dantas, Carlos; Lima, Emerson Alexandre; Silva, Ricardo Martins; Cardoso, Halisson Alberdan C.

    2015-01-01

    The PSIRT (Particle System Iterative Reconstruction Technique) is a method of tomographic image reconstruction primarily designed to work with configurations suitable for industrial applications. A particle system is an optimization technique inspired in real physical systems that associates to the reconstructing material a set of particles with certain physical features, subject to a force eld, which can produce movement. The system constantly updates the set of particles by repositioning them in such a way as to approach the equilibrium. The elastic potential along a trajectory is a function of the difference between the attenuation coefficient in the current configuration and the corresponding input data. PSIRT has been successfully used to reconstruct simulated and real objects subject to sets of parallel and fanbeam lines in different angles, representing typical gamma-ray tomographic arrangements. One of PSIRT's limitation was its performance, too slow for real time scenarios. In this work, it is presented a reformulation in PSIRT's computational model, which is able to grant the new algorithm, the FPSIRT - Fast System Iterative Reconstruction Technique, a performance up to 200-time faster than PSIRT's. In this work a comparison of their application to real and simulated data from the HSGT, High Speed Gamma Tomograph, is presented. (author)

  11. Reconstruction of electric systems (ELE)

    International Nuclear Information System (INIS)

    Kohutovic, P.

    2001-01-01

    The original design of WWER-230 units consisted of a single common system EEPS (essential electric power supply system) per unit. The establishment of redundancy 2 x 100% EEPS was a global task. The task was started during the 'Small reconstruction' - MR V1, continued in 'Gradual reconstruction' and finished in the year 2000. (author)

  12. Implementation of GPU parallel equilibrium reconstruction for plasma control in EAST

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yao, E-mail: yaohuang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xiao, B.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); School of Nuclear Science & Technology, University of Science & Technology of China (China); Luo, Z.P.; Yuan, Q.P.; Pei, X.F. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yue, X.N. [School of Nuclear Science & Technology, University of Science & Technology of China (China)

    2016-11-15

    Highlights: • We described parallel equilibrium reconstruction code P-EFIT running on GPU was integrated with EAST plasma control system. • Compared with RT-EFIT used in EAST, P-EFIT has better spatial resolution and full algorithm of EFIT per iteration. • With the data interface through RFM, 65 × 65 spatial grids P-EFIT can satisfy the accuracy and time feasibility requirements for plasma control. • Successful control using ISOFLUX/P-EFIT was established in the dedicated experiment during the EAST 2014 campaign. • This work is a stepping-stone towards versatile ISOFLUX/P-EFIT control, such as real-time equilibrium reconstruction with more diagnostics. - Abstract: Implementation of P-EFIT code for plasma control in EAST is described. P-EFIT is based on the EFIT framework, but built with the CUDA™ architecture to take advantage of massively parallel Graphical Processing Unit (GPU) cores to significantly accelerate the computation. 65 × 65 grid size P-EFIT can complete one reconstruction iteration in 300 μs, with one iteration strategy, it can satisfy the needs of real-time plasma shape control. Data interface between P-EFIT and PCS is realized and developed by transferring data through RFM. First application of P-EFIT to discharge control in EAST is described.

  13. Development of computed tomography system and image reconstruction algorithm

    International Nuclear Information System (INIS)

    Khairiah Yazid; Mohd Ashhar Khalid; Azaman Ahmad; Khairul Anuar Mohd Salleh; Ab Razak Hamzah

    2006-01-01

    Computed tomography is one of the most advanced and powerful nondestructive inspection techniques, which is currently used in many different industries. In several CT systems, detection has been by combination of an X-ray image intensifier and charge -coupled device (CCD) camera or by using line array detector. The recent development of X-ray flat panel detector has made fast CT imaging feasible and practical. Therefore this paper explained the arrangement of a new detection system which is using the existing high resolution (127 μm pixel size) flat panel detector in MINT and the image reconstruction technique developed. The aim of the project is to develop a prototype flat panel detector based CT imaging system for NDE. The prototype consisted of an X-ray tube, a flat panel detector system, a rotation table and a computer system to control the sample motion and image acquisition. Hence this project is divided to two major tasks, firstly to develop image reconstruction algorithm and secondly to integrate X-ray imaging components into one CT system. The image reconstruction algorithm using filtered back-projection method is developed and compared to other techniques. The MATLAB program is the tools used for the simulations and computations for this project. (Author)

  14. Optimization of the reconstruction and anti-aliasing filter in a Wiener filter system

    NARCIS (Netherlands)

    Wesselink, J.M.; Berkhoff, Arthur P.

    2006-01-01

    This paper discusses the influence of the reconstruction and anti-aliasing filters on the performance of a digital implementation of a Wiener filter for active noise control. The overall impact will be studied in combination with a multi-rate system approach. A reconstruction and anti-aliasing

  15. A 3D freehand ultrasound system for multi-view reconstructions from sparse 2D scanning planes.

    Science.gov (United States)

    Yu, Honggang; Pattichis, Marios S; Agurto, Carla; Beth Goens, M

    2011-01-20

    A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes.For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical

  16. Three-dimensional reconstruction and visualization system for medical images

    International Nuclear Information System (INIS)

    Preston, D.F.; Batnitzky, S.; Kyo Rak Lee; Cook, P.N.; Cook, L.T.; Dwyer, S.J.

    1982-01-01

    A three-dimensional reconstruction and visualization system could be of significant advantage in medical application such as neurosurgery and radiation treatment planning. The reconstructed anatomic structures from CT head scans could be used in a head stereotactic system to help plan the surgical procedure and the radiation treatment for a brain lesion. Also, the use of three-dimensional reconstruction algorithm provides for quantitative measures such as volume and surface area estimation of the anatomic features. This aspect of the three-dimensional reconstruction system may be used to monitor the progress or staging of a disease and the effects of patient treatment. Two cases are presented to illustrate the three-dimensional surface reconstruction and visualization system

  17. Reconstruction of a whole-body counter into a process computer-controlled low-level whole-body scanner

    International Nuclear Information System (INIS)

    Hamann, C.

    1975-01-01

    A report is given on the state of the research project to reconstruct our whole-body counter with solid geometries into a scanning type one. The object is to develop a process computer controlled 'adaptive system'. The self-built scan mechanics are explained and the advantages and problems of applying stepping motors are gone into. A stepping motor coordinates control is presented. As the planned scanner and the process computer form a digital controlled system, all theoretical and actual values as well as the control orders from the process computer must be directly controllable. A CAMAC system was not used for economical reasons, the process periphery was made controllable by self building of interfaces to and from the computer. As example, the available multi-channel analyzers were converted to external controlling. The price-moderate and relatively simple self-built set-up are outlined and an example is given of how a TELETYPE version is reconstructed into a fast electronic interface. A BUS-MULTIPLEX system was developed which generates all necessary DI/DO interfaces out of one DI and DO address of the process computer only. The essential part of this system is given. (orig./LH) [de

  18. Acceleration optimization of real-time equilibrium reconstruction for HL-2A tokamak discharge control

    Science.gov (United States)

    Rui, MA; Fan, XIA; Fei, LING; Jiaxian, LI

    2018-02-01

    Real-time equilibrium reconstruction is crucially important for plasma shape control in the process of tokamak plasma discharge. However, as the reconstruction algorithm is computationally intensive, it is very difficult to improve its accuracy and reduce the computation time, and some optimizations need to be done. This article describes the three most important aspects of this optimization: (1) compiler optimization; (2) some optimization for middle-scale matrix multiplication on the graphic processing unit and an algorithm which can solve the block tri-diagonal linear system efficiently in parallel; (3) a new algorithm to locate the X&O point on the central processing unit. A static test proves the correctness and a dynamic test proves the feasibility of using the new code for real-time reconstruction with 129 × 129 grids; it can complete one iteration around 575 μs for each equilibrium reconstruction. The plasma displacements from real-time equilibrium reconstruction are compared with the experimental measurements, and the calculated results are consistent with the measured ones, which can be used as a reference for the real-time control of HL-2A discharge.

  19. Reconstruction of Low Pressure Gas Supply System

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2013-01-01

    Full Text Available The current reconstruction of residential areas in large cities especially with the developed heat-supply systems from thermal power stations and reduction of heat consumption for heating due to higher thermal resistance of building enclosing structures requires new technical solutions in respect of gas-supply problems. While making reconstruction of a gas-supply system of the modernized or new buildings in the operating zone of one gas-distribution plant it is necessary to change hot water-supply systems from gas direct-flow water heaters to centralized heat-supply and free gas volumes are to be used for other needs or gas-supply of new buildings with the current external gas distribution network.Selection of additional gas-line sections and points of gas-supply systems pertaining to new and reconstructed buildings for their connection to the current distribution system of gas-supply is to be executed in accordance with the presented methodology.

  20. The parallel processing system for fast 3D-CT image reconstruction by circular shifting float memory architecture

    International Nuclear Information System (INIS)

    Wang Shi; Kang Kejun; Wang Jingjin

    1996-01-01

    Computerized Tomography (CT) is expected to become an inevitable diagnostic technique in the future. However, the long time required to reconstruct an image has been one of the major drawbacks associated with this technique. Parallel process is one of the best way to solve this problem. This paper gives the architecture, hardware and software design of PIRS-4 (4-processor Parallel Image Reconstruction System), which is a parallel processing system for fast 3D-CT image reconstruction by circular shifting float memory architecture. It includes the structure and components of the system, the design of crossbar switch and details of control model, the description of RPBP image reconstruction, the choice of OS (Operate System) and language, the principle of imitating EMS, direct memory R/W of float and programming in the protect model. Finally, the test results are given

  1. Hardware system of parallel processing for fast CT image reconstruction based on circular shifting float memory architecture

    International Nuclear Information System (INIS)

    Wang Shi; Kang Kejun; Wang Jingjin

    1995-01-01

    Computerized Tomography (CT) is expected to become an inevitable diagnostic technique in the future. However, the long time required to reconstruct an image has been one of the major drawbacks associated with this technique. Parallel process is one of the best way to solve this problem. This paper gives the architecture and hardware design of PIRS-4 (4-processor Parallel Image Reconstruction System) which is a parallel processing system for fast 3D-CT image reconstruction by circular shifting float memory architecture. It includes structure and component of the system, the design of cross bar switch and details of control model. The test results are described

  2. Electro-optical system for the high speed reconstruction of computed tomography images

    International Nuclear Information System (INIS)

    Tresp, V.

    1989-01-01

    An electro-optical system for the high-speed reconstruction of computed tomography (CT) images has been built and studied. The system is capable of reconstructing high-contrast and high-resolution images at video rate (30 images per second), which is more than two orders of magnitude faster than the reconstruction rate achieved by special purpose digital computers used in commercial CT systems. The filtered back-projection algorithm which was implemented in the reconstruction system requires the filtering of all projections with a prescribed filter function. A space-integrating acousto-optical convolver, a surface acoustic wave filter and a digital finite-impulse response filter were used for this purpose and their performances were compared. The second part of the reconstruction, the back projection of the filtered projections, is computationally very expensive. An optical back projector has been built which maps the filtered projections onto the two-dimensional image space using an anamorphic lens system and a prism image rotator. The reconstructed image is viewed by a video camera, routed through a real-time image-enhancement system, and displayed on a TV monitor. The system reconstructs parallel-beam projection data, and in a modified version, is also capable of reconstructing fan-beam projection data. This extension is important since the latter are the kind of projection data actually acquired in high-speed X-ray CT scanners. The reconstruction system was tested by reconstructing precomputed projection data of phantom images. These were stored in a special purpose projection memory and transmitted to the reconstruction system as an electronic signal. In this way, a projection measurement system that acquires projections sequentially was simulated

  3. A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Shawn Q.; Branlund, Eric; Kesthelyi, Bettina; Braunfeld, Michael B.; Cheng, Yifan; Sedat, John W. [The Howard Hughes Medical Institute and the W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, 600, 16th Street, Room S412D, CA 94158-2517 (United States); Agard, David A., E-mail: agard@msg.ucsf.edu [The Howard Hughes Medical Institute and the W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, 600, 16th Street, Room S412D, CA 94158-2517 (United States)

    2011-07-15

    Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096{sup 2}x512 voxels from an input tilt series containing 122 projection images of 4096{sup 2} pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024{sup 2}x256 voxels from 122 1024{sup 2} pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment. -- Highlights: {yields} A distributed multi-GPU system has been developed for electron microscopic tomography (EMT). {yields} This system allows for rapid constrained, iterative reconstruction of very large volumes. {yields} This system can be easily expanded to generate superior computing power for large-scale iterative EMT realignment.

  4. A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction

    International Nuclear Information System (INIS)

    Zheng, Shawn Q.; Branlund, Eric; Kesthelyi, Bettina; Braunfeld, Michael B.; Cheng, Yifan; Sedat, John W.; Agard, David A.

    2011-01-01

    Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096 2 x512 voxels from an input tilt series containing 122 projection images of 4096 2 pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024 2 x256 voxels from 122 1024 2 pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment. -- Highlights: → A distributed multi-GPU system has been developed for electron microscopic tomography (EMT). → This system allows for rapid constrained, iterative reconstruction of very large volumes. → This system can be easily expanded to generate superior computing power for large-scale iterative EMT realignment.

  5. Reconstruction of dynamical systems from interspike intervals

    International Nuclear Information System (INIS)

    Sauer, T.

    1994-01-01

    Attractor reconstruction from interspike interval (ISI) data is described, in rough analogy with Taken's theorem for attractor reconstruction from time series. Assuming a generic integrate-and-fire model coupling the dynamical system to the spike train, there is a one-to-one correspondence between the system states and interspike interval vectors of sufficiently large dimension. The correspondence has an important implication: interspike intervals can be forecast from past history. We show that deterministically driven ISI series can be distinguished from stochastically driven ISI series on the basis of prediction error

  6. The ATLAS Detector Control System

    International Nuclear Information System (INIS)

    Lantzsch, K; Braun, H; Hirschbuehl, D; Kersten, S; Arfaoui, S; Franz, S; Gutzwiller, O; Schlenker, S; Tsarouchas, C A; Mindur, B; Hartert, J; Zimmermann, S; Talyshev, A; Oliveira Damazio, D; Poblaguev, A; Martin, T; Thompson, P D; Caforio, D; Sbarra, C; Hoffmann, D

    2012-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  7. The ATLAS Detector Control System

    Science.gov (United States)

    Lantzsch, K.; Arfaoui, S.; Franz, S.; Gutzwiller, O.; Schlenker, S.; Tsarouchas, C. A.; Mindur, B.; Hartert, J.; Zimmermann, S.; Talyshev, A.; Oliveira Damazio, D.; Poblaguev, A.; Braun, H.; Hirschbuehl, D.; Kersten, S.; Martin, T.; Thompson, P. D.; Caforio, D.; Sbarra, C.; Hoffmann, D.; Nemecek, S.; Robichaud-Veronneau, A.; Wynne, B.; Banas, E.; Hajduk, Z.; Olszowska, J.; Stanecka, E.; Bindi, M.; Polini, A.; Deliyergiyev, M.; Mandic, I.; Ertel, E.; Marques Vinagre, F.; Ribeiro, G.; Santos, H. F.; Barillari, T.; Habring, J.; Huber, J.; Arabidze, G.; Boterenbrood, H.; Hart, R.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Mountricha, E.; Ntekas, K.; Filimonov, V.; Khomutnikov, V.; Kovalenko, S.; Grassi, V.; Mitrevski, J.; Phillips, P.; Chekulaev, S.; D'Auria, S.; Nagai, K.; Tartarelli, G. F.; Aielli, G.; Marchese, F.; Lafarguette, P.; Brenner, R.

    2012-12-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  8. CT image reconstruction system based on hardware implementation

    International Nuclear Information System (INIS)

    Silva, Hamilton P. da; Evseev, Ivan; Schelin, Hugo R.; Paschuk, Sergei A.; Milhoretto, Edney; Setti, Joao A.P.; Zibetti, Marcelo; Hormaza, Joel M.; Lopes, Ricardo T.

    2009-01-01

    Full text: The timing factor is very important for medical imaging systems, which can nowadays be synchronized by vital human signals, like heartbeats or breath. The use of hardware implemented devices in such a system has advantages considering the high speed of information treatment combined with arbitrary low cost on the market. This article refers to a hardware system which is based on electronic programmable logic called FPGA, model Cyclone II from ALTERA Corporation. The hardware was implemented on the UP3 ALTERA Kit. A partially connected neural network with unitary weights was programmed. The system was tested with 60 topographic projections, 100 points in each, of the Shepp and Logan phantom created by MATLAB. The main restriction was found to be the memory size available on the device: the dynamic range of reconstructed image was limited to 0 65535. Also, the normalization factor must be observed in order to do not saturate the image during the reconstruction and filtering process. The test shows a principal possibility to build CT image reconstruction systems for any reasonable amount of input data by arranging the parallel work of the hardware units like we have tested. However, further studies are necessary for better understanding of the error propagation from topographic projections to reconstructed image within the implemented method. (author)

  9. A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction.

    Science.gov (United States)

    Zheng, Shawn Q; Branlund, Eric; Kesthelyi, Bettina; Braunfeld, Michael B; Cheng, Yifan; Sedat, John W; Agard, David A

    2011-07-01

    Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096(2) × 512 voxels from an input tilt series containing 122 projection images of 4096(2) pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024(2) × 256 voxels from 122 1024(2) pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Need an Information Security in Access Control System?

    Directory of Open Access Journals (Sweden)

    V. R. Petrov

    2011-12-01

    Full Text Available The purpose of this paper is the general problems of information security in access control system. The field of using is the in project of reconstruction Physical protection system.

  11. Structured Light-Based 3D Reconstruction System for Plants

    OpenAIRE

    Nguyen, Thuy Tuong; Slaughter, David C.; Max, Nelson; Maloof, Julin N.; Sinha, Neelima

    2015-01-01

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud regi...

  12. The reactor power control system based on digital control in nuclear power plant

    International Nuclear Information System (INIS)

    Liu Chong; Zhou Jianliang; Tan Ping

    2010-01-01

    The PLC (Programmable Logical Controller), digital communication and redundant techniques are applied in the rod control and position indication system(namely the reactor power control system) to perform the power control in the 300 MW reactor automatically and integrally in Qinshan Phase I project. This paper introduces the features, digital design methods of hardware of the instrumentation and control system (I and C) in the reactor power control. It is more convenient for the information exchange by human-machine interface (HMI), operation and maintenance, and the system reliability has been greatly improved after the project being reconstructed. (authors)

  13. Robust framework for PET image reconstruction incorporating system and measurement uncertainties.

    Directory of Open Access Journals (Sweden)

    Huafeng Liu

    Full Text Available In Positron Emission Tomography (PET, an optimal estimate of the radioactivity concentration is obtained from the measured emission data under certain criteria. So far, all the well-known statistical reconstruction algorithms require exactly known system probability matrix a priori, and the quality of such system model largely determines the quality of the reconstructed images. In this paper, we propose an algorithm for PET image reconstruction for the real world case where the PET system model is subject to uncertainties. The method counts PET reconstruction as a regularization problem and the image estimation is achieved by means of an uncertainty weighted least squares framework. The performance of our work is evaluated with the Shepp-Logan simulated and real phantom data, which demonstrates significant improvements in image quality over the least squares reconstruction efforts.

  14. Neurofunctional systems. 3D reconstructions with correlated neuroimaging

    International Nuclear Information System (INIS)

    Kretschmann, H.J.; Fiekert, W.; Gerke, M.; Vogt, H.; Weirich, D.; Wesemann, M.; Weinrich, W.

    1998-01-01

    This book introduces, for the first time, computer-generated images of the neurofunctional systems of the human brain. These images are more accurate than drawings. The main views presented are of the medial lemniscus system, auditory system, visual system, basal ganglia, corticospinal system, and the limbic system. The arteries and sulci of the cerebral hemispheres are also illustrated by computer. These images provide a three-dimensional orientation of the intracranial space and help, for example, to assess vascular functional disturbance of the brain. Clinicians will find these images valuable for the spatial interpretation of magnetic resonance (MR), computed tomography (CT), and positron emission tomography (PET) images since many neurofunctional systems cannot be visualized as isolated structures in neuroimaging. Computer-assisted surface reconstructions of the neurofunctional systems and the cerebral arteries serve as a basis for constructing these computer-generated images. The surface reconstructions are anatomically realistic having been created from brain sections with minimal deformations. The method of computer graphics, known as ray tracing, produces digital images form these reconstructions. The computer-generated methods are explained. The computer-generated images are accompanied by illustrations and texts on neuroanatomy and clinical practice. The neurofunctional systems of the human brain are also shown in sections so that the reader can mentally reconstruct the neurofunctional systems, thus facilitating the transformation of information into textbooks and atlantes of MR and CT imaging. The aim of this book is acquaint the reader with the three-dimensional aspects of the neurofunctional systems and the cerebral arteries of the human brain using methods of computer graphics. Computer scientists and those interested in this technique are provided with basic neuroanatomic and neurofunctional information. Physicians will have a clearer understanding

  15. Neurofunctional systems. 3D reconstructions with correlated neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Kretschmann, H.J.; Fiekert, W.; Gerke, M.; Vogt, H.; Weirich, D.; Wesemann, M. [Medizinische Hochschule Hannover (Germany). Abt. Neuroanatomie; Weinrich, W. [Staedtisches Krankenhaus Nordstadt, Hannover (Germany). Abt. fuer Neurologie

    1998-12-31

    This book introduces, for the first time, computer-generated images of the neurofunctional systems of the human brain. These images are more accurate than drawings. The main views presented are of the medial lemniscus system, auditory system, visual system, basal ganglia, corticospinal system, and the limbic system. The arteries and sulci of the cerebral hemispheres are also illustrated by computer. These images provide a three-dimensional orientation of the intracranial space and help, for example, to assess vascular functional disturbance of the brain. Clinicians will find these images valuable for the spatial interpretation of magnetic resonance (MR), computed tomography (CT), and positron emission tomography (PET) images since many neurofunctional systems cannot be visualized as isolated structures in neuroimaging. Computer-assisted surface reconstructions of the neurofunctional systems and the cerebral arteries serve as a basis for constructing these computer-generated images. The surface reconstructions are anatomically realistic having been created from brain sections with minimal deformations. The method of computer graphics, known as ray tracing, produces digital images form these reconstructions. The computer-generated methods are explained. The computer-generated images are accompanied by illustrations and texts on neuroanatomy and clinical practice. The neurofunctional systems of the human brain are also shown in sections so that the reader can mentally reconstruct the neurofunctional systems, thus facilitating the transformation of information into textbooks and atlantes of MR and CT imaging. The aim of this book is acquaint the reader with the three-dimensional aspects of the neurofunctional systems and the cerebral arteries of the human brain using methods of computer graphics. Computer scientists and those interested in this technique are provided with basic neuroanatomic and neurofunctional information. Physicians will have a clearer understanding

  16. Controlling chaos (OGY) implemented on a reconstructed ecological two-dimensional map

    International Nuclear Information System (INIS)

    Sakai, Kenshi; Noguchi, Yuko

    2009-01-01

    We numerically demonstrate a way to stabilize an unstable equilibrium in the ecological dynamics reconstructed from real-world time series data, namely, alternate bearing of citrus trees. The reconstruction of deterministic dynamics from short and noisy ecological time series has been a crucial issue since May's historical work [May RM. Biological populations with nonoverlapping generations: stable points, stable cycles and chaos. Science 1974;186:645-7; Hassell MP, Lawton JH, May RM. Patterns of dynamical behavior in single species populations. J Anim Ecol 1976;45:471-86]. Response surface methodology, followed by the differential equation approach is recognized as a promising method of reconstruction [Turchin P. Rarity of density dependence or population with lags? Nature 1990;344:660-3; Turchin P, Taylor AD. Complex dynamics in ecological time series. Ecology 1992;73:289-305; Ellner S, Turchin P. Chaos in a noisy world: new method and evidence from time series analysis. Am Nat 1995;145(3):343-75; Turchin P, Ellner S. Living on the edge of chaos: population dynamics of fennoscandian voles. Ecology 2000;8(11):3116]. Here, the reconstructed ecological dynamics was described by a two-dimensional map derived from the response surface created by the data. The response surface created was experimentally validated in four one-year forward predictions in 2001, 2002, 2003 and 2004. Controlling chaos is very important when applying chaos theory to solving real-world problems. The OGY method is the first and most popular methodology for controlling chaos and can be used as an algorithm to stabilize an unstable fixed point by putting the state on a stable manifold [Ott E, Grebogi C, York JA. Controlling chaos. Phys Rev Lett 1990;64:1996-9]. We applied the OGY method to our reconstructed two-dimensional map and as a result were able to control alternate bearing in numerical simulations.

  17. State Space Reduction of Linear Processes using Control Flow Reconstruction

    NARCIS (Netherlands)

    van de Pol, Jan Cornelis; Timmer, Mark

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  18. State Space Reduction of Linear Processes Using Control Flow Reconstruction

    NARCIS (Netherlands)

    van de Pol, Jan Cornelis; Timmer, Mark; Liu, Zhiming; Ravn, Anders P.

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  19. 3D reconstructions of a controlled bus bombing

    DEFF Research Database (Denmark)

    Villa, Chiara; Hansen, Nikolaj Friis; Hansen, Kamilla Maria

    2018-01-01

    Objectives: to demonstrate the usefulness of 3D reconstructions to better understand the dynamic of a controlled bus bombing. Materials and methods: 3D models of the victims (pigs) were created from post-mortem CT scanning using Mimic software; 3D models of the crime scene (bus) were generated by...

  20. Error Evaluation in a Stereovision-Based 3D Reconstruction System

    Directory of Open Access Journals (Sweden)

    Kohler Sophie

    2010-01-01

    Full Text Available The work presented in this paper deals with the performance analysis of the whole 3D reconstruction process of imaged objects, specifically of the set of geometric primitives describing their outline and extracted from a pair of images knowing their associated camera models. The proposed analysis focuses on error estimation for the edge detection process, the starting step for the whole reconstruction procedure. The fitting parameters describing the geometric features composing the workpiece to be evaluated are used as quality measures to determine error bounds and finally to estimate the edge detection errors. These error estimates are then propagated up to the final 3D reconstruction step. The suggested error analysis procedure for stereovision-based reconstruction tasks further allows evaluating the quality of the 3D reconstruction. The resulting final error estimates enable lastly to state if the reconstruction results fulfill a priori defined criteria, for example, fulfill dimensional constraints including tolerance information, for vision-based quality control applications for example.

  1. Three-Dimensional Reconstruction Optical System Using Shadows Triangulation

    Science.gov (United States)

    Barba, J. Leiner; Vargas, Q. Lorena; Torres, M. Cesar; Mattos, V. Lorenzo

    2008-04-01

    In this work is developed a three-dimensional reconstruction system using the Shades3D tool of the Matlab® Programming Language and materials of low cost, such as webcam camera, a stick, a weak structured lighting system composed by a desk lamp, and observation plane in which the object is located. The reconstruction is obtained through a triangulation process that is executed after acquiring a sequence of images of the scene with a shadow projected on the object; additionally an image filtering process is done for obtaining only the part of the scene that will be reconstructed. Previously, it is necessary to develop a calibration process for determining the internal camera geometric and optical characteristics (intrinsic parameters), and the 3D position and orientation of the camera frame relative to a certain world coordinate system (extrinsic parameters). The lamp and the stick are used to produce a shadow which scans the object; in this technique, it is not necessary to know the position of the light source, instead the triangulation is obtained using shadow plane produced by intersection between the stick and the illumination pattern. The webcam camera captures all images with the shadow scanning the object, and Shades3D tool processes all information taking into account captured images and calibration parameters. Likewise, this technique is evaluated in the reconstruction of parts of the human body and its application in the detection of external abnormalities and elaboration of prosthesis or implant.

  2. Image-reconstruction algorithms for positron-emission tomography systems

    International Nuclear Information System (INIS)

    Cheng, S.N.C.

    1982-01-01

    The positional uncertainty in the time-of-flight measurement of a positron-emission tomography system is modelled as a Gaussian distributed random variable and the image is assumed to be piecewise constant on a rectilinear lattice. A reconstruction algorithm using maximum-likelihood estimation is derived for the situation in which time-of-flight data are sorted as the most-likely-position array. The algorithm is formulated as a linear system described by a nonseparable, block-banded, Toeplitz matrix, and a sine-transform technique is used to implement this algorithm efficiently. The reconstruction algorithms for both the most-likely-position array and the confidence-weighted array are described by similar equations, hence similar linear systems can be used to described the reconstruction algorithm for a discrete, confidence-weighted array, when the matrix and the entries in the data array are properly identified. It is found that the mean square-error depends on the ratio of the full width at half the maximum of time-of-flight measurement over the size of a pixel. When other parameters are fixed, the larger the pixel size, the smaller is the mean square-error. In the study of resolution, parameters that affect the impulse response of time-of-flight reconstruction algorithms are identified. It is found that the larger the pixel size, the larger is the standard deviation of the impulse response. This shows that small mean square-error and fine resolution are two contradictory requirements

  3. Plasma Shape Control on the National Spherical Torus Experiment using Real-time Equilibrium Reconstruction

    International Nuclear Information System (INIS)

    Gates, D.A.; Ferron, J.R.; Bell, M.; Gibney, T.; Johnson, R.; Marsala, R.J.; Mastrovito, D.; Menard, J.E.; Mueller, D.; Penaflor, B.; Sabbagh, S.A.; Stevenson, T.

    2005-01-01

    Plasma shape control using real-time equilibrium reconstruction has been implemented on the National Spherical Torus Experiment (NSTX). The rtEFIT code originally developed for use on DIII-D was adapted for use on NSTX. The real-time equilibria provide calculations of the flux at points on the plasma boundary, which is used as input to a shape control algorithm known as isoflux control. The flux at the desired boundary location is compared to a reference flux value, and this flux error is used as the basic feedback quantity for the poloidal-field coils on NSTX. The hardware that comprises the control system is described, as well as the software infrastructure. Examples of precise boundary control are also presented

  4. Application of AI techniques to a voice-actuated computer system for reconstructing and displaying magnetic resonance imaging data

    Science.gov (United States)

    Sherley, Patrick L.; Pujol, Alfonso, Jr.; Meadow, John S.

    1990-07-01

    To provide a means of rendering complex computer architectures languages and input/output modalities transparent to experienced and inexperienced users research is being conducted to develop a voice driven/voice response computer graphics imaging system. The system will be used for reconstructing and displaying computed tomography and magnetic resonance imaging scan data. In conjunction with this study an artificial intelligence (Al) control strategy was developed to interface the voice components and support software to the computer graphics functions implemented on the Sun Microsystems 4/280 color graphics workstation. Based on generated text and converted renditions of verbal utterances by the user the Al control strategy determines the user''s intent and develops and validates a plan. The program type and parameters within the plan are used as input to the graphics system for reconstructing and displaying medical image data corresponding to that perceived intent. If the plan is not valid the control strategy queries the user for additional information. The control strategy operates in a conversation mode and vocally provides system status reports. A detailed examination of the various AT techniques is presented with major emphasis being placed on their specific roles within the total control strategy structure. 1.

  5. Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U

    Science.gov (United States)

    Boyer, M. D.; Battaglia, D. J.; Mueller, D.; Eidietis, N.; Erickson, K.; Ferron, J.; Gates, D. A.; Gerhardt, S.; Johnson, R.; Kolemen, E.; Menard, J.; Myers, C. E.; Sabbagh, S. A.; Scotti, F.; Vail, P.

    2018-03-01

    The upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgraded to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.

  6. High-speed reconstruction of compressed images

    Science.gov (United States)

    Cox, Jerome R., Jr.; Moore, Stephen M.

    1990-07-01

    A compression scheme is described that allows high-definition radiological images with greater than 8-bit intensity resolution to be represented by 8-bit pixels. Reconstruction of the images with their original intensity resolution can be carried out by means of a pipeline architecture suitable for compact, high-speed implementation. A reconstruction system is described that can be fabricated according to this approach and placed between an 8-bit display buffer and the display's video system thereby allowing contrast control of images at video rates. Results for 50 CR chest images are described showing that error-free reconstruction of the original 10-bit CR images can be achieved.

  7. Towards an inline reconstruction architecture for micro-CT systems

    International Nuclear Information System (INIS)

    Brasse, David; Humbert, Bernard; Mathelin, Carole; Rio, Marie-Christine; Guyonnet, Jean-Louis

    2005-01-01

    Recent developments in micro-CT have revolutionized the ability to examine in vivo living experimental animal models such as mouse with a spatial resolution less than 50 μm. The main requirements of in vivo imaging for biological researchers are a good spatial resolution, a low dose induced to the animal during the full examination and a reduced acquisition and reconstruction time for screening purposes. We introduce inline acquisition and reconstruction architecture to obtain in real time the 3D attenuation map of the animal fulfilling the three previous requirements. The micro-CT system is based on commercially available x-ray detector and micro-focus x-ray source. The reconstruction architecture is based on a cluster of PCs where a dedicated communication scheme combining serial and parallel treatments is implemented. In order to obtain high performance transmission rate between the detector and the reconstruction architecture, a dedicated data acquisition system is also developed. With the proposed solution, the time required to filter and backproject a projection of 2048 x 2048 pixels inside a volume of 140 mega voxels using the Feldkamp algorithm is similar to 500 ms, the time needed to acquire the same projection

  8. Application of Al techniques to a voice actuated computer system for reconstructing and displaying magnetic resonance imaging data

    International Nuclear Information System (INIS)

    Sherley, P.L.; Pujol, A. Jr.; Meadow, J.S.

    1990-01-01

    This paper reports that to provide a means of rendering complex computer architectures, languages, and input/output modalities transparent to experienced and inexperienced users, research is being conducted to develop a voice driven/voice response computer graphics imaging system. The system will be used for reconstructing and displaying computed tomography and magnetic resonance imaging scan data. In conjunction with this study, an artificial intelligence (AI) control strategy was developed to interface the voice components and support software to the computer graphics functions implemented on the Sun Microsystems 4/280 color graphics workstation. Based on generated text and converted renditions of verbal utterances by the user, the AI control strategy determines the user's intent and develops and validates a plan. The program type and parameters within the plan are used as input to the graphics system for reconstructing and displaying medical image data corresponding to that perceived intent. If the plan is not valid, the control strategy queries the user for additional informaiton. The control strategy operates in a conversation mode and vocally provides system status reports. A detailed examination of the various AI techniques is presented with major emphasis being placed on their specific roles within the total control strategy structure

  9. Revitalisation of the control system of Shoshtanj TPP - Block 3 and TP 1 (Croatia)

    International Nuclear Information System (INIS)

    Shprem, Davor

    1997-01-01

    Block 3 of the Shoshtanj Thermal Power Plant was put into operation in 1960. With its 75 MW rated output on the Oerlikon turbine and the generation of 150 t/h of steam per each of the two Sulzer boilers fired by coal from the nearby Velenje mines, with Blocks I and 2, it was one of the biggest thermal power plants in Slovenia and in the former Yugoslavia. Although today, after the construction of much bigger Blocks 4 and 5, its share in the generation of electric and heating energy in the Republic of Slovenia is not so big, owing to its flexibility and reliability in operation, it is still a very important thermal power plant. Its importance conditioned numerous reconstructions with a view to increasing the efficiency of the block, extending its service life and increasing its ecological acceptability. A number of changes and upgradings were done, and ATM, Zagreb, today SIEMENS d.d. had an important share therein. This article deals with the revitalization of the control and monitoring system of Block 3 and Heating Station I of the Shoshtanj Thermal Power Plant. An emphasis is put on the installation of modern TELEPERM ME - AS220 EAI automation system and OS 525 operation and monitoring system. With the installation of the new automatic control system for Block 3 and TP I the main purpose of the reconstruction was achieved - the extension of the service life of the plant with an increased efficiency of its control. With the installation of the modem microprocessor automatic control system and the operation and monitoring system, a solid basis was ensured also for further upgrading and additions at later stages of reconstruction of Block 3, which would be finished by the complete replacement of the hydraulic oil control system and the relocation of the control of Block 3 and TP I in the new joint control room for Blocks 1, 2 and 3. The first stage of these extensive works starts with the reconstruction of the automatic control system of Blocks I and 2 which will be

  10. Liposomal Bupivacaine for Pain Control After Anterior Cruciate Ligament Reconstruction: A Prospective, Double-Blinded, Randomized, Positive-Controlled Trial.

    Science.gov (United States)

    Premkumar, Ajay; Samady, Heather; Slone, Harris; Hash, Regina; Karas, Spero; Xerogeanes, John

    2016-07-01

    Local anesthetics are commonly administered into surgical sites as a part of multimodal pain control regimens. Liposomal bupivacaine is a novel formulation of bupivacaine designed for slow diffusion of a single dose of local anesthetic over a 72-hour period. While early results are promising in various settings, no studies have compared pain management regimens containing liposomal bupivacaine to traditional regimens in patients undergoing anterior cruciate ligament (ACL) reconstruction. To evaluate liposomal bupivacaine in comparison with 0.25% bupivacaine hydrochloride (HCl) for pain control after ACL reconstruction. Randomized controlled trial; Level of evidence, 1. A total of 32 adult patients undergoing primary ACL reconstruction with a soft tissue quadriceps tendon autograft between July 2014 and March 2015 were enrolled. All patients received a femoral nerve block immediately before surgery. Patients then received either a 40-mL suspension of 20 mL Exparel (1 vial of bupivacaine liposome injectable suspension) and 20 mL 0.9% injectable saline or 20 mL 0.5% bupivacaine HCl and 20 mL 0.9% injectable saline, which was administered into the graft harvest site and portal sites during surgery. Patients were given either a postoperative smartphone application or paper-based journal to record data for 1 week after ACL reconstruction. Of the 32 patients recruited, 29 patients were analyzed (90.6%). Two patients were lost to follow-up, and 1 was excluded because of a postoperative hematoma. There were no statistically significant differences in postoperative pain, medication use, pain location, recovery room time, or mobility between the 2 study groups. There were comparable outcomes with 0.25% bupivacaine HCl at a 200-fold lower cost than liposomal bupivacaine. This study does not support the widespread use of liposomal bupivacaine for pain control after ACL reconstruction in the setting of a femoral nerve block. ClinicalTrials.gov NCT02189317. © 2016 The Author(s).

  11. Energy reconstruction of hadrons in highly granular combined ECAL and HCAL systems

    Science.gov (United States)

    Israeli, Y.

    2018-05-01

    This paper discusses the hadronic energy reconstruction of two combined electromagnetic and hadronic calorimeter systems using physics prototypes of the CALICE collaboration: the silicon-tungsten electromagnetic calorimeter (Si-W ECAL) and the scintillator-SiPM based analog hadron calorimeter (AHCAL); and the scintillator-tungsten electromagnetic calorimeter (ScECAL) and the AHCAL. These systems were operated in hadron beams at CERN and FNAL, permitting the study of the performance in combined ECAL and HCAL systems. Two techniques for the energy reconstruction are used, a standard reconstruction based on calibrated sub-detector energy sums, and one based on a software compensation algorithm making use of the local energy density information provided by the high granularity of the detectors. The software compensation-based algorithm improves the hadronic energy resolution by up to 30% compared to the standard reconstruction. The combined system data show comparable energy resolutions to the one achieved for data with showers starting only in the AHCAL and therefore demonstrate the success of the inter-calibration of the different sub-systems, despite of their different geometries and different readout technologies.

  12. A three-dimensional reconstruction algorithm for an inverse-geometry volumetric CT system

    International Nuclear Information System (INIS)

    Schmidt, Taly Gilat; Fahrig, Rebecca; Pelc, Norbert J.

    2005-01-01

    An inverse-geometry volumetric computed tomography (IGCT) system has been proposed capable of rapidly acquiring sufficient data to reconstruct a thick volume in one circular scan. The system uses a large-area scanned source opposite a smaller detector. The source and detector have the same extent in the axial, or slice, direction, thus providing sufficient volumetric sampling and avoiding cone-beam artifacts. This paper describes a reconstruction algorithm for the IGCT system. The algorithm first rebins the acquired data into two-dimensional (2D) parallel-ray projections at multiple tilt and azimuthal angles, followed by a 3D filtered backprojection. The rebinning step is performed by gridding the data onto a Cartesian grid in a 4D projection space. We present a new method for correcting the gridding error caused by the finite and asymmetric sampling in the neighborhood of each output grid point in the projection space. The reconstruction algorithm was implemented and tested on simulated IGCT data. Results show that the gridding correction reduces the gridding errors to below one Hounsfield unit. With this correction, the reconstruction algorithm does not introduce significant artifacts or blurring when compared to images reconstructed from simulated 2D parallel-ray projections. We also present an investigation of the noise behavior of the method which verifies that the proposed reconstruction algorithm utilizes cross-plane rays as efficiently as in-plane rays and can provide noise comparable to an in-plane parallel-ray geometry for the same number of photons. Simulations of a resolution test pattern and the modulation transfer function demonstrate that the IGCT system, using the proposed algorithm, is capable of 0.4 mm isotropic resolution. The successful implementation of the reconstruction algorithm is an important step in establishing feasibility of the IGCT system

  13. Active Complementary Control for Affine Nonlinear Control Systems With Actuator Faults.

    Science.gov (United States)

    Fan, Quan-Yong; Yang, Guang-Hong

    2017-11-01

    This paper is concerned with the problem of active complementary control design for affine nonlinear control systems with actuator faults. The outage and loss of effectiveness fault cases are considered. In order to achieve the performance enhancement of the faulty control system, the complementary control scheme is designed in two steps. Firstly, a novel fault estimation scheme is developed. Then, by using the fault estimations to reconstruct the faulty system dynamics and introducing a cost function as the optimization objective, a nearly optimal complementary control is obtained online based on the adaptive dynamic programming (ADP) method. Unlike most of the previous ADP methods with the addition of a probing signal, new adaptive weight update laws are derived to guarantee the convergence of neural network weights and the stability of the closed-loop system, which strongly supports the online implementation of the ADP method. Finally, two simulation examples are given to illustrate the performance and effectiveness of the proposed method.

  14. Research on Image Reconstruction Algorithms for Tuber Electrical Resistance Tomography System

    Directory of Open Access Journals (Sweden)

    Jiang Zili

    2016-01-01

    Full Text Available The application of electrical resistance tomography (ERT technology has been expanded to the field of agriculture, and the concept of TERT (Tuber Electrical Resistance Tomography is proposed. On the basis of the research on the forward and the inverse problems of the TERT system, a hybrid algorithm based on genetic algorithm is proposed, which can be used in TERT system to monitor the growth status of the plant tubers. The image reconstruction of TERT system is different from the conventional ERT system for two phase-flow measurement. Imaging of TERT needs more precision measurement and the conventional ERT cares more about the image reconstruction speed. A variety of algorithms are analyzed and optimized for the purpose of making them suitable for TERT system. For example: linear back projection, modified Newton-Raphson and genetic algorithm. Experimental results showed that the novel hybrid algorithm is superior to other algorithm and it can effectively improve the image reconstruction quality.

  15. FPGA cluster for high-performance AO real-time control system

    Science.gov (United States)

    Geng, Deli; Goodsell, Stephen J.; Basden, Alastair G.; Dipper, Nigel A.; Myers, Richard M.; Saunter, Chris D.

    2006-06-01

    Whilst the high throughput and low latency requirements for the next generation AO real-time control systems have posed a significant challenge to von Neumann architecture processor systems, the Field Programmable Gate Array (FPGA) has emerged as a long term solution with high performance on throughput and excellent predictability on latency. Moreover, FPGA devices have highly capable programmable interfacing, which lead to more highly integrated system. Nevertheless, a single FPGA is still not enough: multiple FPGA devices need to be clustered to perform the required subaperture processing and the reconstruction computation. In an AO real-time control system, the memory bandwidth is often the bottleneck of the system, simply because a vast amount of supporting data, e.g. pixel calibration maps and the reconstruction matrix, need to be accessed within a short period. The cluster, as a general computing architecture, has excellent scalability in processing throughput, memory bandwidth, memory capacity, and communication bandwidth. Problems, such as task distribution, node communication, system verification, are discussed.

  16. On-line control system for the LIYaF AN SSSR synchrocyclotron beamlines

    International Nuclear Information System (INIS)

    Abrosimov, N.K.; Gerasimov, A.M.; Korovina, L.A.; Kryshen', L.M.; Mikheev, G.F.; Ryabov, G.A.

    1987-01-01

    During a number of years works on proton beamline reconstruction are conducted at the LIYaF synchrocyclotron. The reconstruction is aimed at on-line beam transport to the target. Resulting from the presented peculiarity analysis a traditional (for the system development period) structure of an on-line control system with a two-level hierarchy-the SM computer at the higher level and the ''Elektronika-60'' type computer-at the lower one, and the star-like configuration of the lower level computer connection to the higher one was accepted. Currently the following lower level subsystems are realized: a control subsystem for current stabilization in magnetic elements, beam shape measurement subsystem, collimator control subsystem, target device control subsystem. Radiation monitoring and magnetic measurement subsystems are being commissioned. Main trends in the further developing and increasing the system efficiency are enumerated

  17. Image reconstruction technique using projection data from neutron tomography system

    Directory of Open Access Journals (Sweden)

    Waleed Abd el Bar

    2015-12-01

    Full Text Available Neutron tomography is a very powerful technique for nondestructive evaluation of heavy industrial components as well as for soft hydrogenous materials enclosed in heavy metals which are usually difficult to image using X-rays. Due to the properties of the image acquisition system, the projection images are distorted by several artifacts, and these reduce the quality of the reconstruction. In order to eliminate these harmful effects the projection images should be corrected before reconstruction. This paper gives a description of a filter back projection (FBP technique, which is used for reconstruction of projected data obtained from transmission measurements by neutron tomography system We demonstrated the use of spatial Discrete Fourier Transform (DFT and the 2D Inverse DFT in the formulation of the method, and outlined the theory of reconstruction of a 2D neutron image from a sequence of 1D projections taken at different angles between 0 and π in MATLAB environment. Projections are generated by applying the Radon transform to the original image at different angles.

  18. Research of the system response of neutron double scatter imaging for MLEM reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M., E-mail: wyj2013@163.com [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); State Key Laboratory of Intense Pulsed Radiation-Simulation and Effect, Xi’an 710024 (China); Peng, B.D.; Sheng, L.; Li, K.N.; Zhang, X.P.; Li, Y.; Li, B.K.; Yuan, Y.; Wang, P.W.; Zhang, X.D.; Li, C.H. [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); State Key Laboratory of Intense Pulsed Radiation-Simulation and Effect, Xi’an 710024 (China)

    2015-03-01

    A Maximum Likelihood image reconstruction technique has been applied to neutron scatter imaging. The response function of the imaging system can be obtained by Monte Carlo simulation, which is very time-consuming if the number of image pixels and particles is large. In this work, to improve time efficiency, an analytical approach based on the probability of neutron interaction and transport in the detector is developed to calculate the system response function. The response function was applied to calculate the relative efficiency of the neutron scatter imaging system as a function of the incident neutron energy. The calculated results agreed with simulations by the MCNP5 software. Then the maximum likelihood expectation maximization (MLEM) reconstruction method with the system response function was used to reconstruct data simulated by Monte Carlo method. The results showed that there was good consistency between the reconstruction position and true position. Compared with back-projection reconstruction, the improvement in image quality was obvious, and the locations could be discerned easily for multiple radiation point sources.

  19. New designs in the reconstruction of coke-sorting systems

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Larin; V.V. Demenko; V.L. Voitanik [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    In recent Giprokoks designs for the reconstruction of coke-sorting systems, high-productivity vibrational-inertial screens have been employed. This permits single-stage screening and reduction in capital and especially operating expenditures, without loss of coke quality. In two-stage screening, >80 mm coke (for foundry needs) is additionally separated, with significant improvement in quality of the metallurgical coke (25-80 mm). New designs for the reconstruction of coke-sorting systems employ mechanical treatment of the coke outside the furnace, which offers new scope for stabilization of coke quality and permits considerable improvement in mechanical strength and granulometric composition of the coke by mechanical crushing.

  20. On distributed wavefront reconstruction for large-scale adaptive optics systems.

    Science.gov (United States)

    de Visser, Cornelis C; Brunner, Elisabeth; Verhaegen, Michel

    2016-05-01

    The distributed-spline-based aberration reconstruction (D-SABRE) method is proposed for distributed wavefront reconstruction with applications to large-scale adaptive optics systems. D-SABRE decomposes the wavefront sensor domain into any number of partitions and solves a local wavefront reconstruction problem on each partition using multivariate splines. D-SABRE accuracy is within 1% of a global approach with a speedup that scales quadratically with the number of partitions. The D-SABRE is compared to the distributed cumulative reconstruction (CuRe-D) method in open-loop and closed-loop simulations using the YAO adaptive optics simulation tool. D-SABRE accuracy exceeds CuRe-D for low levels of decomposition, and D-SABRE proved to be more robust to variations in the loop gain.

  1. Application of 3D reconstruction system in diabetic foot ulcer injury assessment

    Science.gov (United States)

    Li, Jun; Jiang, Li; Li, Tianjian; Liang, Xiaoyao

    2018-04-01

    To deal with the considerable deviation of transparency tracing method and digital planimetry method used in current clinical diabetic foot ulcer injury assessment, this paper proposes a 3D reconstruction system which can be used to get foot model with good quality texture, then injury assessment is done by measuring the reconstructed model. The system uses the Intel RealSense SR300 depth camera which is based on infrared structured-light as input device, the required data from different view is collected by moving the camera around the scanned object. The geometry model is reconstructed by fusing the collected data, then the mesh is sub-divided to increase the number of mesh vertices and the color of each vertex is determined using a non-linear optimization, all colored vertices compose the surface texture of the reconstructed model. Experimental results indicate that the reconstructed model has millimeter-level geometric accuracy and texture with few artificial effect.

  2. Stokes image reconstruction for two-color microgrid polarization imaging systems.

    Science.gov (United States)

    Lemaster, Daniel A

    2011-07-18

    The Air Force Research Laboratory has developed a new microgrid polarization imaging system capable of simultaneously reconstructing linear Stokes parameter images in two colors on a single focal plane array. In this paper, an effective method for extracting Stokes images is presented for this type of camera system. It is also shown that correlations between the color bands can be exploited to significantly increase overall spatial resolution. Test data is used to show the advantages of this approach over bilinear interpolation. The bounds (in terms of available reconstruction bandwidth) on image resolution are also provided.

  3. Reliability analysis of the reconstructed safety systems of the Kozloduy-2 WWER-440/V-230 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kalchev, B [Energoproekt, Sofia (Bulgaria)

    1996-12-31

    The Unit 2 of the Kozloduy NPP started operations in 1975. As it is designed according to safety standards of the middle sixties, it needs reconstruction in order to prolong its operational life up to the design age of 30 years, in agreement with the increased safety requirements in Bulgaria. The reliability analyses of front line systems of the unit are performed to this end. The approach taken in the study is the fault tree methodology to determine the unavailability of each system. Common mode failures are considered for the pumps and valves using the beta factor method. The mission time for each system is 24 hours and the test period is 720 hours. Support systems and human errors are also included. All the systems control and instrumentation signals are modelled explicitly in the fault trees. The generic IDEA reliability data base is used for all quantifications. The initiating events that would require the system operation are presented and on this basis the thermohydraulic analysis success criteria for each system are determined. The code for probabilistic safety assessment PSAPACK is used. Fault trees for the following front line safety systems are constructed: the high pressure injection system, the spray system and the auxiliary feed water system. The analysis consider some proposed decisions for reconstruction. The results show that the reliability of these systems has increased after reconstruction and the safety has been upgraded. This decrease the core damage frequency from 3.53E{sup -3}, 1/RY to 1.07E{sup -3}, 1/RY. 5 refs., 2 tabs., 5 figs.

  4. Reliability analysis of the reconstructed safety systems of the Kozloduy-2 WWER-440/V-230 reactor

    International Nuclear Information System (INIS)

    Kalchev, B.

    1995-01-01

    The Unit 2 of the Kozloduy NPP started operations in 1975. As it is designed according to safety standards of the middle sixties, it needs reconstruction in order to prolong its operational life up to the design age of 30 years, in agreement with the increased safety requirements in Bulgaria. The reliability analyses of front line systems of the unit are performed to this end. The approach taken in the study is the fault tree methodology to determine the unavailability of each system. Common mode failures are considered for the pumps and valves using the beta factor method. The mission time for each system is 24 hours and the test period is 720 hours. Support systems and human errors are also included. All the systems control and instrumentation signals are modelled explicitly in the fault trees. The generic IDEA reliability data base is used for all quantifications. The initiating events that would require the system operation are presented and on this basis the thermohydraulic analysis success criteria for each system are determined. The code for probabilistic safety assessment PSAPACK is used. Fault trees for the following front line safety systems are constructed: the high pressure injection system, the spray system and the auxiliary feed water system. The analysis consider some proposed decisions for reconstruction. The results show that the reliability of these systems has increased after reconstruction and the safety has been upgraded. This decrease the core damage frequency from 3.53E -3 , 1/RY to 1.07E -3 , 1/RY. 5 refs., 2 tabs., 5 figs

  5. Self-Tuning Control of Linear Systems Followed by Deadzones

    Directory of Open Access Journals (Sweden)

    K. Kazlauskas

    2014-02-01

    Full Text Available The aim of the present paper is to increase the efficiency of self-tuning generalized minimum variance (GMV control of linear time-invariant (LTI systems followed by deadzone nonlinearities. An approach, based on reordering of observations to be processed for the reconstruction of an unknown internal signal that acts between LTI system and a static nonlinear block of the closed-loop Wiener system, has been developed. The results of GMV self-tuning control of the second order LTI system with an ordinary deadzone are given.

  6. An intelligent three dimensional reconstruction system for cerebral arteries from biplane cineangiograms

    International Nuclear Information System (INIS)

    Fujii, Susumu; Guan, Yang; Tsukamoto, Yasuo; Kumamoto, Etsuko; Asada, Katsunobu; Matsuo, Michimasa; Yamasaki, Katsuhito.

    1993-01-01

    In this study, an intelligent system is developed for the three dimensional reconstruction of cerebral arteries from biplane cineangiograms. The system is composed of two blocks, i.e., an inferencing-control-block and a processing-block. The inferencing-control block controls the flow of the image-processing by inferencing with the knowledge stored in the block and is a production system based on 'IF, THEN' rule. The processing-block is a collection of image processing procedures activated by a call from the inferencing-control-block. On the other hand, the flow of the image-processing is outlined as follows: After the extraction of vessel center lines from the angiograms, the blood flow directions and connectivity states of vessels are determined and the vessel graph is translated to a vessel connectivity tree. Then, by utilizing the knowledge about anatomic structure of cerebral arteries and characteristics of angiograms, important arteries are distinguished and vessel groups classified. Finally, by using a shape-oriented matching method, the vessels on the two projected planes are matched and the three dimensional structure of vessels constructed. An example is presented to demonstrate the effectiveness of the use of the knowledge which enables the system to improve the efficiency and precision of the processing, such as vessel analysis and matching. (author)

  7. Equilibrium Reconstruction in EAST Tokamak

    International Nuclear Information System (INIS)

    Qian Jinping; Wan Baonian; Shen Biao; Sun Youwen; Liu Dongmei; Xiao Bingjia; Ren Qilong; Gong Xianzu; Li Jiangang; Lao, L. L.; Sabbagh, S. A.

    2009-01-01

    Reconstruction of experimental axisymmetric equilibria is an important part of tokamak data analysis. Fourier expansion is applied to reconstruct the vessel current distribution in EFIT code. Benchmarking and testing calculations are performed to evaluate and validate this algorithm. Two cases for circular and non-circular plasma discharges are presented. Fourier expansion used to fit the eddy current is a robust method and the real time EFIT can be introduced to the plasma control system in the coming campaign. (magnetically confined plasma)

  8. Reconstruction of financial networks for robust estimation of systemic risk

    Science.gov (United States)

    Mastromatteo, Iacopo; Zarinelli, Elia; Marsili, Matteo

    2012-03-01

    In this paper we estimate the propagation of liquidity shocks through interbank markets when the information about the underlying credit network is incomplete. We show that techniques such as maximum entropy currently used to reconstruct credit networks severely underestimate the risk of contagion by assuming a trivial (fully connected) topology, a type of network structure which can be very different from the one empirically observed. We propose an efficient message-passing algorithm to explore the space of possible network structures and show that a correct estimation of the network degree of connectedness leads to more reliable estimations for systemic risk. Such an algorithm is also able to produce maximally fragile structures, providing a practical upper bound for the risk of contagion when the actual network structure is unknown. We test our algorithm on ensembles of synthetic data encoding some features of real financial networks (sparsity and heterogeneity), finding that more accurate estimations of risk can be achieved. Finally we find that this algorithm can be used to control the amount of information that regulators need to require from banks in order to sufficiently constrain the reconstruction of financial networks.

  9. Reconstruction of financial networks for robust estimation of systemic risk

    International Nuclear Information System (INIS)

    Mastromatteo, Iacopo; Zarinelli, Elia; Marsili, Matteo

    2012-01-01

    In this paper we estimate the propagation of liquidity shocks through interbank markets when the information about the underlying credit network is incomplete. We show that techniques such as maximum entropy currently used to reconstruct credit networks severely underestimate the risk of contagion by assuming a trivial (fully connected) topology, a type of network structure which can be very different from the one empirically observed. We propose an efficient message-passing algorithm to explore the space of possible network structures and show that a correct estimation of the network degree of connectedness leads to more reliable estimations for systemic risk. Such an algorithm is also able to produce maximally fragile structures, providing a practical upper bound for the risk of contagion when the actual network structure is unknown. We test our algorithm on ensembles of synthetic data encoding some features of real financial networks (sparsity and heterogeneity), finding that more accurate estimations of risk can be achieved. Finally we find that this algorithm can be used to control the amount of information that regulators need to require from banks in order to sufficiently constrain the reconstruction of financial networks

  10. Local System Matrix Compression for Efficient Reconstruction in Magnetic Particle Imaging

    Directory of Open Access Journals (Sweden)

    T. Knopp

    2015-01-01

    Full Text Available Magnetic particle imaging (MPI is a quantitative method for determining the spatial distribution of magnetic nanoparticles, which can be used as tracers for cardiovascular imaging. For reconstructing a spatial map of the particle distribution, the system matrix describing the magnetic particle imaging equation has to be known. Due to the complex dynamic behavior of the magnetic particles, the system matrix is commonly measured in a calibration procedure. In order to speed up the reconstruction process, recently, a matrix compression technique has been proposed that makes use of a basis transformation in order to compress the MPI system matrix. By thresholding the resulting matrix and storing the remaining entries in compressed row storage format, only a fraction of the data has to be processed when reconstructing the particle distribution. In the present work, it is shown that the image quality of the algorithm can be considerably improved by using a local threshold for each matrix row instead of a global threshold for the entire system matrix.

  11. Promoting women's human rights: A qualitative analysis of midwives' perceptions about virginity control and hymen 'reconstruction'.

    Science.gov (United States)

    Christianson, Monica; Eriksson, Carola

    2015-06-01

    To explore midwives' perceptions regarding virginity control and hymen 'reconstructions', and how these practices can be debated from a gender perspective. An international group of 266 midwives answered an open-ended question in a Web survey. The great majority came from the Western world, among them, the majority were from Europe. Data were analysed using qualitative content analysis. Three themes emerged: misogynistic practices that cement the gender order, which revealed how the respondents viewed virginity control and hymen 'reconstructions'; raising public awareness and combatting practices that demean women, which were suggested as strategies by which to combat these practices; and promoting agency in women and providing culturally sensitive care, which were considered to improve health care encounters. Virginity control and hymen 'reconstructions' are elements of patriarchy, whereby violence and control are employed to subordinate women. To counter these practices, macro and micro-level activities are needed to expand women's human rights in the private and the public spheres. Political activism, international debates, collaboration between sectors such as health care and law-makers may lead to increased gender equality. A women-centred approach whereby women are empowered with agency will make women more capable of combatting virginity control and hymen 'reconstruction'.

  12. Track Reconstruction and b-Jet Identification for the ATLAS Trigger System

    CERN Document Server

    Coccaro, A; The ATLAS collaboration

    2011-01-01

    A sophisticated trigger system, capable of real-time track reconstruction, is in place in the ATLAS experiment, to reject most of the events containing uninteresting background collisions while preserving as much as possible the interesting physics signals. The strategy adopted for fast reconstruction of charged tracks and in particular its application to the selection of jets from the hadronization of b-quarks is reviewed. Track reconstruction is routinely used for selection based on various physics objects while b-jet triggers are actively selecting events from the beginning of the 2011 LHC data-taking campaign.

  13. Improvement on control of waste disposal system at Genkai Nuclear Power Station No.1 and No.2 unit

    International Nuclear Information System (INIS)

    Morooka, Masatoshi; Tsutsumi, Akria

    1989-01-01

    At Genkai Nuclear Power Station, the operational and control systems of the boric acid evaporator, waste liquid evaporator and gaseous waste disposal system were converted from general purpose analong systems to computer instrumentation and control systems in order to improve their operability and controllability. The equipments were operated by batch processing system, so plant operators were required to operate them manually. By introducing the computer instrumentation and control systems, the automatic operation of the equipments has become possible. Furthermore, it has become possible to monitor the relevant parameters intensively with a CRT in the operating room, and it contributes to the improvement of reliability and labor saving. The operation of No.1 plant was begun in October, 1975, and No.2 plant in March, 1981. Both are the PWR plants of 625 MVA capacity. The outline of the power station facilities, the background of the reconstruction, the problems and the plan of reconstruction for the boric acid recovery facility, waste liquid evaporator and gas compressor, the peculiarity of the reconstruction works, and the effect of introducing the new systems are reported. (Kako, I.)

  14. The ecological system and the regionalization of landscape reconstruction in northwest of China

    Directory of Open Access Journals (Sweden)

    Peicheng LI,Guoyuan DU,Qilei LI,Jinfeng WANG,Feimin ZHENG

    2014-12-01

    Full Text Available The northwest of China is a vast area with abundant resources and significant potential for development. However, the ecological system is extremely vulnerable to damage and must be managed carefully. Thus, the Chinese government is strengthening research on improvement and reconstruction of the ecological system and landscape in northwest of China while moving forward with large-scale development in west China. The disadvantages and vulnerabilities in the northwest area in China are presented. It is suggested that the reconstruction of landscape should be conducted by step by step regionalization across the various ecological systems in the 3.04 million km2 northwest area of China. The first level regionalization results of reconstruction of landscape are discussed.

  15. Backfitting in Rossendorf research reactor control and instrumentation system

    International Nuclear Information System (INIS)

    Klebau, J.; Seidler, S.

    1985-01-01

    The paper generally describes a decentralized Hierarchical Information System (HIS) which has been developed for backfitting in Rossendorf Research Reactor (RFR) control and instrumentation system. The RFR was put into operation in 1957 and reconstructed from 2 MW up to a thermal power of 10 MW at the end of the sixties. Backfitting is planned by use of an advanced computerized control system for the next years. Main tasks of HIS are: Processmonitoring, online-disturbance analysis, technical diagnosis, direct digital control and use of a special industrial robot for discharging of irradiated materials out of the reactor. Experiences obtained by HIS during a testperiod will be presented. (author)

  16. arXiv Energy Reconstruction of Hadrons in highly granular combined ECAL and HCAL systems

    CERN Document Server

    Israeli, Yasmine

    2018-05-03

    This paper discusses the hadronic energy reconstruction of two combined electromagnetic and hadronic calorimeter systems using physics prototypes of the CALICE collaboration: the silicon-tungsten electromagnetic calorimeter (Si-W ECAL) and the scintillator-SiPM based analog hadron calorimeter (AHCAL); and the scintillator-tungsten electromagnetic calorimeter (ScECAL) and the AHCAL. These systems were operated in hadron beams at CERN and FNAL, permitting the study of the performance in combined ECAL and HCAL systems. Two techniques for the energy reconstruction are used, a standard reconstruction based on calibrated sub-detector energy sums, and one based on a software compensation algorithm making use of the local energy density information provided by the high granularity of the detectors. The software compensation-based algorithm improves the hadronic energy resolution by up to 30% compared to the standard reconstruction. The combined system data show comparable energy resolutions to the one achieved for da...

  17. Accelerating image reconstruction in dual-head PET system by GPU and symmetry properties.

    Directory of Open Access Journals (Sweden)

    Cheng-Ying Chou

    Full Text Available Positron emission tomography (PET is an important imaging modality in both clinical usage and research studies. We have developed a compact high-sensitivity PET system that consisted of two large-area panel PET detector heads, which produce more than 224 million lines of response and thus request dramatic computational demands. In this work, we employed a state-of-the-art graphics processing unit (GPU, NVIDIA Tesla C2070, to yield an efficient reconstruction process. Our approaches ingeniously integrate the distinguished features of the symmetry properties of the imaging system and GPU architectures, including block/warp/thread assignments and effective memory usage, to accelerate the computations for ordered subset expectation maximization (OSEM image reconstruction. The OSEM reconstruction algorithms were implemented employing both CPU-based and GPU-based codes, and their computational performance was quantitatively analyzed and compared. The results showed that the GPU-accelerated scheme can drastically reduce the reconstruction time and thus can largely expand the applicability of the dual-head PET system.

  18. Study of Globus-M Tokamak Poloidal System and Plasma Position Control

    Science.gov (United States)

    Dokuka, V. N.; Korenev, P. S.; Mitrishkin, Yu. V.; Pavlova, E. A.; Patrov, M. I.; Khayrutdinov, R. R.

    2017-12-01

    In order to provide efficient performance of tokamaks with vertically elongated plasma position, control systems for limited and diverted plasma configuration are required. The accuracy, stability, speed of response, and reliability of plasma position control as well as plasma shape and current control depend on the performance of the control system. Therefore, the problem of the development of such systems is an important and actual task in modern tokamaks. In this study, the measured signals from the magnetic loops and Rogowski coils are used to reconstruct the plasma equilibrium, for which linear models in small deviations are constructed. We apply methods of the H∞-optimization theory to the synthesize control system for vertical and horizontal position of plasma capable to working with structural uncertainty of the models of the plant. These systems are applied to the plasma-physical DINA code which is configured for the tokamak Globus-M plasma. The testing of the developed systems applied to the DINA code with Heaviside step functions have revealed the complex dynamics of plasma magnetic configurations. Being close to the bifurcation point in the parameter space of unstable plasma has made it possible to detect an abrupt change in the X-point position from the top to the bottom and vice versa. Development of the methods for reconstruction of plasma magnetic configurations and experience in designing plasma control systems with feedback for tokamaks provided an opportunity to synthesize new digital controllers for plasma vertical and horizontal position stabilization. It also allowed us to test the synthesized digital controllers in the closed loop of the control system with the DINA code as a nonlinear model of plasma.

  19. Novel Low Cost 3D Surface Model Reconstruction System for Plant Phenotyping

    Directory of Open Access Journals (Sweden)

    Suxing Liu

    2017-09-01

    Full Text Available Accurate high-resolution three-dimensional (3D models are essential for a non-invasive analysis of phenotypic characteristics of plants. Previous limitations in 3D computer vision algorithms have led to a reliance on volumetric methods or expensive hardware to record plant structure. We present an image-based 3D plant reconstruction system that can be achieved by using a single camera and a rotation stand. Our method is based on the structure from motion method, with a SIFT image feature descriptor. In order to improve the quality of the 3D models, we segmented the plant objects based on the PlantCV platform. We also deducted the optimal number of images needed for reconstructing a high-quality model. Experiments showed that an accurate 3D model of the plant was successfully could be reconstructed by our approach. This 3D surface model reconstruction system provides a simple and accurate computational platform for non-destructive, plant phenotyping.

  20. Compensation of spatial system response in SPECT with conjugate gradient reconstruction technique

    International Nuclear Information System (INIS)

    Formiconi, A.R.; Pupi, A.; Passeri, A.

    1989-01-01

    A procedure for determination of the system matrix in single photon emission tomography (SPECT) is described which use a conjugate gradient reconstruction technique to take into account the variable system resolution of a camera equipped with parallel-hole collimators. The procedure involves acquisition of system line spread functions (LSF) in the region occupied by the object studied. Those data are used to generate a set of weighting factors based on the assumption that the LSFs of the collimated camera are of Gaussian shape with full width at half maximum (FWHM) linearly dependent on source depth in the span of image space. Factors are stored on a disc file for subsequent use in reconstruction. Afterwards reconstruction is performed using the conjugate gradient method with the system matrix modified by incorporation of these precalculated factors to take into account variable geometrical system response. The set of weighting factors is regenerated whenever acquisition conditions are changed (collimator, radius of rotation) with an ultra high resolution (UHR) collimator 2000 weighting factors need to be calculated. (author)

  1. System architecture for high speed reconstruction in time-of-flight positron tomography

    International Nuclear Information System (INIS)

    Campagnolo, R.E.; Bouvier, A.; Chabanas, L.; Robert, C.

    1985-06-01

    A new generation of Time Of Flight (TOF) positron tomograph with high resolution and high count rate capabilities is under development in our group. After a short recall of the data acquisition process and image reconstruction in a TOF PET camera, we present the data acquisition system which achieves a data transfer rate of 0.8 mega events per second or more if necessary in list mode. We describe the reconstruction process based on a five stages pipe line architecture using home made processors. The expected performance with this architecture is a time reconstruction of six seconds per image (256x256 pixels) of one million events. This time could be reduce to 4 seconds. We conclude with the future developments of the system

  2. Wavelet Adaptive Algorithm and Its Application to MRE Noise Control System

    Directory of Open Access Journals (Sweden)

    Zhang Yulin

    2015-01-01

    Full Text Available To address the limitation of conventional adaptive algorithm used for active noise control (ANC system, this paper proposed and studied two adaptive algorithms based on Wavelet. The twos are applied to a noise control system including magnetorheological elastomers (MRE, which is a smart viscoelastic material characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Simulation results reveal that the Decomposition LMS algorithm (D-LMS and Decomposition and Reconstruction LMS algorithm (DR-LMS based on Wavelet can significantly improve the noise reduction performance of MRE control system compared with traditional LMS algorithm.

  3. Variational reconstruction using subdivision surfaces with continuous sharpness control

    Institute of Scientific and Technical Information of China (English)

    Xiaoqun Wu; Jianmin Zheng; Yiyu Cai; Haisheng Li

    2017-01-01

    We present a variational method for subdivision surface reconstruction from a noisy dense mesh.A new set of subdivision rules with continuous sharpness control is introduced into Loop subdivision for better modeling subdivision surface features such as semi-sharp creases,creases,and corners.The key idea is to assign a sharpness value to each edge of the control mesh to continuously control the surface features.Based on the new subdivision rules,a variational model with L1 norm is formulated to find the control mesh and the corresponding sharpness values of the subdivision surface that best fits the input mesh.An iterative solver based on the augmented Lagrangian method and particle swarm optimization is used to solve the resulting non-linear,non-differentiable optimization problem.Our experimental results show that our method can handle meshes well with sharp/semi-sharp features and noise.

  4. Miniature photometric stereo system for textile surface structure reconstruction

    Science.gov (United States)

    Gorpas, Dimitris; Kampouris, Christos; Malassiotis, Sotiris

    2013-04-01

    In this work a miniature photometric stereo system is presented, targeting the three-dimensional structural reconstruction of various fabric types. This is a supportive module to a robot system, attempting to solve the well known "laundry problem". The miniature device has been designed for mounting onto the robot gripper. It is composed of a low-cost off-the-shelf camera, operating in macro mode, and eight light emitting diodes. The synchronization between image acquisition and lighting direction is controlled by an Arduino Nano board and software triggering. The ambient light has been addressed by a cylindrical enclosure. The direction of illumination is recovered by locating the reflection or the brightest point on a mirror sphere, while a flatfielding process compensates for the non-uniform illumination. For the evaluation of this prototype, the classical photometric stereo methodology has been used. The preliminary results on a large number of textiles are very promising for the successful integration of the miniature module to the robot system. The required interaction with the robot is implemented through the estimation of the Brenner's focus measure. This metric successfully assesses the focus quality with reduced time requirements in comparison to other well accepted focus metrics. Besides the targeting application, the small size of the developed system makes it a very promising candidate for applications with space restrictions, like the quality control in industrial production lines or object recognition based on structural information and in applications where easiness in operation and light-weight are required, like those in the Biomedical field, and especially in dermatology.

  5. PET image reconstruction with rotationally symmetric polygonal pixel grid based highly compressible system matrix

    International Nuclear Information System (INIS)

    Yu Yunhan; Xia Yan; Liu Yaqiang; Wang Shi; Ma Tianyu; Chen Jing; Hong Baoyu

    2013-01-01

    To achieve a maximum compression of system matrix in positron emission tomography (PET) image reconstruction, we proposed a polygonal image pixel division strategy in accordance with rotationally symmetric PET geometry. Geometrical definition and indexing rule for polygonal pixels were established. Image conversion from polygonal pixel structure to conventional rectangular pixel structure was implemented using a conversion matrix. A set of test images were analytically defined in polygonal pixel structure, converted to conventional rectangular pixel based images, and correctly displayed which verified the correctness of the image definition, conversion description and conversion of polygonal pixel structure. A compressed system matrix for PET image recon was generated by tap model and tested by forward-projecting three different distributions of radioactive sources to the sinogram domain and comparing them with theoretical predictions. On a practical small animal PET scanner, a compress ratio of 12.6:1 of the system matrix size was achieved with the polygonal pixel structure, comparing with the conventional rectangular pixel based tap-mode one. OS-EM iterative image reconstruction algorithms with the polygonal and conventional Cartesian pixel grid were developed. A hot rod phantom was detected and reconstructed based on these two grids with reasonable time cost. Image resolution of reconstructed images was both 1.35 mm. We conclude that it is feasible to reconstruct and display images in a polygonal image pixel structure based on a compressed system matrix in PET image reconstruction. (authors)

  6. Regulation on governmental quality control during erection and reconstruction of nuclear power plants in the GDR dated 20 July 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The Regulation enters into force on 1 October 1988 and provides for governmental quality control of products, plants and services intended for the erection and reconstruction of nuclear power plant systems. It covers the following provisions: quality control; licensing of enterprises; approval of the use of products manufactured in the GDR; acceptance of products manufactured in the GDR; clearance of plants and services; clearance of imported products; labelling; consulting of experts; penalties, and interim provisions

  7. Perforator chimerism for the reconstruction of complex defects: A new chimeric free flap classification system.

    Science.gov (United States)

    Kim, Jeong Tae; Kim, Youn Hwan; Ghanem, Ali M

    2015-11-01

    Complex defects present structural and functional challenges to reconstructive surgeons. When compared to multiple free flaps or staged reconstruction, the use of chimeric flaps to reconstruct such defects have many advantages such as reduced number of operative procedures and donor site morbidity as well as preservation of recipient vessels. With increased popularity of perforator flaps, chimeric flaps' harvest and design has benefited from 'perforator concept' towards more versatile and better reconstruction solutions. This article discusses perforator based chimeric flaps and presents a practice based classification system that incorporates the perforator flap concept into "Perforator Chimerism". The authors analyzed a variety of chimeric patterns used in 31 consecutive cases to present illustrative case series and their new classification system. Accordingly, chimeric flaps are classified into four types. Type I: Classical Chimerism, Type II: Anastomotic Chimerism, Type III: Perforator Chimerism and Type IV Mixed Chimerism. Types I on specific source vessel anatomy whilst Type II requires microvascular anastomosis to create the chimeric reconstructive solution. Type III chimeric flaps utilizes the perforator concept to raise two components of tissues without microvascular anastomosis between them. Type IV chimeric flaps are mixed type flaps comprising any combination of Types I to III. Incorporation of the perforator concept in planning and designing chimeric flaps has allowed safe, effective and aesthetically superior reconstruction of complex defects. The new classification system aids reconstructive surgeons and trainees to understand chimeric flaps design, facilitating effective incorporation of this important reconstructive technique into the armamentarium of the reconstruction toolbox. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Design and operation of the RFX-mod plasma shape control system

    Energy Technology Data Exchange (ETDEWEB)

    Marchiori, G., E-mail: giuseppe.marchiori@igi.cnr.it [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Finotti, C. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Kudlacek, O. [Università di Padova, Padova (Italy); Villone, F. [Dipartimento di Ingegneria Elettrica e dell’Informazione (DIEI), Università di Cassino (Italy); Zanca, P. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Abate, D. [Dipartimento di Ingegneria Elettrica e dell’Informazione (DIEI), Università di Cassino (Italy); Cavazzana, R. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Jackson, G.L.; Luce, T.C. [General Atomics, San Diego, CA (United States); Marrelli, L. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-10-15

    Highlights: • Linearized plasma response model of RFX-mod Tokamak Double/Single Null discharges. • Model based design of a vertical stability control system. • Model based design of a plasma shape LQG control system with Kalman state estimator. • Real time plasma boundary reconstruction algorithm. • Tracking and disturbance rejection experimental tests. - Abstract: The aim of executing Single Null discharges in RFX-mod operating as a Tokamak led to the design and implementation of a plasma shape feedback control system. A fully model-based approach was followed which allowed dealing with critical issues such as the presence of a conducting shell, the strong coupling of the poloidal field coils and the voltage limits of the power supplies. A Linear Quadratic regulator and a Kalman state estimator were designed and implemented in the real time MARTe framework together with an algorithm for the real-time plasma boundary reconstruction. The problem of a number of sensors along the poloidal direction adequate only for circular discharges was also successfully tackled. The development of the system and its performances in terms of tracking and disturbance rejection capability are presented in the paper.

  9. Characterization of the disruption of neural control strategies for dynamic fingertip forces from attractor reconstruction.

    Directory of Open Access Journals (Sweden)

    Lorenzo Peppoloni

    Full Text Available The Strength-Dexterity (SD test measures the ability of the pulps of the thumb and index finger to compress a compliant and slender spring prone to buckling at low forces (<3N. We know that factors such as aging and neurodegenerative conditions bring deteriorating physiological changes (e.g., at the level of motor cortex, cerebellum, and basal ganglia, which lead to an overall loss of dexterous ability. However, little is known about how these changes reflect upon the dynamics of the underlying biological system. The spring-hand system exhibits nonlinear dynamical behavior and here we characterize the dynamical behavior of the phase portraits using attractor reconstruction. Thirty participants performed the SD test: 10 young adults, 10 older adults, and 10 older adults with Parkinson's disease (PD. We used delayed embedding of the applied force to reconstruct its attractor. We characterized the distribution of points of the phase portraits by their density (number of distant points and interquartile range and geometric features (trajectory length and size. We find phase portraits from older adults exhibit more distant points (p = 0.028 than young adults and participants with PD have larger interquartile ranges (p = 0.001, trajectory lengths (p = 0.005, and size (p = 0.003 than their healthy counterparts. The increased size of the phase portraits with healthy aging suggests a change in the dynamical properties of the system, which may represent a weakening of the neural control strategy. In contrast, the distortion of the attractor in PD suggests a fundamental change in the underlying biological system, and disruption of the neural control strategy. This ability to detect differences in the biological mechanisms of dexterity in healthy and pathological aging provides a simple means to assess their disruption in neurodegenerative conditions and justifies further studies to understand the link with the physiological changes.

  10. Object oriented software for simulation and reconstruction of big alignment systems

    International Nuclear Information System (INIS)

    Arce, P.

    2003-01-01

    Modern high-energy physics experiments require tracking detectors to provide high precision under difficult working conditions (high magnetic field, gravity loads and temperature gradients). This is the reason why several of them are deciding to implement optical alignment systems to monitor the displacement of tracking elements in operation. To simulate and reconstruct optical alignment systems a general purpose software, named COCOA, has been developed, using the object oriented paradigm and software engineering techniques. Thanks to the big flexibility in its design, COCOA is able to reconstruct any optical system made of a combination of the following objects: laser, x-hair laser, incoherent source--pinhole, lens, mirror, plate splitter, cube splitter, optical square, rhomboid prism, 2D sensor, 1D sensor, distance-meter, tilt-meter, user-defined. COCOA was designed to satisfy the requirements of the CMS alignment system, which has several thousands of components. Sparse matrix techniques had been investigated for solving non-linear least squares fits with such a big number of parameters. The soundness of COCOA has already been stressed in the reconstruction of the data of a full simulation of a quarter plane of the CMS muon alignment system, which implied solving a system of 900 equations with 850 unknown parameters. Full simulation of the whole CMS alignment system, with over 30,000 parameters, is quite advanced. The integration of COCOA in the CMS software framework is also under progress

  11. Development of a prototype chest digital tomosynthesis (CDT) R/F system with fast image reconstruction using graphics processing unit (GPU) programming

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sunghoon, E-mail: choi.sh@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Lee, Seungwan [Department of Radiological Science, College of Medical Science, Konyang University, 158 Gwanjeodong-ro, Daejeon, 308-812 (Korea, Republic of); Lee, Haenghwa [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Lee, Donghoon; Choi, Seungyeon [Department of Radiation Convergence Engineering, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Shin, Jungwook [LISTEM Corporation, 94 Donghwagongdan-ro, Munmak-eup, Wonju (Korea, Republic of); Seo, Chang-Woo [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Department of Radiation Convergence Engineering, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of)

    2017-03-11

    Digital tomosynthesis offers the advantage of low radiation doses compared to conventional computed tomography (CT) by utilizing small numbers of projections (~80) acquired over a limited angular range. It produces 3D volumetric data, although there are artifacts due to incomplete sampling. Based upon these characteristics, we developed a prototype digital tomosynthesis R/F system for applications in chest imaging. Our prototype chest digital tomosynthesis (CDT) R/F system contains an X-ray tube with high power R/F pulse generator, flat-panel detector, R/F table, electromechanical radiographic subsystems including a precise motor controller, and a reconstruction server. For image reconstruction, users select between analytic and iterative reconstruction methods. Our reconstructed images of Catphan700 and LUNGMAN phantoms clearly and rapidly described the internal structures of phantoms using graphics processing unit (GPU) programming. Contrast-to-noise ratio (CNR) values of the CTP682 module of Catphan700 were higher in images using a simultaneous algebraic reconstruction technique (SART) than in those using filtered back-projection (FBP) for all materials by factors of 2.60, 3.78, 5.50, 2.30, 3.70, and 2.52 for air, lung foam, low density polyethylene (LDPE), Delrin{sup ®} (acetal homopolymer resin), bone 50% (hydroxyapatite), and Teflon, respectively. Total elapsed times for producing 3D volume were 2.92 s and 86.29 s on average for FBP and SART (20 iterations), respectively. The times required for reconstruction were clinically feasible. Moreover, the total radiation dose from our system (5.68 mGy) was lower than that of conventional chest CT scan. Consequently, our prototype tomosynthesis R/F system represents an important advance in digital tomosynthesis applications.

  12. SPECT data acquisition and image reconstruction in a stationary small animal SPECT/MRI system

    Science.gov (United States)

    Xu, Jingyan; Chen, Si; Yu, Jianhua; Meier, Dirk; Wagenaar, Douglas J.; Patt, Bradley E.; Tsui, Benjamin M. W.

    2010-04-01

    The goal of the study was to investigate data acquisition strategies and image reconstruction methods for a stationary SPECT insert that can operate inside an MRI scanner with a 12 cm bore diameter for simultaneous SPECT/MRI imaging of small animals. The SPECT insert consists of 3 octagonal rings of 8 MR-compatible CZT detectors per ring surrounding a multi-pinhole (MPH) collimator sleeve. Each pinhole is constructed to project the field-of-view (FOV) to one CZT detector. All 24 pinholes are focused to a cylindrical FOV of 25 mm in diameter and 34 mm in length. The data acquisition strategies we evaluated were optional collimator rotations to improve tomographic sampling; and the image reconstruction methods were iterative ML-EM with and without compensation for the geometric response function (GRF) of the MPH collimator. For this purpose, we developed an analytic simulator that calculates the system matrix with the GRF models of the MPH collimator. The simulator was used to generate projection data of a digital rod phantom with pinhole aperture sizes of 1 mm and 2 mm and with different collimator rotation patterns. Iterative ML-EM reconstruction with and without GRF compensation were used to reconstruct the projection data from the central ring of 8 detectors only, and from all 24 detectors. Our results indicated that without GRF compensation and at the default design of 24 projection views, the reconstructed images had significant artifacts. Accurate GRF compensation substantially improved the reconstructed image resolution and reduced image artifacts. With accurate GRF compensation, useful reconstructed images can be obtained using 24 projection views only. This last finding potentially enables dynamic SPECT (and/or MRI) studies in small animals, one of many possible application areas of the SPECT/MRI system. Further research efforts are warranted including experimentally measuring the system matrix for improved geometrical accuracy, incorporating the co

  13. BES-II fast data reconstruction

    International Nuclear Information System (INIS)

    Rong Gang; Zhang Jiawen; Guo Yiqing; Zhang Shaoqiang; Zhao Dixin

    2002-01-01

    The BES-II fast data reconstruction is reported. Based on PC FARM and/or a 'Distributed Clustered Linux PC System', BES-II fast data reconstruction system is set up. With this system the BES-II data can be fully reconstructed in about 20 minutes after data collection. It takes only 12 minutes to fully reconstruct 30000 events, collected with BES-II detector at BEPC Collider, with a P III-800 PC. The detector performance can be examined based on fully reconstructed data in about 20 minutes after data taking in the BES-II experiment

  14. Rational designing of the internal water supply system in reconstructed residential buildings of mass standard series

    OpenAIRE

    Orlov Evgeny

    2018-01-01

    The issues of water supply system reconstruction in mass series buildings are reviewed with consideration of water- and resource saving. Principal points for location of plumbing cells in apartments, arrangement of water devices and wastewater receivers, selection of pipelines for reconstructed water line are described. Comparative analysis of design variants of inner water line before and following reconstruction are given. It was found that applying the developed system design approaches th...

  15. SU-E-T-574: Fessiblity of Using the Calypso System for HDR Interstitial Catheter Reconstruction

    International Nuclear Information System (INIS)

    Li, J S; Ma, C

    2014-01-01

    Purpose: It is always a challenge to reconstruct the interstitial catheter for high dose rate (HDR) brachytherapy on patient CT or MR images. This work aims to investigate the feasibility of using the Calypso system (Varian Medical, CA) for HDR catheter reconstruction utilizing its accuracy on tracking the electromagnetic transponder location. Methods: Experiment was done with a phantom that has a HDR interstitial catheter embedded inside. CT scan with a slice thickness of 1.25 mm was taken for this phantom with two Calypso beacon transponders in the catheter. The two transponders were connected with a wire. The Calypso system was used to record the beacon transponders’ location in real time when they were gently pulled out with the wire. The initial locations of the beacon transponders were used for registration with the CT image and the detected transponder locations were used for the catheter path reconstruction. The reconstructed catheter path was validated on the CT image. Results: The HDR interstitial catheter was successfully reconstructed based on the transponders’ coordinates recorded by the Calypso system in real time when the transponders were pulled in the catheter. After registration with the CT image, the shape and location of the reconstructed catheter are evaluated against the CT image and the result shows an accuracy of 2 mm anywhere in the Calypso detectable region which is within a 10 cm X 10 cm X 10 cm cubic box for the current system. Conclusion: It is feasible to use the Calypso system for HDR interstitial catheter reconstruction. The obstacle for its clinical usage is the size of the beacon transponder whose diameter is bigger than most of the interstitial catheters used in clinic. Developing smaller transponders and supporting software and hardware for this application is necessary before it can be adopted for clinical use

  16. System and method for image reconstruction, analysis, and/or de-noising

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Kaisserli, Zineb

    2015-01-01

    A method and system can analyze, reconstruct, and/or denoise an image. The method and system can include interpreting a signal as a potential of a Schrödinger operator, decomposing the signal into squared eigenfunctions, reducing a design parameter

  17. Analyzing octopus movements using three-dimensional reconstruction.

    Science.gov (United States)

    Yekutieli, Yoram; Mitelman, Rea; Hochner, Binyamin; Flash, Tamar

    2007-09-01

    Octopus arms, as well as other muscular hydrostats, are characterized by a very large number of degrees of freedom and a rich motion repertoire. Over the years, several attempts have been made to elucidate the interplay between the biomechanics of these organs and their control systems. Recent developments in electrophysiological recordings from both the arms and brains of behaving octopuses mark significant progress in this direction. The next stage is relating these recordings to the octopus arm movements, which requires an accurate and reliable method of movement description and analysis. Here we describe a semiautomatic computerized system for 3D reconstruction of an octopus arm during motion. It consists of two digital video cameras and a PC computer running custom-made software. The system overcomes the difficulty of extracting the motion of smooth, nonrigid objects in poor viewing conditions. Some of the trouble is explained by the problem of light refraction in recording underwater motion. Here we use both experiments and simulations to analyze the refraction problem and show that accurate reconstruction is possible. We have used this system successfully to reconstruct different types of octopus arm movements, such as reaching and bend initiation movements. Our system is noninvasive and does not require attaching any artificial markers to the octopus arm. It may therefore be of more general use in reconstructing other nonrigid, elongated objects in motion.

  18. A stereotactic system for guiding complex craniofacial reconstruction.

    Science.gov (United States)

    Fialkov, J A; Phillips, J H; Gruss, J S; Kassel, E E; Zuker, R M

    1992-02-01

    A stereotactic system has been designed to address the problem of achieving symmetry in complex and extensive craniofacial defects. Preliminary testing suggests that such a system, which allows for the intraoperative application of preoperative CT planning, will be useful in guiding the reconstruction of congenital or acquired bony time, is being used to investigate the correlation of intraoperative globe position following enophthalmos correction with long-term outcome, particularly as it relates to the size and location of the orbital defect, and the timing of the procedure.

  19. Integrated Main Propulsion System Performance Reconstruction Process/Models

    Science.gov (United States)

    Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael

    2013-01-01

    The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.

  20. Object oriented software for simulation and reconstruction of big alignment systems

    CERN Document Server

    Arce, P

    2003-01-01

    Modern high-energy physics experiments require tracking detectors to provide high precision under difficult working conditions (high magnetic field, gravity loads and temperature gradients). This is the reason why several of them are deciding to implement optical alignment systems to monitor the displacement of tracking elements in operation. To simulate and reconstruct optical alignment systems a general purpose software, named COCOA, has been developed, using the object oriented paradigm and software engineering techniques. Thanks to the big flexibility in its design, COCOA is able to reconstruct any optical system made of a combination of the following objects: laser, x-hair laser, incoherent source - pinhole, lens, mirror, plate splitter, cube splitter, optical square, rhomboid prism, 2D sensor, 1D sensor, distance-meter, tilt-meter, user-defined. COCOA was designed to satisfy the requirements of the CMS alignment system, which has several thousands of components. Sparse matrix techniques had been investi...

  1. Reconstruction and navigation system for intraoperative brachytherapy using the flab technique for colorectal tumor bed irradiation

    International Nuclear Information System (INIS)

    Strassmann, Gerd; Walter, Stefan; Kolotas, Christos; Heyd, Reinhard; Baltas, Dimos; Debertshaeuser, Detlef; Nier, Helmut; Tonus, Carolin; Sakas, George; Zamboglou, Nikolaos

    2000-01-01

    Purpose: To present the development of a new navigation and reconstruction system based on an electromagnetic free-hand tracker and on CT imaging for treatment planning of intraoperative high-dose-rate brachytherapy (IORT-HDRB) in the sacral region. Our aim is to improve accuracy and to enable individualized treatment planning and dose documentation to be performed for IORT-HDRB using a flab technique. Methods and Materials: The material consists of an electromagnetic 3D tracker system, a PC workstation with Microsoft Windows NT 4.0 operating system, and a recognition program for continuous speech. In addition, we designed an external reference system constructed of titanium and Perspex, which is positioned in the pelvis, and a special digitizer pen for reconstruction of the flab geometry. The flab design incorporates a series of silicon 10-mm-diameter spherical pellets. Measurements were made with a pelvic phantom in order to study the accuracy of the system. The reconstruction results are stored and can be exported via network or floppy to our different treatment planning systems. Results: Our results for the reconstruction of a flab with six catheters and a total of 100 spherical pellets give mean errors in the range (2.5 ± 0.6) mm to (3.5 ± 0.8) mm depending on the positions of the pelvic phantom and transmitter relative to the operation table. These errors are calculated by comparing the reconstruction results of our system with those using a CT-based reconstruction of the flab geometry. For the accuracy of the navigation system for the pelvic phantom, we obtained mean errors in the range (2.2 ± 0.7) mm to (3.1 ± 1.0) mm. Conclusions: The new system we have developed enables navigation and reconstruction within the surgical environment with a clinically acceptable level of accuracy. It offers the possibility of individualized treatment planning and effective documentation of the 3D dose distribution in IORT-HDRB using a flab technique

  2. Structured Light-Based 3D Reconstruction System for Plants

    Directory of Open Access Journals (Sweden)

    Thuy Tuong Nguyen

    2015-07-01

    Full Text Available Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces and software algorithms (including the proposed 3D point cloud registration and plant feature measurement. This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  3. Structured Light-Based 3D Reconstruction System for Plants.

    Science.gov (United States)

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-07-29

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  4. Coordinate reconstruction using box reconstruction and projection of X-ray photo

    International Nuclear Information System (INIS)

    Achmad Suntoro

    2011-01-01

    Some mathematical formula have been derived for a process of reconstruction to define the coordinate of any point relative to a pre set coordinate system. The process of reconstruction uses a reconstruction box in which each edge's length of the box is known, each top-bottom face and left-right face of the box having a cross marker, and the top face and the right face of the box as plane projections by X-ray source in perspective projection -system. Using the data of the two X-ray projection images, any point inside the reconstruction box, as long as its projection is recorded in the two photos, will be determined its coordinate relative to the midpoint of the reconstruction box as the central point coordinates. (author)

  5. Ligament Augmentation and Reconstruction System Failures in Repair of Grade V Acromioclavicular Joint Dislocation

    Directory of Open Access Journals (Sweden)

    Martin K.-H. Li

    2017-01-01

    Full Text Available The Ligament Augmentation and Reconstruction System® (LARS® represents a popular synthetic anatomical reduction method for acromioclavicular joint dislocation by means of coracoclavicular ligament reconstruction. To our knowledge, no early failure has been documented in the literature. We present two unusual cases of LARS failure, one at four months after implant and the other at three weeks, without obvious causes, requiring re-do reconstruction, and discuss potential contributory factors.

  6. Open reduction versus endoscopically controlled reconstruction of orbital floor fractures: a retrospective analysis.

    NARCIS (Netherlands)

    Hundepool, A.C.; Willemsen, M.A.A.P.; Koudstaal, M.J.; Wal, K.G.H. van der

    2012-01-01

    The aim of this study was to compare the postoperative results of open reduction versus endoscopically controlled reconstructions of orbital floor fractures. The medical records of 83 patients, treated between January 2000 and December 2008, were reviewed for enophthalmos, diplopia and

  7. Significance of internal mammary lymph nodes in patients after mastectomy with tissue-expander reconstruction: a case-control study

    International Nuclear Information System (INIS)

    Kaewlai, R.; Digumarthy, S.R.; Smith, B.L.; Corben, A.D.; Austen, W.G.; Shepard, J.-A.O.; Sharma, A.

    2010-01-01

    Aim: To retrospectively assess the frequency of internal mammary lymph nodes (IMNs) in patients after mastectomy and tissue-expander reconstruction. Materials and methods: Statistical analysis was performed for all available data in patients with mastectomy and tissue-expander reconstruction from 2004-2007 (study group). The data were compared with that of a control population with mastectomy who did not have reconstruction (control group). Patients with recurrent breast cancers, previous breast reconstruction, surgeries performed at outside hospitals, no available pre- or postoperative computed tomography (CT) or magnetic resonance imaging (MRI) data, or inadequate imaging follow-up were excluded. Results: There were eight patients in the study group (median age 50.5 years, seven breast cancers), and eight patients in the control group (median age 52 years, seven breast cancers). No patients had IMNs on their preoperative imaging examinations. New IMNs were present in postoperative imaging in seven of eight patients (7/8, 87.5%) in the study group. All of them were stable or decreased in size on subsequent imaging examinations. None of the patients in the control group had IMNs (0/8). Conclusion: IMNs are common on imaging after mastectomy and tissue-expander placement. The IMNs decreased or remained stable on follow-up imaging and may represent reactive nodes.

  8. Significance of internal mammary lymph nodes in patients after mastectomy with tissue-expander reconstruction: a case-control study

    Energy Technology Data Exchange (ETDEWEB)

    Kaewlai, R., E-mail: rathachai@gmail.co [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Digumarthy, S.R. [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Smith, B.L. [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Corben, A.D. [Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Austen, W.G. [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Shepard, J.-A.O.; Sharma, A. [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2010-06-15

    Aim: To retrospectively assess the frequency of internal mammary lymph nodes (IMNs) in patients after mastectomy and tissue-expander reconstruction. Materials and methods: Statistical analysis was performed for all available data in patients with mastectomy and tissue-expander reconstruction from 2004-2007 (study group). The data were compared with that of a control population with mastectomy who did not have reconstruction (control group). Patients with recurrent breast cancers, previous breast reconstruction, surgeries performed at outside hospitals, no available pre- or postoperative computed tomography (CT) or magnetic resonance imaging (MRI) data, or inadequate imaging follow-up were excluded. Results: There were eight patients in the study group (median age 50.5 years, seven breast cancers), and eight patients in the control group (median age 52 years, seven breast cancers). No patients had IMNs on their preoperative imaging examinations. New IMNs were present in postoperative imaging in seven of eight patients (7/8, 87.5%) in the study group. All of them were stable or decreased in size on subsequent imaging examinations. None of the patients in the control group had IMNs (0/8). Conclusion: IMNs are common on imaging after mastectomy and tissue-expander placement. The IMNs decreased or remained stable on follow-up imaging and may represent reactive nodes.

  9. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    Directory of Open Access Journals (Sweden)

    Kovaleva Galina

    2011-06-01

    Full Text Available Abstract Background Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. Results To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. Multiple variations in regulatory strategies between the Shewanella spp. and E. coli include regulon contraction and expansion (as in the case of PdhR, HexR, FadR, numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA for fatty acid degradation and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp. Conclusions We tentatively defined the first reference collection of ~100 transcriptional regulons in 16 Shewanella genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in S

  10. Programmable logic controller based synchronous motor excitation system

    Directory of Open Access Journals (Sweden)

    Janda Žarko

    2011-01-01

    Full Text Available This paper presents a 3.5 MW synchronous motor excitation system reconstruction. In the proposed solution programmable logic controller is used to control motor, which drives the turbo compressor. Comparing to some other solutions that are used in similar situations, the proposed solution is superior due to its flexibility and usage of mass-production hardware. Moreover, the implementation of PLC enables easy integration of the excitation system with the other technological processes in the plant as well as in the voltage regulation of 'smart grid' system. Also, implementation of various optimization algorithms can be done comfortably and it does not require additional investment in hardware. Some experimental results that depict excitation current during motor start-up, as well as, measured static characteristics of the motor, were presented.

  11. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc, E-mail: Luc.Beaulieu@phy.ulaval.ca [Département de physique, de génie physique et d’optique et Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, Québec G1V 0A6, Canada and Département de radio-oncologie et Axe Oncologie du Centre de recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Binnekamp, Dirk [Integrated Clinical Solutions and Marketing, Philips Healthcare, Veenpluis 4-6, Best 5680 DA (Netherlands)

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  12. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    International Nuclear Information System (INIS)

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc; Binnekamp, Dirk

    2015-01-01

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora ® Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators

  13. Real-time image reconstruction and display system for MRI using a high-speed personal computer.

    Science.gov (United States)

    Haishi, T; Kose, K

    1998-09-01

    A real-time NMR image reconstruction and display system was developed using a high-speed personal computer and optimized for the 32-bit multitasking Microsoft Windows 95 operating system. The system was operated at various CPU clock frequencies by changing the motherboard clock frequency and the processor/bus frequency ratio. When the Pentium CPU was used at the 200 MHz clock frequency, the reconstruction time for one 128 x 128 pixel image was 48 ms and that for the image display on the enlarged 256 x 256 pixel window was about 8 ms. NMR imaging experiments were performed with three fast imaging sequences (FLASH, multishot EPI, and one-shot EPI) to demonstrate the ability of the real-time system. It was concluded that in most cases, high-speed PC would be the best choice for the image reconstruction and display system for real-time MRI. Copyright 1998 Academic Press.

  14. A photogrammetry-based system for 3D surface reconstruction of prosthetics and orthotics.

    Science.gov (United States)

    Li, Guang-kun; Gao, Fan; Wang, Zhi-gang

    2011-01-01

    The objective of this study is to develop an innovative close range digital photogrammetry (CRDP) system using the commercial digital SLR cameras to measure and reconstruct the 3D surface of prosthetics and orthotics. This paper describes the instrumentation, techniques and preliminary results of the proposed system. The technique works by taking pictures of the object from multiple view angles. The series of pictures were post-processed via feature point extraction, point match and 3D surface reconstruction. In comparison with the traditional method such as laser scanning, the major advantages of our instrument include the lower cost, compact and easy-to-use hardware, satisfactory measurement accuracy, and significantly less measurement time. Besides its potential applications in prosthetics and orthotics surface measurement, the simple setup and its ease of use will make it suitable for various 3D surface reconstructions.

  15. Reconstruction of systems with impulses and delays from time series data

    International Nuclear Information System (INIS)

    Jeon, Jong-ha; Kim, Pilwon

    2014-01-01

    In this paper, we present an approach to identification of dynamical systems with irregular impulses and time delays. The suggested method enables one to reconstruct the underlying differential equations, using the l 1 -minimization technique in signal processing which takes advantage of the signal’s sparseness. Based on the idea that irregular impulses can be regarded as sparse error in the fitting procedure, we obtain an efficient algorithm for reconstructions that separates the regular parts of dynamics from impulsive ones. From time series data sampled from an impulsive ecological models, the suggested method restores an essential dynamics of the original systems. The method also applies to chaotic systems perturbed by intermittent impacts and successfully captures dynamics reflecting qualitative behavior independent of impacts. In addition, we can identify a time-delay Lotka–Volterra model with no prior information on delay time given, to which conventional parameter estimate methods are hardly applicable

  16. Analytical, experimental, and Monte Carlo system response matrix for pinhole SPECT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es [Fundación Ramón Domínguez, Medicina Nuclear, CHUS, Spain and Grupo de Imaxe Molecular, IDIS, Santiago de Compostela 15706 (Spain); Pino, Francisco [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Spain and Servei de Física Médica i Protecció Radiológica, Institut Catalá d' Oncologia, Barcelona 08036 (Spain); Silva-Rodríguez, Jesús [Fundación Ramón Domínguez, Medicina Nuclear, CHUS, Santiago de Compostela 15706 (Spain); Pavía, Javier [Servei de Medicina Nuclear, Hospital Clínic, Barcelona (Spain); Institut d' Investigacions Biomèdiques August Pí i Sunyer (IDIBAPS) (Spain); CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); Ros, Doménec [Unitat de Biofísica, Facultat de Medicina, Casanova 143 (Spain); Institut d' Investigacions Biomèdiques August Pí i Sunyer (IDIBAPS) (Spain); CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); Ruibal, Álvaro [Servicio Medicina Nuclear, CHUS (Spain); Grupo de Imaxe Molecular, Facultade de Medicina (USC), IDIS, Santiago de Compostela 15706 (Spain); Fundación Tejerina, Madrid (Spain); and others

    2014-03-15

    Purpose: To assess the performance of two approaches to the system response matrix (SRM) calculation in pinhole single photon emission computed tomography (SPECT) reconstruction. Methods: Evaluation was performed using experimental data from a low magnification pinhole SPECT system that consisted of a rotating flat detector with a monolithic scintillator crystal. The SRM was computed following two approaches, which were based on Monte Carlo simulations (MC-SRM) and analytical techniques in combination with an experimental characterization (AE-SRM). The spatial response of the system, obtained by using the two approaches, was compared with experimental data. The effect of the MC-SRM and AE-SRM approaches on the reconstructed image was assessed in terms of image contrast, signal-to-noise ratio, image quality, and spatial resolution. To this end, acquisitions were carried out using a hot cylinder phantom (consisting of five fillable rods with diameters of 5, 4, 3, 2, and 1 mm and a uniform cylindrical chamber) and a custom-made Derenzo phantom, with center-to-center distances between adjacent rods of 1.5, 2.0, and 3.0 mm. Results: Good agreement was found for the spatial response of the system between measured data and results derived from MC-SRM and AE-SRM. Only minor differences for point sources at distances smaller than the radius of rotation and large incidence angles were found. Assessment of the effect on the reconstructed image showed a similar contrast for both approaches, with values higher than 0.9 for rod diameters greater than 1 mm and higher than 0.8 for rod diameter of 1 mm. The comparison in terms of image quality showed that all rods in the different sections of a custom-made Derenzo phantom could be distinguished. The spatial resolution (FWHM) was 0.7 mm at iteration 100 using both approaches. The SNR was lower for reconstructed images using MC-SRM than for those reconstructed using AE-SRM, indicating that AE-SRM deals better with the

  17. Analytical, experimental, and Monte Carlo system response matrix for pinhole SPECT reconstruction

    International Nuclear Information System (INIS)

    Aguiar, Pablo; Pino, Francisco; Silva-Rodríguez, Jesús; Pavía, Javier; Ros, Doménec; Ruibal, Álvaro

    2014-01-01

    Purpose: To assess the performance of two approaches to the system response matrix (SRM) calculation in pinhole single photon emission computed tomography (SPECT) reconstruction. Methods: Evaluation was performed using experimental data from a low magnification pinhole SPECT system that consisted of a rotating flat detector with a monolithic scintillator crystal. The SRM was computed following two approaches, which were based on Monte Carlo simulations (MC-SRM) and analytical techniques in combination with an experimental characterization (AE-SRM). The spatial response of the system, obtained by using the two approaches, was compared with experimental data. The effect of the MC-SRM and AE-SRM approaches on the reconstructed image was assessed in terms of image contrast, signal-to-noise ratio, image quality, and spatial resolution. To this end, acquisitions were carried out using a hot cylinder phantom (consisting of five fillable rods with diameters of 5, 4, 3, 2, and 1 mm and a uniform cylindrical chamber) and a custom-made Derenzo phantom, with center-to-center distances between adjacent rods of 1.5, 2.0, and 3.0 mm. Results: Good agreement was found for the spatial response of the system between measured data and results derived from MC-SRM and AE-SRM. Only minor differences for point sources at distances smaller than the radius of rotation and large incidence angles were found. Assessment of the effect on the reconstructed image showed a similar contrast for both approaches, with values higher than 0.9 for rod diameters greater than 1 mm and higher than 0.8 for rod diameter of 1 mm. The comparison in terms of image quality showed that all rods in the different sections of a custom-made Derenzo phantom could be distinguished. The spatial resolution (FWHM) was 0.7 mm at iteration 100 using both approaches. The SNR was lower for reconstructed images using MC-SRM than for those reconstructed using AE-SRM, indicating that AE-SRM deals better with the

  18. Using the T-scan III system to analyze occlusal function in mandibular reconstruction patients: A pilot study

    Directory of Open Access Journals (Sweden)

    Chao-Wei Liu

    2015-02-01

    Full Text Available Background: This study was designed to analyze the post-rehabilitation occlusal function of subjects treated with complex mandibular resection and subsequently rehabilitated with fibula osteoseptocutaneous flaps, dental implants, and fixed prostheses utilizing the T-scan system. Methods: Ten mandibular complex resection cases that adopted fibula osteoseptocutaneous flaps, dental implants, and fixed prostheses to reconstruct occlusal function were analyzed. The mandibular reconstructions were divided into three groups based on size: full mandibular reconstructions, mandibular reconstructions larger than half of the arch, and mandibular reconstructions smaller than half of the arch. The T-scan III system was used to measure maximum occlusal force, occlusal time, anterior-posterior as well as left-right occlusal force asymmetries, and anterior-posterior as well as left-right asymmetrical locations of occlusal centers. Results: Subjects with larger mandibular reconstructions and dental implants with fixed partial dentures demonstrated decreased average occlusal force; however, the difference did not reach the statistically significant level (p > 0.05. The most significant asymmetry of occlusal center location occurred among subjects with mandibular reconstructed areas larger than half of the mandibular arch. Conclusions: Comparison of the parameters of T-scan system used to analyze the occlusal function showed that the occlusal force was not an objective reference. Measurements of the location of the occlusal center appeared more repeatable, and were less affected by additional factors. The research results of this study showed that the size of a reconstruction did not affect the occlusal force after reconstruction and larger reconstructed areas did not decrease the average occlusal force. The most significant parameter was left and right asymmetry of the occlusion center (LROC and was measured in subjects with reconstruction areas larger than half

  19. Distributed digital real-time control system for TCV tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.B. [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association EURATOM-Confédération Suisse, CH-1015 Lausanne (Switzerland); Felici, F. [Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Paley, J.I.; Duval, B.P.; Moret, J.-M.; Coda, S.; Sauter, O.; Fasel, D.; Marmillod, P. [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association EURATOM-Confédération Suisse, CH-1015 Lausanne (Switzerland)

    2014-03-15

    Highlights: • A new distributed digital control system for the TCV tokamak has been commissioned. • Data is shared in real-time between all nodes using the reflective memory. • The customised Linux OS allows achieving deterministic and low latency behaviour. • The control algorithm design in Simulink together with the automatic code generation using Embedded Coder allow rapid algorithm development. • Controllers designed outside the TCV environment can be ported easily. • The previous control system functions have been emulated and improved. • New capabilities include MHD control, profile control, equilibrium reconstruction. - Abstract: A new digital feedback control system (named the SCD “Système de Contrôle Distribué”) has been developed, integrated and used successfully to control TCV (Tokamak à Configuration Variable) plasmas. The system is designed to be modular, distributed, and scalable, accommodating hundreds of diagnostic inputs and actuator outputs. With many more inputs and outputs available than previously possible, it offers the possibility to design advanced control algorithms with better knowledge of the plasma state and to coherently control all TCV actuators, including poloidal field (PF) coils, gas valves, the gyrotron powers and launcher angles of the electron cyclotron heating and current drive system (ECRH/ECCD) together with diagnostic triggering signals. The system consists of multiple nodes; each is a customised Linux desktop or embedded PC which may have local ADC and DAC cards. Each node is also connected to a memory network (reflective memory) providing a reliable, deterministic method of sharing memory between all nodes. Control algorithms are programmed as block diagrams in Matlab-Simulink providing a powerful environment for modelling and control design. The C code is generated automatically from the Simulink block diagram and compiled, with the Simulink Embedded Coder (SEC, formerly Real-Time Workshop Embedded

  20. Algebraic reconstruction techniques for spectral reconstruction in diffuse optical tomography

    International Nuclear Information System (INIS)

    Brendel, Bernhard; Ziegler, Ronny; Nielsen, Tim

    2008-01-01

    Reconstruction in diffuse optical tomography (DOT) necessitates solving the diffusion equation, which is nonlinear with respect to the parameters that have to be reconstructed. Currently applied solving methods are based on the linearization of the equation. For spectral three-dimensional reconstruction, the emerging equation system is too large for direct inversion, but the application of iterative methods is feasible. Computational effort and speed of convergence of these iterative methods are crucial since they determine the computation time of the reconstruction. In this paper, the iterative methods algebraic reconstruction technique (ART) and conjugated gradients (CGs) as well as a new modified ART method are investigated for spectral DOT reconstruction. The aim of the modified ART scheme is to speed up the convergence by considering the specific conditions of spectral reconstruction. As a result, it converges much faster to favorable results than conventional ART and CG methods

  1. Efficient methodologies for system matrix modelling in iterative image reconstruction for rotating high-resolution PET

    Energy Technology Data Exchange (ETDEWEB)

    Ortuno, J E; Kontaxakis, G; Rubio, J L; Santos, A [Departamento de Ingenieria Electronica (DIE), Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Guerra, P [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain)], E-mail: juanen@die.upm.es

    2010-04-07

    A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.

  2. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Krishnendu [Ohio Medical Physics Consulting, Dublin, Ohio 43017 (United States); Straus, Kenneth J.; Glick, Stephen J. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Chen, Yu. [Department of Radiation Oncology, Columbia University, New York, New York 10032 (United States)

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  3. On-line event reconstruction using a parallel in-memory data base

    OpenAIRE

    Argante, E; Van der Stok, P D V; Willers, Ian Malcolm

    1995-01-01

    PORS is a system designed for on-line event reconstruction in high energy physics (HEP) experiments. It uses the CPREAD reconstruction program. Central to the system is a parallel in-memory database which is used as communication medium between parallel workers. A farming control structure is implemented with PORS in a natural way. The database provides structured storage of data with a short life time. PORS serves as a case study for the construction of a methodology on how to apply parallel...

  4. A complete system for 3D reconstruction of roots for phenotypic analysis.

    Science.gov (United States)

    Kumar, Pankaj; Cai, Jinhai; Miklavcic, Stanley J

    2015-01-01

    Here we present a complete system for 3D reconstruction of roots grown in a transparent gel medium or washed and suspended in water. The system is capable of being fully automated as it is self calibrating. The system starts with detection of root tips in root images from an image sequence generated by a turntable motion. Root tips are detected using the statistics of Zernike moments on image patches centred on high curvature points on root boundary and Bayes classification rule. The detected root tips are tracked in the image sequence using a multi-target tracking algorithm. Conics are fitted to the root tip trajectories using a novel ellipse fitting algorithm which weighs the data points by its eccentricity. The conics projected from the circular trajectory have a complex conjugate intersection which are image of the circular points. Circular points constraint the image of the absolute conics which are directly related to the internal parameters of the camera. The pose of the camera is computed from the image of the rotation axis and the horizon. The silhouettes of the roots and camera parameters are used to reconstruction the 3D voxel model of the roots. We show the results of real 3D reconstruction of roots which are detailed and realistic for phenotypic analysis.

  5. Hadronic energy reconstruction in the CALICE combined calorimeter system

    Energy Technology Data Exchange (ETDEWEB)

    Israeli, Yasmine [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Collaboration: CALICE-D-Collaboration

    2016-07-01

    Future linear electron-positron colliders, ILC and CLIC, aim for precision measurements and discoveries beyond and complementary to the program of the LHC. For this purpose, detectors with the capability for sophisticated reconstruction of final states with energy resolutions substantially beyond the current state of the art are being designed. The CALICE collaboration develops highly granular calorimeters for future colliders, among them silicon-tungsten electromagnetic calorimeters and hadronic calorimeters with scintillators read out by SiPMs. Such a combined system was tested with hadrons at CERN as well as at Fermilab. In this contribution, we report on the energy reconstruction in the combined setup, which requires different intercalibration factors to account for the varying longitudinal sampling of sub-detectors. Software compensation methods are applied to improve the energy resolution and to compensate for the different energy deposit of hadronic and electromagnetic showers.

  6. Linear image reconstruction for a diffuse optical mammography system in a noncompressed geometry using scattering fluid

    International Nuclear Information System (INIS)

    Nielsen, Tim; Brendel, Bernhard; Ziegler, Ronny; Beek, Michiel van; Uhlemann, Falk; Bontus, Claas; Koehler, Thomas

    2009-01-01

    Diffuse optical tomography (DOT) is a potential new imaging modality to detect or monitor breast lesions. Recently, Philips developed a new DOT system capable of transmission and fluorescence imaging, where the investigated breast is hanging freely into the measurement cup containing scattering fluid. We present a fast and robust image reconstruction algorithm that is used for the transmission measurements. The algorithm is based on the Rytov approximation. We show that this algorithm can be used over a wide range of tissue optical properties if the reconstruction is adapted to each patient. We use estimates of the breast shape and average tissue optical properties to initialize the reconstruction, which improves the image quality significantly. We demonstrate the capability of the measurement system and reconstruction to image breast lesions by clinical examples

  7. Comparison of 3-dimensional dose reconstruction system between fluence-based system and dose measurement-guided system

    Energy Technology Data Exchange (ETDEWEB)

    Nakaguchi, Yuji, E-mail: nkgc2003@yahoo.co.jp [Department of Radiological Technology, Kumamoto University Hospital, Kumamoto (Japan); Ono, Takeshi [Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Onitsuka, Ryota [Graduate School of Health Sciences, Kumamoto University, Kumamoto (Japan); Maruyama, Masato; Shimohigashi, Yoshinobu; Kai, Yudai [Department of Radiological Technology, Kumamoto University Hospital, Kumamoto (Japan)

    2016-10-01

    COMPASS system (IBA Dosimetry, Schwarzenbruck, Germany) and ArcCHECK with 3DVH software (Sun Nuclear Corp., Melbourne, FL) are commercial quasi-3-dimensional (3D) dosimetry arrays. Cross-validation to compare them under the same conditions, such as a treatment plan, allows for clear evaluation of such measurement devices. In this study, we evaluated the accuracy of reconstructed dose distributions from the COMPASS system and ArcCHECK with 3DVH software using Monte Carlo simulation (MC) for multi-leaf collimator (MLC) test patterns and clinical VMAT plans. In a phantom study, ArcCHECK 3DVH showed clear differences from COMPASS, measurement and MC due to the detector resolution and the dose reconstruction method. Especially, ArcCHECK 3DVH showed 7% difference from MC for the heterogeneous phantom. ArcCHECK 3DVH only corrects the 3D dose distribution of treatment planning system (TPS) using ArcCHECK measurement, and therefore the accuracy of ArcCHECK 3DVH depends on TPS. In contrast, COMPASS showed good agreement with MC for all cases. However, the COMPASS system requires many complicated installation procedures such as beam modeling, and appropriate commissioning is needed. In terms of clinical cases, there were no large differences for each QA device. The accuracy of the compass and ArcCHECK 3DVH systems for phantoms and clinical cases was compared. Both systems have advantages and disadvantages for clinical use, and consideration of the operating environment is important. The QA system selection is depending on the purpose and workflow in each hospital.

  8. Research on image reconstruction of DR/SSCT security inspection system

    International Nuclear Information System (INIS)

    Li Jian; Cong Peng

    2008-01-01

    On the basis of DR (Digital Radiography)/CT security inspection system, DR/SSCT (single slice spiral CT) security inspection system was developed. This spiral CT system can improve the CT system's drawbacks. The research work includes in replacing the former data acquisition system by a new system which can acquire projection data of multi-slices and devising the SSCT reconstruction algorithms. Simulation experiments and practical experiments were devised to contrast several algorithms. Interpolation technique was operated in detectors data in order to improve the algorithms. In conclusion, the system exploits an algorithm of weighted average of 360 degree LI (Linear Interpolation) and JH-HI (Jiang Hsieh-Half scan Interpolation). (authors)

  9. Precise shape reconstruction by active pattern in total-internal-reflection-based tactile sensor.

    Science.gov (United States)

    Saga, Satoshi; Taira, Ryosuke; Deguchi, Koichiro

    2014-03-01

    We are developing a total-internal-reflection-based tactile sensor in which the shape is reconstructed using an optical reflection. This sensor consists of silicone rubber, an image pattern, and a camera. It reconstructs the shape of the sensor surface from an image of a pattern reflected at the inner sensor surface by total internal reflection. In this study, we propose precise real-time reconstruction by employing an optimization method. Furthermore, we propose to use active patterns. Deformation of the reflection image causes reconstruction errors. By controlling the image pattern, the sensor reconstructs the surface deformation more precisely. We implement the proposed optimization and active-pattern-based reconstruction methods in a reflection-based tactile sensor, and perform reconstruction experiments using the system. A precise deformation experiment confirms the linearity and precision of the reconstruction.

  10. Comparison between various patch wise strategies for reconstruction of ultra-spectral cubes captured with a compressive sensing system

    Science.gov (United States)

    Oiknine, Yaniv; August, Isaac Y.; Revah, Liat; Stern, Adrian

    2016-05-01

    Recently we introduced a Compressive Sensing Miniature Ultra-Spectral Imaging (CS-MUSI) system. The system is based on a single Liquid Crystal (LC) cell and a parallel sensor array where the liquid crystal cell performs spectral encoding. Within the framework of compressive sensing, the CS-MUSI system is able to reconstruct ultra-spectral cubes captured with only an amount of ~10% samples compared to a conventional system. Despite the compression, the technique is extremely complex computationally, because reconstruction of ultra-spectral images requires processing huge data cubes of Gigavoxel size. Fortunately, the computational effort can be alleviated by using separable operation. An additional way to reduce the reconstruction effort is to perform the reconstructions on patches. In this work, we consider processing on various patch shapes. We present an experimental comparison between various patch shapes chosen to process the ultra-spectral data captured with CS-MUSI system. The patches may be one dimensional (1D) for which the reconstruction is carried out spatially pixel-wise, or two dimensional (2D) - working on spatial rows/columns of the ultra-spectral cube, as well as three dimensional (3D).

  11. High quality digital holographic reconstruction on analog film

    Science.gov (United States)

    Nelsen, B.; Hartmann, P.

    2017-05-01

    High quality real-time digital holographic reconstruction, i.e. at 30 Hz frame rates, has been at the forefront of research and has been hailed as the holy grail of display systems. While these efforts have produced a fascinating array of computer algorithms and technology, many applications of reconstructing high quality digital holograms do not require such high frame rates. In fact, applications such as 3D holographic lithography even require a stationary mask. Typical devices used for digital hologram reconstruction are based on spatial-light-modulator technology and this technology is great for reconstructing arbitrary holograms on the fly; however, it lacks the high spatial resolution achievable by its analog counterpart, holographic film. Analog holographic film is therefore the method of choice for reconstructing highquality static holograms. The challenge lies in taking a static, high-quality digitally calculated hologram and effectively writing it to holographic film. We have developed a theoretical system based on a tunable phase plate, an intensity adjustable high-coherence laser and a slip-stick based piezo rotation stage to effectively produce a digitally calculated hologram on analog film. The configuration reproduces the individual components, both the amplitude and phase, of the hologram in the Fourier domain. These Fourier components are then individually written on the holographic film after interfering with a reference beam. The system is analogous to writing angularly multiplexed plane waves with individual component phase control.

  12. The Application of Three-Dimensional Surface Imaging System in Plastic and Reconstructive Surgery.

    Science.gov (United States)

    Li, Yanqi; Yang, Xin; Li, Dong

    2016-02-01

    Three-dimensional (3D) surface imaging system has gained popularity worldwide in clinical application. Unlike computed tomography and magnetic resonance imaging, it has the ability to capture 3D images with both shape and texture information. This feature has made it quite useful for plastic surgeons. This review article is mainly focusing on demonstrating the current status and analyzing the future of the application of 3D surface imaging systems in plastic and reconstructive surgery.Currently, 3D surface imaging system is mainly used in plastic and reconstructive surgery to help improve the reliability of surgical planning and assessing surgical outcome objectively. There have already been reports of its using on plastic and reconstructive surgery from head to toe. Studies on facial aging process, online applications development, and so on, have also been done through the use of 3D surface imaging system.Because different types of 3D surface imaging devices have their own advantages and disadvantages, a basic knowledge of their features is required and careful thought should be taken to choose the one that best fits a surgeon's demand.In the future, by integrating with other imaging tools and the 3D printing technology, 3D surface imaging system will play an important role in individualized surgical planning, implants production, meticulous surgical simulation, operative techniques training, and patient education.

  13. Controllability and stability analysis of large transcriptomic dynamic systems for host response to influenza infection in human

    Directory of Open Access Journals (Sweden)

    Xiaodian Sun

    2016-10-01

    Full Text Available Background: Gene regulatory networks are complex dynamic systems and the reverse-engineering of such networks from high-dimensional time course transcriptomic data have attracted researchers from various fields. It is also interesting and important to study the behavior of the reconstructed networks on the basis of dynamic models and the biological mechanisms. We focus on the gene regulatory networks reconstructed using the ordinary differential equation (ODE modelling approach and investigate the properties of these networks. Results: Controllability and stability analyses are conducted for the reconstructed gene response networks of 17 influenza infected subjects based on ODE models. Symptomatic subjects tend to have larger numbers of driver nodes, higher proportions of critical links and lower proportions of redundant links than asymptomatic subjects. We also show that the degree distribution, rather than the structure of networks, plays an important role in controlling the network in response to influenza infection. In addition, we find that the stability of high-dimensional networks is very sensitive to randomness in the reconstructed systems brought by errors in measurements and parameter estimation. Conclusions: The gene response networks of asymptomatic subjects are easier to be controlled than those of symptomatic subjects. This may indicate that the regulatory systems of asymptomatic subjects are easier to recover from disease stimulations, so these subjects are less likely to develop symptoms. Our results also suggest that stability constraint should be considered in the modelling of high-dimensional networks and the estimation of network parameters.

  14. In-Flight Suppression of an Unstable F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  15. In-Flight Suppression of a Destabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  16. Analysis on Internal Control of TY Company & Its System Reconstruction%TY公司内部控制现状分析和体系重构

    Institute of Scientific and Technical Information of China (English)

    黄美珍; 陈文芳

    2012-01-01

    在对福州TY公司进行深入调查的基础上,参照我国的《内部控制基本规范》及其配套指引,从控制环境、风险评估、控制活动、信息与沟通以及内部监督等方面对TY公司内部控制现状进行分析,对TY公司内部控制系统重构提出了自己的见解,以期能够对TY公司解决其内部控制问题有所启示。%Based on an in-depth study of TY Company,we analyze the current state of its internal control from the aspects of internal environment,risk assessment,internal monitoring,information and communication,referring to China's Basic Norms of Internal Control and its supporting guidelines.We put forward our views on internal control system reconstruction of TY Company,in hopes of offering some enlightening suggestions for resolving its internal control problems.

  17. Image reconstruction of dynamic infrared single-pixel imaging system

    Science.gov (United States)

    Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin

    2018-03-01

    Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.

  18. Three Dimensional Dynamic Model Based Wind Field Reconstruction from Lidar Data

    International Nuclear Information System (INIS)

    Raach, Steffen; Schlipf, David; Haizmann, Florian; Cheng, Po Wen

    2014-01-01

    Using the inflowing horizontal and vertical wind shears for individual pitch controller is a promising method if blade bending measurements are not available. Due to the limited information provided by a lidar system the reconstruction of shears in real-time is a challenging task especially for the horizontal shear in the presence of changing wind direction. The internal model principle has shown to be a promising approach to estimate the shears and directions in 10 minutes averages with real measurement data. The static model based wind vector field reconstruction is extended in this work taking into account a dynamic reconstruction model based on Taylor's Frozen Turbulence Hypothesis. The presented method provides time series over several seconds of the wind speed, shears and direction, which can be directly used in advanced optimal preview control. Therefore, this work is an important step towards the application of preview individual blade pitch control under realistic wind conditions. The method is tested using a turbulent wind field and a detailed lidar simulator. For the simulation, the turbulent wind field structure is flowing towards the lidar system and is continuously misaligned with respect to the horizontal axis of the wind turbine. Taylor's Frozen Turbulence Hypothesis is taken into account to model the wind evolution. For the reconstruction, the structure is discretized into several stages where each stage is reduced to an effective wind speed, superposed with a linear horizontal and vertical wind shear. Previous lidar measurements are shifted using again Taylor's Hypothesis. The wind field reconstruction problem is then formulated as a nonlinear optimization problem, which minimizes the residual between the assumed wind model and the lidar measurements to obtain the misalignment angle and the effective wind speed and the wind shears for each stage. This method shows good results in reconstructing the wind characteristics of a three

  19. Development of a system for acquiring, reconstructing, and visualizing three-dimensional ultrasonic angiograms

    Science.gov (United States)

    Edwards, Warren S.; Ritchie, Cameron J.; Kim, Yongmin; Mack, Laurence A.

    1995-04-01

    We have developed a three-dimensional (3D) imaging system using power Doppler (PD) ultrasound (US). This system can be used for visualizing and analyzing the vascular anatomy of parenchymal organs. To create the 3D PD images, we acquired a series of two-dimensional PD images from a commercial US scanner and recorded the position and orientation of each image using a 3D magnetic position sensor. Three-dimensional volumes were reconstructed using specially designed software and then volume rendered for display. We assessed the feasibility and geometric accuracy of our system with various flow phantoms. The system was then tested on a volunteer by scanning a transplanted kidney. The reconstructed volumes of the flow phantom contained less than 1 mm of geometric distortion and the 3D images of the transplanted kidney depicted the segmental, arcuate, and interlobar vessels.

  20. Optimization of Proton CT Detector System and Image Reconstruction Algorithm for On-Line Proton Therapy.

    Directory of Open Access Journals (Sweden)

    Chae Young Lee

    Full Text Available The purposes of this study were to optimize a proton computed tomography system (pCT for proton range verification and to confirm the pCT image reconstruction algorithm based on projection images generated with optimized parameters. For this purpose, we developed a new pCT scanner using the Geometry and Tracking (GEANT 4.9.6 simulation toolkit. GEANT4 simulations were performed to optimize the geometric parameters representing the detector thickness and the distance between the detectors for pCT. The system consisted of four silicon strip detectors for particle tracking and a calorimeter to measure the residual energies of the individual protons. The optimized pCT system design was then adjusted to ensure that the solution to a CS-based convex optimization problem would converge to yield the desired pCT images after a reasonable number of iterative corrections. In particular, we used a total variation-based formulation that has been useful in exploiting prior knowledge about the minimal variations of proton attenuation characteristics in the human body. Examinations performed using our CS algorithm showed that high-quality pCT images could be reconstructed using sets of 72 projections within 20 iterations and without any streaks or noise, which can be caused by under-sampling and proton starvation. Moreover, the images yielded by this CS algorithm were found to be of higher quality than those obtained using other reconstruction algorithms. The optimized pCT scanner system demonstrated the potential to perform high-quality pCT during on-line image-guided proton therapy, without increasing the imaging dose, by applying our CS based proton CT reconstruction algorithm. Further, we make our optimized detector system and CS-based proton CT reconstruction algorithm potentially useful in on-line proton therapy.

  1. Real Time Hand Motion Reconstruction System for Trans-Humeral Amputees Using EEG and EMG

    Directory of Open Access Journals (Sweden)

    Jacobo Fernandez-Vargas

    2016-08-01

    Full Text Available Predicting a hand’s position using only biosignals is a complex problem that has not been completely solved. The only reliable solutions currently available require invasive surgery. The attempts using non-invasive technologies are rare, and usually have led to lower correlation values between the real and the reconstructed position than those required for real-world applications. In this study, we propose a solution for reconstructing the hand’s position in three dimensions using EEG and EMG to detect from the shoulder area. This approach would be valid for most trans-humeral amputees. In order to find the best solution, we tested four different architectures for the system based on artificial neural networks. Our results show that it is possible to reconstruct the hand’s motion trajectory with a correlation value up to 0.809 compared to a typical value in the literature of 0.6. We also demonstrated that both EEG and EMG contribute jointly to the motion reconstruction. Furthermore, we discovered that the system architectures do not change the results radically. In addition, our results suggest that different motions may have different brain activity patterns that could be detected through EEG. Finally, we suggest a method to study non-linear relations in the brain through the EEG signals, which may lead to a more accurate system.

  2. A Cognitive-Systemic Reconstruction of Maslow's Theory of Self-Actualization

    OpenAIRE

    Heylighen, Francis

    1992-01-01

    Maslow's need hierarchy and model of the self-actualizing personality are reviewed and criticized. The definition of self-actualization is found to be confusing, and the gratification of all needs is concluded to be insufficient to explain self-actualization. Therefore the theory is reconstructed on the basis of a second-order, cognitive-systemic framework. A hierarchy of basic needs is derived from the urgency of perturbations which an autonomous system must compensate in order to maintain i...

  3. Task-based data-acquisition optimization for sparse image reconstruction systems

    Science.gov (United States)

    Chen, Yujia; Lou, Yang; Kupinski, Matthew A.; Anastasio, Mark A.

    2017-03-01

    Conventional wisdom dictates that imaging hardware should be optimized by use of an ideal observer (IO) that exploits full statistical knowledge of the class of objects to be imaged, without consideration of the reconstruction method to be employed. However, accurate and tractable models of the complete object statistics are often difficult to determine in practice. Moreover, in imaging systems that employ compressive sensing concepts, imaging hardware and (sparse) image reconstruction are innately coupled technologies. We have previously proposed a sparsity-driven ideal observer (SDIO) that can be employed to optimize hardware by use of a stochastic object model that describes object sparsity. The SDIO and sparse reconstruction method can therefore be "matched" in the sense that they both utilize the same statistical information regarding the class of objects to be imaged. To efficiently compute SDIO performance, the posterior distribution is estimated by use of computational tools developed recently for variational Bayesian inference. Subsequently, the SDIO test statistic can be computed semi-analytically. The advantages of employing the SDIO instead of a Hotelling observer are systematically demonstrated in case studies in which magnetic resonance imaging (MRI) data acquisition schemes are optimized for signal detection tasks.

  4. Permutationally invariant state reconstruction

    DEFF Research Database (Denmark)

    Moroder, Tobias; Hyllus, Philipp; Tóth, Géza

    2012-01-01

    Feasible tomography schemes for large particle numbers must possess, besides an appropriate data acquisition protocol, an efficient way to reconstruct the density operator from the observed finite data set. Since state reconstruction typically requires the solution of a nonlinear large-scale opti...... optimization, which has clear advantages regarding speed, control and accuracy in comparison to commonly employed numerical routines. First prototype implementations easily allow reconstruction of a state of 20 qubits in a few minutes on a standard computer.......-scale optimization problem, this is a major challenge in the design of scalable tomography schemes. Here we present an efficient state reconstruction scheme for permutationally invariant quantum state tomography. It works for all common state-of-the-art reconstruction principles, including, in particular, maximum...

  5. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Investigation of various reconstruction parameters for algebraic reconstruction technique in a newly developed chest digital tomosynthesis

    International Nuclear Information System (INIS)

    Lee, H.; Choi, S.; Kim, Y.-S.; Park, H.-S.; Seo, C.-W.; Kim, H.-J.; Lee, D.; Lee, Y.

    2017-01-01

    Chest digital tomosynthesis (CDT) is a promising new modality that provides 3D information by reconstructing limited projection views. CDT systems have been developed to improve the limitations of conventional radiography such as image degradation and low sensitivity. However, the development of reconstruction methods is challenging because of the limited projection views within various angular ranges. Optimization of reconstruction parameters for various reconsturction methods in CDT system also is needed. The purpose of this study was to investigate the feasibility of algebraic reconstruction technique (ART) method, and to evaluate the effect of the reconstruction parameters for our newly developed CDT system. We designed ART method with 41 projection views over an angular range of ±20°. To investigate the effect of reconstruction parameters, we measured the contrast-to-noise ratio (CNR), artifact spread function (ASF), and quality factor (QF) using LUNGMAN phantom included tumors. We found that the proper choice of reconstruction parameters such as relaxation parameter, initial guess, and number of iterations improved the quality of reconstructed images from the same projection views. Optimal values of ART relaxation parameter with uniform (UI) and back-projection (BP) initial guesses were 0.4 and 0.6, respectively. BP initial guess improved image quality in comparison with UI initial guess, in terms of providing a higher CNR and QF values with a faster speed. CNR and QF values improved with increasing number of iteration. Particularly, ART method with BP initial guess (when β = 0.6) after 3-terations provide satisfactory reconstructed image. In conclusion, the use of ART method with proper reconstruction parameters provided better image quality than FBP method as well as conventional radiography. These results indicated that the ART method with optimal reconstruction parameters could improve image quality for nodule detection using the CDT system.

  7. Investigation of various reconstruction parameters for algebraic reconstruction technique in a newly developed chest digital tomosynthesis

    Science.gov (United States)

    Lee, H.; Choi, S.; Lee, D.; Kim, Y.-s.; Park, H.-S.; Lee, Y.; Seo, C.-W.; Kim, H.-J.

    2017-08-01

    Chest digital tomosynthesis (CDT) is a promising new modality that provides 3D information by reconstructing limited projection views. CDT systems have been developed to improve the limitations of conventional radiography such as image degradation and low sensitivity. However, the development of reconstruction methods is challenging because of the limited projection views within various angular ranges. Optimization of reconstruction parameters for various reconsturction methods in CDT system also is needed. The purpose of this study was to investigate the feasibility of algebraic reconstruction technique (ART) method, and to evaluate the effect of the reconstruction parameters for our newly developed CDT system. We designed ART method with 41 projection views over an angular range of ±20°. To investigate the effect of reconstruction parameters, we measured the contrast-to-noise ratio (CNR), artifact spread function (ASF), and quality factor (QF) using LUNGMAN phantom included tumors. We found that the proper choice of reconstruction parameters such as relaxation parameter, initial guess, and number of iterations improved the quality of reconstructed images from the same projection views. Optimal values of ART relaxation parameter with uniform (UI) and back-projection (BP) initial guesses were 0.4 and 0.6, respectively. BP initial guess improved image quality in comparison with UI initial guess, in terms of providing a higher CNR and QF values with a faster speed. CNR and QF values improved with increasing number of iteration. Particularly, ART method with BP initial guess (when β = 0.6) after 3-terations provide satisfactory reconstructed image. In conclusion, the use of ART method with proper reconstruction parameters provided better image quality than FBP method as well as conventional radiography. These results indicated that the ART method with optimal reconstruction parameters could improve image quality for nodule detection using the CDT system.

  8. Three-dimensional image acquisition and reconstruction system on a mobile device based on computer-generated integral imaging.

    Science.gov (United States)

    Erdenebat, Munkh-Uchral; Kim, Byeong-Jun; Piao, Yan-Ling; Park, Seo-Yeon; Kwon, Ki-Chul; Piao, Mei-Lan; Yoo, Kwan-Hee; Kim, Nam

    2017-10-01

    A mobile three-dimensional image acquisition and reconstruction system using a computer-generated integral imaging technique is proposed. A depth camera connected to the mobile device acquires the color and depth data of a real object simultaneously, and an elemental image array is generated based on the original three-dimensional information for the object, with lens array specifications input into the mobile device. The three-dimensional visualization of the real object is reconstructed on the mobile display through optical or digital reconstruction methods. The proposed system is implemented successfully and the experimental results certify that the system is an effective and interesting method of displaying real three-dimensional content on a mobile device.

  9. System and method for image reconstruction, analysis, and/or de-noising

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2015-11-12

    A method and system can analyze, reconstruct, and/or denoise an image. The method and system can include interpreting a signal as a potential of a Schrödinger operator, decomposing the signal into squared eigenfunctions, reducing a design parameter of the Schrödinger operator, analyzing discrete spectra of the Schrödinger operator and combining the analysis of the discrete spectra to construct the image.

  10. Dynamic dual-tracer PET reconstruction.

    Science.gov (United States)

    Gao, Fei; Liu, Huafeng; Jian, Yiqiang; Shi, Pengcheng

    2009-01-01

    Although of important medical implications, simultaneous dual-tracer positron emission tomography reconstruction remains a challenging problem, primarily because the photon measurements from dual tracers are overlapped. In this paper, we propose a simultaneous dynamic dual-tracer reconstruction of tissue activity maps based on guidance from tracer kinetics. The dual-tracer reconstruction problem is formulated in a state-space representation, where parallel compartment models serve as continuous-time system equation describing the tracer kinetic processes of dual tracers, and the imaging data is expressed as discrete sampling of the system states in measurement equation. The image reconstruction problem has therefore become a state estimation problem in a continuous-discrete hybrid paradigm, and H infinity filtering is adopted as the estimation strategy. As H infinity filtering makes no assumptions on the system and measurement statistics, robust reconstruction results can be obtained for the dual-tracer PET imaging system where the statistical properties of measurement data and system uncertainty are not available a priori, even when there are disturbances in the kinetic parameters. Experimental results on digital phantoms, Monte Carlo simulations and physical phantoms have demonstrated the superior performance.

  11. New system for digital to analog transformation and reconstruction of 12-lead ECGs.

    Science.gov (United States)

    Kothadia, Roshni; Kulecz, Walter B; Kofman, Igor S; Black, Adam J; Grier, James W; Schlegel, Todd T

    2013-01-01

    We describe initial validation of a new system for digital to analog conversion (DAC) and reconstruction of 12-lead ECGs. The system utilizes an open and optimized software format with a commensurately optimized DAC hardware configuration to accurately reproduce, from digital files, the original analog electrocardiographic signals of previously instrumented patients. By doing so, the system also ultimately allows for transmission of data collected on one manufacturer's 12-lead ECG hardware/software into that of any other. To initially validate the system, we compared original and post-DAC re-digitized 12-lead ECG data files (∼5-minutes long) in two types of validation studies in 10 patients. The first type quantitatively compared the total waveform voltage differences between the original and re-digitized data while the second type qualitatively compared the automated electrocardiographic diagnostic statements generated by the original versus re-digitized data. The grand-averaged difference in root mean squared voltage between the original and re-digitized data was 20.8 µV per channel when re-digitization involved the same manufacturer's analog to digital converter (ADC) as the original digitization, and 28.4 µV per channel when it involved a different manufacturer's ADC. Automated diagnostic statements generated by the original versus reconstructed data did not differ when using the diagnostic algorithm from the same manufacturer on whose device the original data were collected, and differed only slightly for just 1 of 10 patients when using a third-party diagnostic algorithm throughout. Original analog 12-lead ECG signals can be reconstructed from digital data files with accuracy sufficient for clinical use. Such reconstructions can readily enable automated second opinions for difficult-to-interpret 12-lead ECGs, either locally or remotely through the use of dedicated or cloud-based servers.

  12. New system for digital to analog transformation and reconstruction of 12-lead ECGs.

    Directory of Open Access Journals (Sweden)

    Roshni Kothadia

    Full Text Available INTRODUCTION: We describe initial validation of a new system for digital to analog conversion (DAC and reconstruction of 12-lead ECGs. The system utilizes an open and optimized software format with a commensurately optimized DAC hardware configuration to accurately reproduce, from digital files, the original analog electrocardiographic signals of previously instrumented patients. By doing so, the system also ultimately allows for transmission of data collected on one manufacturer's 12-lead ECG hardware/software into that of any other. MATERIALS AND METHODS: To initially validate the system, we compared original and post-DAC re-digitized 12-lead ECG data files (∼5-minutes long in two types of validation studies in 10 patients. The first type quantitatively compared the total waveform voltage differences between the original and re-digitized data while the second type qualitatively compared the automated electrocardiographic diagnostic statements generated by the original versus re-digitized data. RESULTS: The grand-averaged difference in root mean squared voltage between the original and re-digitized data was 20.8 µV per channel when re-digitization involved the same manufacturer's analog to digital converter (ADC as the original digitization, and 28.4 µV per channel when it involved a different manufacturer's ADC. Automated diagnostic statements generated by the original versus reconstructed data did not differ when using the diagnostic algorithm from the same manufacturer on whose device the original data were collected, and differed only slightly for just 1 of 10 patients when using a third-party diagnostic algorithm throughout. CONCLUSION: Original analog 12-lead ECG signals can be reconstructed from digital data files with accuracy sufficient for clinical use. Such reconstructions can readily enable automated second opinions for difficult-to-interpret 12-lead ECGs, either locally or remotely through the use of dedicated or cloud

  13. Comparison of 2 surgical techniques for reconstructing posterolateral corner of the knee: a cadaveric study evaluated by navigation system.

    Science.gov (United States)

    Ho, Eric Po-Yan; Lam, Mak-Ham; Chung, Mandy Man-Ling; Fong, Daniel Tik-Pui; Law, Billy Kan-Yip; Yung, Patrick Shu-Hang; Chan, Wood-Yee; Chan, Kai-Ming

    2011-01-01

    This study aimed to evaluate the immediate effect on knee kinematics by 2 different techniques of posterolateral corner (PLC) reconstruction. Five intact formalin-preserved cadaveric knees were used in this study. A navigation system was used to measure knee kinematics (posterior translation, varus angulation, and external rotation) after application of a constant force and torque to the tibia. Four different conditions of the knee were evaluated during the biomechanical test: intact knee and PLC-sectioned knee and PLC-reconstructed knee by the double-femoral tunnel technique and single-femoral tunnel technique. Sectioning of the PLC structures resulted in significant increases in external rotation at 30° of flexion from 11.2° (SD, 2.6) to 24.6° (SD, 6.2), posterior translation at 30° of flexion from 3.4 mm (SD, 1.5) to 7.4 mm (SD, 3.8), and varus angulation at 0° of flexion from 2.3° (SD, 2.1) to 7.9° (SD, 5.1). Both reconstruction techniques significantly restored the varus stability. The external rotation and posterior translation at 30° of flexion after reconstruction with the double-femoral tunnel technique were 10.2° (SD, 1.3) and 3.4° (SD, 2.7), respectively, which were significantly better than those of the single-femoral tunnel technique. Both techniques of reconstruction showed improved stability compared with PLC-sectioned knees. The double-femoral tunnel technique in PLC reconstruction showed better rotational stability and resistance to posterior translation than the single-femoral tunnel technique without compromising varus stability. PLC reconstruction by a double-femoral tunnel technique achieves better rotational control and resistance to posterior translation. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  14. Overview of the preliminary design of the ITER plasma control system

    Science.gov (United States)

    Snipes, J. A.; Albanese, R.; Ambrosino, G.; Ambrosino, R.; Amoskov, V.; Blanken, T. C.; Bremond, S.; Cinque, M.; de Tommasi, G.; de Vries, P. C.; Eidietis, N.; Felici, F.; Felton, R.; Ferron, J.; Formisano, A.; Gribov, Y.; Hosokawa, M.; Hyatt, A.; Humphreys, D.; Jackson, G.; Kavin, A.; Khayrutdinov, R.; Kim, D.; Kim, S. H.; Konovalov, S.; Lamzin, E.; Lehnen, M.; Lukash, V.; Lomas, P.; Mattei, M.; Mineev, A.; Moreau, P.; Neu, G.; Nouailletas, R.; Pautasso, G.; Pironti, A.; Rapson, C.; Raupp, G.; Ravensbergen, T.; Rimini, F.; Schneider, M.; Travere, J.-M.; Treutterer, W.; Villone, F.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2017-12-01

    An overview of the preliminary design of the ITER plasma control system (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemes for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.

  15. Attractor reconstruction for non-linear systems: a methodological note

    Science.gov (United States)

    Nichols, J.M.; Nichols, J.D.

    2001-01-01

    Attractor reconstruction is an important step in the process of making predictions for non-linear time-series and in the computation of certain invariant quantities used to characterize the dynamics of such series. The utility of computed predictions and invariant quantities is dependent on the accuracy of attractor reconstruction, which in turn is determined by the methods used in the reconstruction process. This paper suggests methods by which the delay and embedding dimension may be selected for a typical delay coordinate reconstruction. A comparison is drawn between the use of the autocorrelation function and mutual information in quantifying the delay. In addition, a false nearest neighbor (FNN) approach is used in minimizing the number of delay vectors needed. Results highlight the need for an accurate reconstruction in the computation of the Lyapunov spectrum and in prediction algorithms.

  16. Defining and reconstructing clinical processes based on IHE and BPMN 2.0.

    Science.gov (United States)

    Strasser, Melanie; Pfeifer, Franz; Helm, Emmanuel; Schuler, Andreas; Altmann, Josef

    2011-01-01

    This paper describes the current status and the results of our process management system for defining and reconstructing clinical care processes, which contributes to compare, analyze and evaluate clinical processes and further to identify high cost tasks or stays. The system is founded on IHE, which guarantees standardized interfaces and interoperability between clinical information systems. At the heart of the system there is BPMN, a modeling notation and specification language, which allows the definition and execution of clinical processes. The system provides functionality to define healthcare information system independent clinical core processes and to execute the processes in a workflow engine. Furthermore, the reconstruction of clinical processes is done by evaluating an IHE audit log database, which records patient movements within a health care facility. The main goal of the system is to assist hospital operators and clinical process managers to detect discrepancies between defined and actual clinical processes and as well to identify main causes of high medical costs. Beyond that, the system can potentially contribute to reconstruct and improve clinical processes and enhance cost control and patient care quality.

  17. Self-oscillations in dynamic systems a new methodology via two-relay controllers

    CERN Document Server

    Aguilar, Luis T; Fridman, Leonid; Iriarte, Rafael

    2015-01-01

    This monograph presents a simple and efficient two-relay control algorithm for generation of self-excited oscillations of a desired amplitude and frequency in dynamic systems. Developed by the authors, the two-relay controller consists of two relays switched by the feedback received from a linear or nonlinear system, and represents a new approach to the self-generation of periodic motions in underactuated mechanical systems. The first part of the book explains the design procedures for two-relay control using three different methodologies – the describing-function method, Poincaré maps, and the locus-of-a perturbed-relay-system method – and concludes with stability analysis of designed periodic oscillations. Two methods to ensure the robustness of two-relay control algorithms are explored in the second part, one based on the combination of the high-order sliding mode controller and backstepping, and the other on higher-order sliding-modes-based reconstruction of uncertainties and their compensation where...

  18. Attitude Determination and Control System Design for a 6U Cube Sat for Proximity Operations and Rendezvous

    Science.gov (United States)

    2014-08-04

    entire rartge in steps of 1 % due to the rapid solenoid valve actuation. The requirement of the control system is to provide pointing control accuracy of...and accuracy are discussed. 1S. SUBJECT TERMS Nanosatellite, laser rangefinder, ARAP AIMA, USAF, object imaging, shape reconstruction, space-based...thrusters can be modulated over the entire range in steps of 1% due to the rapid solenoid valve actuation. The requirement of the control system is to

  19. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyang [Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Cheung, Yam [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas 75390 (United States); Sawant, Amit [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas, 75390 and Department of Radiation Oncology, University of Maryland, College Park, Maryland 20742 (United States); Ruan, Dan, E-mail: druan@mednet.ucla.edu [Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095 and Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2016-05-15

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced

  20. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system.

    Science.gov (United States)

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-05-01

    To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. The authors have

  1. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    International Nuclear Information System (INIS)

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-01-01

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced

  2. H2-optimal control of an adaptive optics system : Part I, data-driven modeling of the wavefront disturbance

    NARCIS (Netherlands)

    Hinnen, K.; Verhaegen, M.; Doelman, N.

    2005-01-01

    Even though the wavefront distortion introduced by atmospheric turbulence is a dynamic process, its temporal evolution is usually neglected in the adaptive optics (AO) control design. Most AO control systems consider only the spatial correlation in a separate wavefront reconstruction step. By

  3. APPLYING CCD CAMERAS IN STEREO PANORAMA SYSTEMS FOR 3D ENVIRONMENT RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    A. Sh. Amini

    2012-07-01

    Full Text Available Proper recontruction of 3D environments is nowadays needed by many organizations and applications. In addition to conventional methods the use of stereo panoramas is an appropriate technique to use due to simplicity, low cost and the ability to view an environment the way it is in reality. This paper investigates the ability of applying stereo CCD cameras for 3D reconstruction and presentation of the environment and geometric measuring among that. For this purpose, a rotating stereo panorama was established using two CCDs with a base-length of 350 mm and a DVR (digital video recorder box. The stereo system was first calibrated using a 3D test-field and used to perform accurate measurements. The results of investigating the system in a real environment showed that although this kind of cameras produce noisy images and they do not have appropriate geometric stability, but they can be easily synchronized, well controlled and reasonable accuracy (about 40 mm in objects at 12 meters distance from the camera can be achieved.

  4. Magnetic resonance imaging of reconstructed ferritin as an iron-induced pathological model system

    Energy Technology Data Exchange (ETDEWEB)

    Balejcikova, Lucia [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Kosice (Slovakia); Institute of Measurement Science SAS, Dubravska cesta 9, 841 04 Bratislava 4 (Slovakia); Strbak, Oliver [Institute of Measurement Science SAS, Dubravska cesta 9, 841 04 Bratislava 4 (Slovakia); Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin (Slovakia); Baciak, Ladislav [Faculty of Chemical and Food Technology STU, Radlinskeho 9, 812 37 Bratislava (Slovakia); Kovac, Jozef [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Kosice (Slovakia); Masarova, Marta; Krafcik, Andrej; Frollo, Ivan [Institute of Measurement Science SAS, Dubravska cesta 9, 841 04 Bratislava 4 (Slovakia); Dobrota, Dusan [Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin (Slovakia); Kopcansky, Peter [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Kosice (Slovakia)

    2017-04-01

    Iron, an essential element of the human body, is a significant risk factor, particularly in the case of its concentration increasing above the specific limit. Therefore, iron is stored in the non-toxic form of the globular protein, ferritin, consisting of an apoferritin shell and iron core. Numerous studies confirmed the disruption of homeostasis and accumulation of iron in patients with various diseases (e.g. cancer, cardiovascular or neurological conditions), which is closely related to ferritin metabolism. Such iron imbalance enables the use of magnetic resonance imaging (MRI) as a sensitive technique for the detection of iron-based aggregates through changes in the relaxation times, followed by the change in the inherent image contrast. For our in vitrostudy, modified ferritins with different iron loadings were prepared by chemical reconstruction of the iron core in an apoferritin shell as pathological model systems. The magnetic properties of samples were studied using SQUID magnetometry, while the size distribution was detected via dynamic light scattering. We have shown that MRI could represent the most advantageous method for distinguishing native ferritin from reconstructed ferritin which, after future standardisation, could then be suitable for the diagnostics of diseases associated with iron accumulation. - Highlights: • MRI is the sensitive technique for detecting iron-based aggregates. • Reconstructed Ferritin is suitable model system of iron-related disorders. • MRI allow distinguish of native ferritin from reconstructed ferritin. • MRI could be useful for diagnostics of diseases associated with iron accumulation.

  5. Evaluation of iterative algorithms for tomography image reconstruction: A study using a third generation industrial tomography system

    Energy Technology Data Exchange (ETDEWEB)

    Velo, Alexandre F.; Carvalho, Diego V.; Alvarez, Alexandre G.; Hamada, Margarida M.; Mesquita, Carlos H., E-mail: afvelo@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The greatest impact of the tomography technology currently occurs in medicine. The success is due to the human body presents standardized dimensions with well-established composition. These conditions are not found in industrial objects. In industry, there is much interest in using the tomography in order to know the inner of (1) the manufactured industrial objects or (2) the machines and their means of production. In these cases, the purpose of the tomography is to (a) control the quality of the final product and (b) to optimize production, contributing to the pilot phase of the projects and analyzing the quality of the means of production. This scan system is a non-destructive, efficient and fast method for providing sectional images of industrial objects and is able to show the dynamic processes and the dispersion of the materials structures within these objects. In this context, it is important that the reconstructed image presents a great spatial resolution with a satisfactory temporal resolution. Thus the algorithm to reconstruct the images has to meet these requirements. This work consists in the analysis of three different iterative algorithm methods, such Maximum Likelihood Estimation Method (MLEM), Maximum Likelihood Transmitted Method (MLTR) and Simultaneous Iterative Reconstruction Method (SIRT. The analysis consists on measurement of the contrast to noise ratio (CNR), the root mean square error (RMSE) and the Modulation Transfer Function (MTF), to know which algorithm fits better the conditions in order to optimize system. The algorithms and the image quality analysis were performed by the Matlab® 2013b. (author)

  6. Evaluation of iterative algorithms for tomography image reconstruction: A study using a third generation industrial tomography system

    International Nuclear Information System (INIS)

    Velo, Alexandre F.; Carvalho, Diego V.; Alvarez, Alexandre G.; Hamada, Margarida M.; Mesquita, Carlos H.

    2017-01-01

    The greatest impact of the tomography technology currently occurs in medicine. The success is due to the human body presents standardized dimensions with well-established composition. These conditions are not found in industrial objects. In industry, there is much interest in using the tomography in order to know the inner of (1) the manufactured industrial objects or (2) the machines and their means of production. In these cases, the purpose of the tomography is to (a) control the quality of the final product and (b) to optimize production, contributing to the pilot phase of the projects and analyzing the quality of the means of production. This scan system is a non-destructive, efficient and fast method for providing sectional images of industrial objects and is able to show the dynamic processes and the dispersion of the materials structures within these objects. In this context, it is important that the reconstructed image presents a great spatial resolution with a satisfactory temporal resolution. Thus the algorithm to reconstruct the images has to meet these requirements. This work consists in the analysis of three different iterative algorithm methods, such Maximum Likelihood Estimation Method (MLEM), Maximum Likelihood Transmitted Method (MLTR) and Simultaneous Iterative Reconstruction Method (SIRT. The analysis consists on measurement of the contrast to noise ratio (CNR), the root mean square error (RMSE) and the Modulation Transfer Function (MTF), to know which algorithm fits better the conditions in order to optimize system. The algorithms and the image quality analysis were performed by the Matlab® 2013b. (author)

  7. Quality of life following total mastectomy with and without reconstruction versus breast-conserving surgery for breast cancer: A case-controlled cohort study.

    Science.gov (United States)

    Howes, Benjamin H L; Watson, David I; Xu, Chris; Fosh, Beverley; Canepa, Maximiliano; Dean, Nicola R

    2016-09-01

    Patient-reported outcomes and quality of life following mastectomy are not well understood. This study evaluates the quality of life following surgery for breast cancer and compares outcomes following breast-conserving surgery versus total mastectomy with or without reconstruction. A case-controlled cross-sectional study was conducted using the validated BREAST-Q™ questionnaire and a study-specific questionnaire to determine patient's views about surgical outcomes. Questionnaires were completed by patients following breast-conserving surgery and total mastectomy with or without reconstruction and by controls without breast cancer. A one-way ANOVA was used to compare mean BREAST-Q™ scores between groups and post hoc analysis using Tukey's and Kruskal-Wallis tests. BREAST-Q™ questionnaires were completed by 400 women (123 controls, 97 breast conservations, 93 mastectomies without reconstruction, 87 mastectomies with reconstruction). Women who had undergone mastectomy and reconstruction had higher scores in satisfaction with breast and sexual well-being domains compared with women who had breast-conserving surgery, and women who had total mastectomy without reconstruction had the lowest scores in these two domains. There was no difference in psychosocial well-being between the groups. Women who had undergone breast-conserving surgery scored the lowest in the physical well-being chest domain and the majority reported breast asymmetry. Our study suggests that women who undergo total mastectomy and breast reconstruction for cancer achieve a quality-of-life outcome that is at least as good as that following breast-conserving surgery. Furthermore, breast conservation has been found to be associated with lower physical well-being (i.e., more pain and discomfort) in the chest area and poorer sexual well-being outcomes. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. All rights reserved.

  8. Petz recovery versus matrix reconstruction

    Science.gov (United States)

    Holzäpfel, Milan; Cramer, Marcus; Datta, Nilanjana; Plenio, Martin B.

    2018-04-01

    The reconstruction of the state of a multipartite quantum mechanical system represents a fundamental task in quantum information science. At its most basic, it concerns a state of a bipartite quantum system whose subsystems are subjected to local operations. We compare two different methods for obtaining the original state from the state resulting from the action of these operations. The first method involves quantum operations called Petz recovery maps, acting locally on the two subsystems. The second method is called matrix (or state) reconstruction and involves local, linear maps that are not necessarily completely positive. Moreover, we compare the quantities on which the maps employed in the two methods depend. We show that any state that admits Petz recovery also admits state reconstruction. However, the latter is successful for a strictly larger set of states. We also compare these methods in the context of a finite spin chain. Here, the state of a finite spin chain is reconstructed from the reduced states of a few neighbouring spins. In this setting, state reconstruction is the same as the matrix product operator reconstruction proposed by Baumgratz et al. [Phys. Rev. Lett. 111, 020401 (2013)]. Finally, we generalize both these methods so that they employ long-range measurements instead of relying solely on short-range correlations embodied in such local reduced states. Long-range measurements enable the reconstruction of states which cannot be reconstructed from measurements of local few-body observables alone and hereby we improve existing methods for quantum state tomography of quantum many-body systems.

  9. Sparse Reconstruction of the Merging A520 Cluster System

    Energy Technology Data Exchange (ETDEWEB)

    Peel, Austin [Département d’Astrophysique, IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Lanusse, François [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Starck, Jean-Luc, E-mail: austin.peel@cea.fr [Université Paris Diderot, AIM, Sorbonne Paris Cité, CEA, CNRS, F-91191 Gif-sur-Yvette (France)

    2017-09-20

    Merging galaxy clusters present a unique opportunity to study the properties of dark matter in an astrophysical context. These are rare and extreme cosmic events in which the bulk of the baryonic matter becomes displaced from the dark matter halos of the colliding subclusters. Since all mass bends light, weak gravitational lensing is a primary tool to study the total mass distribution in such systems. Combined with X-ray and optical analyses, mass maps of cluster mergers reconstructed from weak-lensing observations have been used to constrain the self-interaction cross-section of dark matter. The dynamically complex Abell 520 (A520) cluster is an exceptional case, even among merging systems: multi-wavelength observations have revealed a surprising high mass-to-light concentration of dark mass, the interpretation of which is difficult under the standard assumption of effectively collisionless dark matter. We revisit A520 using a new sparsity-based mass-mapping algorithm to independently assess the presence of the puzzling dark core. We obtain high-resolution mass reconstructions from two separate galaxy shape catalogs derived from Hubble Space Telescope observations of the system. Our mass maps agree well overall with the results of previous studies, but we find important differences. In particular, although we are able to identify the dark core at a certain level in both data sets, it is at much lower significance than has been reported before using the same data. As we cannot confirm the detection in our analysis, we do not consider A520 as posing a significant challenge to the collisionless dark matter scenario.

  10. Automatic system for 3D reconstruction of the chick eye based on digital photographs.

    Science.gov (United States)

    Wong, Alexander; Genest, Reno; Chandrashekar, Naveen; Choh, Vivian; Irving, Elizabeth L

    2012-01-01

    The geometry of anatomical specimens is very complex and accurate 3D reconstruction is important for morphological studies, finite element analysis (FEA) and rapid prototyping. Although magnetic resonance imaging, computed tomography and laser scanners can be used for reconstructing biological structures, the cost of the equipment is fairly high and specialised technicians are required to operate the equipment, making such approaches limiting in terms of accessibility. In this paper, a novel automatic system for 3D surface reconstruction of the chick eye from digital photographs of a serially sectioned specimen is presented as a potential cost-effective and practical alternative. The system is designed to allow for automatic detection of the external surface of the chick eye. Automatic alignment of the photographs is performed using a combination of coloured markers and an algorithm based on complex phase order likelihood that is robust to noise and illumination variations. Automatic segmentation of the external boundaries of the eye from the aligned photographs is performed using a novel level-set segmentation approach based on a complex phase order energy functional. The extracted boundaries are sampled to construct a 3D point cloud, and a combination of Delaunay triangulation and subdivision surfaces is employed to construct the final triangular mesh. Experimental results using digital photographs of the chick eye show that the proposed system is capable of producing accurate 3D reconstructions of the external surface of the eye. The 3D model geometry is similar to a real chick eye and could be used for morphological studies and FEA.

  11. Novel image reconstruction algorithm for multi-phase flow tomography system using γ ray method

    International Nuclear Information System (INIS)

    Hao Kuihong; Wang Huaxiang; Gao Mei

    2007-01-01

    After analyzing the reason of image reconstructed algorithm by using the conventional back projection (IBP) is prone to produce spurious line, and considering the characteristic of multi-phase flow tomography, a novel image reconstruction algorithm is proposed, which carries out the intersection calculation using back projection data. This algorithm can obtain a perfect system point spread function, and can eliminate spurious line better. Simulating results show that the algorithm is effective for identifying multi-phase flow pattern. (authors)

  12. High-resolution reconstruction of a coastal barrier system

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Andersen, Thorbjørn Joest; Nielsen, Lars Henrik

    2015-01-01

    This study presents a detailed reconstruction of the sedimentary effects of Holocene sea-level rise on a modern coastal barrier system (CBS). Increasing concern over the evolution of CBSs due to future accelerated rates of sea-level rise calls for a better understanding of coastal barriers response...... from retreat of the barrier island and probably also due to formation of a tidal inlet close to the study area. Continued transgression and shoreface retreat created a distinct hiatus and wave ravinement surface in the seaward part of the CBS before the barrier shoreline stabilised between 5.0 and 4...

  13. Image Reconstruction. Chapter 13

    Energy Technology Data Exchange (ETDEWEB)

    Nuyts, J. [Department of Nuclear Medicine and Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven (Belgium); Matej, S. [Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA (United States)

    2014-12-15

    This chapter discusses how 2‑D or 3‑D images of tracer distribution can be reconstructed from a series of so-called projection images acquired with a gamma camera or a positron emission tomography (PET) system [13.1]. This is often called an ‘inverse problem’. The reconstruction is the inverse of the acquisition. The reconstruction is called an inverse problem because making software to compute the true tracer distribution from the acquired data turns out to be more difficult than the ‘forward’ direction, i.e. making software to simulate the acquisition. There are basically two approaches to image reconstruction: analytical reconstruction and iterative reconstruction. The analytical approach is based on mathematical inversion, yielding efficient, non-iterative reconstruction algorithms. In the iterative approach, the reconstruction problem is reduced to computing a finite number of image values from a finite number of measurements. That simplification enables the use of iterative instead of mathematical inversion. Iterative inversion tends to require more computer power, but it can cope with more complex (and hopefully more accurate) models of the acquisition process.

  14. Design and Implementation of the PALM-3000 Real-Time Control System

    Science.gov (United States)

    Truong, Tuan N.; Bouchez, Antonin H.; Burruss, Rick S.; Dekany, Richard G.; Guiwits, Stephen R.; Roberts, Jennifer E.; Shelton, Jean C.; Troy, Mitchell

    2012-01-01

    This paper reflects, from a computational perspective, on the experience gathered in designing and implementing realtime control of the PALM-3000 adaptive optics system currently in operation at the Palomar Observatory. We review the algorithms that serve as functional requirements driving the architecture developed, and describe key design issues and solutions that contributed to the system's low compute-latency. Additionally, we describe an implementation of dense matrix-vector-multiplication for wavefront reconstruction that exceeds 95% of the maximum sustained achievable bandwidth on NVIDIA Geforce 8800GTX GPU.

  15. Reconstruction method for data protection in telemedicine systems

    Science.gov (United States)

    Buldakova, T. I.; Suyatinov, S. I.

    2015-03-01

    In the report the approach to protection of transmitted data by creation of pair symmetric keys for the sensor and the receiver is offered. Since biosignals are unique for each person, their corresponding processing allows to receive necessary information for creation of cryptographic keys. Processing is based on reconstruction of the mathematical model generating time series that are diagnostically equivalent to initial biosignals. Information about the model is transmitted to the receiver, where the restoration of physiological time series is performed using the reconstructed model. Thus, information about structure and parameters of biosystem model received in the reconstruction process can be used not only for its diagnostics, but also for protection of transmitted data in telemedicine complexes.

  16. The assessment of postural control and the influence of a secondary task in people with anterior cruciate ligament reconstructed knees using a Nintendo Wii Balance Board.

    Science.gov (United States)

    Howells, Brooke E; Clark, Ross A; Ardern, Clare L; Bryant, Adam L; Feller, Julian A; Whitehead, Timothy S; Webster, Kate E

    2013-09-01

    Postural control impairments may persist following anterior cruciate ligament (ACL) reconstruction. The effect of a secondary task on postural control has, however, not been determined. The purpose of this case-control study was to compare postural control in patients following ACL reconstruction with healthy individuals with and without a secondary task. 45 patients (30 men and 15 women) participated at least 6 months following primary ACL reconstruction surgery. Participants were individually matched by age, gender and sports activity to healthy controls. Postural control was measured using a Nintendo Wii Balance Board and customised software during static single-leg stance and with the addition of a secondary task. The secondary task required participants to match the movement of an oscillating marker by adducting and abducting their arm. Centre of pressure (CoP) path length in both medial-lateral and anterior-posterior directions, and CoP total path length. When compared with the control group, the anterior-posterior path length significantly increased in the ACL reconstruction patients' operated (12.3%, p=0.02) and non-operated limbs (12.8%, p=0.02) for the single-task condition, and the non-operated limb (11.5%, p=0.006) for the secondary task condition. The addition of a secondary task significantly increased CoP path lengths in all measures (pcontrol groups. ACL reconstruction patients showed a reduced ability in both limbs to control the movement of the body in the anterior-posterior direction. The secondary task affected postural control by comparable amounts in patients after ACL reconstruction and healthy controls. Devices for the objective measurement of postural control, such as the one used in this study, may help clinicians to more accurately identify patients with deficits who may benefit from targeted neuromuscular training programs.

  17. Alternative reconstruction after pancreaticoduodenectomy

    Directory of Open Access Journals (Sweden)

    Cooperman Avram M

    2008-01-01

    Full Text Available Abstract Background Pancreaticoduodenectomy is the procedure of choice for tumors of the head of the pancreas and periampulla. Despite advances in surgical technique and postoperative care, the procedure continues to carry a high morbidity rate. One of the most common morbidities is delayed gastric emptying with rates of 15%–40%. Following two prolonged cases of delayed gastric emptying, we altered our reconstruction to avoid this complication altogether. Subsequently, our patients underwent a classic pancreaticoduodenectomy with an undivided Roux-en-Y technique for reconstruction. Methods We reviewed the charts of our last 13 Whipple procedures evaluating them for complications, specifically delayed gastric emptying. We compared the outcomes of those patients to a control group of 15 patients who underwent the Whipple procedure with standard reconstruction. Results No instances of delayed gastric emptying occurred in patients who underwent an undivided Roux-en-Y technique for reconstruction. There was 1 wound infection (8%, 1 instance of pneumonia (8%, and 1 instance of bleeding from the gastrojejunal staple line (8%. There was no operative mortality. Conclusion Use of the undivided Roux-en-Y technique for reconstruction following the Whipple procedure may decrease the incidence of delayed gastric emptying. In addition, it has the added benefit of eliminating bile reflux gastritis. Future randomized control trials are recommended to further evaluate the efficacy of the procedure.

  18. Outcome of limb reconstruction system in open tibial diaphyseal fractures

    Directory of Open Access Journals (Sweden)

    Anand Ajmera

    2015-01-01

    tract infection was seen in 5 cases, out of which 4 being superficial, which healed to dressings and antibiotics. One patient had a deep infection which required frame removal. Conclusion: Limb reconstruction system proved to be an effective modality of treatment in cases of open fractures of the tibia with bone loss as definite modality of treatment for damage control as well as for achieving union and lengthening, simultaneously, with the advantage of early union with attainment of limb length, simple surgical technique, minimal invasive, high patient compliance, easy wound management, lesser hospitalization and the lower rate of complications like infection, deformity or shortening.

  19. Outcome of limb reconstruction system in open tibial diaphyseal fractures.

    Science.gov (United States)

    Ajmera, Anand; Verma, Ankit; Agrawal, Mukul; Jain, Saurabh; Mukherjee, Arunangshu

    2015-01-01

    being superficial, which healed to dressings and antibiotics. One patient had a deep infection which required frame removal. Limb reconstruction system proved to be an effective modality of treatment in cases of open fractures of the tibia with bone loss as definite modality of treatment for damage control as well as for achieving union and lengthening, simultaneously, with the advantage of early union with attainment of limb length, simple surgical technique, minimal invasive, high patient compliance, easy wound management, lesser hospitalization and the lower rate of complications like infection, deformity or shortening.

  20. Outcome of rail fixator system in reconstructing bone gap

    Directory of Open Access Journals (Sweden)

    Amit Lakhani

    2014-01-01

    Conclusion: All patients well tolerated rail fixator with good functional results and gap reconstruction. Easy application of rail fixator and comfortable distraction procedure suggest rail fixator a good alternative for gap reconstruction of limbs.

  1. A parallelizable compression scheme for Monte Carlo scatter system matrices in PET image reconstruction

    International Nuclear Information System (INIS)

    Rehfeld, Niklas; Alber, Markus

    2007-01-01

    Scatter correction techniques in iterative positron emission tomography (PET) reconstruction increasingly utilize Monte Carlo (MC) simulations which are very well suited to model scatter in the inhomogeneous patient. Due to memory constraints the results of these simulations are not stored in the system matrix, but added or subtracted as a constant term or recalculated in the projector at each iteration. This implies that scatter is not considered in the back-projector. The presented scheme provides a method to store the simulated Monte Carlo scatter in a compressed scatter system matrix. The compression is based on parametrization and B-spline approximation and allows the formation of the scatter matrix based on low statistics simulations. The compression as well as the retrieval of the matrix elements are parallelizable. It is shown that the proposed compression scheme provides sufficient compression so that the storage in memory of a scatter system matrix for a 3D scanner is feasible. Scatter matrices of two different 2D scanner geometries were compressed and used for reconstruction as a proof of concept. Compression ratios of 0.1% could be achieved and scatter induced artifacts in the images were successfully reduced by using the compressed matrices in the reconstruction algorithm

  2. Results from the ASPIRE study for breast reconstruction utilizing the AeroForm™ patient controlled carbon dioxide-inflated tissue expanders.

    Science.gov (United States)

    Connell, Tony F

    2015-09-01

    Therapeutic or prophylactic mastectomy is often indicated for women with breast cancer, or for those at a high risk of developing cancer due to familial history or genetic mutations. Favorable aesthetic and psychological results make prosthetic reconstruction of the breast with placement of tissue expanders followed by permanent implant a popular choice for women diagnosed with breast cancer. This study describes the results of the ASPIRE trial, the objective of which was to provide supportive data to demonstrate the performance and safety of the AeroForm™ System in a population with broader selection criteria than previous studies. Results of the earlier PACE clinical studies (PACE 1 and 2) demonstrated that the AeroForm™ System could be used safely and effectively to achieve the desired expansion necessary for successful breast reconstruction. In the current ASPIRE trial described in the paper, performance of the device was evaluated by successful tissue expansion and exchange to breast implant(s) unless precluded by a non-device related event. Safety data was evaluated based on reported adverse events. A prospective, single center, open-label study in which subjects who met the inclusion criteria and agreed to participate were enrolled and implanted with the AeroForm expander either at the time of mastectomy (immediate) or sometime after mastectomy (delayed). In the event of a bilateral procedure, the expander was implanted in each side. Subjects were followed until the explant of the tissue expander(s) and exchange for silicone or saline breast implant(s). Thirty-four expanders were placed in 21 subjects in the clinical trial; the average age of subjects was 49.7 ± 8.6 years with average BMI of 26.1 ± 4.7. Bilateral procedures accounted for 62% of the total and 88% of the reconstructions were completed with a latissimus dorsi flap (anterior approach) per the investigators standard procedure. Four (12%) of the cases (12%) were completed in two subjects

  3. Missing data reconstruction using Gaussian mixture models for fingerprint images

    Science.gov (United States)

    Agaian, Sos S.; Yeole, Rushikesh D.; Rao, Shishir P.; Mulawka, Marzena; Troy, Mike; Reinecke, Gary

    2016-05-01

    Publisher's Note: This paper, originally published on 25 May 2016, was replaced with a revised version on 16 June 2016. If you downloaded the original PDF, but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. One of the most important areas in biometrics is matching partial fingerprints in fingerprint databases. Recently, significant progress has been made in designing fingerprint identification systems for missing fingerprint information. However, a dependable reconstruction of fingerprint images still remains challenging due to the complexity and the ill-posed nature of the problem. In this article, both binary and gray-level images are reconstructed. This paper also presents a new similarity score to evaluate the performance of the reconstructed binary image. The offered fingerprint image identification system can be automated and extended to numerous other security applications such as postmortem fingerprints, forensic science, investigations, artificial intelligence, robotics, all-access control, and financial security, as well as for the verification of firearm purchasers, driver license applicants, etc.

  4. System and method for three-dimensional image reconstruction using an absolute orientation sensor

    KAUST Repository

    Giancola, Silvio; Ghanem, Bernard; Schneider, Jens; Wonka, Peter

    2018-01-01

    A three-dimensional image reconstruction system includes an image capture device, an inertial measurement unit (IMU), and an image processor. The image capture device captures image data. The inertial measurement unit (IMU) is affixed to the image

  5. Development and experience of quality control methods for digital breast tomosynthesis systems.

    Science.gov (United States)

    Strudley, Cecilia J; Young, Kenneth C; Looney, Padraig; Gilbert, Fiona J

    2015-01-01

    To develop tomosynthesis quality control (QC) test methods and use them alongside established two-dimensional (2D) QC tests to measure the performance of digital breast tomosynthesis (DBT) systems used in a comparative trial with 2D mammography. DBT QC protocols and associated analysis were developed, incorporating adaptions of some 2D tests as well as some novel tests. The tomosynthesis tests were: mean glandular dose to the standard breast model; contrast-to-noise ratio in reconstructed focal planes; geometric distortion; artefact spread; threshold contrast detail detection in reconstructed focal planes, alignment of the X-ray beam to the reconstructed image and missed tissue; reproducibility of the tomosynthesis exposure; and homogeneity of the reconstructed focal planes. Summaries of results from the tomosynthesis QC tests are presented together with some 2D results for comparison. The tomosynthesis QC tests and analysis methods developed were successfully applied. The lessons learnt, which are detailed in the Discussion section, may be helpful to others embarking on DBT QC programmes. DBT performance test equipment and analysis methods have been developed. The experience gained has contributed to the subsequent drafting of DBT QC protocols in the UK and Europe.

  6. AOF LTAO mode: reconstruction strategy and first test results

    Science.gov (United States)

    Oberti, Sylvain; Kolb, Johann; Le Louarn, Miska; La Penna, Paolo; Madec, Pierre-Yves; Neichel, Benoit; Sauvage, Jean-François; Fusco, Thierry; Donaldson, Robert; Soenke, Christian; Suárez Valles, Marcos; Arsenault, Robin

    2016-07-01

    GALACSI is the Adaptive Optics (AO) system serving the instrument MUSE in the framework of the Adaptive Optics Facility (AOF) project. Its Narrow Field Mode (NFM) is a Laser Tomography AO (LTAO) mode delivering high resolution in the visible across a small Field of View (FoV) of 7.5" diameter around the optical axis. From a reconstruction standpoint, GALACSI NFM intends to optimize the correction on axis by estimating the turbulence in volume via a tomographic process, then projecting the turbulence profile onto one single Deformable Mirror (DM) located in the pupil, close to the ground. In this paper, the laser tomographic reconstruction process is described. Several methods (virtual DM, virtual layer projection) are studied, under the constraint of a single matrix vector multiplication. The pseudo-synthetic interaction matrix model and the LTAO reconstructor design are analysed. Moreover, the reconstruction parameter space is explored, in particular the regularization terms. Furthermore, we present here the strategy to define the modal control basis and split the reconstruction between the Low Order (LO) loop and the High Order (HO) loop. Finally, closed loop performance obtained with a 3D turbulence generator will be analysed with respect to the most relevant system parameters to be tuned.

  7. Stereovision-based integrated system for point cloud reconstruction and simulated brain shift validation.

    Science.gov (United States)

    Yang, Xiaochen; Clements, Logan W; Luo, Ma; Narasimhan, Saramati; Thompson, Reid C; Dawant, Benoit M; Miga, Michael I

    2017-07-01

    Intraoperative soft tissue deformation, referred to as brain shift, compromises the application of current image-guided surgery navigation systems in neurosurgery. A computational model driven by sparse data has been proposed as a cost-effective method to compensate for cortical surface and volumetric displacements. We present a mock environment developed to acquire stereoimages from a tracked operating microscope and to reconstruct three-dimensional point clouds from these images. A reconstruction error of 1 mm is estimated by using a phantom with a known geometry and independently measured deformation extent. The microscope is tracked via an attached tracking rigid body that facilitates the recording of the position of the microscope via a commercial optical tracking system as it moves during the procedure. Point clouds, reconstructed under different microscope positions, are registered into the same space to compute the feature displacements. Using our mock craniotomy device, realistic cortical deformations are generated. When comparing our tracked microscope stereo-pair measure of mock vessel displacements to that of the measurement determined by the independent optically tracked stylus marking, the displacement error was [Formula: see text] on average. These results demonstrate the practicality of using tracked stereoscopic microscope as an alternative to laser range scanners to collect sufficient intraoperative information for brain shift correction.

  8. Fast reconstruction of an unmanned engineering vehicle and its application to carrying rocket

    Directory of Open Access Journals (Sweden)

    Jun Qian

    2014-04-01

    Full Text Available Engineering vehicle is widely used as a huge moving platform for transporting heavy goods. However, traditional human operations have a great influence on the steady movement of the vehicle. In this Letter, a fast reconstruction process of an unmanned engineering vehicle is carried out. By adding a higher-level controller and two two-dimensional laser scanners on the moving platform, the vehicle could perceive the surrounding environment and locate its pose according to extended Kalman filter. Then, a closed-loop control system is formed by communicating with the on-board lower-level controller. To verify the performance of automatic control system, the unmanned vehicle is automatically navigated when carrying a rocket towards a launcher in a launch site. The experimental results show that the vehicle could align with the launcher smoothly and safely within a small lateral deviation of 1 cm. This fast reconstruction presents an efficient way of rebuilding low-cost unmanned special vehicles and other automatic moving platforms.

  9. REGEN: Ancestral Genome Reconstruction for Bacteria

    OpenAIRE

    Yang, Kuan; Heath, Lenwood S.; Setubal, João C.

    2012-01-01

    Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deleti...

  10. Entropy and transverse section reconstruction

    International Nuclear Information System (INIS)

    Gullberg, G.T.

    1976-01-01

    A new approach to the reconstruction of a transverse section using projection data from multiple views incorporates the concept of maximum entropy. The principle of maximizing information entropy embodies the assurance of minimizing bias or prejudice in the reconstruction. Using maximum entropy is a necessary condition for the reconstructed image. This entropy criterion is most appropriate for 3-D reconstruction of objects from projections where the system is underdetermined or the data are limited statistically. This is the case in nuclear medicine time limitations in patient studies do not yield sufficient projections

  11. Sliding Mode Observer-Based Current Sensor Fault Reconstruction and Unknown Load Disturbance Estimation for PMSM Driven System.

    Science.gov (United States)

    Zhao, Kaihui; Li, Peng; Zhang, Changfan; Li, Xiangfei; He, Jing; Lin, Yuliang

    2017-12-06

    This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system.

  12. Precision position control of servo systems using adaptive back-stepping and recurrent fuzzy neural networks

    International Nuclear Information System (INIS)

    Kim, Han Me; Kim, Jong Shik; Han, Seong Ik

    2009-01-01

    To improve position tracking performance of servo systems, a position tracking control using adaptive back-stepping control(ABSC) scheme and recurrent fuzzy neural networks(RFNN) is proposed. An adaptive rule of the ABSC based on system dynamics and dynamic friction model is also suggested to compensate nonlinear dynamic friction characteristics. However, it is difficult to reduce the position tracking error of servo systems by using only the ABSC scheme because of the system uncertainties which cannot be exactly identified during the modeling of servo systems. Therefore, in order to overcome system uncertainties and then to improve position tracking performance of servo systems, the RFNN technique is additionally applied to the servo system. The feasibility of the proposed control scheme for a servo system is validated through experiments. Experimental results show that the servo system with ABS controller based on the dual friction observer and RFNN including the reconstruction error estimator can achieve desired tracking performance and robustness

  13. Effect of anterior cruciate ligament reconstruction and meniscectomy on length of career in National Football League athletes: a case control study.

    Science.gov (United States)

    Brophy, Robert H; Gill, Corey S; Lyman, Stephen; Barnes, Ronnie P; Rodeo, Scott A; Warren, Russell F

    2009-11-01

    Meniscal and anterior cruciate ligament (ACL) injuries are common in college football athletes. The effect of meniscectomy and/or ACL surgery on the length of an athlete's career in the National Football League (NFL) has not been well examined. Athletes with a history of meniscectomy or ACL surgery before the NFL combine have a shorter career than matched controls. Case-control study; Level of evidence, 3. A database containing the injury history and career NFL statistics of athletes from 1987-2000 was used to match athletes with a history of meniscectomy and/or ACL surgery, and no other surgery or major injury, to controls without previous surgeries. Athletes were matched by position, year drafted, round drafted, and additional injury history. Fifty-four athletes with a history of meniscectomy, 29 with a history of ACL reconstruction, and 11 with a history of both were identified and matched with controls. Isolated meniscectomy reduced the length of career in years (5.6 vs 7.0; P = .03) and games played (62 vs 85; P = .02). Isolated ACL surgery did not significantly reduce the length of career in years or games played. Comparing the athletes with meniscectomy or ACL reconstruction to athletes with combined ACL reconstruction and meniscectomy, a history of both surgeries, resulted in a shorter career in games started (7.9 vs 35.1; P history of either surgery alone. A history of meniscectomy, but not ACL reconstruction, shortens the expected career of a professional football player. A combination of ACL reconstruction and meniscectomy may be more detrimental to an athlete's durability than either surgery alone. Further research is warranted to better understand how these injuries and surgeries affect an athlete's career and what can be done to improve the long-term outcome after treatment.

  14. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology

    DEFF Research Database (Denmark)

    Herrgard, Markus; Swainston, Neil; Dobson, Paul

    2008-01-01

    and in a manner that permits automated reasoning. The reconstruction is readily available via a publicly accessible database and in the Systems Biology Markup Language (http://www.comp-sys-bio.org/yeastnet). It can be maintained as a resource that serves as a common denominator for studying the systems biology...

  15. Lidar-based reconstruction of wind fields and application for wind turbine control

    OpenAIRE

    Kapp, Stefan

    2017-01-01

    In this thesis horizontal, upwind scanning lidar systems of the focused continuous-wave type are regarded for wind turbines. The theory of wind field reconstruction is extended to a five parameter model describing the inflow in non-uniform conditions more accurately. Sensor requirements are derived. A new approach to spherically scan the inflow area is studied experimentally. Expected inaccuracies of the averaged wind direction signal in a wind farm environment are quantified and spatial inho...

  16. Prototyping the E-ELT M1 local control system communication infrastructure

    Science.gov (United States)

    Argomedo, J.; Kornweibel, N.; Grudzien, T.; Dimmler, M.; Andolfato, L.; Barriga, P.

    2016-08-01

    The primary mirror of the E-ELT is composed of 798 hexagonal segments of about 1.45 meters across. Each segment can be moved in piston and tip-tilt using three position actuators. Inductive edge sensors are used to provide feedback for global reconstruction of the mirror shape. The E-ELT M1 Local Control System will provide a deterministic infrastructure for collecting edge sensor and actuators readings and distribute the new position actuators references while at the same time providing failure detection, isolation and notification, synchronization, monitoring and configuration management. The present paper describes the prototyping activities carried out to verify the feasibility of the E-ELT M1 local control system communication architecture design and assess its performance and potential limitations.

  17. Methodology For Determination Of Space Control For 3D Reconstruction In Statscan Digital X-Ray Radiology Using Static Frame Model

    Directory of Open Access Journals (Sweden)

    Jacinta S. Kimuyu

    2015-08-01

    Full Text Available The methodology was designed to employ two positioning techniques in order to determine the three-dimensional control space of target points on static metal frame model to be used as space control data in 3D reconstructions in Statscan digital X-Ray imaging. These techniques were digital close-range photogrammetry and precise theodolite positioning method. The space coordinates for the target points were determined 3D using both techniques. Point positioning accuracy 0.5mm in root mean square error of X Y and Z space coordinates was achieved. The outcome of the comparison of the results obtained from both methods were of satisfactory accuracy hence further use of the control space data in Stastcan imaging and 3D reconstruction.

  18. A technique system for the measurement, reconstruction and character extraction of rice plant architecture.

    Directory of Open Access Journals (Sweden)

    Xumeng Li

    Full Text Available This study developed a technique system for the measurement, reconstruction, and trait extraction of rice canopy architectures, which have challenged functional-structural plant modeling for decades and have become the foundation of the design of ideo-plant architectures. The system uses the location-separation-measurement method (LSMM for the collection of data on the canopy architecture and the analytic geometry method for the reconstruction and visualization of the three-dimensional (3D digital architecture of the rice plant. It also uses the virtual clipping method for extracting the key traits of the canopy architecture such as the leaf area, inclination, and azimuth distribution in spatial coordinates. To establish the technique system, we developed (i simple tools to measure the spatial position of the stem axis and azimuth of the leaf midrib and to capture images of tillers and leaves; (ii computer software programs for extracting data on stem diameter, leaf nodes, and leaf midrib curves from the tiller images and data on leaf length, width, and shape from the leaf images; (iii a database of digital architectures that stores the measured data and facilitates the reconstruction of the 3D visual architecture and the extraction of architectural traits; and (iv computation algorithms for virtual clipping to stratify the rice canopy, to extend the stratified surface from the horizontal plane to a general curved surface (including a cylindrical surface, and to implement in silico. Each component of the technique system was quantitatively validated and visually compared to images, and the sensitivity of the virtual clipping algorithms was analyzed. This technique is inexpensive and accurate and provides high throughput for the measurement, reconstruction, and trait extraction of rice canopy architectures. The technique provides a more practical method of data collection to serve functional-structural plant models of rice and for the

  19. The pedicle screw-rod system is an acceptable method of reconstructive surgery after resection of sacroiliac joint tumours

    Directory of Open Access Journals (Sweden)

    Yi-Jun Zhou

    2016-03-01

    Full Text Available Hemipelvic resections for primary bone tumours require reconstruction to restore weight bearing along anatomic axes. However, reconstruction of the pelvic arch remains a major surgical challenge because of the high rate of associated complications. We used the pedicle screw-rod system to reconstruct the pelvis, and the purpose of this investigation was to assess the oncology, functional outcome and complication rate following this procedure. The purpose of this study was to investigate the operative indications and technique of the pedicle screw-rod system in reconstruction of the stability of the sacroiliac joint after resection of sacroiliac joint tumours. The average MSTS (Musculoskeletal Tumour Society score was 26.5 at either three months after surgery or at the latest follow-up. Seven patients had surgery-related complications, including wound dehiscence in one, infection in two, local necrosis in four (including infection in two, sciatic nerve palsy in one and pubic symphysis subluxation in one. There was no screw loosening or deep vein thrombosis occurring in this series. Using a pedicle screw-rod after resection of a sacroiliac joint tumour is an acceptable method of pelvic reconstruction because of its reduced risk of complications and satisfactory functional outcome, as well as its feasibility of reconstruction for type IV pelvis tumour resection without elaborate preoperative customisation. Level of evidence: Level IV, therapeutic study.

  20. Experimental results and validation of a method to reconstruct forces on the ITER test blanket modules

    International Nuclear Information System (INIS)

    Zeile, Christian; Maione, Ivan A.

    2015-01-01

    Highlights: • An in operation force measurement system for the ITER EU HCPB TBM has been developed. • The force reconstruction methods are based on strain measurements on the attachment system. • An experimental setup and a corresponding mock-up have been built. • A set of test cases representing ITER relevant excitations has been used for validation. • The influence of modeling errors on the force reconstruction has been investigated. - Abstract: In order to reconstruct forces on the test blanket modules in ITER, two force reconstruction methods, the augmented Kalman filter and a model predictive controller, have been selected and developed to estimate the forces based on strain measurements on the attachment system. A dedicated experimental setup with a corresponding mock-up has been designed and built to validate these methods. A set of test cases has been defined to represent possible excitation of the system. It has been shown that the errors in the estimated forces mainly depend on the accuracy of the identified model used by the algorithms. Furthermore, it has been found that a minimum of 10 strain gauges is necessary to allow for a low error in the reconstructed forces.

  1. Pathway reconstruction of airway remodeling in chronic lung diseases: a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Ali Najafi

    Full Text Available Airway remodeling is a pathophysiologic process at the clinical, cellular, and molecular level relating to chronic obstructive airway diseases such as chronic obstructive pulmonary disease (COPD, asthma and mustard lung. These diseases are associated with the dysregulation of multiple molecular pathways in the airway cells. Little progress has so far been made in discovering the molecular causes of complex disease in a holistic systems manner. Therefore, pathway and network reconstruction is an essential part of a systems biology approach to solve this challenging problem. In this paper, multiple data sources were used to construct the molecular process of airway remodeling pathway in mustard lung as a model of airway disease. We first compiled a master list of genes that change with airway remodeling in the mustard lung disease and then reconstructed the pathway by generating and merging the protein-protein interaction and the gene regulatory networks. Experimental observations and literature mining were used to identify and validate the master list. The outcome of this paper can provide valuable information about closely related chronic obstructive airway diseases which are of great importance for biologists and their future research. Reconstructing the airway remodeling interactome provides a starting point and reference for the future experimental study of mustard lung, and further analysis and development of these maps will be critical to understanding airway diseases in patients.

  2. Study of DNA reconstruction enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, M [Kyushu Univ., Fukuoka (Japan). Faculty of Science

    1976-12-01

    Description was made of the characteristics and mechanism of 3 reconstructive enzymes which received from M. luteus or E. coli or T4, and of which natures were clarified as reconstructive enzymes of DNA irradiated with ultraviolet rays. As characteristics, the site of breaking, reaction, molecular weight, electric charge in the neutrality and a specific adhesion to DNA irradiated with ultraviolet rays were mentioned. As to mutant of ultraviolet ray sensitivity, hereditary control mechanism of removal and reconstruction by endo-nuclease activation was described, and suggestion was referred to removal and reconstruction of cells of xedoderma pigmentosum which is a hereditary disease of human. Description was also made as to the mechanism of exonuclease activation which separates dimer selectively from irradiated DNA.

  3. Analysis on the Effect of Sensor Views in Image Reconstruction Produced by Optical Tomography System Using Charge-Coupled Device.

    Science.gov (United States)

    Jamaludin, Juliza; Rahim, Ruzairi Abdul; Fazul Rahiman, Mohd Hafiz; Mohd Rohani, Jemmy

    2018-04-01

    Optical tomography (OPT) is a method to capture a cross-sectional image based on the data obtained by sensors, distributed around the periphery of the analyzed system. This system is based on the measurement of the final light attenuation or absorption of radiation after crossing the measured objects. The number of sensor views will affect the results of image reconstruction, where the high number of sensor views per projection will give a high image quality. This research presents an application of charge-coupled device linear sensor and laser diode in an OPT system. Experiments in detecting solid and transparent objects in crystal clear water were conducted. Two numbers of sensors views, 160 and 320 views are evaluated in this research in reconstructing the images. The image reconstruction algorithms used were filtered images of linear back projection algorithms. Analysis on comparing the simulation and experiments image results shows that, with 320 image views giving less area error than 160 views. This suggests that high image view resulted in the high resolution of image reconstruction.

  4. The Theory of Variances in Equilibrium Reconstruction

    International Nuclear Information System (INIS)

    Zakharov, Leonid E.; Lewandowski, Jerome; Foley, Elizabeth L.; Levinton, Fred M.; Yuh, Howard Y.; Drozdov, Vladimir; McDonald, Darren

    2008-01-01

    The theory of variances of equilibrium reconstruction is presented. It complements existing practices with information regarding what kind of plasma profiles can be reconstructed, how accurately, and what remains beyond the abilities of diagnostic systems. The σ-curves, introduced by the present theory, give a quantitative assessment of quality of effectiveness of diagnostic systems in constraining equilibrium reconstructions. The theory also suggests a method for aligning the accuracy of measurements of different physical nature

  5. WE-A-17A-10: Fast, Automatic and Accurate Catheter Reconstruction in HDR Brachytherapy Using An Electromagnetic 3D Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, E; Racine, E; Beaulieu, L [CHU de Quebec - Universite Laval, Quebec, Quebec (Canada); Binnekamp, D [Integrated Clinical Solutions and Marketing, Philips Healthcare, Best, DA (Netherlands)

    2014-06-15

    Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical.

  6. WE-A-17A-10: Fast, Automatic and Accurate Catheter Reconstruction in HDR Brachytherapy Using An Electromagnetic 3D Tracking System

    International Nuclear Information System (INIS)

    Poulin, E; Racine, E; Beaulieu, L; Binnekamp, D

    2014-01-01

    Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical

  7. An Adaptive Threshold Image Reconstruction Algorithm of Oil-Water Two-Phase Flow in Electrical Capacitance Tomography System

    International Nuclear Information System (INIS)

    Qin, M; Chen, D Y; Wang, L L; Yu, X Y

    2006-01-01

    The subject investigated in this paper is the ECT system of 8-electrode oil-water two-phase flow, and the measuring principle is analysed. In ART image-reconstruction algorithm, an adaptive threshold image reconstruction is presented to improve quality of image reconstruction and calculating accuracy of concentration, and generally the measurement error is about 1%. Such method can well solve many defects that other measurement methods may have, such as slow speed, high cost, and poor security and so on. Therefore, it offers a new method for the concentration measurement of oil-water two-phase flow

  8. Multicore Performance of Block Algebraic Iterative Reconstruction Methods

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik B.; Hansen, Per Christian

    2014-01-01

    Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely on semiconv......Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely...... on semiconvergence. Block versions of these methods, based on a partitioning of the linear system, are able to combine the fast semiconvergence of ART with the better multicore properties of SIRT. These block methods separate into two classes: those that, in each iteration, access the blocks in a sequential manner...... a fixed relaxation parameter in each method, namely, the one that leads to the fastest semiconvergence. Computational results show that for multicore computers, the sequential approach is preferable....

  9. Complications in Postmastectomy Breast Reconstruction: One-year Outcomes of the Mastectomy Reconstruction Outcomes Consortium (MROC) Study.

    Science.gov (United States)

    Wilkins, Edwin G; Hamill, Jennifer B; Kim, Hyungjin M; Kim, John Y; Greco, Richard J; Qi, Ji; Pusic, Andrea L

    2018-01-01

    In postmastectomy reconstruction, procedure choice is heavily influenced by the relative risks of the various options. This study sought to evaluate complications in a large, multicenter patient population. Previous studies have reported widely varying complication rates, but have been limited by their single center designs and inadequate controlling for confounders in their analyses. Eleven sites enrolled women undergoing first time, immediate, or delayed reconstruction following mastectomy for cancer treatment or prophylaxis. Procedures included expander/implant, latissimus dorsi (LD), pedicle transverse rectus abdominis musculocutaneous (PTRAM), free TRAM (FTRAM), and deep inferior epigastric perforator (DIEP) techniques. Data were gathered pre- and postoperatively from medical records. Separate logistic regressions were conducted for all complications and major complications (those requiring rehospitalization and/or reoperation) within 1 year. Odds ratios (ORs) were calculated for procedure type, controlling for site, demographic, and clinical variables. Complication rates for 2234 patients were analyzed. Compared with expander/implant reconstructions, LD (OR) 1.95, P = 0.026), PTRAM (OR 1.89, P = 0.025), FTRAM (OR 1.94, P = 0.011), and DIEP (OR 2.22, P procedures were associated with higher risks of complications. Significantly higher risks were also associated with older age, higher body mass index (BMI), immediate reconstruction, bilateral procedures, and radiation. For major complications, regression showed significantly greater risks for PTRAM (OR 1.86, P = 0.044) and DIEP (OR 1.75, P = 0.004), than expander/implant reconstructions. Failure rates were relatively low, ranging from 0% for PTRAM to 5.9% for expander/implant reconstructions. In this multicenter analysis, procedure choice and other patient variables were significant predictors of 1-year complications in breast reconstruction. These findings should be considered in counseling patients on

  10. [Case-control study on Chinese medicine fumigation and massage therapy for the treatment of knee stability and func tional recovery after anterior cruciate ligament reconstruction operation].

    Science.gov (United States)

    Min, Zhong-han; Zhou, Ying; Jing, Lin; Zhang, Hong-mei; Wang, Sheng; Chen, Wei-heng; Chen, Ping-quan

    2016-05-01

    To study clinical outcomes of Chinese medidine fumigation and massage therapy for the treatment of knee stability and functional recovery after anterior cruciate ligament reconstruction operation,and to explore the effect on tendon-bone healing. Total 50 patients were divided into two groups: the control group (normal rehabilitation therapy group),the treatment group (Chinese medicine fumigation and manipulation group). There were 25 patients in the control group, including 16 males and 9 females, who were treated with isometric muscle training, with the gradually enlarging amplitude of flexion and progressive loading of bearing training for knee recovery. There were 25 patients in the treatment group, including 15 males and 10 females,who were treated with the conventional rehabilitation therapy combined with Chinese medicine fumigation and massage therapy. The Chinese herbs named as Haitongpi decoction was steamed by a special equipment to fumigate the knee after operation; Based on the biomechanical parameters of the ligament reconstruction, the massage therapy was designed to control the degree of the knee flexion and release the adhesion for early recovery of knee functions. The Lysholm knee function evaluation system was used, and MRI examination was performed to measure the change in width of ligament tunnel in femur and tibia to evaluate the safety and stability of the treatment. Lysholm system showed that two groups both had improving results from the 1st month after operation to the 3rd month (treatment group, F=36.54, P0.05), indicating that Chinese rehabilitation therapy was a safety treatment without the influence on the loosing of tendon. Chinese medicine fumigation and massage therapy can early improve the knee function after the anterior cruciate ligament reconstruction operation without the disturbance of the knee stability.

  11. Extended-Search, Bézier Curve-Based Lane Detection and Reconstruction System for an Intelligent Vehicle

    Directory of Open Access Journals (Sweden)

    Xiaoyun Huang

    2015-09-01

    Full Text Available To improve the real-time performance and detection rate of a Lane Detection and Reconstruction (LDR system, an extended-search-based lane detection method and a Bézier curve-based lane reconstruction algorithm are proposed in this paper. The extended-search-based lane detection method is designed to search boundary blocks from the initial position, in an upwards direction and along the lane, with small search areas including continuous search, discontinuous search and bending search in order to detect different lane boundaries. The Bézier curve-based lane reconstruction algorithm is employed to describe a wide range of lane boundary forms with comparatively simple expressions. In addition, two Bézier curves are adopted to reconstruct the lanes' outer boundaries with large curvature variation. The lane detection and reconstruction algorithm — including initial-blocks' determining, extended search, binarization processing and lane boundaries' fitting in different scenarios — is verified in road tests. The results show that this algorithm is robust against different shadows and illumination variations; the average processing time per frame is 13 ms. Significantly, it presents an 88.6% high-detection rate on curved lanes with large or variable curvatures, where the accident rate is higher than that of straight lanes.

  12. Reconstruction of network topology using status-time-series data

    Science.gov (United States)

    Pandey, Pradumn Kumar; Badarla, Venkataramana

    2018-01-01

    Uncovering the heterogeneous connection pattern of a networked system from the available status-time-series (STS) data of a dynamical process on the network is of great interest in network science and known as a reverse engineering problem. Dynamical processes on a network are affected by the structure of the network. The dependency between the diffusion dynamics and structure of the network can be utilized to retrieve the connection pattern from the diffusion data. Information of the network structure can help to devise the control of dynamics on the network. In this paper, we consider the problem of network reconstruction from the available status-time-series (STS) data using matrix analysis. The proposed method of network reconstruction from the STS data is tested successfully under susceptible-infected-susceptible (SIS) diffusion dynamics on real-world and computer-generated benchmark networks. High accuracy and efficiency of the proposed reconstruction procedure from the status-time-series data define the novelty of the method. Our proposed method outperforms compressed sensing theory (CST) based method of network reconstruction using STS data. Further, the same procedure of network reconstruction is applied to the weighted networks. The ordering of the edges in the weighted networks is identified with high accuracy.

  13. Maxillary reconstruction: Current concepts and controversies

    Directory of Open Access Journals (Sweden)

    Subramania Iyer

    2014-01-01

    Full Text Available Maxillary reconstruction is still an evolving art when compared to the reconstruction of the mandible. The defects of maxilla apart from affecting the functions of the speech, swallowing and mastication also cause cosmetic disfigurement. Rehabilitation of the form and function in patients with maxillary defects is either by using an obturator prosthesis or by a surgical reconstruction. Literature is abundant with a variety of reconstructive methods. The classification systems are also varied, with no universal acceptance of any one of them. The oncologic safety of these procedures is still debated, and conclusive evidence in this regard has not emerged yet. Management of the orbit is also not yet addressed properly. Tissue engineering, that has been hyped to be one of the possible solutions for this vexing reconstructive problem, has not come out with reliable and reproducible results so far. This review article discusses the rationale and oncological safety of the reconstructing the maxillary defects, critically analyzes the classification systems, offers the different reconstructive methods and touches upon the controversies in this subject. The management of the retained and exenterated orbit associated with maxillectomy is reviewed. The surgical morbidity, complications and the recent advances in this field are also looked into. An algorithm, based on our experience, is presented.

  14. Maxillary reconstruction: Current concepts and controversies

    Science.gov (United States)

    Iyer, Subramania; Thankappan, Krishnakumar

    2014-01-01

    Maxillary reconstruction is still an evolving art when compared to the reconstruction of the mandible. The defects of maxilla apart from affecting the functions of the speech, swallowing and mastication also cause cosmetic disfigurement. Rehabilitation of the form and function in patients with maxillary defects is either by using an obturator prosthesis or by a surgical reconstruction. Literature is abundant with a variety of reconstructive methods. The classification systems are also varied, with no universal acceptance of any one of them. The oncologic safety of these procedures is still debated, and conclusive evidence in this regard has not emerged yet. Management of the orbit is also not yet addressed properly. Tissue engineering, that has been hyped to be one of the possible solutions for this vexing reconstructive problem, has not come out with reliable and reproducible results so far. This review article discusses the rationale and oncological safety of the reconstructing the maxillary defects, critically analyzes the classification systems, offers the different reconstructive methods and touches upon the controversies in this subject. The management of the retained and exenterated orbit associated with maxillectomy is reviewed. The surgical morbidity, complications and the recent advances in this field are also looked into. An algorithm, based on our experience, is presented. PMID:24987199

  15. Final results of the gradual reconstruction of Bohunice VI in Slovakia and evaluation of the reconstruction by international missions

    International Nuclear Information System (INIS)

    Ferenc, M.

    2001-01-01

    The gradual reconstruction of the Bohunice V1 nuclear power plant (Slovakia) represents the most extensive reconstruction of a nuclear power plant in operation as implemented worldwide up to now. Extensive reconstruction works in both civil construction and process parts, in instrumentation and control part, and in electric part enhanced both nuclear safety and operational reliability of Bohunice V1 in a significant way.(author)

  16. Morbidity and cost differences between free flap reconstruction and pedicled flap reconstruction in oral and oropharyngeal cancer: Matched control study

    NARCIS (Netherlands)

    Smeele, Ludwig E.; Goldstein, David; Tsai, Vance; Gullane, Patrick J.; Neligan, Peter; Brown, Dale H.; Irish, Jonathan C.

    2006-01-01

    To compare morbidity and cost in patients who underwent primary reconstruction with free tissue transfer with those with pectoralis major myocutaneous flap (PMMF) reconstructions after ablation of oral and oropharyngeal squamous cell carcinoma. Over a 6-year period, 36 patients had PMMF

  17. Evaluation of Three Cases Using a Novel Titanium Mesh System-Skull-Fit with Orbital Wall (Skull-Fit WOW)-For Cranial Base Reconstructions.

    Science.gov (United States)

    Hattori, Noriko; Nakajima, Hideo; Tamada, Ikkei; Sakamoto, Yoshiaki; Ohira, Takayuki; Yoshida, Kazunari; Kawase, Takeshi; Kishi, Kazuo

    2011-09-01

    Cranial base reconstructions associated with tumor resections around the orbital wall often require that both the upper and lateral orbital walls be reconstructed during a single procedure. Previously, we used titanium mesh plates that were preoperatively fabricated based on three-dimensional models. Although these plates are precise and do not increase the probability of infection, we still had to use autologous bones to reconstruct the orbital walls. Recently, we developed a new titanium mesh plate-called Skull-Fit(®)-with orbital wall (Skull-Fit WOW(®)), enabling us to reconstruct the cranial base and orbital walls without bone grafts. Here, we report on three reconstruction cases in which the novel titanium mesh-orbital wall system was used. In all three cases, the customized titanium mesh system performed satisfactorily with little, if any, complications.

  18. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  19. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyang [Department of Bioengineering, University of California, Los Angeles, California 90095 (United States); Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas 75390 (United States); Ruan, Dan, E-mail: druan@mednet.ucla.edu [Department of Bioengineering, University of California, Los Angeles, California 90095 and Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2015-11-15

    Purpose: To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). Methods: The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. Results: On phantom point clouds, their method

  20. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system.

    Science.gov (United States)

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J; Sawant, Amit; Ruan, Dan

    2015-11-01

    To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. On phantom point clouds, their method achieved submillimeter

  1. Reconstruction and EMG-informed control, simulation and analysis of human movement for athletics: Performance improvement and injury prevention

    KAUST Repository

    Demircan, E.

    2009-09-01

    In this paper we present methods to track and characterize human dynamic skills using motion capture and electromographic sensing. These methods are based on task-space control to obtain the joint kinematics and extract the key physiological parameters and on computed muscle control to solve the muscle force distribution problem. We also present a dynamic control and analysis framework that integrates these metrics for the purpose of reconstructing and analyzing sports motions in real-time.

  2. Reconstruction and EMG-informed control, simulation and analysis of human movement for athletics: Performance improvement and injury prevention

    KAUST Repository

    Demircan, E.; Khatib, O.; Wheeler, J.; Delp, S.

    2009-01-01

    In this paper we present methods to track and characterize human dynamic skills using motion capture and electromographic sensing. These methods are based on task-space control to obtain the joint kinematics and extract the key physiological parameters and on computed muscle control to solve the muscle force distribution problem. We also present a dynamic control and analysis framework that integrates these metrics for the purpose of reconstructing and analyzing sports motions in real-time.

  3. Breast Reconstruction Following Cancer Treatment.

    Science.gov (United States)

    Gerber, Bernd; Marx, Mario; Untch, Michael; Faridi, Andree

    2015-08-31

    About 8000 breast reconstructions after mastectomy are per - formed in Germany each year. It has become more difficult to advise patients because of the wide variety of heterologous and autologous techniques that are now available and because of changes in the recommendations about radiotherapy. This article is based on a review of pertinent articles (2005-2014) that were retrieved by a selective search employing the search terms "mastectomy" and "breast reconstruction." The goal of reconstruction is to achieve an oncologically safe and aestically satisfactory result for the patient over the long term. Heterologous, i.e., implant-based, breast reconstruction (IBR) and autologous breast reconstruction (ABR) are complementary techniques. Immediate reconstruction preserves the skin of the breast and its natural form and prevents the psychological trauma associated with mastectomy. If post-mastectomy radiotherapy (PMRT) is not indicated, implant-based reconstruction with or without a net/acellular dermal matrix (ADM) is a common option. Complications such as seroma formation, infection, and explantation are significantly more common when an ADM is used (15.3% vs. 5.4% ). If PMRT is performed, then the complication rate of implant-based breast reconstruction is 1 to 48% ; in particular, Baker grade III/IV capsular fibrosis occurs in 7 to 22% of patients, and the prosthesis must be explanted in 9 to 41% . Primary or, preferably, secondary autologous reconstruction is an alternative. The results of ABR are more stable over the long term, but the operation is markedly more complex. Autologous breast reconstruction after PMRT does not increase the risk of serious complications (20.5% vs. 17.9% without radiotherapy). No randomized controlled trials have yet been conducted to compare the reconstructive techniques with each other. If radiotherapy will not be performed, immediate reconstruction with an implant is recommended. On the other hand, if post-mastectomy radiotherapy

  4. Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics

    Science.gov (United States)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-02-01

    Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.

  5. Apparatus and method for reconstructing data

    International Nuclear Information System (INIS)

    Pavkovich, J.M.

    1977-01-01

    The apparatus and method for reconstructing data are described. A fan beam of radiation is passed through an object, the beam lying in the same quasi-plane as the object slice to be examined. Radiation not absorbed in the object slice is recorded on oppositely situated detectors aligned with the source of radiation. Relative rotation is provided between the source-detector configuration and the object. Reconstruction means are coupled to the detector means, and may comprise a general purpose computer, a special purpose computer, and control logic for interfacing between said computers and controlling the respective functioning thereof for performing a convolution and back projection based upon non-absorbed radiation detected by said detector means, whereby the reconstruction means converts values of the non-absorbed radiation into values of absorbed radiation at each of an arbitrarily large number of points selected within the object slice. Display means are coupled to the reconstruction means for providing a visual or other display or representation of the quantities of radiation absorbed at the points considered in the object. (Auth.)

  6. A video imaging system and related control hardware for nuclear safeguards surveillance applications

    International Nuclear Information System (INIS)

    Whichello, J.V.

    1987-03-01

    A novel video surveillance system has been developed for safeguards applications in nuclear installations. The hardware was tested at a small experimental enrichment facility located at the Lucas Heights Research Laboratories. The system uses digital video techniques to store, encode and transmit still television pictures over the public telephone network to a receiver located in the Australian Safeguards Office at Kings Cross, Sydney. A decoded, reconstructed picture is then obtained using a second video frame store. A computer-controlled video cassette recorder is used automatically to archive the surveillance pictures. The design of the surveillance system is described with examples of its operation

  7. Parallel Algorithm for Reconstruction of TAC Images

    International Nuclear Information System (INIS)

    Vidal Gimeno, V.

    2012-01-01

    The algebraic reconstruction methods are based on solving a system of linear equations. In a previous study, was used and showed as the PETSc library, was and is a scientific computing tool, which facilitates and enables the optimal use of a computer system in the image reconstruction process.

  8. Influence of iterative reconstruction on coronary calcium scores at multiple heart rates: a multivendor phantom study on state-of-the-art CT systems.

    Science.gov (United States)

    van der Werf, N R; Willemink, M J; Willems, T P; Greuter, M J W; Leiner, T

    2017-12-28

    The objective of this study was to evaluate the influence of iterative reconstruction on coronary calcium scores (CCS) at different heart rates for four state-of-the-art CT systems. Within an anthropomorphic chest phantom, artificial coronary arteries were translated in a water-filled compartment. The arteries contained three different calcifications with low (38 mg), medium (80 mg) and high (157 mg) mass. Linear velocities were applied, corresponding to heart rates of 0,  75 bpm. Data were acquired on four state-of-the-art CT systems (CT1-CT4) with routinely used CCS protocols. Filtered back projection (FBP) and three increasing levels of iterative reconstruction (L1-L3) were used for reconstruction. CCS were quantified as Agatston score and mass score. An iterative reconstruction susceptibility (IRS) index was used to assess susceptibility of Agatston score (IRS AS ) and mass score (IRS MS ) to iterative reconstruction. IRS values were compared between CT systems and between calcification masses. For each heart rate, differences in CCS of iterative reconstructed images were evaluated with CCS of FBP images as reference, and indicated as small ( 10%). Statistical analysis was performed with repeated measures ANOVA tests. While subtle differences were found for Agatston scores of low mass calcification, medium and high mass calcifications showed increased CCS up to 77% with increasing heart rates. IRS AS of CT1-T4 were 17, 41, 130 and 22% higher than IRS MS . Not only were IRS significantly different between all CT systems, but also between calcification masses. Up to a fourfold increase in IRS was found for the low mass calcification in comparison with the high mass calcification. With increasing iterative reconstruction strength, maximum decreases of 21 and 13% for Agatston and mass score were found. In total, 21 large differences between Agatston scores from FBP and iterative reconstruction were found, while only five large differences were found between

  9. HEEL BONE RECONSTRUCTIVE OSTEOSYNTHESIS

    Directory of Open Access Journals (Sweden)

    A. N. Svetashov

    2010-01-01

    Full Text Available To detect the most appropriate to heel bone injury severity variants of reconstructive osteosynthesis it was analyzed treatment results of 56 patients. In 15 (26.8% patients classic methods of surgical service were applied, in 41 (73.2% cases to restore the defect porous implants were used. Osteosynthesis without heel bone plastic restoration accomplishment was ineffective in 60% patients from control group. Reconstructive osteosynthesis method ensures long-term good functional effect of rehabilitation in 96.4% patients from the basic group.

  10. Early anterior cruciate ligament reconstruction can save meniscus without any complications

    Directory of Open Access Journals (Sweden)

    Chang-Ik Hur

    2017-01-01

    Conclusions: Early ACL reconstruction had excellent clinical results and stability as good as delayed reconstruction without the problem of knee motion, muscle power, and postural control. Moreover, early reconstruction showed the high possibility of meniscal repair. Therefore, early ACL reconstruction should be recommended.

  11. An equilibrium-point model of electromyographic patterns during single-joint movements based on experimentally reconstructed control signals.

    Science.gov (United States)

    Latash, M L; Goodman, S R

    1994-01-01

    The purpose of this work has been to develop a model of electromyographic (EMG) patterns during single-joint movements based on a version of the equilibrium-point hypothesis, a method for experimental reconstruction of the joint compliant characteristics, the dual-strategy hypothesis, and a kinematic model of movement trajectory. EMG patterns are considered emergent properties of hypothetical control patterns that are equally affected by the control signals and peripheral feedback reflecting actual movement trajectory. A computer model generated the EMG patterns based on simulated movement kinematics and hypothetical control signals derived from the reconstructed joint compliant characteristics. The model predictions have been compared to published recordings of movement kinematics and EMG patterns in a variety of movement conditions, including movements over different distances, at different speeds, against different-known inertial loads, and in conditions of possible unexpected decrease in the inertial load. Changes in task parameters within the model led to simulated EMG patterns qualitatively similar to the experimentally recorded EMG patterns. The model's predictive power compares it favourably to the existing models of the EMG patterns. Copyright © 1994. Published by Elsevier Ltd.

  12. CORE STABILIZATION EXERCISES AFTER ACL RECONSTRUCTION SURGERY PROVIDES BETTER OUTCOMES: A RANDOMIZED CONTROLLED TRIAL

    Directory of Open Access Journals (Sweden)

    Dilpreet Kaur

    2015-12-01

    Full Text Available Background: Decreased core stability displaces center of gravity away from base of support reducing activity participation of athlete. Present study was conducted to study the effect of core stabilization exercises after reconstruction surgery of ACL on functional outcomes. Methods: 30 subjects following 5 months of ACL reconstruction were randomly assigned to either group that performed (study group or did not performed (control group additional core stabilization exercises in conjugation with standard rehabilitation protocol. Outcome measures were: activity level using Tegnar activity level scale and functional performance using triple hop test. Outcome measures were compared at day 1 and day 42 of the treatment. Result: Significant improvement was seen in the study group for Tegnar score with mean difference changing from 4.5 to 1.5 from day 1 to day 42 of treatment (p=0.039 while the control group showed improvement in mean difference changing from 3.8 to 1.4 (p=.045 from day 1 to day 42 of treatment. Highly significant improvement was seen in the study group for triple hop test with mean difference changing from 25 to 6.7 (p<.001 compared to the control group with mean difference changing from 15.2 to 9.7(p=.005 from day 1 to day 42 of treatment. Conclusions: Both the groups showed improvement for activity level and functional performance but highly significant improvement was seen in the study group for functional performance. Core stabilization exercises in conjugation with the standard ACL rehabilitation protocol results better improvement in the triple hop test.

  13. Real-time position reconstruction with hippocampal place cells.

    Science.gov (United States)

    Guger, Christoph; Gener, Thomas; Pennartz, Cyriel M A; Brotons-Mas, Jorge R; Edlinger, Günter; Bermúdez I Badia, S; Verschure, Paul; Schaffelhofer, Stefan; Sanchez-Vives, Maria V

    2011-01-01

    Brain-computer interfaces (BCI) are using the electroencephalogram, the electrocorticogram and trains of action potentials as inputs to analyze brain activity for communication purposes and/or the control of external devices. Thus far it is not known whether a BCI system can be developed that utilizes the states of brain structures that are situated well below the cortical surface, such as the hippocampus. In order to address this question we used the activity of hippocampal place cells (PCs) to predict the position of an rodent in real-time. First, spike activity was recorded from the hippocampus during foraging and analyzed off-line to optimize the spike sorting and position reconstruction algorithm of rats. Then the spike activity was recorded and analyzed in real-time. The rat was running in a box of 80 cm × 80 cm and its locomotor movement was captured with a video tracking system. Data were acquired to calculate the rat's trajectories and to identify place fields. Then a Bayesian classifier was trained to predict the position of the rat given its neural activity. This information was used in subsequent trials to predict the rat's position in real-time. The real-time experiments were successfully performed and yielded an error between 12.2 and 17.4% using 5-6 neurons. It must be noted here that the encoding step was done with data recorded before the real-time experiment and comparable accuracies between off-line (mean error of 15.9% for three rats) and real-time experiments (mean error of 14.7%) were achieved. The experiment shows proof of principle that position reconstruction can be done in real-time, that PCs were stable and spike sorting was robust enough to generalize from the training run to the real-time reconstruction phase of the experiment. Real-time reconstruction may be used for a variety of purposes, including creating behavioral-neuronal feedback loops or for implementing neuroprosthetic control.

  14. A volume of intersection approach for on-the-fly system matrix calculation in 3D PET image reconstruction

    International Nuclear Information System (INIS)

    Lougovski, A; Hofheinz, F; Maus, J; Schramm, G; Will, E; Hoff, J van den

    2014-01-01

    The aim of this study is the evaluation of on-the-fly volume of intersection computation for system’s geometry modelling in 3D PET image reconstruction. For this purpose we propose a simple geometrical model in which the cubic image voxels on the given Cartesian grid are approximated with spheres and the rectangular tubes of response (ToRs) are approximated with cylinders. The model was integrated into a fully 3D list-mode PET reconstruction for performance evaluation. In our model the volume of intersection between a voxel and the ToR is only a function of the impact parameter (the distance between voxel centre to ToR axis) but is independent of the relative orientation of voxel and ToR. This substantially reduces the computational complexity of the system matrix calculation. Based on phantom measurements it was determined that adjusting the diameters of the spherical voxel size and the ToR in such a way that the actual voxel and ToR volumes are conserved leads to the best compromise between high spatial resolution, low noise, and suppression of Gibbs artefacts in the reconstructed images. Phantom as well as clinical datasets from two different PET systems (Siemens ECAT HR + and Philips Ingenuity-TF PET/MR) were processed using the developed and the respective vendor-provided (line of intersection related) reconstruction algorithms. A comparison of the reconstructed images demonstrated very good performance of the new approach. The evaluation showed the respective vendor-provided reconstruction algorithms to possess 34–41% lower resolution compared to the developed one while exhibiting comparable noise levels. Contrary to explicit point spread function modelling our model has a simple straight-forward implementation and it should be easy to integrate into existing reconstruction software, making it competitive to other existing resolution recovery techniques. (paper)

  15. Reconstruction of the midface and maxilla.

    Science.gov (United States)

    Dalgorf, Dustin; Higgins, Kevin

    2008-08-01

    To review the current classification systems and reconstructive options available for restoration of maxillectomy defects. Defects involving the midface can have a great functional and aesthetic impact on the patient. Adequate restoration of the complex three-dimensional maxillary structure is required to replace form and function of the native tissue. An in-depth discussion of appropriate recipient vessel selection and reconstructive options are included in this article. The superficial temporal vessel system is presented as a reliable anastomosis site for restoration of midfacial defects. In addition, the complications of vein grafting, arteriovenous fistula loops and alternative recipient vessels sites are addressed to manage the challenge of the vessel-depleted neck. The current indications, advantages and disadvantages of local, regional and free-flap reconstructive options available for maxillectomy defects are highlighted in order to aid the surgeon in appropriate flap selection. A myriad of reconstructive options are available to restore maxillectomy defects. The surgeon must consider each defect and the needs of the individual patient when choosing the best suited reconstructive technique.

  16. A Phase Current Reconstruction Approach for Three-Phase Permanent-Magnet Synchronous Motor Drive

    Directory of Open Access Journals (Sweden)

    Hao Yan

    2016-10-01

    Full Text Available Three-phase permanent-magnet synchronous motors (PMSMs are widely used in renewable energy applications such as wind power generation, tidal energy and electric vehicles owing to their merits such as high efficiency, high precision and high reliability. To reduce the cost and volume of the drive system, techniques of reconstructing three-phase current using a single current sensor have been reported for three-phase alternating current (AC control system using the power converts. In existing studies, the reconstruction precision is largely influenced by reconstructing dead zones on the Space Vector Pulse Width Modulation (SVPWM plane, which requires other algorithms to compensate either by modifying PWM modulation or by phase-shifting of the PWM signal. In this paper, a novel extended phase current reconstruction approach for PMSM drive is proposed. Six novel installation positions are obtained by analyzing the sampling results of the current paths between each two power switches. By arranging the single current sensor at these positions, the single current sensor is sampled during zero voltage vectors (ZVV without modifying the PWM signals. This proposed method can reconstruct the three-phase currents without any complex algorithms and is available in the sector boundary region and low modulation region. Finally, this method is validated by experiments.

  17. Reconstruction of ensembles of coupled time-delay systems from time series.

    Science.gov (United States)

    Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P

    2014-06-01

    We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.

  18. Industrial dynamic tomographic reconstruction

    International Nuclear Information System (INIS)

    Oliveira, Eric Ferreira de

    2016-01-01

    The state of the art methods applied to industrial processes is currently based on the principles of classical tomographic reconstructions developed for tomographic patterns of static distributions, or is limited to cases of low variability of the density distribution function of the tomographed object. Noise and motion artifacts are the main problems caused by a mismatch in the data from views acquired in different instants. All of these add to the known fact that using a limited amount of data can result in the presence of noise, artifacts and some inconsistencies with the distribution under study. One of the objectives of the present work is to discuss the difficulties that arise from implementing reconstruction algorithms in dynamic tomography that were originally developed for static distributions. Another objective is to propose solutions that aim at reducing a temporal type of information loss caused by employing regular acquisition systems to dynamic processes. With respect to dynamic image reconstruction it was conducted a comparison between different static reconstruction methods, like MART and FBP, when used for dynamic scenarios. This comparison was based on a MCNPx simulation as well as an analytical setup of an aluminum cylinder that moves along the section of a riser during the process of acquisition, and also based on cross section images from CFD techniques. As for the adaptation of current tomographic acquisition systems for dynamic processes, this work established a sequence of tomographic views in a just-in-time fashion for visualization purposes, a form of visually disposing density information as soon as it becomes amenable to image reconstruction. A third contribution was to take advantage of the triple color channel necessary to display colored images in most displays, so that, by appropriately scaling the acquired values of each view in the linear system of the reconstruction, it was possible to imprint a temporal trace into the regularly

  19. Automatic Calibration and Reconstruction for Active Vision Systems

    CERN Document Server

    Zhang, Beiwei

    2012-01-01

    In this book, the design of two new planar patterns for camera calibration of intrinsic parameters is addressed and a line-based method for distortion correction is suggested. The dynamic calibration of structured light systems, which consist of a camera and a projector is also treated. Also, the 3D Euclidean reconstruction by using the image-to-world transformation is investigated. Lastly, linear calibration algorithms for the catadioptric camera are considered, and the homographic matrix and fundamental matrix are extensively studied. In these methods, analytic solutions are provided for the computational efficiency and redundancy in the data can be easily incorporated to improve reliability of the estimations. This volume will therefore prove valuable and practical tool for researchers and practioners working in image processing and computer vision and related subjects.

  20. System Characterizations and Optimized Reconstruction Methods for Novel X-ray Imaging Modalities

    Science.gov (United States)

    Guan, Huifeng

    In the past decade there have been many new emerging X-ray based imaging technologies developed for different diagnostic purposes or imaging tasks. However, there exist one or more specific problems that prevent them from being effectively or efficiently employed. In this dissertation, four different novel X-ray based imaging technologies are discussed, including propagation-based phase-contrast (PB-XPC) tomosynthesis, differential X-ray phase-contrast tomography (D-XPCT), projection-based dual-energy computed radiography (DECR), and tetrahedron beam computed tomography (TBCT). System characteristics are analyzed or optimized reconstruction methods are proposed for these imaging modalities. In the first part, we investigated the unique properties of propagation-based phase-contrast imaging technique when combined with the X-ray tomosynthesis. Fourier slice theorem implies that the high frequency components collected in the tomosynthesis data can be more reliably reconstructed. It is observed that the fringes or boundary enhancement introduced by the phase-contrast effects can serve as an accurate indicator of the true depth position in the tomosynthesis in-plane image. In the second part, we derived a sub-space framework to reconstruct images from few-view D-XPCT data set. By introducing a proper mask, the high frequency contents of the image can be theoretically preserved in a certain region of interest. A two-step reconstruction strategy is developed to mitigate the risk of subtle structures being oversmoothed when the commonly used total-variation regularization is employed in the conventional iterative framework. In the thirt part, we proposed a practical method to improve the quantitative accuracy of the projection-based dual-energy material decomposition. It is demonstrated that applying a total-projection-length constraint along with the dual-energy measurements can achieve a stabilized numerical solution of the decomposition problem, thus overcoming the

  1. Isokinetic Testing in Evaluation Rehabilitation Outcome After ACL Reconstruction.

    Science.gov (United States)

    Cvjetkovic, Dragana Dragicevic; Bijeljac, Sinisa; Palija, Stanislav; Talic, Goran; Radulovic, Tatjana Nozica; Kosanovic, Milkica Glogovac; Manojlovic, Slavko

    2015-02-01

    Numerous rehab protocols have been used in rehabilitation after ACL reconstruction. Isokinetic testing is an objective way to evaluate dynamic stability of the knee joint that estimates the quality of rehabilitation outcome after ACL reconstruction. Our investigation goal was to show importance of isokinetic testing in evaluation thigh muscle strength in patients which underwent ACL reconstruction and rehabilitation protocol. In prospective study, we evaluated 40 subjects which were divided into two groups. Experimental group consisted of 20 recreational males which underwent ACL reconstruction with hamstring tendon and rehabilitation protocol 6 months before isokinetic testing. Control group (20 subjects) consisted of healthy recreational males. In all subjects knee muscle testing was performed on a Biodex System 4 Pro isokinetic dynamo-meter et velocities of 60°/s and 180°/s. We followed average peak torque to body weight (PT/BW) and classic H/Q ratio. In statistical analysis Student's T test was used. There were statistically significant differences between groups in all evaluated parameters except of the mean value of PT/BW of the quadriceps et velocity of 60°/s (p>0.05). Isokinetic testing of dynamic stabilizers of the knee is need in diagnostic and treatment thigh muscle imbalance. We believe that isokinetic testing is an objective parameter for return to sport activities after ACL reconstruction.

  2. REGEN: Ancestral Genome Reconstruction for Bacteria.

    Science.gov (United States)

    Yang, Kuan; Heath, Lenwood S; Setubal, João C

    2012-07-18

    Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deletion and replicon fission and fusion. The reconstruction can be performed by either a maximum parsimony or a maximum likelihood method. Gene content reconstruction is based on the concept of neighboring gene pairs. REGEN was designed to be used with any set of genomes that are sufficiently related, which will usually be the case for bacteria within the same taxonomic order. We evaluated REGEN using simulated genomes and genomes in the Rhizobiales order.

  3. A noise power spectrum study of a new model-based iterative reconstruction system: Veo 3.0.

    Science.gov (United States)

    Li, Guang; Liu, Xinming; Dodge, Cristina T; Jensen, Corey T; Rong, X John

    2016-09-08

    The purpose of this study was to evaluate performance of the third generation of model-based iterative reconstruction (MBIR) system, Veo 3.0, based on noise power spectrum (NPS) analysis with various clinical presets over a wide range of clinically applicable dose levels. A CatPhan 600 surrounded by an oval, fat-equivalent ring to mimic patient size/shape was scanned 10 times at each of six dose levels on a GE HD 750 scanner. NPS analysis was performed on images reconstructed with various Veo 3.0 preset combinations for comparisons of those images reconstructed using Veo 2.0, filtered back projection (FBP) and adaptive statistical iterative reconstruc-tion (ASiR). The new Target Thickness setting resulted in higher noise in thicker axial images. The new Texture Enhancement function achieved a more isotropic noise behavior with less image artifacts. Veo 3.0 provides additional reconstruction options designed to allow the user choice of balance between spatial resolution and image noise, relative to Veo 2.0. Veo 3.0 provides more user selectable options and in general improved isotropic noise behavior in comparison to Veo 2.0. The overall noise reduction performance of both versions of MBIR was improved in comparison to FBP and ASiR, especially at low-dose levels. © 2016 The Authors.

  4. Energy systems and the climate dilemma Reflecting the impact on CO2 emissions by reconstructing regional energy systems

    International Nuclear Information System (INIS)

    Carlson, Annelie

    2003-01-01

    Global warming is one of the most important environmental issues today. One step for the European Union to fulfil the Kyoto protocol, stating a worldwide decrease of emissions of greenhouse gases, is to treat the environment as a scarce resource by attributing costs for environmental impact. This accompanied with considering the European electricity market as one common market, where coal condensing power is the marginal production, lead to the possibility to reduce CO 2 -emissions in Europe by reconstructing energy systems at a local scale in Sweden. A regional energy system model is used to study possibilities to replace electricity and fossil fuel used for heating with biomass and how a reconstruction can affect the emissions of CO 2 . An economic approach is used where cost-effective technical measures are analysed using present conditions and by including monetary values of externalities. The analysis shows that, by acting economically rational, a large amount of electricity and fossil fuel should, in three out of four cases, be replaced leading to a substantial reduction of CO 2 emissions

  5. Software Architecture Reconstruction Method, a Survey

    OpenAIRE

    Zainab Nayyar; Nazish Rafique

    2014-01-01

    Architecture reconstruction belongs to a reverse engineering process, in which we move from code to architecture level for reconstructing architecture. Software architectures are the blue prints of projects which depict the external overview of the software system. Mostly maintenance and testing cause the software to deviate from its original architecture, because sometimes for enhancing the functionality of a system the software deviates from its documented specifications, some new modules a...

  6. A simple method for 3D lesion reconstruction from two projected angiographic images: implementation to a stereotactic radiotherapy treatment planning system

    International Nuclear Information System (INIS)

    Theodorou, K.; Kappas, C.; Gaboriaud, G.; Mazal, A.D.; Petrascu, O.; Rosenwald, J.C.

    1997-01-01

    Introduction: The most used imaging modality for diagnosis and localisation of arteriovenous malformations (AVMs) treated with stereotactic radiotherapy is angiography. The fact that the angiographic images are projected images imposes the need of the 3D reconstruction of the lesion. This, together with the 3D head anatomy from CT images could provide all the necessary information for stereotactic treatment planning. We have developed a method to combine the complementary information provided by angiography and 2D computerized tomography, matching the reconstructed AVM structure with the reconstructed head of the patient. Materials and methods: The ISIS treatment planning system, developed at Institute Curie, has been used for image acquisition, stereotactic localisation and 3D visualisation. A series of CT slices are introduced in the system as well as two orthogonal angiographic projected images of the lesion. A simple computer program has been developed for the 3D reconstruction of the lesion and for the superposition of the target contour on the CT slices of the head. Results and conclusions: In our approach we consider that the reconstruction can be made if the AVM is approximated with a number of adjacent ellipses. We assessed the method comparing the values of the reconstructed and the actual volumes of the target using linear regression analysis. For treatment planning purposes we overlapped the reconstructed AVM on the CT slices of the head. The above feature is to our knowledge a feature that the majority of the commercial stereotactic radiotherapy treatment planning system could not provide. The implementation of the method into ISIS TPS shows that we can reliably approximate and visualize the target volume

  7. Superiority of CT imaging reconstruction on Linux OS

    International Nuclear Information System (INIS)

    Lin Shaochun; Yan Xufeng; Wu Tengfang; Luo Xiaomei; Cai Huasong

    2010-01-01

    Objective: To compare the speed of CT reconstruction using the Linux and Windows OS. Methods: Shepp-Logan head phantom in different pixel size was projected to obtain the sinogram by using the inverse Fourier transformation, filtered back projection and Radon transformation on both Linux and Windows OS. Results: CT image reconstruction using the Linux operating system was significantly better and more efficient than Windows. Conclusion: CT image reconstruction using the Linux operating system is more efficient. (authors)

  8. Trends in Materials Science for Ligament Reconstruction.

    Science.gov (United States)

    Sava, Oana Roxana; Sava, Daniel Florin; Radulescu, Marius; Albu, Madalina Georgiana; Ficai, Denisa; Veloz-Castillo, Maria Fernanda; Mendez-Rojas, Miguel Angel; Ficai, Anton

    2017-01-01

    The number of ligament injuries increases every year and concomitantly the need for materials or systems that can reconstruct the ligament. Limitations imposed by autografts and allografts in ligament reconstruction together with the advances in materials science and biology have attracted a lot of interest for developing systems and materials for ligament replacement or reconstruction. This review intends to synthesize the major steps taken in the development of polymer-based materials for anterior cruciate ligament, their advantages and drawbacks and the results of different in vitro and in vivo tests. Until present, there is no successful polymer system for ligament reconstruction implanted in humans. The developing field of synthetic polymers for ligament reconstruction still has a lot of potential. In addition, several nano-structured materials, made of nanofibers or in the form of ceramic/polymeric nanocomposites, are attracting the interest of several groups due to their potential use as engineered scaffolds that mimic the native environment of cells, increasing the chances for tissue regeneration. Here, we review the last 15 years of literature in order to obtain a better understanding on the state-of-the-art that includes the usage of nano- and poly-meric materials for ligament reconstruction, and to draw perspectives on the future development of the field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Image reconstruction methods for the PBX-M pinhole camera

    International Nuclear Information System (INIS)

    Holland, A.; Powell, E.T.; Fonck, R.J.

    1990-03-01

    This paper describes two methods which have been used to reconstruct the soft x-ray emission profile of the PBX-M tokamak from the projected images recorded by the PBX-M pinhole camera. Both methods must accurately represent the shape of the reconstructed profile while also providing a degree of immunity to noise in the data. The first method is a simple least squares fit to the data. This has the advantage of being fast and small, and thus easily implemented on the PDP-11 computer used to control the video digitizer for the pinhole camera. The second method involves the application of a maximum entropy algorithm to an overdetermined system. This has the advantage of allowing the use of a default profile. This profile contains additional knowledge about the plasma shape which can be obtained from equilibrium fits to the external magnetic measurements. Additionally the reconstruction is guaranteed positive, and the fit to the data can be relaxed by specifying both the amount and distribution of noise in the image. The algorithm described has the advantage of being considerably faster, for an overdetermined system, than the usual Lagrange multiplier approach to finding the maximum entropy solution. 13 refs., 24 figs

  10. REGEN: Ancestral Genome Reconstruction for Bacteria

    Directory of Open Access Journals (Sweden)

    João C. Setubal

    2012-07-01

    Full Text Available Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deletion and replicon fission and fusion. The reconstruction can be performed by either a maximum parsimony or a maximum likelihood method. Gene content reconstruction is based on the concept of neighboring gene pairs. REGEN was designed to be used with any set of genomes that are sufficiently related, which will usually be the case for bacteria within the same taxonomic order. We evaluated REGEN using simulated genomes and genomes in the Rhizobiales order.

  11. Validity of proxy data obtained by different psychological autopsy information reconstruction techniques.

    Science.gov (United States)

    Fang, L; Zhang, J

    2010-01-01

    Two informants were interviewed for each of 416 living controls (individuals sampled from the normal population) interviewed in a Chinese case-control psychological autopsy study. The validity of proxy data, obtained using seven psychological autopsy information reconstruction techniques (types 1, 2 and A - E), was evaluated, with living controls' self reports used as the gold-standard. Proxy data for reconstruction technique types 1, 2 and D on the Impulsivity Inventory Scale (total impulsivity score) were no different from the living controls' self report gold standard, whereas data for types A and E were smaller than data from living controls. On the 'acceptance or resignation' sub-scale of the avoidance coping dimension of the Moos Coping Response Inventory, information obtained by reconstruction technique types 1 and D was not significantly different from the living controls' self reports, whereas proxy data from types 2, A and E were smaller than those from the living controls. No statistically significant differences were identified for other proxy data obtained by reconstruction technique types 1, 2, A, D and E. These results indicate that using a second informant does not significantly enhance information reconstruction for the target.

  12. Role of graph architecture in controlling dynamical networks with applications to neural systems

    Science.gov (United States)

    Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  13. Reconstructing the ideal results of a perturbed analog quantum simulator

    Science.gov (United States)

    Schwenk, Iris; Reiner, Jan-Michael; Zanker, Sebastian; Tian, Lin; Leppäkangas, Juha; Marthaler, Michael

    2018-04-01

    Well-controlled quantum systems can potentially be used as quantum simulators. However, a quantum simulator is inevitably perturbed by coupling to additional degrees of freedom. This constitutes a major roadblock to useful quantum simulations. So far there are only limited means to understand the effect of perturbation on the results of quantum simulation. Here we present a method which, in certain circumstances, allows for the reconstruction of the ideal result from measurements on a perturbed quantum simulator. We consider extracting the value of the correlator 〈Ôi(t ) Ôj(0 ) 〉 from the simulated system, where Ôi are the operators which couple the system to its environment. The ideal correlator can be straightforwardly reconstructed by using statistical knowledge of the environment, if any n -time correlator of operators Ôi of the ideal system can be written as products of two-time correlators. We give an approach to verify the validity of this assumption experimentally by additional measurements on the perturbed quantum simulator. The proposed method can allow for reliable quantum simulations with systems subjected to environmental noise without adding an overhead to the quantum system.

  14. Fully automated reconstruction of three-dimensional vascular tree structures from two orthogonal views using computational algorithms and productionrules

    Science.gov (United States)

    Liu, Iching; Sun, Ying

    1992-10-01

    A system for reconstructing 3-D vascular structure from two orthogonally projected images is presented. The formidable problem of matching segments between two views is solved using knowledge of the epipolar constraint and the similarity of segment geometry and connectivity. The knowledge is represented in a rule-based system, which also controls the operation of several computational algorithms for tracking segments in each image, representing 2-D segments with directed graphs, and reconstructing 3-D segments from matching 2-D segment pairs. Uncertain reasoning governs the interaction between segmentation and matching; it also provides a framework for resolving the matching ambiguities in an iterative way. The system was implemented in the C language and the C Language Integrated Production System (CLIPS) expert system shell. Using video images of a tree model, the standard deviation of reconstructed centerlines was estimated to be 0.8 mm (1.7 mm) when the view direction was parallel (perpendicular) to the epipolar plane. Feasibility of clinical use was shown using x-ray angiograms of a human chest phantom. The correspondence of vessel segments between two views was accurate. Computational time for the entire reconstruction process was under 30 s on a workstation. A fully automated system for two-view reconstruction that does not require the a priori knowledge of vascular anatomy is demonstrated.

  15. Research on TIG weld machine of the upper side ring slot of Gd-rod technology reconstruct

    International Nuclear Information System (INIS)

    Fang Shixiang; Lan Zhibing; Cui Quhu

    2010-01-01

    The research on TIG weld machine of the upper side ring slot of Gd-rod existent matter: seal electrical source got up difficulty; control system had graveness aging; space between was adjusted precision lowness; welding torch lay mode and structure were not in reason. carried through all around technology reconstruct: had chosen the best of TIG weld machine; designed ignite arc device, designed optics imaging device, designed tungsten mighty axis direction auto conditioning, was provided with arc slot, adopted PLC to control the whole system and realization auto control. After TIG weld machine of the upper side ring slot of Gd-rod technology reconstruct research , provided with arc slot the first time in the Gd-rod of nuclear fuel, optimized the weld technics, improved welding line melt width and deep equality, stability, and great breadth advanced nuclear fuel product line technology and throughput. (authors)

  16. Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients.

    Science.gov (United States)

    Solano-Altamirano, Juan Manuel; Vázquez-Otero, Alejandro; Khikhlukha, Danila; Dormido, Raquel; Duro, Natividad

    2017-11-30

    In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features.

  17. Jini service to reconstruct tomographic data

    Science.gov (United States)

    Knoll, Peter; Mirzaei, S.; Koriska, K.; Koehn, H.

    2002-06-01

    A number of imaging systems rely on the reconstruction of a 3- dimensional model from its projections through the process of computed tomography (CT). In medical imaging, for example magnetic resonance imaging (MRI), positron emission tomography (PET), and Single Computer Tomography (SPECT) acquire two-dimensional projections of a three dimensional projections of a three dimensional object. In order to calculate the 3-dimensional representation of the object, i.e. its voxel distribution, several reconstruction algorithms have been developed. Currently, mainly two reconstruct use: the filtered back projection(FBP) and iterative methods. Although the quality of iterative reconstructed SPECT slices is better than that of FBP slices, such iterative algorithms are rarely used for clinical routine studies because of their low availability and increased reconstruction time. We used Jini and a self-developed iterative reconstructions algorithm to design and implement a Jini reconstruction service. With this service, the physician selects the patient study from a database and a Jini client automatically discovers the registered Jini reconstruction services in the department's Intranet. After downloading the proxy object the this Jini service, the SPECT acquisition data are reconstructed. The resulting transaxial slices are visualized using a Jini slice viewer, which can be used for various imaging modalities.

  18. Optimization of number and signal to noise ratio radiographs for defects 3D reconstruction in industrial control

    International Nuclear Information System (INIS)

    Bruandet, J.-P.

    2001-01-01

    Among numerous techniques for non-destructive evaluation (NOE), X-rays systems are well suited to inspect inner objects. Acquiring several radiographs of inspected objects under different points of view enables to recover a three dimensional structural information. In this NOE application, a tomographic testing is considered. This work deals with two tomographic testing optimizations in order to improve the characterization of defects that may occur into metallic welds. The first one consists in the optimization of the acquisition strategy. Because tomographic testing is made on-line, the total duration for image acquisition is fixed, limiting the number of available views. Hence, for a given acquisition duration, it is possible either to acquire a very limited number of radiographs with a good signal to noise ratio in each single acquisition or a larger number of radiographs with a limited signal to noise ratio. The second one consists in optimizing the 3D reconstruction algorithms from a limited number of cone-beam projections. To manage the lack of data, we first used algebraic reconstruction algorithms such as ART or regularized ICM. In terms of acquisition strategy optimization, an increase of the number of projections was proved to be valuable. Taking into account specific prior knowledge such as support constraint or physical noise model in attenuation images also improved reconstruction quality. Then, a new regularized region based reconstruction approach was developed. Defects to reconstruct are binary (lack of material in a homogeneous object). As a consequence, they are entirely described by their shapes. Because the number of defects to recover is unknown and is totally arbitrary, a level set formulation allowing handling topological changes was used. Results obtained with a regularized level-set reconstruction algorithm are optimistic in the proposed context. (author) [fr

  19. Exact iterative reconstruction for the interior problem

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Gullberg, Grant T

    2009-01-01

    There is a trend in single photon emission computed tomography (SPECT) that small and dedicated imaging systems are becoming popular. For example, many companies are developing small dedicated cardiac SPECT systems with different designs. These dedicated systems have a smaller field of view (FOV) than a full-size clinical system. Thus data truncation has become the norm rather than the exception in these systems. Therefore, it is important to develop region of interest (ROI) reconstruction algorithms using truncated data. This paper is a stepping stone toward this direction. This paper shows that the common generic iterative image reconstruction algorithms are able to exactly reconstruct the ROI under the conditions that the convex ROI is fully sampled and the image value in a sub-region within the ROI is known. If the ROI includes a sub-region that is outside the patient body, then the conditions can be easily satisfied.

  20. The use of a neuronavigator in combination with three-dimensional CT reconstruction and angiography

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Eiju; Mayanagi, Yoshiaki (Tokyo Metropolitan Police Hospital (Japan)); Ishii, Shigeo; Yoshimoto, Satonobu; Takakura, Kintomo

    1989-08-01

    A new CT-stereotactic device (navigator) has been developed which translates the operating site into preoperative CT coordination. We applied this system in combination with three-dimensional CT reconstruction and with angiogram. Method: The system consists of a 6-joint robotic arm and a personal computer. It projects the location of the arm tip onto a correlating CT slice with a cursor, which guides a surgeon toward his intracranial target during open surgery. The system translates the tip location into a 3D-CT reconstructed image and an angiogram. The system worked as the core of a multimodality navigation system during surgery. The detection error was less than 5 mm, which proved sufficient for open microsurgery. The system was combined with a 3D-CT reconstruction system. It produces 3D images and cuts off the surface image at the point of the cursor, simulating surgical excision. The navigator controlled the location of the cutting cursor, thus establishing a real-time surgical simulation. When the angiogram was referred to, it became easy to identify bridging veins within a small operating field. Conclusion: The neuronavigator combines various diagnostic images into one data base and effectively guides the surgeon during surgery. (author).

  1. The use of a neuronavigator in combination with three-dimensional CT reconstruction and angiography

    International Nuclear Information System (INIS)

    Watanabe, Eiju; Mayanagi, Yoshiaki; Ishii, Shigeo; Yoshimoto, Satonobu; Takakura, Kintomo.

    1989-01-01

    A new CT-stereotactic device (navigator) has been developed which translates the operating site into preoperative CT coordination. We applied this system in combination with three-dimensional CT reconstruction and with angiogram. Method: The system consists of a 6-joint robotic arm and a personal computer. It projects the location of the arm tip onto a correlating CT slice with a cursor, which guides a surgeon toward his intracranial target during open surgery. The system translates the tip location into a 3D-CT reconstructed image and an angiogram. The system worked as the core of a multimodality navigation system during surgery. The detection error was less than 5 mm, which proved sufficient for open microsurgery. The system was combined with a 3D-CT reconstruction system. It produces 3D images and cuts off the surface image at the point of the cursor, simulating surgical excision. The navigator controlled the location of the cutting cursor, thus establishing a real-time surgical simulation. When the angiogram was referred to, it became easy to identify bridging veins within a small operating field. Conclusion: The neuronavigator combines various diagnostic images into one data base and effectively guides the surgeon during surgery. (author)

  2. An Intelligent Actuator Fault Reconstruction Scheme for Robotic Manipulators.

    Science.gov (United States)

    Xiao, Bing; Yin, Shen

    2018-02-01

    This paper investigates a difficult problem of reconstructing actuator faults for robotic manipulators. An intelligent approach with fast reconstruction property is developed. This is achieved by using observer technique. This scheme is capable of precisely reconstructing the actual actuator fault. It is shown by Lyapunov stability analysis that the reconstruction error can converge to zero after finite time. A perfect reconstruction performance including precise and fast properties can be provided for actuator fault. The most important feature of the scheme is that, it does not depend on control law, dynamic model of actuator, faults' type, and also their time-profile. This super reconstruction performance and capability of the proposed approach are further validated by simulation and experimental results.

  3. Titanium template for scaphoid reconstruction.

    Science.gov (United States)

    Haefeli, M; Schaefer, D J; Schumacher, R; Müller-Gerbl, M; Honigmann, P

    2015-06-01

    Reconstruction of a non-united scaphoid with a humpback deformity involves resection of the non-union followed by bone grafting and fixation of the fragments. Intraoperative control of the reconstruction is difficult owing to the complex three-dimensional shape of the scaphoid and the other carpal bones overlying the scaphoid on lateral radiographs. We developed a titanium template that fits exactly to the surfaces of the proximal and distal scaphoid poles to define their position relative to each other after resection of the non-union. The templates were designed on three-dimensional computed tomography reconstructions and manufactured using selective laser melting technology. Ten conserved human wrists were used to simulate the reconstruction. The achieved precision measured as the deviation of the surface of the reconstructed scaphoid from its virtual counterpart was good in five cases (maximal difference 1.5 mm), moderate in one case (maximal difference 3 mm) and inadequate in four cases (difference more than 3 mm). The main problems were attributed to the template design and can be avoided by improved pre-operative planning, as shown in a clinical case. © The Author(s) 2014.

  4. The Role of the U.S. Army in Health System Reconstruction and Development During Counterinsurgency

    Science.gov (United States)

    2012-06-08

    freedom. — Amartya Sen Development as Freedom Military medical personnel involved in health system reconstruction and development in Iraq and...Afghanistan. New York: W.W. Norton and Company, 2009. Sen , Amartya . Development as Freedom. New York: Anchor Books, 2000. Special Inspector General for

  5. Anterior cruciate ligament reconstruction in a patient who has received systemic steroids for autoimmune disease

    Directory of Open Access Journals (Sweden)

    Tetsuro Ushio

    2018-01-01

    Conclusion: The patient who had received systemic steroids for a long time recovered satisfactorily after the operation, with achievement of knee stability and possibility to prevent degenerative change in the knee joint. ACL reconstruction should be considered even in patients with such medication.

  6. Reconstruction of 2D PET data with Monte Carlo generated system matrix for generalized natural pixels

    International Nuclear Information System (INIS)

    Vandenberghe, Stefaan; Staelens, Steven; Byrne, Charles L; Soares, Edward J; Lemahieu, Ignace; Glick, Stephen J

    2006-01-01

    In discrete detector PET, natural pixels are image basis functions calculated from the response of detector pairs. By using reconstruction with natural pixel basis functions, the discretization of the object into a predefined grid can be avoided. Here, we propose to use generalized natural pixel reconstruction. Using this approach, the basis functions are not the detector sensitivity functions as in the natural pixel case but uniform parallel strips. The backprojection of the strip coefficients results in the reconstructed image. This paper proposes an easy and efficient way to generate the matrix M directly by Monte Carlo simulation. Elements of the generalized natural pixel system matrix are formed by calculating the intersection of a parallel strip with the detector sensitivity function. These generalized natural pixels are easier to use than conventional natural pixels because the final step from solution to a square pixel representation is done by simple backprojection. Due to rotational symmetry in the PET scanner, the matrix M is block circulant and only the first blockrow needs to be stored. Data were generated using a fast Monte Carlo simulator using ray tracing. The proposed method was compared to a listmode MLEM algorithm, which used ray tracing for doing forward and backprojection. Comparison of the algorithms with different phantoms showed that an improved resolution can be obtained using generalized natural pixel reconstruction with accurate system modelling. In addition, it was noted that for the same resolution a lower noise level is present in this reconstruction. A numerical observer study showed the proposed method exhibited increased performance as compared to a standard listmode EM algorithm. In another study, more realistic data were generated using the GATE Monte Carlo simulator. For these data, a more uniform contrast recovery and a better contrast-to-noise performance were observed. It was observed that major improvements in contrast

  7. SU-D-17A-07: Development and Evaluation of a Prototype Ultrasonography Respiratory Monitoring System for 4DCT Reconstruction

    International Nuclear Information System (INIS)

    Yan, P; Cheng, S; Chao, C; Jain, A

    2014-01-01

    Purpose: Respiratory motion artifacts are commonly seen in the abdominal and thoracic CT images. A Real-time Position Management (RPM) system is integrated with CT simulator using abdominal surface as a surrogate for tracking the patient respiratory motion. The respiratory-correlated four-dimensional computed tomography (4DCT) is then reconstructed by GE advantage software. However, there are still artifacts due to inaccurate respiratory motion detecting and sorting methods. We developed an Ultrasonography Respiration Monitoring (URM) system which can directly monitor diaphragm motion to detect respiratory cycles. We also developed a new 4DCT sorting and motion estimation method to reduce the respiratory motion artifacts. The new 4DCT system was compared with RPM and the GE 4DCT system. Methods: Imaging from a GE CT scanner was simultaneously correlated with both the RPM and URM to detect respiratory motion. A radiation detector, Blackcat GM-10, recorded the X-ray on/off and synchronized with URM. The diaphragm images were acquired with Ultrasonix RP system. The respiratory wave was derived from diaphragm images and synchronized with CT scanner. A more precise peaks and valleys detection tool was developed and compared with RPM. The motion is estimated for the slices which are not in the predefined respiratory phases by using block matching and optical flow method. The CT slices were then sorted into different phases and reconstructed, compared with the images reconstructed from GE Advantage software using respiratory wave produced from RPM system. Results: The 4DCT images were reconstructed for eight patients. The discontinuity at the diaphragm level due to an inaccurate identification of phases by the RPM was significantly improved by URM system. Conclusion: Our URM 4DCT system was evaluated and compared with RPM and GE 4DCT system. The new system is user friendly and able to reduce motion artifacts. It also has the potential to monitor organ motion during

  8. Network Reconstruction of Dynamic Biological Systems

    OpenAIRE

    Asadi, Behrang

    2013-01-01

    Inference of network topology from experimental data is a central endeavor in biology, since knowledge of the underlying signaling mechanisms a requirement for understanding biological phenomena. As one of the most important tools in bioinformatics area, development of methods to reconstruct biological networks has attracted remarkable attention in the current decade. Integration of different data types can lead to remarkable improvements in our ability to identify the connectivity of differe...

  9. Super-Resolution Image Reconstruction Applied to Medical Ultrasound

    Science.gov (United States)

    Ellis, Michael

    Ultrasound is the preferred imaging modality for many diagnostic applications due to its real-time image reconstruction and low cost. Nonetheless, conventional ultrasound is not used in many applications because of limited spatial resolution and soft tissue contrast. Most commercial ultrasound systems reconstruct images using a simple delay-and-sum architecture on receive, which is fast and robust but does not utilize all information available in the raw data. Recently, more sophisticated image reconstruction methods have been developed that make use of far more information in the raw data to improve resolution and contrast. One such method is the Time-Domain Optimized Near-Field Estimator (TONE), which employs a maximum a priori estimation to solve a highly underdetermined problem, given a well-defined system model. TONE has been shown to significantly improve both the contrast and resolution of ultrasound images when compared to conventional methods. However, TONE's lack of robustness to variations from the system model and extremely high computational cost hinder it from being readily adopted in clinical scanners. This dissertation aims to reduce the impact of TONE's shortcomings, transforming it from an academic construct to a clinically viable image reconstruction algorithm. By altering the system model from a collection of individual hypothetical scatterers to a collection of weighted, diffuse regions, dTONE is able to achieve much greater robustness to modeling errors. A method for efficient parallelization of dTONE is presented that reduces reconstruction time by more than an order of magnitude with little loss in image fidelity. An alternative reconstruction algorithm, called qTONE, is also developed and is able to reduce reconstruction times by another two orders of magnitude while simultaneously improving image contrast. Each of these methods for improving TONE are presented, their limitations are explored, and all are used in concert to reconstruct in

  10. [The reconstruction of two-dimensional distributions of gas concentration in the flat flame based on tunable laser absorption spectroscopy].

    Science.gov (United States)

    Jiang, Zhi-Shen; Wang, Fei; Xing, Da-Wei; Xu, Ting; Yan, Jian-Hua; Cen, Ke-Fa

    2012-11-01

    The experimental method by using the tunable diode laser absorption spectroscopy combined with the model and algo- rithm was studied to reconstruct the two-dimensional distribution of gas concentration The feasibility of the reconstruction program was verified by numerical simulation A diagnostic system consisting of 24 lasers was built for the measurement of H2O in the methane/air premixed flame. The two-dimensional distribution of H2O concentration in the flame was reconstructed, showing that the reconstruction results reflect the real two-dimensional distribution of H2O concentration in the flame. This diagnostic scheme provides a promising solution for combustion control.

  11. SU-E-T-362: Automatic Catheter Reconstruction of Flap Applicators in HDR Surface Brachytherapy

    International Nuclear Information System (INIS)

    Buzurovic, I; Devlin, P; Hansen, J; O'Farrell, D; Bhagwat, M; Friesen, S; Damato, A; Lewis, J; Cormack, R

    2014-01-01

    Purpose: Catheter reconstruction is crucial for the accurate delivery of radiation dose in HDR brachytherapy. The process becomes complicated and time-consuming for large superficial clinical targets with a complex topology. A novel method for the automatic catheter reconstruction of flap applicators is proposed in this study. Methods: We have developed a program package capable of image manipulation, using C++class libraries of The-Visualization-Toolkit(VTK) software system. The workflow for automatic catheter reconstruction is: a)an anchor point is placed in 3D or in the axial view of the first slice at the tip of the first, last and middle points for the curved surface; b)similar points are placed on the last slice of the image set; c)the surface detection algorithm automatically registers the points to the images and applies the surface reconstruction filter; d)then a structured grid surface is generated through the center of the treatment catheters placed at a distance of 5mm from the patient's skin. As a result, a mesh-style plane is generated with the reconstructed catheters placed 10mm apart. To demonstrate automatic catheter reconstruction, we used CT images of patients diagnosed with cutaneous T-cell-lymphoma and imaged with Freiburg-Flap-Applicators (Nucletron™-Elekta, Netherlands). The coordinates for each catheter were generated and compared to the control points selected during the manual reconstruction for 16catheters and 368control point Results: The variation of the catheter tip positions between the automatically and manually reconstructed catheters was 0.17mm(SD=0.23mm). The position difference between the manually selected catheter control points and the corresponding points obtained automatically was 0.17mm in the x-direction (SD=0.23mm), 0.13mm in the y-direction (SD=0.22mm), and 0.14mm in the z-direction (SD=0.24mm). Conclusion: This study shows the feasibility of the automatic catheter reconstruction of flap applicators with a high

  12. The EQUAL-ESTRO audit on geometric reconstruction techniques in brachytherapy

    International Nuclear Information System (INIS)

    Roue, Amelie; Ferreira, Ivaldo H.; Dam, Jan Van; Svensson, Hans; Venselaar, Jack L.M.

    2006-01-01

    Background and purpose: A geometric check procedure of the reconstruction techniques used in brachytherapy treatment planning systems was developed by the EQUAL (European Quality Laboratory) Laboratory in the framework of the ESTRO's (European Society for Therapeutic Radiology and Oncology) project 'ESQUIRE' (Education Science and QUality assurance In Radiotherapy in Europe [Baumann M, Brada M. Towards equity in turbulent Europe ESTRO, European cooperation and the European Commission. Radiother Oncol 2005;75:251-2. Heeren G. The bright but ephemeral life of a rainbow. A chronical of seventeen years of intensive ESTRO-EU cooperation. Radiother Oncol 2005;75:253-7]) by the task group Braphyqs (Brachytherapy physics quality system). Patients and methods: The check is performed by using the so-called 'Baltas' phantom, mailed to the participating centres in order to check the local technique of geometric reconstruction used in dose calculation. Results: To validate the procedures, the check was first tested among the members of the Braphyqs Network. Since November 2002, the system is open to other centres. Until now 152 reconstructions have been checked. Eighty-six percent of the results were within an acceptance level after the first check. For the remaining 14%, a second check has been proposed. The results of the re-checks are in most cases within an acceptance level, except for 2% of the reconstructions. Conclusions: The geometric check is available from the EQUAL Laboratory for all the brachytherapy centres. The decrease of the deviations observed between the two checks demonstrates the importance of this kind of external audit as some errors were revealed, which were not discovered before with techniques used in clinical quality control routines

  13. Automated comparison of Bayesian reconstructions of experimental profiles with physical models

    International Nuclear Information System (INIS)

    Irishkin, Maxim

    2014-01-01

    In this work we developed an expert system that carries out in an integrated and fully automated way i) a reconstruction of plasma profiles from the measurements, using Bayesian analysis ii) a prediction of the reconstructed quantities, according to some models and iii) an intelligent comparison of the first two steps. This system includes systematic checking of the internal consistency of the reconstructed quantities, enables automated model validation and, if a well-validated model is used, can be applied to help detecting interesting new physics in an experiment. The work shows three applications of this quite general system. The expert system can successfully detect failures in the automated plasma reconstruction and provide (on successful reconstruction cases) statistics of agreement of the models with the experimental data, i.e. information on the model validity. (author) [fr

  14. The CMS muon system status and upgrades for LHC run-2 and performance of muon reconstruction with 13 TeV data

    CERN Document Server

    Battilana, Carlo

    2016-01-01

    The CMS muon system has played a key role for many physics results obtained from the LHC Run-1 and Run-2 data. During the Long Shutdown (2013-2014), as well as during the last year-end technical stop (2015-2016), significant consolidation and upgrades have been carried out on the muon detectors and on the L1 muon trigger. The algorithms for muon reconstruction and identification have also been improved for both the High-Level Trigger and the offline reconstruction. Results of the performance of muon detectors, reconstruction and trigger, obtained using data collected at 13 TeV center-of-mass energy during the 2015 and 2016 LHC runs, will be presented. Comparison of simulation with experimental data will also be discussed where relevant. The system's state of the art performance will be shown, and the improvements foreseen to achieve excellent overall quality of muon reconstruction in CMS, in the conditions expected during the high-luminosity phase of Run-2, will be described.

  15. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    Science.gov (United States)

    Boutchko, R.; Sitek, A.; Gullberg, G. T.

    2013-05-01

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio

  16. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    International Nuclear Information System (INIS)

    Boutchko, R; Gullberg, G T; Sitek, A

    2013-01-01

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio

  17. Tomographic image reconstruction using Artificial Neural Networks

    International Nuclear Information System (INIS)

    Paschalis, P.; Giokaris, N.D.; Karabarbounis, A.; Loudos, G.K.; Maintas, D.; Papanicolas, C.N.; Spanoudaki, V.; Tsoumpas, Ch.; Stiliaris, E.

    2004-01-01

    A new image reconstruction technique based on the usage of an Artificial Neural Network (ANN) is presented. The most crucial factor in designing such a reconstruction system is the network architecture and the number of the input projections needed to reconstruct the image. Although the training phase requires a large amount of input samples and a considerable CPU time, the trained network is characterized by simplicity and quick response. The performance of this ANN is tested using several image patterns. It is intended to be used together with a phantom rotating table and the γ-camera of IASA for SPECT image reconstruction

  18. Mastectomy Skin Necrosis After Breast Reconstruction: A Comparative Analysis Between Autologous Reconstruction and Implant-Based Reconstruction.

    Science.gov (United States)

    Sue, Gloria R; Lee, Gordon K

    2018-05-01

    Mastectomy skin necrosis is a significant problem after breast reconstruction. We sought to perform a comparative analysis on this complication between patients undergoing autologous breast reconstruction and patients undergoing 2-stage expander implant breast reconstruction. A retrospective review was performed on consecutive patients undergoing autologous breast reconstruction or 2-stage expander implant breast reconstruction by the senior author from 2006 through 2015. Patient demographic factors including age, body mass index, history of diabetes, history of smoking, and history of radiation to the breast were collected. Our primary outcome measure was mastectomy skin necrosis. Fisher exact test was used for statistical analysis between the 2 patient cohorts. The treatment patterns of mastectomy skin necrosis were then analyzed. We identified 204 patients who underwent autologous breast reconstruction and 293 patients who underwent 2-stage expander implant breast reconstruction. Patients undergoing autologous breast reconstruction were older, heavier, more likely to have diabetes, and more likely to have had prior radiation to the breast compared with patients undergoing implant-based reconstruction. The incidence of mastectomy skin necrosis was 30.4% of patients in the autologous group compared with only 10.6% of patients in the tissue expander group (P care in the autologous group, only 3.2% were treated with local wound care in the tissue expander group (P skin necrosis is significantly more likely to occur after autologous breast reconstruction compared with 2-stage expander implant-based breast reconstruction. Patients with autologous reconstructions are more readily treated with local wound care compared with patients with tissue expanders, who tended to require operative treatment of this complication. Patients considering breast reconstruction should be counseled appropriately regarding the differences in incidence and management of mastectomy skin

  19. A noise power spectrum study of a new model‐based iterative reconstruction system: Veo 3.0

    Science.gov (United States)

    Li, Guang; Liu, Xinming; Dodge, Cristina T.; Jensen, Corey T.

    2016-01-01

    The purpose of this study was to evaluate performance of the third generation of model‐based iterative reconstruction (MBIR) system, Veo 3.0, based on noise power spectrum (NPS) analysis with various clinical presets over a wide range of clinically applicable dose levels. A CatPhan 600 surrounded by an oval, fat‐equivalent ring to mimic patient size/shape was scanned 10 times at each of six dose levels on a GE HD 750 scanner. NPS analysis was performed on images reconstructed with various Veo 3.0 preset combinations for comparisons of those images reconstructed using Veo 2.0, filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASiR). The new Target Thickness setting resulted in higher noise in thicker axial images. The new Texture Enhancement function achieved a more isotropic noise behavior with less image artifacts. Veo 3.0 provides additional reconstruction options designed to allow the user choice of balance between spatial resolution and image noise, relative to Veo 2.0. Veo 3.0 provides more user selectable options and in general improved isotropic noise behavior in comparison to Veo 2.0. The overall noise reduction performance of both versions of MBIR was improved in comparison to FBP and ASiR, especially at low‐dose levels. PACS number(s): 87.57.‐s, 87.57.Q‐, 87.57.C‐, 87.57.nf, 87.57.C‐, 87.57.cm PMID:27685118

  20. Breast Reconstruction after a Bilateral Mastectomy Using the BRAVA Expansion System and Fat Grafting

    Directory of Open Access Journals (Sweden)

    Ondrej Mestak, MD

    2013-11-01

    Full Text Available Summary: Fat graft breast reconstruction following a mastectomy is always limited by the size of the skin envelope, which affects the amount of graft that can be injected in 1 session. Because the fat graft naturally resorbs in all patients, several sessions of fat grafting are necessary. BRAVA’s negative pressure causes a “reverse” expansion of the skin envelope, thus permitting more space for the fat graft. This allows decreasing number of required procedures for an adequate breast reconstruction. We operated on a 38-year-old patient 4 years after bilateral mastectomy without irradiation for breast cancer. Before the procedure, the patient was instructed to wear the BRAVA system for 12 hours daily for 2 months before the first session, at all times between the sessions and for 1 month following the last fat grafting session. We performed 3 fat grafting sessions, as planned. Altogether, we injected 840 cm3 of fat on the right side and 790 cm3 of fat on the left side. Four months after the last operation, the patient was very satisfied with her new breasts. The breasts were soft, with good sensation and a natural feel. Using the BRAVA external expansion system for the enhancement of fat grafting is a suitable technique for breast reconstruction after a mastectomy. This technique produces soft and natural feeling breasts in fewer operative sessions, with a minimal risk of complications. Patient compliance, however, is greatly needed to achieve the desired results.

  1. Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients

    Directory of Open Access Journals (Sweden)

    Juan Manuel Solano-Altamirano

    2017-11-01

    Full Text Available In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2, wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii runtime selection of the library in charge of performing the algebraic computations; (iii a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features.

  2. Event reconstruction with MarlinReco at the International Linear ...

    Indian Academy of Sciences (India)

    event reconstruction system, based on the particle flow concept. Version 00-02 contains the following processors: Tracker hit digitisation: For the vertex system there are two different digitisers available. A simple digitiser translates simulated .... of showers in the calorimeter. The Fortran-based simulation and reconstruction.

  3. Titan Density Reconstruction Using Radiometric and Cassini Attitude Control Flight Data

    Science.gov (United States)

    Andrade, Luis G., Jr.; Burk, Thomas A.

    2015-01-01

    This paper compares three different methods of Titan atmospheric density reconstruction for the Titan 87 Cassini flyby. T87 was a unique flyby that provided independent Doppler radiometric measurements on the ground throughout the flyby including at Titan closest approach. At the same time, the onboard accelerometer provided an independent estimate of atmospheric drag force and density during the flyby. These results are compared with the normal method of reconstructing atmospheric density using thruster on-time and angular momentum accumulation. Differences between the estimates are analyzed and a possible explanation for the differences is evaluated.

  4. A method of reconstructing the spatial measurement network by mobile measurement transmitter for shipbuilding

    International Nuclear Information System (INIS)

    Guo, Siyang; Lin, Jiarui; Yang, Linghui; Ren, Yongjie; Guo, Yin

    2017-01-01

    The workshop Measurement Position System (wMPS) is a distributed measurement system which is suitable for the large-scale metrology. However, there are some inevitable measurement problems in the shipbuilding industry, such as the restriction by obstacles and limited measurement range. To deal with these factors, this paper presents a method of reconstructing the spatial measurement network by mobile transmitter. A high-precision coordinate control network with more than six target points is established. The mobile measuring transmitter can be added into the measurement network using this coordinate control network with the spatial resection method. This method reconstructs the measurement network and broadens the measurement scope efficiently. To verify this method, two comparison experiments are designed with the laser tracker as the reference. The results demonstrate that the accuracy of point-to-point length is better than 0.4mm and the accuracy of coordinate measurement is better than 0.6mm. (paper)

  5. CT dose reduction using Automatic Exposure Control and iterative reconstruction: A chest paediatric phantoms study.

    Science.gov (United States)

    Greffier, Joël; Pereira, Fabricio; Macri, Francesco; Beregi, Jean-Paul; Larbi, Ahmed

    2016-04-01

    To evaluate the impact of Automatic Exposure Control (AEC) on radiation dose and image quality in paediatric chest scans (MDCT), with or without iterative reconstruction (IR). Three anthropomorphic phantoms representing children aged one, five and 10-year-old were explored using AEC system (CARE Dose 4D) with five modulation strength options. For each phantom, six acquisitions were carried out: one with fixed mAs (without AEC) and five each with different modulation strength. Raw data were reconstructed with Filtered Back Projection (FBP) and with two distinct levels of IR using soft and strong kernels. Dose reduction and image quality indices (Noise, SNR, CNR) were measured in lung and soft tissues. Noise Power Spectrum (NPS) was evaluated with a Catphan 600 phantom. The use of AEC produced a significant dose reduction (p<0.01) for all anthropomorphic sizes employed. According to the modulation strength applied, dose delivered was reduced from 43% to 91%. This pattern led to significantly increased noise (p<0.01) and reduced SNR and CNR (p<0.01). However, IR was able to improve these indices. The use of AEC/IR preserved image quality indices with a lower dose delivered. Doses were reduced from 39% to 58% for the one-year-old phantom, from 46% to 63% for the five-year-old phantom, and from 58% to 74% for the 10-year-old phantom. In addition, AEC/IR changed the patterns of NPS curves in amplitude and in spatial frequency. In chest paediatric MDCT, the use of AEC with IR allows one to obtain a significant dose reduction while maintaining constant image quality indices. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Results of using the NSTX-U Plasma Control System for scenario development

    Science.gov (United States)

    Boyer, M. D.; Battaglia, D. J.; Gates, D. A.; Gerhardt, S.; Menard, J.; Mueller, D.; Myers, C. E.; Ferron, J.; Sabbagh, S.; NSTX-U Team

    2016-10-01

    To best use the new capabilities of NSTX-U (e.g., higher toroidal field and additional, more distributed heating and current drive sources) and to achieve the operational goals of the program, major upgrades to the Plasma Control System have been made. These include improvements to vertical control, real-time equilibrium reconstruction, and plasma boundary shape control and the addition of flexible algorithms for beam modulation and gas injection to control the upgraded actuators in real-time, enabling their use in algorithms for stored energy and profile control. Control system commissioning activities have so far focused on vertical position and shape control. The upgraded controllers have been used to explore the vertical stability limits in inner wall limited and diverted discharges, and control of X-point and strike point locations has been demonstrated and is routinely used. A method for controlling the mid-plane inner gap, a challenge for STs, has also been added to improve reproducible control of diverted discharges. A supervisory shutdown handling algorithm has also been commissioned to ramp the plasma down and safely turn off actuators after an event such as loss of vertical control. Use of the upgrades has contributed to achieving 1MA, 0.65T scenarios with greater than 1s pulse length. Work supported by U.S. D.O.E. Contract No. DE-AC02-09CH11466.

  7. Multifractal signal reconstruction based on singularity power spectrum

    International Nuclear Information System (INIS)

    Xiong, Gang; Yu, Wenxian; Xia, Wenxiang; Zhang, Shuning

    2016-01-01

    Highlights: • We propose a novel multifractal reconstruction method based on singularity power spectrum analysis (MFR-SPS). • The proposed MFR-SPS method has better power characteristic than the algorithm in Fraclab. • Further, the SPS-ISE algorithm performs better than the SPS-MFS algorithm. • Based on the proposed MFR-SPS method, we can restructure singularity white fractal noise (SWFN) and linear singularity modulation (LSM) multifractal signal, in equivalent sense, similar with the linear frequency modulation(LFM) signal and WGN in the Fourier domain. - Abstract: Fractal reconstruction (FR) and multifractal reconstruction (MFR) can be considered as the inverse problem of singularity spectrum analysis, and it is challenging to reconstruct fractal signal in accord with multifractal spectrum (MFS). Due to the multiple solutions of fractal reconstruction, the traditional methods of FR/MFR, such as FBM based method, wavelet based method, random wavelet series, fail to reconstruct fractal signal deterministically, and besides, those methods neglect the power spectral distribution in the singular domain. In this paper, we propose a novel MFR method based singularity power spectrum (SPS). Supposing the consistent uniform covering of multifractal measurement, we control the traditional power law of each scale of wavelet coefficients based on the instantaneous singularity exponents (ISE) or MFS, simultaneously control the singularity power law based on the SPS, and deduce the principle and algorithm of MFR based on SPS. Reconstruction simulation and error analysis of estimated ISE, MFS and SPS show the effectiveness and the improvement of the proposed methods compared to those obtained by the Fraclab package.

  8. FIRST: Fast Iterative Reconstruction Software for (PET) tomography

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J L [Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S [Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Vaquero, J J [Unidad de Medicina y CirugIa Experimental, Hospital GU Gregorio Maranon, Madrid (Spain); Desco, M [Unidad de Medicina y CirugIa Experimental, Hospital GU Gregorio Maranon, Madrid (Spain); UdIas, J M [Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2006-09-21

    Small animal PET scanners require high spatial resolution and good sensitivity. To reconstruct high-resolution images in 3D-PET, iterative methods, such as OSEM, are superior to analytical reconstruction algorithms, although their high computational cost is still a serious drawback. The higher performance of modern computers could make iterative image reconstruction fast enough to be viable, provided we are able to deal with the large number of probability coefficients for the system response matrix in high-resolution PET scanners, which is a difficult task that prevents the algorithms from reaching peak computing performance. Considering all possible axial and in-plane symmetries, as well as certain quasi-symmetries, we have been able to reduce the memory requirements to store the system response matrix (SRM) well below 1 GB, which allows us to keep the whole response matrix of the system inside RAM of ordinary industry-standard computers, so that the reconstruction algorithm can achieve near peak performance. The elements of the SRM are stored as cubic spline profiles and matched to voxel size during reconstruction. In this way, the advantages of 'on-the-fly' calculation and of fully stored SRM are combined. The on-the-fly part of the calculation (matching the profile functions to voxel size) of the SRM accounts for 10-30% of the reconstruction time, depending on the number of voxels chosen. We tested our approach with real data from a commercial small animal PET scanner. The results (image quality and reconstruction time) show that the proposed technique is a feasible solution.

  9. FIRST: Fast Iterative Reconstruction Software for (PET) tomography

    International Nuclear Information System (INIS)

    Herraiz, J L; Espana, S; Vaquero, J J; Desco, M; UdIas, J M

    2006-01-01

    Small animal PET scanners require high spatial resolution and good sensitivity. To reconstruct high-resolution images in 3D-PET, iterative methods, such as OSEM, are superior to analytical reconstruction algorithms, although their high computational cost is still a serious drawback. The higher performance of modern computers could make iterative image reconstruction fast enough to be viable, provided we are able to deal with the large number of probability coefficients for the system response matrix in high-resolution PET scanners, which is a difficult task that prevents the algorithms from reaching peak computing performance. Considering all possible axial and in-plane symmetries, as well as certain quasi-symmetries, we have been able to reduce the memory requirements to store the system response matrix (SRM) well below 1 GB, which allows us to keep the whole response matrix of the system inside RAM of ordinary industry-standard computers, so that the reconstruction algorithm can achieve near peak performance. The elements of the SRM are stored as cubic spline profiles and matched to voxel size during reconstruction. In this way, the advantages of 'on-the-fly' calculation and of fully stored SRM are combined. The on-the-fly part of the calculation (matching the profile functions to voxel size) of the SRM accounts for 10-30% of the reconstruction time, depending on the number of voxels chosen. We tested our approach with real data from a commercial small animal PET scanner. The results (image quality and reconstruction time) show that the proposed technique is a feasible solution

  10. Value of selective MIP reconstructions of respiratory triggered 3D-TSE-MR cholangiography on a workstation versus standard MIP reconstructions and single-shot MRCP

    International Nuclear Information System (INIS)

    Schaible, R.; Textor, J.; Kreft, B.; Schild, H.; Neubrand, M.

    2001-01-01

    Comparison of anatomical visualisation and diagnostic value of selective MIP reconstructions of respiratory triggered 3D-TSE-MRCP versus standard MIP reconstructions and single-shot MRCP. Material and Methods: 50 patients with pancreaticobiliary disease were examined at 1.5 Tesla (ACS NT II, Philips Medical Systems) using a breath-hold single-shot (SS) and a respiratory triggered 3D-TSE-MRCP technique in 12 standard MIP projections. Additional selective MIP reconstructions with different slice thickness (2, 4, 10 cm) and projections were performed on a workstation. Visualization of the pancreaticobiliary system and the diagnostic value of the examinations were analysed. Results: Single-shot and 3D-TSE in standard projections showed comparable anatomical visualisation. On selective MIP reconstructions the biliary system (SS p [de

  11. [Development and current situation of reconstruction methods following total sacrectomy].

    Science.gov (United States)

    Huang, Siyi; Ji, Tao; Guo, Wei

    2018-05-01

    To review the development of the reconstruction methods following total sacrectomy, and to provide reference for finding a better reconstruction method following total sacrectomy. The case reports and biomechanical and finite element studies of reconstruction following total sacrectomy at home and abroad were searched. Development and current situation were summarized. After developing for nearly 30 years, great progress has been made in the reconstruction concept and fixation techniques. The fixation methods can be summarized as the following three strategies: spinopelvic fixation (SPF), posterior pelvic ring fixation (PPRF), and anterior spinal column fixation (ASCF). SPF has undergone technical progress from intrapelvic rod and hook constructs to pedicle and iliac screw-rod systems. PPRF and ASCF could improve the stability of the reconstruction system. Reconstruction following total sacrectomy remains a challenge. Reconstruction combining SPF, PPRF, and ASCF is the developmental direction to achieve mechanical stability. How to gain biological fixation to improve the long-term stability is an urgent problem to be solved.

  12. Simultaneous bilateral anterior cruciate ligament reconstruction: Cost comparison and functional results

    Directory of Open Access Journals (Sweden)

    Matjaž Sajovic

    2014-04-01

    Full Text Available Background: The ideal treatment for patients presenting with bilateral anterior cruciate ligament (ACL deficiency remains controversial. The purpose was to evaluate cost and mid-term functional results after one-stage bilateral ACL reconstruction using either hamstring or patella tendon autograft.Methods: We compared the mid-term outcome of 7 patients (14 knees who had one-stage bilateral ACL reconstruction with that of a matched group of patients who had unilateral reconstruction (21 patients.Results: The median duration of hospital stay was 4 nights (range 3 to 5 for the bilateral group and 2 nights (range, 1 to 4 for the control group. The duration of rehabilitation process in patients from the control group with unilateral ACL reconstruction was one week shorter (9 versus 8 weeks. In the bilateral group, the median Lysholm score was 96 (range 85–100 and in the control group, the median score was 93 (range 81–100. The median time to return to full-time work and to full sports was 9 weeks and 7 months for the simultaneous bilateral group and 8 weeks and 6 months for the unilateral group. Six patients (86 % in the bilateral group and 17 patients (81 % in the control group were still performing at their pre-injury level of activity. The Health Insurance Institute of Slovenia saves EUR 2,925 when we perform simultaneous bilateral ACL reconstruction instead of two stage ACL reconstruction.Conclusions: Mid-term clinical results suggested that simultaneous bilateral ACL reconstruction using either hamstring or patella tendon autograft is clinically effective. For patients presenting with symptomatic bilateral ACL deficient knees, one stage bilateral ACL reconstruction is reproducible, cost effective, and does not compromise functional results.

  13. Modernization of control system using the digital control system

    International Nuclear Information System (INIS)

    Carrasco, J. A.; Fernandez, L.; Jimenez, A.

    2002-01-01

    Nowadays, all plant automation tendencies are based on the use of Digital Control System. In big industrial plants the control systems employed are Distributed Control Systems (DCS). The addition of these systems in nuclear power plants,implies an important adaptation process, because most of them were installed using analog control systems. This paper presents the objectives and the first results obtained, in a modernization project, focused in obtaining an engineering platform for making test and analysis of changes prior to their implementation in a nuclear plant. Modernization, Upgrade, DCS, Automation, Simulation, Training. (Author)

  14. Event-Triggered Distributed Approximate Optimal State and Output Control of Affine Nonlinear Interconnected Systems.

    Science.gov (United States)

    Narayanan, Vignesh; Jagannathan, Sarangapani

    2017-06-08

    This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.

  15. Recovery after abdominal wall reconstruction

    DEFF Research Database (Denmark)

    Jensen, Kristian Kiim

    2017-01-01

    Incisional hernia is a common long-term complication to abdominal surgery, occurring in more than 20% of all patients. Some of these hernias become giant and affect patients in several ways. This patient group often experiences pain, decreased perceived body image, and loss of physical function......, which results in a need for surgical repair of the giant hernia, known as abdominal wall reconstruction. In the current thesis, patients with a giant hernia were examined to achieve a better understanding of their physical and psychological function before and after abdominal wall reconstruction. Study...... was lacking. Study II was a case-control study of the effects of an enhanced recovery after surgery pathway for patients undergoing abdominal wall reconstruction for a giant hernia. Sixteen consecutive patients were included prospectively after the implementation of a new enhanced recovery after surgery...

  16. Robust Sensor Faults Reconstruction for a Class of Uncertain Linear Systems Using a Sliding Mode Observer: An LMI Approach

    International Nuclear Information System (INIS)

    Iskander, Boulaabi; Faycal, Ben Hmida; Moncef, Gossa; Anis, Sellami

    2009-01-01

    This paper presents a design method of a Sliding Mode Observer (SMO) for robust sensor faults reconstruction of systems with matched uncertainty. This class of uncertainty requires a known upper bound. The basic idea is to use the H ∞ concept to design the observer, which minimizes the effect of the uncertainty on the reconstruction of the sensor faults. Specifically, we applied the equivalent output error injection concept from previous work in Fault Detection and Isolation (FDI) scheme. Then, these two problems of design and reconstruction can be expressed and numerically formulate via Linear Matrix Inequalities (LMIs) optimization. Finally, a numerical example is given to illustrate the validity and the applicability of the proposed approach.

  17. KIN-Nav navigation system for kinematic assessment in anterior cruciate ligament reconstruction: features, use, and perspectives.

    Science.gov (United States)

    Martelli, S; Zaffagnini, S; Bignozzi, S; Lopomo, N F; Iacono, F; Marcacci, M

    2007-10-01

    In this paper a new navigation system, KIN-Nav, developed for research and used during 80 anterior cruciate ligament (ACL) reconstructions is described. KIN-Nav is a user-friendly navigation system for flexible intraoperative acquisitions of anatomical and kinematic data, suitable for validation of biomechanical hypotheses. It performs real-time quantitative evaluation of antero-posterior, internal-external, and varus-valgus knee laxity at any degree of flexion and provides a new interface for this task, suitable also for comparison of pre-operative and post-operative knee laxity and surgical documentation. In this paper the concept and features of KIN-Nav, which represents a new approach to navigation and allows the investigation of new quantitative measurements in ACL reconstruction, are described. Two clinical studies are reported, as examples of clinical potentiality and correct use of this methodology. In this paper a preliminary analysis of KIN-Nav's reliability and clinical efficacy, performed during blinded repeated measures by three independent examiners, is also given. This analysis is the first assessment of the potential of navigation systems for evaluating knee kinematics.

  18. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    Science.gov (United States)

    Baxes, Gregory A. (Inventor); Linger, Timothy C. (Inventor)

    2011-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  19. Edge reconstruction effect in pristine and H-passivated zigzag silicon carbide nanoribbons.

    Science.gov (United States)

    Lou, Ping

    2011-10-14

    The edge reconstruction effect of the zigzag silicon carbide nanoribbons (zz SiC NRs) to a stable line of alternatively fused seven and five membered rings without and with H passivation have been studied using first principles density functional theory (DFT). The both side's edges of the pristine SiC are respectively terminated by Si and C atoms and are called the Si-edge and the C-edge, respectively. In the un-passivated systems, the C-edge reconstructed (Crc) could effectively lower the edge energy of the system, while the Si-edge reconstructed (Sirc) could raise the edge energy of the system. Thus, the Crc edge is the best edge for the edge reconstruction of the system, while the both edge reconstructed (brc) system is the metastability. Moreover, the brc system has a nonmagnetic metallic state, whereas the Crc system, as well as Sirc system, has a ferromagnetic metallic state. The edge reconstructed destroys the magnetic moment of the corresponding edge atoms. The magnetic moment arises from the unreconstructed zigzag edges. The pristine zz edge system has a ferrimagnetic metallic state. However, in the H-passivated systems, the unreconstructed zigzag edge (zz-H) is the best edge. The Crc-H system is the metastability. The Sirc-H system has only slightly higher energy than the Crc-H system, whereas the brc-H system of the pristine SiC NR has the highest edge energy. Thus, the H passivation would prevent the occurrence of edge reconstruction. Moreover, H passivation induces a metal-semiconductor transition in the zz and brc SiC NRs. Additionally, except for brc-H system which has non-magnetic semiconducting state, the zz-H, Crc-H, and Sirc-H systems have the magnetic state.

  20. Real-Time Imaging System for the OpenPET

    Science.gov (United States)

    Tashima, Hideaki; Yoshida, Eiji; Kinouchi, Shoko; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Suga, Mikio; Haneishi, Hideaki; Yamaya, Taiga

    2012-02-01

    The OpenPET and its real-time imaging capability have great potential for real-time tumor tracking in medical procedures such as biopsy and radiation therapy. For the real-time imaging system, we intend to use the one-pass list-mode dynamic row-action maximum likelihood algorithm (DRAMA) and implement it using general-purpose computing on graphics processing units (GPGPU) techniques. However, it is difficult to make consistent reconstructions in real-time because the amount of list-mode data acquired in PET scans may be large depending on the level of radioactivity, and the reconstruction speed depends on the amount of the list-mode data. In this study, we developed a system to control the data used in the reconstruction step while retaining quantitative performance. In the proposed system, the data transfer control system limits the event counts to be used in the reconstruction step according to the reconstruction speed, and the reconstructed images are properly intensified by using the ratio of the used counts to the total counts. We implemented the system on a small OpenPET prototype system and evaluated the performance in terms of the real-time tracking ability by displaying reconstructed images in which the intensity was compensated. The intensity of the displayed images correlated properly with the original count rate and a frame rate of 2 frames per second was achieved with average delay time of 2.1 s.

  1. An automated 3D reconstruction method of UAV images

    Science.gov (United States)

    Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping

    2015-10-01

    In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.

  2. ADART: an adaptive algebraic reconstruction algorithm for discrete tomography.

    Science.gov (United States)

    Maestre-Deusto, F Javier; Scavello, Giovanni; Pizarro, Joaquín; Galindo, Pedro L

    2011-08-01

    In this paper we suggest an algorithm based on the Discrete Algebraic Reconstruction Technique (DART) which is capable of computing high quality reconstructions from substantially fewer projections than required for conventional continuous tomography. Adaptive DART (ADART) goes a step further than DART on the reduction of the number of unknowns of the associated linear system achieving a significant reduction in the pixel error rate of reconstructed objects. The proposed methodology automatically adapts the border definition criterion at each iteration, resulting in a reduction of the number of pixels belonging to the border, and consequently of the number of unknowns in the general algebraic reconstruction linear system to be solved, being this reduction specially important at the final stage of the iterative process. Experimental results show that reconstruction errors are considerably reduced using ADART when compared to original DART, both in clean and noisy environments.

  3. Ultrasound-controlled neuronavigator-guided brain surgery.

    Science.gov (United States)

    Koivukangas, J; Louhisalmi, Y; Alakuijala, J; Oikarinen, J

    1993-07-01

    The development of a unique neurosurgical navigator is described and a preliminary series of seven cases of intracerebral lesions approached with the assistance of this neuronavigation system under ultrasound control is presented. The clinical series included five low-grade astrocytomas, one chronic intracerebral hematoma, and one porencephalic cyst. Management procedures included biopsy in all cases, drainage of the hematoma, and endoscopy and fenestration for the cyst. The features of the neuronavigation system are interactive reconstructions of preoperative computerized tomography and magnetic resonance imaging data, corresponding intraoperative ultrasound images, versatility of the interchangeable end-effector instruments, graphic presentation of instruments on the reconstructed images, and voice control of the system. The principle of a common axis in the reconstructed images served to align the navigational pointer, biopsy guide, endoscope guide, ultrasound transducer, and surgical microscope to the brain anatomy. Intraoperative ultrasound imaging helped to verify the accuracy of the neuronavigator and check the results of the procedures. The arm of the neuronavigation system served as a holder for instruments, such as the biopsy guide, endoscope guide, and ultrasound transducer, in addition to functioning as a navigational pointer. Also, the surgical microscope was aligned with the neuronavigator for inspection and biopsy of the hematoma capsule to rule out tumor etiology. Voice control freed the neurosurgeon from manual exercises during start-up and calibration of the system.

  4. Simbol-X Formation Flight and Image Reconstruction

    Science.gov (United States)

    Civitani, M.; Djalal, S.; Le Duigou, J. M.; La Marle, O.; Chipaux, R.

    2009-05-01

    Simbol-X is the first operational mission relying on two satellites flying in formation. The dynamics of the telescope, due to the formation flight concept, raises a variety of problematic, like image reconstruction, that can be better evaluated via a simulation tools. We present here the first results obtained with Simulos, simulation tool aimed to study the relative spacecrafts navigation and the weight of the different parameters in image reconstruction and telescope performance evaluation. The simulation relies on attitude and formation flight sensors models, formation flight dynamics and control, mirror model and focal plane model, while the image reconstruction is based on the Line of Sight (LOS) concept.

  5. Computer-assisted midface reconstruction in Treacher Collins syndrome part 1: skeletal reconstruction.

    Science.gov (United States)

    Herlin, Christian; Doucet, Jean Charles; Bigorre, Michèle; Khelifa, Hatem Cheikh; Captier, Guillaume

    2013-10-01

    Treacher Collins syndrome (TCS) is a severe and complex craniofacial malformation affecting the facial skeleton and soft tissues. The palate as well as the external and middle ear are also affected, but his prognosis is mainly related to neonatal airway management. Methods of zygomatico-orbital reconstruction are numerous and currently use primarily autologous bone, lyophilized cartilage, alloplastic implants, or even free flaps. This work developed a reliable "customized" method of zygomatico-orbital bony reconstruction using a generic reference model tailored to each patient. From a standard computed tomography (CT) acquisition, we studied qualitatively and quantitatively the skeleton of four individuals with TCS whose age was between 6 and 20 years. In parallel, we studied 40 controls at the same age to obtain a morphometric database of reference. Surgical simulation was carried out using validated software used in craniofacial surgery. The zygomatic hypoplasia was very important quantitatively and morphologically in all TCS individuals. Orbital involvement was mainly morphological, with volumes comparable to the controls of the same age. The control database was used to create three-dimensional computer models to be used in the manufacture of cutting guides for autologous cranial bone grafts or alloplastic implants perfectly adapted to each patient's morphology. Presurgical simulation was also used to fabricate custom positioning guides permitting a simple and reliable surgical procedure. The use of a virtual database allowed us to design a reliable and reproducible skeletal reconstruction method for this rare and complex syndrome. The use of presurgical simulation tools seem essential in this type of craniofacial malformation to increase the reliability of these uncommon and complex surgical procedures, and to ensure stable results over time. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights

  6. DQS advisor: a visual interface and knowledge-based system to balance dose, quality, and reconstruction speed in iterative CT reconstruction with application to NLM-regularization

    International Nuclear Information System (INIS)

    Zheng, Z; Papenhausen, E; Mueller, K

    2013-01-01

    Motivated by growing concerns with regards to the x-ray dose delivered to the patient, low-dose computed tomography (CT) has gained substantial interest in recent years. However, achieving high-quality CT reconstructions from the limited projection data collected at reduced x-ray radiation is challenging, and iterative algorithms have been shown to perform much better than conventional analytical schemes in these cases. A problem with iterative methods in general is that they require users to set many parameters, and if set incorrectly high reconstruction time and/or low image quality are likely consequences. Since the interactions among parameters can be complex and thus effective settings can be difficult to identify for a given scanning scenario, these choices are often left to a highly-experienced human expert. To help alleviate this problem, we devise a computer-based assistant for this purpose, called dose, quality and speed (DQS)-advisor. It allows users to balance the three most important CT metrics–-DQS-–by ways of an intuitive visual interface. Using a known gold-standard, the system uses the ant-colony optimization algorithm to generate the most effective parameter settings for a comprehensive set of DQS configurations. A visual interface then presents the numerical outcome of this optimization, while a matrix display allows users to compare the corresponding images. The interface allows users to intuitively trade-off GPU-enabled reconstruction speed with quality and dose, while the system picks the associated parameter settings automatically. Further, once the knowledge has been generated, it can be used to correctly set the parameters for any new CT scan taken at similar scenarios. (paper)

  7. The Effect of Intravenous Acetaminophen on Postoperative Pain and Narcotic Consumption After Vaginal Reconstructive Surgery: A Double-Blind Randomized Placebo-Controlled Trial.

    Science.gov (United States)

    Crisp, Catrina C; Khan, Madiha; Lambers, Donna L; Westermann, Lauren B; Mazloomdoost, Donna M; Yeung, Jennifer J; Kleeman, Steven D; Pauls, Rachel N

    This study aimed to determine the effect of intravenous acetaminophen versus placebo on postoperative pain, satisfaction with pain control, and narcotic use after vaginal reconstructive surgery. This was an institutional review board-approved, double-blind placebo-controlled randomized trial. Women scheduled for reconstructive surgery including vaginal hysterectomy and vaginal vault suspension were enrolled. Subjects received 1000 mg of intravenous acetaminophen or 100 mL placebo every 6 hours for 24 hours. Pain and satisfaction with pain control were assessed using visual analog scales and a numeric rating scale. Visual analog scales were collected at 18 and 24 hours postoperatively and at discharge. A sample size calculation determined 90 subjects would be required to detect a 30% reduction in postoperative narcotic use with 80% power and significance level of 0.05. One hundred subjects were enrolled. There were no differences in demographics or surgical data and no difference in narcotic consumption at multiple evaluation points. At 18 hours postoperative, median pain scores at rest were 27.0 (interquartile range, 35.0) for acetaminophen and 35.0 (interquartile range, 44.5) for placebo, finding no difference (P = 0.465). Furthermore, pain with activity and numeric rating scale-assessed pain scales were similar (P = 0.328; P = 0.597). Although satisfaction with pain control was high overall (91.5), no difference was noted. Patients undergoing vaginal reconstructive surgery receiving perioperative intravenous acetaminophen did not experience a decrease in narcotic requirements or postoperative pain when compared with placebo. Reassuringly, pain scores were low and satisfaction with pain control was high for all subjects. The general use of this medication is not supported in these surgical patients.

  8. Athletic Performance at the National Basketball Association Combine After Anterior Cruciate Ligament Reconstruction.

    Science.gov (United States)

    Mehran, Nima; Williams, Phillip N; Keller, Robert A; Khalil, Lafi S; Lombardo, Stephen J; Kharrazi, F Daniel

    2016-05-01

    Anterior cruciate ligament (ACL) injuries are significant injuries in elite-level basketball players. In-game statistical performance after ACL reconstruction has been demonstrated; however, few studies have reviewed functional performance in National Basketball Association (NBA)-caliber athletes after ACL reconstruction. To compare NBA Combine performance of athletes after ACL reconstruction with an age-, size-, and position-matched control group of players with no previous reported knee injury requiring surgery. We hypothesized that there is no difference between the 2 groups in functional performance. Cross-sectional study; Level of evidence, 3. A total of 1092 NBA-caliber players who participated in the NBA Combine between 2000 and 2015 were reviewed. Twenty-one athletes were identified as having primary ACL reconstruction prior to participation in the combine. This study group was compared with an age-, size-, and position-matched control group in objective functional performance testing, including the shuttle run test, lane agility test, three-quarter court sprint, vertical jump (no step), and maximum vertical jump (running start). With regard to quickness and agility, both ACL-reconstructed athletes and controls scored an average of 11.5 seconds in the lane agility test and 3.1 seconds in the shuttle run test (P = .745 and .346, respectively). Speed and acceleration was measured by the three-quarter court sprint, in which both the study group and the control group averaged 3.3 seconds (P = .516). In the maximum vertical jump, which demonstrates an athlete's jumping ability with a running start, the ACL reconstruction group had an average height of 33.6 inches while the controls averaged 33.9 inches (P = .548). In the standing vertical jump, the ACL reconstruction group averaged 28.2 inches while the control group averaged 29.2 inches (P = .067). In athletes who are able to return to sport and compete at a high level such as the NBA Combine, there is no

  9. Clinical Investigations of a CT-based reconstruction and 3D-Treatment planning system in interstitial brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kolotas, C; Zamboglou, N [Strahlenklinik, Stadtische Kliniken Offenbach, Offenbach (Germany)

    1999-12-31

    Purpose: Development, application and evaluation of a CT-guided implantation technique and a fully CT based treatment planning procedure for brachytherapy. Methods and Materials : A brachytherapy procedure based on CT-guided implantation technique and CT based treatment planning has been developed and clinically evaluated. For this purpose a software system (PROMETHEUS) for the 3D reconstruction of brachytherapy catheters and patient anatomy using only CT scans has been developed. An interface for the Nucletron Plato BPS treatment planning system for the optimisation and calculation of dose distribution has been devised. The planning target volume(s) are defined as sets of points using contouring tools and are for optimisation of the 3D dose distribution. Dose-volume histogram-based analysis of the dose distribution enables a clinically realistic evaluation of the brachytherapy application to be made. The CT-guided implantation of catheters and the CT-based treatment planning procedure has been performed for interstitial brachytherapy and for different tumour and anatomical localizations in 197 patients between 1996 and 1997. Results : The accuracy of the CT reconstruction was tested using a quality assurance phantom an an interstitial implant of 12 needles and compared with the results of reconstruction using radiographs[hs. Both methods give comparable results with regard to accuracy. The CT based reconstruction was faster. Clinical feasibility has been proven in pre-irradiated recurrences of brain tumour, in pre-treated recurrences or metastatic disease, and in breast carcinomas. The tumour volume treated ranged from 5.1 - 2741 cm3. Analysis of the implant quality showed a slight significant lower COIN value for the bone implants, but no differences in respect to the planning target volume. Conclusions : With the integration of CT imaging in the treatment planning and documentation of brachytherapy, we have a new CT based quality assurance method to evaluate

  10. Clinical Investigations of a CT-based reconstruction and 3D-Treatment planning system in interstitial brachytherapy

    International Nuclear Information System (INIS)

    Kolotas, C.; Zamboglou, N.

    1998-01-01

    Purpose: Development, application and evaluation of a CT-guided implantation technique and a fully CT based treatment planning procedure for brachytherapy. Methods and Materials : A brachytherapy procedure based on CT-guided implantation technique and CT based treatment planning has been developed and clinically evaluated. For this purpose a software system (PROMETHEUS) for the 3D reconstruction of brachytherapy catheters and patient anatomy using only CT scans has been developed. An interface for the Nucletron Plato BPS treatment planning system for the optimisation and calculation of dose distribution has been devised. The planning target volume(s) are defined as sets of points using contouring tools and are for optimisation of the 3D dose distribution. Dose-volume histogram-based analysis of the dose distribution enables a clinically realistic evaluation of the brachytherapy application to be made. The CT-guided implantation of catheters and the CT-based treatment planning procedure has been performed for interstitial brachytherapy and for different tumour and anatomical localizations in 197 patients between 1996 and 1997. Results : The accuracy of the CT reconstruction was tested using a quality assurance phantom an an interstitial implant of 12 needles and compared with the results of reconstruction using radiographs[hs. Both methods give comparable results with regard to accuracy. The CT based reconstruction was faster. Clinical feasibility has been proven in pre-irradiated recurrences of brain tumour, in pre-treated recurrences or metastatic disease, and in breast carcinomas. The tumour volume treated ranged from 5.1 - 2741 cm3. Analysis of the implant quality showed a slight significant lower COIN value for the bone implants, but no differences in respect to the planning target volume. Conclusions : With the integration of CT imaging in the treatment planning and documentation of brachytherapy, we have a new CT based quality assurance method to evaluate

  11. Solutions for autonomy and reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Wilming, Wilhelm

    2011-07-01

    Stand-alone systems, whether solar home or pico solar systems, have reached a cost level at which they are an increasingly interesting option for wide-area development in grid-remote regions or for reconstruction where the previous grid infrastructure has been destroyed. (orig.)

  12. Three-dimensional reconstructions in neuroanatomy

    International Nuclear Information System (INIS)

    Kretschmann, H.J.; Vogt, H.; Schuetz, T.; Gerke, M.; Riedel, A.; Buhmann, C.; Wesemann, M.; Mueller, D.

    1991-01-01

    Computer-aided 3D reconstructions of neurofunctional systems and structures are generated as a reference for neuroimaging (CT, MRI, PET). The clinical application of these 3D reconstructions requires a coordinate system and conditions resembling the intravital neuroanatomy as far as possible. In this paper the neuroanatomical reference system (NeuRef) of the Department of Neuroanatomy of Hannover Medical School is presented. This consists of methods to record brain structures from serial sections with minimal error (less than 1 mm) and to display 3D brain models derived from such a data base. In addition, NeuRef is able to generate sections through, for instance, the visual and pyramidal system and to transfer these data onto a corresponcing CT image. Therefore, this method can serve as a diagnostic aid in neuroradiology, in operation planning, and radiotherapy. It can also be used in PACS. (orig.) [de

  13. Palaeogeographic reconstruction of Minchin palaeolake system, South America: The influence of astronomical forcing

    Directory of Open Access Journals (Sweden)

    Andrea Sánchez-Saldías

    2014-03-01

    Full Text Available Current palaeoclimatic reconstructions for the Río de la Plata region during the latest Pleistocene (30,000–10,000 yr BP propose dry conditions, with rainfall at the Last Glacial Maximum amounting to one-third of today's precipitation. Despite the consequential low primary productivity inferred, an impressive megafauna existed in the area at that time. Here we explore the influence of the flooding from a huge extinct system of water bodies in the Andean Altiplano as a likely source for wet regimes that might have increased the primary productivity and, hence, the vast number of megaherbivores. The system was reconstructed using specifically combined software resources, including Insola, Global Mapper v13, Surfer and Matlab. Changes in water volume and area covered were related to climatic change, assessed through a model of astronomical forcing that describes the changes in insolation at the top of the atmosphere in the last 50,000 yr BP. The model was validated by comparing its results with several proxies (CH4, CO2, D, 18O from dated cores taken from the ice covering Antarctic lakes Vostok and EPICA Dome C. It is concluded that the Altiplano Lake system drained towards the southeast in the rainy seasons and that it must have been a major source of water for the Paraná-Plata Basin, consequently enhancing primary productivity within it.

  14. [3-D reconstruction of the breast implants from isocentric stereoscopic x-ray images for the application monitoring and irradiation planning of a remote-controlled interstitial afterloading method].

    Science.gov (United States)

    Löffler, E; Sauer, O

    1988-01-01

    An individual irradiation planning and application monitoring by ISXP is presented for a remote-controlled interstitial afterloading technique using 192Ir wires which is applied in breast-preserving radiotherapy. The errors of reconstruction of the implants are discussed. The consideration of errors for ISXP can be extended to other stereoscopic methods. In this case the quality considerations made by other authors have to be enlarged. The maximum reconstruction error was investigated for a given digitalization precision, focus size, and object blur by patient's movements in dependence on the deviation angle. The optimum deviation angle is about 45 degrees, depending on the importance given to the individual parts and almost without being influenced by the relation between the isocenter-film and the focus-isocenter distances. In case of an optimized deviation angle, a displacement of an implant point of 1 mm leads to a maximum reconstruction error of 2 mm. The dosage is made according to the Paris system. If the circumcircle radius of the application triangle is modified by 1 mm, a dosage modification of 14% will be the consequence in case of very short wires and a small side length. A verification in a phantom showed a positioning error below 0.5 mm. The dosage error is 2% due to the mutual compensation of the direction-isotropic reconstruction errors of the needles the number of which is between seven and nine.

  15. Three-dimensional reconstruction of breast implants based on isocentric stereoscopic X-ray pictures (ISXP) for application monitoring and irradiation planning of a remote-controlled interstitial afterloading method

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, E.; Sauer, O.

    1988-01-01

    An individual irradiation planning and application monitoring by ISXP is presented for a remote-controlled interstitial afterloading technique using /sup 192/Ir wires which is applied in breast-preserving radiotherapy. The errors of reconstruction of the implants are discussed. The consideration of errors for ISXP can be extended to other stereoscopic methods. In this case the quality considerations made by other authors have to be enlarged. The maximum reconstruction error was investigated for a given digitalization precision, focus size, and object blur by patient's movements in dependence on the deviation angle. The optimum deviation angle is about 45/sup 0/, depending on the importance given to the individual parts and almost without being influenced by the relation between the distance isocenter-film and the distance focus-isocenter. In case of an optimized deviation angle, a displacement of an implant point of 1 mm leads to a maximum reconstruction error of 2 mm. The dosage is made according to the Paris system. If the circumcircle radius of the application triangle is modified by 1 mm, a dosage modification of 14% will be the consequence in case of very short wires and a small side length. A verification in a phantom showed a positioning error below 0.5 mm. The dosage error is 2% due to the mutual compensation of the direction-isotropic reconstruction errors of the needles the number of which is between seven and nine.

  16. Prosthetic breast reconstruction: indications and update

    Science.gov (United States)

    Quinn, Tam T.; Miller, George S.; Rostek, Marie; Cabalag, Miguel S.; Rozen, Warren M.

    2016-01-01

    Background Despite 82% of patients reporting psychosocial improvement following breast reconstruction, only 33% patients choose to undergo surgery. Implant reconstruction outnumbers autologous reconstruction in many centres. Methods A systematic review of the literature was undertaken. Inclusion required: (I) Meta-analyses or review articles; (II) adult patients aged 18 years or over undergoing alloplastic breast reconstruction; (III) studies including outcome measures; (IV) case series with more than 10 patients; (V) English language; and (VI) publication after 1st January, 2000. Results After full text review, analysis and data extraction was conducted for a total of 63 articles. Definitive reconstruction with an implant can be immediate or delayed. Older patients have similar or even lower complication rates to younger patients. Complications include capsular contracture, hematoma and infection. Obesity, smoking, large breasts, diabetes and higher grade tumors are associated with increased risk of wound problems and reconstructive failure. Silicone implant patients have higher capsular contracture rates but have higher physical and psychosocial function. There were no associations made between silicone implants and cancer or systemic disease. There were no differences in outcomes or complications between round and shaped implants. Textured implants have a lower risk of capsular contracture than smooth implants. Smooth implants are more likely to be displaced as well as having higher rates of infection. Immediate breast reconstruction (IBR) gives the best aesthetic outcome if radiotherapy is not required but has a higher rate of capsular contracture and implant failure. Delayed-immediate reconstruction patients can achieve similar aesthetic results to IBR whilst preserving the breast skin if radiotherapy is required. Delayed breast reconstruction (DBR) patients have fewer complications than IBR patients. Conclusions Implant reconstruction is a safe and popular

  17. Patient-specific reconstruction plates are the missing link in computer-assisted mandibular reconstruction: A showcase for technical description.

    Science.gov (United States)

    Cornelius, Carl-Peter; Smolka, Wenko; Giessler, Goetz A; Wilde, Frank; Probst, Florian A

    2015-06-01

    Preoperative planning of mandibular reconstruction has moved from mechanical simulation by dental model casts or stereolithographic models into an almost completely virtual environment. CAD/CAM applications allow a high level of accuracy by providing a custom template-assisted contouring approach for bone flaps. However, the clinical accuracy of CAD reconstruction is limited by the use of prebent reconstruction plates, an analogue step in an otherwise digital workstream. In this paper the integration of computerized, numerically-controlled (CNC) milled, patient-specific mandibular plates (PSMP) within the virtual workflow of computer-assisted mandibular free fibula flap reconstruction is illustrated in a clinical case. Intraoperatively, the bone segments as well as the plate arms showed a very good fit. Postoperative CT imaging demonstrated close approximation of the PSMP and fibular segments, and good alignment of native mandible and fibular segments and intersegmentally. Over a follow-up period of 12 months, there was an uneventful course of healing with good bony consolidation. The virtual design and automated fabrication of patient-specific mandibular reconstruction plates provide the missing link in the virtual workflow of computer-assisted mandibular free fibula flap reconstruction. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. Urgent reconstruction and re-equipping of coking plants

    Energy Technology Data Exchange (ETDEWEB)

    Kvitkin, I.A.; Martynenko, V.M.; Rozenfel' d, M.S.; Svyatogorov, A.A.; Shvartsman, I.G.

    1986-03-01

    This paper discusses the various options involved: complete or partial reconstruction of existing buildings and equipment or new construction with new equipment and new underground and surface communications. It explains that reconstruction work is divided into three phases: initial phase (clearance, dismantling, closing down coking batteries); basic phase (fitting heat-resistant materials, prestart-up assembly work); final phase (drying out, heating up, adjustments, start-up). A structured scheme for a typical initial phase is described and a method of calculating the durations of the various phases is discussed. Conclusion is that there is an urgent requirement for a document to be produced for the control of reconstruction work; it should contain standard durations and could serve as a standard for coking plant reconstruction work.

  19. Ways of improving preparatory stage and reconstruction of coking plants

    Energy Technology Data Exchange (ETDEWEB)

    Rozenfel' d, M.S.; Martynenko, V.M.; Svyatogorov, A.A.; Kvitkin, I.A.; Zhurba, A.I.; Gurtovnik, P.F.

    1987-06-01

    Discusses economic and technological aspects of coking plant reconstruction and modernization in the USSR. Effects of standardized technologies on plant reconstruction are analyzed. A standardized planning procedure jointly developed by research institutes in the USSR for plant modernization or reconstruction is discussed: selecting the optimum reconstruction and repair time, sequence of operations without stoppage of a coke oven battery, coke oven cooling, repair of coke oven liners, heating systems, coke oven equipment, drying, initial heating, testing battery equipment. The procedure is aimed at reducing coke losses and eliminating delays during reconstruction operations. A graphic method for modelling plant reconstruction is discussed.

  20. Optical image reconstruction using DC data: simulations and experiments

    International Nuclear Information System (INIS)

    Huabei Jiang; Paulsen, K.D.; Oesterberg, U.L.

    1996-01-01

    In this paper, we explore optical image formation using a diffusion approximation of light propagation in tissue which is modelled with a finite-element method for optically heterogeneous media. We demonstrate successful image reconstruction based on absolute experimental DC data obtained with a continuous wave 633 nm He-Ne laser system and a 751 nm diode laser system in laboratory phantoms having two optically distinct regions. The experimental systems used exploit a tomographic type of data collection scheme that provides information from which a spatially variable optical property map is deduced. Reconstruction of scattering coefficient only and simultaneous reconstruction of both scattering and absorption profiles in tissue-like phantoms are obtained from measured and simulated data. Images with different contrast levels between the heterogeneity and the background are also reported and the results show that although it is possible to obtain qualitative visual information on the location and size of a heterogeneity, it may not be possible to quantitatively resolve contrast levels or optical properties using reconstructions from DC data only. Sensitivity of image reconstruction to noise in the measurement data is investigated through simulations. The application of boundary constraints has also been addressed. (author)

  1. Probability Density Function Method for Observing Reconstructed Attractor Structure

    Institute of Scientific and Technical Information of China (English)

    陆宏伟; 陈亚珠; 卫青

    2004-01-01

    Probability density function (PDF) method is proposed for analysing the structure of the reconstructed attractor in computing the correlation dimensions of RR intervals of ten normal old men. PDF contains important information about the spatial distribution of the phase points in the reconstructed attractor. To the best of our knowledge, it is the first time that the PDF method is put forward for the analysis of the reconstructed attractor structure. Numerical simulations demonstrate that the cardiac systems of healthy old men are about 6 - 6.5 dimensional complex dynamical systems. It is found that PDF is not symmetrically distributed when time delay is small, while PDF satisfies Gaussian distribution when time delay is big enough. A cluster effect mechanism is presented to explain this phenomenon. By studying the shape of PDFs, that the roles played by time delay are more important than embedding dimension in the reconstruction is clearly indicated. Results have demonstrated that the PDF method represents a promising numerical approach for the observation of the reconstructed attractor structure and may provide more information and new diagnostic potential of the analyzed cardiac system.

  2. Singular value decomposition for photon-processing nuclear imaging systems and applications for reconstruction and computing null functions.

    Science.gov (United States)

    Jha, Abhinav K; Barrett, Harrison H; Frey, Eric C; Clarkson, Eric; Caucci, Luca; Kupinski, Matthew A

    2015-09-21

    Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and

  3. Singular value decomposition for photon-processing nuclear imaging systems and applications for reconstruction and computing null functions

    Science.gov (United States)

    Jha, Abhinav K.; Barrett, Harrison H.; Frey, Eric C.; Clarkson, Eric; Caucci, Luca; Kupinski, Matthew A.

    2015-09-01

    Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and

  4. A system for the 3D reconstruction of retracted-septa PET data using the EM algorithm

    International Nuclear Information System (INIS)

    Johnson, C.A.; Yan, Y.; Carson, R.E.; Martino, R.L.; Daube-Witherspoon, M.E.

    1995-01-01

    The authors have implemented the EM reconstruction algorithm for volume acquisition from current generation retracted-septa PET scanners. Although the software was designed for a GE Advance scanner, it is easily adaptable to other 3D scanners. The reconstruction software was written for an Intel iPSC/860 parallel computer with 128 compute nodes. Running on 32 processors, the algorithm requires approximately 55 minutes per iteration to reconstruct a 128 x 128 x 35 image. No projection data compression schemes or other approximations were used in the implementation. Extensive use of EM system matrix (C ij ) symmetries (including the 8-fold in-plane symmetries, 2-fold axial symmetries, and axial parallel line redundancies) reduces the storage cost by a factor of 188. The parallel algorithm operates on distributed projection data which are decomposed by base-symmetry angles. Symmetry operators copy and index the C ij chord to the form required for the particular symmetry. The use of asynchronous reads, lookup tables, and optimized image indexing improves computational performance

  5. Dual Super-Systolic Core for Real-Time Reconstructive Algorithms of High-Resolution Radar/SAR Imaging Systems

    Science.gov (United States)

    Atoche, Alejandro Castillo; Castillo, Javier Vázquez

    2012-01-01

    A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode. PMID:22736964

  6. A faster ordered-subset convex algorithm for iterative reconstruction in a rotation-free micro-CT system

    International Nuclear Information System (INIS)

    Quan, E; Lalush, D S

    2009-01-01

    We present a faster iterative reconstruction algorithm based on the ordered-subset convex (OSC) algorithm for transmission CT. The OSC algorithm was modified such that it calculates the normalization term before the iterative process in order to save computational cost. The modified version requires only one backprojection per iteration as compared to two required for the original OSC. We applied the modified OSC (MOSC) algorithm to a rotation-free micro-CT system that we proposed previously, observed its performance, and compared with the OSC algorithm for 3D cone-beam reconstruction. Measurements on the reconstructed images as well as the point spread functions show that MOSC is quite similar to OSC; in noise-resolution trade-off, MOSC is comparable with OSC in a regular-noise situation and it is slightly worse than OSC in an extremely high-noise situation. The timing record shows that MOSC saves 25-30% CPU time, depending on the number of iterations used. We conclude that the MOSC algorithm is more efficient than OSC and provides comparable images.

  7. Prompt meningeal reconstruction mediated by oxygen-sensitive AKAP12 scaffolding protein after central nervous system injury

    Science.gov (United States)

    Cha, Jong-Ho; Wee, Hee-Jun; Seo, Ji Hae; Ahn, Bum Ju; Park, Ji-Hyeon; Yang, Jun-Mo; Lee, Sae-Won; Lee, Ok-Hee; Lee, Hyo-Jong; Gelman, Irwin H.; Arai, Ken; Lo, Eng H.; Kim, Kyu-Won

    2015-01-01

    The meninges forms a critical epithelial barrier, which protects the central nervous system (CNS), and therefore its prompt reconstruction after CNS injury is essential for reducing neuronal damage. Meningeal cells migrate into the lesion site after undergoing an epithelial-mesenchymal transition (EMT) and repair the impaired meninges. However, the molecular mechanisms of meningeal EMT remain largely undefined. Here we show that TGF-β1 and retinoic acid (RA) released from the meninges, together with oxygen tension, could constitute the mechanism for rapid meningeal reconstruction. AKAP12 is an effector of this mechanism, and its expression in meningeal cells is regulated by integrated upstream signals composed of TGF-β1, RA and oxygen tension. Functionally, AKAP12 modulates meningeal EMT by regulating the TGF-β1-non-Smad-SNAI1 signalling pathway. Collectively, TGF-β1, RA and oxygen tension can modulate the dynamic change in AKAP12 expression, causing prompt meningeal reconstruction after CNS injury by regulating the transition between the epithelial and mesenchymal states of meningeal cells. PMID:25229625

  8. OPERA, an automatic PSF reconstruction software for Shack-Hartmann AO systems: application to Altair

    Science.gov (United States)

    Jolissaint, Laurent; Veran, Jean-Pierre; Marino, Jose

    2004-10-01

    When doing high angular resolution imaging with adaptive optics (AO), it is of crucial importance to have an accurate knowledge of the point spread function associated with each observation. Applications are numerous: image contrast enhancement by deconvolution, improved photometry and astrometry, as well as real time AO performance evaluation. In this paper, we present our work on automatic PSF reconstruction based on control loop data, acquired simultaneously with the observation. This problem has already been solved for curvature AO systems. To adapt this method to another type of WFS, a specific analytical noise propagation model must be established. For the Shack-Hartmann WFS, we are able to derive a very accurate estimate of the noise on each slope measurement, based on the covariances of the WFS CCD pixel values in the corresponding sub-aperture. These covariances can be either derived off-line from telemetry data, or calculated by the AO computer during the acquisition. We present improved methods to determine 1) r0 from the DM drive commands, which includes an estimation of the outer scale L0 2) the contribution of the high spatial frequency component of the turbulent phase, which is not corrected by the AO system and is scaled by r0. This new method has been implemented in an IDL-based software called OPERA (Performance of Adaptive Optics). We have tested OPERA on Altair, the recently commissioned Gemini-North AO system, and present our preliminary results. We also summarize the AO data required to run OPERA on any other AO system.

  9. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU.

    Science.gov (United States)

    Arefan, D; Talebpour, A; Ahmadinejhad, N; Kamali Asl, A

    2015-06-01

    Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU). At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU) card and the Graphics Processing Unit (GPU). It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU).

  10. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

    Directory of Open Access Journals (Sweden)

    Arefan D

    2015-06-01

    Full Text Available Digital Breast Tomosynthesis (DBT is a technology that creates three dimensional (3D images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU. At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU card and the Graphics Processing Unit (GPU. It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU.

  11. Automatic maximum entropy spectral reconstruction in NMR

    International Nuclear Information System (INIS)

    Mobli, Mehdi; Maciejewski, Mark W.; Gryk, Michael R.; Hoch, Jeffrey C.

    2007-01-01

    Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time intervals, result in prohibitively lengthy data collection times in order to achieve the full resolution afforded by high field magnets. A variety of approaches that involve nonuniform sampling have been proposed, each utilizing a non-Fourier method of spectrum analysis. A very general non-Fourier method that is capable of utilizing data collected using any of the proposed nonuniform sampling strategies is maximum entropy reconstruction. A limiting factor in the adoption of maximum entropy reconstruction in NMR has been the need to specify non-intuitive parameters. Here we describe a fully automated system for maximum entropy reconstruction that requires no user-specified parameters. A web-accessible script generator provides the user interface to the system

  12. General approaches to the reconstruction of radiation monitoring systems at the nuclear power plants

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Garin, E.V.; Istomin, N.I.; Perminov, V.G.

    1998-01-01

    The article deals with the issue of the Chernobyl NPP radiation monitoring systems and equipment to make them meet the latest safety requirements and take into account the radiation situation at the ChNPP site after the accident of 1986. The descriptions of the existing radiation monitoring systems are given. The appropriate modifications in the systems structure as the initial (first) stage in establishing a new radiation monitoring system (RMS) based on the NPP general radiation safety principles are proposed. It is noted that reconstruction shall include the number of technical means important for arranging the informational and analytical system in addition to the existing one without any violations in its features. Later, the system shall be extended due to the technological functions extension. 7 refs., 4 figs

  13. Complete reconstruction of all annunciator panels and their auxiliary facilities at central regulation office in KURRI

    International Nuclear Information System (INIS)

    Ishihara, Shinji; Kimura, Yasuhiro; Nakamura, Hiroshi; Nishino, Kunihiko; Higashiyama, Yukihiro; Okamoto, Ken-ichi; Maki, Hirotoshi; Kimura, Itsuro.

    1988-08-01

    At the Research Reactor Institute of Kyoto University (KURRI) which is a joint research center with Kyoto University Reactor KUR and so forth for nation-wide universities, most of important alarm signals from KUR, KUCA and other radiation facilities are concentrated at the central regulation office. Although the function of this office had been kept normal for more than 20 years, it became necessary to reconstruct all of its annunciator panels in order to add new alarm systems, for example a newly built spent fuel storage building and a newly installed cold neutron source in KUR, and to improve the functions of old alarm systems. Thereupon, all of the annunciator panels of this office together with their auxiliary facilities were completely reconstructed in the fiscal year of 1985. Furthermore the room of this office was enlarged and reconstructed thoroughly, since it was rather narrow and inconvenient before. This report describes the reconstruction work in detail: (1) Function of the central regulation office, (2) Outline of this work, (3) Design concept, (4) Method and special cares, (5) Reconstruction of the room, (6) New utility tunnels for cables, (7) Configulation and structure of new annunciator panels, (8) Cables and their reconnection, (9) Annunciator circuits, (10) Function of each panel, (11) Test and performance, and (12) concluding remarks and future plans. This experience may be useful for the case of reconstruction of the control desk and instrumentation panels of KUR in future. (author)

  14. Orbital Reconstruction: Patient-Specific Orbital Floor Reconstruction Using a Mirroring Technique and a Customized Titanium Mesh.

    Science.gov (United States)

    Tarsitano, Achille; Badiali, Giovanni; Pizzigallo, Angelo; Marchetti, Claudio

    2016-10-01

    Enophthalmos is a severe complication of primary reconstruction of orbital floor fractures. The goal of secondary reconstruction procedures is to restore symmetrical globe positions to recover function and aesthetics. The authors propose a new method of orbital floor reconstruction using a mirroring technique and a customized titanium mesh, printed using a direct metal laser-sintering method. This reconstructive protocol involves 4 steps: mirroring of the healthy orbit at the affected site, virtual design of a patient-specific orbital floor mesh, CAM procedures for direct laser-sintering of the customized titanium mesh, and surgical insertion of the device. Using a computed tomography data set, the normal, uninjured side of the craniofacial skeleton was reflected onto the contralateral injured side, and a reconstructive orbital floor mesh was designed virtually on the mirrored orbital bone surface. The solid-to-layer files of the mesh were then manufactured using direct metal laser sintering, which resolves the shaping and bending biases inherent in the indirect method. An intraoperative navigation system ensured accuracy of the entire procedure. Clinical outcomes were assessed using 3dMD photogrammetry and computed tomography data in 7 treated patients. The technique described here appears to be a viable method to correct complex orbital floor defects needing delayed reconstruction. This study represents the first step in the development of a wider experimental protocol for orbital floor reconstruction using computer-assisted design-computer-assisted manufacturing technology.

  15. MRI-three dimensional reconstruction of biliary system in choledochal cyst

    International Nuclear Information System (INIS)

    Kaji, Tatsuru; Takamatsu, Hideo; Noguchi, Hiroyuki; Tahara, Hiroyuki; Fukushige, Takahiko; Kajiya, Hiroshi; Kajiya, Yoshiki

    1995-01-01

    We report a trial of MR cholangiography in children with choledochal cyst. Recently, three-dimensional reconstruction using magnetic resolution imaging of biliary system (MR cholangiography) has been reported as the less-invasive diagnostic method for obstructive lesions of biliary system. Forty-eight cases of choledochal cyst were treated at Kagoshima University Hospital in the past ten years. In 22 of them, intrahepatic duct dilatation was revealed by preoperative or operative cholangiogram. We tried MR cholangiography in nine cases of 22 cases pre- and/or post-operatively. Five cases had MR cholangiography preoperatively. Intrahepatic biliary dilatation was revealed in all of them and intrahepatic biliary stenosis was revealed in two cases. These findings were almost the same as those by preoperative or operative cholangiogram. MR cholangiography was applied on seven cases postoperatively: 3 cases had fine construction of biliary system, because they still had intrahepatic biliary dilatation, and no dilatation was seen in 4 cases, because of good operative results. This method has advantages of less-invasive in children, no need of contrast dye, and fair delineation of biliary system as samely as endoscopic retrograde cholangiography (ERCP) and percutaneous transhepatic cholangiography (PTC). In cases of huge biliary dilatation, MR cholangiography provides more information concerning intrahepatic biliary than ERCP. (author)

  16. Superficial vessel reconstruction with a multiview camera system

    Science.gov (United States)

    Marreiros, Filipe M. M.; Rossitti, Sandro; Karlsson, Per M.; Wang, Chunliang; Gustafsson, Torbjörn; Carleberg, Per; Smedby, Örjan

    2016-01-01

    Abstract. We aim at reconstructing superficial vessels of the brain. Ultimately, they will serve to guide the deformation methods to compensate for the brain shift. A pipeline for three-dimensional (3-D) vessel reconstruction using three mono-complementary metal-oxide semiconductor cameras has been developed. Vessel centerlines are manually selected in the images. Using the properties of the Hessian matrix, the centerline points are assigned direction information. For correspondence matching, a combination of methods was used. The process starts with epipolar and spatial coherence constraints (geometrical constraints), followed by relaxation labeling and an iterative filtering where the 3-D points are compared to surfaces obtained using the thin-plate spline with decreasing relaxation parameter. Finally, the points are shifted to their local centroid position. Evaluation in virtual, phantom, and experimental images, including intraoperative data from patient experiments, shows that, with appropriate camera positions, the error estimates (root-mean square error and mean error) are ∼1  mm. PMID:26759814

  17. Reconstructive Recall of Linguistic Style. Technical Report No. 286.

    Science.gov (United States)

    Brewer, William F.; Hay, Anne E.

    A study investigated reconstructive recall for linguistic style. It was hypothesized that (1) features of linguistic style would be more difficult to recall than underlying content, (2) reconstructive errors would include stylistic forms recalled as standard forms when subjects lacked productive control of a particular feature of a style, and (3)…

  18. Assessment of phylogenetic sensitivity for reconstructing HIV-1 epidemiological relationships.

    Science.gov (United States)

    Beloukas, Apostolos; Magiorkinis, Emmanouil; Magiorkinis, Gkikas; Zavitsanou, Asimina; Karamitros, Timokratis; Hatzakis, Angelos; Paraskevis, Dimitrios

    2012-06-01

    Phylogenetic analysis has been extensively used as a tool for the reconstruction of epidemiological relations for research or for forensic purposes. It was our objective to assess the sensitivity of different phylogenetic methods and various phylogenetic programs to reconstruct epidemiological links among HIV-1 infected patients that is the probability to reveal a true transmission relationship. Multiple datasets (90) were prepared consisting of HIV-1 sequences in protease (PR) and partial reverse transcriptase (RT) sampled from patients with documented epidemiological relationship (target population), and from unrelated individuals (control population) belonging to the same HIV-1 subtype as the target population. Each dataset varied regarding the number, the geographic origin and the transmission risk groups of the sequences among the control population. Phylogenetic trees were inferred by neighbor-joining (NJ), maximum likelihood heuristics (hML) and Bayesian methods. All clusters of sequences belonging to the target population were correctly reconstructed by NJ and Bayesian methods receiving high bootstrap and posterior probability (PP) support, respectively. On the other hand, TreePuzzle failed to reconstruct or provide significant support for several clusters; high puzzling step support was associated with the inclusion of control sequences from the same geographic area as the target population. In contrary, all clusters were correctly reconstructed by hML as implemented in PhyML 3.0 receiving high bootstrap support. We report that under the conditions of our study, hML using PhyML, NJ and Bayesian methods were the most sensitive for the reconstruction of epidemiological links mostly from sexually infected individuals. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Image reconstruction by domain-transform manifold learning

    Science.gov (United States)

    Zhu, Bo; Liu, Jeremiah Z.; Cauley, Stephen F.; Rosen, Bruce R.; Rosen, Matthew S.

    2018-03-01

    Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction—automated transform by manifold approximation (AUTOMAP)—which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development

  20. Fully 3D tomographic reconstruction by Monte Carlo simulation of the system matrix in preclinical PET with iodine 124

    International Nuclear Information System (INIS)

    Moreau, Matthieu

    2014-01-01

    Immuno-PET imaging can be used to assess the pharmacokinetic in radioimmunotherapy. When using iodine-124, PET quantitative imaging is limited by physics-based degrading factors within the detection system and the object, such as the long positron range in water and the complex spectrum of gamma photons. The objective of this thesis was to develop a fully 3D tomographic reconstruction method (S(MC)2PET) using Monte Carlo simulations for estimating the system matrix, in the context of preclinical imaging with iodine-124. The Monte Carlo simulation platform GATE was used for that respect. Several complexities of system matrices were calculated, with at least a model of the PET system response function. Physics processes in the object was either neglected or taken into account using a precise or a simplified object description. The impact of modelling refinement and statistical variance related to the system matrix elements was evaluated on final reconstructed images. These studies showed that a high level of complexity did not always improve qualitative and quantitative results, owing to the high-variance of the associated system matrices. (author)

  1. Task-driven image acquisition and reconstruction in cone-beam CT

    International Nuclear Information System (INIS)

    Gang, Grace J; Stayman, J Webster; Siewerdsen, Jeffrey H; Ehtiati, Tina

    2015-01-01

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d′) is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ±30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d′ for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d′ by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the

  2. Control of optical transport parameters of 'porous medium – supercritical fluid' systems

    Energy Technology Data Exchange (ETDEWEB)

    Zimnyakov, D A; Ushakova, O V; Yuvchenko, S A [Yuri Gagarin State Technical University of Saratov, Saratov (Russian Federation); Bagratashvili, V N [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-11-30

    The possibility of controlling optical transport parameters (in particular, transport scattering coefficient) of porous systems based on polymer fibres, saturated with carbon dioxide in different phase states (gaseous, liquid and supercritical) has been experimentally studied. An increase in the pressure of the saturating medium leads to a rise of its refractive index and, correspondingly, the diffuse-transmission coefficient of the system due to the decrease in the transport scattering coefficient. It is shown that, in the case of subcritical saturating carbon dioxide, the small-angle diffuse transmission of probed porous layers at pressures close to the saturated vapour pressure is determined by the effect of capillary condensation in pores. The immersion effect in 'porous medium – supercritical fluid' systems, where the fluid pressure is used as a control parameter, is considered. The results of reconstructing the values of transport scattering coefficient of probed layers for different refractive indices of a saturating fluid are presented. (radiation scattering)

  3. THREE-DIMENSIONAL RECONSTRUCTION OF THE VIRTUAL PLANT BRANCHING STRUCTURE BASED ON TERRESTRIAL LIDAR TECHNOLOGIES AND L-SYSTEM

    Directory of Open Access Journals (Sweden)

    Y. Gong

    2018-04-01

    Full Text Available For the purpose of extracting productions of some specific branching plants effectively and realizing its 3D reconstruction, Terrestrial LiDAR data was used as extraction source of production, and a 3D reconstruction method based on Terrestrial LiDAR technologies combined with the L-system was proposed in this article. The topology structure of the plant architectures was extracted using the point cloud data of the target plant with space level segmentation mechanism. Subsequently, L-system productions were obtained and the structural parameters and production rules of branches, which fit the given plant, was generated. A three-dimensional simulation model of target plant was established combined with computer visualization algorithm finally. The results suggest that the method can effectively extract a given branching plant topology and describes its production, realizing the extraction of topology structure by the computer algorithm for given branching plant and also simplifying the extraction of branching plant productions which would be complex and time-consuming by L-system. It improves the degree of automation in the L-system extraction of productions of specific branching plants, providing a new way for the extraction of branching plant production rules.

  4. Three-Dimensional Reconstruction of the Virtual Plant Branching Structure Based on Terrestrial LIDAR Technologies and L-System

    Science.gov (United States)

    Gong, Y.; Yang, Y.; Yang, X.

    2018-04-01

    For the purpose of extracting productions of some specific branching plants effectively and realizing its 3D reconstruction, Terrestrial LiDAR data was used as extraction source of production, and a 3D reconstruction method based on Terrestrial LiDAR technologies combined with the L-system was proposed in this article. The topology structure of the plant architectures was extracted using the point cloud data of the target plant with space level segmentation mechanism. Subsequently, L-system productions were obtained and the structural parameters and production rules of branches, which fit the given plant, was generated. A three-dimensional simulation model of target plant was established combined with computer visualization algorithm finally. The results suggest that the method can effectively extract a given branching plant topology and describes its production, realizing the extraction of topology structure by the computer algorithm for given branching plant and also simplifying the extraction of branching plant productions which would be complex and time-consuming by L-system. It improves the degree of automation in the L-system extraction of productions of specific branching plants, providing a new way for the extraction of branching plant production rules.

  5. Integrated control systems

    International Nuclear Information System (INIS)

    Smith, D.J.

    1991-01-01

    This paper reports that instrument manufacturers must develop standard network interfaces to pull together interrelated systems such as automatic start-up, optimization programs, and online diagnostic systems. In the past individual control system manufacturers have developed their own data highways with proprietary hardware and software designs. In the future, electric utilities will require that future systems, irrespective of manufacturer, should be able to communicate with each other. Until now the manufactures of control systems have not agreed on the standard high-speed data highway system. Currently, the Electric Power Research Institute (EPRI), in conjunction with several electric utilities and equipment manufactures, is working on developing a standard protocol for communicating between various manufacturers' control systems. According to N. Michael of Sargent and Lundy, future control room designs will require that more of the control and display functions be accessible from the control room through CRTs. There will be less emphasis on traditional hard-wired control panels

  6. Three-dimensional reconstruction of a left ventricular shape from time and viewpoint varying X-ray cineangiocardiograms. Development of a system for clinical use

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Masamitsu; Yoshimoto, Fujiichi [Wakayama Univ. (Japan). Faculty of Engineering; Sato, Yoshinobu; Hanayama, Masayuki; Ueguchi, Takashi; Naito, Hiroaki; Tamura, Shinichi

    1998-05-01

    This paper describes a system for the accurate three-dimensional reconstruction of a left ventricular shape from x-ray cineangiocardiograms with different viewpoints as well as times. We perform direct B-spline fitting to a 4D closed surface model, called ``BF4D method``, using an iterative method consisting of two stages, so as to deal with fragmented contours such as extracted from x-ray cineangiocardiograms. However, it is necessary for making clinical use that we can set parameters easily to reconstruct the 3D model. Therefore we develop a system considering user interface. The system consists of three subsystems; The first subsystem is a contour detector of a left ventricle, the second one is for setting parameters for 3D reconstruction, and the third one is fitting to the model. We also show the results using real left ventricular angiographic image sequences. (author)

  7. Reactor control system. PWR

    International Nuclear Information System (INIS)

    2009-01-01

    At present, 23 units of PWR type reactors have been operated in Japan since the start of Mihama Unit 1 operation in 1970 and various improvements have been made to upgrade operability of power stations as well as reliability and safety of power plants. As the share of nuclear power increases, further improvements of operating performance such as load following capability will be requested for power stations with more reliable and safer operation. This article outlined the reactor control system of PWR type reactors and described the control performance of power plants realized with those systems. The PWR control system is characterized that the turbine power is automatic or manually controlled with request of the electric power system and then the nuclear power is followingly controlled with the change of core reactivity. The system mainly consists of reactor automatic control system (control rod control system), pressurizer pressure control system, pressurizer water level control system, steam generator water level control system and turbine bypass control system. (T. Tanaka)

  8. BSF control system

    International Nuclear Information System (INIS)

    Irie, Y.; Ishii, K.; Ninomiya, S.; Sasaki, H.; Sakai, I.

    1982-08-01

    The booster synchrotron utilization facility (BSF) is a facility which utilizes the four fifths of available beam pulses from the KEK booster synchrotron. The BSF control system includes the beam line control, interactions with the PS central control room and the experimental facilities, and the access control system. A brief description of the various components in the control system is given. (author)

  9. Cost minimisation analysis of using acellular dermal matrix (Strattice™) for breast reconstruction compared with standard techniques.

    Science.gov (United States)

    Johnson, R K; Wright, C K; Gandhi, A; Charny, M C; Barr, L

    2013-03-01

    We performed a cost analysis (using UK 2011/12 NHS tariffs as a proxy for cost) comparing immediate breast reconstruction using the new one-stage technique of acellular dermal matrix (Strattice™) with implant versus the standard alternative techniques of tissue expander (TE)/implant as a two-stage procedure and latissimus dorsi (LD) flap reconstruction. Clinical report data were collected for operative time, length of stay, outpatient procedures, and number of elective and emergency admissions in our first consecutive 24 patients undergoing one-stage Strattice reconstruction. Total cost to the NHS based on tariff, assuming top-up payments to cover Strattice acquisition costs, was assessed and compared to the two historical control groups matched on key variables. Eleven patients having unilateral Strattice reconstruction were compared to 10 having TE/implant reconstruction and 10 having LD flap and implant reconstruction. Thirteen patients having bilateral Strattice reconstruction were compared to 12 having bilateral TE/implant reconstruction. Total costs were: unilateral Strattice, £3685; unilateral TE, £4985; unilateral LD and implant, £6321; bilateral TE, £5478; and bilateral Strattice, £6771. The cost analysis shows a financial advantage of using acellular dermal matrix (Strattice) in unilateral breast reconstruction versus alternative procedures. The reimbursement system in England (Payment by Results) is based on disease-related groups similar to that of many countries across Europe and tariffs are based on reported hospital costs, making this analysis of relevance in other countries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Model-based image reconstruction in X-ray computed tomography

    NARCIS (Netherlands)

    Zbijewski, Wojciech Bartosz

    2006-01-01

    The thesis investigates the applications of iterative, statistical reconstruction (SR) algorithms in X-ray Computed Tomography. Emphasis is put on various aspects of system modeling in statistical reconstruction. Fundamental issues such as effects of object discretization and algorithm

  11. Grey signal processing and data reconstruction in the non-diffracting beam triangulation measurement system

    Science.gov (United States)

    Meng, Hao; Wang, Zhongyu; Fu, Jihua

    2008-12-01

    The non-diffracting beam triangulation measurement system possesses the advantages of longer measurement range, higher theoretical measurement accuracy and higher resolution over the traditional laser triangulation measurement system. Unfortunately the measurement accuracy of the system is greatly degraded due to the speckle noise, the CCD photoelectric noise and the background light noise in practical applications. Hence, some effective signal processing methods must be applied to improve the measurement accuracy. In this paper a novel effective method for removing the noises in the non-diffracting beam triangulation measurement system is proposed. In the method the grey system theory is used to process and reconstruct the measurement signal. Through implementing the grey dynamic filtering based on the dynamic GM(1,1), the noises can be effectively removed from the primary measurement data and the measurement accuracy of the system can be improved as a result.

  12. Model-Based Reconstructive Elasticity Imaging Using Ultrasound

    Directory of Open Access Journals (Sweden)

    Salavat R. Aglyamov

    2007-01-01

    Full Text Available Elasticity imaging is a reconstructive imaging technique where tissue motion in response to mechanical excitation is measured using modern imaging systems, and the estimated displacements are then used to reconstruct the spatial distribution of Young's modulus. Here we present an ultrasound elasticity imaging method that utilizes the model-based technique for Young's modulus reconstruction. Based on the geometry of the imaged object, only one axial component of the strain tensor is used. The numerical implementation of the method is highly efficient because the reconstruction is based on an analytic solution of the forward elastic problem. The model-based approach is illustrated using two potential clinical applications: differentiation of liver hemangioma and staging of deep venous thrombosis. Overall, these studies demonstrate that model-based reconstructive elasticity imaging can be used in applications where the geometry of the object and the surrounding tissue is somewhat known and certain assumptions about the pathology can be made.

  13. CT stereotactic reconstruction of oral cavity interstitial plastic tube implants

    International Nuclear Information System (INIS)

    Crispin, V.; Carrasco, P.; Guardino, C.; Lopez, J.; Chust, M.; Arribas, L.; Mengual, J.; Miragall, E.G.; Hernandez, A.; Carrascosa, M.; Cardenal, R.; Guinot, J.; Casana, M.; Prats, C.

    1996-01-01

    The continuous using of CT images in external RT have made us think of its applications for plastic tube interstitial implants in the oral cavity in order to calculate the dose delivered by an interstitial implant at any point of the image and its relationship with local control and complications. Moreover, the outcoming result of the whole treatment depends on whether the irradiated volume up to a prescribed dose includes the CTV or not. None of these objectives may be achieved through the classical film reconstruction. Although film reconstruction appeared as the only accurate method for these purposes in the early eighties, it does not allow us to calculate doses at critical points or volumes. Therefore possible complications over critical tissues surrounding the radioactive implant cannot be taken into account in a precise way. The use of a stereotactic coordinate system could make CT reconstruction as precise as film reconstruction. As our stereotactic frame can be placed over the patient in 'direct' or 'inverse' positions it is really interesting in the applications we are talking about. We also have used a non invasive standard plexiglass helmet commonly used in stereotactic fractionated irradiations in teletherapy. It fits perfectly the patient's head and avoids any movement of the patient during the CT exam. We do parallel slices, approximately perpendicular to the iridium wires (following the Paris System), covering the whole implant helping ourselves with both bone and implant references. The dose-volume histograms and DNR (dose nonuniformity ratio) index defined by Saw et Al are used for intercomparison between the ortogonal and the stereotactic reconstructions. The existence of a minimum in the DNR curve indicates that there is a reference dose rate for this implant which provides an optimal dose distribution. If we calculate which is the minimum of each method, we find they are very close. So, as both methods give very similar results, we can conclude

  14. Reconstruction of Optical Thickness from Hoffman Modulation Contrast Images

    DEFF Research Database (Denmark)

    Olsen, Niels Holm; Sporring, Jon; Nielsen, Mads

    2003-01-01

    Hoffman microscopy imaging systems are part of numerous fertility clinics world-wide. We discuss the physics of the Hoffman imaging system from optical thickness to image intensity, implement a simple, yet fast, reconstruction algorithm using Fast Fourier Transformation and discuss the usability...... of the method on a number of cells from a human embryo. Novelty is identifying the non-linearity of a typical Hoffman imaging system, and the application of Fourier Transformation to reconstruct the optical thickness....

  15. Quantitative tomography simulations and reconstruction algorithms

    International Nuclear Information System (INIS)

    Martz, H.E.; Aufderheide, M.B.; Goodman, D.; Schach von Wittenau, A.; Logan, C.; Hall, J.; Jackson, J.; Slone, D.

    2000-01-01

    X-ray, neutron and proton transmission radiography and computed tomography (CT) are important diagnostic tools that are at the heart of LLNL's effort to meet the goals of the DOE's Advanced Radiography Campaign. This campaign seeks to improve radiographic simulation and analysis so that radiography can be a useful quantitative diagnostic tool for stockpile stewardship. Current radiographic accuracy does not allow satisfactory separation of experimental effects from the true features of an object's tomographically reconstructed image. This can lead to difficult and sometimes incorrect interpretation of the results. By improving our ability to simulate the whole radiographic and CT system, it will be possible to examine the contribution of system components to various experimental effects, with the goal of removing or reducing them. In this project, we are merging this simulation capability with a maximum-likelihood (constrained-conjugate-gradient-CCG) reconstruction technique yielding a physics-based, forward-model image-reconstruction code. In addition, we seek to improve the accuracy of computed tomography from transmission radiographs by studying what physics is needed in the forward model. During FY 2000, an improved version of the LLNL ray-tracing code called HADES has been coupled with a recently developed LLNL CT algorithm known as CCG. The problem of image reconstruction is expressed as a large matrix equation relating a model for the object being reconstructed to its projections (radiographs). Using a constrained-conjugate-gradient search algorithm, a maximum likelihood solution is sought. This search continues until the difference between the input measured radiographs or projections and the simulated or calculated projections is satisfactorily small

  16. EIT image reconstruction with four dimensional regularization.

    Science.gov (United States)

    Dai, Tao; Soleimani, Manuchehr; Adler, Andy

    2008-09-01

    Electrical impedance tomography (EIT) reconstructs internal impedance images of the body from electrical measurements on body surface. The temporal resolution of EIT data can be very high, although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms calculate images from data frames independently, although data are actually highly correlated especially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional EIT. The new approach is developed to directly use prior models of the temporal correlations among images and 3-D spatial correlations among image elements. A fast algorithm is also developed to reconstruct the regularized images. Image reconstruction is posed in terms of an augmented image and measurement vector which are concatenated from a specific number of previous and future frames. The reconstruction is then based on an augmented regularization matrix which reflects the a priori constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting the relative strength of the image correlation is objectively calculated from measurement data. Results show that image reconstruction models which account for inter-element correlations, in both space and time, show improved resolution and noise performance, in comparison to simpler image models.

  17. 40 CFR 63.43 - Maximum achievable control technology (MACT) determinations for constructed and reconstructed...

    Science.gov (United States)

    2010-07-01

    ... Administrator, and shall provide a summary in a compatible electronic format for inclusion in the MACT data base... paragraph (d) of this section. (2) In each instance where a constructed or reconstructed major source would...) In each instance where the owner or operator contends that a constructed or reconstructed major...

  18. EPIDEMIOLOGY OF ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION IN BRAZIL'S PUBLIC HEALTH SYSTEM

    Directory of Open Access Journals (Sweden)

    Thiago Jambo Alves Lopes

    Full Text Available ABSTRACT Introduction: Several studies have reported on the epidemiology of Anterior Cruciate Ligament Reconstruction (ACLR in Europe and North America; however, there is currently no data relating to Brazil. Objective: To describe the incidence of ACLR in Brazil and investigate temporal trends and differences between age and sex groups. Methods: All reported ACLR cases in the public hospital system between January 2008 and December 2014 were extracted from the Information Technology Department of the Brazilian Ministry of Health. Linear regression analysis was used to assess changes in ACLR incidence in the overall population and among sex and age groups, hospitalization time, and health care costs. Results: A total of 48,241 ACLR were reported from 2008-2014 with an overall incidence of 3.49 per 100,000 persons/year. Males accounted for 82% of the procedures. The incidence of ACLR increased by 56% among males (p=0.01 and by 112% among females (p=0.001. The mean hospitalization time decreased from 2.4 days in 2008 to 1.8 day in 2014 (R2 = 0.883, p= 0.002. The total cost across all years was US$56 million, with a mean of US$1,145 per ACLR. Conclusion: Although the total incidence of ACLR in Brazil is lower compared to other countries, it has increased over the years, especially in females. The creation of an ACLR registry is necessary in the future, for more accurate control and new investigations.

  19. EAST kinetic equilibrium reconstruction combining with Polarimeter-Interferometer internal measurement constraints

    Science.gov (United States)

    Lian, H.; Liu, H. Q.; Li, K.; Zou, Z. Y.; Qian, J. P.; Wu, M. Q.; Li, G. Q.; Zeng, L.; Zang, Q.; Lv, B.; Jie, Y. X.; EAST Team

    2017-12-01

    Plasma equilibrium reconstruction plays an important role in the tokamak plasma research. With a high temporal and spatial resolution, the POlarimeter-INTerferometer (POINT) system on EAST has provided effective measurements for 102s H-mode operation. Based on internal Faraday rotation measurements provided by the POINT system, the equilibrium reconstruction with a more accurate core current profile constraint has been demonstrated successfully on EAST. Combining other experimental diagnostics and external magnetic fields measurement, the kinetic equilibrium has also been reconstructed on EAST. Take the pressure and edge current information from kinetic EFIT into the equilibrium reconstruction with Faraday rotation constraint, the new equilibrium reconstruction not only provides a more accurate internal current profile but also contains edge current and pressure information. One time slice result using new kinetic equilibrium reconstruction with POINT data constraints is demonstrated in this paper and the result shows there is a reversed shear of q profile and the pressure profile is also contained. The new improved equilibrium reconstruction is greatly helpful to the future theoretical analysis.

  20. Parallel computing for event reconstruction in high-energy physics

    International Nuclear Information System (INIS)

    Wolbers, S.

    1993-01-01

    Parallel computing has been recognized as a solution to large computing problems. In High Energy Physics offline event reconstruction of detector data is a very large computing problem that has been solved with parallel computing techniques. A review of the parallel programming package CPS (Cooperative Processes Software) developed and used at Fermilab for offline reconstruction of Terabytes of data requiring the delivery of hundreds of Vax-Years per experiment is given. The Fermilab UNIX farms, consisting of 180 Silicon Graphics workstations and 144 IBM RS6000 workstations, are used to provide the computing power for the experiments. Fermilab has had a long history of providing production parallel computing starting with the ACP (Advanced Computer Project) Farms in 1986. The Fermilab UNIX Farms have been in production for over 2 years with 24 hour/day service to experimental user groups. Additional tools for management, control and monitoring these large systems will be described. Possible future directions for parallel computing in High Energy Physics will be given

  1. Knee temperatures measured in vivo after arthroscopic ACL reconstruction followed by cryotherapy with gel-packs or computer controlled heat extraction.

    Science.gov (United States)

    Rashkovska, Aleksandra; Trobec, Roman; Avbelj, Viktor; Veselko, Matjaž

    2014-09-01

    To obtain in vivo data about intra- and extra-articular knee temperatures to assess the effectiveness of two cryotherapeutic methods-conventional cooling with gel-packs and computer controlled cryotherapy following anterior cruciate ligament (ACL) reconstructive surgery. Twenty patients were arbitrarily assigned for cryotherapy after ACL reconstruction: 8 patients with frozen gel-packs and 12 patients with computer controlled cryotherapy with constant temperatures of the cooling liquid in the knee pads. The treatment was performed for 12 h. Temperatures were measured with two thermo sensors in catheters placed intraarticularly and subcutaneously, four sensors on the skin and one sensor under protective bandage, every second for 16 h after surgery. In the first 2 h of treatment, there were no significant differences (n.s.) between the groups in temperatures in the intracondylar notch. After 4 h of cryotherapy, the temperatures were significantly lower on the skin (24.6 ± 2.8 and 31.4 ± 1.3 °C, p cryotherapy group compared to the gel-pack group. The cooling effect of the arthroscopy irrigation fluid on the knee temperature is evident in the first 2 h of treatment. The energy extraction is significantly more effective and controllable by computer controlled cryotherapy than with frozen gel-packs. Prospective comparative study, Level II.

  2. Tools virtualization for command and control systems

    Science.gov (United States)

    Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław

    2017-10-01

    Information management is an inseparable part of the command process. The result is that the person making decisions at the command post interacts with data providing devices in various ways. Tools virtualization process can introduce a number of significant modifications in the design of solutions for management and command. The general idea involves replacing physical devices user interface with their digital representation (so-called Virtual instruments). A more advanced level of the systems "digitalization" is to use the mixed reality environments. In solutions using Augmented reality (AR) customized HMI is displayed to the operator when he approaches to each device. Identification of device is done by image recognition of photo codes. Visualization is achieved by (optical) see-through head mounted display (HMD). Control can be done for example by means of a handheld touch panel. Using the immersive virtual environment, the command center can be digitally reconstructed. Workstation requires only VR system (HMD) and access to information network. Operator can interact with devices in such a way as it would perform in real world (for example with the virtual hands). Because of their procedures (an analysis of central vision, eye tracking) MR systems offers another useful feature of reducing requirements for system data throughput. Due to the fact that at the moment we focus on the single device. Experiments carried out using Moverio BT-200 and SteamVR systems and the results of experimental application testing clearly indicate the ability to create a fully functional information system with the use of mixed reality technology.

  3. Calibration of reconstruction parameters in atom probe tomography using a single crystallographic orientation

    International Nuclear Information System (INIS)

    Suram, Santosh K.; Rajan, Krishna

    2013-01-01

    The purpose of this work is to develop a methodology to estimate the APT reconstruction parameters when limited crystallographic information is available. Reliable spatial scaling of APT data currently requires identification of multiple crystallographic poles from the field desorption image for estimating the reconstruction parameters. This requirement limits the capacity of accurately reconstructing APT data for certain complex systems, such as highly alloyed systems and nanostructured materials wherein more than one pole is usually not observed within one grain. To overcome this limitation, we develop a quantitative methodology for calibrating the reconstruction parameters in an APT dataset by ensuring accurate inter-planar spacing and optimizing the curvature correction for the atomic planes corresponding to a single crystallographic orientation. We validate our approach on an aluminum dataset and further illustrate its capabilities by computing geometric reconstruction parameters for W and Al–Mg–Sc datasets. - Highlights: ► Quantitative approach is developed to accurately reconstruct APT data. ► Curvature of atomic planes in APT data is used to calibrate the reconstruction. ► APT reconstruction parameters are determined from a single crystallographic axis. ► Quantitative approach is demonstrated on W, Al and Al–Mg–Sc systems. ► Accurate APT reconstruction of complex materials is now possible

  4. An improved empirical dynamic control system model of global mean sea level rise and surface temperature change

    Science.gov (United States)

    Wu, Qing; Luu, Quang-Hung; Tkalich, Pavel; Chen, Ge

    2018-04-01

    Having great impacts on human lives, global warming and associated sea level rise are believed to be strongly linked to anthropogenic causes. Statistical approach offers a simple and yet conceptually verifiable combination of remotely connected climate variables and indices, including sea level and surface temperature. We propose an improved statistical reconstruction model based on the empirical dynamic control system by taking into account the climate variability and deriving parameters from Monte Carlo cross-validation random experiments. For the historic data from 1880 to 2001, we yielded higher correlation results compared to those from other dynamic empirical models. The averaged root mean square errors are reduced in both reconstructed fields, namely, the global mean surface temperature (by 24-37%) and the global mean sea level (by 5-25%). Our model is also more robust as it notably diminished the unstable problem associated with varying initial values. Such results suggest that the model not only enhances significantly the global mean reconstructions of temperature and sea level but also may have a potential to improve future projections.

  5. Precision digital control systems

    Science.gov (United States)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  6. Iterative CT reconstruction with correction for known rigid motion

    Energy Technology Data Exchange (ETDEWEB)

    Nuyts, Johan [Katholieke Univ. Leuven (Belgium). Dept. of Nuclear Medicine; Kim, Jung-Ha; Fulton, Roger [Sydney Univ., NSW (Australia). School of Physics; Westmead Hospital, Sydney (Australia). Medical Physics

    2011-07-01

    In PET/CT brain imaging, correction for motion may be needed, in particular for children and psychiatric patients. Motion is more likely to occur in the lengthy PET measurement, but also during the short CT acquisition patient motion is possible. Rigid motion of the head can be measured independently from the PET/CT system with optical devices. In this paper, we propose a method and some preliminary simulation results for iterative CT reconstruction with correction for known rigid motion. We implemented an iterative algorithm for fully 3D reconstruction from helical CT scans. The motion of the head is incorporated in the system matrix as a view-dependent motion of the CT-system. The first simulation results indicate that some motion patterns may produce loss of essential data. This loss precludes exact reconstruction and results in artifacts in the reconstruction, even when motion is taken into account. However, by reducing the pitch during acquisition, the same motion pattern no longer caused artifacts in the motion corrected image. (orig.)

  7. DD4Hep based event reconstruction

    CERN Document Server

    AUTHOR|(SzGeCERN)683529; Frank, Markus; Gaede, Frank-Dieter; Hynds, Daniel; Lu, Shaojun; Nikiforou, Nikiforos; Petric, Marko; Simoniello, Rosa; Voutsinas, Georgios Gerasimos

    The DD4HEP detector description toolkit offers a flexible and easy-to-use solution for the consistent and complete description of particle physics detectors in a single system. The sub-component DDREC provides a dedicated interface to the detector geometry as needed for event reconstruction. With DDREC there is no need to define an additional, separate reconstruction geometry as is often done in HEP, but one can transparently extend the existing detailed simulation model to be also used for the reconstruction. Based on the extension mechanism of DD4HEP, DDREC allows one to attach user defined data structures to detector elements at all levels of the geometry hierarchy. These data structures define a high level view onto the detectors describing their physical properties, such as measurement layers, point resolutions, and cell sizes. For the purpose of charged particle track reconstruction, dedicated surface objects can be attached to every volume in the detector geometry. These surfaces provide the measuremen...

  8. Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms.

    Science.gov (United States)

    Ichihashi, Yasuyuki; Oi, Ryutaro; Senoh, Takanori; Yamamoto, Kenji; Kurita, Taiichiro

    2012-09-10

    We developed a real-time capture and reconstruction system for three-dimensional (3D) live scenes. In previous research, we used integral photography (IP) to capture 3D images and then generated holograms from the IP images to implement a real-time reconstruction system. In this paper, we use a 4K (3,840 × 2,160) camera to capture IP images and 8K (7,680 × 4,320) liquid crystal display (LCD) panels for the reconstruction of holograms. We investigate two methods for enlarging the 4K images that were captured by integral photography to 8K images. One of the methods increases the number of pixels of each elemental image. The other increases the number of elemental images. In addition, we developed a personal computer (PC) cluster system with graphics processing units (GPUs) for the enlargement of IP images and the generation of holograms from the IP images using fast Fourier transform (FFT). We used the Compute Unified Device Architecture (CUDA) as the development environment for the GPUs. The Fast Fourier transform is performed using the CUFFT (CUDA FFT) library. As a result, we developed an integrated system for performing all processing from the capture to the reconstruction of 3D images by using these components and successfully used this system to reconstruct a 3D live scene at 12 frames per second.

  9. Image-guided stereotactic surgery using ultrasonography and reconstructive three-dimensional CT-imaging system

    International Nuclear Information System (INIS)

    Kawamura, Hirotsune; Iseki, Hiroshi; Umezawa, Yoshihiro

    1991-01-01

    A new simulation and navigation system utilizing three-dimensional CT images has been developed for image-guided stereotactic surgery. Preoperative CT images are not always useful in predicting the intraoperative location of lesions, for cerebral lesions are easily displaced or distorted by gravity, brain retraction, and/or CSF aspiration during operative procedure. This new system, however, has the advantage that the intraoperative locations of intracranial lesions or the anatomical structures of the brain can be precisely confirmed during stereotactic surgery. Serial CT images were obtained from a patient whose head had been fixed to the ISEKI CT-guided stereotactic frame. The data of serial CT images were saved on a floppy disc and then transferred to the work station (IRIS) using the off line. In order to find the best approach angle for ultrasound-guided stereotactic surgery, three-dimenstional CT images were reconstructed using the work station. The site of the craniotomy or the angle of the trajectory of the ultrasound probe was measured preoperatively based on the three-dimensional CT images. Then, in the operating room, the patient's head was fixed to the ISEKI frame with the subframe at the same position as before according to the measurement of the CT images. In a case of cystic glioma, the predicable ultrasonograms from three-dimensional reconstructive CT images were ascertained to correspond well to the actual ultrasound images during ultrasound-guided stereotactic surgery. Therefore, the new simulation and navigation system can be judged to be a powerful operative supporting modality for correcting the locations of cerebral lesions; it allows one to perform stereotactic surgery more accurately and less invasively. (author)

  10. A Control and Detecting System of Micro-Near-Infrared Spectrometer Based on a MOEMS Scanning Grating Mirror

    Directory of Open Access Journals (Sweden)

    Haitao Liu

    2018-03-01

    Full Text Available Based on the scanning grating mirror we developed, this paper presents a method of the precise control of a scanning grating mirror and of high-speed spectrum data detection. In addition, the system circuit of the scanning grating mirror control and spectrum signal detecting is designed and manufactured in this paper. The mirror control system includes a drive generator module, an amplitude detection module, a feedback control module, and a variable gain amplification (VGA module; the detecting system includes a field programmable gate array (FPGA main control module, a synchronous trigger module, an analog-digital conversion (ADC module, and a universal serial bus (USB interface module. The final results of the experiment show that the control system has successfully realized the precision control of the swing of the scanning grating mirror and that the detecting system has successfully realized the high-speed acquisition and transmission of the spectral signal and the angle signals. The spectrum has been reconstructed according to the mathematical relationship between the wavelength λ and the angle β of the mirror. The resolution of the spectrometer reaches 10 nm in the wavelength range of 800–1800 nm, the signal-to-noise ratio (SNR of the spectrometer is 4562 at full scale, the spectrum data drift is 0.9% in 24 h, and the precision of the closed loop control is 0.06%.

  11. Reconstruction of chaotic signals with applications to chaos-based communications

    CERN Document Server

    Feng, Jiu Chao

    2008-01-01

    This book provides a systematic review of the fundamental theory of signal reconstruction and the practical techniques used in reconstructing chaotic signals. Specific applications of signal reconstruction methods in chaos-based communications are expounded in full detail, along with examples illustrating the various problems associated with such applications.The book serves as an advanced textbook for undergraduate and graduate courses in electronic and information engineering, automatic control, physics and applied mathematics. It is also highly suited for general nonlinear scientists who wi

  12. Geometric Calibration and Image Reconstruction for a Segmented Slant-Hole Stationary Cardiac SPECT System.

    Science.gov (United States)

    Mao, Yanfei; Yu, Zhicong; Zeng, Gengsheng L

    2015-06-01

    A dedicated stationary cardiac single-photon emission computed tomography (SPECT) system with a novel segmented slant-hole collimator has been developed. The goal of this paper is to calibrate this new imaging geometry with a point source. Unlike the commercially available dedicated cardiac SPECT systems, which are specialized and can be used only to image the heart, our proposed cardiac system is based on a conventional SPECT system but with a segmented slant-hole collimator replacing the collimator. For a dual-head SPECT system, 2 segmented collimators, each with 7 sections, are arranged in an L-shaped configuration such that they can produce a complete cardiac SPECT image with only one gantry position. A calibration method was developed to estimate the geometric parameters of each collimator section as well as the detector rotation radius, under the assumption that the point source location is calculated using the central-section data. With a point source located off the rotation axis, geometric parameters for each collimator section can be estimated independently. The parameters estimated individually are further improved by a joint objective function that uses all collimator sections simultaneously and incorporates the collimator symmetry information. Estimation results and images reconstructed from estimated parameters are presented for both simulated and real data acquired from a prototype collimator. The calibration accuracy was validated by computer simulations with an error of about 0.1° for the slant angles and about 1 mm for the rotation radius. Reconstructions of a heart-insert phantom did not show any image artifacts of inaccurate geometric parameters. Compared with the detector's intrinsic resolution, the estimation error is small and can be ignored. Therefore, the accuracy of the calibration is sufficient for cardiac SPECT imaging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  13. Data based identification and prediction of nonlinear and complex dynamical systems

    Science.gov (United States)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-01

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical

  14. Data based identification and prediction of nonlinear and complex dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wen-Xu [School of Systems Science, Beijing Normal University, Beijing, 100875 (China); Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China); Lai, Ying-Cheng, E-mail: Ying-Cheng.Lai@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Grebogi, Celso [Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2016-07-12

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The “inverse” problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear

  15. Data based identification and prediction of nonlinear and complex dynamical systems

    International Nuclear Information System (INIS)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-01-01

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The “inverse” problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear

  16. Control system design method

    Science.gov (United States)

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  17. The research of Digital Holographic Object Wave Field Reconstruction in Image and Object Space

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Chang; PENG Zu-Jie; FU Yun-Chang

    2011-01-01

    @@ For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object field reconstruction involves the diffraction calculation of the optic wave passing through the optical system.We propose two methods to reconstruct the object field.The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship.The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper.The reconstruction formulae which easily use classic diffraction integral are derived.Finally, experimental verifications are also accomplished.%For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object Reid reconstruction involves the diffraction calculation of the optic wave passing through the optical system. We propose two methods to reconstruct the object field. The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship. The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper. The reconstruction formulae which easily use classic diffraction integral are derived. Finally, experimental verifications are also accomplished.

  18. Monthly paleostreamflow reconstruction from annual tree-ring chronologies

    Science.gov (United States)

    Stagge, J. H.; Rosenberg, D. E.; DeRose, R. J.; Rittenour, T. M.

    2018-02-01

    Paleoclimate reconstructions are increasingly used to characterize annual climate variability prior to the instrumental record, to improve estimates of climate extremes, and to provide a baseline for climate-change projections. To date, paleoclimate records have seen limited engineering use to estimate hydrologic risks because water systems models and managers usually require streamflow input at the monthly scale. This study explores the hypothesis that monthly streamflows can be adequately modeled by statistically decomposing annual flow reconstructions. To test this hypothesis, a multiple linear regression model for monthly streamflow reconstruction is presented that expands the set of predictors to include annual streamflow reconstructions, reconstructions of global circulation, and potential differences among regional tree-ring chronologies related to tree species and geographic location. This approach is used to reconstruct 600 years of monthly streamflows at two sites on the Bear and Logan rivers in northern Utah. Nash-Sutcliffe Efficiencies remain above zero (0.26-0.60) for all months except April and Pearson's correlation coefficients (R) are 0.94 and 0.88 for the Bear and Logan rivers, respectively, confirming that the model can adequately reproduce monthly flows during the reference period (10/1942 to 9/2015). Incorporating a flexible transition between the previous and concurrent annual reconstructed flows was the most important factor for model skill. Expanding the model to include global climate indices and regional tree-ring chronologies produced smaller, but still significant improvements in model fit. The model presented here is the only approach currently available to reconstruct monthly streamflows directly from tree-ring chronologies and climate reconstructions, rather than using resampling of the observed record. With reasonable estimates of monthly flow that extend back in time many centuries, water managers can challenge systems models with a

  19. A GUI visualization system for airborne lidar image data to reconstruct 3D city model

    Science.gov (United States)

    Kawata, Yoshiyuki; Koizumi, Kohei

    2015-10-01

    A visualization toolbox system with graphical user interfaces (GUIs) was developed for the analysis of LiDAR point cloud data, as a compound object oriented widget application in IDL (Interractive Data Language). The main features in our system include file input and output abilities, data conversion capability from ascii formatted LiDAR point cloud data to LiDAR image data whose pixel value corresponds the altitude measured by LiDAR, visualization of 2D/3D images in various processing steps and automatic reconstruction ability of 3D city model. The performance and advantages of our graphical user interface (GUI) visualization system for LiDAR data are demonstrated.

  20. Road Construction Safety Audit for Interstate Reconstruction. Volume 1.

    Science.gov (United States)

    1998-10-01

    Traffic control alternatives associated with reconstruction projects on a rural interstate have been investigated in this research. Slab replacement projects, milling/resurfacing projects, and traffic controls in the vicinity of interstate ramps were...

  1. Road Construction Safety Audit for Interstate Reconstruction. Volume 2.

    Science.gov (United States)

    1998-10-01

    Traffic control alternatives associated with reconstruction projects on a rural interstate have been investigated in this research. Slab replacement projects, milling/resurfacing projects, and traffic controls in the vicinity of interstate ramps were...

  2. Track reconstruction in the emulsion-lead target of the OPERA experiment using the ESS microscope

    Science.gov (United States)

    Arrabito, L.; Bozza, C.; Buontempo, S.; Consiglio, L.; Cozzi, M.; D'Ambrosio, N.; DeLellis, G.; DeSerio, M.; Di Capua, F.; Di Ferdinando, D.; Di Marco, N.; Ereditato, A.; Esposito, L. S.; Fini, R. A.; Giacomelli, G.; Giorgini, M.; Grella, G.; Ieva, M.; Janicsko Csathy, J.; Juget, F.; Kreslo, I.; Laktineh, I.; Manai, K.; Mandrioli, G.; Marotta, A.; Migliozzi, P.; Monacelli, P.; Moser, U.; Muciaccia, M. T.; Pastore, A.; Patrizii, L.; Petukhov, Y.; Pistillo, C.; Pozzato, M.; Romano, G.; Rosa, G.; Russo, A.; Savvinov, N.; Schembri, A.; Scotto Lavina, L.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Strolin, P.; Tioukov, V.; Waelchli, T.

    2007-05-01

    The OPERA experiment, designed to conclusively prove the existence of νμ→ντ oscillations in the atmospheric sector, makes use of a massive lead-nuclear emulsion target to observe the appearance of ντ's in the CNGS νμ beam. The location and analysis of the neutrino interactions in quasi real-time required the development of fast computer-controlled microscopes able to reconstruct particle tracks with sub-micron precision and high efficiency at a speed of ~20 cm2/h. This paper describes the performance in particle track reconstruction of the European Scanning System, a novel automatic microscope for the measurement of emulsion films developed for OPERA.

  3. Track reconstruction in the emulsion-lead target of the OPERA experiment using the ESS microscope

    International Nuclear Information System (INIS)

    Arrabito, L; Bozza, C; Buontempo, S

    2007-01-01

    The OPERA experiment, designed to conclusively prove the existence of ν μ →ν τ oscillations in the atmospheric sector, makes use of a massive lead-nuclear emulsion target to observe the appearance of ν τ 's in the CNGS ν μ beam. The location and analysis of the neutrino interactions in quasi real-time required the development of fast computer-controlled microscopes able to reconstruct particle tracks with sub-micron precision and high efficiency at a speed of ∼20 cm 2 /h. This paper describes the performance in particle track reconstruction of the European Scanning System, a novel automatic microscope for the measurement of emulsion films developed for OPERA

  4. Incoherent control of locally controllable quantum systems

    International Nuclear Information System (INIS)

    Dong Daoyi; Zhang Chenbin; Rabitz, Herschel; Pechen, Alexander; Tarn, T.-J.

    2008-01-01

    An incoherent control scheme for state control of locally controllable quantum systems is proposed. This scheme includes three steps: (1) amplitude amplification of the initial state by a suitable unitary transformation, (2) projective measurement of the amplified state, and (3) final optimization by a unitary controlled transformation. The first step increases the amplitudes of some desired eigenstates and the corresponding probability of observing these eigenstates, the second step projects, with high probability, the amplified state into a desired eigenstate, and the last step steers this eigenstate into the target state. Within this scheme, two control algorithms are presented for two classes of quantum systems. As an example, the incoherent control scheme is applied to the control of a hydrogen atom by an external field. The results support the suggestion that projective measurements can serve as an effective control and local controllability information can be used to design control laws for quantum systems. Thus, this scheme establishes a subtle connection between control design and controllability analysis of quantum systems and provides an effective engineering approach in controlling quantum systems with partial controllability information.

  5. Homotopic non-local regularized reconstruction from sparse positron emission tomography measurements

    International Nuclear Information System (INIS)

    Wong, Alexander; Liu, Chenyi; Wang, Xiao Yu; Fieguth, Paul; Bie, Hongxia

    2015-01-01

    Positron emission tomography scanners collect measurements of a patient’s in vivo radiotracer distribution. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule, and the tomograms must be reconstructed from projections. The reconstruction of tomograms from the acquired PET data is an inverse problem that requires regularization. The use of tightly packed discrete detector rings, although improves signal-to-noise ratio, are often associated with high costs of positron emission tomography systems. Thus a sparse reconstruction, which would be capable of overcoming the noise effect while allowing for a reduced number of detectors, would have a great deal to offer. In this study, we introduce and investigate the potential of a homotopic non-local regularization reconstruction framework for effectively reconstructing positron emission tomograms from such sparse measurements. Results obtained using the proposed approach are compared with traditional filtered back-projection as well as expectation maximization reconstruction with total variation regularization. A new reconstruction method was developed for the purpose of improving the quality of positron emission tomography reconstruction from sparse measurements. We illustrate that promising reconstruction performance can be achieved for the proposed approach even at low sampling fractions, which allows for the use of significantly fewer detectors and have the potential to reduce scanner costs

  6. Control systems engineering

    CERN Document Server

    Nise, Norman S

    1995-01-01

    This completely updated new edition shows how to use MATLAB to perform control-system calculations. Designed for the professional or engineering student who needs a quick and readable update on designing control systems, the text features a series of tightly focused examples that clearly illustrate each concept of designing control systems. Most chapters conclude with a detailed application from the two case studies that run throughout the book: an antenna asimuth control system and a submarine. The author also refers to many examples of design methods.

  7. Continuous analog of multiplicative algebraic reconstruction technique for computed tomography

    Science.gov (United States)

    Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya

    2016-03-01

    We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.

  8. Parametric boundary reconstruction algorithm for industrial CT metrology application.

    Science.gov (United States)

    Yin, Zhye; Khare, Kedar; De Man, Bruno

    2009-01-01

    High-energy X-ray computed tomography (CT) systems have been recently used to produce high-resolution images in various nondestructive testing and evaluation (NDT/NDE) applications. The accuracy of the dimensional information extracted from CT images is rapidly approaching the accuracy achieved with a coordinate measuring machine (CMM), the conventional approach to acquire the metrology information directly. On the other hand, CT systems generate the sinogram which is transformed mathematically to the pixel-based images. The dimensional information of the scanned object is extracted later by performing edge detection on reconstructed CT images. The dimensional accuracy of this approach is limited by the grid size of the pixel-based representation of CT images since the edge detection is performed on the pixel grid. Moreover, reconstructed CT images usually display various artifacts due to the underlying physical process and resulting object boundaries from the edge detection fail to represent the true boundaries of the scanned object. In this paper, a novel algorithm to reconstruct the boundaries of an object with uniform material composition and uniform density is presented. There are three major benefits in the proposed approach. First, since the boundary parameters are reconstructed instead of image pixels, the complexity of the reconstruction algorithm is significantly reduced. The iterative approach, which can be computationally intensive, will be practical with the parametric boundary reconstruction. Second, the object of interest in metrology can be represented more directly and accurately by the boundary parameters instead of the image pixels. By eliminating the extra edge detection step, the overall dimensional accuracy and process time can be improved. Third, since the parametric reconstruction approach shares the boundary representation with other conventional metrology modalities such as CMM, boundary information from other modalities can be directly

  9. Discrete control systems

    CERN Document Server

    Okuyama, Yoshifumi

    2014-01-01

    Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...

  10. Data-Driven Zero-Sum Neuro-Optimal Control for a Class of Continuous-Time Unknown Nonlinear Systems With Disturbance Using ADP.

    Science.gov (United States)

    Wei, Qinglai; Song, Ruizhuo; Yan, Pengfei

    2016-02-01

    This paper is concerned with a new data-driven zero-sum neuro-optimal control problem for continuous-time unknown nonlinear systems with disturbance. According to the input-output data of the nonlinear system, an effective recurrent neural network is introduced to reconstruct the dynamics of the nonlinear system. Considering the system disturbance as a control input, a two-player zero-sum optimal control problem is established. Adaptive dynamic programming (ADP) is developed to obtain the optimal control under the worst case of the disturbance. Three single-layer neural networks, including one critic and two action networks, are employed to approximate the performance index function, the optimal control law, and the disturbance, respectively, for facilitating the implementation of the ADP method. Convergence properties of the ADP method are developed to show that the system state will converge to a finite neighborhood of the equilibrium. The weight matrices of the critic and the two action networks are also convergent to finite neighborhoods of their optimal ones. Finally, the simulation results will show the effectiveness of the developed data-driven ADP methods.

  11. Quantitative safety assessment of air traffic control systems through system control capacity

    Science.gov (United States)

    Guo, Jingjing

    Quantitative Safety Assessments (QSA) are essential to safety benefit verification and regulations of developmental changes in safety critical systems like the Air Traffic Control (ATC) systems. Effectiveness of the assessments is particularly desirable today in the safe implementations of revolutionary ATC overhauls like NextGen and SESAR. QSA of ATC systems are however challenged by system complexity and lack of accident data. Extending from the idea "safety is a control problem" in the literature, this research proposes to assess system safety from the control perspective, through quantifying a system's "control capacity". A system's safety performance correlates to this "control capacity" in the control of "safety critical processes". To examine this idea in QSA of the ATC systems, a Control-capacity Based Safety Assessment Framework (CBSAF) is developed which includes two control capacity metrics and a procedural method. The two metrics are Probabilistic System Control-capacity (PSC) and Temporal System Control-capacity (TSC); each addresses an aspect of a system's control capacity. And the procedural method consists three general stages: I) identification of safety critical processes, II) development of system control models and III) evaluation of system control capacity. The CBSAF was tested in two case studies. The first one assesses an en-route collision avoidance scenario and compares three hypothetical configurations. The CBSAF was able to capture the uncoordinated behavior between two means of control, as was observed in a historic midair collision accident. The second case study compares CBSAF with an existing risk based QSA method in assessing the safety benefits of introducing a runway incursion alert system. Similar conclusions are reached between the two methods, while the CBSAF has the advantage of simplicity and provides a new control-based perspective and interpretation to the assessments. The case studies are intended to investigate the

  12. Adaptive Statistical Iterative Reconstruction-V Versus Adaptive Statistical Iterative Reconstruction: Impact on Dose Reduction and Image Quality in Body Computed Tomography.

    Science.gov (United States)

    Gatti, Marco; Marchisio, Filippo; Fronda, Marco; Rampado, Osvaldo; Faletti, Riccardo; Bergamasco, Laura; Ropolo, Roberto; Fonio, Paolo

    The aim of this study was to evaluate the impact on dose reduction and image quality of the new iterative reconstruction technique: adaptive statistical iterative reconstruction (ASIR-V). Fifty consecutive oncologic patients acted as case controls undergoing during their follow-up a computed tomography scan both with ASIR and ASIR-V. Each study was analyzed in a double-blinded fashion by 2 radiologists. Both quantitative and qualitative analyses of image quality were conducted. Computed tomography scanner radiation output was 38% (29%-45%) lower (P ASIR-V examinations than for the ASIR ones. The quantitative image noise was significantly lower (P ASIR-V. Adaptive statistical iterative reconstruction-V had a higher performance for the subjective image noise (P = 0.01 for 5 mm and P = 0.009 for 1.25 mm), the other parameters (image sharpness, diagnostic acceptability, and overall image quality) being similar (P > 0.05). Adaptive statistical iterative reconstruction-V is a new iterative reconstruction technique that has the potential to provide image quality equal to or greater than ASIR, with a dose reduction around 40%.

  13. Accuracy and reliability of three-dimensional surface reconstruction measurement

    International Nuclear Information System (INIS)

    Mizukami, Chikashi; Yamamoto, Etsuo; Ohmura, Masaki; Oiki, Hiroyuki; Tsuji, Jun; Muneta, Yuki; Tanabe, Makito; Hakuba, Nobuhiro; Azemoto, Syougo.

    1993-01-01

    We are using a new three-dimensional (3-D) surface reconstruction system to measure the temporal bones. This system offers the advantage of observation of the external aperture of the vestibular aqueduct and the porus acusticus internus in living subjects. However, its accuracy has not been confirmed. To investigate the accuracy of this new system, we measured the length of an in situ ceramic ossicular replacement prosthesis (CORP) of known length of 6.0 mm using 3-D surface reconstruction, conventional plain X-ray and polytomography. The CORP was scanned in the axial, sagittal and oblique directions. The mean measured length obtained with the 3-D surface reconstruction images was 5.94±0.21 on vertical scans, 5.91±0.27 on horizontal scans, and 6.01±0.25 on oblique scans. There were no significant differences among the measured lengths obtained in the three directions. Therefore, this 3-D surface reconstruction measurement system is considered to be reliable. Conversely, the mean measured length obtained by plain X-ray was 7.98±0.20, and by polytomography it was 7.94±0.23. These conventional methods have the inherent disadvantage of magnification of size which consequently requires correction. (author)

  14. [Qilin Pills for obstructive azoospermia after ejaculatory duct reconstruction].

    Science.gov (United States)

    Zhang, Lei; Gao, Ping; Ren, Fei-Qiang; Chang, De-Gui; Yu, Xu-Jun; Zhang, Pei-Hai

    2016-09-01

    To observe the clinical effect of Qilin Pills in the treatment of severe oligozoospermia after microsurgical ejaculatory duct reconstruction for obstructive azoospermia. We retrospectively analyzed 75 cases of obstructive azoospermia treated by ejaculatory duct reconstruction followed by administration of Qilin Pills. The patients were divided into a Qilin group (n=42) and a control group (n=33) postoperatively, treated with Qilin Pills and placebo, respectively. After 3 months of medication, we compared the sperm quality between the two groups of patients. After 3 months' treatment, all the patients experienced remarkable improvement in sperm quality (P0.05). The total effectiveness rate was higher in the Qilin group than in the controls (88.1% vs 72.7%), but with no significant difference between the two groups (P>0.05). Qilin Pills are fairly effective in improving the quantity of sperm in obstructive azoospermia patients after ejaculatory duct reconstruction.

  15. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms

    International Nuclear Information System (INIS)

    Sidky, Emil Y.; Pan Xiaochuan; Reiser, Ingrid S.; Nishikawa, Robert M.; Moore, Richard H.; Kopans, Daniel B.

    2009-01-01

    Purpose: The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). Methods: The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p=1.0 or the image roughness when p=2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography. Results: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. Conclusions: Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging.

  16. The influence of electromyographic biofeedback therapy on knee extension following anterior cruciate ligament reconstruction: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Christanell Franz

    2012-11-01

    Full Text Available Abstract Background Loss of knee extension and a deficit in quadriceps strength are frequently found following anterior cruciate ligament (ACL reconstruction. The aim of this study was to investigate whether the addition of Eletromyographic Biofeedback (EMG BFB therapy for the vastus medialis muscle to the in the early phase of the standard rehabilitation programme could improve the range of knee extension and strength after ACL reconstruction more than a standard rehabilitation programme. The correlation between EMG measurement and passive knee extension was also investigated. Method Sixteen patients, all of whom underwent endoscopic ACL reconstruction using patellar tendon autograft, were randomly assigned to two groups: • Control group (8 patients: standard rehabilitation protocol; with full weight-bearing postoperative, knee brace (0° extension, 90° flexion, electrical stimulation, aquatics and proprioceptive training. • The EMG BFB group (8 patients: EMG BFB was added to the standard rehabilitation protocol within the first postoperative week and during each session for the next 6 weeks. Each patent attended a total of 16 outpatient physiotherapy sessions following surgery. High-Heel-Distance (HHD Test, range of motion (ROM and integrated EMG (iEMG for vastus medialis were measured preoperatively, and at the 1, 2, 4 and 6-week follow ups. Additionally, knee function, swelling and pain were evaluated using standardized scoring scales. Results At 6 weeks, passive knee extension (p  0.01 differences were found between the two groups for the assessment of knee function, swelling and pain. Conclusion The results indicate that EMG BFB therapy, in the early phase of rehabilitation after ACL reconstruction, is useful in enhancing knee extension. Improved innervation of the vastus medialis can play a key role in the development of postoperative knee extension. EMG BFB therapy is a simple, inexpensive and valuable adjunct to conventional

  17. Effect of homeopathy on analgesic intake following knee ligament reconstruction: a phase III monocentre randomized placebo controlled study

    Science.gov (United States)

    Paris, A; Gonnet, N; Chaussard, C; Belon, P; Rocourt, F; Saragaglia, D; Cracowski, J L

    2008-01-01

    Aims The efficacy of homeopathy is still under debate. The objective of this study was to assess the efficacy of homeopathic treatment (Arnica montana 5 CH, Bryonia alba 5 CH, Hypericum perforatum 5 CH and Ruta graveolens 3 DH) on cumulated morphine intake delivered by PCA over 24 h after knee ligament reconstruction. Methods This was an add-on randomized controlled study with three parallel groups: a double-blind homeopathic or placebo arm and an open-label noninterventional control arm. Eligible patients were 18–60 years old candidates for surgery of the anterior cruciate ligament. Treatment was administered the evening before surgery and continued for 3 days. The primary end-point was cumulated morphine intake delivered by PCA during the first 24 h inferior or superior/equal to 10 mg day−1. Results One hundred and fifty-eight patients were randomized (66 in the placebo arm, 67 in the homeopathic arm and 25 in the noninterventional group). There was no difference between the treated and the placebo group for primary end-point (mean (95% CI) 48% (35.8, 56.3), and 56% (43.7, 68.3), required less than 10 mg day−1 of morphine in each group, respectively). The homeopathy treatment had no effect on morphine intake between 24 and 72 h or on the visual analogue pain scale, or on quality of life assessed by the SF-36 questionnaire. In addition, these parameters were not different in patients enrolled in the open-label noninterventional control arm. Conclusions The complex of homeopathy tested in this study was not superior to placebo in reducing 24 h morphine consumption after knee ligament reconstruction. What is already known about this subject The efficacy of homeopathy is still under debate and a recent meta-analysis recommended further randomized double-blind clinical trials to identify any clinical situation in which homeopathy might be effective. What this study adds The complex of homeopathy tested in this study (Arnica montana 5 CH, Bryonia alba 5 CH

  18. Model-centric software architecture reconstruction

    NARCIS (Netherlands)

    Stoermer, C.; Rowe, A.; O'Brien, L.; Verhoef, C.

    2006-01-01

    Much progress has been achieved in defining methods, techniques, and tools for software architecture reconstruction (SAR). However, less progress has been achieved in constructing reasoning frameworks from existing systems that support organizations in architecture analysis and design decisions.

  19. Reconstruction of neutron spectra through neural networks

    International Nuclear Information System (INIS)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.

    2003-01-01

    A neural network has been used to reconstruct the neutron spectra starting from the counting rates of the detectors of the Bonner sphere spectrophotometric system. A group of 56 neutron spectra was selected to calculate the counting rates that would produce in a Bonner sphere system, with these data and the spectra it was trained the neural network. To prove the performance of the net, 12 spectra were used, 6 were taken of the group used for the training, 3 were obtained of mathematical functions and those other 3 correspond to real spectra. When comparing the original spectra of those reconstructed by the net we find that our net has a poor performance when reconstructing monoenergetic spectra, this attributes it to those characteristic of the spectra used for the training of the neural network, however for the other groups of spectra the results of the net are appropriate with the prospective ones. (Author)

  20. Matrix-based image reconstruction methods for tomography

    International Nuclear Information System (INIS)

    Llacer, J.; Meng, J.D.

    1984-10-01

    Matrix methods of image reconstruction have not been used, in general, because of the large size of practical matrices, ill condition upon inversion and the success of Fourier-based techniques. An exception is the work that has been done at the Lawrence Berkeley Laboratory for imaging with accelerated radioactive ions. An extension of that work into more general imaging problems shows that, with a correct formulation of the problem, positron tomography with ring geometries results in well behaved matrices which can be used for image reconstruction with no distortion of the point response in the field of view and flexibility in the design of the instrument. Maximum Likelihood Estimator methods of reconstruction, which use the system matrices tailored to specific instruments and do not need matrix inversion, are shown to result in good preliminary images. A parallel processing computer structure based on multiple inexpensive microprocessors is proposed as a system to implement the matrix-MLE methods. 14 references, 7 figures

  1. Image reconstruction for an electrical capacitance tomography system based on a least-squares support vector machine and a self-adaptive particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Chen, Xia; Hu, Hong-li; Liu, Fei; Gao, Xiang Xiang

    2011-01-01

    The task of image reconstruction for an electrical capacitance tomography (ECT) system is to determine the permittivity distribution and hence the phase distribution in a pipeline by measuring the electrical capacitances between sets of electrodes placed around its periphery. In view of the nonlinear relationship between the permittivity distribution and capacitances and the limited number of independent capacitance measurements, image reconstruction for ECT is a nonlinear and ill-posed inverse problem. To solve this problem, a new image reconstruction method for ECT based on a least-squares support vector machine (LS-SVM) combined with a self-adaptive particle swarm optimization (PSO) algorithm is presented. Regarded as a special small sample theory, the SVM avoids the issues appearing in artificial neural network methods such as difficult determination of a network structure, over-learning and under-learning. However, the SVM performs differently with different parameters. As a relatively new population-based evolutionary optimization technique, PSO is adopted to realize parameters' effective selection with the advantages of global optimization and rapid convergence. This paper builds up a 12-electrode ECT system and a pneumatic conveying platform to verify this image reconstruction algorithm. Experimental results indicate that the algorithm has good generalization ability and high-image reconstruction quality

  2. Breast reconstruction after mastectomy

    Directory of Open Access Journals (Sweden)

    Daniel eSchmauss

    2016-01-01

    Full Text Available Breast cancer is the leading cause of cancer death in women worldwide. Its surgical approach has become less and less mutilating in the last decades. However, the overall number of breast reconstructions has significantly increased lately. Nowadays breast reconstruction should be individualized at its best, first of all taking into consideration oncological aspects of the tumor, neo-/adjuvant treatment and genetic predisposition, but also its timing (immediate versus delayed breast reconstruction, as well as the patient’s condition and wish. This article gives an overview over the various possibilities of breast reconstruction, including implant- and expander-based reconstruction, flap-based reconstruction (vascularized autologous tissue, the combination of implant and flap, reconstruction using non-vascularized autologous fat, as well as refinement surgery after breast reconstruction.

  3. Minicomputer controlled test system for process control and monitoring systems

    International Nuclear Information System (INIS)

    Worster, L.D.

    A minicomputer controlled test system for testing process control and monitoring systems is described. This system, in service for over one year, has demonstrated that computerized control of such testing has a real potential for expanding the scope of the testing, improving accuracy of testing, and significantly reducing the time required to do the testing. The test system is built around a 16-bit minicomputer with 12K of memory. The system programming language is BASIC with the addition of assembly level routines for communication with the peripheral devices. The peripheral devices include a 100 channel scanner, analog-to-digital converter, visual display, and strip printer. (auth)

  4. Breast reconstruction - implants

    Science.gov (United States)

    Breast implants surgery; Mastectomy - breast reconstruction with implants; Breast cancer - breast reconstruction with implants ... harder to find a tumor if your breast cancer comes back. Getting breast implants does not take as long as breast reconstruction ...

  5. Electronic-Reconstruction-Enhanced Tunneling Conductance at Terrace Edges of Ultrathin Oxide Films.

    Science.gov (United States)

    Wang, Lingfei; Kim, Rokyeon; Kim, Yoonkoo; Kim, Choong H; Hwang, Sangwoon; Cho, Myung Rae; Shin, Yeong Jae; Das, Saikat; Kim, Jeong Rae; Kalinin, Sergei V; Kim, Miyoung; Yang, Sang Mo; Noh, Tae Won

    2017-11-01

    Quantum mechanical tunneling of electrons across ultrathin insulating oxide barriers has been studied extensively for decades due to its great potential in electronic-device applications. In the few-nanometers-thick epitaxial oxide films, atomic-scale structural imperfections, such as the ubiquitously existed one-unit-cell-high terrace edges, can dramatically affect the tunneling probability and device performance. However, the underlying physics has not been investigated adequately. Here, taking ultrathin BaTiO 3 films as a model system, an intrinsic tunneling-conductance enhancement is reported near the terrace edges. Scanning-probe-microscopy results demonstrate the existence of highly conductive regions (tens of nanometers wide) near the terrace edges. First-principles calculations suggest that the terrace-edge geometry can trigger an electronic reconstruction, which reduces the effective tunneling barrier width locally. Furthermore, such tunneling-conductance enhancement can be discovered in other transition metal oxides and controlled by surface-termination engineering. The controllable electronic reconstruction can facilitate the implementation of oxide electronic devices and discovery of exotic low-dimensional quantum phases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Photogrammetry for rapid prototyping: development of noncontact 3D reconstruction technologies

    Science.gov (United States)

    Knyaz, Vladimir A.

    2002-04-01

    An important stage of rapid prototyping technology is generating computer 3D model of an object to be reproduced. Wide variety of techniques for 3D model generation exists beginning with manual 3D models generation and finishing with full-automated reverse engineering system. The progress in CCD sensors and computers provides the background for integration of photogrammetry as an accurate 3D data source with CAD/CAM. The paper presents the results of developing photogrammetric methods for non-contact spatial coordinates measurements and generation of computer 3D model of real objects. The technology is based on object convergent images processing for calculating its 3D coordinates and surface reconstruction. The hardware used for spatial coordinates measurements is based on PC as central processing unit and video camera as image acquisition device. The original software for Windows 9X realizes the complete technology of 3D reconstruction for rapid input of geometry data in CAD/CAM systems. Technical characteristics of developed systems are given along with the results of applying for various tasks of 3D reconstruction. The paper describes the techniques used for non-contact measurements and the methods providing metric characteristics of reconstructed 3D model. Also the results of system application for 3D reconstruction of complex industrial objects are presented.

  7. Kuwaiti reconstruction project unprecedented in size, complexity

    Energy Technology Data Exchange (ETDEWEB)

    Tippee, B.

    1993-03-15

    There had been no challenge like it: a desert emirate ablaze; its main city sacked; the economically crucial oil industry devastated; countryside shrouded in smoke from oil well fires and littered with unexploded ordnance, disabled military equipment, and unignited crude oil. Like the well-documented effort that brought 749 burning wells under control in less than 7 months, Kuwaiti reconstruction had no precedent. Unlike the firefight, reconstruction is no-where complete. It nevertheless has placed two of three refineries back on stream, restored oil production to preinvasion levels, and repaired or rebuilt 17 of 26 oil field gathering stations. Most of the progress has come since the last well fire went out on Nov. 6, 1991. Expatriates in Kuwait since the days of Al-Awda- the return,' in Arabic- attribute much of the rapid progress under Al-Tameer- the reconstruction'- to decisions and preparations made while the well fires still raged. The article describes the planning for Al-Awda, reentering the country, drilling plans, facilities reconstruction, and special problems.

  8. Adaptive algebraic reconstruction technique

    International Nuclear Information System (INIS)

    Lu Wenkai; Yin Fangfang

    2004-01-01

    Algebraic reconstruction techniques (ART) are iterative procedures for reconstructing objects from their projections. It is proven that ART can be computationally efficient by carefully arranging the order in which the collected data are accessed during the reconstruction procedure and adaptively adjusting the relaxation parameters. In this paper, an adaptive algebraic reconstruction technique (AART), which adopts the same projection access scheme in multilevel scheme algebraic reconstruction technique (MLS-ART), is proposed. By introducing adaptive adjustment of the relaxation parameters during the reconstruction procedure, one-iteration AART can produce reconstructions with better quality, in comparison with one-iteration MLS-ART. Furthermore, AART outperforms MLS-ART with improved computational efficiency

  9. A national control system

    International Nuclear Information System (INIS)

    Larsson, A.

    1975-01-01

    An effective control of nuclear fissionable material is dependent on three different kinds of control, the industry - laboratory management, a national control system and an international safeguards system. The national systems of control differ greatly between various industrialized countries. Two principal reasons for fact can be mentioned. The type and the amounts for nuclear material may be different depending upon the stage of development of the nuclear industry in the country in question. Another reason may be that the country may wish to establish a very elaborate national system of control in order to minimize the IAEA control as much as possible. The two safeguards agreements between the Agency and Sweden on one hand and the Agency and Japan on the other hand can serve as examples for the understanding of the latitude of the IAEA safeguards system under NPT due to the influence of the national control system. If it thus is apparent that the national control system is strongly interrelated to the international safeguards system it is equally influenced by the control and accountancy systems which exist at the nuclear plants and development laboratories. A detailed study of national control systems and their relations to plant management control would fall outside the scope of this article. Some important features will however be examined. (author)

  10. Quantitative evaluation of ASiR image quality: an adaptive statistical iterative reconstruction technique

    Science.gov (United States)

    Van de Casteele, Elke; Parizel, Paul; Sijbers, Jan

    2012-03-01

    Adaptive statistical iterative reconstruction (ASiR) is a new reconstruction algorithm used in the field of medical X-ray imaging. This new reconstruction method combines the idealized system representation, as we know it from the standard Filtered Back Projection (FBP) algorithm, and the strength of iterative reconstruction by including a noise model in the reconstruction scheme. It studies how noise propagates through the reconstruction steps, feeds this model back into the loop and iteratively reduces noise in the reconstructed image without affecting spatial resolution. In this paper the effect of ASiR on the contrast to noise ratio is studied using the low contrast module of the Catphan phantom. The experiments were done on a GE LightSpeed VCT system at different voltages and currents. The results show reduced noise and increased contrast for the ASiR reconstructions compared to the standard FBP method. For the same contrast to noise ratio the images from ASiR can be obtained using 60% less current, leading to a reduction in dose of the same amount.

  11. Test of the CMS microstrip silicon tracker readout and control system

    CERN Document Server

    Zghiche, A

    2001-01-01

    The Microstrip Silicon tracker of the CMS detector is designed to provide robust particle tracking and vertex reconstruction within a strong magnetic field in the high luminosity environment of the LHC. The Tracker readout system employs Front-End Driver cards to digitize and buffer the analogue data arriving via optical links from on detector pipeline chips. The control chain of the front-end electronic is built to operate via optical fibers in order to shield the communications from the outside noise. Components close to the final design have been assembled to be tested in the X5 beam area at CERN where a dedicated 25 ns temporal structure beam has been made available by the SPS. This paper describes the hardware and the software developed for readout and control of data acquired by the front-end electronics operating at 40 MHz, Some preliminary results of the tests performed in the 25 ns beam are also given. (8 refs).

  12. 3D fast reconstruction in positron emission tomography

    International Nuclear Information System (INIS)

    Egger, M.L.; Scheurer, A. Hermann; Joseph, C.; Morel, C.

    1996-01-01

    The issue of long reconstruction times in positron emission tomography (PET) has been addressed from several points of view, resulting in an affordable dedicated system capable of handling routine 3D reconstructions in a few minutes per frame : on the hardware side using fast processors and a parallel architecture, and on the software side, using efficient implementation of computationally less intensive algorithms

  13. Dynamic Error Analysis Method for Vibration Shape Reconstruction of Smart FBG Plate Structure

    Directory of Open Access Journals (Sweden)

    Hesheng Zhang

    2016-01-01

    Full Text Available Shape reconstruction of aerospace plate structure is an important issue for safe operation of aerospace vehicles. One way to achieve such reconstruction is by constructing smart fiber Bragg grating (FBG plate structure with discrete distributed FBG sensor arrays using reconstruction algorithms in which error analysis of reconstruction algorithm is a key link. Considering that traditional error analysis methods can only deal with static data, a new dynamic data error analysis method are proposed based on LMS algorithm for shape reconstruction of smart FBG plate structure. Firstly, smart FBG structure and orthogonal curved network based reconstruction method is introduced. Then, a dynamic error analysis model is proposed for dynamic reconstruction error analysis. Thirdly, the parameter identification is done for the proposed dynamic error analysis model based on least mean square (LMS algorithm. Finally, an experimental verification platform is constructed and experimental dynamic reconstruction analysis is done. Experimental results show that the dynamic characteristics of the reconstruction performance for plate structure can be obtained accurately based on the proposed dynamic error analysis method. The proposed method can also be used for other data acquisition systems and data processing systems as a general error analysis method.

  14. Spectral reconstruction for a 6 MV linear accelerator

    International Nuclear Information System (INIS)

    Hernandez-Bojorquez, M.; Martinez-Davalos, A.; Larraga, J. M.

    2004-01-01

    In this work we present the first results of an x-ray spectral reconstruction for a 6 MV Varian LINAC. The shape of the spectrum will be used in Monte Carlo treatment planning in order to improve the quality and accuracy of the calculated dose distributions. We based our simulation method on the formalism proposed by Francois et al. In this method the spectrum is reconstructed from transmission measurements under narrow beam geometry for multiple attenuator thicknesses. These data allowed us to reconstruct the x-ray spectrum through direct solution of matrix systems using spectral algebra formalism

  15. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    Science.gov (United States)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-11-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.

  16. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    International Nuclear Information System (INIS)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-01-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as M uon Central Slice Theorem . Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction

  17. Management of Control System Information SecurityI: Control System Patch Management

    Energy Technology Data Exchange (ETDEWEB)

    Quanyan Zhu; Miles McQueen; Craig Rieger; Tamer Basar

    2011-09-01

    The use of information technologies in control systems poses additional potential threats due to the frequent disclosure of software vulnerabilities. The management of information security involves a series of policy-making on the vulnerability discovery, disclosure, patch development and patching. In this paper, we use a system approach to devise a model to understand the interdependencies of these decision processes. In more details, we establish a theoretical framework for making patching decision for control systems, taking into account the requirement of functionability of control systems. We illustrate our results with numerical simulations and show that the optimal operation period of control systems given the currently estimated attack rate is roughly around a half a month.

  18. Dynamic Systems and Control Engineering

    International Nuclear Information System (INIS)

    Kim, Jong Seok

    1994-02-01

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  19. Dynamic Systems and Control Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seok

    1994-02-15

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  20. Evaluation of the spline reconstruction technique for PET

    Energy Technology Data Exchange (ETDEWEB)

    Kastis, George A., E-mail: gkastis@academyofathens.gr; Kyriakopoulou, Dimitra [Research Center of Mathematics, Academy of Athens, Athens 11527 (Greece); Gaitanis, Anastasios [Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens 11527 (Greece); Fernández, Yolanda [Centre d’Imatge Molecular Experimental (CIME), CETIR-ERESA, Barcelona 08950 (Spain); Hutton, Brian F. [Institute of Nuclear Medicine, University College London, London NW1 2BU (United Kingdom); Fokas, Athanasios S. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB30WA (United Kingdom)

    2014-04-15

    Purpose: The spline reconstruction technique (SRT), based on the analytic formula for the inverse Radon transform, has been presented earlier in the literature. In this study, the authors present an improved formulation and numerical implementation of this algorithm and evaluate it in comparison to filtered backprojection (FBP). Methods: The SRT is based on the numerical evaluation of the Hilbert transform of the sinogram via an approximation in terms of “custom made” cubic splines. By restricting reconstruction only within object pixels and by utilizing certain mathematical symmetries, the authors achieve a reconstruction time comparable to that of FBP. The authors have implemented SRT in STIR and have evaluated this technique using simulated data from a clinical positron emission tomography (PET) system, as well as real data obtained from clinical and preclinical PET scanners. For the simulation studies, the authors have simulated sinograms of a point-source and three digital phantoms. Using these sinograms, the authors have created realizations of Poisson noise at five noise levels. In addition to visual comparisons of the reconstructed images, the authors have determined contrast and bias for different regions of the phantoms as a function of noise level. For the real-data studies, sinograms of an{sup 18}F-FDG injected mouse, a NEMA NU 4-2008 image quality phantom, and a Derenzo phantom have been acquired from a commercial PET system. The authors have determined: (a) coefficient of variations (COV) and contrast from the NEMA phantom, (b) contrast for the various sections of the Derenzo phantom, and (c) line profiles for the Derenzo phantom. Furthermore, the authors have acquired sinograms from a whole-body PET scan of an {sup 18}F-FDG injected cancer patient, using the GE Discovery ST PET/CT system. SRT and FBP reconstructions of the thorax have been visually evaluated. Results: The results indicate an improvement in FWHM and FWTM in both simulated and real

  1. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis

    Science.gov (United States)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

    2013-01-01

    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  2. Local delivery of controlled-release simvastatin to improve the biocompatibility of polyethylene terephthalate artificial ligaments for reconstruction of the anterior cruciate ligament

    Directory of Open Access Journals (Sweden)

    Zhang P

    2016-01-01

    Full Text Available Peng Zhang,1,* Fei Han,2,* Yunxia Li,1 Jiwu Chen,1 Tianwu Chen,1 Yunlong Zhi,1 Jia Jiang,1 Chao Lin,2 Shiyi Chen,1 Peng Zhao2 1Department of Sports Medicine, Huashan Hospital, Fudan University, 2Shanghai East Hospital, The Institute for Biomedical Engineering and Nanoscience, School of Medicine, Tongji University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: The Ligament Advanced Reinforcement System has recently been widely used as the primary graft of choice in anterior cruciate ligament (ACL reconstruction. But the biological graft–bone healing still remains a problem. Previous studies have shown that simvastatin (SIM stimulates bone formation. The objective of this study was to investigate whether surface coating with collagen containing low-dose SIM microsphere could enhance the surface biocompatibility of polyethylene terephthalate (PET artificial ligaments to accelerate graft-to-bone healing. The in vitro studies demonstrated that bone marrow stromal cells on the collagen-coated PET scaffolds (COL/PET and simvastatin/collagen-coated PET scaffolds (SIM/COL/PET proliferated vigorously. Compared with the PET group and the COL/PET group, SIM could induce bone marrow stromal cells’ osteoblastic differentiation, high alkaline phosphatase activity, more mineralization deposition, and more expression of osteoblast-related genes, such as osteocalcin, runt-related transcription factor 2, bone morphogenetic protein-2, and vascular endothelial growth factor, in the SIM/COL/PET group. In vivo, rabbits received ACL reconstruction with different scaffolds. Histological analysis demonstrated that graft–bone healing was significantly greater with angiogenesis and osteogenesis in the SIM/COL/PET group than the other groups. In addition, biomechanical testing at the eighth week demonstrated a significant increase in the ultimate failure load and stiffness in the SIM/COL/PET group. The low dose of SIM

  3. Automatic control systems engineering

    International Nuclear Information System (INIS)

    Shin, Yun Gi

    2004-01-01

    This book gives descriptions of automatic control for electrical electronics, which indicates history of automatic control, Laplace transform, block diagram and signal flow diagram, electrometer, linearization of system, space of situation, state space analysis of electric system, sensor, hydro controlling system, stability, time response of linear dynamic system, conception of root locus, procedure to draw root locus, frequency response, and design of control system.

  4. 3-D Reconstruction From Satellite Images

    DEFF Research Database (Denmark)

    Denver, Troelz

    1999-01-01

    of planetary surfaces, but other purposes is considered as well. The system performance is measured with respect to the precision and the time consumption.The reconstruction process is divided into four major areas: Acquisition, calibration, matching/reconstruction and presentation. Each of these areas...... are treated individually. A detailed treatment of various lens distortions is required, in order to correct for these problems. This subject is included in the acquisition part. In the calibration part, the perspective distortion is removed from the images. Most attention has been paid to the matching problem...

  5. Control and automation systems

    International Nuclear Information System (INIS)

    Schmidt, R.; Zillich, H.

    1986-01-01

    A survey is given of the development of control and automation systems for energy uses. General remarks about control and automation schemes are followed by a description of modern process control systems along with process control processes as such. After discussing the particular process control requirements of nuclear power plants the paper deals with the reliability and availability of process control systems and refers to computerized simulation processes. The subsequent paragraphs are dedicated to descriptions of the operating floor, ergonomic conditions, existing systems, flue gas desulfurization systems, the electromagnetic influences on digital circuits as well as of light wave uses. (HAG) [de

  6. Transversus abdominis plane block reduces morphine consumption in the early postoperative period following microsurgical abdominal tissue breast reconstruction: a double-blind, placebo-controlled, randomized trial.

    Science.gov (United States)

    Zhong, Toni; Ojha, M; Bagher, Shaghayegh; Butler, Kate; Srinivas, Coimbatore; McCluskey, Stuart A; Clarke, Hance; O'Neill, Anne C; Novak, Christine B; Hofer, Stefan O P

    2014-11-01

    The analgesic efficacy of the transversus abdominis plane peripheral nerve block following abdominal tissue breast reconstruction has not been studied in a randomized controlled trial. The authors conducted a double-blind, placebo-controlled, 1:1 allocation, two-arm parallel group, superiority design, randomized controlled trial in patients undergoing microsurgical abdominally based breast reconstruction. Intraoperatively, epidural catheters were inserted under direct vision through the triangle of Petit on both sides of the abdomen into the transversus abdominis plane just before rectus fascial closure. Patients received either bupivacaine (study group) or saline (placebo group) through the catheters for 2 postoperative days. All patients received hydromorphone by means of a patient-controlled analgesic pump. The primary outcome was the difference in the parenteral opioid consumption on each postoperative day between the groups. The secondary outcome measures included the following: total in-hospital opioid; antinausea medication; pain, nausea, and sedation scores; Quality of Recovery Score; time to ambulation; and hospital stay duration. Between September of 2011 and June of 2013, 93 patients were enrolled: 49 received bupivacaine and 44 received saline. There were 11 postoperative complications (13 percent); none were related to the catheter. Primary outcomes were completed by 85 of 93 patients (91.3 percent); the mean parenteral morphine consumption was significantly reduced on postoperative day 1 in the bupivacaine group (20.7±20.1 mg) compared with 30.0±19.1 mg in the control group (p=0.02). There were no significant differences in secondary outcomes. Following abdominally based breast reconstruction, transversus abdominis plane peripheral nerve block is safe and significantly reduces morphine consumption in the early postoperative period. Therapeutic, II.

  7. Cardiac C-arm computed tomography using a 3D + time ROI reconstruction method with spatial and temporal regularization

    Energy Technology Data Exchange (ETDEWEB)

    Mory, Cyril, E-mail: cyril.mory@philips.com [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, F-69621 Villeurbanne Cedex (France); Philips Research Medisys, 33 rue de Verdun, 92156 Suresnes (France); Auvray, Vincent; Zhang, Bo [Philips Research Medisys, 33 rue de Verdun, 92156 Suresnes (France); Grass, Michael; Schäfer, Dirk [Philips Research, Röntgenstrasse 24–26, D-22335 Hamburg (Germany); Chen, S. James; Carroll, John D. [Department of Medicine, Division of Cardiology, University of Colorado Denver, 12605 East 16th Avenue, Aurora, Colorado 80045 (United States); Rit, Simon [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1 (France); Centre Léon Bérard, 28 rue Laënnec, F-69373 Lyon (France); Peyrin, Françoise [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, F-69621 Villeurbanne Cedex (France); X-ray Imaging Group, European Synchrotron, Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Douek, Philippe; Boussel, Loïc [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1 (France); Hospices Civils de Lyon, 28 Avenue du Doyen Jean Lépine, 69500 Bron (France)

    2014-02-15

    Purpose: Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be recorded during the acquisition and used in the reconstruction. In this paper, the authors present a 4D reconstruction method aiming to reconstruct the heart from a single sweep 10 s acquisition. Methods: The authors introduce the 4D RecOnstructiOn using Spatial and TEmporal Regularization (short 4D ROOSTER) method, which reconstructs all cardiac phases at once, as a 3D + time volume. The algorithm alternates between a reconstruction step based on conjugate gradient and four regularization steps: enforcing positivity, averaging along time outside a motion mask that contains the heart and vessels, 3D spatial total variation minimization, and 1D temporal total variation minimization. Results: 4D ROOSTER recovers the different temporal representations of a moving Shepp and Logan phantom, and outperforms both ECG-gated simultaneous algebraic reconstruction technique and prior image constrained compressed sensing on a clinical case. It generates 3D + time reconstructions with sharp edges which can be used, for example, to estimate the patient's left ventricular ejection fraction. Conclusions: 4D ROOSTER can be applied for human cardiac C-arm CT, and potentially in other dynamic tomography areas. It can easily be adapted to other problems as regularization is decoupled from projection and back projection.

  8. Cardiac C-arm computed tomography using a 3D + time ROI reconstruction method with spatial and temporal regularization

    International Nuclear Information System (INIS)

    Mory, Cyril; Auvray, Vincent; Zhang, Bo; Grass, Michael; Schäfer, Dirk; Chen, S. James; Carroll, John D.; Rit, Simon; Peyrin, Françoise; Douek, Philippe; Boussel, Loïc

    2014-01-01

    Purpose: Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be recorded during the acquisition and used in the reconstruction. In this paper, the authors present a 4D reconstruction method aiming to reconstruct the heart from a single sweep 10 s acquisition. Methods: The authors introduce the 4D RecOnstructiOn using Spatial and TEmporal Regularization (short 4D ROOSTER) method, which reconstructs all cardiac phases at once, as a 3D + time volume. The algorithm alternates between a reconstruction step based on conjugate gradient and four regularization steps: enforcing positivity, averaging along time outside a motion mask that contains the heart and vessels, 3D spatial total variation minimization, and 1D temporal total variation minimization. Results: 4D ROOSTER recovers the different temporal representations of a moving Shepp and Logan phantom, and outperforms both ECG-gated simultaneous algebraic reconstruction technique and prior image constrained compressed sensing on a clinical case. It generates 3D + time reconstructions with sharp edges which can be used, for example, to estimate the patient's left ventricular ejection fraction. Conclusions: 4D ROOSTER can be applied for human cardiac C-arm CT, and potentially in other dynamic tomography areas. It can easily be adapted to other problems as regularization is decoupled from projection and back projection

  9. Control system design guide

    Energy Technology Data Exchange (ETDEWEB)

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  10. Indirect control of quantum systems via an accessor: pure coherent control without system excitation

    International Nuclear Information System (INIS)

    Fu, H C; Dong Hui; Sun, C P; Liu, X F

    2009-01-01

    A pure indirect control of quantum systems via a quantum accessor is investigated. In this control scheme, we do not apply any external classical excitation fields on the controlled system and we control a quantum system via a quantum accessor and classical control fields control the accessor only. Complete controllability is investigated for arbitrary finite-dimensional quantum systems and exemplified by two- and three-dimensional systems. The scheme exhibits some advantages; it uses less qubits in the accessor and does not depend on the energy-level structure of the controlled system

  11. Intelligent control systems 1990

    International Nuclear Information System (INIS)

    Shoureshi, R.

    1991-01-01

    The field of artificial intelligence (Al) has generated many useful ideas and techniques that can be integrated into the design of control systems. It is believed and, for special cases, has been demonstrated, that integration of Al into control systems would provide the necessary tools for solving many of the complex problems that present control techniques and Al algorithms are unable to do, individually. However, this integration requires the development of basic understanding and new fundamentals to provide scientific bases for achievement of its potential. This book presents an overview of some of the latest research studies in the area of intelligent control systems. These papers present techniques for formulation of intelligent control, and development of the rule-based control systems. Papers present applications of control systems in nuclear power plants and HVAC systems

  12. FFTF control system experience

    International Nuclear Information System (INIS)

    Warrick, R.P.

    1981-01-01

    The FFTF control systems provide control equipment for safe and efficient operation of the plant. For convenience, these systems will be divided into three parts for discussions: (1) Plant Protection System (PPS); (2) Plant Control System (PCS); and (3) General Observations. Performance of each of these systems is discussed

  13. Reconstruction and restoration of historical buildings of transport infrastructure

    Science.gov (United States)

    Kareeva, Daria; Glazkova, Valeriya

    2017-10-01

    The aim of this article is to identify the main problems in the restoration of the historical objects. For this reason, it is rationally to collect and analyze the existing world experience of restoration. The information which was put together showed that there are some problems which are common and can be solved. In addition, the protection of the Monuments of Culture and Architecture Comittees always makes the restoration and reconstruction of the historical buildings complicated. By the examples of Germany, Italy and Russia it is shown that there are problems in organization, economy, planning and control. Engineers should think of and justify the methodology of organizing and monitoring of the restoration of the historical buildings. As a second solution, it will be possible to minimize time and financial costs through a favorable financial and legal background for investors and through the creation of a system of restoration work organizing. And for a faster process of restoration the imitation programs should be optimized for research and selection of the reconstruction technological and economic methods.

  14. Electron density profile reconstruction by maximum entropy method with multichannel HCN laser interferometer system on SPAC VII

    International Nuclear Information System (INIS)

    Kubo, S.; Narihara, K.; Tomita, Y.; Hasegawa, M.; Tsuzuki, T.; Mohri, A.

    1988-01-01

    A multichannel HCN laser interferometer system has been developed to investigate the plasma electron confinement properties in SPAC VII device. Maximum entropy method is applied to reconstruct the electron density profile from measured line integrated data. Particle diffusion coefficient in the peripheral region of the REB ring core spherator was obtained from the evolution of the density profile. (author)

  15. Entry-Control Systems Handbook

    International Nuclear Information System (INIS)

    1978-09-01

    The function of an entry-control system in a total Physical Protection System is to allow the movement of authorized personnel and material through normal access routes, yet detect and delay unauthorized movement of personnel and material from uncontrolled areas. The ten chapters of this handbook cover: introduction, credentials, personnel identity verification systems, special nuclear materials monitors, metal detectors, explosives sensors, package search systems, criteria for selection of entry-control equipment, machine-aided manual entry-control systems, and automated entry-control systems. A system example and its cost are included as an appendix

  16. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology

    NARCIS (Netherlands)

    Herrgård, Markus J.; Swainston, Neil; Dobson, Paul; Dunn, Warwick B.; Arga, K. Yalçin; Arvas, Mikko; Blüthgen, Nils; Borger, Simon; Costenoble, Roeland; Heinemann, Matthias; Hucka, Michael; Novère, Nicolas Le; Li, Peter; Liebermeister, Wolfram; Mo, Monica L.; Oliveira, Ana Paula; Petranovic, Dina; Pettifer, Stephen; Simeonidis, Evangelos; Smallbone, Kieran; Spasić, Irena; Weichart, Dieter; Brent, Roger; Broomhead, David S.; Westerhoff, Hans V.; Kırdar, Betül; Penttilä, Merja; Klipp, Edda; Palsson, Bernhard Ø.; Sauer, Uwe; Oliver, Stephen G.; Mendes, Pedro; Nielsen, Jens; Kell, Douglas B.

    2008-01-01

    Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and

  17. Qualitative and quantitative improvements of PET reconstruction on GPU architecture

    International Nuclear Information System (INIS)

    Autret, Awen

    2016-01-01

    In positron emission tomography, reconstructed images suffer from a high noise level and a low resolution. Iterative reconstruction processes require an estimation of the system response (scanner and patient) and the quality of the images depends on the accuracy of this estimate. Accurate and fast to compute models already exists for the attenuation, scattering, random coincidences and dead times. Thus, this thesis focuses on modeling the system components associated with the detector response and the positron range. A new multi-GPU parallelization of the reconstruction based on a cutting of the volume is also proposed to speed up the reconstruction exploiting the computing power of such architectures. The proposed detector response model is based on a multi-ray approach that includes all the detector effects as the geometry and the scattering in the crystals. An evaluation study based on data obtained through Mote Carlo simulation (MCS) showed this model provides reconstructed images with a better contrast to noise ratio and resolution compared with those of the methods from the state of the art. The proposed positron range model is based on a simplified MCS, integrated into the forward projector during the reconstruction. A GPU implementation of this method allows running MCS three order of magnitude faster than the same simulation on GATE, while providing similar results. An evaluation study shows this model integrated in the reconstruction gives images with better contrast recovery and resolution while avoiding artifacts. (author)

  18. Alpha image reconstruction (AIR): A new iterative CT image reconstruction approach using voxel-wise alpha blending

    International Nuclear Information System (INIS)

    Hofmann, Christian; Sawall, Stefan; Knaup, Michael; Kachelrieß, Marc

    2014-01-01

    factor for contrast-resolution plots. Furthermore, the authors calculate the contrast-to-noise ratio with the low contrast disks and the authors compare the agreement of the reconstructions with the ground truth by calculating the normalized cross-correlation and the root-mean-square deviation. To evaluate the clinical performance of the proposed method, the authors reconstruct patient data acquired with a Somatom Definition Flash dual source CT scanner (Siemens Healthcare, Forchheim, Germany). Results: The results of the simulation study show that among the compared algorithms AIR achieves the highest resolution and the highest agreement with the ground truth. Compared to the reference FBP reconstruction AIR is able to reduce the relative pixel noise by up to 50% and at the same time achieve a higher resolution by maintaining the edge information from the basis images. These results can be confirmed with the patient data. Conclusions: To evaluate the AIR algorithm simulated and measured patient data of a state-of-the-art clinical CT system were processed. It is shown, that generating CT images through the reconstruction of weighting coefficients has the potential to improve the resolution noise trade-off and thus to improve the dose usage in clinical CT

  19. The PRISM3D paleoenvironmental reconstruction

    Science.gov (United States)

    Dowsett, H.; Robinson, M.; Haywood, A.M.; Salzmann, U.; Hill, Daniel; Sohl, L.E.; Chandler, M.; Williams, Mark; Foley, K.; Stoll, D.K.

    2010-01-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstruction is an internally consistent and comprehensive global synthesis of a past interval of relatively warm and stable climate. It is regularly used in model studies that aim to better understand Pliocene climate, to improve model performance in future climate scenarios, and to distinguish model-dependent climate effects. The PRISM reconstruction is constantly evolving in order to incorporate additional geographic sites and environmental parameters, and is continuously refined by independent research findings. The new PRISM three dimensional (3D) reconstruction differs from previous PRISM reconstructions in that it includes a subsurface ocean temperature reconstruction, integrates geochemical sea surface temperature proxies to supplement the faunal-based temperature estimates, and uses numerical models for the first time to augment fossil data. Here we describe the components of PRISM3D and describe new findings specific to the new reconstruction. Highlights of the new PRISM3D reconstruction include removal of Hudson Bay and the Great Lakes and creation of open waterways in locations where the current bedrock elevation is less than 25m above modern sea level, due to the removal of the West Antarctic Ice Sheet and the reduction of the East Antarctic Ice Sheet. The mid-Piacenzian oceans were characterized by a reduced east-west temperature gradient in the equatorial Pacific, but PRISM3D data do not imply permanent El Niño conditions. The reduced equator-to-pole temperature gradient that characterized previous PRISM reconstructions is supported by significant displacement of vegetation belts toward the poles, is extended into the Arctic Ocean, and is confirmed by multiple proxies in PRISM3D. Arctic warmth coupled with increased dryness suggests the formation of warm and salty paleo North Atlantic Deep Water (NADW) and a more vigorous thermohaline circulation system that may

  20. Reconstruction of incorrect sensor data : from failure to success

    OpenAIRE

    Os, van, E.A.; Bontsema, J.; Janssen, H.J.J.; Kempkes, F.L.K.; Marcelis, L.F.M.

    2009-01-01

    Experimental research on crop performance or climate control in greenhouses requires accurate measurement of climate conditions. Despite the use of calibrated sensors, afterwards it may appear that the collected climate data are incorrect. Then the question arises whether we need to repeat the experiment or whether we can reconstruct the correct climate data from the incorrect measurements. In this paper we show how correct data of temperature and air humidity could be reconstructed from inco...

  1. A protocol for generating a high-quality genome-scale metabolic reconstruction.

    Science.gov (United States)

    Thiele, Ines; Palsson, Bernhard Ø

    2010-01-01

    Network reconstructions are a common denominator in systems biology. Bottom-up metabolic network reconstructions have been developed over the last 10 years. These reconstructions represent structured knowledge bases that abstract pertinent information on the biochemical transformations taking place within specific target organisms. The conversion of a reconstruction into a mathematical format facilitates a myriad of computational biological studies, including evaluation of network content, hypothesis testing and generation, analysis of phenotypic characteristics and metabolic engineering. To date, genome-scale metabolic reconstructions for more than 30 organisms have been published and this number is expected to increase rapidly. However, these reconstructions differ in quality and coverage that may minimize their predictive potential and use as knowledge bases. Here we present a comprehensive protocol describing each step necessary to build a high-quality genome-scale metabolic reconstruction, as well as the common trials and tribulations. Therefore, this protocol provides a helpful manual for all stages of the reconstruction process.

  2. Photoacoustic image reconstruction: a quantitative analysis

    Science.gov (United States)

    Sperl, Jonathan I.; Zell, Karin; Menzenbach, Peter; Haisch, Christoph; Ketzer, Stephan; Marquart, Markus; Koenig, Hartmut; Vogel, Mika W.

    2007-07-01

    Photoacoustic imaging is a promising new way to generate unprecedented contrast in ultrasound diagnostic imaging. It differs from other medical imaging approaches, in that it provides spatially resolved information about optical absorption of targeted tissue structures. Because the data acquisition process deviates from standard clinical ultrasound, choice of the proper image reconstruction method is crucial for successful application of the technique. In the literature, multiple approaches have been advocated, and the purpose of this paper is to compare four reconstruction techniques. Thereby, we focused on resolution limits, stability, reconstruction speed, and SNR. We generated experimental and simulated data and reconstructed images of the pressure distribution using four different methods: delay-and-sum (DnS), circular backprojection (CBP), generalized 2D Hough transform (HTA), and Fourier transform (FTA). All methods were able to depict the point sources properly. DnS and CBP produce blurred images containing typical superposition artifacts. The HTA provides excellent SNR and allows a good point source separation. The FTA is the fastest and shows the best FWHM. In our study, we found the FTA to show the best overall performance. It allows a very fast and theoretically exact reconstruction. Only a hardware-implemented DnS might be faster and enable real-time imaging. A commercial system may also perform several methods to fully utilize the new contrast mechanism and guarantee optimal resolution and fidelity.

  3. Computed Tomography Image Quality Evaluation of a New Iterative Reconstruction Algorithm in the Abdomen (Adaptive Statistical Iterative Reconstruction-V) a Comparison With Model-Based Iterative Reconstruction, Adaptive Statistical Iterative Reconstruction, and Filtered Back Projection Reconstructions.

    Science.gov (United States)

    Goodenberger, Martin H; Wagner-Bartak, Nicolaus A; Gupta, Shiva; Liu, Xinming; Yap, Ramon Q; Sun, Jia; Tamm, Eric P; Jensen, Corey T

    The purpose of this study was to compare abdominopelvic computed tomography images reconstructed with adaptive statistical iterative reconstruction-V (ASIR-V) with model-based iterative reconstruction (Veo 3.0), ASIR, and filtered back projection (FBP). Abdominopelvic computed tomography scans for 36 patients (26 males and 10 females) were reconstructed using FBP, ASIR (80%), Veo 3.0, and ASIR-V (30%, 60%, 90%). Mean ± SD patient age was 32 ± 10 years with mean ± SD body mass index of 26.9 ± 4.4 kg/m. Images were reviewed by 2 independent readers in a blinded, randomized fashion. Hounsfield unit, noise, and contrast-to-noise ratio (CNR) values were calculated for each reconstruction algorithm for further comparison. Phantom evaluation of low-contrast detectability (LCD) and high-contrast resolution was performed. Adaptive statistical iterative reconstruction-V 30%, ASIR-V 60%, and ASIR 80% were generally superior qualitatively compared with ASIR-V 90%, Veo 3.0, and FBP (P ASIR-V 60% with respective CNR values of 5.54 ± 2.39, 8.78 ± 3.15, and 3.49 ± 1.77 (P ASIR 80% had the best and worst spatial resolution, respectively. Adaptive statistical iterative reconstruction-V 30% and ASIR-V 60% provided the best combination of qualitative and quantitative performance. Adaptive statistical iterative reconstruction 80% was equivalent qualitatively, but demonstrated inferior spatial resolution and LCD.

  4. High spatial resolution CT image reconstruction using parallel computing

    International Nuclear Information System (INIS)

    Yin Yin; Liu Li; Sun Gongxing

    2003-01-01

    Using the PC cluster system with 16 dual CPU nodes, we accelerate the FBP and OR-OSEM reconstruction of high spatial resolution image (2048 x 2048). Based on the number of projections, we rewrite the reconstruction algorithms into parallel format and dispatch the tasks to each CPU. By parallel computing, the speedup factor is roughly equal to the number of CPUs, which can be up to about 25 times when 25 CPUs used. This technique is very suitable for real-time high spatial resolution CT image reconstruction. (authors)

  5. Gadgetron: An Open Source Framework for Medical Image Reconstruction

    DEFF Research Database (Denmark)

    Hansen, Michael Schacht; Sørensen, Thomas Sangild

    2013-01-01

    This work presents a new open source framework for medical image reconstruction called the “Gadgetron.” The framework implements a flexible system for creating streaming data processing pipelines where data pass through a series of modules or “Gadgets” from raw data to reconstructed images...... with a set of dedicated toolboxes in shared libraries for medical image reconstruction. This includes generic toolboxes for data-parallel (e.g., GPU-based) execution of compute-intensive components. The basic framework architecture is independent of medical imaging modality, but this article focuses on its...

  6. Instrument Variables for Reducing Noise in Parallel MRI Reconstruction

    Directory of Open Access Journals (Sweden)

    Yuchou Chang

    2017-01-01

    Full Text Available Generalized autocalibrating partially parallel acquisition (GRAPPA has been a widely used parallel MRI technique. However, noise deteriorates the reconstructed image when reduction factor increases or even at low reduction factor for some noisy datasets. Noise, initially generated from scanner, propagates noise-related errors during fitting and interpolation procedures of GRAPPA to distort the final reconstructed image quality. The basic idea we proposed to improve GRAPPA is to remove noise from a system identification perspective. In this paper, we first analyze the GRAPPA noise problem from a noisy input-output system perspective; then, a new framework based on errors-in-variables (EIV model is developed for analyzing noise generation mechanism in GRAPPA and designing a concrete method—instrument variables (IV GRAPPA to remove noise. The proposed EIV framework provides possibilities that noiseless GRAPPA reconstruction could be achieved by existing methods that solve EIV problem other than IV method. Experimental results show that the proposed reconstruction algorithm can better remove the noise compared to the conventional GRAPPA, as validated with both of phantom and in vivo brain data.

  7. X-ray computed tomography reconstruction on non-standard trajectories for robotized inspection

    International Nuclear Information System (INIS)

    Banjak, Hussein

    2016-01-01

    The number of industrial applications of computed tomography (CT) is large and rapidly increasing with typical areas of use in the aerospace, automotive and transport industry. To support this growth of CT in the industrial field, the identified requirements concern firstly software development to improve the reconstruction algorithms and secondly the automation of the inspection process. Indeed, the use of robots gives more flexibility in the acquisition trajectory and allows the control of large and complex objects, which cannot be inspected using classical CT systems. In this context of new CT trend, a robotic platform has been installed at CEA LIST to better understand and solve specific challenges linked to the robotization of the CT process. The considered system integrates two robots that move the X-ray generator and detector. This thesis aims at achieving this new development. In particular, the objective is to develop and implement analytical and iterative reconstruction algorithms adapted to such robotized trajectories. The main focus of this thesis is concerned with helical-like scanning trajectories. We consider two main problems that could occur during acquisition process: truncated and limited-angle data. We present in this work experimental results for reconstruction on such non-standard trajectories. CIVA software is used to simulate these complex inspections and our developed algorithms are integrated as reconstruction tools. This thesis contains three parts. In the first part, we introduce the basic principles of CT and we present an overview of existing analytical and iterative algorithms for non-standard trajectories. In the second part, we modify the approximate helical FDK algorithm to deal with transversely truncated data and we propose a modified FDK algorithm adapted to reverse helical trajectory with the scan range less than 360 degrees. For iterative reconstruction, we propose two algebraic methods named SART-FISTA-TV and DART

  8. Robust statistical reconstruction for charged particle tomography

    Science.gov (United States)

    Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  9. Wisdom Appliance Control System

    Science.gov (United States)

    Hendrick; Jheng, Jyun-Teng; Tsai, Chen-Chai; Liou, Jia-Wei; Wang, Zhi-Hao; Jong, Gwo-Jia

    2017-07-01

    Intelligent appliances wisdom involves security, home care, convenient and energy saving, but the home automation system is still one of the core unit, and also using micro-processing electronics technology to centralized and control the home electrical products and systems, such as: lighting, television, fan, air conditioning, stereo, it composed of front-controller systems and back-controller panels, user using front-controller to control command, and then through the back-controller to powered the device.

  10. Reconstruction of photon number conditioned states using phase randomized homodyne measurements

    International Nuclear Information System (INIS)

    Chrzanowski, H M; Assad, S M; Bernu, J; Hage, B; Lam, P K; Symul, T; Lund, A P; Ralph, T C

    2013-01-01

    We experimentally demonstrate the reconstruction of a photon number conditioned state without using a photon number discriminating detector. By using only phase randomized homodyne measurements, we reconstruct up to the three photon subtracted squeezed vacuum state. The reconstructed Wigner functions of these states show regions of pronounced negativity, signifying the non-classical nature of the reconstructed states. The techniques presented allow for complete characterization of the role of a conditional measurement on an ensemble of states, and might prove useful in systems where photon counting still proves technically challenging. (paper)

  11. Oblique reconstructions in tomosynthesis. II. Super-resolution

    International Nuclear Information System (INIS)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes.Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system.Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  12. Oblique reconstructions in tomosynthesis. II. Super-resolution

    Science.gov (United States)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes. Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system. Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  13. Model predictive control for a thermostatic controlled system

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob

    2013-01-01

    This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff temperat......This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff...

  14. Systematic reconstruction of TRANSPATH data into cell system markup language.

    Science.gov (United States)

    Nagasaki, Masao; Saito, Ayumu; Li, Chen; Jeong, Euna; Miyano, Satoru

    2008-06-23

    Many biological repositories store information based on experimental study of the biological processes within a cell, such as protein-protein interactions, metabolic pathways, signal transduction pathways, or regulations of transcription factors and miRNA. Unfortunately, it is difficult to directly use such information when generating simulation-based models. Thus, modeling rules for encoding biological knowledge into system-dynamics-oriented standardized formats would be very useful for fully understanding cellular dynamics at the system level. We selected the TRANSPATH database, a manually curated high-quality pathway database, which provides a plentiful source of cellular events in humans, mice, and rats, collected from over 31,500 publications. In this work, we have developed 16 modeling rules based on hybrid functional Petri net with extension (HFPNe), which is suitable for graphical representing and simulating biological processes. In the modeling rules, each Petri net element is incorporated with Cell System Ontology to enable semantic interoperability of models. As a formal ontology for biological pathway modeling with dynamics, CSO also defines biological terminology and corresponding icons. By combining HFPNe with the CSO features, it is possible to make TRANSPATH data to simulation-based and semantically valid models. The results are encoded into a biological pathway format, Cell System Markup Language (CSML), which eases the exchange and integration of biological data and models. By using the 16 modeling rules, 97% of the reactions in TRANSPATH are converted into simulation-based models represented in CSML. This reconstruction demonstrates that it is possible to use our rules to generate quantitative models from static pathway descriptions.

  15. Accuracy improvement of CT reconstruction using tree-structured filter bank

    International Nuclear Information System (INIS)

    Ueda, Kazuhiro; Morimoto, Hiroaki; Morikawa, Yoshitaka; Murakami, Junichi

    2009-01-01

    Accuracy improvement of 'CT reconstruction algorithm using TSFB (Tree-Structured Filter Bank)' that is high-speed CT reconstruction algorithm, was proposed. TSFB method could largely reduce the amount of computation in comparison with the CB (Convolution Backprojection) method, but it was the problem that an artifact occurred in a reconstruction image since reconstruction was performed with disregard to a signal out of the reconstruction domain in stage processing. Also the whole band filter being the component of a two-dimensional synthesis filter was IIR filter and then an artifact occurred at the end of the reconstruction image. In order to suppress these artifacts the proposed method enlarged the processing range by the TSFB method in the domain outside by the width control of the specimen line and line addition to the reconstruction domain outside. And, furthermore, to avoid increase of the amount of computation, the algorithm was proposed such as to decide the needed processing range depending on the number of steps processing with the TSFB and the degree of incline of filter, and then update the position and width of the specimen line to process the needed range. According to the simulation to realize a high-speed and highly accurate CT reconstruction in this way, the quality of the reconstruction image of the proposed method was improved in comparison with the TSFB method and got the same result with the CB method. (T. Tanaka)

  16. System control and communication

    International Nuclear Information System (INIS)

    Bindner, H.; Oestergaard, J.

    2005-01-01

    Rapid and ongoing development in the energy sector has consequences for system control at all levels. In relation to system control and communication the control system is challenged in five important ways: 1) Expectations for security of supply, robustness and vulnerability are becoming more stringent, and the control system plays a big part in meeting these expectations. 2) Services are becoming increasingly based on markets that involve the transmission system operators (TSOs), generators and distribution companies. Timely, accurate and secure communication is essential to the smooth running of the markets. 3) Adding large amounts of renewable energy (RE) to the mix is a challenge for control systems because of the intermittent availability of many RE sources. 4) Increasing the number of active components in the system, such as small CHP plants, micro-CHP and intelligent loads, means that the system control will be much more complex. 5) In the future it is likely that power, heat, gas, transport and communication systems will be tighter coupled and interact much more. (au)

  17. A neural network image reconstruction technique for electrical impedance tomography

    International Nuclear Information System (INIS)

    Adler, A.; Guardo, R.

    1994-01-01

    Reconstruction of Images in Electrical Impedance Tomography requires the solution of a nonlinear inverse problem on noisy data. This problem is typically ill-conditioned and requires either simplifying assumptions or regularization based on a priori knowledge. This paper presents a reconstruction algorithm using neural network techniques which calculates a linear approximation of the inverse problem directly from finite element simulations of the forward problem. This inverse is adapted to the geometry of the medium and the signal-to-noise ratio (SNR) used during network training. Results show good conductivity reconstruction where measurement SNR is similar to the training conditions. The advantages of this method are its conceptual simplicity and ease of implementation, and the ability to control the compromise between the noise performance and resolution of the image reconstruction

  18. Designing on ICT reconstruction software based on DSP techniques

    International Nuclear Information System (INIS)

    Liu Jinhui; Xiang Xincheng

    2006-01-01

    The convolution back project (CBP) algorithm is used to realize the CT image's reconstruction in ICT generally, which is finished by using PC or workstation. In order to add the ability of multi-platform operation of CT reconstruction software, a CT reconstruction method based on modern digital signal processor (DSP) technique is proposed and realized in this paper. The hardware system based on TI's C6701 DSP processor is selected to support the CT software construction. The CT reconstruction software is compiled only using assembly language related to the DSP hardware. The CT software can be run on TI's C6701 EVM board by inputting the CT data, and can get the CT Images that satisfy the real demands. (authors)

  19. Oral and Oropharyngeal Reconstruction with a Free Flap.

    Science.gov (United States)

    Jeong, Woo Shik; Oh, Tae Suk

    2016-06-01

    Extensive surgical resection of the aerodigestive track can result in a large and complex defect of the oropharynx, which represents a significant reconstructive challenge for the plastic surgery. Development of microsurgical techniques has allowed for free flap reconstruction of oropharyngeal defects, with superior outcomes as well as decreases in postoperative complications. The reconstructive goals for oral and oropharyngeal defects are to restore the anatomy, to maintain continuity of the intraoral surface and oropharynx, to protect vital structures such as carotid arteries, to cover exposed portions of internal organs in preparation for adjuvant radiation, and to preserve complex functions of the oral cavity and oropharynx. Oral and oropharyngeal cancers should be treated with consideration of functional recovery. Multidisciplinary treatment strategies are necessary for maximizing disease control and preserving the natural form and function of the oropharynx.

  20. New possibilities of three-dimensional reconstruction of computed tomography scans

    International Nuclear Information System (INIS)

    Herman, M.; Tarjan, Z.; Pozzi-Mucelli, R.S.

    1996-01-01

    Three-dimensional (3D) computed tomography (CT) scan reconstructions provide impressive and illustrative images of various parts of the human body. Such images are reconstructed from a series of basic CT scans by dedicated software. The state of the art in 3D computed tomography is demonstrated with emphasis on the imaging of soft tissues. Examples are presented of imaging the craniofacial and maxillofacial complex, central nervous system, cardiovascular system, musculoskeletal system, gastrointestinal and urogenital systems, and respiratory system, and their potential in clinical practice is discussed. Although contributing no new essential diagnostic information against conventional CT scans, 3D scans can help in spatial orientation. 11 figs., 25 refs

  1. Adaptive multiresolution method for MAP reconstruction in electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Erman, E-mail: erman.acar@tut.fi [Department of Signal Processing, Tampere University of Technology, P.O. Box 553, FI-33101 Tampere (Finland); BioMediTech, Tampere University of Technology, Biokatu 10, 33520 Tampere (Finland); Peltonen, Sari; Ruotsalainen, Ulla [Department of Signal Processing, Tampere University of Technology, P.O. Box 553, FI-33101 Tampere (Finland); BioMediTech, Tampere University of Technology, Biokatu 10, 33520 Tampere (Finland)

    2016-11-15

    3D image reconstruction with electron tomography holds problems due to the severely limited range of projection angles and low signal to noise ratio of the acquired projection images. The maximum a posteriori (MAP) reconstruction methods have been successful in compensating for the missing information and suppressing noise with their intrinsic regularization techniques. There are two major problems in MAP reconstruction methods: (1) selection of the regularization parameter that controls the balance between the data fidelity and the prior information, and (2) long computation time. One aim of this study is to provide an adaptive solution to the regularization parameter selection problem without having additional knowledge about the imaging environment and the sample. The other aim is to realize the reconstruction using sequences of resolution levels to shorten the computation time. The reconstructions were analyzed in terms of accuracy and computational efficiency using a simulated biological phantom and publically available experimental datasets of electron tomography. The numerical and visual evaluations of the experiments show that the adaptive multiresolution method can provide more accurate results than the weighted back projection (WBP), simultaneous iterative reconstruction technique (SIRT), and sequential MAP expectation maximization (sMAPEM) method. The method is superior to sMAPEM also in terms of computation time and usability since it can reconstruct 3D images significantly faster without requiring any parameter to be set by the user. - Highlights: • An adaptive multiresolution reconstruction method is introduced for electron tomography. • The method provides more accurate results than the conventional reconstruction methods. • The missing wedge and noise problems can be compensated by the method efficiently.

  2. Validation of Magnetic Reconstruction Codes for Real-Time Applications

    International Nuclear Information System (INIS)

    Mazon, D.; Murari, A.; Boulbe, C.; Faugeras, B.; Blum, J.; Svensson, J.; Quilichini, T.; Gelfusa, M.

    2010-01-01

    The real-time reconstruction of the plasma magnetic equilibrium in a tokamak is a key point to access high-performance regimes. Indeed, the shape of the plasma current density profile is a direct output of the reconstruction and has a leading effect for reaching a steady-state high-performance regime of operation. The challenge is thus to develop real-time methods and algorithms that reconstruct the magnetic equilibrium from the perspective of using these outputs for feedback control purposes. In this paper the validation of the JET real-time equilibrium reconstruction codes using both a Bayesian approach and a full equilibrium solver named Equinox will be detailed, the comparison being performed with the off-line equilibrium code EFIT (equilibrium fitting) or the real-time boundary reconstruction code XLOC (X-point local expansion). In this way a significant database, a methodology, and a strategy for the validation are presented. The validation of the results has been performed using a validated database of 130 JET discharges with a large variety of magnetic configurations. Internal measurements like polarimetry and motional Stark effect have been also used for the Equinox validation including some magnetohydrodynamic signatures for the assessment of the reconstructed safety profile and current density. (authors)

  3. Optimization-based reconstruction for reduction of CBCT artifact in IGRT

    Science.gov (United States)

    Xia, Dan; Zhang, Zheng; Paysan, Pascal; Seghers, Dieter; Brehm, Marcus; Munro, Peter; Sidky, Emil Y.; Pelizzari, Charles; Pan, Xiaochuan

    2016-04-01

    Kilo-voltage cone-beam computed tomography (CBCT) plays an important role in image guided radiation therapy (IGRT) by providing 3D spatial information of tumor potentially useful for optimizing treatment planning. In current IGRT CBCT system, reconstructed images obtained with analytic algorithms, such as FDK algorithm and its variants, may contain artifacts. In an attempt to compensate for the artifacts, we investigate optimization-based reconstruction algorithms such as the ASD-POCS algorithm for potentially reducing arti- facts in IGRT CBCT images. In this study, using data acquired with a physical phantom and a patient subject, we demonstrate that the ASD-POCS reconstruction can significantly reduce artifacts observed in clinical re- constructions. Moreover, patient images reconstructed by use of the ASD-POCS algorithm indicate a contrast level of soft-tissue improved over that of the clinical reconstruction. We have also performed reconstructions from sparse-view data, and observe that, for current clinical imaging conditions, ASD-POCS reconstructions from data collected at one half of the current clinical projection views appear to show image quality, in terms of spatial and soft-tissue-contrast resolution, higher than that of the corresponding clinical reconstructions.

  4. Dynamic knee stability and ballistic knee movement after ACL reconstruction: an application on instep soccer kick.

    Science.gov (United States)

    Cordeiro, Nuno; Cortes, Nelson; Fernandes, Orlando; Diniz, Ana; Pezarat-Correia, Pedro

    2015-04-01

    The instep soccer kick is a pre-programmed ballistic movement with a typical agonist-antagonist coordination pattern. The coordination pattern of the kick can provide insight into deficient neuromuscular control. The purpose of this study was to investigate knee kinematics and hamstrings/quadriceps coordination pattern during the knee ballistic extension phase of the instep kick in soccer players after anterior cruciate ligament reconstruction (ACL reconstruction). Seventeen players from the Portuguese Soccer League participated in this study. Eight ACL-reconstructed athletes (experimental group) and 9 healthy individuals (control group) performed three instep kicks. Knee kinematics (flexion and extension angles at football contact and maximum velocity instants) were calculated during the kicks. Rectus femoris (RF), vastus lateralis, vastus medialis, biceps femoralis, and semitendinosus muscle activations were quantified during the knee extension phase. The ACL-reconstructed group had significantly lower knee extension angle (-1.2 ± 1.6, p ballistic control movement pattern between normal and ACL-reconstructed subjects. Performing open kinetic chain exercises using ballistic movements can be beneficial when recovering from ACL reconstruction. The exercises should focus on achieving multi-joint coordination and full knee extension (range of motion). III.

  5. Industrial dynamic tomographic reconstruction; Reconstrucao tomografica dinamica industrial

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eric Ferreira de

    2016-07-01

    The state of the art methods applied to industrial processes is currently based on the principles of classical tomographic reconstructions developed for tomographic patterns of static distributions, or is limited to cases of low variability of the density distribution function of the tomographed object. Noise and motion artifacts are the main problems caused by a mismatch in the data from views acquired in different instants. All of these add to the known fact that using a limited amount of data can result in the presence of noise, artifacts and some inconsistencies with the distribution under study. One of the objectives of the present work is to discuss the difficulties that arise from implementing reconstruction algorithms in dynamic tomography that were originally developed for static distributions. Another objective is to propose solutions that aim at reducing a temporal type of information loss caused by employing regular acquisition systems to dynamic processes. With respect to dynamic image reconstruction it was conducted a comparison between different static reconstruction methods, like MART and FBP, when used for dynamic scenarios. This comparison was based on a MCNPx simulation as well as an analytical setup of an aluminum cylinder that moves along the section of a riser during the process of acquisition, and also based on cross section images from CFD techniques. As for the adaptation of current tomographic acquisition systems for dynamic processes, this work established a sequence of tomographic views in a just-in-time fashion for visualization purposes, a form of visually disposing density information as soon as it becomes amenable to image reconstruction. A third contribution was to take advantage of the triple color channel necessary to display colored images in most displays, so that, by appropriately scaling the acquired values of each view in the linear system of the reconstruction, it was possible to imprint a temporal trace into the regularly

  6. A new method for measuring temporal resolution in electrocardiogram-gated reconstruction image with area-detector computed tomography

    International Nuclear Information System (INIS)

    Kaneko, Takeshi; Takagi, Masachika; Kato, Ryohei; Anno, Hirofumi; Kobayashi, Masanao; Yoshimi, Satoshi; Sanda, Yoshihiro; Katada, Kazuhiro

    2012-01-01

    The purpose of this study was to design and construct a phantom for using motion artifact in the electrocardiogram (ECG)-gated reconstruction image. In addition, the temporal resolution under various conditions was estimated. A stepping motor was used to move the phantom over an arc in a reciprocating manner. The program for controlling the stepping motor permitted the stationary period and the heart rate to be adjusted as desired. Images of the phantom were obtained using a 320-row area-detector computed tomography (ADCT) system under various conditions using the ECG-gated reconstruction method. For estimation, the reconstruction phase was continuously changed and the motion artifacts were quantitatively assessed. The temporal resolution was calculated from the number of motion-free images. Changes in the temporal resolution according to heart rate, rotation time, the number of reconstruction segments and acquisition position in z-axis were also investigated. The measured temporal resolution of ECG-gated half reconstruction is 180 ms, which is in good agreement with the nominal temporal resolution of 175 ms. The measured temporal resolution of ECG-gated segmental reconstruction is in good agreement with the nominal temporal resolution in most cases. The estimated temporal resolution improved to approach the nominal temporal resolution as the number of reconstruction segments was increased. Temporal resolution in changing acquisition position is equal. This study shows that we could design a new phantom for estimating temporal resolution. (author)

  7. Photoelectron holography with improved image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Tomohiro, E-mail: matusita@spring8.or.j [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5198 (Japan); Matsui, Fumihiko; Daimon, Hiroshi [Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Hayashi, Kouichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2010-05-15

    Electron holography is a type of atomic structural analysis, and it has unique features such as element selectivity and the ability to analyze the structure around an impurity in a crystal. In this paper, we introduce the measurement system, electron holograms, a theory for the recording process of an electron hologram, and a theory for the reconstruction algorithm. We describe photoelectron holograms, Auger electron holograms, and the inverse mode of an electron hologram. The reconstruction algorithm, scattering pattern extraction algorithm (SPEA), the SPEA with maximum entropy method (SPEA-MEM), and SPEA-MEM with translational operation are also described.

  8. Photoelectron holography with improved image reconstruction

    International Nuclear Information System (INIS)

    Matsushita, Tomohiro; Matsui, Fumihiko; Daimon, Hiroshi; Hayashi, Kouichi

    2010-01-01

    Electron holography is a type of atomic structural analysis, and it has unique features such as element selectivity and the ability to analyze the structure around an impurity in a crystal. In this paper, we introduce the measurement system, electron holograms, a theory for the recording process of an electron hologram, and a theory for the reconstruction algorithm. We describe photoelectron holograms, Auger electron holograms, and the inverse mode of an electron hologram. The reconstruction algorithm, scattering pattern extraction algorithm (SPEA), the SPEA with maximum entropy method (SPEA-MEM), and SPEA-MEM with translational operation are also described.

  9. OCULUS fire: a command and control system for fire management with crowd sourcing and social media interconnectivity

    Science.gov (United States)

    Thomopoulos, Stelios C. A.; Kyriazanos, Dimitris M.; Astyakopoulos, Alkiviadis; Dimitros, Kostantinos; Margonis, Christos; Thanos, Giorgos Konstantinos; Skroumpelou, Katerina

    2016-05-01

    AF3 (Advanced Forest Fire Fighting2) is a European FP7 research project that intends to improve the efficiency of current fire-fighting operations and the protection of human lives, the environment and property by developing innovative technologies to ensure the integration between existing and new systems. To reach this objective, the AF3 project focuses on innovative active and passive countermeasures, early detection and monitoring, integrated crisis management and advanced public information channels. OCULUS Fire is the innovative control and command system developed within AF3 as a monitoring, GIS and Knowledge Extraction System and Visualization Tool. OCULUS Fire includes (a) an interface for real-time updating and reconstructing of maps to enable rerouting based on estimated hazards and risks, (b) processing of GIS dynamic re-construction and mission re-routing, based on the fusion of airborne, satellite, ground and ancillary geolocation data, (c) visualization components for the C2 monitoring system, displaying and managing information arriving from a variety of sources and (d) mission and situational awareness module for OCULUS Fire ground monitoring system being part of an Integrated Crisis Management Information System for ground and ancillary sensors. OCULUS Fire will also process and visualise information from public information channels, social media and also mobile applications by helpful citizens and volunteers. Social networking, community building and crowdsourcing features will enable a higher reliability and less false alarm rates when using such data in the context of safety and security applications.

  10. A novel data processing technique for image reconstruction of penumbral imaging

    Science.gov (United States)

    Xie, Hongwei; Li, Hongyun; Xu, Zeping; Song, Guzhou; Zhang, Faqiang; Zhou, Lin

    2011-06-01

    CT image reconstruction technique was applied to the data processing of the penumbral imaging. Compared with other traditional processing techniques for penumbral coded pinhole image such as Wiener, Lucy-Richardson and blind technique, this approach is brand new. In this method, the coded aperture processing method was used for the first time independent to the point spread function of the image diagnostic system. In this way, the technical obstacles was overcome in the traditional coded pinhole image processing caused by the uncertainty of point spread function of the image diagnostic system. Then based on the theoretical study, the simulation of penumbral imaging and image reconstruction was carried out to provide fairly good results. While in the visible light experiment, the point source of light was used to irradiate a 5mm×5mm object after diffuse scattering and volume scattering. The penumbral imaging was made with aperture size of ~20mm. Finally, the CT image reconstruction technique was used for image reconstruction to provide a fairly good reconstruction result.

  11. Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.

    Science.gov (United States)

    Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc

    2017-08-01

    We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

  12. FRED (a Framework for Reconstructing Epidemic Dynamics): an open-source software system for modeling infectious diseases and control strategies using census-based populations.

    Science.gov (United States)

    Grefenstette, John J; Brown, Shawn T; Rosenfeld, Roni; DePasse, Jay; Stone, Nathan T B; Cooley, Phillip C; Wheaton, William D; Fyshe, Alona; Galloway, David D; Sriram, Anuroop; Guclu, Hasan; Abraham, Thomas; Burke, Donald S

    2013-10-08

    Mathematical and computational models provide valuable tools that help public health planners to evaluate competing health interventions, especially for novel circumstances that cannot be examined through observational or controlled studies, such as pandemic influenza. The spread of diseases like influenza depends on the mixing patterns within the population, and these mixing patterns depend in part on local factors including the spatial distribution and age structure of the population, the distribution of size and composition of households, employment status and commuting patterns of adults, and the size and age structure of schools. Finally, public health planners must take into account the health behavior patterns of the population, patterns that often vary according to socioeconomic factors such as race, household income, and education levels. FRED (a Framework for Reconstructing Epidemic Dynamics) is a freely available open-source agent-based modeling system based closely on models used in previously published studies of pandemic influenza. This version of FRED uses open-access census-based synthetic populations that capture the demographic and geographic heterogeneities of the population, including realistic household, school, and workplace social networks. FRED epidemic models are currently available for every state and county in the United States, and for selected international locations. State and county public health planners can use FRED to explore the effects of possible influenza epidemics in specific geographic regions of interest and to help evaluate the effect of interventions such as vaccination programs and school closure policies. FRED is available under a free open source license in order to contribute to the development of better modeling tools and to encourage open discussion of modeling tools being used to evaluate public health policies. We also welcome participation by other researchers in the further development of FRED.

  13. Segmentation-DrivenTomographic Reconstruction

    DEFF Research Database (Denmark)

    Kongskov, Rasmus Dalgas

    such that the segmentation subsequently can be carried out by use of a simple segmentation method, for instance just a thresholding method. We tested the advantages of going from a two-stage reconstruction method to a one stage segmentation-driven reconstruction method for the phase contrast tomography reconstruction......The tomographic reconstruction problem is concerned with creating a model of the interior of an object from some measured data, typically projections of the object. After reconstructing an object it is often desired to segment it, either automatically or manually. For computed tomography (CT...

  14. Reconstruction of compact diagnostic and therapeutic systems of electron and X-ray

    International Nuclear Information System (INIS)

    Uesaka, Mitsuru

    2003-01-01

    This paper describes the state of the reconstruction study in the title by the Tokyo University in the project (organized by National Institute of Radiological Sciences) by the Ministry of Education, Culture, Sports Science and Technology, toward the development of advanced compact accelerators. The review of the accelerator development from the global aspect concludes that, at present, the medical linacs' are those of S-band, 6 MW Klystron with high energy (-20 Mev) and of X-band (9.3 GHz), 1 MW Magnetron with low energy (-6 Mev). A more compact, hard X-ray source (X-band 11.424 GHz, 2.4 cm wavelength) is proposed by the authors and is under development, where collision of accelerated electron and laser generates the X-ray (33 keV). This enables the volume-size to be reduced to 1/64. Globally, novel, advanced accelerators of C-W band (90 GHz), and laser/plasma (THz) are being developed. Problems in Japanese state of medical physics involving manpower are described together with idea of space-time control of Chemo-radiotherapy' composing from utilization of advanced compact accelerators, control of space and of time. (N.I.)

  15. Plug-and-Play Control – Modifying Control Systems Online

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2013-01-01

    Often, when new sensor or actuator hardware be- comes available for use in a control system, it is desirable to retain the existing control system and apply the new control capabilities in a gradual fashion rather than decommissioning the entire existing system and replacing it with an altogether...... new control system. However, this requires that the existing controller remains in action, and the new control law component is added to the existing system. This paper formally introduces the concept of Plug-and-Play control and proposes two different methods of introducing new control components...

  16. Automatic exposure control at single- and dual-heartbeat CTCA on a 320-MDCT volume scanner: effect of heart rate, exposure phase window setting, and reconstruction algorithm.

    Science.gov (United States)

    Funama, Yoshinori; Utsunomiya, Daisuke; Taguchi, Katsuyuki; Oda, Seitaro; Shimonobo, Toshiaki; Yamashita, Yasuyuki

    2014-05-01

    To investigate whether electrocardiogram (ECG)-gated single- and dual-heartbeat computed tomography coronary angiography (CTCA) with automatic exposure control (AEC) yields images with uniform image noise at reduced radiation doses. Using an anthropomorphic chest CT phantom we performed prospectively ECG-gated single- and dual-heartbeat CTCA on a second-generation 320-multidetector CT volume scanner. The exposure phase window was set at 75%, 70-80%, 40-80%, and 0-100% and the heart rate at 60 or 80 or corr80 bpm; images were reconstructed with filtered back projection (FBP) or iterative reconstruction (IR, adaptive iterative dose reduction 3D). We applied AEC and set the image noise level to 20 or 25 HU. For each technique we determined the image noise and the radiation dose to the phantom center. With half-scan reconstruction at 60 bpm, a 70-80% phase window- and a 20-HU standard deviation (SD) setting, the imagenoise level and -variation along the z axis manifested similar curves with FBP and IR. With half-scan reconstruction, the radiation dose to the phantom center with 70-80% phase window was 18.89 and 12.34 mGy for FBP and 4.61 and 3.10 mGy for IR at an SD setting SD of 20 and 25 HU, respectively. At 80 bpm with two-segment reconstruction the dose was approximately twice that of 60 bpm at both SD settings. However, increasing radiation dose at corr80 bpm was suppressed to 1.39 times compared to 60 bpm. AEC at ECG-gated single- and dual-heartbeat CTCA controls the image noise at different radiation dose. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. [Application of Fourier transform profilometry in 3D-surface reconstruction].

    Science.gov (United States)

    Shi, Bi'er; Lu, Kuan; Wang, Yingting; Li, Zhen'an; Bai, Jing

    2011-08-01

    With the improvement of system frame and reconstruction methods in fluorescent molecules tomography (FMT), the FMT technology has been widely used as an important experimental tool in biomedical research. It is necessary to get the 3D-surface profile of the experimental object as the boundary constraints of FMT reconstruction algorithms. We proposed a new 3D-surface reconstruction method based on Fourier transform profilometry (FTP) method under the blue-purple light condition. The slice images were reconstructed using proper image processing methods, frequency spectrum analysis and filtering. The results of experiment showed that the method properly reconstructed the 3D-surface of objects and has the mm-level accuracy. Compared to other methods, this one is simple and fast. Besides its well-reconstructed, the proposed method could help monitor the behavior of the object during the experiment to ensure the correspondence of the imaging process. Furthermore, the method chooses blue-purple light section as its light source to avoid the interference towards fluorescence imaging.

  18. A practical method for three-dimensional reconstruction of joints using a C-arm system and shift-and-add algorithm

    International Nuclear Information System (INIS)

    Li Senhu; Jiang Huabei

    2005-01-01

    Currently, radiography with C-arm systems is playing a major role in the assessment of arthritis. However, the radiographic two-dimensional projection images of joints often interfere with physicians' efforts to better understand and measure the structure changes of joints due to the overlap of bone structures at different depths. An accurate, low-cost, and practical three-dimensional (3D) reconstruction approach of joints will be beneficial in diagnosing arthritis. Toward this end, a novel method is developed in this paper based on a C-arm system. The idea is to apply the shift-and-add algorithm (commonly used in digital tomosynthesis) on the segmented projection images at multiple angles, which results in accurate reconstruction of the 3D structures of joints. The method provides a new solution to precisely distinguish objects from blurring background. The proposed method has been tested and evaluated on simulated cylinders, a chicken bone phantom with known structure, and an in vivo human index finger. The results are demonstrated and discussed

  19. Development of acoustic model-based iterative reconstruction technique for thick-concrete imaging

    Science.gov (United States)

    Almansouri, Hani; Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2016-02-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.1

  20. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Almansouri, Hani [Purdue University; Clayton, Dwight A [ORNL; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University; Santos-Villalobos, Hector J [ORNL

    2016-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  1. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Almansouri, Hani [Purdue University; Clayton, Dwight A [ORNL; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University; Santos-Villalobos, Hector J [ORNL

    2015-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well s health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  2. Integration of real-time 3D capture, reconstruction, and light-field display

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  3. A robust state-space kinetics-guided framework for dynamic PET image reconstruction

    International Nuclear Information System (INIS)

    Tong, S; Alessio, A M; Kinahan, P E; Liu, H; Shi, P

    2011-01-01

    Dynamic PET image reconstruction is a challenging issue due to the low SNR and the large quantity of spatio-temporal data. We propose a robust state-space image reconstruction (SSIR) framework for activity reconstruction in dynamic PET. Unlike statistically-based frame-by-frame methods, tracer kinetic modeling is incorporated to provide physiological guidance for the reconstruction, harnessing the temporal information of the dynamic data. Dynamic reconstruction is formulated in a state-space representation, where a compartmental model describes the kinetic processes in a continuous-time system equation, and the imaging data are expressed in a discrete measurement equation. Tracer activity concentrations are treated as the state variables, and are estimated from the dynamic data. Sampled-data H ∞ filtering is adopted for robust estimation. H ∞ filtering makes no assumptions on the system and measurement statistics, and guarantees bounded estimation error for finite-energy disturbances, leading to robust performance for dynamic data with low SNR and/or errors. This alternative reconstruction approach could help us to deal with unpredictable situations in imaging (e.g. data corruption from failed detector blocks) or inaccurate noise models. Experiments on synthetic phantom and patient PET data are performed to demonstrate feasibility of the SSIR framework, and to explore its potential advantages over frame-by-frame statistical reconstruction approaches.

  4. TH-AB-202-08: A Robust Real-Time Surface Reconstruction Method On Point Clouds Captured From a 3D Surface Photogrammetry System

    International Nuclear Information System (INIS)

    Liu, W; Sawant, A; Ruan, D

    2016-01-01

    -time and robust surface reconstruction method on point clouds acquired by photogrammetry systems. It serves an important enabling step for real-time motion tracking in radiotherapy. This work is supported in part by NIH grant R01 CA169102-02.

  5. Two-dimensional void reconstruction by neutron transmission

    International Nuclear Information System (INIS)

    Zakaib, G.D.; Harms, A.A.; Vlachopoulos, J.

    1978-01-01

    Contemporary algebraic reconstruction methods are utilized in investigating the two-dimensional void distribution in a water analog from neutron transmission measurements. It is sought to ultimately apply these techniques to the determination of time-averaged void distribution in two-phase flow systems as well as for potential usage in neutron radiography. Initially, projection data were obtained from a digitized model of a hypothetical two-phase representation and later from neutron beam traverses across a voided methacrylate plastic model. From 10 to 15 views were incorporated, and decoupling of overlapped measurements was utilized to afford greater resolution. In general, the additive Algebraic Reconstruction Technique yielded the best reconstructions, with others showing promise for noisy data. Results indicate the need for some further development of the method in interpreting real data

  6. Networked control of microgrid system of systems

    Science.gov (United States)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  7. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    International Nuclear Information System (INIS)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok

    2016-01-01

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  8. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin, E-mail: dengbin@tju.edu.cn; Chan, Wai-lok [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2016-06-15

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  9. An efficient algorithm for MR image reconstruction and compression

    International Nuclear Information System (INIS)

    Wang, Hang; Rosenfeld, D.; Braun, M.; Yan, Hong

    1992-01-01

    In magnetic resonance imaging (MRI), the original data are sampled in the spatial frequency domain. The sampled data thus constitute a set of discrete Fourier transform (DFT) coefficients. The image is usually reconstructed by taking inverse DFT. The image data may then be efficiently compressed using the discrete cosine transform (DCT). A method of using DCT to treat the sampled data is presented which combines two procedures, image reconstruction and data compression. This method may be particularly useful in medical picture archiving and communication systems where both image reconstruction and compression are important issues. 11 refs., 3 figs

  10. Supporting migration to services using software architecture reconstruction

    OpenAIRE

    O'Brien, Liam; Smith, Dennis; Lewis, Grace

    2005-01-01

    peer-reviewed There are many good reasons why organizations should perform software architecture reconstructions. However, few organizations are willing to pay for the effort. Software architecture reconstruction must be viewed not as an effort on its own but as a contribution in a broader technical context, such as the streamlining of products into a product line or the modernization of systems that hit their architectural borders, that is require major restructuring. In this paper we ...

  11. Controlling chaotic systems via nonlinear feedback control

    International Nuclear Information System (INIS)

    Park, Ju H.

    2005-01-01

    In this article, a new method to control chaotic systems is proposed. Using Lyapunov method, we design a nonlinear feedback controller to make the controlled system be stabilized. A numerical example is given to illuminate the design procedure and advantage of the result derived

  12. Vaginal reconstruction

    International Nuclear Information System (INIS)

    Lesavoy, M.A.

    1985-01-01

    Vaginal reconstruction can be an uncomplicated and straightforward procedure when attention to detail is maintained. The Abbe-McIndoe procedure of lining the neovaginal canal with split-thickness skin grafts has become standard. The use of the inflatable Heyer-Schulte vaginal stent provides comfort to the patient and ease to the surgeon in maintaining approximation of the skin graft. For large vaginal and perineal defects, myocutaneous flaps such as the gracilis island have been extremely useful for correction of radiation-damaged tissue of the perineum or for the reconstruction of large ablative defects. Minimal morbidity and scarring ensue because the donor site can be closed primarily. With all vaginal reconstruction, a compliant patient is a necessity. The patient must wear a vaginal obturator for a minimum of 3 to 6 months postoperatively and is encouraged to use intercourse as an excellent obturator. In general, vaginal reconstruction can be an extremely gratifying procedure for both the functional and emotional well-being of patients

  13. Prompt data reconstruction at the ATLAS experiment

    International Nuclear Information System (INIS)

    Andrew Stewart, Graeme; Boyd, Jamie; Unal, Guillaume; Firmino da Costa, João; Tuggle, Joseph

    2012-01-01

    The ATLAS experiment at the LHC collider recorded more than 5 fb −1 data of pp collisions at a centre-of-mass energy of 7 TeV during 2011. The recorded data are promptly reconstructed in two steps at a large computing farm at CERN to provide fast access to high quality data for physics analysis. In the first step, a subset of the data, corresponding to the express stream and having 10Hz of events, is processed in parallel with data taking. Data quality, detector calibration constants, and the beam spot position are determined using the reconstructed data within 48 hours. In the second step all recorded data are processed with the updated parameters. The LHC significantly increased the instantaneous luminosity and the number of interactions per bunch crossing in 2011; the data recording rate by ATLAS exceeds 400 Hz. To cope with these challenges the performance and reliability of the ATLAS reconstruction software have been improved. In this paper we describe how the prompt data reconstruction system quickly and stably provides high quality data to analysers.

  14. Applied Control Systems Design

    CERN Document Server

    Mahmoud, Magdi S

    2012-01-01

    Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...

  15. 'The surface management system' (SuMS) database: a surface-based database to aid cortical surface reconstruction, visualization and analysis

    Science.gov (United States)

    Dickson, J.; Drury, H.; Van Essen, D. C.

    2001-01-01

    Surface reconstructions of the cerebral cortex are increasingly widely used in the analysis and visualization of cortical structure, function and connectivity. From a neuroinformatics perspective, dealing with surface-related data poses a number of challenges. These include the multiplicity of configurations in which surfaces are routinely viewed (e.g. inflated maps, spheres and flat maps), plus the diversity of experimental data that can be represented on any given surface. To address these challenges, we have developed a surface management system (SuMS) that allows automated storage and retrieval of complex surface-related datasets. SuMS provides a systematic framework for the classification, storage and retrieval of many types of surface-related data and associated volume data. Within this classification framework, it serves as a version-control system capable of handling large numbers of surface and volume datasets. With built-in database management system support, SuMS provides rapid search and retrieval capabilities across all the datasets, while also incorporating multiple security levels to regulate access. SuMS is implemented in Java and can be accessed via a Web interface (WebSuMS) or using downloaded client software. Thus, SuMS is well positioned to act as a multiplatform, multi-user 'surface request broker' for the neuroscience community.

  16. Pulmonary sequestration: diagnosis with three dimensional reconstruction using spiral CT

    International Nuclear Information System (INIS)

    Nie Yongkang; Zhao Shaohong; Cai Zulong; Yang Li; Zhao Hong; Zhang Ailian; Huang Hui

    2003-01-01

    Objective: To evaluate the role of three dimensional (3D) reconstruction using spiral CT in the diagnosis of pulmonary sequestration. Methods: Ten patients with pulmonary sequestration were analyzed. The diagnoses were confirmed by angiography in 2 patients, by operation in 2 patients, and by CT angiography in 6 patients. All patients were examined with Philips SR 7000 or GE Lightspeed Plus scanner. CT images were transferred to a workstation and 3D reconstruction was performed. All images were reviewed and analyzed by two radiologists. Results: Among 10 patients, the pulmonary sequestration was in the right lower lobe in 1 patient and in the left lower lobe in 9 patients. Anomalous systemic arteries originated from thoracic aorta in 8 patients and from celiac artery in 2 patients. On plain CT scan, there were 4 patients with patchy opacities, 3 patients with hilar mass accompanying vascular engorgement and profusion in adjacent parenchyma, 2 patients with finger-like appendage surrounded by hyper-inflated lung, and 1 patient with lung mass-like lesion. Enhanced CT revealed anomalous systemic arteries in 9 patients and drainage vein in 7 patients. Maximum intensity projection (MIP) and curvilinear reconstruction could depict the abnormal systemic artery and drainage vein in sequestration. Surface shadow display (SSD) and volume rendering (VR) could delineate the anomalous systemic artery. Conclusion: 3D reconstruction with enhanced spiral CT can depict anomalous systemic artery and drainage vein and it is the first method of choice in diagnosing pulmonary sequestration

  17. Expert systems in process control systems

    International Nuclear Information System (INIS)

    Wittig, T.

    1987-01-01

    To illustrate where the fundamental difference between expert systems in classical diagnosis and in industrial control lie, the work of process control instrumentation is used as an example for the job of expert systems. Starting from the general process of problem-solving, two classes of expert systems can be defined accordingly. (orig.) [de

  18. Current Limitations of Surgical Robotics in Reconstructive Plastic Microsurgery

    Directory of Open Access Journals (Sweden)

    Youri P. A. Tan

    2018-03-01

    Full Text Available Surgical robots have the potential to provide surgeons with increased capabilities, such as removing physiologic tremor, scaling motion and increasing manual dexterity. Several surgical specialties have subsequently integrated robotic surgery into common clinical practice. Plastic and reconstructive microsurgical procedures have not yet  benefitted significantly from technical developments observed over the last two decades. Several studies have successfully demonstrated the feasibility of utilising surgical robots in plastic surgery procedures, yet limited work has been done to identify and analyse current barriers that have prevented wide-scale adaptation of surgical robots for microsurgery. Therefore, a systematic review using PubMed, MEDLINE, Embase and Web of Science databases was performed, in order to evaluate current state of surgical robotics within the field of reconstructive microsurgery and their limitations. Despite the theoretical potential of surgical robots, current commercially available robotic systems are suboptimal for plastic or reconstructive microsurgery. Absence of bespoke microsurgical instruments, increases in operating time, and high costs associated with robotic-assisted provide a barrier to using such systems effectively for reconstructive microsurgery. Consequently, surgical robots provide currently little overall advantage over conventional microsurgery. Nevertheless, if current barriers can be addressed and systems are specifically designed for microsurgery, surgical robots may have the potential of meaningful impact on clinical outcomes within  this surgical subspeciality.

  19. Current Limitations of Surgical Robotics in Reconstructive Plastic Microsurgery

    Science.gov (United States)

    Tan, Youri P. A.; Liverneaux, Philippe; Wong, Jason K. F.

    2018-01-01

    Surgical robots have the potential to provide surgeons with increased capabilities, such as removing physiologic tremor, scaling motion and increasing manual dexterity. Several surgical specialties have subsequently integrated robotic surgery into common clinical practice. Plastic and reconstructive microsurgical procedures have not yet  benefitted significantly from technical developments observed over the last two decades. Several studies have successfully demonstrated the feasibility of utilising surgical robots in plastic surgery procedures, yet limited work has been done to identify and analyse current barriers that have prevented wide-scale adaptation of surgical robots for microsurgery. Therefore, a systematic review using PubMed, MEDLINE, Embase and Web of Science databases was performed, in order to evaluate current state of surgical robotics within the field of reconstructive microsurgery and their limitations. Despite the theoretical potential of surgical robots, current commercially available robotic systems are suboptimal for plastic or reconstructive microsurgery. Absence of bespoke microsurgical instruments, increases in operating time, and high costs associated with robotic-assisted provide a barrier to using such systems effectively for reconstructive microsurgery. Consequently, surgical robots provide currently little overall advantage over conventional microsurgery. Nevertheless, if current barriers can be addressed and systems are specifically designed for microsurgery, surgical robots may have the potential of meaningful impact on clinical outcomes within  this surgical subspeciality. PMID:29740585

  20. MO-DE-207A-06: ECG-Gated CT Reconstruction for a C-Arm Inverse Geometry X-Ray System

    Energy Technology Data Exchange (ETDEWEB)

    Slagowski, JM; Dunkerley, DAP [MA Speidel, University of Wisconsin - Madison, Madison, WI (United States)

    2016-06-15

    Purpose: To obtain ECG-gated CT images from truncated projection data acquired with a C-arm based inverse geometry fluoroscopy system, for the purpose of cardiac chamber mapping in interventional procedures. Methods: Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system with a scanned multisource x-ray tube and a photon-counting detector mounted to a C-arm. In the proposed method, SBDX short-scan rotational acquisition is performed followed by inverse geometry CT (IGCT) reconstruction and segmentation of contrast-enhanced objects. The prior image constrained compressed sensing (PICCS) framework was adapted for IGCT reconstruction to mitigate artifacts arising from data truncation and angular undersampling due to cardiac gating. The performance of the reconstruction algorithm was evaluated in numerical simulations of truncated and non-truncated thorax phantoms containing a dynamic ellipsoid to represent a moving cardiac chamber. The eccentricity of the ellipsoid was varied at frequencies from 1–1.5 Hz. Projection data were retrospectively sorted into 13 cardiac phases. Each phase was reconstructed using IGCT-PICCS, with a nongated gridded FBP (gFBP) prior image. Surface accuracy was determined using Dice similarity coefficient and a histogram of the point distances between the segmented surface and ground truth surface. Results: The gated IGCT-PICCS algorithm improved surface accuracy and reduced streaking and truncation artifacts when compared to nongated gFBP. For the non-truncated thorax with 1.25 Hz motion, 99% of segmented surface points were within 0.3 mm of the 15 mm diameter ground truth ellipse, versus 1.0 mm for gFBP. For the truncated thorax phantom with a 40 mm diameter ellipse, IGCT-PICCS surface accuracy measured 0.3 mm versus 7.8 mm for gFBP. Dice similarity coefficient was 0.99–1.00 (IGCT-PICCS) versus 0.63–0.75 (gFBP) for intensity-based segmentation thresholds ranging from 25–75% maximum contrast. Conclusions: The