WorldWideScience

Sample records for reconstructed tomosynthesis volumes

  1. Digital Breast Tomosynthesis guided Near Infrared Spectroscopy: Volumetric estimates of fibroglandular fraction and breast density from tomosynthesis reconstructions.

    Science.gov (United States)

    Vedantham, Srinivasan; Shi, Linxi; Michaelsen, Kelly E; Krishnaswamy, Venkataramanan; Pogue, Brian W; Poplack, Steven P; Karellas, Andrew; Paulsen, Keith D

    A multimodality system combining a clinical prototype digital breast tomosynthesis with its imaging geometry modified to facilitate near-infrared spectroscopic imaging has been developed. The accuracy of parameters recovered from near-infrared spectroscopy is dependent on fibroglandular tissue content. Hence, in this study, volumetric estimates of fibroglandular tissue from tomosynthesis reconstructions were determined. A kernel-based fuzzy c-means algorithm was implemented to segment tomosynthesis reconstructed slices in order to estimate fibroglandular content and to provide anatomic priors for near-infrared spectroscopy. This algorithm was used to determine volumetric breast density (VBD), defined as the ratio of fibroglandular tissue volume to the total breast volume, expressed as percentage, from 62 tomosynthesis reconstructions of 34 study participants. For a subset of study participants who subsequently underwent mammography, VBD from mammography matched for subject, breast laterality and mammographic view was quantified using commercial software and statistically analyzed to determine if it differed from tomosynthesis. Summary statistics of the VBD from all study participants were compared with prior independent studies. The fibroglandular volume from tomosynthesis and mammography were not statistically different ( p =0.211, paired t-test). After accounting for the compressed breast thickness, which were different between tomosynthesis and mammography, the VBD from tomosynthesis was correlated with ( r =0.809, p 0.99, paired t-test), and was linearly related to, the VBD from mammography. Summary statistics of the VBD from tomosynthesis were not statistically different from prior studies using high-resolution dedicated breast computed tomography. The observation of correlation and linear association in VBD between mammography and tomosynthesis suggests that breast density associated risk measures determined for mammography are translatable to tomosynthesis

  2. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU.

    Science.gov (United States)

    Arefan, D; Talebpour, A; Ahmadinejhad, N; Kamali Asl, A

    2015-06-01

    Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU). At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU) card and the Graphics Processing Unit (GPU). It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU).

  3. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications

    Science.gov (United States)

    Sechopoulos, Ioannis

    2013-01-01

    Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical performance. Chief among them is the reconstruction algorithm that generates the representation of the three-dimensional breast volume from the acquired projections. But even after reconstruction, additional processes, such as artifact reduction algorithms, computer aided detection and diagnosis, among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its medical physics aspects. In the companion paper, the first part of this review, the research performed relevant to the image acquisition process is examined. This second part will review the research on the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the advanced applications being investigated for breast tomosynthesis. PMID:23298127

  4. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

    Directory of Open Access Journals (Sweden)

    Arefan D

    2015-06-01

    Full Text Available Digital Breast Tomosynthesis (DBT is a technology that creates three dimensional (3D images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU. At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU card and the Graphics Processing Unit (GPU. It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU.

  5. Ray tracing reconstruction investigation for C-arm tomosynthesis

    Science.gov (United States)

    Malalla, Nuhad A. Y.; Chen, Ying

    2016-04-01

    C-arm tomosynthesis is a three dimensional imaging technique. Both x-ray source and the detector are mounted on a C-arm wheeled structure to provide wide variety of movement around the object. In this paper, C-arm tomosynthesis was introduced to provide three dimensional information over a limited view angle (less than 180o) to reduce radiation exposure and examination time. Reconstruction algorithms based on ray tracing method such as ray tracing back projection (BP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were developed for C-arm tomosynthesis. C-arm tomosynthesis projection images of simulated spherical object were simulated with a virtual geometric configuration with a total view angle of 40 degrees. This study demonstrated the sharpness of in-plane reconstructed structure and effectiveness of removing out-of-plane blur for each reconstruction algorithms. Results showed the ability of ray tracing based reconstruction algorithms to provide three dimensional information with limited angle C-arm tomosynthesis.

  6. Generalized Filtered Back-Projection for Digital Breast Tomosynthesis Reconstruction

    NARCIS (Netherlands)

    Erhard, K.; Grass, M.; Hitziger, S.; Iske, A.; Nielsen, T.

    2012-01-01

    Filtered back-projection (FBP) has been commonly used as an efficient and robust reconstruction technique in tomographic X-ray imagingduring the last decades. For limited angle tomography acquisitions such as digital breast tomosynthesis, however, standard FBP reconstruction algorithms provide poor

  7. Preliminary attempt on maximum likelihood tomosynthesis reconstruction of DEI data

    International Nuclear Information System (INIS)

    Wang Zhentian; Huang Zhifeng; Zhang Li; Kang Kejun; Chen Zhiqiang; Zhu Peiping

    2009-01-01

    Tomosynthesis is a three-dimension reconstruction method that can remove the effect of superimposition with limited angle projections. It is especially promising in mammography where radiation dose is concerned. In this paper, we propose a maximum likelihood tomosynthesis reconstruction algorithm (ML-TS) on the apparent absorption data of diffraction enhanced imaging (DEI). The motivation of this contribution is to develop a tomosynthesis algorithm in low-dose or noisy circumstances and make DEI get closer to clinic application. The theoretical statistical models of DEI data in physics are analyzed and the proposed algorithm is validated with the experimental data at the Beijing Synchrotron Radiation Facility (BSRF). The results of ML-TS have better contrast compared with the well known 'shift-and-add' algorithm and FBP algorithm. (authors)

  8. Comparison of power spectra for tomosynthesis projections and reconstructed images

    International Nuclear Information System (INIS)

    Engstrom, Emma; Reiser, Ingrid; Nishikawa, Robert

    2009-01-01

    Burgess et al. [Med. Phys. 28, 419-437 (2001)] showed that the power spectrum of mammographic breast background follows a power law and that lesion detectability is affected by the power-law exponent β which measures the amount of structure in the background. Following the study of Burgess et al., the authors measured and compared the power-law exponent of mammographic backgrounds in tomosynthesis projections and reconstructed slices to investigate the effect of tomosynthesis imaging on background structure. Our data set consisted of 55 patient cases. For each case, regions of interest (ROIs) were extracted from both projection images and reconstructed slices. The periodogram of each ROI was computed by taking the squared modulus of the Fourier transform of the ROI. The power-law exponent was determined for each periodogram and averaged across all ROIs extracted from all projections or reconstructed slices for each patient data set. For the projections, the mean β averaged across the 55 cases was 3.06 (standard deviation of 0.21), while it was 2.87 (0.24) for the corresponding reconstructions. The difference in β for a given patient between the projection ROIs and the reconstructed ROIs averaged across the 55 cases was 0.194, which was statistically significant (p<0.001). The 95% CI for the difference between the mean value of β for the projections and reconstructions was [0.170, 0.218]. The results are consistent with the observation that the amount of breast structure in the tomosynthesis slice is reduced compared to projection mammography and that this may lead to improved lesion detectability.

  9. Quantification of resolution in multiplanar reconstructions for digital breast tomosynthesis

    Science.gov (United States)

    Vent, Trevor L.; Acciavatti, Raymond J.; Kwon, Young Joon; Maidment, Andrew D. A.

    2016-03-01

    Multiplanar reconstruction (MPR) in digital breast tomosynthesis (DBT) allows tomographic images to be portrayed in various orientations. We have conducted research to determine the resolution of tomosynthesis MPR. We built a phantom that houses a star test pattern to measure resolution. This phantom provides three rotational degrees of freedom. The design consists of two hemispheres with longitudinal and latitudinal grooves that reference angular increments. When joined together, the hemispheres form a dome that sits inside a cylindrical encasement. The cylindrical encasement contains reference notches to match the longitudinal and latitudinal grooves that guide the phantom's rotations. With this design, any orientation of the star-pattern can be analyzed. Images of the star-pattern were acquired using a DBT mammography system at the Hospital of the University of Pennsylvania. Images taken were reconstructed and analyzed by two different methods. First, the maximum visible frequency (in line pairs per millimeter) of the star test pattern was measured. Then, the contrast was calculated at a fixed spatial frequency. These analyses confirm that resolution decreases with tilt relative to the breast support. They also confirm that resolution in tomosynthesis MPR is dependent on object orientation. Current results verify that the existence of super-resolution depends on the orientation of the frequency; the direction parallel to x-ray tube motion shows super-resolution. In conclusion, this study demonstrates that the direction of the spatial frequency relative to the motion of the x-ray tube is a determinant of resolution in MPR for DBT.

  10. Oblique reconstructions in tomosynthesis. II. Super-resolution

    International Nuclear Information System (INIS)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes.Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system.Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  11. Oblique reconstructions in tomosynthesis. II. Super-resolution

    Science.gov (United States)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes. Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system. Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  12. MO-DE-209-02: Tomosynthesis Reconstruction Methods

    International Nuclear Information System (INIS)

    Mainprize, J.

    2016-01-01

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support

  13. MO-DE-209-02: Tomosynthesis Reconstruction Methods

    Energy Technology Data Exchange (ETDEWEB)

    Mainprize, J. [Sunnybrook Health Sciences Centre, Toronto, ON (Canada)

    2016-06-15

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support

  14. Weighted simultaneous algebraic reconstruction technique for tomosynthesis imaging of objects with high-attenuation features

    International Nuclear Information System (INIS)

    Levakhina, Y. M.; Müller, J.; Buzug, T. M.; Duschka, R. L.; Vogt, F.; Barkhausen, J.

    2013-01-01

    Purpose: This paper introduces a nonlinear weighting scheme into the backprojection operation within the simultaneous algebraic reconstruction technique (SART). It is designed for tomosynthesis imaging of objects with high-attenuation features in order to reduce limited angle artifacts. Methods: The algorithm estimates which projections potentially produce artifacts in a voxel. The contribution of those projections into the updating term is reduced. In order to identify those projections automatically, a four-dimensional backprojected space representation is used. Weighting coefficients are calculated based on a dissimilarity measure, evaluated in this space. For each combination of an angular view direction and a voxel position an individual weighting coefficient for the updating term is calculated. Results: The feasibility of the proposed approach is shown based on reconstructions of the following real three-dimensional tomosynthesis datasets: a mammography quality phantom, an apple with metal needles, a dried finger bone in water, and a human hand. Datasets have been acquired with a Siemens Mammomat Inspiration tomosynthesis device and reconstructed using SART with and without suggested weighting. Out-of-focus artifacts are described using line profiles and measured using standard deviation (STD) in the plane and below the plane which contains artifact-causing features. Artifacts distribution in axial direction is measured using an artifact spread function (ASF). The volumes reconstructed with the weighting scheme demonstrate the reduction of out-of-focus artifacts, lower STD (meaning reduction of artifacts), and narrower ASF compared to nonweighted SART reconstruction. It is achieved successfully for different kinds of structures: point-like structures such as phantom features, long structures such as metal needles, and fine structures such as trabecular bone structures. Conclusions: Results indicate the feasibility of the proposed algorithm to reduce typical

  15. Weighted simultaneous algebraic reconstruction technique for tomosynthesis imaging of objects with high-attenuation features

    Energy Technology Data Exchange (ETDEWEB)

    Levakhina, Y. M. [Institute of Medical Engineering, University of Luebeck, Luebeck 23562, Germany and Graduate School for Computing in Medicine and Life Sciences, Luebeck 23562 (Germany); Mueller, J.; Buzug, T. M. [Institute of Medical Engineering, University of Luebeck, Luebeck 23562 (Germany); Duschka, R. L.; Vogt, F.; Barkhausen, J. [Clinic for Radiology, University Clinics Schleswig-Holstein, Luebeck 23562 (Germany)

    2013-03-15

    Purpose: This paper introduces a nonlinear weighting scheme into the backprojection operation within the simultaneous algebraic reconstruction technique (SART). It is designed for tomosynthesis imaging of objects with high-attenuation features in order to reduce limited angle artifacts. Methods: The algorithm estimates which projections potentially produce artifacts in a voxel. The contribution of those projections into the updating term is reduced. In order to identify those projections automatically, a four-dimensional backprojected space representation is used. Weighting coefficients are calculated based on a dissimilarity measure, evaluated in this space. For each combination of an angular view direction and a voxel position an individual weighting coefficient for the updating term is calculated. Results: The feasibility of the proposed approach is shown based on reconstructions of the following real three-dimensional tomosynthesis datasets: a mammography quality phantom, an apple with metal needles, a dried finger bone in water, and a human hand. Datasets have been acquired with a Siemens Mammomat Inspiration tomosynthesis device and reconstructed using SART with and without suggested weighting. Out-of-focus artifacts are described using line profiles and measured using standard deviation (STD) in the plane and below the plane which contains artifact-causing features. Artifacts distribution in axial direction is measured using an artifact spread function (ASF). The volumes reconstructed with the weighting scheme demonstrate the reduction of out-of-focus artifacts, lower STD (meaning reduction of artifacts), and narrower ASF compared to nonweighted SART reconstruction. It is achieved successfully for different kinds of structures: point-like structures such as phantom features, long structures such as metal needles, and fine structures such as trabecular bone structures. Conclusions: Results indicate the feasibility of the proposed algorithm to reduce typical

  16. Evaluation of digital breast tomosynthesis reconstruction algorithms using synchrotron radiation in standard geometry

    International Nuclear Information System (INIS)

    Bliznakova, K.; Kolitsi, Z.; Speller, R. D.; Horrocks, J. A.; Tromba, G.; Pallikarakis, N.

    2010-01-01

    Purpose: In this article, the image quality of reconstructed volumes by four algorithms for digital tomosynthesis, applied in the case of breast, is investigated using synchrotron radiation. Methods: An angular data set of 21 images of a complex phantom with heterogeneous tissue-mimicking background was obtained using the SYRMEP beamline at ELETTRA Synchrotron Light Laboratory, Trieste, Italy. The irradiated part was reconstructed using the multiple projection algorithm (MPA) and the filtered backprojection with ramp followed by hamming windows (FBR-RH) and filtered backprojection with ramp (FBP-R). Additionally, an algorithm for reducing the noise in reconstructed planes based on noise mask subtraction from the planes of the originally reconstructed volume using MPA (MPA-NM) has been further developed. The reconstruction techniques were evaluated in terms of calculations and comparison of the contrast-to-noise ratio (CNR) and artifact spread function. Results: It was found that the MPA-NM resulted in higher CNR, comparable with the CNR of FBP-RH for high contrast details. Low contrast objects are well visualized and characterized by high CNR using the simple MPA and the MPA-NM. In addition, the image quality of the reconstructed features in terms of CNR and visual appearance as a function of the initial number of projection images and the reconstruction arc was carried out. Slices reconstructed with more input projection images result in less reconstruction artifacts and higher detail CNR, while those reconstructed from projection images acquired in reduced angular range causes pronounced streak artifacts. Conclusions: Of the reconstruction algorithms implemented, the MPA-NM and MPA are a good choice for detecting low contrast objects, while the FBP-RH, FBP-R, and MPA-NM provide high CNR and well outlined edges in case of microcalcifications.

  17. Denoised ordered subset statistically penalized algebraic reconstruction technique (DOS-SPART) in digital breast tomosynthesis

    Science.gov (United States)

    Garrett, John; Li, Yinsheng; Li, Ke; Chen, Guang-Hong

    2017-03-01

    Digital breast tomosynthesis (DBT) is a three dimensional (3D) breast imaging modality in which projections are acquired over a limited angular span around the compressed breast and reconstructed into image slices parallel to the detector. DBT has been shown to help alleviate the breast tissue overlapping issues of two dimensional (2D) mammography. Since the overlapping tissues may simulate cancer masses or obscure true cancers, this improvement is critically important for improved breast cancer screening and diagnosis. In this work, a model-based image reconstruction method is presented to show that spatial resolution in DBT volumes can be maintained while dose is reduced using the presented method when compared to that of a state-of-the-art commercial reconstruction technique. Spatial resolution was measured in phantom images and subjectively in a clinical dataset. Noise characteristics were explored in a cadaver study. In both the quantitative and subjective results the image sharpness was maintained and overall image quality was maintained at reduced doses when the model-based iterative reconstruction was used to reconstruct the volumes.

  18. Evaluation of the possibility to use thick slabs of reconstructed outer breast tomosynthesis slice images

    Science.gov (United States)

    Petersson, Hannie; Dustler, Magnus; Tingberg, Anders; Timberg, Pontus

    2016-03-01

    The large image volumes in breast tomosynthesis (BT) have led to large amounts of data and a heavy workload for breast radiologists. The number of slice images can be decreased by combining adjacent image planes (slabbing) but the decrease in depth resolution can considerably affect the detection of lesions. The aim of this work was to assess if thicker slabbing of the outer slice images (where lesions seldom are present) could be a viable alternative in order to reduce the number of slice images in BT image volumes. The suggested slabbing (an image volume with thick outer slabs and thin slices between) were evaluated in two steps. Firstly, a survey of the depth of 65 cancer lesions within the breast was performed to estimate how many lesions would be affected by outer slabs of different thicknesses. Secondly, a selection of 24 lesions was reconstructed with 2, 6 and 10 mm slab thickness to evaluate how the appearance of lesions located in the thicker slabs would be affected. The results show that few malignant breast lesions are located at a depth less than 10 mm from the surface (especially for breast thicknesses of 50 mm and above). Reconstruction of BT volumes with 6 mm slab thickness yields an image quality that is sufficient for lesion detection for a majority of the investigated cases. Together, this indicates that thicker slabbing of the outer slice images is a promising option in order to reduce the number of slice images in BT image volumes.

  19. Optimized image acquisition for breast tomosynthesis in projection and reconstruction space

    International Nuclear Information System (INIS)

    Chawla, Amarpreet S.; Lo, Joseph Y.; Baker, Jay A.; Samei, Ehsan

    2009-01-01

    Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigated the effects of these acquisition parameters on the overall diagnostic image quality of breast tomosynthesis in both the projection and reconstruction space. Five mastectomy specimens were imaged using a prototype tomosynthesis system. 25 angular projections of each specimen were acquired at 6.2 times typical single-view clinical dose level. Images at lower dose levels were then simulated using a noise modification routine. Each projection image was supplemented with 84 simulated 3 mm 3D lesions embedded at the center of 84 nonoverlapping ROIs. The projection images were then reconstructed using a filtered backprojection algorithm at different combinations of acquisition parameters to investigate which of the many possible combinations maximizes the performance. Performance was evaluated in terms of a Laguerre-Gauss channelized Hotelling observer model-based measure of lesion detectability. The analysis was also performed without reconstruction by combining the model results from projection images using Bayesian decision fusion algorithm. The effect of acquisition parameters on projection images and reconstructed slices were then compared to derive an optimization rule for tomosynthesis. The results indicated that projection images yield comparable but higher performance than reconstructed images. Both modes, however, offered similar trends: Performance improved with an increase in the total acquisition dose level and the angular span. Using a constant dose level and angular

  20. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms

    International Nuclear Information System (INIS)

    Sidky, Emil Y.; Pan Xiaochuan; Reiser, Ingrid S.; Nishikawa, Robert M.; Moore, Richard H.; Kopans, Daniel B.

    2009-01-01

    Purpose: The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). Methods: The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p=1.0 or the image roughness when p=2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography. Results: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. Conclusions: Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging.

  1. Development of a prototype chest digital tomosynthesis (CDT) R/F system with fast image reconstruction using graphics processing unit (GPU) programming

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sunghoon, E-mail: choi.sh@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Lee, Seungwan [Department of Radiological Science, College of Medical Science, Konyang University, 158 Gwanjeodong-ro, Daejeon, 308-812 (Korea, Republic of); Lee, Haenghwa [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Lee, Donghoon; Choi, Seungyeon [Department of Radiation Convergence Engineering, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Shin, Jungwook [LISTEM Corporation, 94 Donghwagongdan-ro, Munmak-eup, Wonju (Korea, Republic of); Seo, Chang-Woo [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Department of Radiation Convergence Engineering, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of)

    2017-03-11

    Digital tomosynthesis offers the advantage of low radiation doses compared to conventional computed tomography (CT) by utilizing small numbers of projections (~80) acquired over a limited angular range. It produces 3D volumetric data, although there are artifacts due to incomplete sampling. Based upon these characteristics, we developed a prototype digital tomosynthesis R/F system for applications in chest imaging. Our prototype chest digital tomosynthesis (CDT) R/F system contains an X-ray tube with high power R/F pulse generator, flat-panel detector, R/F table, electromechanical radiographic subsystems including a precise motor controller, and a reconstruction server. For image reconstruction, users select between analytic and iterative reconstruction methods. Our reconstructed images of Catphan700 and LUNGMAN phantoms clearly and rapidly described the internal structures of phantoms using graphics processing unit (GPU) programming. Contrast-to-noise ratio (CNR) values of the CTP682 module of Catphan700 were higher in images using a simultaneous algebraic reconstruction technique (SART) than in those using filtered back-projection (FBP) for all materials by factors of 2.60, 3.78, 5.50, 2.30, 3.70, and 2.52 for air, lung foam, low density polyethylene (LDPE), Delrin{sup ®} (acetal homopolymer resin), bone 50% (hydroxyapatite), and Teflon, respectively. Total elapsed times for producing 3D volume were 2.92 s and 86.29 s on average for FBP and SART (20 iterations), respectively. The times required for reconstruction were clinically feasible. Moreover, the total radiation dose from our system (5.68 mGy) was lower than that of conventional chest CT scan. Consequently, our prototype tomosynthesis R/F system represents an important advance in digital tomosynthesis applications.

  2. New reconstruction algorithm for digital breast tomosynthesis: better image quality for humans and computers.

    Science.gov (United States)

    Rodriguez-Ruiz, Alejandro; Teuwen, Jonas; Vreemann, Suzan; Bouwman, Ramona W; van Engen, Ruben E; Karssemeijer, Nico; Mann, Ritse M; Gubern-Merida, Albert; Sechopoulos, Ioannis

    2017-01-01

    Background The image quality of digital breast tomosynthesis (DBT) volumes depends greatly on the reconstruction algorithm. Purpose To compare two DBT reconstruction algorithms used by the Siemens Mammomat Inspiration system, filtered back projection (FBP), and FBP with iterative optimizations (EMPIRE), using qualitative analysis by human readers and detection performance of machine learning algorithms. Material and Methods Visual grading analysis was performed by four readers specialized in breast imaging who scored 100 cases reconstructed with both algorithms (70 lesions). Scoring (5-point scale: 1 = poor to 5 = excellent quality) was performed on presence of noise and artifacts, visualization of skin-line and Cooper's ligaments, contrast, and image quality, and, when present, lesion visibility. In parallel, a three-dimensional deep-learning convolutional neural network (3D-CNN) was trained (n = 259 patients, 51 positives with BI-RADS 3, 4, or 5 calcifications) and tested (n = 46 patients, nine positives), separately with FBP and EMPIRE volumes, to discriminate between samples with and without calcifications. The partial area under the receiver operating characteristic curve (pAUC) of each 3D-CNN was used for comparison. Results EMPIRE reconstructions showed better contrast (3.23 vs. 3.10, P = 0.010), image quality (3.22 vs. 3.03, P algorithm provides DBT volumes with better contrast and image quality, fewer artifacts, and improved visibility of calcifications for human observers, as well as improved detection performance with deep-learning algorithms.

  3. Investigation of various reconstruction parameters for algebraic reconstruction technique in a newly developed chest digital tomosynthesis

    International Nuclear Information System (INIS)

    Lee, H.; Choi, S.; Kim, Y.-S.; Park, H.-S.; Seo, C.-W.; Kim, H.-J.; Lee, D.; Lee, Y.

    2017-01-01

    Chest digital tomosynthesis (CDT) is a promising new modality that provides 3D information by reconstructing limited projection views. CDT systems have been developed to improve the limitations of conventional radiography such as image degradation and low sensitivity. However, the development of reconstruction methods is challenging because of the limited projection views within various angular ranges. Optimization of reconstruction parameters for various reconsturction methods in CDT system also is needed. The purpose of this study was to investigate the feasibility of algebraic reconstruction technique (ART) method, and to evaluate the effect of the reconstruction parameters for our newly developed CDT system. We designed ART method with 41 projection views over an angular range of ±20°. To investigate the effect of reconstruction parameters, we measured the contrast-to-noise ratio (CNR), artifact spread function (ASF), and quality factor (QF) using LUNGMAN phantom included tumors. We found that the proper choice of reconstruction parameters such as relaxation parameter, initial guess, and number of iterations improved the quality of reconstructed images from the same projection views. Optimal values of ART relaxation parameter with uniform (UI) and back-projection (BP) initial guesses were 0.4 and 0.6, respectively. BP initial guess improved image quality in comparison with UI initial guess, in terms of providing a higher CNR and QF values with a faster speed. CNR and QF values improved with increasing number of iteration. Particularly, ART method with BP initial guess (when β = 0.6) after 3-terations provide satisfactory reconstructed image. In conclusion, the use of ART method with proper reconstruction parameters provided better image quality than FBP method as well as conventional radiography. These results indicated that the ART method with optimal reconstruction parameters could improve image quality for nodule detection using the CDT system.

  4. Investigation of various reconstruction parameters for algebraic reconstruction technique in a newly developed chest digital tomosynthesis

    Science.gov (United States)

    Lee, H.; Choi, S.; Lee, D.; Kim, Y.-s.; Park, H.-S.; Lee, Y.; Seo, C.-W.; Kim, H.-J.

    2017-08-01

    Chest digital tomosynthesis (CDT) is a promising new modality that provides 3D information by reconstructing limited projection views. CDT systems have been developed to improve the limitations of conventional radiography such as image degradation and low sensitivity. However, the development of reconstruction methods is challenging because of the limited projection views within various angular ranges. Optimization of reconstruction parameters for various reconsturction methods in CDT system also is needed. The purpose of this study was to investigate the feasibility of algebraic reconstruction technique (ART) method, and to evaluate the effect of the reconstruction parameters for our newly developed CDT system. We designed ART method with 41 projection views over an angular range of ±20°. To investigate the effect of reconstruction parameters, we measured the contrast-to-noise ratio (CNR), artifact spread function (ASF), and quality factor (QF) using LUNGMAN phantom included tumors. We found that the proper choice of reconstruction parameters such as relaxation parameter, initial guess, and number of iterations improved the quality of reconstructed images from the same projection views. Optimal values of ART relaxation parameter with uniform (UI) and back-projection (BP) initial guesses were 0.4 and 0.6, respectively. BP initial guess improved image quality in comparison with UI initial guess, in terms of providing a higher CNR and QF values with a faster speed. CNR and QF values improved with increasing number of iteration. Particularly, ART method with BP initial guess (when β = 0.6) after 3-terations provide satisfactory reconstructed image. In conclusion, the use of ART method with proper reconstruction parameters provided better image quality than FBP method as well as conventional radiography. These results indicated that the ART method with optimal reconstruction parameters could improve image quality for nodule detection using the CDT system.

  5. Prostate implant reconstruction from C-arm images with motion-compensated tomosynthesis

    International Nuclear Information System (INIS)

    Dehghan, Ehsan; Moradi, Mehdi; Wen, Xu; French, Danny; Lobo, Julio; Morris, W. James; Salcudean, Septimiu E.; Fichtinger, Gabor

    2011-01-01

    Purpose: Accurate localization of prostate implants from several C-arm images is necessary for ultrasound-fluoroscopy fusion and intraoperative dosimetry. The authors propose a computational motion compensation method for tomosynthesis-based reconstruction that enables 3D localization of prostate implants from C-arm images despite C-arm oscillation and sagging. Methods: Five C-arm images are captured by rotating the C-arm around its primary axis, while measuring its rotation angle using a protractor or the C-arm joint encoder. The C-arm images are processed to obtain binary seed-only images from which a volume of interest is reconstructed. The motion compensation algorithm, iteratively, compensates for 2D translational motion of the C-arm by maximizing the number of voxels that project on a seed projection in all of the images. This obviates the need for C-arm full pose tracking traditionally implemented using radio-opaque fiducials or external trackers. The proposed reconstruction method is tested in simulations, in a phantom study and on ten patient data sets. Results: In a phantom implanted with 136 dummy seeds, the seed detection rate was 100% with a localization error of 0.86 ± 0.44 mm (Mean ± STD) compared to CT. For patient data sets, a detection rate of 99.5% was achieved in approximately 1 min per patient. The reconstruction results for patient data sets were compared against an available matching-based reconstruction method and showed relative localization difference of 0.5 ± 0.4 mm. Conclusions: The motion compensation method can successfully compensate for large C-arm motion without using radio-opaque fiducial or external trackers. Considering the efficacy of the algorithm, its successful reconstruction rate and low computational burden, the algorithm is feasible for clinical use.

  6. Prostate implant reconstruction from C-arm images with motion-compensated tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dehghan, Ehsan; Moradi, Mehdi; Wen, Xu; French, Danny; Lobo, Julio; Morris, W. James; Salcudean, Septimiu E.; Fichtinger, Gabor [School of Computing, Queen' s University, Kingston, Ontario K7L-3N6 (Canada); Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia V6T-1Z4 (Canada); Vancouver Cancer Centre, Vancouver, British Columbia V5Z-1E6 (Canada); Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia V6T-1Z4 (Canada); School of Computing, Queen' s University, Kingston, Ontario K7L-3N6 (Canada)

    2011-10-15

    Purpose: Accurate localization of prostate implants from several C-arm images is necessary for ultrasound-fluoroscopy fusion and intraoperative dosimetry. The authors propose a computational motion compensation method for tomosynthesis-based reconstruction that enables 3D localization of prostate implants from C-arm images despite C-arm oscillation and sagging. Methods: Five C-arm images are captured by rotating the C-arm around its primary axis, while measuring its rotation angle using a protractor or the C-arm joint encoder. The C-arm images are processed to obtain binary seed-only images from which a volume of interest is reconstructed. The motion compensation algorithm, iteratively, compensates for 2D translational motion of the C-arm by maximizing the number of voxels that project on a seed projection in all of the images. This obviates the need for C-arm full pose tracking traditionally implemented using radio-opaque fiducials or external trackers. The proposed reconstruction method is tested in simulations, in a phantom study and on ten patient data sets. Results: In a phantom implanted with 136 dummy seeds, the seed detection rate was 100% with a localization error of 0.86 {+-} 0.44 mm (Mean {+-} STD) compared to CT. For patient data sets, a detection rate of 99.5% was achieved in approximately 1 min per patient. The reconstruction results for patient data sets were compared against an available matching-based reconstruction method and showed relative localization difference of 0.5 {+-} 0.4 mm. Conclusions: The motion compensation method can successfully compensate for large C-arm motion without using radio-opaque fiducial or external trackers. Considering the efficacy of the algorithm, its successful reconstruction rate and low computational burden, the algorithm is feasible for clinical use.

  7. Sci-Sat AM(2): Brachy-07: Tomosynthesis-based seed reconstruction in LDR prostate brachytherapy: A clinical study.

    Science.gov (United States)

    Brunet-Benkhoucha, M; Verhaegen, F; Lassalle, S; Béliveau-Nadeau, D; Reniers, B; Donath, D; Taussky, D; Carrier, J-F

    2008-07-01

    To develop a tomosynthesis-based dose assessment procedure that can be performed after an I-125 prostate seed implantation, while the patient is still under anaesthesia on the treatment table. Our seed detection procedure involves the reconstruction of a volume of interest based on the backprojection of 7 seed-only binary images acquired over an angle of 60° with an isocentric imaging system. A binary seed-only volume is generated by a simple thresholding of the volume of interest. Seeds positions are extracted from this volume with a 3D connected component analysis and a statistical classifier that determines the number of seeds in each cluster of connected voxels. A graphical user interface (GUI) allows to visualize the result and to introduce corrections, if needed. A phantom and a clinical study (24 patients) were carried out to validate the technique. A phantom study demonstrated a very good localization accuracy of (0.4+/-0.4) mm when compared to CT-based reconstruction. This leads to dosimetric error on D90 and V100 of respectively 0.5% and 0.1%. In a patient study with an average of 56 seeds per implant, the automatic tomosynthesis-based reconstruction yields a detection rate of 96% of the seeds and less than 1.5% of false-positives. With the help of the GUI, the user can achieve a 100% detection rate in an average of 3 minutes. This technique would allow to identify possible underdosage and to correct it by potentially reimplanting additional seeds. A more uniform dose coverage could then be achieved in LDR prostate brachytherapy. © 2008 American Association of Physicists in Medicine.

  8. Three-dimensional digital tomosynthesis iterative reconstruction, artifact reduction and alternative acquisition geometry

    CERN Document Server

    Levakhina, Yulia

    2014-01-01

    Yulia Levakhina gives an introduction to the major challenges of image reconstruction in Digital Tomosynthesis (DT), particularly to the connection of the reconstruction problem with the incompleteness of the DT dataset. The author discusses the factors which cause the formation of limited angle artifacts and proposes how to account for them in order to improve image quality and axial resolution of modern DT. The addressed methods include a weighted non-linear back projection scheme for algebraic reconstruction and?novel dual-axis acquisition geometry. All discussed algorithms and methods are supplemented by detailed illustrations, hints for practical implementation, pseudo-code, simulation results and real patient case examples.

  9. Comparison of analytic and iterative digital tomosynthesis reconstructions for thin slab objects

    Science.gov (United States)

    Yun, J.; Kim, D. W.; Ha, S.; Kim, H. K.

    2017-11-01

    For digital x-ray tomosynthesis of thin slab objects, we compare the tomographic imaging performances obtained from the filtered backprojection (FBP) and simultaneous algebraic reconstruction (SART) algorithms. The imaging performance includes the in-plane molulation-transfer function (MTF), the signal difference-to-noise ratio (SDNR), and the out-of-plane blur artifact or artifact-spread function (ASF). The MTF is measured using a thin tungsten-wire phantom, and the SDNR and the ASF are measured using a thin aluminum-disc phantom embedded in a plastic cylinder. The FBP shows a better MTF performance than the SART. On the contrary, the SART outperforms the FBP with regard to the SDNR and ASF performances. Detailed experimental results and their analysis results are described in this paper. For a more proper use of digital tomosynthesis technique, this study suggests to use a reconstuction algorithm suitable for application-specific purposes.

  10. Metal artifact reduction using a patch-based reconstruction for digital breast tomosynthesis

    Science.gov (United States)

    Borges, Lucas R.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2017-03-01

    Digital breast tomosynthesis (DBT) is rapidly emerging as the main clinical tool for breast cancer screening. Although several reconstruction methods for DBT are described by the literature, one common issue is the interplane artifacts caused by out-of-focus features. For breasts containing highly attenuating features, such as surgical clips and large calcifications, the artifacts are even more apparent and can limit the detection and characterization of lesions by the radiologist. In this work, we propose a novel method of combining backprojected data into tomographic slices using a patch-based approach, commonly used in denoising. Preliminary tests were performed on a geometry phantom and on an anthropomorphic phantom containing metal inserts. The reconstructed images were compared to a commercial reconstruction solution. Qualitative assessment of the reconstructed images provides evidence that the proposed method reduces artifacts while maintaining low noise levels. Objective assessment supports the visual findings. The artifact spread function shows that the proposed method is capable of suppressing artifacts generated by highly attenuating features. The signal difference to noise ratio shows that the noise levels of the proposed and commercial methods are comparable, even though the commercial method applies post-processing filtering steps, which were not implemented on the proposed method. Thus, the proposed method can produce tomosynthesis reconstructions with reduced artifacts and low noise levels.

  11. Convergence of iterative image reconstruction algorithms for Digital Breast Tomosynthesis

    DEFF Research Database (Denmark)

    Sidky, Emil; Jørgensen, Jakob Heide; Pan, Xiaochuan

    2012-01-01

    Most iterative image reconstruction algorithms are based on some form of optimization, such as minimization of a data-fidelity term plus an image regularizing penalty term. While achieving the solution of these optimization problems may not directly be clinically relevant, accurate optimization s...

  12. Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Xu, Shiyu; Chen, Ying; Lu, Jianping; Zhou, Otto

    2015-01-01

    Purpose: Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means to overcome these challenges is statistical iterative reconstruction (IR), since it provides the flexibility of accurate physics modeling and a general description of system geometry. The authors’ goal was to develop techniques for applying statistical IR to tomosynthesis imaging data. Methods: These techniques include the following: a physics model with a local voxel-pair based prior with flexible parameters to fine-tune image quality; a precomputed parameter λ in the prior, to remove data dependence and to achieve a uniform resolution property; an effective ray-driven technique to compute the forward and backprojection; and an oversampled, ray-driven method to perform high resolution reconstruction with a practical region-of-interest technique. To assess the performance of these techniques, the authors acquired phantom data on the stationary DBT prototype system. To solve the estimation problem, the authors proposed an optimization-transfer based algorithm framework that potentially allows fewer iterations to achieve an acceptably converged reconstruction. Results: IR improved the detectability of low-contrast and small microcalcifications, reduced cross-plane artifacts, improved spatial resolution, and lowered noise in reconstructed images. Conclusions: Although the computational load remains a significant challenge for practical development, the superior image quality provided by statistical IR, combined with advancing computational techniques, may bring benefits to screening, diagnostics, and intraoperative imaging in clinical applications

  13. Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shiyu, E-mail: shiyu.xu@gmail.com; Chen, Ying, E-mail: adachen@siu.edu [Department of Electrical and Computer Engineering, Southern Illinois University Carbondale, Carbondale, Illinois 62901 (United States); Lu, Jianping; Zhou, Otto [Department of Physics and Astronomy and Curriculum in Applied Sciences and Engineering, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-09-15

    Purpose: Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means to overcome these challenges is statistical iterative reconstruction (IR), since it provides the flexibility of accurate physics modeling and a general description of system geometry. The authors’ goal was to develop techniques for applying statistical IR to tomosynthesis imaging data. Methods: These techniques include the following: a physics model with a local voxel-pair based prior with flexible parameters to fine-tune image quality; a precomputed parameter λ in the prior, to remove data dependence and to achieve a uniform resolution property; an effective ray-driven technique to compute the forward and backprojection; and an oversampled, ray-driven method to perform high resolution reconstruction with a practical region-of-interest technique. To assess the performance of these techniques, the authors acquired phantom data on the stationary DBT prototype system. To solve the estimation problem, the authors proposed an optimization-transfer based algorithm framework that potentially allows fewer iterations to achieve an acceptably converged reconstruction. Results: IR improved the detectability of low-contrast and small microcalcifications, reduced cross-plane artifacts, improved spatial resolution, and lowered noise in reconstructed images. Conclusions: Although the computational load remains a significant challenge for practical development, the superior image quality provided by statistical IR, combined with advancing computational techniques, may bring benefits to screening, diagnostics, and intraoperative imaging in clinical applications.

  14. Optimized image acquisition for breast tomosynthesis in projection and reconstruction space

    OpenAIRE

    Chawla, Amarpreet S.; Lo, Joseph Y.; Baker, Jay A.; Samei, Ehsan

    2009-01-01

    Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigat...

  15. Retrospective estimation of patient dose-area product in thoracic spine tomosynthesis performed using VolumeRAD

    International Nuclear Information System (INIS)

    Baath, Magnus; Svalkvist, Angelica; Soederman, Christina

    2016-01-01

    The aim of this study was to evaluate the use of a recently developed method of retrospectively estimating the patient dose-area product (DAP) of a chest tomosynthesis examination, performed using VolumeRAD, in thoracic spine tomosynthesis and to determine the necessary field-size correction factor. Digital imaging and communications in medicine (DICOM) data for the projection radiographs acquired during a thoracic spine tomosynthesis examination were retrieved directly from the modality for 17 patients. Using the previously developed method, an estimated DAP for the tomosynthesis examination was determined from DICOM data in the scout image. By comparing the estimated DAP with the actual DAP registered for the projection radiographs, a field-size correction factor was determined. The field-size correction factor for thoracic spine tomosynthesis was determined to 0.92. Applying this factor to the DAP estimated retrospectively, the maximum difference between the estimated DAP and the actual DAP was <3 %. In conclusion, the previously developed method of retrospectively estimating the DAP in chest tomosynthesis can be applied to thoracic spine tomosynthesis. (authors)

  16. A simple method to retrospectively estimate patient dose-area product for chest tomosynthesis examinations performed using VolumeRAD.

    Science.gov (United States)

    Båth, Magnus; Söderman, Christina; Svalkvist, Angelica

    2014-10-01

    The purpose of the present work was to develop and validate a method of retrospectively estimating the dose-area product (DAP) of a chest tomosynthesis examination performed using the VolumeRAD system (GE Healthcare, Chalfont St. Giles, UK) from digital imaging and communications in medicine (DICOM) data available in the scout image. DICOM data were retrieved for 20 patients undergoing chest tomosynthesis using VolumeRAD. Using information about how the exposure parameters for the tomosynthesis examination are determined by the scout image, a correction factor for the adjustment in field size with projection angle was determined. The correction factor was used to estimate the DAP for 20 additional chest tomosynthesis examinations from DICOM data available in the scout images, which was compared with the actual DAP registered for the projection radiographs acquired during the tomosynthesis examination. A field size correction factor of 0.935 was determined. Applying the developed method using this factor, the average difference between the estimated DAP and the actual DAP was 0.2%, with a standard deviation of 0.8%. However, the difference was not normally distributed and the maximum error was only 1.0%. The validity and reliability of the presented method were thus very high. A method to estimate the DAP of a chest tomosynthesis examination performed using the VolumeRAD system from DICOM data in the scout image was developed and validated. As the scout image normally is the only image connected to the tomosynthesis examination stored in the picture archiving and communication system (PACS) containing dose data, the method may be of value for retrospectively estimating patient dose in clinical use of chest tomosynthesis.

  17. A simple method to retrospectively estimate patient dose-area product for chest tomosynthesis examinations performed using VolumeRAD

    Energy Technology Data Exchange (ETDEWEB)

    Båth, Magnus, E-mail: magnus.bath@vgregion.se; Svalkvist, Angelica [Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg SE-413 45, Sweden and Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg SE-413 45 (Sweden); Söderman, Christina [Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg SE-413 45 (Sweden)

    2014-10-15

    Purpose: The purpose of the present work was to develop and validate a method of retrospectively estimating the dose-area product (DAP) of a chest tomosynthesis examination performed using the VolumeRAD system (GE Healthcare, Chalfont St. Giles, UK) from digital imaging and communications in medicine (DICOM) data available in the scout image. Methods: DICOM data were retrieved for 20 patients undergoing chest tomosynthesis using VolumeRAD. Using information about how the exposure parameters for the tomosynthesis examination are determined by the scout image, a correction factor for the adjustment in field size with projection angle was determined. The correction factor was used to estimate the DAP for 20 additional chest tomosynthesis examinations from DICOM data available in the scout images, which was compared with the actual DAP registered for the projection radiographs acquired during the tomosynthesis examination. Results: A field size correction factor of 0.935 was determined. Applying the developed method using this factor, the average difference between the estimated DAP and the actual DAP was 0.2%, with a standard deviation of 0.8%. However, the difference was not normally distributed and the maximum error was only 1.0%. The validity and reliability of the presented method were thus very high. Conclusions: A method to estimate the DAP of a chest tomosynthesis examination performed using the VolumeRAD system from DICOM data in the scout image was developed and validated. As the scout image normally is the only image connected to the tomosynthesis examination stored in the picture archiving and communication system (PACS) containing dose data, the method may be of value for retrospectively estimating patient dose in clinical use of chest tomosynthesis.

  18. A simple method to retrospectively estimate patient dose-area product for chest tomosynthesis examinations performed using VolumeRAD

    International Nuclear Information System (INIS)

    Båth, Magnus; Svalkvist, Angelica; Söderman, Christina

    2014-01-01

    Purpose: The purpose of the present work was to develop and validate a method of retrospectively estimating the dose-area product (DAP) of a chest tomosynthesis examination performed using the VolumeRAD system (GE Healthcare, Chalfont St. Giles, UK) from digital imaging and communications in medicine (DICOM) data available in the scout image. Methods: DICOM data were retrieved for 20 patients undergoing chest tomosynthesis using VolumeRAD. Using information about how the exposure parameters for the tomosynthesis examination are determined by the scout image, a correction factor for the adjustment in field size with projection angle was determined. The correction factor was used to estimate the DAP for 20 additional chest tomosynthesis examinations from DICOM data available in the scout images, which was compared with the actual DAP registered for the projection radiographs acquired during the tomosynthesis examination. Results: A field size correction factor of 0.935 was determined. Applying the developed method using this factor, the average difference between the estimated DAP and the actual DAP was 0.2%, with a standard deviation of 0.8%. However, the difference was not normally distributed and the maximum error was only 1.0%. The validity and reliability of the presented method were thus very high. Conclusions: A method to estimate the DAP of a chest tomosynthesis examination performed using the VolumeRAD system from DICOM data in the scout image was developed and validated. As the scout image normally is the only image connected to the tomosynthesis examination stored in the picture archiving and communication system (PACS) containing dose data, the method may be of value for retrospectively estimating patient dose in clinical use of chest tomosynthesis

  19. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.

    Science.gov (United States)

    Kim, Ye-seul; Park, Hye-suk; Lee, Haeng-Hwa; Choi, Young-Wook; Choi, Jae-Gu; Kim, Hak Hee; Kim, Hee-Joung

    2016-02-01

    Digital breast tomosynthesis (DBT) is a recently developed system for three-dimensional imaging that offers the potential to reduce the false positives of mammography by preventing tissue overlap. Many qualitative evaluations of digital breast tomosynthesis were previously performed by using a phantom with an unrealistic model and with heterogeneous background and noise, which is not representative of real breasts. The purpose of the present work was to compare reconstruction algorithms for DBT by using various breast phantoms; validation was also performed by using patient images. DBT was performed by using a prototype unit that was optimized for very low exposures and rapid readout. Three algorithms were compared: a back-projection (BP) algorithm, a filtered BP (FBP) algorithm, and an iterative expectation maximization (EM) algorithm. To compare the algorithms, three types of breast phantoms (homogeneous background phantom, heterogeneous background phantom, and anthropomorphic breast phantom) were evaluated, and clinical images were also reconstructed by using the different reconstruction algorithms. The in-plane image quality was evaluated based on the line profile and the contrast-to-noise ratio (CNR), and out-of-plane artifacts were evaluated by means of the artifact spread function (ASF). Parenchymal texture features of contrast and homogeneity were computed based on reconstructed images of an anthropomorphic breast phantom. The clinical images were studied to validate the effect of reconstruction algorithms. The results showed that the CNRs of masses reconstructed by using the EM algorithm were slightly higher than those obtained by using the BP algorithm, whereas the FBP algorithm yielded much lower CNR due to its high fluctuations of background noise. The FBP algorithm provides the best conspicuity for larger calcifications by enhancing their contrast and sharpness more than the other algorithms; however, in the case of small-size and low

  20. Digital tomosynthesis parallel imaging computational analysis with shift and add and back projection reconstruction algorithms.

    Science.gov (United States)

    Chen, Ying; Balla, Apuroop; Rayford II, Cleveland E; Zhou, Weihua; Fang, Jian; Cong, Linlin

    2010-01-01

    Digital tomosynthesis is a novel technology that has been developed for various clinical applications. Parallel imaging configuration is utilised in a few tomosynthesis imaging areas such as digital chest tomosynthesis. Recently, parallel imaging configuration for breast tomosynthesis began to appear too. In this paper, we present the investigation on computational analysis of impulse response characterisation as the start point of our important research efforts to optimise the parallel imaging configurations. Results suggest that impulse response computational analysis is an effective method to compare and optimise imaging configurations.

  1. Digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Haegele, Julian; Barkhausen, Joerg; Pursche, Telja; Schaefer, Fritz K.W.

    2015-01-01

    In digital breast tomosynthesis a digital tomographic data set with a very high spatial resolution is reconstructed from low-dose projections collected over a limited rotation angle. This allows a very detailed assessment of e. g. masses and architectural distortions. The average glandular dose is comparable to 2 D mammography. First clinical studies demonstrated that tomosynthesis is able to supply important additional information in suspicious mammographic findings. In comparison to projection mammography, tomosynthesis shows an at least comparable diagnostic accuracy. In everyday practice, tomosynthesis is currently mostly used for further evaluation of suspicious findings in mammography.

  2. Image reconstruction for digital breast tomosynthesis (DBT) by using projection-angle-dependent filter functions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeonok; Park, Chulkyu; Cho, Hyosung; Je, Uikyu; Hong, Daeki; Lee, Minsik; Cho, Heemoon; Choi, Sungil; Koo, Yangseo [Yonsei University, Wonju (Korea, Republic of)

    2014-09-15

    Digital breast tomosynthesis (DBT) is considered in clinics as a standard three-dimensional imaging modality, allowing the earlier detection of cancer. It typically acquires only 10-30 projections over a limited angle range of 15 - 60 .deg. with a stationary detector and typically uses a computationally-efficient filtered-backprojection (FBP) algorithm for image reconstruction. However, a common FBP algorithm yields poor image quality resulting from the loss of average image value and the presence of severe image artifacts due to the elimination of the dc component of the image by the ramp filter and to the incomplete data, respectively. As an alternative, iterative reconstruction methods are often used in DBT to overcome these difficulties, even though they are still computationally expensive. In this study, as a compromise, we considered a projection-angle dependent filtering method in which one-dimensional geometry-adapted filter kernels are computed with the aid of a conjugate-gradient method and are incorporated into the standard FBP framework. We implemented the proposed algorithm and performed systematic simulation works to investigate the imaging characteristics. Our results indicate that the proposed method is superior to a conventional FBP method for DBT imaging and has a comparable computational cost, while preserving good image homogeneity and edge sharpening with no serious image artifacts.

  3. Parallel-scanning tomosynthesis using a slot scanning technique: Fixed-focus reconstruction and the resulting image quality

    International Nuclear Information System (INIS)

    Shibata, Koichi; Notohara, Daisuke; Sakai, Takihito

    2014-01-01

    Purpose: Parallel-scanning tomosynthesis (PS-TS) is a novel technique that fuses the slot scanning technique and the conventional tomosynthesis (TS) technique. This approach allows one to obtain long-view tomosynthesis images in addition to normally sized tomosynthesis images, even when using a system that has no linear tomographic scanning function. The reconstruction technique and an evaluation of the resulting image quality for PS-TS are described in this paper. Methods: The PS-TS image-reconstruction technique consists of several steps (1) the projection images are divided into strips, (2) the strips are stitched together to construct images corresponding to the reconstruction plane, (3) the stitched images are filtered, and (4) the filtered stitched images are back-projected. In the case of PS-TS using the fixed-focus reconstruction method (PS-TS-F), one set of stitched images is used for the reconstruction planes at all heights, thus avoiding the necessity of repeating steps (1)–(3). A physical evaluation of the image quality of PS-TS-F compared with that of the conventional linear TS was performed using a R/F table (Sonialvision safire, Shimadzu Corp., Kyoto, Japan). The tomographic plane with the best theoretical spatial resolution (the in-focus plane, IFP) was set at a height of 100 mm from the table top by adjusting the reconstruction program. First, the spatial frequency response was evaluated at heights of −100, −50, 0, 50, 100, and 150 mm from the IFP using the edge of a 0.3-mm-thick copper plate. Second, the spatial resolution at each height was visually evaluated using an x-ray test pattern (Model No. 38, PTW Freiburg, Germany). Third, the slice sensitivity at each height was evaluated via the wire method using a 0.1-mm-diameter tungsten wire. Phantom studies using a knee phantom and a whole-body phantom were also performed. Results: The spatial frequency response of PS-TS-F yielded the best results at the IFP and degraded slightly as the

  4. Parallel-scanning tomosynthesis using a slot scanning technique: fixed-focus reconstruction and the resulting image quality.

    Science.gov (United States)

    Shibata, Koichi; Notohara, Daisuke; Sakai, Takihito

    2014-11-01

    Parallel-scanning tomosynthesis (PS-TS) is a novel technique that fuses the slot scanning technique and the conventional tomosynthesis (TS) technique. This approach allows one to obtain long-view tomosynthesis images in addition to normally sized tomosynthesis images, even when using a system that has no linear tomographic scanning function. The reconstruction technique and an evaluation of the resulting image quality for PS-TS are described in this paper. The PS-TS image-reconstruction technique consists of several steps (1) the projection images are divided into strips, (2) the strips are stitched together to construct images corresponding to the reconstruction plane, (3) the stitched images are filtered, and (4) the filtered stitched images are back-projected. In the case of PS-TS using the fixed-focus reconstruction method (PS-TS-F), one set of stitched images is used for the reconstruction planes at all heights, thus avoiding the necessity of repeating steps (1)-(3). A physical evaluation of the image quality of PS-TS-F compared with that of the conventional linear TS was performed using a R/F table (Sonialvision safire, Shimadzu Corp., Kyoto, Japan). The tomographic plane with the best theoretical spatial resolution (the in-focus plane, IFP) was set at a height of 100 mm from the table top by adjusting the reconstruction program. First, the spatial frequency response was evaluated at heights of -100, -50, 0, 50, 100, and 150 mm from the IFP using the edge of a 0.3-mm-thick copper plate. Second, the spatial resolution at each height was visually evaluated using an x-ray test pattern (Model No. 38, PTW Freiburg, Germany). Third, the slice sensitivity at each height was evaluated via the wire method using a 0.1-mm-diameter tungsten wire. Phantom studies using a knee phantom and a whole-body phantom were also performed. The spatial frequency response of PS-TS-F yielded the best results at the IFP and degraded slightly as the distance from the IFP increased. A

  5. Parallel-scanning tomosynthesis using a slot scanning technique: Fixed-focus reconstruction and the resulting image quality

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Koichi, E-mail: shibatak@suzuka-u.ac.jp [Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science 1001-1, Kishioka-cho, Suzuka 510-0293 (Japan); Notohara, Daisuke; Sakai, Takihito [R and D Department, Medical Systems Division, Shimadzu Corporation 1, Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511 (Japan)

    2014-11-01

    Purpose: Parallel-scanning tomosynthesis (PS-TS) is a novel technique that fuses the slot scanning technique and the conventional tomosynthesis (TS) technique. This approach allows one to obtain long-view tomosynthesis images in addition to normally sized tomosynthesis images, even when using a system that has no linear tomographic scanning function. The reconstruction technique and an evaluation of the resulting image quality for PS-TS are described in this paper. Methods: The PS-TS image-reconstruction technique consists of several steps (1) the projection images are divided into strips, (2) the strips are stitched together to construct images corresponding to the reconstruction plane, (3) the stitched images are filtered, and (4) the filtered stitched images are back-projected. In the case of PS-TS using the fixed-focus reconstruction method (PS-TS-F), one set of stitched images is used for the reconstruction planes at all heights, thus avoiding the necessity of repeating steps (1)–(3). A physical evaluation of the image quality of PS-TS-F compared with that of the conventional linear TS was performed using a R/F table (Sonialvision safire, Shimadzu Corp., Kyoto, Japan). The tomographic plane with the best theoretical spatial resolution (the in-focus plane, IFP) was set at a height of 100 mm from the table top by adjusting the reconstruction program. First, the spatial frequency response was evaluated at heights of −100, −50, 0, 50, 100, and 150 mm from the IFP using the edge of a 0.3-mm-thick copper plate. Second, the spatial resolution at each height was visually evaluated using an x-ray test pattern (Model No. 38, PTW Freiburg, Germany). Third, the slice sensitivity at each height was evaluated via the wire method using a 0.1-mm-diameter tungsten wire. Phantom studies using a knee phantom and a whole-body phantom were also performed. Results: The spatial frequency response of PS-TS-F yielded the best results at the IFP and degraded slightly as the

  6. Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Directory of Open Access Journals (Sweden)

    Kim Jae G

    2011-12-01

    Full Text Available Abstract Background Despite its superb lateral resolution, flat-panel-detector (FPD based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis

  7. Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Science.gov (United States)

    2011-01-01

    Background Despite its superb lateral resolution, flat-panel-detector (FPD) based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI) are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR) from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis images reconstructed by

  8. Characterization of masses in digital breast tomosynthesis: comparison of machine learning in projection views and reconstructed slices.

    Science.gov (United States)

    Chan, Heang-Ping; Wu, Yi-Ta; Sahiner, Berkman; Wei, Jun; Helvie, Mark A; Zhang, Yiheng; Moore, Richard H; Kopans, Daniel B; Hadjiiski, Lubomir; Way, Ted

    2010-07-01

    In digital breast tomosynthesis (DBT), quasi-three-dimensional (3D) structural information is reconstructed from a small number of 2D projection view (PV) mammograms acquired over a limited angular range. The authors developed preliminary computer-aided diagnosis (CADx) methods for classification of malignant and benign masses and compared the effectiveness of analyzing lesion characteristics in the reconstructed DBT slices and in the PVs. A data set of MLO view DBT of 99 patients containing 107 masses (56 malignant and 51 benign) was collected at the Massachusetts General Hospital with IRB approval. The DBTs were obtained with a GE prototype system which acquired 11 PVs over a 50 degree arc. The authors reconstructed the DBTs at 1 mm slice interval using a simultaneous algebraic reconstruction technique. The region of interest (ROI) containing the mass was marked by a radiologist in the DBT volume and the corresponding ROIs on the PVs were derived based on the imaging geometry. The subsequent processes were fully automated. For classification of masses using the DBT-slice approach, the mass on each slice was segmented by an active contour model initialized with adaptive k-means clustering. A spiculation likelihood map was generated by analysis of the gradient directions around the mass margin and spiculation features were extracted from the map. The rubber band straightening transform (RBST) was applied to a band of pixels around the segmented mass boundary. The RBST image was enhanced by Sobel filtering in the horizontal and vertical directions, from which run-length statistics texture features were extracted. Morphological features including those from the normalized radial length were designed to describe the mass shape. A feature space composed of the spiculation features, texture features, and morphological features extracted from the central slice alone and seven feature spaces obtained by averaging the corresponding features from three to 19 slices centered

  9. Characterization of masses in digital breast tomosynthesis: Comparison of machine learning in projection views and reconstructed slices

    International Nuclear Information System (INIS)

    Chan, Heang-Ping; Wu Yita; Sahiner, Berkman; Wei, Jun; Helvie, Mark A.; Zhang Yiheng; Moore, Richard H.; Kopans, Daniel B.; Hadjiiski, Lubomir; Way, Ted

    2010-01-01

    Purpose: In digital breast tomosynthesis (DBT), quasi-three-dimensional (3D) structural information is reconstructed from a small number of 2D projection view (PV) mammograms acquired over a limited angular range. The authors developed preliminary computer-aided diagnosis (CADx) methods for classification of malignant and benign masses and compared the effectiveness of analyzing lesion characteristics in the reconstructed DBT slices and in the PVs. Methods: A data set of MLO view DBT of 99 patients containing 107 masses (56 malignant and 51 benign) was collected at the Massachusetts General Hospital with IRB approval. The DBTs were obtained with a GE prototype system which acquired 11 PVs over a 50 deg. arc. The authors reconstructed the DBTs at 1 mm slice interval using a simultaneous algebraic reconstruction technique. The region of interest (ROI) containing the mass was marked by a radiologist in the DBT volume and the corresponding ROIs on the PVs were derived based on the imaging geometry. The subsequent processes were fully automated. For classification of masses using the DBT-slice approach, the mass on each slice was segmented by an active contour model initialized with adaptive k-means clustering. A spiculation likelihood map was generated by analysis of the gradient directions around the mass margin and spiculation features were extracted from the map. The rubber band straightening transform (RBST) was applied to a band of pixels around the segmented mass boundary. The RBST image was enhanced by Sobel filtering in the horizontal and vertical directions, from which run-length statistics texture features were extracted. Morphological features including those from the normalized radial length were designed to describe the mass shape. A feature space composed of the spiculation features, texture features, and morphological features extracted from the central slice alone and seven feature spaces obtained by averaging the corresponding features from three to 19

  10. Feasibility study for image reconstruction in circular digital tomosynthesis (CDTS) from limited-scan angle data based on compressed-sensing theory

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeonok; Je, Uikyu; Cho, Hyosung, E-mail: hscho1@yonsei.ac.kr; Hong, Daeki; Park, Chulkyu; Cho, Heemoon; Choi, Sungil; Woo, Taeho

    2015-03-21

    In this work, we performed a feasibility study for image reconstruction in a circular digital tomosynthesis (CDTS) from limited-scan angle data based on compressed-sensing (CS) theory. Here, the X-ray source moves along an arc within a limited-scan angle (≤ 180°) on a circular path set perpendicularly to the axial direction during the image acquisition. This geometry, compared to full-angle (360°) scan geometry, allows imaging system to be designed more compactly and gives better tomographic quality than conventional linear digital tomosynthesis (DTS). We implemented an efficient CS-based reconstruction algorithm for the proposed geometry and performed systematic simulations to investigate the image characteristics. We successfully reconstructed CDTS images with incomplete projections acquired at several selected limited-scan angles of 45°, 90°, 135°, and 180° for a given tomographic angle of 80° and evaluated the reconstruction quality. Our simulation results indicate that the proposed method can provide superior tomographic quality for axial view and even for the other views (i.e., sagittal and coronal), as in computed tomography, to conventional DTS. - Highlights: • Image reconstruction is done in circular digital tomosynthesis (CDTS). • The designed geometry allows imaging system to be the better image. • An efficient compressed-sensing (CS)-based reconstruction algorithm is performed. • Proposed method can provide superior tomographic quality for the axial view.

  11. Digital Mammography Tomosynthesis

    International Nuclear Information System (INIS)

    Gergov, I.; Alexov, G.; Rusonov, K.

    2017-01-01

    Siemens MAMMOMAT Inspiration with Tomosynthesis enhances the diagnostic precision in mammographic screening. The apparatus has a wide-angle tomosynthesis up to 50 degrees. The Siemens breast augmentation algorithm reconstructs multiple two-dimensional breast images into three-dimensional images at the lowest doses to help detect tumors hidden from the overlapping chest tissue, allowing for a more accurate diagnosis than standard 2-dimensional digital mammography, and reducing the number of false positive results. 3D digital tomosynthesis improves the precision of detecting and diagnosing a larger number of expansive lesions, ensures better morphological mass analysis and architectural distortion, and detecting calcifications by adding digital breast tomosynthesis to the traditional two-dimensional digital mammogram of the patient. In this way, it solves the problem of overlapping parenchyma, reduces the number of unnecessary biopsies from questionable sonomammographic findings, and the need for stressful repeating procedures, which usually contributes to both better patient outcomes and cost saving. [bg

  12. Visibility of microcalcification clusters and masses in breast tomosynthesis image volumes and digital mammography: A 4AFC human observer study

    International Nuclear Information System (INIS)

    Timberg, P.; Baath, M.; Andersson, I.; Mattsson, S.; Tingberg, A.; Ruschin, M.

    2012-01-01

    Purpose: To investigate the visibility of simulated lesions in digital breast tomosynthesis (BT) image volumes compared with 2D digital mammography (DM). Methods: Simulated lesions (masses and microcalcifications) were added to images of the same women acquired on a DM system (Mammomat Novation, Siemens) and a BT prototype. The same beam quality was used for the DM and BT acquisitions. The total absorbed dose resulting from a 25-projection BT acquisition and reconstruction (BT 25 ) was approximately twice that of a single DM view. By excluding every other projection image from the reconstruction (BT 13 ), approximately the same dose as in DM was effected. Simulated microcalcifications were digitally added with varying contrast to the DM and BT images. Simulated masses with 8 mm diameter were also added to BT images. A series of 4-alternative forced choice (4AFC) human observer experiments were conducted. Four medical physicists participated in all experiments, each consisting of 60 trials per experimental condition. The observers interpreted the BT image volumes in cine-mode at a fixed image sequence speed. The required threshold contrast (S t ) to achieve a detectability index (d') of 2.5 (i.e., 92.5% correct decisions) was determined. Results: The S t for mass detection in DM was approximately a factor of 2 higher than required in BT indicating that the detection of masses was improved under BT conditions compared to DM. S t for microcalcification detection was higher for BT than for DM at both BT dose levels (BT 25 and BT 13 ), with a statistically significant difference in S t between DM and BT 13 . These results indicate a dose-dependent decrease in detection performance in BT for detection of microcalcifications. Conclusions: In agreement with previous investigations, masses of size 8 mm can be detected with less contrast in BT than in DM indicating improved detection performance for BT. However, for the investigated microcalcifications, the results of this

  13. Motion compensated digital tomosynthesis

    NARCIS (Netherlands)

    van der Reijden, Anneke; van Herk, Marcel; Sonke, Jan-Jakob

    2013-01-01

    Digital tomosynthesis (DTS) is a limited angle image reconstruction method for cone beam projections that offers patient surveillance capabilities during VMAT based SBRT delivery. Motion compensation (MC) has the potential to mitigate motion artifacts caused by respiratory motion, such as blur. The

  14. Evaluation of the image quality in digital breast tomosynthesis (DBT) employed with a compressed-sensing (CS)-based reconstruction algorithm by using the mammographic accreditation phantom

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeonok; Cho, Heemoon; Je, Uikyu; Cho, Hyosung, E-mail: hscho1@yonsei.ac.kr; Park, Chulkyu; Lim, Hyunwoo; Kim, Kyuseok; Kim, Guna; Park, Soyoung; Woo, Taeho; Choi, Sungil

    2015-12-21

    In this work, we have developed a prototype digital breast tomosynthesis (DBT) system which mainly consists of an x-ray generator (28 kV{sub p}, 7 mA s), a CMOS-type flat-panel detector (70-μm pixel size, 230.5×339 mm{sup 2} active area), and a rotational arm to move the x-ray generator in an arc. We employed a compressed-sensing (CS)-based reconstruction algorithm, rather than a common filtered-backprojection (FBP) one, for more accurate DBT reconstruction. Here the CS is a state-of-the-art mathematical theory for solving the inverse problems, which exploits the sparsity of the image with substantially high accuracy. We evaluated the reconstruction quality in terms of the detectability, the contrast-to-noise ratio (CNR), and the slice-sensitive profile (SSP) by using the mammographic accreditation phantom (Model 015, CIRS Inc.) and compared it to the FBP-based quality. The CS-based algorithm yielded much better image quality, preserving superior image homogeneity, edge sharpening, and cross-plane resolution, compared to the FBP-based one. - Highlights: • A prototype digital breast tomosynthesis (DBT) system is developed. • Compressed-sensing (CS) based reconstruction framework is employed. • We reconstructed high-quality DBT images by using the proposed reconstruction framework.

  15. Digital breast tomosynthesis; Digitale Tomosynthese der Brust

    Energy Technology Data Exchange (ETDEWEB)

    Haegele, Julian; Barkhausen, Joerg [Universtiaetsklinikum Schleswig-Holstein, Luebeck (Germany). Klinik fuer Radiologie und Nuklearmedizin; Pursche, Telja [Universtiaetsklinikum Schleswig-Holstein, Luebeck (Germany). Brustzentrum; Schaefer, Fritz K.W. [Universtiaetsklinikum Schleswig-Holstein, Kiel (Germany). Bereich Mammadiagnostik und Intervention

    2015-09-15

    In digital breast tomosynthesis a digital tomographic data set with a very high spatial resolution is reconstructed from low-dose projections collected over a limited rotation angle. This allows a very detailed assessment of e. g. masses and architectural distortions. The average glandular dose is comparable to 2 D mammography. First clinical studies demonstrated that tomosynthesis is able to supply important additional information in suspicious mammographic findings. In comparison to projection mammography, tomosynthesis shows an at least comparable diagnostic accuracy. In everyday practice, tomosynthesis is currently mostly used for further evaluation of suspicious findings in mammography.

  16. Comparative study of simultaneous algebraic and filtered backprojection reconstruction methods in digital tomosynthesis for nondestructive testing

    International Nuclear Information System (INIS)

    Kim, Dae Cheon; Youn, Hanbean; Kim, Seung Ho; Kim, Ho Kyung

    2015-01-01

    These algorithms have their own merits and demerits, in terms of image quality and reconstruction speed. For the industrial applications, such as multi-layer printed circuit board (PCB) inspection, the automated inspection systems require real time imaging and high spatial resolution. In this study, we quantitatively evaluate the performance of FBP and SART for planar computed tomography (pCT) systems. The performance includes the contrast, and depth resolution. These benefits will be normalized by costs, such as tube loading and speed. In order to accomplish it, further study is needed. First of all, it should be verified by experiment that the algorithm works correctly. Once we prove the algorithm is correct for the PCB phantom, then the results of reconstruction images will be compared by using metric parameters

  17. Comparative study of simultaneous algebraic and filtered backprojection reconstruction methods in digital tomosynthesis for nondestructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Cheon; Youn, Hanbean; Kim, Seung Ho; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    These algorithms have their own merits and demerits, in terms of image quality and reconstruction speed. For the industrial applications, such as multi-layer printed circuit board (PCB) inspection, the automated inspection systems require real time imaging and high spatial resolution. In this study, we quantitatively evaluate the performance of FBP and SART for planar computed tomography (pCT) systems. The performance includes the contrast, and depth resolution. These benefits will be normalized by costs, such as tube loading and speed. In order to accomplish it, further study is needed. First of all, it should be verified by experiment that the algorithm works correctly. Once we prove the algorithm is correct for the PCB phantom, then the results of reconstruction images will be compared by using metric parameters.

  18. A software-based x-ray scatter correction method for breast tomosynthesis

    OpenAIRE

    Jia Feng, Steve Si; Sechopoulos, Ioannis

    2011-01-01

    Purpose: To develop a software-based scatter correction method for digital breast tomosynthesis (DBT) imaging and investigate its impact on the image quality of tomosynthesis reconstructions of both phantoms and patients.

  19. Application of a dual-resolution voxelization scheme to compressed-sensing (CS)-based iterative reconstruction in digital tomosynthesis (DTS)

    Science.gov (United States)

    Park, S. Y.; Kim, G. A.; Cho, H. S.; Park, C. K.; Lee, D. Y.; Lim, H. W.; Lee, H. W.; Kim, K. S.; Kang, S. Y.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Je, U. K.; Woo, T. H.; Oh, J. E.

    2018-02-01

    In recent digital tomosynthesis (DTS), iterative reconstruction methods are often used owing to the potential to provide multiplanar images of superior image quality to conventional filtered-backprojection (FBP)-based methods. However, they require enormous computational cost in the iterative process, which has still been an obstacle to put them to practical use. In this work, we propose a new DTS reconstruction method incorporated with a dual-resolution voxelization scheme in attempt to overcome these difficulties, in which the voxels outside a small region-of-interest (ROI) containing target diagnosis are binned by 2 × 2 × 2 while the voxels inside the ROI remain unbinned. We considered a compressed-sensing (CS)-based iterative algorithm with a dual-constraint strategy for more accurate DTS reconstruction. We implemented the proposed algorithm and performed a systematic simulation and experiment to demonstrate its viability. Our results indicate that the proposed method seems to be effective for reducing computational cost considerably in iterative DTS reconstruction, keeping the image quality inside the ROI not much degraded. A binning size of 2 × 2 × 2 required only about 31.9% computational memory and about 2.6% reconstruction time, compared to those for no binning case. The reconstruction quality was evaluated in terms of the root-mean-square error (RMSE), the contrast-to-noise ratio (CNR), and the universal-quality index (UQI).

  20. Task-based assessment of breast tomosynthesis: Effect of acquisition parameters and quantum noise1

    OpenAIRE

    Reiser, I.; Nishikawa, R. M.

    2010-01-01

    Purpose: Tomosynthesis is a promising modality for breast imaging. The appearance of the tomosynthesis reconstructed image is greatly affected by the choice of acquisition and reconstruction parameters. The purpose of this study was to investigate the limitations of tomosynthesis breast imaging due to scan parameters and quantum noise. Tomosynthesis image quality was assessed based on performance of a mathematical observer model in a signal-known exactly (SKE) detection task.

  1. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.

    Science.gov (United States)

    Choi, Sunghoon; Lee, Haenghwa; Lee, Donghoon; Choi, Seungyeon; Lee, Chang-Lae; Kwon, Woocheol; Shin, Jungwook; Seo, Chang-Woo; Kim, Hee-Joung

    2018-05-01

    This work describes the hardware and software developments of a prototype chest digital tomosynthesis (CDT) R/F system. The purpose of this study was to validate the developed system for its possible clinical application on low-dose chest tomosynthesis imaging. The prototype CDT R/F system was operated by carefully controlling the electromechanical subsystems through a synchronized interface. Once a command signal was delivered by the user, a tomosynthesis sweep started to acquire 81 projection views (PVs) in a limited angular range of ±20°. Among the full projection dataset of 81 images, several sets of 21 (quarter view) and 41 (half view) images with equally spaced angle steps were selected to represent a sparse view condition. GPU-accelerated and total-variation (TV) regularization strategy-based compressed sensing (CS) image reconstruction was implemented. The imaged objects were a flat-field using a copper filter to measure the noise power spectrum (NPS), a Catphan ® CTP682 quality assurance (QA) phantom to measure a task-based modulation transfer function (MTF T ask ) of three different cylinders' edge, and an anthropomorphic chest phantom with inserted lung nodules. The authors also verified the accelerated computing power over CPU programming by checking the elapsed time required for the CS method. The resultant absorbed and effective doses that were delivered to the chest phantom from two-view digital radiographic projections, helical computed tomography (CT), and the prototype CDT system were compared. The prototype CDT system was successfully operated, showing little geometric error with fast rise and fall times of R/F x-ray pulse less than 2 and 10 ms, respectively. The in-plane NPS presented essential symmetric patterns as predicted by the central slice theorem. The NPS images from 21 PVs were provided quite different pattern against 41 and 81 PVs due to aliased noise. The voxel variance values which summed all NPS intensities were inversely

  2. Comparison of synthetic mammography, reconstructed from digital breast tomosynthesis, and digital mammography: evaluation of lesion conspicuity and BI-RADS assessment categories.

    Science.gov (United States)

    Mariscotti, Giovanna; Durando, Manuela; Houssami, Nehmat; Fasciano, Mirella; Tagliafico, Alberto; Bosco, Davide; Casella, Cristina; Bogetti, Camilla; Bergamasco, Laura; Fonio, Paolo; Gandini, Giovanni

    2017-12-01

    To compare the interpretive performance of synthetic mammography (SM), reconstructed from digital breast tomosynthesis (DBT), and full-field digital mammography (FFDM) in a diagnostic setting, covering different conditions of breast density and mammographic signs. A retrospective analysis was conducted on 231 patients, who underwent FFDM and DBT (from which SM images were reconstructed) between September 2014-September 2015. The study included 250 suspicious breast lesions, all biopsy proven: 148 (59.2%) malignant and 13 (5.2%) high-risk lesions were confirmed by surgery, 89 (35.6%) benign lesions had radiological follow-up. Two breast radiologists, blinded to histology, independently reviewed all cases. Readings were performed with SM alone, then with FFDM, collecting data on: probability of malignancy for each finding, lesion conspicuity, mammographic features and dimensions of detected lesions. Agreement between readers was good for BI-RADS classification (Cohen's k-coefficient = 0.93 ± 0.02) and for lesion dimension (Wilcoxon's p = 0.76). Visibility scores assigned to SM and FFDM for each lesion were similar for non-dense and dense breasts, however, there were significant differences (p = 0.0009) in distribution of mammographic features subgroups. SM and FFDM had similar sensitivities in non-dense (respectively 94 vs. 91%) and dense breasts (88 vs. 80%) and for all mammographic signs (93 vs. 87% for asymmetric densities, 96 vs. 75% for distortion, 92 vs. 85% for microcalcifications, and both 94% for masses). Based on all data, there was a significant difference in sensitivity for SM (92%) vs. FFDM (87%), p = 0.02, whereas the two modalities yielded similar results for specificity (SM: 60%, FFDM: 62%, p = 0.21). SM alone showed similar interpretive performance to FFDM, confirming its potential role as an alternative to FFDM in women having tomosynthesis, with the added advantage of halving the patient's dose exposure.

  3. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    International Nuclear Information System (INIS)

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-01

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS

  4. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    Science.gov (United States)

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-01

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS

  5. Design and evaluation of a grid reciprocation scheme for use in digital breast tomosynthesis

    Science.gov (United States)

    Patel, Tushita; Sporkin, Helen; Peppard, Heather; Williams, Mark B.

    2016-03-01

    This work describes a methodology for efficient removal of scatter radiation during digital breast tomosynthesis (DBT). The goal of this approach is to enable grid image obscuration without a large increase in radiation dose by minimizing misalignment of the grid focal point (GFP) and x-ray focal spot (XFS) during grid reciprocation. Hardware for the motion scheme was built and tested on the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis (MBT) on a single gantry. The DMT scanner uses fully isocentric rotation of tube and x-ray detector for maintaining a fixed tube-detector alignment during DBT imaging. A cellular focused copper prototype grid with 80 cm focal length, 3.85 mm height, 0.1 mm thick lamellae, and 1.1 mm hole pitch was tested. Primary transmission of the grid at 28 kV tube voltage was on average 74% with the grid stationary and aligned for maximum transmission. It fell to 72% during grid reciprocation by the proposed method. Residual grid line artifacts (GLAs) in projection views and reconstructed DBT images are characterized and methods for reducing the visibility of GLAs in the reconstructed volume through projection image flat-field correction and spatial frequency-based filtering of the DBT slices are described and evaluated. The software correction methods reduce the visibility of these artifacts in the reconstructed volume, making them imperceptible both in the reconstructed DBT images and their Fourier transforms.

  6. Fast tomosynthesis

    International Nuclear Information System (INIS)

    Klotz, E.; Linde, R.; Tiemens, U.; Weiss, H.

    1978-01-01

    A system has been constructed for fast tomosynthesis, whereby X-ray photographs are made of a single layer of an object. Twenty five X-ray tubes illuminate the object simultaneously at different angles. The resulting coded image is decoded by projecting it with a pattern of lenses that have the same form as the pattern of X-ray tubes. The coded image is optically correlated with the pattern of the sources. The scale of this can be adjusted so that the desired layer of the object is portrayed. Experimental results of its use in a hospital are presented. (C.F.)

  7. A Monte Carlo-based model for simulation of digital chest tomo-synthesis

    International Nuclear Information System (INIS)

    Ullman, G.; Dance, D. R.; Sandborg, M.; Carlsson, G. A.; Svalkvist, A.; Baath, M.

    2010-01-01

    The aim of this work was to calculate synthetic digital chest tomo-synthesis projections using a computer simulation model based on the Monte Carlo method. An anthropomorphic chest phantom was scanned in a computed tomography scanner, segmented and included in the computer model to allow for simulation of realistic high-resolution X-ray images. The input parameters to the model were adapted to correspond to the VolumeRAD chest tomo-synthesis system from GE Healthcare. Sixty tomo-synthesis projections were calculated with projection angles ranging from + 15 to -15 deg. The images from primary photons were calculated using an analytical model of the anti-scatter grid and a pre-calculated detector response function. The contributions from scattered photons were calculated using an in-house Monte Carlo-based model employing a number of variance reduction techniques such as the collision density estimator. Tomographic section images were reconstructed by transferring the simulated projections into the VolumeRAD system. The reconstruction was performed for three types of images using: (i) noise-free primary projections, (ii) primary projections including contributions from scattered photons and (iii) projections as in (ii) with added correlated noise. The simulated section images were compared with corresponding section images from projections taken with the real, anthropomorphic phantom from which the digital voxel phantom was originally created. The present article describes a work in progress aiming towards developing a model intended for optimisation of chest tomo-synthesis, allowing for simulation of both existing and future chest tomo-synthesis systems. (authors)

  8. Improvement image in tomosynthesis

    International Nuclear Information System (INIS)

    Gomi, Tsutomu; Umeda, Tokuo; Takeda, Tohoru; Saito, Kyouko; Sakaguchi, Kazuya; Nakajima, Masahiro; Koshida, Kichirou

    2012-01-01

    We evaluated the X-ray digital tomosynthesis (DT) reconstruction processing method for metal artifact reduction and the application of wavelet denoising to selectively remove quantum noise and suggest the possibility of image quality improvement using a novel application for chest. In orthopedic DT imaging, we developed artifact reduction methods based on a modified Shepp and Logan reconstruction filter kernel realized by taking into account additional weighing by direct current (DC) components in frequency domain space. Processing leads to an increase in the ratio of low-frequency components in an image. The effectiveness of the method in enhancing the visibility of a prosthetic case was quantified in terms of removal of ghosting artifacts. In chest DT imaging, the technique was implemented on a DT system and experimentally evaluated through chest phantom measurements, spatial resolution and compared with an existing post-reconstruction wavelet denoise algorithm by Badea et al. Our wavelet technique with balance sparsity-norm contrast-to-noise ratio (CNR) effectively decreased quantum noise in the reconstructed images with and improvement when applied to pre-reconstruction image for post-reconstruction. The results of our technique showed that although modulation transfer function (MTF) did not vary (preserving spatial resolution), the existing wavelet denoise algorithm caused MTF deterioration. (author)

  9. Chest tomosynthesis: technical and clinical perspectives.

    Science.gov (United States)

    Johnsson, Ase Allansdotter; Vikgren, Jenny; Bath, Magnus

    2014-02-01

    The recent implementation of chest tomosynthesis is built on the availability of large, dose-efficient, high-resolution flat panel detectors, which enable the acquisition of the necessary number of projection radiographs to allow reconstruction of section images of the chest within one breath hold. A chest tomosynthesis examination obtains the increased diagnostic information provided by volumetric imaging at a radiation dose comparable to that of conventional chest radiography. There is evidence that the sensitivity of chest tomosynthesis may be at least three times higher than for conventional chest radiography for detection of pulmonary nodules. The sensitivity increases with increasing nodule size and attenuation and decreases for nodules with subpleural location. Differentiation between pleural and subpleural lesions is a known pitfall due to the limited depth resolution in chest tomosynthesis. Studies on different types of pathology report increased detectability in favor of chest tomosynthesis in comparison to chest radiography. The technique provides improved diagnostic accuracy and confidence in the diagnosis of suspected pulmonary lesions on chest radiography and facilitates the exclusion of pulmonary lesions in a majority of patients, avoiding the need for computed tomography (CT). However, motion artifacts can be a cumbersome limitation and breathing during the tomosynthesis image acquisition may result in severe artifacts significantly affecting the detectability of pathology. In summary, chest tomosynthesis has been shown to be superior to chest conventional radiography for many tasks and to be able to replace CT in selected cases. In our experience chest tomosynthesis is an efficient problem solver in daily clinical work. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. Technical Note: Robust measurement of the slice-sensitivity profile in breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Aili K., E-mail: aili.maki@sri.utoronto.ca; Mainprize, James G. [Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Yaffe, Martin J. [Departments of Medical Imaging and Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada and Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2016-08-15

    Purpose: The purpose of this work is to improve the repeatability of the measurement of the slice-sensitivity profile (SSP) in reconstructed breast tomosynthesis volumes. Methods: A grid of aluminum ball-bearings (BBs) within a PMMA phantom was imaged on breast tomosynthesis systems from three different manufacturers. The full-width half-maximum (FWHM) values were measured for the SSPs of the BBs in the reconstructed volumes. The effect of transforming the volumes from a Cartesian coordinate system (CCS) to a cone-beam coordinate system (CBCS) on the variability in the FWHM values was assessed. Results: Transforming the volumes from a CCS to a CBCS before measuring the SSPs reduced the coefficient of variation (COV) in the measurements of FWHM in repeated measurements by 56% and reduced the dependence of the FWHM values on the location of the BBs within the reconstructed volume by 76%. Conclusions: Measuring the SSP in the volumes in a CBCS improves the robustness of the measurement.

  11. Digital tomosynthesis of the breast

    International Nuclear Information System (INIS)

    Barkhausen, Joerg; Rody, Achim; Schaefer, Fritz K.W.

    2015-01-01

    The digital tomosynthesis applies the digital image analysis and 3D technology for improves diagnostic uses. The text book on the digital tomosynthesis of the breast covers the following issues: technique of tomosynthesis, clinical significance of digital breast tomosynthesis, innovations and future developments, case studies.

  12. Filtered backprojection for modifying the impulse response of circular tomosynthesis

    International Nuclear Information System (INIS)

    Stevens, Grant M.; Fahrig, Rebecca; Pelc, Norbert J.

    2001-01-01

    A filtering technique has been developed to modify the three-dimensional impulse response of circular motion tomosynthesis to allow the generation of images whose appearance is like those of some other imaging geometries. In particular, this technique can reconstruct images with a blurring function which is more homogeneous for off-focal plane objects than that from circular tomosynthesis. In this paper, we describe the filtering process, and demonstrate the ability to alter the impulse response in circular motion tomosynthesis from a ring to a disk. This filtering may be desirable because the blurred out-of-plane objects appear less structured

  13. TU-AB-207-01: Introduction to Tomosynthesis

    International Nuclear Information System (INIS)

    Sechopoulos, I.

    2015-01-01

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact, the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis

  14. TU-AB-207-03: Tomosynthesis: Clinical Applications

    International Nuclear Information System (INIS)

    Maidment, A.

    2015-01-01

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact, the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis

  15. TU-AB-207-00: Digital Tomosynthesis

    International Nuclear Information System (INIS)

    2015-01-01

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact, the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis

  16. TU-AB-207-03: Tomosynthesis: Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Maidment, A. [Univ Pennsylvania (United States)

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact, the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.

  17. TU-AB-207-00: Digital Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact, the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.

  18. TU-AB-207-01: Introduction to Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, I. [Emory University (United States)

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact, the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.

  19. TOMOGRAPHIC MAMMOGRAPHY AND TOMOSYNTHESIS USING OPENGL

    Directory of Open Access Journals (Sweden)

    S. A. Zolotarev

    2016-01-01

    Full Text Available Computed tomography is still being intensively studied and widely used to solve a number of industrial and medical applications. The simultaneous algebraic reconstruction technique (SART and Bayesian inference reconstruction (BIR are considered as advantageous iteration methods that are most suitable for improving the quality of the reconstructed 3D-images. The paper deals with the parallel iterative algorithms to ensure the reconstruction of threedimensional images of the breast, recovered from a limited set of noisy X-ray projections. Algebraic method of reconstruction with simultaneous iterations – SART and iterative method for statistical reconstruction of BIR are deemed to be the most preferred iterative methods. We believe that these methods are particularly useful for improving the quality of breast reconstructed image. We use the graphics processor (GPU to accelerate the process of reconstruction. Preliminary results show that all investigated methods are useful in breast reconstruction layered images. However, it was found that the method of classical tomosynthesis SAA is less efficient than iterative methods SART and BIR as the worst suppress the anatomical noise. Despite the fact that the estimated ratio of the contrast / noise ratio in the presence of internal structures with low contrast is higher for classical tomosynthesis method the SAA, its effectiveness in the presence of highly structured background is low. In our opinion the best results can be achieved using statistical iterative reconstruction BIR.

  20. Quantifying the tibiofemoral joint space using x-ray tomosynthesis.

    Science.gov (United States)

    Kalinosky, Benjamin; Sabol, John M; Piacsek, Kelly; Heckel, Beth; Gilat Schmidt, Taly

    2011-12-01

    Digital x-ray tomosynthesis (DTS) has the potential to provide 3D information about the knee joint in a load-bearing posture, which may improve diagnosis and monitoring of knee osteoarthritis compared with projection radiography, the current standard of care. Manually quantifying and visualizing the joint space width (JSW) from 3D tomosynthesis datasets may be challenging. This work developed a semiautomated algorithm for quantifying the 3D tibiofemoral JSW from reconstructed DTS images. The algorithm was validated through anthropomorphic phantom experiments and applied to three clinical datasets. A user-selected volume of interest within the reconstructed DTS volume was enhanced with 1D multiscale gradient kernels. The edge-enhanced volumes were divided by polarity into tibial and femoral edge maps and combined across kernel scales. A 2D connected components algorithm was performed to determine candidate tibial and femoral edges. A 2D joint space width map (JSW) was constructed to represent the 3D tibiofemoral joint space. To quantify the algorithm accuracy, an adjustable knee phantom was constructed, and eleven posterior-anterior (PA) and lateral DTS scans were acquired with the medial minimum JSW of the phantom set to 0-5 mm in 0.5 mm increments (VolumeRad™, GE Healthcare, Chalfont St. Giles, United Kingdom). The accuracy of the algorithm was quantified by comparing the minimum JSW in a region of interest in the medial compartment of the JSW map to the measured phantom setting for each trial. In addition, the algorithm was applied to DTS scans of a static knee phantom and the JSW map compared to values estimated from a manually segmented computed tomography (CT) dataset. The algorithm was also applied to three clinical DTS datasets of osteoarthritic patients. The algorithm segmented the JSW and generated a JSW map for all phantom and clinical datasets. For the adjustable phantom, the estimated minimum JSW values were plotted against the measured values for all

  1. Fast in vivo volume dose reconstruction via reference dose perturbation

    International Nuclear Information System (INIS)

    Lu, Weiguo; Chen, Mingli; Mo, Xiaohu; Parnell, Donald; Olivera, Gustavo; Galmarini, Daniel

    2014-01-01

    Purpose: Accurate on-line reconstruction of in-vivo volume dose that accounts for both machine and patient discrepancy is not clinically available. We present a simple reference-dose-perturbation algorithm that reconstructs in-vivo volume dose fast and accurately. Methods: We modelled the volume dose as a function of the fluence map and density image. Machine (output variation, jaw/leaf position errors, etc.) and patient (setup error, weight loss, etc.) discrepancies between the plan and delivery were modelled as perturbation of the fluence map and density image, respectively. Delivered dose is modelled as perturbation of the reference dose due to change of the fluence map and density image. We used both simulated and clinical data to validate the algorithm. The planned dose was used as the reference. The reconstruction was perturbed from the reference and accounted for output-variations and the registered daily image. The reconstruction was compared with the ground truth via isodose lines and the Gamma Index. Results: For various plans and geometries, the volume doses were reconstructed in few seconds. The reconstruction generally matched well with the ground truth. For the 3%/3mm criteria, the Gamma pass rates were 98% for simulations and 95% for clinical data. The differences mainly appeared on the surface of the phantom/patient. Conclusions: A novel reference-dose-perturbation dose reconstruction model is presented. The model accounts for machine and patient discrepancy from planning. The algorithm is simple, fast, yet accurate, which makes online in-vivo 3D dose reconstruction clinically feasible.

  2. Simulation of dose reduction in tomosynthesis

    International Nuclear Information System (INIS)

    Svalkvist, Angelica; Baath, Magnus

    2010-01-01

    Purpose: Methods for simulating dose reduction are valuable tools in the work of optimizing radiographic examinations. Using such methods, clinical images can be simulated to have been collected at other, lower, dose levels without the need of additional patient exposure. A recent technology introduced to healthcare that needs optimization is tomosynthesis, where a number of low-dose projection images collected at different angles is used to reconstruct section images of an imaged object. The aim of the present work was to develop a method of simulating dose reduction for digital radiographic systems, suitable for tomosynthesis. Methods: The developed method uses information about the noise power spectrum (NPS) at the original dose level and the simulated dose level to create a noise image that is added to the original image to produce an image that has the same noise properties as an image actually collected at the simulated dose level. As the detective quantum efficiency (DQE) of digital detectors operating at the low dose levels used for tomosynthesis may show a strong dependency on the dose level, it is important that a method for simulating dose reduction for tomosynthesis takes this dependency into account. By applying an experimentally determined relationship between pixel mean and pixel variance, variations in both dose and DQE in relevant dose ranges are taken into account. Results: The developed method was tested on a chest tomosynthesis system and was shown to produce NPS of simulated dose-reduced projection images that agreed well with the NPS of images actually collected at the simulated dose level. The simulated dose reduction method was also applied to tomosynthesis examinations of an anthropomorphic chest phantom, and the obtained noise in the reconstructed section images was very similar to that of an examination actually performed at the simulated dose level. Conclusions: In conclusion, the present article describes a method for simulating dose

  3. Chest Tomosynthesis: Technical Principles and Clinical Update

    Science.gov (United States)

    Dobbins, James T.; McAdams, H. Page

    2009-01-01

    Digital tomosynthesis is a radiographic technique that can produce an arbitrary number of section images of a patient from a single pass of the x-ray tube. It utilizes a conventional x-ray tube, a flat-panel detector, a computer-controlled tube mover, and special reconstruction algorithms to produce section images. While it does not have the depth resolution of computed tomography (CT), tomosynthesis provides some of the tomographic benefits of CT but at lower cost and radiation dose than CT. Compared to conventional chest radiography, chest tomosynthesis results in improved visibility of normal structures such as vessels, airway and spine. By reducing visual clutter from overlying normal anatomy, it also enhances detection of small lung nodules. This review article outlines the components of a tomosynthesis system, discusses results regarding improved lung nodule detection from the recent literature, and presents examples of nodule detection from a clinical trial in human subjects. Possible implementation strategies for use in clinical chest imaging are discussed. PMID:19616909

  4. SU-E-J-63: Feasibility Study of Proton Digital Tomosynthesis in Proton Beam Therapy.

    Science.gov (United States)

    Min, B; Kwak, J; Lee, J; Cho, S; Park, S; Yoo, S; Chung, K; Cho, S; Lim, Y; Shin, D; Lee, S; Kim, J

    2012-06-01

    We investigated the feasibility of proton tomosynthesis as daily positioning of patients and compared the results with photon tomosynthesis as an alternative to conventional portal imaging or on-board cone-beam computed tomography. Dedicated photon-like proton beam using the passively scattered proton beams by the cyclotron was generated for proton imaging. The eleven projections were acquired over 30 degree with 3 degree increment in order to investigate the performance of proton tomosynthesis. The cylinder blocks and resolution phantom were used to evaluate imaging performance. Resolution phantom of a cylinder of diameter 12 cm was used to investigate the reconstructed imaging characteristics. Electron density cylinder blocks with diameter of 28 mm and height of 70 mm were employed to assess the imaging quality. The solid water, breast, bone, adipose, lung, muscle, and liver, which were tissue equivalent inserts, were positioned around the resolution phantom. The images were reconstructed by projection onto convex sets (POCS) algorithm and total variation minimization (TVM) methods. The Gafchromic EBT films were utilized for measuring the photon-like proton beams as a proton detector. In addition, the photon tomosynthesis images were obtained for a comparison with proton tomosynthesis images. The same angular sampling data were acquired for both proton and photon tomosynthesis. In the resolution phantom image obtained proton tomosynthesis, down to 1.6 mm diameter rods were resolved visually, although the separation between adjacent rods was less distinct. In contrast, down to 1.2 mm diameter rods were resolved visually in the reconstructed image obtained photon tomosynthesis. Both proton and photon tomosynthesis images were similar in intensities of different density blocks. Our results demonstrated that proton tomosynthesis could make it possible to provide comparable tomography imaging to photon tomosynthesis for positioning as determined by manual registration

  5. Real time radial and tangential tomosynthesis system dedicated to on line x-ray examination of moving objects

    International Nuclear Information System (INIS)

    Antonakios, M.; Rizo, Ph.; Lamarque, P.

    2000-01-01

    This presentation describes a system able to compute and display in real time a reconstructed image of a moving object using tomosynthesis methods. The object being moved on a known trajectory between the x-ray source and a detector, the tomosynthesis is focused on a given surface of the object and allows to reconstruct a sharp image of the structure on the surface superimposed to a blurred image of the surrounding plane. The developed tomosynthesis algorithm is based on a set of look up tables which provide for each position of the object on the trajectory, the projection of a given point of the imaged surface of the object on the detector. Several hundreds of frames can be combined to compute the tomosynthesis image. The signal-to-noise ratio obtained on processed images is equivalent to the one obtained by averaging images with a static object. In order to speed up the tomosynthesis reconstruction and to reach the video frame rate, we integrated a DSP based hardware in a PC host. The geometric calibration parameters and the look up tables are pre-computed on the PC. The on-line tomosynthesis calculation is carried out by the multi DSP architecture which manages in real time, frame acquisition, parallel tomosynthesis calculation and output image display. On this particular implementation of tomosynthesis, up to hundred video frames can be combined. We illustrate the potential of this system on an application of the tomosynthesis to solid rocket motor examination

  6. Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection

    National Research Council Canada - National Science Library

    Li, Christina M

    2007-01-01

    Digital breast tomosynthesis (DBT) strives to overcome the obstacles presented in conventional 2D mammography by taking multiple projections over a fixed angle and reconstructing volumetric data isolates overlying anatomy...

  7. TU-EF-207-04: Advances in Detector Technology for Breast Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W. [SUNY Stony Brook (United States)

    2015-06-15

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation.

  8. TU-EF-207-04: Advances in Detector Technology for Breast Tomosynthesis

    International Nuclear Information System (INIS)

    Zhao, W.

    2015-01-01

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation

  9. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    Directory of Open Access Journals (Sweden)

    Saeed Seyyedi

    2013-01-01

    Full Text Available Digital breast tomosynthesis (DBT is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART and total variation regularized reconstruction techniques (ART+TV are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM values.

  10. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    Science.gov (United States)

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  11. Accuracy and reading time for six strategies using digital breast tomosynthesis in women with mammographically negative dense breasts.

    Science.gov (United States)

    Tagliafico, Alberto Stefano; Calabrese, Massimo; Bignotti, Bianca; Signori, Alessio; Fisci, Erica; Rossi, Federica; Valdora, Francesca; Houssami, Nehmat

    2017-12-01

    To compare six strategies using digital breast tomosynthesis in women with mammographically negative dense breasts. This is a substudy of the 'ASTOUND' trial. 163 women who underwent tomosynthesis with synthetically reconstructed projection images (S-2D) inclusive of 13 (7.9%) cases diagnosed with breast cancer at histopathology after surgery were evaluated. Accuracy measures and screen-reading time of six reading strategies were assessed: (A) Single reading of S-2D alone, (B) single reading of tomosynthesis alone, (C) single reading of joint interpretation of tomosynthesis + S-2D, (D) double-reading of S-2D alone, (E) double reading of tomosynthesis alone, (F) double reading of joint interpretation of tomosynthesis + S-2D. The median age of the patients was 53 years (range, 36-88 years). The highest global accuracy was obtained with double reading of tomosynthesis + S2D (F) with an AUC of 0.979 (ptomosynthesis+ S2D had the best accuracy of six screen-reading strategies although it had the longest reading time. • Tomosynthesis acquisitions are progressively implemented with reconstructed synthesized 2D images • Double reading using S-2D plus tomosynthesis had the highest global accuracy (ptomosynthesis increased reading time.

  12. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination

    International Nuclear Information System (INIS)

    Schleede, Simone; Bech, Martin; Grandl, Susanne; Sztrókay, Aniko; Herzen, Julia; Mayr, Doris; Stockmar, Marco; Potdevin, Guillaume

    2014-01-01

    Purpose: Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. Material and methods: A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. Results: Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase

  13. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination.

    Science.gov (United States)

    Schleede, Simone; Bech, Martin; Grandl, Susanne; Sztrókay, Aniko; Herzen, Julia; Mayr, Doris; Stockmar, Marco; Potdevin, Guillaume; Zanette, Irene; Rack, Alexander; Weitkamp, Timm; Pfeiffer, Franz

    2014-03-01

    Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase-contrast tomosynthesis views, where fibrous structures

  14. Dose to patient in tomosynthesis

    International Nuclear Information System (INIS)

    Minambres Moro, A.; Fernandez Leton, P.; Garcia Rui-Zorrilla, J.; Perez Moreno, J. M.; Zucca Aparicio, D.

    2013-01-01

    They are beginning to implement digital mammography with the possibility of acquiring in tomosynthesis, whose biggest advantage is to distinguish structures without overlapping through of pseudotridimensionals images. With these modified mammograms can acquire a planar mammography, with fixed x-ray tube, or a tomosynthesis with tube by turning. For acquire tomosynthesis is necessary a detector of high efficiency together with tungsten white tubes. The objective of this study is to know the dose received by the patient with this new imaging. (Author)

  15. Dual Energy Tomosynthesis breast phantom imaging

    Science.gov (United States)

    Koukou, V.; Martini, N.; Fountos, G.; Messaris, G.; Michail, C.; Kandarakis, I.; Nikiforidis, G.

    2017-12-01

    Dual energy (DE) imaging technique has been applied to many theoretical and experimental studies. The aim of the current study is to evaluate dual energy in breast tomosynthesis using commercial tomosynthesis system in terms of its potential to better visualize microcalcifications (μCs). The system uses a tungsten target X-ray tube and a selenium direct conversion detector. Low-energy (LE) images were acquired at different tube voltages (28, 30, 32 kV), while high-energy images at 49 kV. Fifteen projections, for the low- and high-energy respectively, were acquired without grid while tube scanned continuously. Log-subtraction algorithm was used in order to obtain the DE images with the weighting factor, w, derived empirically. The subtraction was applied to each pair of LE and HE slices after reconstruction. The TORMAM phantom was imaged with the different settings. Four regions-of-interest including μCs were identified in the inhomogeneous part of the phantom. The μCs in DE images were more clearly visible compared to the low-energy images. Initial results showed that DE tomosynthesis imaging is a promising modality, however more work is required.

  16. Three-dimensional reconstruction volume: a novel method for volume measurement in kidney cancer.

    Science.gov (United States)

    Durso, Timothy A; Carnell, Jonathan; Turk, Thomas T; Gupta, Gopal N

    2014-06-01

    The role of volumetric estimation is becoming increasingly important in the staging, management, and prognostication of benign and cancerous conditions of the kidney. We evaluated the use of three-dimensional reconstruction volume (3DV) in determining renal parenchymal volumes (RPV) and renal tumor volumes (RTV). We compared 3DV with the currently available methods of volume assessment and determined its interuser reliability. RPV and RTV were assessed in 28 patients who underwent robot-assisted laparoscopic partial nephrectomy for kidney cancer. Patients with a preoperative creatinine level of kidney pre- and postsurgery overestimated 3D reconstruction volumes by 15% to 102% and 12% to 101%, respectively. In addition, volumes obtained from 3DV displayed high interuser reliability regardless of experience. 3DV provides a highly reliable way of assessing kidney volumes. Given that 3DV takes into account visible anatomy, the differences observed using previously published methods can be attributed to the failure of geometry to accurately approximate kidney or tumor shape. 3DV provides a more accurate, reproducible, and clinically useful tool for urologists looking to improve patient care using analysis related to volume.

  17. Partial volume correction in SPECT reconstruction with OSEM

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, Kjell, E-mail: k.erlandsson@ucl.ac.uk [Institute of Nuclear Medicine, University College London and University College London Hospital, London NW1 2BU (United Kingdom); Thomas, Ben; Dickson, John; Hutton, Brian F. [Institute of Nuclear Medicine, University College London and University College London Hospital, London NW1 2BU (United Kingdom)

    2011-08-21

    SPECT images suffer from poor spatial resolution, which leads to partial volume effects due to cross-talk between different anatomical regions. By utilising high-resolution structural images (CT or MRI) it is possible to compensate for these effects. Traditional partial volume correction (PVC) methods suffer from various limitations, such as correcting a single region only, returning only regional mean values, or assuming a stationary point spread function (PSF). We recently presented a novel method in which PVC was combined with the reconstruction process in order to take into account the distance dependent PSF in SPECT, which was based on filtered backprojection (FBP) reconstruction. We now present a new method based on the iterative OSEM algorithm, which has advantageous noise properties compared to FBP. We have applied this method to a series of 10 brain SPECT studies performed on healthy volunteers using the DATSCAN tracer. T1-weighted MRI images were co-registered to the SPECT data and segmented into 33 anatomical regions. The SPECT data were reconstructed using OSEM, and PVC was applied in the projection domain at each iteration. The correction factors were calculated by forward projection of a piece-wise constant image, generated from the segmented MRI. Images were also reconstructed using FBP and standard OSEM with and without resolution recovery (RR) for comparison. The images were evaluated in terms of striatal contrast and regional variability (CoV). The mean striatal contrast obtained with OSEM, OSEM-RR and OSEM-PVC relative to FBP were 1.04, 1.42 and 1.53, respectively, and the mean striatal CoV values are 1.05, 1.53, 1.07. Both OSEM-RR and OSEM-PVC results in images with significantly higher contrast as compared to FBP or OSEM, but OSEM-PVC avoids the increased regional variability of OSEM-RR due to improved structural definition.

  18. Development and experience of quality control methods for digital breast tomosynthesis systems.

    Science.gov (United States)

    Strudley, Cecilia J; Young, Kenneth C; Looney, Padraig; Gilbert, Fiona J

    2015-01-01

    To develop tomosynthesis quality control (QC) test methods and use them alongside established two-dimensional (2D) QC tests to measure the performance of digital breast tomosynthesis (DBT) systems used in a comparative trial with 2D mammography. DBT QC protocols and associated analysis were developed, incorporating adaptions of some 2D tests as well as some novel tests. The tomosynthesis tests were: mean glandular dose to the standard breast model; contrast-to-noise ratio in reconstructed focal planes; geometric distortion; artefact spread; threshold contrast detail detection in reconstructed focal planes, alignment of the X-ray beam to the reconstructed image and missed tissue; reproducibility of the tomosynthesis exposure; and homogeneity of the reconstructed focal planes. Summaries of results from the tomosynthesis QC tests are presented together with some 2D results for comparison. The tomosynthesis QC tests and analysis methods developed were successfully applied. The lessons learnt, which are detailed in the Discussion section, may be helpful to others embarking on DBT QC programmes. DBT performance test equipment and analysis methods have been developed. The experience gained has contributed to the subsequent drafting of DBT QC protocols in the UK and Europe.

  19. Digital Tomosynthesis System Geometry Analysis Using Convolution-Based Blur-and-Add (BAA) Model.

    Science.gov (United States)

    Wu, Meng; Yoon, Sungwon; Solomon, Edward G; Star-Lack, Josh; Pelc, Norbert; Fahrig, Rebecca

    2016-01-01

    Digital tomosynthesis is a three-dimensional imaging technique with a lower radiation dose than computed tomography (CT). Due to the missing data in tomosynthesis systems, out-of-plane structures in the depth direction cannot be completely removed by the reconstruction algorithms. In this work, we analyzed the impulse responses of common tomosynthesis systems on a plane-to-plane basis and proposed a fast and accurate convolution-based blur-and-add (BAA) model to simulate the backprojected images. In addition, the analysis formalism describing the impulse response of out-of-plane structures can be generalized to both rotating and parallel gantries. We implemented a ray tracing forward projection and backprojection (ray-based model) algorithm and the convolution-based BAA model to simulate the shift-and-add (backproject) tomosynthesis reconstructions. The convolution-based BAA model with proper geometry distortion correction provides reasonably accurate estimates of the tomosynthesis reconstruction. A numerical comparison indicates that the simulated images using the two models differ by less than 6% in terms of the root-mean-squared error. This convolution-based BAA model can be used in efficient system geometry analysis, reconstruction algorithm design, out-of-plane artifacts suppression, and CT-tomosynthesis registration.

  20. Learning aspects and potential pitfalls regarding detection of pulmonary nodules in chest tomosynthesis and proposed related quality criteria

    International Nuclear Information System (INIS)

    Asplund, Sara; Johnsson, Aase A.; Vikgren, Jenny

    2011-01-01

    Background In chest tomosynthesis, low-dose projections collected over a limited angular range are used for reconstruction of an arbitrary number of section images of the chest, resulting in a moderately increased radiation dose compared to chest radiography. Purpose To investigate the effects of learning with feedback on the detection of pulmonary nodules for observers with varying experience of chest tomosynthesis, to identify pitfalls regarding detection of pulmonary nodules, and present suggestions for how to avoid them, and to adapt the European quality criteria for chest radiography and computed tomography (CT) to chest tomosynthesis. Material and Methods Six observers analyzed tomosynthesis cases for presence of nodules in a jackknife alternative free-response receiver-operating characteristics (JAFROC) study. CT was used as reference. The same tomosynthesis cases were analyzed before and after learning with feedback, which included a collective learning session. The difference in performance between the two readings was calculated using the JAFROC figure of merit as principal measure of detectability. Results Significant improvement in performance after learning with feedback was found only for observers inexperienced in tomosynthesis. At the collective learning session, localization of pleural and sub pleural nodules or structures was identified as the main difficulty in analyzing tomosynthesis images. Conclusion The results indicate that inexperienced observers can reach a high level of performance regarding nodule detection in tomosynthesis after learning with feedback and that the main problem with chest tomosynthesis is related to the limited depth resolution

  1. TU-EF-207-03: Advances in Stationary Breast Tomosynthesis Using Distributed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, O. [The University of North Carolina at Chapel Hill (United States)

    2015-06-15

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation.

  2. TU-EF-207-03: Advances in Stationary Breast Tomosynthesis Using Distributed X-Ray Sources

    International Nuclear Information System (INIS)

    Zhou, O.

    2015-01-01

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation

  3. Retrospective Reconstructions of Active Bone Marrow Dose-Volume Histograms

    International Nuclear Information System (INIS)

    Veres, Cristina; Allodji, Rodrigue S.; Llanas, Damien; Vu Bezin, Jérémi; Chavaudra, Jean; Mège, Jean Pierre; Lefkopoulos, Dimitri; Quiniou, Eric; Deutsh, Eric; Vathaire, Florent de; Diallo, Ibrahima

    2014-01-01

    Purpose: To present a method for calculating dose-volume histograms (DVH's) to the active bone marrow (ABM) of patients who had undergone radiation therapy (RT) and subsequently developed leukemia. Methods and Materials: The study focuses on 15 patients treated between 1961 and 1996. Whole-body RT planning computed tomographic (CT) data were not available. We therefore generated representative whole-body CTs similar to patient anatomy. In addition, we developed a method enabling us to obtain information on the density distribution of ABM all over the skeleton. Dose could then be calculated in a series of points distributed all over the skeleton in such a way that their local density reflected age-specific data for ABM distribution. Dose to particular regions and dose-volume histograms of the entire ABM were estimated for all patients. Results: Depending on patient age, the total number of dose calculation points generated ranged from 1,190,970 to 4,108,524. The average dose to ABM ranged from 0.3 to 16.4 Gy. Dose-volume histograms analysis showed that the median doses (D 50% ) ranged from 0.06 to 12.8 Gy. We also evaluated the inhomogeneity of individual patient ABM dose distribution according to clinical situation. It was evident that the coefficient of variation of the dose for the whole ABM ranged from 1.0 to 5.7, which means that the standard deviation could be more than 5 times higher than the mean. Conclusions: For patients with available long-term follow-up data, our method provides reconstruction of dose-volume data comparable to detailed dose calculations, which have become standard in modern CT-based 3-dimensional RT planning. Our strategy of using dose-volume histograms offers new perspectives to retrospective epidemiological studies

  4. Tomosynthesis for the early detection of pulmonary emphysema: diagnostic performance compared with chest radiography, using multidetector computed tomography as reference.

    Science.gov (United States)

    Yamada, Yoshitake; Jinzaki, Masahiro; Hashimoto, Masahiro; Shiomi, Eisuke; Abe, Takayuki; Kuribayashi, Sachio; Ogawa, Kenji

    2013-08-01

    To compare the diagnostic performance of tomosynthesis with that of chest radiography for the detection of pulmonary emphysema, using multidetector computed tomography (MDCT) as reference. Forty-eight patients with and 63 without pulmonary emphysema underwent chest MDCT, tomosynthesis and radiography on the same day. Two blinded radiologists independently evaluated the tomosynthesis images and radiographs for the presence of pulmonary emphysema. Axial and coronal MDCT images served as the reference standard and the percentage lung volume with attenuation values of -950 HU or lower (LAA-950) was evaluated to determine the extent of emphysema. Receiver-operating characteristic (ROC) analysis and generalised estimating equations model were used. ROC analysis revealed significantly better performance (P pulmonary emphysema. The average sensitivity, specificity, positive predictive value and negative predictive value of tomosynthesis were 0.875, 0.968, 0.955 and 0.910, respectively, whereas the values for radiography were 0.479, 0.913, 0.815 and 0.697, respectively. For both tomosynthesis and radiography, the sensitivity increased with increasing LAA-950. The diagnostic performance of tomosynthesis was significantly superior to that of radiography for the detection of pulmonary emphysema. In both tomosynthesis and radiography, the sensitivity was affected by the LAA-950. • Tomosynthesis showed significantly better diagnostic performance for pulmonary emphysema than radiography. • Interobserver agreement for tomosynthesis was significantly higher than that for radiography. • Sensitivity increased with increasing LAA -950 in both tomosynthesis and radiography. • Tomosynthesis imparts a similar radiation dose to two projection chest radiography. • Radiation dose and cost of tomosynthesis are lower than those of MDCT.

  5. TU-AB-207-02: Testing of Body and Breast Tomosynthesis Sytems

    International Nuclear Information System (INIS)

    Jones, A.

    2015-01-01

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact, the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis

  6. TU-AB-207-02: Testing of Body and Breast Tomosynthesis Sytems

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A. [UT MD Anderson Cancer Center (United States)

    2015-06-15

    Digital Tomosynthesis (DT) is becoming increasingly common in breast imaging and many other applications. DT is a form of computed tomography in which a limited set of projection images are acquired over a small angular range and reconstructed into a tomographic data set. The angular range and number of projections is determined both by the imaging task and equipment manufacturer. For example, in breast imaging between 9 and 25 projections are acquired over a range of 15° to 60°. It is equally valid to treat DT as the digital analog of classical tomography - for example, linear tomography. In fact, the name “tomosynthesis” is an acronym for “synthetic tomography”. DT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DT systems is a hybrid between CT and classical tomographic methods. This lecture will consist of three presentations that will provide a complete overview of DT, including a review of the fundamentals of DT, a discussion of testing methods for DT systems, and a description of the clinical applications of DT. While digital breast tomosynthesis will be emphasized, analogies will be drawn to body imaging to illustrate and compare tomosynthesis methods. Learning Objectives: To understand the fundamental principles behind tomosynthesis, including the determinants of image quality and dose. To learn how to test the performance of tomosynthesis imaging systems. To appreciate the uses of tomosynthesis in the clinic and the future applications of tomosynthesis.

  7. New reconstruction algorithm in helical-volume CT

    International Nuclear Information System (INIS)

    Toki, Y.; Rifu, T.; Aradate, H.; Hirao, Y.; Ohyama, N.

    1990-01-01

    This paper reports on helical scanning that is an application of continuous scanning CT to acquire volume data in a short time for three-dimensional study. In a helical scan, the patient couch sustains movement during continuous-rotation scanning and then the acquired data is processed to synthesize a projection data set of vertical section by interpolation. But the synthesized section is not thin enough; also, the image may have artifacts caused by couch movement. A new reconstruction algorithm that helps resolve such problems has been developed and compared with the ordinary algorithm. The authors constructed a helical scan system based on TCT-900S, which can perform 1-second rotation continuously for 30 seconds. The authors measured section thickness using both algorithms on an AAPM phantom, and we also compared degree of artifacts on clinical data

  8. Characterization of photon-counting multislit breast tomosynthesis.

    Science.gov (United States)

    Berggren, Karl; Cederström, Björn; Lundqvist, Mats; Fredenberg, Erik

    2018-02-01

    It has been shown that breast tomosynthesis may improve sensitivity and specificity compared to two-dimensional mammography, resulting in increased detection-rate of cancers or lowered call-back rates. The purpose of this study is to characterize a spectral photon-counting multislit breast tomosynthesis system that is able to do single-scan spectral imaging with multiple collimated x-ray beams. The system differs in many aspects compared to conventional tomosynthesis using energy-integrating flat-panel detectors. The investigated system was a prototype consisting of a dual-threshold photon-counting detector with 21 collimated line detectors scanning across the compressed breast. A review of the system is done in terms of detector, acquisition geometry, and reconstruction methods. Three reconstruction methods were used, simple back-projection, filtered back-projection and an iterative algebraic reconstruction technique. The image quality was evaluated by measuring the modulation transfer-function (MTF), normalized noise-power spectrum, detective quantum-efficiency (DQE), and artifact spread-function (ASF) on reconstructed spectral tomosynthesis images for a total-energy bin (defined by a low-energy threshold calibrated to remove electronic noise) and for a high-energy bin (with a threshold calibrated to split the spectrum in roughly equal parts). Acquisition was performed using a 29 kVp W/Al x-ray spectrum at a 0.24 mGy exposure. The difference in MTF between the two energy bins was negligible, that is, there was no energy dependence on resolution. The MTF dropped to 50% at 1.5 lp/mm to 2.3 lp/mm in the scan direction and 2.4 lp/mm to 3.3 lp/mm in the slit direction, depending on the reconstruction method. The full width at half maximum of the ASF was found to range from 13.8 mm to 18.0 mm for the different reconstruction methods. The zero-frequency DQE of the system was found to be 0.72. The fraction of counts in the high-energy bin was measured to be 59% of the

  9. DART, a platform for the creation and registration of cone beam digital tomosynthesis datasets.

    Science.gov (United States)

    Sarkar, Vikren; Shi, Chengyu; Papanikolaou, Niko

    2011-04-01

    Digital tomosynthesis is an imaging modality that allows for tomographic reconstructions using only a fraction of the images needed for CT reconstruction. Since it offers the advantages of tomographic images with a smaller imaging dose delivered to the patient, the technique offers much promise for use in patient positioning prior to radiation delivery. This paper describes a software environment developed to help in the creation of digital tomosynthesis image sets from digital portal images using three different reconstruction algorithms. The software then allows for use of the tomograms for patient positioning or for dose recalculation if shifts are not applied, possibly as part of an adaptive radiotherapy regimen.

  10. DART, a platform for the creation and registration of cone beam digital tomosynthesis datasets

    International Nuclear Information System (INIS)

    Sarkar, Vikren; Shi, Chengyu; Papanikolaou, N.

    2011-01-01

    Full text: Digital tomosynthesis is an imaging modality that allows for tomographic reconstructions using only a fraction of the images needed for CT reconstruction. Since it offers the advantages of tomographic images with a smaller imaging dose delivered to the patient, the technique offers much promise for use in patient positioning prior to radiation delivery. This paper describes a software environment developed to help in the creation of digital tomosynthesis image sets from digital portal images using three different reconstruction algorithms. The software then allows for use of the tomograms for patient posi tioning or for dose recalculation if shifts are not applied, possibly as part of an adaptive radiotherapy regimen.

  11. Evaluation of chest tomosynthesis for the detection of pulmonary nodules: effect of clinical experience and comparison with chest radiography

    Science.gov (United States)

    Zachrisson, Sara; Vikgren, Jenny; Svalkvist, Angelica; Johnsson, Åse A.; Boijsen, Marianne; Flinck, Agneta; Månsson, Lars Gunnar; Kheddache, Susanne; Båth, Magnus

    2009-02-01

    Chest tomosynthesis refers to the technique of collecting low-dose projections of the chest at different angles and using these projections to reconstruct section images of the chest. In this study, a comparison of chest tomosynthesis and chest radiography in the detection of pulmonary nodules was performed and the effect of clinical experience of chest tomosynthesis was evaluated. Three senior thoracic radiologists, with more than ten years of experience of chest radiology and 6 months of clinical experience of chest tomosynthesis, acted as observers in a jackknife free-response receiver operating characteristics (JAFROC-1) study, performed on 42 patients with and 47 patients without pulmonary nodules examined with both chest tomosynthesis and chest radiography. MDCT was used as reference and the total number of nodules found using MDCT was 131. To investigate the effect of additional clinical experience of chest tomosynthesis, a second reading session of the tomosynthesis images was performed one year after the initial one. The JAFROC-1 figure of merit (FOM) was used as the principal measure of detectability. In comparison with chest radiography, chest tomosynthesis performed significantly better with regard to detectability. The observer-averaged JAFROC-1 FOM was 0.61 for tomosynthesis and 0.40 for radiography, giving a statistically significant difference between the techniques of 0.21 (p<0.0001). The observer-averaged JAFROC-1 FOM of the second reading of the tomosynthesis cases was not significantly higher than that of the first reading, indicating no improvement in detectability due to additional clinical experience of tomosynthesis.

  12. Experimental phantom lesion detectability study using a digital breast tomosynthesis prototype system

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Wenkel, E.; Lell, M.; Boehner, C.; Bautz, W.A.; Mertelmeier, T.

    2006-01-01

    Purpose: To compare the sensitivity of conventional two-dimensional (2D) projection imaging with tomosynthesis with respect to the detectability of mammographic phantom lesions. Materials and Methods: Using a breast tomosynthesis prototype based on a commercial FFDM system (Siemens MAMMOMAT Novation DR ), but modified for a wide angle tube motion and equipped with a fast read-out amorphous selenium detector, we acquired standard 2D images and tomosynthesis series of projection views. We used the Wisconsin mammographic random phantom, model RMI 152A. The anode filter combinations Mo/Mo and W/Rh at two different doses were used as typical radiographic techniques. Slice images through the phantom parallel to the detector were reconstructed with a distance of 1 mm employing a filtered back-projection algorithm. The image data sets were read by five radiologists and evaluated with respect to the detectability of the phantom details. Results: For all studied radiographic techniques, the detection rate in the tomosynthesis mode was 100%, i.e. 75 true positive findings out of 75 possible hits. In contrast, the conventional projection mode yielded a detection rate between 80 and 93% (corresponding to 60 and 70 detected details) depending on the dose and X-ray spectrum. Conclusion: Tomosynthesis has the potential to increase the sensitivity of digital mammography. Overlapping structures from out-of-plane tissue can be removed in the tomosynthesis reconstruction process, thereby enhancing the diagnostic accuracy. (orig.)

  13. Color-coded volume rendering for three-dimensional reconstructions of CT data

    International Nuclear Information System (INIS)

    Rieker, O.; Mildenberger, P.; Thelen, M.

    1999-01-01

    Purpose: To evaluate a technique of colored three-dimensional reconstructions without segmentation. Material and methods: Color-coded volume rendered images were reconstructed from the volume data of 25 thoracic, abdominal, musculoskeletal, and vascular helical CT scans using commercial software. The CT volume rendered voxels were encoded with color in the following manner. Opacity, hue, lightness, and chroma were assigned to each of four classes defined by CT number. Color-coded reconstructions were compared to the corresponding grey-scale coded reconstructions. Results: Color-coded volume rendering enabled realistic visualization of pathologic findings when there was sufficient difference in CT density. Segmentation was necessary in some cases to demonstrate small details in a complex volume. Conclusion: Color-coded volume rendering allowed lifelike visualisation of CT volumes without the need of segmentation in most cases. (orig.) [de

  14. Physical aspects of different tomosynthesis systems

    International Nuclear Information System (INIS)

    Semturs, F.; Sturm, E.; Gruber, R.; Helbich, T.H.

    2010-01-01

    Digital breast tomosynthesis (DBT) is a new image processing technique based on digital mammography technology. Image slices of the stationary compressed breast are reconstructed from multiple images taken at different angles of the X-ray tube at the same time. The main goal is to achieve a similar radiation dose exposure as common encountered in traditional digital mammography. One of the key advantages of DBT is that lesions are less likely to be hidden amongst normal tissues as they are in traditional digital mammography. This way the quality of diagnosis can be improved, especially for dense breasts. Current DBT implementations from several manufacturers differ in certain features such as scanning angle, number of projections, scanning time, pixel size, reconstruction methods and type of tube movement. A comparison and description of these different characteristics as well as a discussion on the proposed number of imaging planes and related radiation dose requirements are given. (orig.) [de

  15. Overview of digital breast tomosynthesis: Clinical cases, benefits and disadvantages.

    Science.gov (United States)

    Nguyen, T; Levy, G; Poncelet, E; Le Thanh, T; Prolongeau, J F; Phalippou, J; Massoni, F; Laurent, N

    2015-09-01

    In France, the national breast cancer-screening program is based on mammography combined with clinical breast examination, and sometimes breast ultrasound for patients with high breast density. Digital breast tomosynthesis is a currently assessed 3D imaging technique in which angular projections of the stationary compressed breast are acquired automatically. When combined with mammography, clinicians can review both conventional (2D) as well as three-dimensional (3D) data. The purpose of this article is to review recent reports on this new breast imaging technique and complements this information with our personal experience. The main advantages of tomosynthesis are that it facilitates the detection and characterization of breast lesions, as well as the diagnosis of occult lesions in dense breasts. However, to do this, patients are exposed to higher levels of radiation than with 2D mammography. In France, the indications for tomosynthesis and its use in breast cancer-screening (individual and organized) are yet to be defined, as is its role in the diagnosis and staging of breast cancer (multiple lesions). Further studies assessing in particular the combined reconstruction of the 2D view using 3D tomosynthesis data acquired during a single breast compression event, and therefore reducing patient exposure to radiation, are expected to provide valuable insight. Copyright © 2015 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  16. Deblurring in digital tomosynthesis by iterative self-layer subtraction

    Science.gov (United States)

    Youn, Hanbean; Kim, Jee Young; Jang, SunYoung; Cho, Min Kook; Cho, Seungryong; Kim, Ho Kyung

    2010-04-01

    Recent developments in large-area flat-panel detectors have made tomosynthesis technology revisited in multiplanar xray imaging. However, the typical shift-and-add (SAA) or backprojection reconstruction method is notably claimed by a lack of sharpness in the reconstructed images because of blur artifact which is the superposition of objects which are out of planes. In this study, we have devised an intuitive simple method to reduce the blur artifact based on an iterative approach. This method repeats a forward and backward projection procedure to determine the blur artifact affecting on the plane-of-interest (POI), and then subtracts it from the POI. The proposed method does not include any Fourierdomain operations hence excluding the Fourier-domain-originated artifacts. We describe the concept of the self-layer subtractive tomosynthesis and demonstrate its performance with numerical simulation and experiments. Comparative analysis with the conventional methods, such as the SAA and filtered backprojection methods, is addressed.

  17. Stationary Digital Tomosynthesis System for Early Detection of Breast Tumors

    Science.gov (United States)

    2012-05-01

    Vol. 5745. 2005. 14. Y. Zhang, et al., A comparative study of limited-angle cone-beam reconstruction methods 505 for breast tomosynthesis. Med...opening angl em integratio designed line nia Dimension determine the try calibration th the detector ain is sent fro between XC urce not fou here...screening mammography. AJR, 2007. 189: p. 616. 12. P. Baldelli, et al., A prototype of a quasi-monochromatic system for mammography applications . Phys

  18. Tomosynthesis for the early detection of pulmonary emphysema: diagnostic performance compared with chest radiography, using multidetector computed tomography as reference

    International Nuclear Information System (INIS)

    Yamada, Yoshitake; Jinzaki, Masahiro; Hashimoto, Masahiro; Shiomi, Eisuke; Kuribayashi, Sachio; Abe, Takayuki; Ogawa, Kenji

    2013-01-01

    To compare the diagnostic performance of tomosynthesis with that of chest radiography for the detection of pulmonary emphysema, using multidetector computed tomography (MDCT) as reference. Forty-eight patients with and 63 without pulmonary emphysema underwent chest MDCT, tomosynthesis and radiography on the same day. Two blinded radiologists independently evaluated the tomosynthesis images and radiographs for the presence of pulmonary emphysema. Axial and coronal MDCT images served as the reference standard and the percentage lung volume with attenuation values of -950 HU or lower (LAA -950 ) was evaluated to determine the extent of emphysema. Receiver-operating characteristic (ROC) analysis and generalised estimating equations model were used. ROC analysis revealed significantly better performance (P -950 . The diagnostic performance of tomosynthesis was significantly superior to that of radiography for the detection of pulmonary emphysema. In both tomosynthesis and radiography, the sensitivity was affected by the LAA -950 . (orig.)

  19. Dual-Modality Breast Tomosynthesis1

    OpenAIRE

    Williams, Mark B.; Judy, Patricia G.; Gunn, Spencer; Majewski, Stanislaw

    2010-01-01

    Pilot clinical evaluation of this dual-modality tomosynthesis system suggests that it is a feasible and accurate method with which to detect and diagnose breast cancer and that specificity and positive predictive value can be improved by adding molecular breast imaging tomosynthesis to x-ray tomosynthesis.

  20. A novel solid-angle tomosynthesis (SAT) scanning scheme

    International Nuclear Information System (INIS)

    Zhang Jin; Yu, Cedric

    2010-01-01

    Purpose: Digital tomosynthesis (DTS) recently gained extensive research interests in both diagnostic and radiation therapy fields. Conventional DTS images are generated by scanning an x-ray source and flat-panel detector pair on opposite sides of an object, with the scanning trajectory on a one-dimensional curve. A novel tomosynthesis method named solid-angle tomosynthesis (SAT) is proposed, where the x-ray source scans on an arbitrary shaped two-dimensional surface. Methods: An iterative algorithm in the form of total variation regulated expectation maximization is developed for SAT image reconstruction. The feasibility and effectiveness of SAT is corroborated by computer simulation studies using three-dimensional (3D) numerical phantoms including a 3D Shepp-Logan phantom and a volumetric CT image set of a human breast. Results: SAT is able to cover more space in Fourier domain more uniformly than conventional DTS. Greater coverage and more isotropy in the frequency domain translate to fewer artifacts and more accurately restored features in the in-plane reconstruction. Conclusions: Comparing with conventional DTS, SAT allows cone-shaped x-ray beams to project from more solid angles, thus provides more coverage in the spatial-frequency domain, resulting in better quality of reconstructed image.

  1. Tomosynthesis for the early detection of pulmonary emphysema: diagnostic performance compared with chest radiography, using multidetector computed tomography as reference

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yoshitake [Keio University School of Medicine, Department of Diagnostic Radiology, Tokyo (Japan); Nippon Koukan Hospital, Department of Radiology, Kawasaki-shi, Kanagawa (Japan); Jinzaki, Masahiro; Hashimoto, Masahiro; Shiomi, Eisuke; Kuribayashi, Sachio [Keio University School of Medicine, Department of Diagnostic Radiology, Tokyo (Japan); Abe, Takayuki [Keio University School of Medicine, Center for Clinical Research, Tokyo (Japan); Ogawa, Kenji [Nippon Koukan Hospital, Department of Radiology, Kawasaki-shi, Kanagawa (Japan)

    2013-08-15

    To compare the diagnostic performance of tomosynthesis with that of chest radiography for the detection of pulmonary emphysema, using multidetector computed tomography (MDCT) as reference. Forty-eight patients with and 63 without pulmonary emphysema underwent chest MDCT, tomosynthesis and radiography on the same day. Two blinded radiologists independently evaluated the tomosynthesis images and radiographs for the presence of pulmonary emphysema. Axial and coronal MDCT images served as the reference standard and the percentage lung volume with attenuation values of -950 HU or lower (LAA{sub -950}) was evaluated to determine the extent of emphysema. Receiver-operating characteristic (ROC) analysis and generalised estimating equations model were used. ROC analysis revealed significantly better performance (P < 0.0001) of tomosynthesis than radiography for the detection of pulmonary emphysema. The average sensitivity, specificity, positive predictive value and negative predictive value of tomosynthesis were 0.875, 0.968, 0.955 and 0.910, respectively, whereas the values for radiography were 0.479, 0.913, 0.815 and 0.697, respectively. For both tomosynthesis and radiography, the sensitivity increased with increasing LAA{sub -950}. The diagnostic performance of tomosynthesis was significantly superior to that of radiography for the detection of pulmonary emphysema. In both tomosynthesis and radiography, the sensitivity was affected by the LAA{sub -950}. (orig.)

  2. Digital tomosynthesis of hand joints for arthritis assessment

    International Nuclear Information System (INIS)

    Duryea, J.; Dobbins, J.T. III; Lynch, J.A.

    2003-01-01

    The two principal forms of hand arthritis, rheumatoid arthritis (RA) and osteoarthritis (OA) have large clinical and economic costs. Radiography has been shown to be a useful tool to assess the condition of the disease. A hand radiograph, however, is a two-dimensional projection of a three-dimensional object. In this report we present the results of a study that applied digital tomosynthesis to hand radiography in order to extract three-dimensional outcome measures that should be more sensitive to arthritis progression. The study was performed using simulated projection radiographs created using micro computed tomography (μCT) and a set of five dry-bone hand skeletons. These simulated projection images were then reconstructed into tomographic slices using the matrix inversion tomosynthesis (MITS) algorithm. The accuracy of the tomosynthesis reconstruction was evaluated by comparing the reconstructed images to a gold standard created using the μCT data. A parameter from image registration science, normalized mutual information, provided a quantifiable figure of merit. This study examined the effects of source displacement, number of reconstructed planes, number of acquisitions, noise added to the gray scale images, and errors in the location of a fiducial marker. We also optimized the reconstruction as a function of two variables k and α, that controlled the mixing of MITS with conventional shift-and-add tomosynthesis. A study using hand delineated joint margins demonstrated that MITS images provided a better measurement of average joint space width. We found good agreement between the MITS slices and the true planes. Both joint margins and trabecular structure were visible and the reconstructed slices showed additional structures not visible with the standard projection image. Using hand-delineated joint margins we compared the average joint space width of the gold standard slices to the MITS and projection images. A root-mean square deviation (RMSD), calculated

  3. Stationary intraoral digital tomosynthesis using a carbon nanotube X-ray source array.

    Science.gov (United States)

    Shan, J; Tucker, A W; Gaalaas, L R; Wu, G; Platin, E; Mol, A; Lu, J; Zhou, O

    2015-01-01

    Intraoral dental tomosynthesis and closely related tuned-aperture CT (TACT) are low-dose three-dimensional (3D) imaging modalities that have shown improved detection of multiple dental diseases. Clinical interest in implementing these technologies waned owing to their time-consuming nature. Recently developed carbon nanotube (CNT) X-ray sources allow rapid multi-image acquisition without mechanical motion, making tomosynthesis a clinically viable technique. The objective of this investigation was to evaluate the feasibility of and produce high-quality images from a digital tomosynthesis system employing CNT X-ray technology. A test-bed stationary intraoral tomosynthesis unit was constructed using a CNT X-ray source array and a digital intraoral sensor. The source-to-image distance was modified to make the system comparable in image resolution to current two-dimensional intraoral radiography imaging systems. Anthropomorphic phantoms containing teeth with simulated and real caries lesions were imaged using a dose comparable to D-speed film dose with a rectangular collimation. Images were reconstructed and analysed. Tomosynthesis images of the phantom and teeth specimen demonstrated perceived image quality equivalent or superior to standard digital images with the added benefit of 3D information. The ability to "scroll" through slices in a buccal-lingual direction significantly improved visualization of anatomical details. In addition, the subjective visibility of dental caries was increased. Feasibility of the stationary intraoral tomosynthesis is demonstrated. The results show clinical promise and suitability for more robust observer and clinical studies.

  4. Quantitative breast density analysis using tomosynthesis and comparison with MRI and digital mammography.

    Science.gov (United States)

    Moon, Woo Kyung; Chang, Jie-Fan; Lo, Chung-Ming; Chang, Jung Min; Lee, Su Hyun; Shin, Sung Ui; Huang, Chiun-Sheng; Chang, Ruey-Feng

    2018-02-01

    Breast density at mammography has been used as markers of breast cancer risk. However, newly introduced tomosynthesis and computer-aided quantitative method could provide more reliable breast density evaluation. In the experiment, 98 tomosynthesis image volumes were obtained from 98 women. For each case, an automatic skin removal was used and followed by a fuzzy c-mean (FCM) classifier which separated the fibroglandular tissues from other tissues in breast area. Finally, percent of breast density and breast volume were calculated and the results were compared with MRI. In addition, the percent of breast density and breast area of digital mammography calculated using the software Cumulus (University of Toronto, Toronto, ON, Canada.) were also compared with 3-D modalities. Percent of breast density and breast volume, which were computed from tomosynthesis, MRI and digital mammography were 17.37% ± 4.39% and 607.12 cm 3  ± 323.01 cm 3 , 20.3% ± 8.6% and 537.59 cm 3  ± 287.74 cm 3 , and 12.03% ± 4.08%, respectively. There were significant correlations on breast density as well as volume between tomosynthesis and MRI (R = 0.482 and R = 0.805), tomosynthesis and breast density with breast area of digital mammography (R = 0.789 and R = 0.877), and MRI and breast density with breast area of digital mammography (R = 0.482 and R = 0.857) (all P values density and breast volume evaluated from tomosynthesis, MRI and breast density and breast area of digital mammographic images have significant correlations and indicate that tomosynthesis could provide useful 3-D information on breast density through proposed method. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. An innovative method of planning and displaying flap volume in DIEP flap breast reconstructions

    NARCIS (Netherlands)

    Hummelink, S.L.; Verhulst, A.C.; Maal, T.J.J.; Hoogeveen, Y.L.; Schultze Kool, L.J.; Ulrich, D.J.O.

    2017-01-01

    BACKGROUND: Determining the ideal volume of the harvested flap to achieve symmetry in deep inferior epigastric artery perforator (DIEP) flap breast reconstructions is complex. With preoperative imaging techniques such as 3D stereophotogrammetry and computed tomography angiography (CTA) available

  6. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2009-01-01

    Full Text Available Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed in this paper. This method divides both projection data and reconstructed image volume into subsets according to geometric symmetries in circular cone-beam projection layout, and a fast reconstruction for large data volume can be implemented by packing the subsets of projection data into the RGBA channels of GPU, performing the reconstruction chunk by chunk and combining the individual results in the end. The method is evaluated by reconstructing 3D images from computer-simulation data and real micro-CT data. Our results indicate that the GPU implementation can maintain original precision and speed up the reconstruction process by 110–120 times for circular cone-beam scan, as compared to traditional CPU implementation.

  7. Chest imaging with dual-energy substraction digital tomosynthesis

    International Nuclear Information System (INIS)

    Sone, S.; Kasuga, T.; Sakai, F.; Hirano, H.; Kubo, K.; Morimoto, M.; Takemura, K.; Hosoba, M.

    1993-01-01

    Dual-energy subtraction digital tomosynthesis with pulsed X-ray and rapid kV switching was used to examine calcifications in pulmonary lesions. The digital tomosynthesis system used included a conventional fluororadiographic TV unit with linear tomographic capabilities, a high resolution videocamera, and an image processing unit. Low-voltage, high voltage, and soft tissue subtracted or bone subtracted tomograms of any desired layer height were reconstructed from the image data acquired during a single tomographic swing. Calcifications, as well as their characteristics and distribution in pulmonary lesions, were clearly shown. The images also permitted discrimination of calcifications from dense fibrotic lesions. This technique was effective in demonstrating calcifications together with a solitary mass or disseminated nodules. (orig.)

  8. Characteristics of megavoltage cone-beam digital tomosynthesis

    International Nuclear Information System (INIS)

    Descovich, M.; Morin, O.; Aubry, J. F.; Aubin, M.; Chen, J.; Bani-Hashemi, A; Pouliot, J.

    2008-01-01

    This article reports on the image characteristics of megavoltage cone-beam digital tomosynthesis (MVCB DT). MVCB DT is an in-room imaging technique, which enables the reconstruction of several two-dimensional slices from a set of projection images acquired over an arc of 20 deg. - 40 deg. The limited angular range reduces the acquisition time and the dose delivered to the patient, but affects the image quality of the reconstructed tomograms. Image characteristics (slice thickness, shape distortion, and contrast-to-noise ratio) are studied as a function of the angular range. Potential clinical applications include patient setup and the development of breath holding techniques for gated imaging

  9. Road Construction Safety Audit for Interstate Reconstruction. Volume 1.

    Science.gov (United States)

    1998-10-01

    Traffic control alternatives associated with reconstruction projects on a rural interstate have been investigated in this research. Slab replacement projects, milling/resurfacing projects, and traffic controls in the vicinity of interstate ramps were...

  10. Road Construction Safety Audit for Interstate Reconstruction. Volume 2.

    Science.gov (United States)

    1998-10-01

    Traffic control alternatives associated with reconstruction projects on a rural interstate have been investigated in this research. Slab replacement projects, milling/resurfacing projects, and traffic controls in the vicinity of interstate ramps were...

  11. Real-time out-of-plane artifact subtraction tomosynthesis imaging using prior CT for scanning beam digital x-ray system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng, E-mail: mengwu@stanford.edu [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2014-11-01

    Purpose: The scanning beam digital x-ray system (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis in multiple planes. This system could be used for image guidance during lung nodule biopsy. However, the reconstructed images suffer from strong out-of-plane artifact due to the small tomographic angle of the system. Methods: The authors propose an out-of-plane artifact subtraction tomosynthesis (OPAST) algorithm that utilizes a prior CT volume to augment the run-time image processing. A blur-and-add (BAA) analytical model, derived from the project-to-backproject physical model, permits the generation of tomosynthesis images that are a good approximation to the shift-and-add (SAA) reconstructed image. A computationally practical algorithm is proposed to simulate images and out-of-plane artifacts from patient-specific prior CT volumes using the BAA model. A 3D image registration algorithm to align the simulated and reconstructed images is described. The accuracy of the BAA analytical model and the OPAST algorithm was evaluated using three lung cancer patients’ CT data. The OPAST and image registration algorithms were also tested with added nonrigid respiratory motions. Results: Image similarity measurements, including the correlation coefficient, mean squared error, and structural similarity index, indicated that the BAA model is very accurate in simulating the SAA images from the prior CT for the SBDX system. The shift-variant effect of the BAA model can be ignored when the shifts between SBDX images and CT volumes are within ±10 mm in the x and y directions. The nodule visibility and depth resolution are improved by subtracting simulated artifacts from the reconstructions. The image registration and OPAST are robust in the presence of added respiratory motions. The dominant artifacts in the subtraction images are caused by the mismatches between the real object and the prior CT

  12. Self-masking subtraction tomosynthesis

    International Nuclear Information System (INIS)

    Chakraborty, D.P.; Yester, M.V.; Barnes, G.T.; Lakshminarayanan, A.V.

    1984-01-01

    The authors tested the image quality and dose savings of self-masking subtraction tomosynthesis (SST), which combines digital tomosynthesis with subtraction of a blurred self-mask. High-quality images of the inner ear of a head phantom were obtained at moderate dose savings. Although they were taken with linear motion, they did not exhibit the streaking due to off-fulcrum objects that is characteristic of conventional linear tomography. SST could reduce patient dose by a factor of at least 12 in examinations of the inner ear, and the mechanical aspects can be implemented with moderate modifications of existing instrumentation

  13. MO-DE-209-01: Primer On Tomosynthesis

    International Nuclear Information System (INIS)

    Maidment, A.

    2016-01-01

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support

  14. MO-DE-209-01: Primer On Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Maidment, A. [Univ Pennsylvania (United States)

    2016-06-15

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support

  15. A volume of fluid method based on multidimensional advection and spline interface reconstruction

    International Nuclear Information System (INIS)

    Lopez, J.; Hernandez, J.; Gomez, P.; Faura, F.

    2004-01-01

    A new volume of fluid method for tracking two-dimensional interfaces is presented. The method involves a multidimensional advection algorithm based on the use of edge-matched flux polygons to integrate the volume fraction evolution equation, and a spline-based reconstruction algorithm. The accuracy and efficiency of the proposed method are analyzed using different tests, and the results are compared with those obtained recently by other authors. Despite its simplicity, the proposed method represents a significant improvement, and compares favorably with other volume of fluid methods as regards the accuracy and efficiency of both the advection and reconstruction steps

  16. Modeling digital breast tomosynthesis imaging systems for optimization studies

    Science.gov (United States)

    Lau, Beverly Amy

    Digital breast tomosynthesis (DBT) is a new imaging modality for breast imaging. In tomosynthesis, multiple images of the compressed breast are acquired at different angles, and the projection view images are reconstructed to yield images of slices through the breast. One of the main problems to be addressed in the development of DBT is the optimal parameter settings to obtain images ideal for detection of cancer. Since it would be unethical to irradiate women multiple times to explore potentially optimum geometries for tomosynthesis, it is ideal to use a computer simulation to generate projection images. Existing tomosynthesis models have modeled scatter and detector without accounting for oblique angles of incidence that tomosynthesis introduces. Moreover, these models frequently use geometry-specific physical factors measured from real systems, which severely limits the robustness of their algorithms for optimization. The goal of this dissertation was to design the framework for a computer simulation of tomosynthesis that would produce images that are sensitive to changes in acquisition parameters, so an optimization study would be feasible. A computer physics simulation of the tomosynthesis system was developed. The x-ray source was modeled as a polychromatic spectrum based on published spectral data, and inverse-square law was applied. Scatter was applied using a convolution method with angle-dependent scatter point spread functions (sPSFs), followed by scaling using an angle-dependent scatter-to-primary ratio (SPR). Monte Carlo simulations were used to generate sPSFs for a 5-cm breast with a 1-cm air gap. Detector effects were included through geometric propagation of the image onto layers of the detector, which were blurred using depth-dependent detector point-spread functions (PRFs). Depth-dependent PRFs were calculated every 5-microns through a 200-micron thick CsI detector using Monte Carlo simulations. Electronic noise was added as Gaussian noise as a

  17. Estimation of the average glandular dose on a team of tomosynthesis

    International Nuclear Information System (INIS)

    Nunez Martinez, L. M. R.; Sanchez Jimenez, J.; Pizarro trigo, F.

    2013-01-01

    Seeking to improve the information that gives us an image of mammography the manufacturers have implemented tomosynthesis. With this method of acquisition and reconstruction of image we went from having a 2D to a 3D image image, in such a way that it reduces or eliminates the effect of overlap of tissues. The estimate of the dose, which is always a fundamental parameter in the control of quality of radiology equipment, is more in the case of mammography by the radiosensitivity of this body and the frequency of their use. The objective of this work is the determination of the mean in a team glandular dose of with tomosynthesis mammography. (Author)

  18. First experiences with model based iterative reconstructions influence on quantitative plaque volume and intensity measurements in coronary computed tomography angiography

    DEFF Research Database (Denmark)

    Precht, Helle; Kitslaar, Pieter H.; Broersen, Alexander

    2017-01-01

    Purpose: Investigate the influence of adaptive statistical iterative reconstruction (ASIR) and the model- based IR (Veo) reconstruction algorithm in coronary computed tomography angiography (CCTA) im- ages on quantitative measurements in coronary arteries for plaque volumes and intensities. Methods...

  19. Breast tomosynthesis in clinical practice: initial results

    International Nuclear Information System (INIS)

    Teertstra, Hendrik J.; Loo, Claudette E.; Bosch, Maurice A.A.J. van den; Muller, Sara H.; Gilhuijs, Kenneth G.A.; Tinteren, Harm van; Rutgers, Emiel J.T.

    2010-01-01

    The purpose of this study was to assess the potential value of tomosynthesis in women with an abnormal screening mammogram or with clinical symptoms. Mammography and tomosynthesis investigations of 513 woman with an abnormal screening mammogram or with clinical symptoms were prospectively classified according to the ACR BI-RADS criteria. Sensitivity and specificity of both techniques for the detection of cancer were calculated. In 112 newly detected cancers, tomosynthesis and mammography were each false-negative in 8 cases (7%). In the false-negative mammography cases, the tumor was detected with ultrasound (n=4), MRI (n=2), by recall after breast tomosynthesis interpretation (n=1), and after prophylactic mastectomy (n=1). Combining the results of mammography and tomosynthesis detected 109 cancers. Therefore in three patients, both mammography and tomosynthesis missed the carcinoma. The sensitivity of both techniques for the detection of breast cancer was 92.9%, and the specificity of mammography and tomosynthesis was 86.1 and 84.4%, respectively. Tomosynthesis can be used as an additional technique to mammography in patients referred with an abnormal screening mammogram or with clinical symptoms. Additional lesions detected by tomosynthesis, however, are also likely to be detected by other techniques used in the clinical work-up of these patients. (orig.)

  20. Application of dual volume reconstruction technique in embolization of intracranial aneurysms

    Directory of Open Access Journals (Sweden)

    Xiang-hai ZHANG

    2014-03-01

    Full Text Available Objective To explore the value of dual volume reconstruction technique in Guglielmi detachable coil (GDC embolization of intracranial aneurysms. Methods Three-dimensional imaging data of 20 patients received GDC embolization of intracranial aneurysms from Jun. 2012 to Apr. 2013 were analyzed for dual volume reconstruction. The value of application of dual volume reconstruction was evaluated by the detection rate of coils bolus, degree of aneurysm occlusion, the length of aneurysm sac and aneurysm neck before and after embolization, and the characteristics and clinical value of the reconstructed images. Results  A total of 20 coil boluses were detected by dual volume reconstruction images, and the detection rate was 100%. Among all of 20 patients, no visualization of contrast medium in the aneurysm was found in 13 patients, while contrast agent was found in the aneurysm sac in 3 patients and in the aneurysm neck in 4 patients. The length of aneurysm neck and sac was somewhat changed before and after embolization with no statistically significant difference (P>0.05. The dual volume reconstruction could reveal coil bolus, vessels, cranium and fusion images, and the aneurysms could be shown by different imaging modes according to the clinical requirement. Conclusion Dual volume reconstruction technique can display the location of coil bolus, degree of occlusion and aneurysm size, and evaluate the embolization effect by multifarious imaging modes, providing a great deal of information for the evaluation of GDC embolization of intracranial aneurysm. DOI: 10.11855/j.issn.0577-7402.2014.02.13

  1. Near-infrared spectral tomography integrated with digital breast tomosynthesis: Effects of tissue scattering on optical data acquisition design

    Energy Technology Data Exchange (ETDEWEB)

    Michaelsen, Kelly; Krishnaswamy, Venkat; Pogue, Brian W.; Poplack, Steven P.; Paulsen, Keith D. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Department of Diagnostic Radiology, Dartmouth Medical School, Lebanon, New Hampshire 03756 (United States); Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 and Department of Diagnostic Radiology, Dartmouth Medical School, Lebanon, New Hampshire 03756 (United States)

    2012-07-15

    Purpose: Design optimization and phantom validation of an integrated digital breast tomosynthesis (DBT) and near-infrared spectral tomography (NIRST) system targeting improvement in sensitivity and specificity of breast cancer detection is presented. Factors affecting instrumentation design include minimization of cost, complexity, and examination time while maintaining high fidelity NIRST measurements with sufficient information to recover accurate optical property maps. Methods: Reconstructed DBT slices from eight patients with abnormal mammograms provided anatomical information for the NIRST simulations. A limited frequency domain (FD) and extensive continuous wave (CW) NIRST system was modeled. The FD components provided tissue scattering estimations used in the reconstruction of the CW data. Scattering estimates were perturbed to study the effects on hemoglobin recovery. Breast mimicking agar phantoms with inclusions were imaged using the combined DBT/NIRST system for comparison with simulation results. Results: Patient simulations derived from DBT images show successful reconstruction of both normal and malignant lesions in the breast. They also demonstrate the importance of accurately quantifying tissue scattering. Specifically, 20% errors in optical scattering resulted in 22.6% or 35.1% error in quantification of total hemoglobin concentrations, depending on whether scattering was over- or underestimated, respectively. Limited frequency-domain optical signal sampling provided two regions scattering estimates (for fat and fibroglandular tissues) that led to hemoglobin concentrations that reduced the error in the tumor region by 31% relative to when a single estimate of optical scattering was used throughout the breast volume of interest. Acquiring frequency-domain data with six wavelengths instead of three did not significantly improve the hemoglobin concentration estimates. Simulation results were confirmed through experiments in two-region breast mimicking

  2. Near-infrared spectral tomography integrated with digital breast tomosynthesis: Effects of tissue scattering on optical data acquisition design

    International Nuclear Information System (INIS)

    Michaelsen, Kelly; Krishnaswamy, Venkat; Pogue, Brian W.; Poplack, Steven P.; Paulsen, Keith D.

    2012-01-01

    Purpose: Design optimization and phantom validation of an integrated digital breast tomosynthesis (DBT) and near-infrared spectral tomography (NIRST) system targeting improvement in sensitivity and specificity of breast cancer detection is presented. Factors affecting instrumentation design include minimization of cost, complexity, and examination time while maintaining high fidelity NIRST measurements with sufficient information to recover accurate optical property maps. Methods: Reconstructed DBT slices from eight patients with abnormal mammograms provided anatomical information for the NIRST simulations. A limited frequency domain (FD) and extensive continuous wave (CW) NIRST system was modeled. The FD components provided tissue scattering estimations used in the reconstruction of the CW data. Scattering estimates were perturbed to study the effects on hemoglobin recovery. Breast mimicking agar phantoms with inclusions were imaged using the combined DBT/NIRST system for comparison with simulation results. Results: Patient simulations derived from DBT images show successful reconstruction of both normal and malignant lesions in the breast. They also demonstrate the importance of accurately quantifying tissue scattering. Specifically, 20% errors in optical scattering resulted in 22.6% or 35.1% error in quantification of total hemoglobin concentrations, depending on whether scattering was over- or underestimated, respectively. Limited frequency-domain optical signal sampling provided two regions scattering estimates (for fat and fibroglandular tissues) that led to hemoglobin concentrations that reduced the error in the tumor region by 31% relative to when a single estimate of optical scattering was used throughout the breast volume of interest. Acquiring frequency-domain data with six wavelengths instead of three did not significantly improve the hemoglobin concentration estimates. Simulation results were confirmed through experiments in two-region breast mimicking

  3. Interventional C-arm tomosynthesis for vascular imaging: initial results

    Science.gov (United States)

    Langan, David A.; Claus, Bernhard E. H.; Al Assad, Omar; Trousset, Yves; Riddell, Cyril; Avignon, Gregoire; Solomon, Stephen B.; Lai, Hao; Wang, Xin

    2015-03-01

    As percutaneous endovascular procedures address more complex and broader disease states, there is an increasing need for intra-procedure 3D vascular imaging. In this paper, we investigate C-Arm 2-axis tomosynthesis ("Tomo") as an alternative to C-Arm Cone Beam Computed Tomography (CBCT) for workflow situations in which the CBCT acquisition may be inconvenient or prohibited. We report on our experience in performing tomosynthesis acquisitions with a digital angiographic imaging system (GE Healthcare Innova 4100 Angiographic Imaging System, Milwaukee, WI). During a tomo acquisition the detector and tube each orbit on a plane above and below the table respectively. The tomo orbit may be circular or elliptical, and the tomographic half-angle in our studies varied from approximately 16 to 28 degrees as a function of orbit period. The trajectory, geometric calibration, and gantry performance are presented. We overview a multi-resolution iterative reconstruction employing compressed sensing techniques to mitigate artifacts associated with incomplete data reconstructions. In this work, we focus on the reconstruction of small high contrast objects such as iodinated vasculature and interventional devices. We evaluate the overall performance of the acquisition and reconstruction through phantom acquisitions and a swine study. Both tomo and comparable CBCT acquisitions were performed during the swine study thereby enabling the use of CBCT as a reference in the evaluation of tomo vascular imaging. We close with a discussion of potential clinical applications for tomo, reflecting on the imaging and workflow results achieved.

  4. A review of breast tomosynthesis. Part I. The image acquisition process

    Science.gov (United States)

    Sechopoulos, Ioannis

    2013-01-01

    Mammography is a very well-established imaging modality for the early detection and diagnosis of breast cancer. However, since the introduction of digital imaging to the realm of radiology, more advanced, and especially tomographic imaging methods have been made possible. One of these methods, breast tomosynthesis, has finally been introduced to the clinic for routine everyday use, with potential to in the future replace mammography for screening for breast cancer. In this two part paper, the extensive research performed during the development of breast tomosynthesis is reviewed, with a focus on the research addressing the medical physics aspects of this imaging modality. This first paper will review the research performed on the issues relevant to the image acquisition process, including system design, optimization of geometry and technique, x-ray scatter, and radiation dose. The companion to this paper will review all other aspects of breast tomosynthesis imaging, including the reconstruction process. PMID:23298126

  5. Work in progress. Flashing tomosynthesis: a tomographic technique for quantitative coronary angiography

    International Nuclear Information System (INIS)

    Woelke, H.; Hanrath, P.; Schlueter, M.; Bleifeld, W.; Klotz, E.; Weiss, H.; Waller, D.; von Weltzien, J.

    1982-01-01

    Flashing tomosynthesis, a procedure that consists of a recording step and a reconstruction step, facilitates the tomographic imaging of coronary arteries. In a comparative study 10 postmortem coronary arteriograms were examined with 35-mm cine technique and with flashing tomosynthesis. The degrees of stenosis found with both of these techniques were compared with morphometrically obtained values. A higher correlation coefficient existed for the degrees of stenosis obtained with tomosynthesis and morphometry (r=0.92, p<0.001, SEE=9%) than for those obtained with cine technique and morphometry (r=0.82, p<0.001, SEE=16%). The technique has also been successfully carried out in 5 patients with coronary artery disease

  6. Digital tomosynthesis of the breast; Digitale Tomosynthese der Brust

    Energy Technology Data Exchange (ETDEWEB)

    Barkhausen, Joerg [Luebeck Univ. (Germany). Klinik fuer Radiologie und Nuklearmedizin; Rody, Achim [Luebeck Univ. (Germany). Klinik fuer Gynaekologie und Geburtshilfe; Schaefer, Fritz K.W. (ed.) [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Bereich Mammadiagnostik und Interventionen

    2015-07-01

    The digital tomosynthesis applies the digital image analysis and 3D technology for improves diagnostic uses. The text book on the digital tomosynthesis of the breast covers the following issues: technique of tomosynthesis, clinical significance of digital breast tomosynthesis, innovations and future developments, case studies.

  7. Fast multiview three-dimensional reconstruction method using cost volume filtering

    Science.gov (United States)

    Lee, Seung Joo; Park, Min Ki; Jang, In Yeop; Lee, Kwan H.

    2014-03-01

    As the number of customers who want to record three-dimensional (3-D) information using a mobile electronic device increases, it becomes more and more important to develop a method which quickly reconstructs a 3-D model from multiview images. A fast multiview-based 3-D reconstruction method is presented, which is suitable for the mobile environment by constructing a cost volume of the 3-D height field. This method consists of two steps: the construction of a reliable base surface and the recovery of shape details. In each step, the cost volume is constructed using photoconsistency and then it is filtered according to the multiscale. The multiscale-based cost volume filtering allows the 3-D reconstruction to maintain the overall shape and to preserve the shape details. We demonstrate the strength of the proposed method in terms of computation time, accuracy, and unconstrained acquisition environment.

  8. Efficient 3D Volume Reconstruction from a Point Cloud Using a Phase-Field Method

    Directory of Open Access Journals (Sweden)

    Darae Jeong

    2018-01-01

    Full Text Available We propose an explicit hybrid numerical method for the efficient 3D volume reconstruction from unorganized point clouds using a phase-field method. The proposed three-dimensional volume reconstruction algorithm is based on the 3D binary image segmentation method. First, we define a narrow band domain embedding the unorganized point cloud and an edge indicating function. Second, we define a good initial phase-field function which speeds up the computation significantly. Third, we use a recently developed explicit hybrid numerical method for solving the three-dimensional image segmentation model to obtain efficient volume reconstruction from point cloud data. In order to demonstrate the practical applicability of the proposed method, we perform various numerical experiments.

  9. Reconstruction of the 3D representative volume element from the generalized two-point correlation function

    International Nuclear Information System (INIS)

    Staraselski, Y; Brahme, A; Inal, K; Mishra, R K

    2015-01-01

    This paper presents the first application of three-dimensional (3D) cross-correlation microstructure reconstruction implemented for a representative volume element (RVE) to facilitate the microstructure engineering of materials. This has been accomplished by developing a new methodology for reconstructing 3D microstructure using experimental two-dimensional electron backscatter diffraction data. The proposed methodology is based on the analytical representation of the generalized form of the two-point correlation function—the distance-disorientation function (DDF). Microstructure reconstruction is accomplished by extending the simulated annealing techniques to perform three term reconstruction with a minimization of the DDF. The new 3D microstructure reconstruction algorithm is employed to determine the 3D RVE containing all of the relevant microstructure information for accurately computing the mechanical response of solids, especially when local microstructural variations influence the global response of the material as in the case of fracture initiation. (paper)

  10. Stationary intraoral tomosynthesis for dental imaging

    Science.gov (United States)

    Inscoe, Christina R.; Wu, Gongting; Soulioti, Danai E.; Platin, Enrique; Mol, Andre; Gaalaas, Laurence R.; Anderson, Michael R.; Tucker, Andrew W.; Boyce, Sarah; Shan, Jing; Gonzales, Brian; Lu, Jianping; Zhou, Otto

    2017-03-01

    Despite recent advances in dental radiography, the diagnostic accuracies for some of the most common dental diseases have not improved significantly, and in some cases remain low. Intraoral x-ray is the most commonly used x-ray diagnostic tool in dental clinics. It however suffers from the typical limitations of a 2D imaging modality including structure overlap. Cone-beam computed tomography (CBCT) uses high radiation dose and suffers from image artifacts and relatively low resolution. The purpose of this study is to investigate the feasibility of developing a stationary intraoral tomosynthesis (s-IOT) using spatially distributed carbon nanotube (CNT) x-ray array technology, and to evaluate its diagnostic accuracy compared to conventional 2D intraoral x-ray. A bench-top s-IOT device was constructed using a linear CNT based X-ray source array and a digital intraoral detector. Image reconstruction was performed using an iterative reconstruction algorithm. Studies were performed to optimize the imaging configuration. For evaluation of s-IOT's diagnostic accuracy, images of a dental quality assurance phantom, and extracted human tooth specimens were acquired. Results show s-IOT increases the diagnostic sensitivity for caries compared to intraoral x-ray at a comparable dose level.

  11. Measuring stone volume - three-dimensional software reconstruction or an ellipsoid algebra formula?

    Science.gov (United States)

    Finch, William; Johnston, Richard; Shaida, Nadeem; Winterbottom, Andrew; Wiseman, Oliver

    2014-04-01

    To determine the optimal method for assessing stone volume, and thus stone burden, by comparing the accuracy of scalene, oblate, and prolate ellipsoid volume equations with three-dimensional (3D)-reconstructed stone volume. Kidney stone volume may be helpful in predicting treatment outcome for renal stones. While the precise measurement of stone volume by 3D reconstruction can be accomplished using modern computer tomography (CT) scanning software, this technique is not available in all hospitals or with routine acute colic scanning protocols. Therefore, maximum diameters as measured by either X-ray or CT are used in the calculation of stone volume based on a scalene ellipsoid formula, as recommended by the European Association of Urology. In all, 100 stones with both X-ray and CT (1-2-mm slices) were reviewed. Complete and partial staghorn stones were excluded. Stone volume was calculated using software designed to measure tissue density of a certain range within a specified region of interest. Correlation coefficients among all measured outcomes were compared. Stone volumes were analysed to determine the average 'shape' of the stones. The maximum stone diameter on X-ray was 3-25 mm and on CT was 3-36 mm, with a reasonable correlation (r = 0.77). Smaller stones (15 mm towards scalene ellipsoids. There was no difference in stone shape by location within the kidney. As the average shape of renal stones changes with diameter, no single equation for estimating stone volume can be recommended. As the maximum diameter increases, calculated stone volume becomes less accurate, suggesting that larger stones have more asymmetric shapes. We recommend that research looking at stone clearance rates should use 3D-reconstructed stone volumes when available, followed by prolate, oblate, or scalene ellipsoid formulas depending on the maximum stone diameter. © 2013 The Authors. BJU International © 2013 BJU International.

  12. Tomosynthesis imaging: At a translational crossroads

    International Nuclear Information System (INIS)

    Dobbins, James T. III

    2009-01-01

    Tomosynthesis is a decades-old technique for section imaging that has seen a recent upsurge in interest due to its promise to provide three-dimensional information at lower dose and potentially lower cost than CT in certain clinical imaging situations. This renewed interest in tomosynthesis began in the late 1990s as a new generation of flat-panel detectors became available; these detectors were the one missing piece of the picture that had kept tomosynthesis from enjoying significant utilization earlier. In the past decade, tomosynthesis imaging has been investigated in a variety of clinical imaging situations, but the two most prominent have been in breast and chest imaging. Tomosynthesis has the potential to substantially change the way in which breast cancer and pulmonary nodules are detected and managed. Commercial tomosynthesis devices are now available or on the horizon. Many of the remaining research activities with tomosynthesis will be translational in nature and will involve physicist and clinician alike. This overview article provides a forward-looking assessment of the translational questions facing tomosynthesis imaging and anticipates some of the likely research and clinical activities in the next five years.

  13. Tomosynthesis imaging: At a translational crossroads

    Science.gov (United States)

    Dobbins, James T.

    2009-01-01

    Tomosynthesis is a decades-old technique for section imaging that has seen a recent upsurge in interest due to its promise to provide three-dimensional information at lower dose and potentially lower cost than CT in certain clinical imaging situations. This renewed interest in tomosynthesis began in the late 1990s as a new generation of flat-panel detectors became available; these detectors were the one missing piece of the picture that had kept tomosynthesis from enjoying significant utilization earlier. In the past decade, tomosynthesis imaging has been investigated in a variety of clinical imaging situations, but the two most prominent have been in breast and chest imaging. Tomosynthesis has the potential to substantially change the way in which breast cancer and pulmonary nodules are detected and managed. Commercial tomosynthesis devices are now available or on the horizon. Many of the remaining research activities with tomosynthesis will be translational in nature and will involve physicist and clinician alike. This overview article provides a forward-looking assessment of the translational questions facing tomosynthesis imaging and anticipates some of the likely research and clinical activities in the next five years. PMID:19610284

  14. Voting strategy for artifact reduction in digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Wu Tao; Moore, Richard H.; Kopans, Daniel B.

    2006-01-01

    Artifacts are observed in digital breast tomosynthesis (DBT) reconstructions due to the small number of projections and the narrow angular range that are typically employed in tomosynthesis imaging. In this work, we investigate the reconstruction artifacts that are caused by high-attenuation features in breast and develop several artifact reduction methods based on a 'voting strategy'. The voting strategy identifies the projection(s) that would introduce artifacts to a voxel and rejects the projection(s) when reconstructing the voxel. Four approaches to the voting strategy were compared, including projection segmentation, maximum contribution deduction, one-step classification, and iterative classification. The projection segmentation method, based on segmentation of high-attenuation features from the projections, effectively reduces artifacts caused by metal and large calcifications that can be reliably detected and segmented from projections. The other three methods are based on the observation that contributions from artifact-inducing projections have higher value than those from normal projections. These methods attempt to identify the projection(s) that would cause artifacts by comparing contributions from different projections. Among the three methods, the iterative classification method provides the best artifact reduction; however, it can generate many false positive classifications that degrade the image quality. The maximum contribution deduction method and one-step classification method both reduce artifacts well from small calcifications, although the performance of artifact reduction is slightly better with the one-step classification. The combination of one-step classification and projection segmentation removes artifacts from both large and small calcifications

  15. Preoperative TRAM free flap volume estimation for breast reconstruction in lean patients.

    Science.gov (United States)

    Minn, Kyung Won; Hong, Ki Yong; Lee, Sang Woo

    2010-04-01

    To obtain pleasing symmetry in breast reconstruction with transverse rectus abdominis myocutaneous (TRAM) free flap, a large amount of abdominal flap is elevated and remnant tissue is trimmed in most cases. However, elevation of abundant abdominal flap can cause excessive tension in donor site closure and increase the possibility of hypertrophic scarring especially in lean patients. The TRAM flap was divided into 4 zones in routine manner; the depth and dimension of the 4 zones were obtained using ultrasound and AutoCAD (Autodesk Inc., San Rafael, CA), respectively. The acquired numbers were then multiplied to obtain an estimate of volume of each zone and the each zone volume was added. To confirm the relation between the estimated volume and the actual volume, authors compared intraoperative actual TRAM flap volumes with preoperative estimated volumes in 30 consecutive TRAM free flap breast reconstructions. The estimated volumes and the actual elevated volumes of flap were found to be correlated by regression analysis (r = 0.9258, P Autodesk Inc.) allow the authors to attain the precise volume desired for elevation. This method provides advantages in terms of minimal flap trimming, easier closure of donor sites, reduced scar widening and symmetry, especially in lean patients.

  16. Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data

    Science.gov (United States)

    Martins, Fabio J. W. A.; Foucaut, Jean-Marc; Thomas, Lionel; Azevedo, Luis F. A.; Stanislas, Michel

    2015-08-01

    Tomographic PIV is a three-component volumetric velocity measurement technique based on the tomographic reconstruction of a particle distribution imaged by multiple camera views. In essence, the performance and accuracy of this technique is highly dependent on the parametric adjustment and the reconstruction algorithm used. Although synthetic data have been widely employed to optimize experiments, the resulting reconstructed volumes might not have optimal quality. The purpose of the present study is to offer quality indicators that can be applied to data samples in order to improve the quality of velocity results obtained by the tomo-PIV technique. The methodology proposed can potentially lead to significantly reduction in the time required to optimize a tomo-PIV reconstruction, also leading to better quality velocity results. Tomo-PIV data provided by a six-camera turbulent boundary-layer experiment were used to optimize the reconstruction algorithms according to this methodology. Velocity statistics measurements obtained by optimized BIMART, SMART and MART algorithms were compared with hot-wire anemometer data and velocity measurement uncertainties were computed. Results indicated that BIMART and SMART algorithms produced reconstructed volumes with equivalent quality as the standard MART with the benefit of reduced computational time.

  17. Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data

    International Nuclear Information System (INIS)

    Martins, Fabio J W A; Foucaut, Jean-Marc; Stanislas, Michel; Thomas, Lionel; Azevedo, Luis F A

    2015-01-01

    Tomographic PIV is a three-component volumetric velocity measurement technique based on the tomographic reconstruction of a particle distribution imaged by multiple camera views. In essence, the performance and accuracy of this technique is highly dependent on the parametric adjustment and the reconstruction algorithm used. Although synthetic data have been widely employed to optimize experiments, the resulting reconstructed volumes might not have optimal quality. The purpose of the present study is to offer quality indicators that can be applied to data samples in order to improve the quality of velocity results obtained by the tomo-PIV technique. The methodology proposed can potentially lead to significantly reduction in the time required to optimize a tomo-PIV reconstruction, also leading to better quality velocity results. Tomo-PIV data provided by a six-camera turbulent boundary-layer experiment were used to optimize the reconstruction algorithms according to this methodology. Velocity statistics measurements obtained by optimized BIMART, SMART and MART algorithms were compared with hot-wire anemometer data and velocity measurement uncertainties were computed. Results indicated that BIMART and SMART algorithms produced reconstructed volumes with equivalent quality as the standard MART with the benefit of reduced computational time. (paper)

  18. Digital tomosynthesis rendering of joint margins for arthritis assessment

    Science.gov (United States)

    Duryea, Jeffrey W.; Neumann, Gesa; Yoshioka, Hiroshi; Dobbins, James T., III

    2004-05-01

    PURPOSE: Rheumatoid arthritis (RA) of the hand is a significant healthcare problem. Techniques to accurately quantity the structural changes from RA are crucial for the development and prescription of therapies. Analysis of radiographic joint space width (JSW) is widely used and has demonstrated promise. However, radiography presents a 2D view of the joint. In this study we performed tomosynthesis reconstructions of proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints to measure the 3D joint structure. METHODS: We performed a reader study using simulated radiographs of 12 MCP and 12 PIP joints from skeletal specimens imaged with micro-CT. The tomosynthesis technique provided images of reconstructed planes with 0.75 mm spacing, which were presented to 2 readers with a computer tool. The readers were instructed to delineate the joint surfaces on tomosynthetic slices where they could visualize the margins. We performed a quantitative analysis of 5 slices surrounding the central portion of each joint. Reader-determined JSW was compared to a gold standard. As a figure of merit we calculated the average root-mean square deviation (RMSD). RESULTS: RMSD was 0.22 mm for both joints. For the individual joints, RMSD was 0.18 mm (MCP), and 0.26 mm (PIP). The reduced performance for the smaller PIP joints suggests that a slice spacing less than 0.75 mm may be more appropriate. CONCLUSIONS: We have demonstrated the capability of limited 3D rendering of joint surfaces using digital tomosynthesis. This technique promises to provide an improved method to visualize the structural changes of RA.

  19. A second pass correction method for calcification artifacts in digital breast tomosynthesis

    NARCIS (Netherlands)

    Erhard, K.; Grass, M.; Nielsen, T.

    2011-01-01

    Digital breast tomosynthesis (DBT) aims for improving the diagnosis of breast cancer and reducing the false positive rates by going from 2D projection mammography to 3D volume information. With the acquisition of a series of projection images, taken over a limited angular range, DBT allows for

  20. An innovative method of planning and displaying flap volume in DIEP flap breast reconstructions.

    Science.gov (United States)

    Hummelink, S; Verhulst, Arico C; Maal, Thomas J J; Hoogeveen, Yvonne L; Schultze Kool, Leo J; Ulrich, Dietmar J O

    2017-07-01

    Determining the ideal volume of the harvested flap to achieve symmetry in deep inferior epigastric artery perforator (DIEP) flap breast reconstructions is complex. With preoperative imaging techniques such as 3D stereophotogrammetry and computed tomography angiography (CTA) available nowadays, we can combine information to preoperatively plan the optimal flap volume to be harvested. In this proof-of-concept, we investigated whether projection of a virtual flap planning onto the patient's abdomen using a projection method could result in harvesting the correct flap volume. In six patients (n = 9 breasts), 3D stereophotogrammetry and CTA data were combined from which a virtual flap planning was created comprising perforator locations, blood vessel trajectory and flap size. All projected perforators were verified with Doppler ultrasound. Intraoperative flap measurements were collected to validate the determined flap delineation volume. The measured breast volume using 3D stereophotogrammetry was 578 ± 127 cc; on CTA images, 527 ± 106 cc flap volumes were planned. The nine harvested flaps weighed 533 ± 109 g resulting in a planned versus harvested flap mean difference of 5 ± 27 g (flap density 1.0 g/ml). In 41 out of 42 projected perforator locations, a Doppler signal was audible. This proof-of-concept shows in small numbers that flap volumes can be included into a virtual DIEP flap planning, and transferring the virtual planning to the patient through a projection method results in harvesting approximately the same volume during surgery. In our opinion, this innovative approach is the first step in consequently achieving symmetric breast volumes in DIEP flap breast reconstructions. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Effect of Clinical Experience of Chest Tomosynthesis on Detection of Pulmonary Nodules

    International Nuclear Information System (INIS)

    Zachrisson, S.; Svalkvist, A.; Maansson, L.G.; Baath, M.; Vikgren, J.; Johnsson, Aa.A.; Boijsen, M.; Flinck, A.; Kheddache, S.

    2009-01-01

    Background: The new technique chest tomosynthesis refers to the principle of collecting low-dose projections of the chest at different angles and using these projections to reconstruct section images of the chest at a radiation dose comparable to that of chest radiography. Purpose: To investigate if, for experienced thoracic radiologists, the detectability of pulmonary nodules obtained after only a short initial learning period of chest tomosynthesis improves with additional clinical experience of the new technique. Material and Methods: Two readings of the same clinical chest tomosynthesis cases, the first performed after 6 months of clinical experience and the second after an additional period of 1 year, were conducted. Three senior thoracic radiologists, with more than 20 years of experience of chest radiography, acted as observers, with the task of detecting pulmonary nodules in a jackknife free-response receiver operating characteristics (JAFROC1) study. The image material consisted of 42 patients with and 47 patients without pulmonary nodules examined with chest tomosynthesis. Multidetector computed tomography (MDCT) was used as a reference. The total number of nodules was 131. The JAFROC1 figure of merit (FOM) was used as the principal measure of detectability. Results: The difference in the observer-averaged JAFROC1 FOM of the two readings was 0.004 (95% confidence interval: -0.11, 0.12; F-statistic: 0.01 on 1 and 2.65 df; P=0.91). Thus, no significant improvement in detectability was found after the additional clinical experience of tomosynthesis. Conclusion: The study indicates that experienced thoracic radiologists already within the first months of clinical use of chest tomosynthesis are able to take advantage of the new technique in the task of detecting pulmonary nodules

  2. Quantifying the Impact of Immediate Reconstruction in Postmastectomy Radiation: A Large, Dose-Volume Histogram-Based Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ohri, Nisha [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Cordeiro, Peter G. [Department of Plastic Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Keam, Jennifer [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ballangrud, Ase [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Shi Weiji; Zhang Zhigang [Department of Biostatistics and Epidemiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Nerbun, Claire T.; Woch, Katherine M.; Stein, Nicholas F.; Zhou Ying [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); McCormick, Beryl; Powell, Simon N. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ho, Alice Y., E-mail: HoA1234@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2012-10-01

    Purpose: To assess the impact of immediate breast reconstruction on postmastectomy radiation (PMRT) using dose-volume histogram (DVH) data. Methods and Materials: Two hundred forty-seven women underwent PMRT at our center, 196 with implant reconstruction and 51 without reconstruction. Patients with reconstruction were treated with tangential photons, and patients without reconstruction were treated with en-face electron fields and customized bolus. Twenty percent of patients received internal mammary node (IMN) treatment. The DVH data were compared between groups. Ipsilateral lung parameters included V20 (% volume receiving 20 Gy), V40 (% volume receiving 40 Gy), mean dose, and maximum dose. Heart parameters included V25 (% volume receiving 25 Gy), mean dose, and maximum dose. IMN coverage was assessed when applicable. Chest wall coverage was assessed in patients with reconstruction. Propensity-matched analysis adjusted for potential confounders of laterality and IMN treatment. Results: Reconstruction was associated with lower lung V20, mean dose, and maximum dose compared with no reconstruction (all P<.0001). These associations persisted on propensity-matched analysis (all P<.0001). Heart doses were similar between groups (P=NS). Ninety percent of patients with reconstruction had excellent chest wall coverage (D95 >98%). IMN coverage was superior in patients with reconstruction (D95 >92.0 vs 75.7%, P<.001). IMN treatment significantly increased lung and heart parameters in patients with reconstruction (all P<.05) but minimally affected those without reconstruction (all P>.05). Among IMN-treated patients, only lower lung V20 in those without reconstruction persisted (P=.022), and mean and maximum heart doses were higher than in patients without reconstruction (P=.006, P=.015, respectively). Conclusions: Implant reconstruction does not compromise the technical quality of PMRT when the IMNs are untreated. Treatment technique, not reconstruction, is the primary

  3. Iterative model reconstruction reduces calcified plaque volume in coronary CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Károlyi, Mihály, E-mail: mihaly.karolyi@cirg.hu [MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68. Varosmajor st, 1122, Budapest (Hungary); Szilveszter, Bálint, E-mail: szilveszter.balint@gmail.com [MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68. Varosmajor st, 1122, Budapest (Hungary); Kolossváry, Márton, E-mail: martonandko@gmail.com [MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68. Varosmajor st, 1122, Budapest (Hungary); Takx, Richard A.P, E-mail: richard.takx@gmail.com [Department of Radiology, University Medical Center Utrecht, 100 Heidelberglaan, 3584, CX Utrecht (Netherlands); Celeng, Csilla, E-mail: celengcsilla@gmail.com [MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68. Varosmajor st, 1122, Budapest (Hungary); Bartykowszki, Andrea, E-mail: bartyandi@gmail.com [MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68. Varosmajor st, 1122, Budapest (Hungary); Jermendy, Ádám L., E-mail: adam.jermendy@gmail.com [MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68. Varosmajor st, 1122, Budapest (Hungary); Panajotu, Alexisz, E-mail: panajotualexisz@gmail.com [MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68. Varosmajor st, 1122, Budapest (Hungary); Karády, Júlia, E-mail: karadyjulia@gmail.com [MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68. Varosmajor st, 1122, Budapest (Hungary); and others

    2017-02-15

    Objective: To assess the impact of iterative model reconstruction (IMR) on calcified plaque quantification as compared to filtered back projection reconstruction (FBP) and hybrid iterative reconstruction (HIR) in coronary computed tomography angiography (CTA). Methods: Raw image data of 52 patients who underwent 256-slice CTA were reconstructed with IMR, HIR and FBP. We evaluated qualitative, quantitative image quality parameters and quantified calcified and partially calcified plaque volumes using automated software. Results: Overall qualitative image quality significantly improved with HIR as compared to FBP, and further improved with IMR (p < 0.01 all). Contrast-to-noise ratios were improved with IMR, compared to HIR and FBP (51.0 [43.5–59.9], 20.3 [16.2–25.9] and 14.0 [11.2–17.7], respectively, all p < 0.01) Overall plaque volumes were lowest with IMR and highest with FBP (121.7 [79.3–168.4], 138.7 [90.6–191.7], 147.0 [100.7–183.6]). Similarly, calcified volumes (>130 HU) were decreased with IMR as compared to HIR and FBP (105.9 [62.1–144.6], 110.2 [63.8–166.6], 115.9 [81.7–164.2], respectively, p < 0.05 all). High-attenuation non-calcified volumes (90–129 HU) yielded similar values with FBP and HIR (p = 0.81), however it was lower with IMR (p < 0.05 both). Intermediate- (30–89 HU) and low-attenuation (<30 HU) non-calcified volumes showed no significant difference (p = 0.22 and p = 0.67, respectively). Conclusions: IMR improves image quality of coronary CTA and decreases calcified plaque volumes.

  4. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    International Nuclear Information System (INIS)

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-01-01

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  5. Digital tomosynthesis with an on-board kilovoltage imaging device

    International Nuclear Information System (INIS)

    Godfrey, Devon J.; Yin, F.-F.; Oldham, Mark; Yoo, Sua; Willett, Christopher

    2006-01-01

    Purpose: To generate on-board digital tomosynthesis (DTS) and reference DTS images for three-dimensional image-guided radiation therapy (IGRT) as an alternative to conventional portal imaging or on-board cone-beam computed tomography (CBCT). Methods and Materials: Three clinical cases (prostate, head-and-neck, and liver) were selected to illustrate the capabilities of on-board DTS for IGRT. Corresponding reference DTS images were reconstructed from digitally reconstructed radiographs computed from planning CT image sets. The effect of scan angle on DTS slice thickness was examined by computing the mutual information between coincident CBCT and DTS images, as the DTS scan angle was varied from 0 o to 165 o . A breath-hold DTS acquisition strategy was implemented to remove respiratory motion artifacts. Results: Digital tomosynthesis slices appeared similar to coincident CBCT planes and yielded substantially more anatomic information than either kilovoltage or megavoltage radiographs. Breath-hold DTS acquisition improved soft-tissue visibility by suppressing respiratory motion. Conclusions: Improved bony and soft-tissue visibility in DTS images is likely to improve target localization compared with radiographic verification techniques and might allow for daily localization of a soft-tissue target. Breath-hold DTS is a potential alternative to on-board CBCT for sites prone to respiratory motion

  6. Digital breast tomosynthesis: computer-aided detection of clustered microcalcifications on planar projection images

    International Nuclear Information System (INIS)

    Samala, Ravi K; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir M; Wei, Jun; Helvie, Mark A

    2014-01-01

    This paper describes a new approach to detect microcalcification clusters (MCs) in digital breast tomosynthesis (DBT) via its planar projection (PPJ) image. With IRB approval, two-view (cranio-caudal and mediolateral oblique views) DBTs of human subject breasts were obtained with a GE GEN2 prototype DBT system that acquires 21 projection angles spanning 60° in 3° increments. A data set of 307 volumes (154 human subjects) was divided by case into independent training (127 with MCs) and test sets (104 with MCs and 76 free of MCs). A simultaneous algebraic reconstruction technique with multiscale bilateral filtering (MSBF) regularization was used to enhance microcalcifications and suppress noise. During the MSBF regularized reconstruction, the DBT volume was separated into high frequency (HF) and low frequency components representing microcalcifications and larger structures. At the final iteration, maximum intensity projection was applied to the regularized HF volume to generate a PPJ image that contained MCs with increased contrast-to-noise ratio (CNR) and reduced search space. High CNR objects in the PPJ image were extracted and labeled as microcalcification candidates. Convolution neural network trained to recognize the image pattern of microcalcifications was used to classify the candidates into true calcifications and tissue structures and artifacts. The remaining microcalcification candidates were grouped into MCs by dynamic conditional clustering based on adaptive CNR threshold and radial distance criteria. False positive (FP) clusters were further reduced using the number of candidates in a cluster, CNR and size of microcalcification candidates. At 85% sensitivity an FP rate of 0.71 and 0.54 was achieved for view- and case-based sensitivity, respectively, compared to 2.16 and 0.85 achieved in DBT. The improvement was significant (p-value = 0.003) by JAFROC analysis. (paper)

  7. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    International Nuclear Information System (INIS)

    Shaheen, Eman; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-01-01

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  8. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis.

    Science.gov (United States)

    Shaheen, Eman; De Keyzer, Frederik; Bosmans, Hilde; Dance, David R; Young, Kenneth C; Van Ongeval, Chantal

    2014-08-01

    This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly suggestive for malignancy (BIRADS 5

  9. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, Eman, E-mail: eman.shaheen@uzleuven.be; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van [Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  10. Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter

    Science.gov (United States)

    Sindelar, Charles V.; Grigorieff, Nikolaus

    2012-01-01

    The high noise level found in single-particle electron cryo-microscopy (cryo-EM) image data presents a special challenge for three-dimensional (3D) reconstruction of the imaged molecules. The spectral signal-to-noise ratio (SSNR) and related Fourier shell correlation (FSC) functions are commonly used to assess and mitigate the noise-generated error in the reconstruction. Calculation of the SSNR and FSC usually includes the noise in the solvent region surrounding the particle and therefore does not accurately reflect the signal in the particle density itself. Here we show that the SSNR in a reconstructed 3D particle map is linearly proportional to the fractional volume occupied by the particle. Using this relationship, we devise a novel filter (the “single-particle Wiener filter”) to minimize the error in a reconstructed particle map, if the particle volume is known. Moreover, we show how to approximate this filter even when the volume of the particle is not known, by optimizing the signal within a representative interior region of the particle. We show that the new filter improves on previously proposed error-reduction schemes, including the conventional Wiener filter as well as figure-of-merit weighting, and quantify the relationship between all of these methods by theoretical analysis as well as numeric evaluation of both simulated and experimentally collected data. The single-particle Wiener filter is applicable across a broad range of existing 3D reconstruction techniques, but is particularly well suited to the Fourier inversion method, leading to an efficient and accurate implementation. PMID:22613568

  11. Navigator channel adaptation to reconstruct three dimensional heart volumes from two dimensional radiotherapy planning data

    International Nuclear Information System (INIS)

    Ng, Angela; Nguyen, Thao-Nguyen; Moseley, Joanne L; Hodgson, David C; Sharpe, Michael B; Brock, Kristy K

    2012-01-01

    Biologically-based models that utilize 3D radiation dosimetry data to estimate the risk of late cardiac effects could have significant utility for planning radiotherapy in young patients. A major challenge arises from having only 2D treatment planning data for patients with long-term follow-up. In this study, we evaluate the accuracy of an advanced deformable image registration (DIR) and navigator channels (NC) adaptation technique to reconstruct 3D heart volumes from 2D radiotherapy planning images for Hodgkin's Lymphoma (HL) patients. Planning CT images were obtained for 50 HL patients who underwent mediastinal radiotherapy. Twelve image sets (6 male, 6 female) were used to construct a male and a female population heart model, which was registered to 23 HL 'Reference' patients' CT images using a DIR algorithm, MORFEUS. This generated a series of population-to-Reference patient specific 3D deformation maps. The technique was independently tested on 15 additional 'Test' patients by reconstructing their 3D heart volumes using 2D digitally reconstructed radiographs (DRR). The technique involved: 1) identifying a matching Reference patient for each Test patient using thorax measurements, 2) placement of six NCs on matching Reference and Test patients' DRRs to capture differences in significant heart curvatures, 3) adapting the population-to-Reference patient-specific deformation maps to generate population-to-Test patient-specific deformation maps using linear and bilinear interpolation methods, 4) applying population-to-Test patient specific deformation to the population model to reconstruct Test-patient specific 3D heart models. The percentage volume overlap between the NC-adapted reconstruction and actual Test patient's true heart volume was calculated using the Dice coefficient. The average Dice coefficient expressed as a percentage between the NC-adapted and actual Test model was 89.4 ± 2.8%. The modified NC adaptation

  12. Quantitative gated SPECT: the effect of reconstruction filter on calculated left ventricular ejection fractions and volumes

    International Nuclear Information System (INIS)

    Wright, Graham A.; McDade, Mark; Martin, William; Hutton, William

    2002-01-01

    Gated SPECT (GSPECT) offers the possibility of obtaining additional functional information from perfusion studies, including calculation of left ventricular ejection fraction (LVEF). The calculation of LVEF relies upon the identification of the endocardial surface, which will be affected by the spatial resolution and statistical noise in the reconstructed images. The aim of this study was to compare LVEFs and ventricular volumes calculated from GSPECT using six reconstruction filters. GSPECT and radionuclide ventriculography (RNVG) were performed on 40 patients; filtered back projection was used to reconstruct the datasets with each filter. LVEFs and volumes were calculated using the Cedars-Sinai QGS package. The correlation coefficient between RNVG and GSPECT ranged from 0.81 to 0.86 with higher correlations for smoother filters. The narrowest prediction interval was 11±2%. There was a trend towards higher LVEF values with smoother filters, the ramp filter yielding LVEFs 2.55±3.10% (p<0.001) lower than the Hann filter. There was an overall fall in ventricular volumes with smoother filters with a mean difference of 13.98±10.15 ml (p<0.001) in EDV between the Butterworth-0.5 and Butterworth-0.3 filters. In conclusion, smoother reconstruction filters lead to lower volumes and higher ejection fractions with the QGS algorithm, with the Butterworth-0.4 filter giving the highest correlation with LVEFs from RNVG. Even if the optimal filter is chosen the uncertainty in the measured ejection fractions is still too great to be clinically acceptable. (author)

  13. Improving image quality for digital breast tomosynthesis: an automated detection and diffusion-based method for metal artifact reduction

    Science.gov (United States)

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Hadjiiski, Lubomir M.; Samala, Ravi K.

    2017-10-01

    In digital breast tomosynthesis (DBT), the high-attenuation metallic clips marking a previous biopsy site in the breast cause errors in the estimation of attenuation along the ray paths intersecting the markers during reconstruction, which result in interplane and inplane artifacts obscuring the visibility of subtle lesions. We proposed a new metal artifact reduction (MAR) method to improve image quality. Our method uses automatic detection and segmentation to generate a marker location map for each projection (PV). A voting technique based on the geometric correlation among different PVs is designed to reduce false positives (FPs) and to label the pixels on the PVs and the voxels in the imaged volume that represent the location and shape of the markers. An iterative diffusion method replaces the labeled pixels on the PVs with estimated tissue intensity from the neighboring regions while preserving the original pixel values in the neighboring regions. The inpainted PVs are then used for DBT reconstruction. The markers are repainted on the reconstructed DBT slices for radiologists’ information. The MAR method is independent of reconstruction techniques or acquisition geometry. For the training set, the method achieved 100% success rate with one FP in 19 views. For the test set, the success rate by view was 97.2% for core biopsy microclips and 66.7% for clusters of large post-lumpectomy markers with a total of 10 FPs in 58 views. All FPs were large dense benign calcifications that also generated artifacts if they were not corrected by MAR. For the views with successful detection, the metal artifacts were reduced to a level that was not visually apparent in the reconstructed slices. The visibility of breast lesions obscured by the reconstruction artifacts from the metallic markers was restored.

  14. Breast cancer screening with digital breast tomosynthesis.

    Science.gov (United States)

    Skaane, Per

    2017-01-01

    To give an overview of studies comparing full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) in breast cancer screening. The implementation of tomosynthesis in breast imaging is rapidly increasing world-wide. Experimental clinical studies of relevance for DBT screening have shown that tomosynthesis might have a great potential in breast cancer screening, although most of these retrospective reading studies are based on small populations, so that final conclusions are difficult to draw from individual reports. Several retrospective studies and three prospective trials on tomosynthesis in breast cancer screening have been published so far, confirming the great potential of DBT in mammography screening. The main results of these screening studies are presented. The retrospective screening studies from USA have all shown a significant decrease in the recall rate using DBT as adjunct to mammography. Most of these studies have also shown an increase in the cancer detection rate, and the non-significant results in some studies might be explained by a lack of statistical power. All the three prospective European trials have shown a significant increase in the cancer detection rate. The retrospective and the prospective screening studies comparing FFDM and DBT have all demonstrated that tomosynthesis has a great potential for improving breast cancer screening. DBT should be regarded as a better mammogram that could improve or overcome limitations of the conventional mammography, and tomosynthesis might be considered as the new technique in the next future of breast cancer screening.

  15. Self-masking noise subtraction (SMNS) in digital X-ray tomosynthesis for the improvement of tomographic image quality

    International Nuclear Information System (INIS)

    Oh, J.E.; Cho, H.S.; Choi, S.I.; Park, Y.O.; Lee, M.S.; Cho, H.M.; Yang, Y.J.; Je, U.K.; Woo, T.H.; Lee, H.K.

    2011-01-01

    In this paper, we proposed a simple and effective reconstruction algorithm, the so-called self-masking noise subtraction (SMNS), in digital X-ray tomosynthesis to reduce the tomographic blur that is inherent in the conventional tomosynthesis based upon the shift-and-add (SAA) method. Using the SAA and the SMNS algorithms, we investigated the influence of tomographic parameters such as tomographic angle (θ) and angle step (Δθ) on the image quality, measuring the signal-difference-to-noise ratio (SDNR). Our simulation results show that the proposed algorithm seems to be efficient in reducing the tomographic blur and, thus, improving image sharpness. We expect the simulation results to be useful for the optimal design of a digital X-ray tomosynthesis system for our ongoing application of nondestructive testing (NDT).

  16. Magnitude of Myocutaneous Flaps and Factors Associated With Loss of Volume in Oral Cancer Reconstructive Surgery.

    Science.gov (United States)

    Sakamoto, Yuki; Yanamoto, Souichi; Ota, Yoshihide; Furudoi, Shungo; Komori, Takahide; Umeda, Masahiro

    2016-03-01

    Myocutaneous flaps are often used to repair oral and maxillofacial defects after surgery for oral cancer; however, their volume decreases during the postoperative period. To facilitate treatment planning, the authors measured the extent of such postoperative flap volume loss and identified associated factors in patients who underwent oral reconstruction with myocutaneous flaps. The authors designed and performed a retrospective observational study of patients who underwent reconstructive procedures involving rectus abdominal myocutaneous (RAM) or pectoralis major myocutaneous (PMMC) flaps at Tokai University Hospital, Kobe University Hospital, or Nagasaki University Hospital from April 2009 through March 2013. Flap type and other clinical variables were examined as potential predictors of flap loss. The primary outcome was flap loss at 6 months postoperatively. Correlations between each potential predictor and the primary outcome were examined using multiple regression analysis. The subjects were 75 patients whose oral defects were reconstructed with RAM flaps (n = 57) or PMMC flaps (n = 18). RAM flaps exhibited a mean volume shrinkage of 22% at 6 months postoperatively, which was less than the 27.5% displayed by the PMMC flaps, but the difference was not important. Renal failure, previous surgery of the oral region, postoperative radiotherapy, and postoperative serum albumin level were found to be meaningful risk factors for postoperative flap volume loss. The results of this study suggest that larger flaps should be used in patients who possess these risk factors or are scheduled to undergo postoperative radiotherapy. Future studies should examine the utility of postoperative nutritional management for preventing flap volume loss. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Three-Dimensional Computer-Aided Detection of Microcalcification Clusters in Digital Breast Tomosynthesis

    Directory of Open Access Journals (Sweden)

    Ji-wook Jeong

    2016-01-01

    Full Text Available We propose computer-aided detection (CADe algorithm for microcalcification (MC clusters in reconstructed digital breast tomosynthesis (DBT images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%.

  18. 3D reconstruction from X-ray fluoroscopy for clinical veterinary medicine using differential volume rendering

    International Nuclear Information System (INIS)

    Khongsomboon, K.; Hamamoto, Kazuhiko; Kondo, Shozo

    2007-01-01

    3D reconstruction from ordinary X-ray equipment which is not CT or MRI is required in clinical veterinary medicine. Authors have already proposed a 3D reconstruction technique from X-ray photograph to present bone structure. Although the reconstruction is useful for veterinary medicine, the technique has two problems. One is about exposure of X-ray and the other is about data acquisition process. An x-ray equipment which is not special one but can solve the problems is X-ray fluoroscopy. Therefore, in this paper, we propose a method for 3D-reconstruction from X-ray fluoroscopy for clinical veterinary medicine. Fluoroscopy is usually used to observe a movement of organ or to identify a position of organ for surgery by weak X-ray intensity. Since fluoroscopy can output a observed result as movie, the previous two problems which are caused by use of X-ray photograph can be solved. However, a new problem arises due to weak X-ray intensity. Although fluoroscopy can present information of not only bone structure but soft tissues, the contrast is very low and it is very difficult to recognize some soft tissues. It is very useful to be able to observe not only bone structure but soft tissues clearly by ordinary X-ray equipment in the field of clinical veterinary medicine. To solve this problem, this paper proposes a new method to determine opacity in volume rendering process. The opacity is determined according to 3D differential coefficient of 3D reconstruction. This differential volume rendering can present a 3D structure image of multiple organs volumetrically and clearly for clinical veterinary medicine. This paper shows results of simulation and experimental investigation of small dog and evaluation by veterinarians. (author)

  19. Metal and calcification artifact reduction for digital breast tomosynthesis

    Science.gov (United States)

    Wicklein, Julia; Jerebko, Anna; Ritschl, Ludwig; Mertelmeier, Thomas

    2017-03-01

    Tomosynthesis images of the breast suffer from artifacts caused by the presence of highly absorbing materials. These can be either induced by metal objects like needles or clips inserted during biopsy devices, or larger calcifications inside the examined breast. Mainly two different kinds of artifacts appear after the filtered backprojection procedure. The first type is undershooting artifacts near edges of high-contrast objects caused by the filtering step. The second type is out-of-plane (ripple) artifacts that appear even in slices where the metal object or macrocalcifications does not exist. Due to the limited angular range of tomosynthesis systems, overlapping structures have high influence on neighboring regions. To overcome these problems, a segmentation of artifact introducing objects is performed on the projection images. Both projection versions, with and without high-contrast objects are filtered independently to avoid undershootings. During backprojection a decision is made for each reconstructed voxel, if it is artifact or high-contrast object. This is based on a mask image, gained from the segmentation of high-contrast objects. This procedure avoids undershooting artifacts and additionally reduces out-of-plane ripple. Results are demonstrated for different kinds of artifact inducing objects and calcifications.

  20. Iterative reconstruction technique with reduced volume CT dose index: diagnostic accuracy in pediatric acute appendicitis

    International Nuclear Information System (INIS)

    Didier, Ryne A.; Vajtai, Petra L.; Hopkins, Katharine L.

    2015-01-01

    Iterative reconstruction technique has been proposed as a means of reducing patient radiation dose in pediatric CT. Yet, the effect of such reductions on diagnostic accuracy has not been thoroughly evaluated. This study compares accuracy of diagnosing pediatric acute appendicitis using contrast-enhanced abdominopelvic CT scans performed with traditional pediatric weight-based protocols and filtered back projection reconstruction vs. a filtered back projection/iterative reconstruction technique blend with reduced volume CT dose index (CTDI vol ). Results of pediatric contrast-enhanced abdominopelvic CT scans done for pain and/or suspected appendicitis were reviewed in two groups: A, 192 scans performed with the hospital's established weight-based CT protocols and filtered back projection reconstruction; B, 194 scans performed with iterative reconstruction technique and reduced CTDI vol . Reduced CTDI vol was achieved primarily by reductions in effective tube current-time product (mAs eff ) and tube peak kilovoltage (kVp). CT interpretation was correlated with clinical follow-up and/or surgical pathology. CTDI vol , size-specific dose estimates (SSDE) and performance characteristics of the two CT techniques were then compared. Between groups A and B, mean CTDI vol was reduced by 45%, and mean SSDE was reduced by 46%. Sensitivity, specificity and diagnostic accuracy were 96%, 97% and 96% in group A vs. 100%, 99% and 99% in group B. Accuracy in diagnosing pediatric acute appendicitis was maintained in contrast-enhanced abdominopelvic CT scans that incorporated iterative reconstruction technique, despite reductions in mean CTDI vol and SSDE by nearly half as compared to the hospital's traditional weight-based protocols. (orig.)

  1. Iterative reconstruction technique with reduced volume CT dose index: diagnostic accuracy in pediatric acute appendicitis

    Energy Technology Data Exchange (ETDEWEB)

    Didier, Ryne A. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Vajtai, Petra L. [Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States); Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Hopkins, Katharine L. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States)

    2014-07-05

    Iterative reconstruction technique has been proposed as a means of reducing patient radiation dose in pediatric CT. Yet, the effect of such reductions on diagnostic accuracy has not been thoroughly evaluated. This study compares accuracy of diagnosing pediatric acute appendicitis using contrast-enhanced abdominopelvic CT scans performed with traditional pediatric weight-based protocols and filtered back projection reconstruction vs. a filtered back projection/iterative reconstruction technique blend with reduced volume CT dose index (CTDI{sub vol}). Results of pediatric contrast-enhanced abdominopelvic CT scans done for pain and/or suspected appendicitis were reviewed in two groups: A, 192 scans performed with the hospital's established weight-based CT protocols and filtered back projection reconstruction; B, 194 scans performed with iterative reconstruction technique and reduced CTDI{sub vol}. Reduced CTDI{sub vol} was achieved primarily by reductions in effective tube current-time product (mAs{sub eff}) and tube peak kilovoltage (kVp). CT interpretation was correlated with clinical follow-up and/or surgical pathology. CTDI{sub vol}, size-specific dose estimates (SSDE) and performance characteristics of the two CT techniques were then compared. Between groups A and B, mean CTDI{sub vol} was reduced by 45%, and mean SSDE was reduced by 46%. Sensitivity, specificity and diagnostic accuracy were 96%, 97% and 96% in group A vs. 100%, 99% and 99% in group B. Accuracy in diagnosing pediatric acute appendicitis was maintained in contrast-enhanced abdominopelvic CT scans that incorporated iterative reconstruction technique, despite reductions in mean CTDI{sub vol} and SSDE by nearly half as compared to the hospital's traditional weight-based protocols. (orig.)

  2. The effects of computed tomography with iterative reconstruction on solid pulmonary nodule volume quantification.

    Directory of Open Access Journals (Sweden)

    Martin J Willemink

    Full Text Available BACKGROUND: The objectives of this study were to evaluate the influence of iterative reconstruction (IR on pulmonary nodule volumetry with chest computed tomography (CT. METHODS: Twenty patients (12 women and 8 men, mean age 61.9, range 32-87 underwent evaluation of pulmonary nodules with a 64-slice CT-scanner. Data were reconstructed using filtered back projection (FBP and IR (Philips Healthcare, iDose(4-levels 2, 4 and 6 at similar radiation dose. Volumetric nodule measurements were performed with semi-automatic software on thin slice reconstructions. Only solid pulmonary nodules were measured, no additional selection criteria were used for the nature of nodules. For intra-observer and inter-observer variability, measurements were performed once by one observer and twice by another observer. Algorithms were compared using the concordance correlation-coefficient (pc and Friedman-test, and post-hoc analysis with the Wilcoxon-signed ranks-test with Bonferroni-correction (significance-level p<0.017. RESULTS: Seventy-eight nodules were present including 56 small nodules (volume<200 mm(3, diameter<8 mm and 22 large nodules (volume≥200 mm(3, diameter≥8 mm. No significant differences in measured pulmonary nodule volumes between FBP, iDose(4-levels 2, 4 and 6 were found in both small nodules and large nodules. FBP and iDose(4-levels 2, 4 and 6 were correlated with pc-values of 0.98 or higher for both small and large nodules. Pc-values of intra-observer and inter-observer variability were 0.98 or higher. CONCLUSIONS: Measurements of solid pulmonary nodule volume measured with standard-FBP were comparable with IR, regardless of the IR-level and no significant differences between measured volumes of both small and large solid nodules were found.

  3. Determination of quantitative tissue composition by iterative reconstruction on 3D DECT volumes

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Maria [Linkoeping Univ. (Sweden). Dept. of Electrical Engineering; Linkoeping Univ. (Sweden). Dept. of Medical and Health Sciences, Radiation Physics; Linkoeping Univ. (Sweden). Center for Medical Image Science and Visualization (CMIV); Malusek, Alexandr [Linkoeping Univ. (Sweden). Dept. of Medical and Health Sciences, Radiation Physics; Linkoeping Univ. (Sweden). Center for Medical Image Science and Visualization (CMIV); Nuclear Physics Institute AS CR, Prague (Czech Republic). Dept. of Radiation Dosimetry; Muhammad, Arif [Linkoeping Univ. (Sweden). Dept. of Medical and Health Sciences, Radiation Physics; Carlsson, Gudrun Alm [Linkoeping Univ. (Sweden). Dept. of Medical and Health Sciences, Radiation Physics; Linkoeping Univ. (Sweden). Center for Medical Image Science and Visualization (CMIV)

    2011-07-01

    Quantitative tissue classification using dual-energy CT has the potential to improve accuracy in radiation therapy dose planning as it provides more information about material composition of scanned objects than the currently used methods based on single-energy CT. One problem that hinders successful application of both single- and dual-energy CT is the presence of beam hardening and scatter artifacts in reconstructed data. Current pre- and post-correction methods used for image reconstruction often bias CT attenuation values and thus limit their applicability for quantitative tissue classification. Here we demonstrate simulation studies with a novel iterative algorithm that decomposes every soft tissue voxel into three base materials: water, protein, and adipose. The results demonstrate that beam hardening artifacts can effectively be removed and accurate estimation of mass fractions of each base material can be achieved. Our iterative algorithm starts with calculating parallel projections on two previously reconstructed DECT volumes reconstructed from fan-beam or helical projections with small conebeam angle. The parallel projections are then used in an iterative loop. Future developments include segmentation of soft and bone tissue and subsequent determination of bone composition. (orig.)

  4. kV x-ray dual digital tomosynthesis for image guided lung SBRT

    Science.gov (United States)

    Partain, Larry; Boyd, Douglas; Kim, Namho; Hernandez, Andrew; Daly, Megan; Boone, John

    2016-03-01

    Two simulated sets of digital tomosynthesis images of the lungs, each acquired at a 90 degree angle from the other, with 19 projection images used for each set and SART iterative reconstructed, gives dual tomosynthesis slice image quality approaching that of spiral CT, and with a data acquisition time that is 3% of that of cone beam CT. This fast kV acquisition, should allow near real time tracking of lung tumors in patients receiving SBRT, based on a novel TumoTrakTM multi-source X-ray tube design. Until this TumoTrakTM prototype is completed over the next year, its projected performance was simulated from the DRR images created from a spiral CT data set from a lung cancer patient. The resulting dual digital tomosynthesis reconstructed images of the lung tumor were exceptional and approached that of the gold standard Feldkamp CT reconstruction of breath hold, diagnostic, spiral, multirow, CT data. The relative dose at 46 mAs was less than 10% of what it would have been if the digital tomosynthesis had been done at the 472 mAs of the CT data set. This is for a 0.77 fps imaging rate sufficient to resolve respiratory motion in many free breathing patients during SBRT. Such image guidance could decrease the magnitudes of targeting error margins by as much as 20 mm or more in the craniocaudal direction for lower lobe lesions while markedly reducing dose to normal lung, heart and other critical structures. These initial results suggest a wide range of topics for future work.

  5. Quality control in breast tomosynthesis

    International Nuclear Information System (INIS)

    Jakubiak, Rosangela Requi; Messias, Pricila Cordeiro; Santos, Marilia Fernanda; Urban, Linei Augusta B.D.

    2014-01-01

    In Brazil breast cancer is the most common and the leading cause of death among women, with estimated 57,000 new cases in 2014. The mammography (2D) plays an important role in the early detection of breast cancer, but in some cases can be difficult to detect malignant lesions due overlap of breast tissues. The Breast Digital Tomosynthesis (BDT: 3D) reduces the effects of overlap, providing improved characterization of mammographic findings. However, the dose may double as compared to the mammography. This study presents results of Contrast Ratio Noise tests (CRN) and quality image on a Siemens mammography equipment Mammomat Inspiration with tomosynthesis. The CRN was determined with plates Polymethylmethacrylate (PMMA) of 20 to 70 mm thickness and an aluminum plate of 10 mm 2 and 0.2 mm thickness. Image quality was assessed with the ACR Breast Simulator. In assessment of image quality, the detectability of fibers and masses was identical in 2D and 3D systems. Were visualized 4.5 fibers and 4 mass in both modes. In 2D mode groups have been identified 3.5 microcalcifications, and 3D were 3 groups. The Mean Glandular Dose for the simulator in 2D mode was 1.17 mGy and 2.35 mGy for the 3D mode. The result reinforces the importance of quality control in the process of obtaining the images and obtained in accordance CRN values, ensuring image quality and dose compatible in 2D and 3D processes

  6. Quality control in breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jakubiak, R.R.; Messias, P.C.; Santos, M.F., E-mail: requi@utfpr.edu.br [Universidade Tecnologia Federal do Parana (UTFPR), Curitiba, PR (Brazil). Departamento Academico de Fisica; Urban, L.A.B.D., E-mail: lineiurban@hotmail.com [Diagnostico Avancado por Imagem, Curitiba, PR (Brazil)

    2015-07-01

    In Brazil, breast cancer is the most common and the leading cause of death among women, with estimated 57,000 new cases in 2014. The mammography (2D) plays an important role in the early detection of breast cancer, but in some cases can be difficult to detect malignant lesions due overlap of breast tissues. The Digital Breasts Tomosynthesis (DBT: 3D) reduces the effects of overlap, providing improved characterization of mammographic findings. However, the dose may double as compared with mammography. This study presents results of Contrast to Noise Ratio (CNR) and image quality evaluation on Siemens mammography equipment Mammomat Inspiration with tomosynthesis. The CNR was determined with Polymethylmethacrylate (PMMA) layers of 20 to 70 mm thick and an aluminum foils of 0,2 mm thickness and area of 10 mm². Image quality was assessed with the ACR Breast Simulator. In the evaluation of image quality, the detectability of fibers and masses was identical in 2D and 3D systems. Displaying fibers were 4,5 and 4 mass in both modes. In 2D mode were identified 3,5 microcalcifications groups, and 3D showed 3 groups. The Mean Glandular Dose (MGD) for the simulator in 2D mode was 1,17 mGy and 2,35 mGy for the 3D mode. The result reinforces the importance of quality control in the process of obtaining the images and obtained in accordance CNR values, ensuring image quality and compatible dose in 2D and 3D processes. (author)

  7. Quality control in breast tomosynthesis

    International Nuclear Information System (INIS)

    Jakubiak, R.R.; Messias, P.C.; Santos, M.F.

    2015-01-01

    In Brazil, breast cancer is the most common and the leading cause of death among women, with estimated 57,000 new cases in 2014. The mammography (2D) plays an important role in the early detection of breast cancer, but in some cases can be difficult to detect malignant lesions due overlap of breast tissues. The Digital Breasts Tomosynthesis (DBT: 3D) reduces the effects of overlap, providing improved characterization of mammographic findings. However, the dose may double as compared with mammography. This study presents results of Contrast to Noise Ratio (CNR) and image quality evaluation on Siemens mammography equipment Mammomat Inspiration with tomosynthesis. The CNR was determined with Polymethylmethacrylate (PMMA) layers of 20 to 70 mm thick and an aluminum foils of 0,2 mm thickness and area of 10 mm². Image quality was assessed with the ACR Breast Simulator. In the evaluation of image quality, the detectability of fibers and masses was identical in 2D and 3D systems. Displaying fibers were 4,5 and 4 mass in both modes. In 2D mode were identified 3,5 microcalcifications groups, and 3D showed 3 groups. The Mean Glandular Dose (MGD) for the simulator in 2D mode was 1,17 mGy and 2,35 mGy for the 3D mode. The result reinforces the importance of quality control in the process of obtaining the images and obtained in accordance CNR values, ensuring image quality and compatible dose in 2D and 3D processes. (author)

  8. PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI.

    Science.gov (United States)

    Alansary, Amir; Rajchl, Martin; McDonagh, Steven G; Murgasova, Maria; Damodaram, Mellisa; Lloyd, David F A; Davidson, Alice; Rutherford, Mary; Hajnal, Joseph V; Rueckert, Daniel; Kainz, Bernhard

    2017-10-01

    In this paper, we present a novel method for the correction of motion artifacts that are present in fetal magnetic resonance imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible anatomical enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a specific amount of redundant information that is exploited with parallelized patchwise optimization, super-resolution, and automatic outlier rejection. We further describe and provide an efficient parallel implementation of PVR allowing its execution within reasonable time on commercially available graphics processing units, enabling its use in the clinical practice. We evaluate PVR's computational overhead compared with standard methods and observe improved reconstruction accuracy in the presence of affine motion artifacts compared with conventional SVR in synthetic experiments. Furthermore, we have evaluated our method qualitatively and quantitatively on real fetal MRI data subject to maternal breathing and sudden fetal movements. We evaluate peak-signal-to-noise ratio, structural similarity index, and cross correlation with respect to the originally acquired data and provide a method for visual inspection of reconstruction uncertainty. We further evaluate the distance error for selected anatomical landmarks in the fetal head, as well as calculating the mean and maximum displacements resulting from automatic non-rigid registration to a motion-free ground truth image. These experiments demonstrate a successful application of PVR motion compensation to the whole fetal body, uterus, and placenta.

  9. Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography-guided radiation therapy.

    Science.gov (United States)

    Ahmad, Moiz; Balter, Peter; Pan, Tinsu

    2011-10-01

    Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4-6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3-8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction shows a motion blur of 13 mm

  10. A software-based x-ray scatter correction method for breast tomosynthesis

    International Nuclear Information System (INIS)

    Jia Feng, Steve Si; Sechopoulos, Ioannis

    2011-01-01

    Purpose: To develop a software-based scatter correction method for digital breast tomosynthesis (DBT) imaging and investigate its impact on the image quality of tomosynthesis reconstructions of both phantoms and patients. Methods: A Monte Carlo (MC) simulation of x-ray scatter, with geometry matching that of the cranio-caudal (CC) view of a DBT clinical prototype, was developed using the Geant4 toolkit and used to generate maps of the scatter-to-primary ratio (SPR) of a number of homogeneous standard-shaped breasts of varying sizes. Dimension-matched SPR maps were then deformed and registered to DBT acquisition projections, allowing for the estimation of the primary x-ray signal acquired by the imaging system. Noise filtering of the estimated projections was then performed to reduce the impact of the quantum noise of the x-ray scatter. Three dimensional (3D) reconstruction was then performed using the maximum likelihood-expectation maximization (MLEM) method. This process was tested on acquisitions of a heterogeneous 50/50 adipose/glandular tomosynthesis phantom with embedded masses, fibers, and microcalcifications and on acquisitions of patients. The image quality of the reconstructions of the scatter-corrected and uncorrected projections was analyzed by studying the signal-difference-to-noise ratio (SDNR), the integral of the signal in each mass lesion (integrated mass signal, IMS), and the modulation transfer function (MTF). Results: The reconstructions of the scatter-corrected projections demonstrated superior image quality. The SDNR of masses embedded in a 5 cm thick tomosynthesis phantom improved 60%-66%, while the SDNR of the smallest mass in an 8 cm thick phantom improved by 59% (p < 0.01). The IMS of the masses in the 5 cm thick phantom also improved by 15%-29%, while the IMS of the masses in the 8 cm thick phantom improved by 26%-62% (p < 0.01). Some embedded microcalcifications in the tomosynthesis phantoms were visible only in the scatter

  11. Pulmonary nodule size evaluation with chest tomosynthesis.

    Science.gov (United States)

    Johnsson, Åse A; Fagman, Erika; Vikgren, Jenny; Fisichella, Valeria A; Boijsen, Marianne; Flinck, Agneta; Kheddache, Susanne; Svalkvist, Angelica; Båth, Magnus

    2012-10-01

    To evaluate intra- and interobserver variability, as well as agreement for nodule size measurements on chest tomosynthesis and computed tomographic (CT) images. The Regional Ethical Review Board approved this study, and all participants gave written informed consent. Thirty-six segmented nodules in 20 patients were included in the study. Eight observers measured the left-to-right, inferior-to-superior, and longest nodule diameters on chest tomosynthesis and CT images. Intra- and interobserver repeatability, as well as agreement between measurements on chest tomosynthesis and CT images, were assessed as recommended by Bland and Altman. The difference between the mean manual and the segmented diameter was -2.2 and -2.3 mm for left-to-right and -2.6 and -2.2 mm for the inferior-to-superior diameter for measurements on chest tomosynthesis and CT images, respectively. Intraobserver 95% limits of agreement (LOA) for the longest diameter ranged from a lower limit of -1.1 mm and an upper limit of 1.0 mm to -1.8 and 1.8 mm for chest tomosynthesis and from -0.6 and 0.9 mm to -3.1 and 2.2 mm for axial CT. Interobserver 95% LOA ranged from -1.3 and 1.5 mm to -2.0 and 2.1 mm for chest tomosynthesis and from -1.8 and 1.1 mm to -2.2 and 3.1 mm for axial CT. The 95% LOA concerning the mean of the observers' measurements of the longest diameter at chest tomosynthesis and axial CT were ±2.1 mm (mean measurement error, 0 mm). For the different observers, the 95% LOA between the modalities ranged from -2.2 and 1.6 mm to -3.2 and 2.8 mm. Measurements on chest tomosynthesis and CT images are comparable, because there is no evident bias between the modalities and the repeatability is similar. The LOA between measurements for the two modalities raise concern if measurements from chest tomosynthesis and CT were to be used interchangeably. © RSNA, 2012.

  12. Investigation of the dosimetry of chest tomosynthesis

    Science.gov (United States)

    Svalkvist, Angelica; Zachrisson, Sara; Månsson, Lars Gunnar; Båth, Magnus

    2009-02-01

    Chest tomosynthesis has recently been introduced to healthcare as a low-dose alternative to CT or as a tool for improved diagnostics in chest radiography with only a modest increase in radiation dose to the patient. However, no detailed description of the dosimetry for this type of examination has been presented. The aim of this work was therefore to investigate the dosimetry of chest tomosynthesis. The chest tomosynthesis examination was assumed to be performed using a stationary detector and a vertically moving x-ray tube, exposing the patient from different angles. The Monte Carlo based computer software PCXMC was used to determine the effective dose delivered to a standard-sized patient from various angles using different assumptions of the distribution of the effective dose over the different projections. The obtained conversion factors between input dose measures and effective dose for chest tomosynthesis for different angular intervals were then compared with the horizontal projection. The results indicate that the error introduced by using conversion factors for the PA projection in chest radiography for estimating the effective dose of chest tomosynthesis is small for normally sized patients, especially if a conversion factor between KAP and effective dose is used.

  13. Matrix inversion tomosynthesis improvements in longitudinal x-ray slice imaging

    International Nuclear Information System (INIS)

    Dobbines, J.T. III.

    1990-01-01

    This patent describes a tomosynthesis apparatus. It comprises: an x-ray tomography machine for producing a plurality of x-ray projection images of a subject including an x-ray source, and detection means; and processing means, connected to receive the plurality of projection images, for: shifting and reconstructing the projection x-ray images to obtain a tomosynthesis matrix of images T; acquiring a blurring matrix F having components which represent out-of-focus and in-focus components of the matrix T; obtaining a matrix P representing only in-focus components of the imaged subject by solving a matrix equation including the matrix T and the matrix F; correcting the matrix P for low spatial frequency components; and displaying images indicative of contents of the matrix P

  14. Imaging and quantification of anomaly volume using an eight-electrode 'hemiarray' EIT reconstruction method.

    Science.gov (United States)

    Sadleir, R J; Zhang, S U; Tucker, A S; Oh, Sungho

    2008-08-01

    Electrical impedance tomography (EIT) is particularly well-suited to applications where its portability, rapid acquisition speed and sensitivity give it a practical advantage over other monitoring or imaging systems. An EIT system's patient interface can potentially be adapted to match the target environment, and thereby increase its utility. It may thus be appropriate to use different electrode positions from those conventionally used in EIT in these cases. One application that may require this is the use of EIT on emergency medicine patients; in particular those who have suffered blunt abdominal trauma. In patients who have suffered major trauma, it is desirable to minimize the risk of spinal cord injury by avoiding lifting them. To adapt EIT to this requirement, we devised and evaluated a new electrode topology (the 'hemiarray') which comprises a set of eight electrodes placed only on the subject's anterior surface. Images were obtained using a two-dimensional sensitivity matrix and weighted singular value decomposition reconstruction. The hemiarray method's ability to quantify bleeding was evaluated by comparing its performance with conventional 2D reconstruction methods using data gathered from a saline phantom. We found that without applying corrections to reconstructed images it was possible to estimate blood volume in a two-dimensional hemiarray case with an uncertainty of around 27 ml. In an approximately 3D hemiarray case, volume prediction was possible with a maximum uncertainty of around 38 ml in the centre of the electrode plane. After application of a QI normalizing filter, average uncertainties in a two-dimensional hemiarray case were reduced to about 15 ml. Uncertainties in the approximate 3D case were reduced to about 30 ml.

  15. Tomo-synthesis. Bibliographic study report

    International Nuclear Information System (INIS)

    2016-01-01

    Tomo-synthesis is a recent technique for breast imaging. This technique, qualified as 'pseudo-3D', draws the attention of health professionals. Indeed, this technique could offer a gain in sensibility and in specificity in the detection of breast cancers compared to 2D mammography, thanks to the reduction of the tissues' overlapping in particular. Although its place and its clinical indication are not still clearly defined, tomo-synthesis is already used in France. The introduction of this technique within the national breast cancer screening program, seems to be foreseen by the authorities in the coming years. IRSN, in the scope of its mission of evaluation of the dose impact of innovative techniques, is closely interested in this technique and has proceeded in 2015 to a bibliographical review of the state of the art in tomo-synthesis. This review paid specific attention to the following points: conception of the installations, dose, image quality and quality control. it has highlighted several points of attention, which incite IRSN to formulate certain recommendations to accompany the spreading of this new technique in France. Most of the clinical trials validating the use of tomo-synthesis were realized on systems of a single manufacturer. However, manufacturers' strategies of design are heterogeneous. There is no unique technique of tomo-synthesis but several, of which equivalence in terms of technical and clinical performances is not demonstrated. Due to the heterogeneity of the different models available on the French market, IRSN recommends not to extrapolate the results of clinical studies obtained on a specific system but to consolidate them for all the available systems. In many imaging departments, tomo-synthesis is already implemented in addition or in substitution of 2D mammography without any regulatory quality control and periodic technical checks. The European reference standard for quality control of these devices is not yet

  16. Digital tomosynthesis of the chest: A literature review

    International Nuclear Information System (INIS)

    Molk, N.; Seeram, E.

    2015-01-01

    Digital tomosynthesis is a relatively novel imaging modality using limited angle tomography to provide 3D imaging. The purpose of this review is to compare the sensitivity of digital tomosynthesis of the chest and plain film chest imaging in accurately identifying pulmonary nodules and to compare the effective dose between standard chest examinations using digital tomosynthesis and CT. A review of current literature has shown that small scale studies found digital tomosynthesis to be three times more effective in identifying pulmonary nodules compared to conventional radiography and at lower doses compared with routine chest CT examinations. This indicates that tomosynthesis could potentially be a beneficial imaging modality and could be used in a number of ways to detect and monitor pulmonary nodules for cancer. However with limited research, large-scale studies would need to be performed to confirm its benefits and identify where it is best used in the clinical setting. - Highlights: • The detection of pulmonary nodules is compared between tomosynthesis and plain film. • The effective dose of digital chest tomosynthesis and chest CT are compared. • The place of digital tomosynthesis of the chest in the clinical setting is explored. • Three times more pulmonary nodules are seen with tomosynthesis. • The effective dose of tomosynthesis is significantly lower than CT

  17. Evaluation of the reconstruction method and effect of partial volume in brain scintiscanning

    International Nuclear Information System (INIS)

    Pinheiro, Monica Araujo

    2016-01-01

    Alzheimer's disease is a neurodegenerative disorder, on which occurs a progressive and irreversible destruction of neurons. According to the World Health Organization (WHO) 35.6 million people are living with dementia, being recommended that governments prioritize early diagnosis techniques. Laboratory and psychological tests for cognitive assessment are conducted and further complemented by neurological imaging from nuclear medicine exams in order to establish an accurate diagnosis. The image quality evaluation and reconstruction process effects are important tools in clinical routine. In the present work, these quality parameters were studied, and the effects of partial volume (PVE) for lesions of different sizes and geometries that are attributed to the limited resolution of the equipment. In dementia diagnosis, this effect can be confused with intake losses due to cerebral cortex atrophy. The evaluation was conducted by two phantoms of different shapes as suggested by (a) American College of Radiology (ACR) and (b) National Electrical Manufacturers Association (NEMA) for Contrast, Contrast-to-Noise Ratio (CNR) and Recovery Coefficient (RC) calculation versus lesions shape and size. Technetium-99m radionuclide was used in a local brain scintigraphy protocol, for proportions lesion to background of 2:1, 4:1, 6:1, 8:1 and 10:1. Fourteen reconstruction methods were used for each concentration applying different filters and algorithms. Before the analysis of all image properties, the conclusion is that the predominant effect is the partial volume, leading to errors of measurement of more than 80%. Furthermore, it was demonstrate that the most effective method of reconstruction is FBP with Metz filter, providing better contrast and contrast to noise ratio results. In addition, this method shows the best Recovery Coefficients correction for each lesion. The ACR phantom showed the best results assigned to a more precise reconstruction of a cylinder, which does not

  18. Improved dose–volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    International Nuclear Information System (INIS)

    Cheng Lishui; Hobbs, Robert F; Sgouros, George; Frey, Eric C; Segars, Paul W

    2013-01-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose–volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator–detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  19. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    Science.gov (United States)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  20. MO-DE-209-04: Radiation Dosimetry in Breast Tomosynthesis

    International Nuclear Information System (INIS)

    Sechopoulos, I.

    2016-01-01

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support

  1. MO-DE-209-04: Radiation Dosimetry in Breast Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, I. [Radboud University Medical Centre (Netherlands)

    2016-06-15

    Digital Breast Tomosynthesis (DBT) is rapidly replacing mammography as the standard of care in breast cancer screening and diagnosis. DBT is a form of computed tomography, in which a limited set of projection images are acquired over a small angular range and reconstructed into tomographic data. The angular range varies from 15° to 50° and the number of projections varies between 9 and 25 projections, as determined by the equipment manufacturer. It is equally valid to treat DBT as the digital analog of classical tomography – that is, linear tomography. In fact, the name “tomosynthesis” stands for “synthetic tomography.” DBT shares many common features with classical tomography, including the radiographic appearance, dose, and image quality considerations. As such, both the science and practical physics of DBT systems is a hybrid between computed tomography and classical tomographic methods. In this lecture, we will explore the continuum from radiography to computed tomography to illustrate the characteristics of DBT. This lecture will consist of four presentations that will provide a complete overview of DBT, including a review of the fundamentals of DBT acquisition, a discussion of DBT reconstruction methods, an overview of dosimetry for DBT systems, and summary of the underlying image theory of DBT thereby relating image quality and dose. Learning Objectives: To understand the fundamental principles behind tomosynthesis image acquisition. To understand the fundamentals of tomosynthesis image reconstruction. To learn the determinants of image quality and dose in DBT, including measurement techniques. To learn the image theory underlying tomosynthesis, and the relationship between dose and image quality. ADM is a consultant to, and holds stock in, Real Time Tomography, LLC. ADM receives research support from Hologic Inc., Analogic Inc., and Barco NV.; ADM is a member of the Scientific Advisory Board for Gamma Medica Inc.; A. Maidment, Research Support

  2. Characterization of a high-energy in-line phase contrast tomosynthesis prototype.

    Science.gov (United States)

    Wu, Di; Yan, Aimin; Li, Yuhua; Wong, Molly D; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2015-05-01

    In this research, a high-energy in-line phase contrast tomosynthesis prototype was developed and characterized through quantitative investigations and phantom studies. The prototype system consists of an x-ray source, a motorized rotation stage, and a CMOS detector with a pixel pitch of 0.05 mm. The x-ray source was operated at 120 kVp for this study, and the objects were mounted on the rotation stage 76.2 cm (R1) from the source and 114.3 cm (R2) from the detector. The large air gap between the object and detector guarantees sufficient phase-shift effects. The quantitative evaluation of this prototype included modulation transfer function and noise power spectrum measurements conducted under both projection mode and tomosynthesis mode. Phantom studies were performed including three custom designed phantoms with complex structures: a five-layer bubble wrap phantom, a fishbone phantom, and a chicken breast phantom with embedded fibrils and mass structures extracted from an ACR phantom. In-plane images of the phantoms were acquired to investigate their image qualities through observation, intensity profile plots, edge enhancement evaluations, and/or contrast-to-noise ratio calculations. In addition, the robust phase-attenuation duality (PAD)-based phase retrieval method was applied to tomosynthesis for the first time in this research. It was utilized as a preprocessing method to fully exhibit phase contrast on the angular projection before reconstruction. The resolution and noise characteristics of this high-energy in-line phase contrast tomosynthesis prototype were successfully investigated and demonstrated. The phantom studies demonstrated that this imaging prototype can successfully remove the structure overlapping in phantom projections, obtain delineate interfaces, and achieve better contrast-to-noise ratio after applying phase retrieval to the angular projections. This research successfully demonstrated a high-energy in-line phase contrast tomosynthesis

  3. Anatomical decomposition in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Lung cancer is the leading cause of cancer death worldwide and the early diagnosis of lung cancer has recently become more important. For early screening lung cancer, computed tomography (CT) has been used as a gold standard for early diagnosis of lung cancer [1]. The major advantage of CT is that it is not susceptible to the problem of misdiagnosis caused by anatomical overlapping while CT has extremely high radiation dose and cost compared to chest radiography. Chest digital tomosynthesis (CDT) is a recently introduced new modality for lung cancer screening with relatively low radiation dose compared to CT [2] and also showing high sensitivity and specificity to prevent anatomical overlapping occurred in chest radiography. Dual energy material decomposition method has been proposed for better detection of pulmonary nodules as means of reducing the anatomical noise [3]. In this study, possibility of material decomposition in CDT was tested by simulation study and actual experiment using prototype CDT. Furthermore organ absorbed dose and effective dose were compared with single energy CDT. The Gate v6 (Geant4 application for tomographic emission), and TASMIP (Tungsten anode spectral model using the interpolating polynomial) code were used for simulation study and simulated cylinder shape phantom consisted of 4 inner beads which were filled with spine, rib, muscle and lung equivalent materials. The patient dose was estimated by PCXMC 1.5 Monte Carlo simulation tool [4]. The tomosynthesis scan was performed with a linear movement and 21 projection images were obtained over 30 degree of angular range with 1.5° degree of angular interval. The proto type CDT system has same geometry with simulation study and composed of E7869X (Toshiba, Japan) x-ray tube and FDX3543RPW (Toshiba, Japan) detector. The result images showed that reconstructed with dual energy clearly visualize lung filed by removing unnecessary bony structure. Furthermore, dual energy CDT could enhance

  4. Position and volume estimation of atmospheric nuclear detonations from video reconstruction

    Science.gov (United States)

    Schmitt, Daniel T.

    Recent work in digitizing films of foundational atmospheric nuclear detonations from the 1950s provides an opportunity to perform deeper analysis on these historical tests. This work leverages multi-view geometry and computer vision techniques to provide an automated means to perform three-dimensional analysis of the blasts for several points in time. The accomplishment of this requires careful alignment of the films in time, detection of features in the images, matching of features, and multi-view reconstruction. Sub-explosion features can be detected with a 67% hit rate and 22% false alarm rate. Hotspot features can be detected with a 71.95% hit rate, 86.03% precision and a 0.015% false positive rate. Detected hotspots are matched across 57-109 degree viewpoints with 76.63% average correct matching by defining their location relative to the center of the explosion, rotating them to the alternative viewpoint, and matching them collectively. When 3D reconstruction is applied to the hotspot matching it completes an automated process that has been used to create 168 3D point clouds with 31.6 points per reconstruction with each point having an accuracy of 0.62 meters with 0.35, 0.24, and 0.34 meters of accuracy in the x-, y- and z-direction respectively. As a demonstration of using the point clouds for analysis, volumes are estimated and shown to be consistent with radius-based models and in some cases improve on the level of uncertainty in the yield calculation.

  5. First experiences with model based iterative reconstructions influence on quantitative plaque volume and intensity measurements in coronary computed tomography angiography

    International Nuclear Information System (INIS)

    Precht, H.; Kitslaar, P.H.; Broersen, A.; Gerke, O.; Dijkstra, J.; Thygesen, J.; Egstrup, K.; Lambrechtsen, J.

    2017-01-01

    Purpose: Investigate the influence of adaptive statistical iterative reconstruction (ASIR) and the model-based IR (Veo) reconstruction algorithm in coronary computed tomography angiography (CCTA) images on quantitative measurements in coronary arteries for plaque volumes and intensities. Methods: Three patients had three independent dose reduced CCTA performed and reconstructed with 30% ASIR (CTDI vol at 6.7 mGy), 60% ASIR (CTDI vol 4.3 mGy) and Veo (CTDI vol at 1.9 mGy). Coronary plaque analysis was performed for each measured CCTA volumes, plaque burden and intensities. Results: Plaque volume and plaque burden show a decreasing tendency from ASIR to Veo as median volume for ASIR is 314 mm 3 and 337 mm 3 –252 mm 3 for Veo and plaque burden is 42% and 44% for ASIR to 39% for Veo. The lumen and vessel volume decrease slightly from 30% ASIR to 60% ASIR with 498 mm 3 –391 mm 3 for lumen volume and vessel volume from 939 mm 3 to 830 mm 3 . The intensities did not change overall between the different reconstructions for either lumen or plaque. Conclusion: We found a tendency of decreasing plaque volumes and plaque burden but no change in intensities with the use of low dose Veo CCTA (1.9 mGy) compared to dose reduced ASIR CCTA (6.7 mGy & 4.3 mGy), although more studies are warranted. - Highlights: • Veo decrease plaque volumes and plaque burden using low-dose CCTA. • Moving from ASIR 30%, ASIR 60% to Veo did not appear to influence the plaque intensities. • Studies including larger sample size are needed to investigate the effect on plaque.

  6. Adaptive statistical iterative reconstruction for volume-rendered computed tomography portovenography. Improvement of image quality

    International Nuclear Information System (INIS)

    Matsuda, Izuru; Hanaoka, Shohei; Akahane, Masaaki

    2010-01-01

    Adaptive statistical iterative reconstruction (ASIR) is a reconstruction technique for computed tomography (CT) that reduces image noise. The purpose of our study was to investigate whether ASIR improves the quality of volume-rendered (VR) CT portovenography. Institutional review board approval, with waived consent, was obtained. A total of 19 patients (12 men, 7 women; mean age 69.0 years; range 25-82 years) suspected of having liver lesions underwent three-phase enhanced CT. VR image sets were prepared with both the conventional method and ASIR. The required time to make VR images was recorded. Two radiologists performed independent qualitative evaluations of the image sets. The Wilcoxon signed-rank test was used for statistical analysis. Contrast-noise ratios (CNRs) of the portal and hepatic vein were also evaluated. Overall image quality was significantly improved by ASIR (P<0.0001 and P=0.0155 for each radiologist). ASIR enhanced CNRs of the portal and hepatic vein significantly (P<0.0001). The time required to create VR images was significantly shorter with ASIR (84.7 vs. 117.1 s; P=0.014). ASIR enhances CNRs and improves image quality in VR CT portovenography. It also shortens the time required to create liver VR CT portovenographs. (author)

  7. Estimation of the average glandular dose on a team of tomosynthesis; Estimacion de la dosis glandular media en un equipo de tomosintesis

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Martinez, L. M. R.; Sanchez Jimenez, J.; Pizarro trigo, F.

    2013-07-01

    Seeking to improve the information that gives us an image of mammography the manufacturers have implemented tomosynthesis. With this method of acquisition and reconstruction of image we went from having a 2D to a 3D image image, in such a way that it reduces or eliminates the effect of overlap of tissues. The estimate of the dose, which is always a fundamental parameter in the control of quality of radiology equipment, is more in the case of mammography by the radiosensitivity of this body and the frequency of their use. The objective of this work is the determination of the mean in a team glandular dose of with tomosynthesis mammography. (Author)

  8. Practical applications of digital tomosynthesis of the chest.

    Science.gov (United States)

    Galea, A; Durran, A; Adlan, T; Gay, D; Riordan, R; Dubbins, P; Williams, M P

    2014-04-01

    Digital tomosynthesis is a radiographic technique that generates a number of coronal raw images of a patient from a single pass of the x-ray tube. Tomosynthesis provides some of the tomographic benefits of computed tomography (CT), but at a much lower dose of radiation and cost when compared to CT. This review illustrates the range of practical applications of digital tomosynthesis of the chest. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  9. Dose to patient in tomosynthesis; Dosis a paciente en tomosintesis

    Energy Technology Data Exchange (ETDEWEB)

    Minambres Moro, A.; Fernandez Leton, P.; Garcia Rui-Zorrilla, J.; Perez Moreno, J. M.; Zucca Aparicio, D.

    2013-07-01

    They are beginning to implement digital mammography with the possibility of acquiring in tomosynthesis, whose biggest advantage is to distinguish structures without overlapping through of pseudotridimensionals images. With these modified mammograms can acquire a planar mammography, with fixed x-ray tube, or a tomosynthesis with tube by turning. For acquire tomosynthesis is necessary a detector of high efficiency together with tungsten white tubes. The objective of this study is to know the dose received by the patient with this new imaging. (Author)

  10. Practical applications of digital tomosynthesis of the chest

    International Nuclear Information System (INIS)

    Galea, A.; Durran, A.; Adlan, T.; Gay, D.; Riordan, R.; Dubbins, P.; Williams, M.P.

    2014-01-01

    Digital tomosynthesis is a radiographic technique that generates a number of coronal raw images of a patient from a single pass of the x-ray tube. Tomosynthesis provides some of the tomographic benefits of computed tomography (CT), but at a much lower dose of radiation and cost when compared to CT. This review illustrates the range of practical applications of digital tomosynthesis of the chest

  11. Implementation of Upright Digital Breast Tomosynthesis-guided Stereotactic Biopsy.

    Science.gov (United States)

    Omofoye, Toma S; Martaindale, Sarah; Teichgraeber, Davis C; Parikh, Jay R

    2017-11-01

    With growing adoption of digital breast tomosynthesis, an increasing number of imaging abnormalities are being identified only by tomosynthesis. Upright digital breast tomosynthesis-guided stereotactic biopsy is a proven method for sampling these abnormalities as well as abnormalities traditionally evaluated using conventional stereotactic biopsy. In this article, we describe the technique of upright digital breast tomosynthesis-guided stereotactic biopsy and outline a systematic operational approach to implementation of this technique in clinical radiology practices. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  12. Comparison of detectability in step-and-shoot mode and continuous mode digital tomosynthesis systems

    Science.gov (United States)

    Lee, Changwoo; Han, Minah; Baek, Jongduk

    2017-03-01

    Digital tomosynthesis system has been widely used in chest, dental, and breast imaging. Since the digital tomosynthesis system provides volumetric images from multiple projection data, structural noise inherent in X-ray radiograph can be reduced, and thus signal detection performance is improved. Currently, tomosynthesis system uses two data acquisition modes: step-and-shoot mode and continuous mode. Several studies have been conducted to compare the system performance of two acquisition modes with respect to spatial resolution and contrast. In this work, we focus on signal detectability in step-and-shoot mode and continuous mode. For evaluation, uniform background is considered, and eight spherical objects with diameters of 0.5, 0.8, 1, 2, 3, 5, 8, 10 mm are used as signals. Projection data with and without spherical objects are acquired in step-and-shoot mode and continuous mode, respectively, and quantum noise are added. Then, noisy projection data are reconstructed by FDK algorithm. To compare the detection performance of two acquisition modes, we calculate task signal-to-noise ratio (SNR) of channelized Hotelling observer with Laguerre-Gauss channels for each spherical object. While the task-SNR values of two acquisition modes are similar for spherical objects larger than 1 mm diameter, step-and-shoot mode yields higher detectability for small signal sizes. The main reason of this behavior is that small signal is more affected by X-ray tube motion blur than large signal. Our results indicate that it is beneficial to use step-and-shoot data acquisition mode to improve the detectability of small signals (i.e., less than 1 mm diameter) in digital tomosynthesis systems.

  13. Digital breast tomosynthesis (3D-mammography) screening: A pictorial review of screen-detected cancers and false recalls attributed to tomosynthesis in prospective screening trials.

    Science.gov (United States)

    Houssami, Nehmat; Lång, Kristina; Bernardi, Daniela; Tagliafico, Alberto; Zackrisson, Sophia; Skaane, Per

    2016-04-01

    This pictorial review highlights cancers detected only at tomosynthesis screening and screens falsely recalled in the course of breast tomosynthesis screening, illustrating both true-positive (TP) and false-positive (FP) detection attributed to tomosynthesis. Images and descriptive data were used to characterise cases of screen-detection with tomosynthesis, sourced from prospective screening trials that performed standard (2D) digital mammography (DM) and tomosynthesis (3D-mammography) in the same screening participants. Exemplar cases from four trials highlight common themes of relevance to screening practice including: the type of lesions frequently made more conspicuous or perceptible by tomosynthesis (spiculated masses, and architectural distortions); the histologic findings (both TP and FP) of tomosynthesis-only detection; and the need to extend breast work-up protocols (additional imaging including ultrasound and MRI, and tomosynthesis-guided biopsy) if tomosynthesis is adopted for primary screening. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study

    International Nuclear Information System (INIS)

    Shan, Jing; Lee, Yueh Z; Lu, Jianping; Zhou, Otto; Tucker, Andrew W; Heath, Michael D; Wang, Xiaohui; Foos, David H

    2015-01-01

    Chest tomosynthesis is a low-dose, quasi-3D imaging modality that has been demonstrated to improve the detection sensitivity for small lung nodules, compared to 2D chest radiography. The purpose of this study is to investigate the feasibility and system requirements of stationary chest tomosynthesis (s-DCT) using a spatially distributed carbon nanotube (CNT) x-ray source array, where the projection images are collected by electronically activating individual x-ray focal spots in the source array without mechanical motion of the x-ray source, detector, or the patient. A bench-top system was constructed using an existing CNT field emission source array and a flat panel detector. The tube output, beam quality, focal spot size, system in-plane and in-depth resolution were characterized. Tomosynthesis slices of an anthropomorphic chest phantom were reconstructed for image quality assessment. All 75 CNT sources in the source array were shown to operate reliably at 80 kVp and 5 mA tube current. Source-to-source consistency in the tube current and focal spot size was observed. The incident air kerma reading per mAs was measured as 74.47 uGy mAs −1 at 100 cm. The first half value layer of the beam was 3 mm aluminum. An average focal spot size of 2.5  ×  0.5 mm was measured. The system MTF was measured to be 1.7 cycles mm −1 along the scanning direction, and 3.4 cycles mm −1 perpendicular to the scanning direction. As the angular coverage of 11.6°–34°, the full width at half maximum of the artifact spread function improved greatly from 9.5 to 5.2 mm. The reconstructed tomosynthesis slices clearly show airways and pulmonary vascular structures in the anthropomorphic lung phantom. The results show the CNT source array is capable of generating sufficient dose for chest tomosynthesis imaging. The results obtained so far suggest an s-DCT using a distributed CNT x-ray source array is feasible. (paper)

  15. A volume of intersection approach for on-the-fly system matrix calculation in 3D PET image reconstruction

    International Nuclear Information System (INIS)

    Lougovski, A; Hofheinz, F; Maus, J; Schramm, G; Will, E; Hoff, J van den

    2014-01-01

    The aim of this study is the evaluation of on-the-fly volume of intersection computation for system’s geometry modelling in 3D PET image reconstruction. For this purpose we propose a simple geometrical model in which the cubic image voxels on the given Cartesian grid are approximated with spheres and the rectangular tubes of response (ToRs) are approximated with cylinders. The model was integrated into a fully 3D list-mode PET reconstruction for performance evaluation. In our model the volume of intersection between a voxel and the ToR is only a function of the impact parameter (the distance between voxel centre to ToR axis) but is independent of the relative orientation of voxel and ToR. This substantially reduces the computational complexity of the system matrix calculation. Based on phantom measurements it was determined that adjusting the diameters of the spherical voxel size and the ToR in such a way that the actual voxel and ToR volumes are conserved leads to the best compromise between high spatial resolution, low noise, and suppression of Gibbs artefacts in the reconstructed images. Phantom as well as clinical datasets from two different PET systems (Siemens ECAT HR + and Philips Ingenuity-TF PET/MR) were processed using the developed and the respective vendor-provided (line of intersection related) reconstruction algorithms. A comparison of the reconstructed images demonstrated very good performance of the new approach. The evaluation showed the respective vendor-provided reconstruction algorithms to possess 34–41% lower resolution compared to the developed one while exhibiting comparable noise levels. Contrary to explicit point spread function modelling our model has a simple straight-forward implementation and it should be easy to integrate into existing reconstruction software, making it competitive to other existing resolution recovery techniques. (paper)

  16. The development of a pseudo-3D imaging system (tomosynthesis) for security screening of passenger baggage

    International Nuclear Information System (INIS)

    Reid, C.B.; Betcke, M.M.; Chana, D.; Speller, R.D.

    2011-01-01

    This paper describes a study investigating the potential of tomosynthesis as a post check-in baggage scanning system. A laboratory system has been constructed consisting of a moveable source and detector, arranged around a mini 90 o bend conveyor system, from which multiple projection images can be collected. Simulation code has been developed to allow the optimum source and detector positions to be determined. Reconstruction methods are being developed to modify the Shift-And-Add (SAA) algorithm to accommodate the non-typical imaging geometry.

  17. The development of a pseudo-3D imaging system (tomosynthesis) for security screening of passenger baggage

    Energy Technology Data Exchange (ETDEWEB)

    Reid, C.B., E-mail: c.reid@medphys.ucl.ac.uk [Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom); Betcke, M.M. [Department of Computer Science, University College London, London WC1E 6BT (United Kingdom); Chana, D. [Department for Transport, London SW1E 6DT (United Kingdom); Speller, R.D. [Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom)

    2011-10-01

    This paper describes a study investigating the potential of tomosynthesis as a post check-in baggage scanning system. A laboratory system has been constructed consisting of a moveable source and detector, arranged around a mini 90{sup o} bend conveyor system, from which multiple projection images can be collected. Simulation code has been developed to allow the optimum source and detector positions to be determined. Reconstruction methods are being developed to modify the Shift-And-Add (SAA) algorithm to accommodate the non-typical imaging geometry.

  18. Multiscale bilateral filtering for improving image quality in digital breast tomosynthesis

    Science.gov (United States)

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Hadjiiski, Lubomir M.; Samala, Ravi K.

    2015-01-01

    Purpose: Detection of subtle microcalcifications in digital breast tomosynthesis (DBT) is a challenging task because of the large, noisy DBT volume. It is important to enhance the contrast-to-noise ratio (CNR) of microcalcifications in DBT reconstruction. Most regularization methods depend on local gradient and may treat the ill-defined margins or subtle spiculations of masses and subtle microcalcifications as noise because of their small gradient. The authors developed a new multiscale bilateral filtering (MSBF) regularization method for the simultaneous algebraic reconstruction technique (SART) to improve the CNR of microcalcifications without compromising the quality of masses. Methods: The MSBF exploits a multiscale structure of DBT images to suppress noise and selectively enhance high frequency structures. At the end of each SART iteration, every DBT slice is decomposed into several frequency bands via Laplacian pyramid decomposition. No regularization is applied to the low frequency bands so that subtle edges of masses and structured background are preserved. Bilateral filtering is applied to the high frequency bands to enhance microcalcifications while suppressing noise. The regularized DBT images are used for updating in the next SART iteration. The new MSBF method was compared with the nonconvex total p-variation (TpV) method for noise regularization with SART. A GE GEN2 prototype DBT system was used for acquisition of projections at 21 angles in 3° increments over a ±30° range. The reconstruction image quality with no regularization (NR) and that with the two regularization methods were compared using the DBT scans of a heterogeneous breast phantom and several human subjects with masses and microcalcifications. The CNR and the full width at half maximum (FWHM) of the line profiles of microcalcifications and across the spiculations within their in-focus DBT slices were used as image quality measures. Results: The MSBF method reduced contouring artifacts

  19. Evaluation of respiration-correlated digital tomosynthesis in lung.

    Science.gov (United States)

    Santoro, Joseph; Kriminski, Sergey; Lovelock, D Michael; Rosenzweig, Kenneth; Mostafavi, Hassan; Amols, Howard I; Mageras, Gig S

    2010-03-01

    Digital tomosynthesis (DTS) with a linear accelerator-mounted imaging system provides a means of reconstructing tomographic images from radiographic projections over a limited gantry arc, thus requiring only a few seconds to acquire. Its application in the thorax, however, often results in blurred images from respiration-induced motion. This work evaluates the feasibility of respiration-correlated (RC) DTS for soft-tissue visualization and patient positioning. Image data acquired with a gantry-mounted kilovoltage imaging system while recording respiration were retrospectively analyzed from patients receiving radiotherapy for non-small-cell lung carcinoma. Projection images spanning an approximately 30 degrees gantry arc were sorted into four respiration phase bins prior to DTS reconstruction, which uses a backprojection, followed by a procedure to suppress structures above and below the reconstruction plane of interest. The DTS images were reconstructed in planes at different depths through the patient and normal to a user-selected angle close to the center of the arc. The localization accuracy of RC-DTS was assessed via a comparison with CBCT. Evaluation of RC-DTS in eight tumors shows visible reduction in image blur caused by the respiratory motion. It also allows the visualization of tumor motion extent. The best image quality is achieved at the end-exhalation phase of the respiratory motion. Comparison of RC-DTS with respiration-correlated cone-beam CT in determining tumor position, motion extent and displacement between treatment sessions shows agreement in most cases within 2-3 mm, comparable in magnitude to the intraobserver repeatability of the measurement. These results suggest the method's applicability for soft-tissue image guidance in lung, but must be confirmed with further studies in larger numbers of patients.

  20. Breast cancer screening using tomosynthesis in combination with digital mammography.

    Science.gov (United States)

    Friedewald, Sarah M; Rafferty, Elizabeth A; Rose, Stephen L; Durand, Melissa A; Plecha, Donna M; Greenberg, Julianne S; Hayes, Mary K; Copit, Debra S; Carlson, Kara L; Cink, Thomas M; Barke, Lora D; Greer, Linda N; Miller, Dave P; Conant, Emily F

    2014-06-25

    Mammography plays a key role in early breast cancer detection. Single-institution studies have shown that adding tomosynthesis to mammography increases cancer detection and reduces false-positive results. To determine if mammography combined with tomosynthesis is associated with better performance of breast screening programs in the United States. Retrospective analysis of screening performance metrics from 13 academic and nonacademic breast centers using mixed models adjusting for site as a random effect. Period 1: digital mammography screening examinations 1 year before tomosynthesis implementation (start dates ranged from March 2010 to October 2011 through the date of tomosynthesis implementation); period 2: digital mammography plus tomosynthesis examinations from initiation of tomosynthesis screening (March 2011 to October 2012) through December 31, 2012. Recall rate for additional imaging, cancer detection rate, and positive predictive values for recall and for biopsy. A total of 454,850 examinations (n=281,187 digital mammography; n=173,663 digital mammography + tomosynthesis) were evaluated. With digital mammography, 29,726 patients were recalled and 5056 biopsies resulted in cancer diagnosis in 1207 patients (n=815 invasive; n=392 in situ). With digital mammography + tomosynthesis, 15,541 patients were recalled and 3285 biopsies resulted in cancer diagnosis in 950 patients (n=707 invasive; n=243 in situ). Model-adjusted rates per 1000 screens were as follows: for recall rate, 107 (95% CI, 89-124) with digital mammography vs 91 (95% CI, 73-108) with digital mammography + tomosynthesis; difference, -16 (95% CI, -18 to -14; P tomosynthesis; difference, 1.3 (95% CI, 0.4-2.1; P = .004); for cancer detection, 4.2 (95% CI, 3.8-4.7) with digital mammography vs 5.4 (95% CI, 4.9-6.0) with digital mammography + tomosynthesis; difference, 1.2 (95% CI, 0.8-1.6; P tomosynthesis; difference, 1.2 (95% CI, 0.8-1.6; P tomosynthesis was associated with an increase

  1. Knowledge-based reconstruction for measurement of right ventricular volumes on cardiovascular magnetic resonance images in a mixed population.

    Science.gov (United States)

    Pieterman, Elise D; Budde, Ricardo P J; Robbers-Visser, Daniëlle; van Domburg, Ron T; Helbing, Willem A

    2017-09-01

    Follow-up of right ventricular performance is important for patients with congenital heart disease. Cardiac magnetic resonance imaging is optimal for this purpose. However, observer-dependency of manual analysis of right ventricular volumes limit its use. Knowledge-based reconstruction is a new semiautomatic analysis tool that uses a database including knowledge of right ventricular shape in various congenital heart diseases. We evaluated whether knowledge-based reconstruction is a good alternative for conventional analysis. To assess the inter- and intra-observer variability and agreement of knowledge-based versus conventional analysis of magnetic resonance right ventricular volumes, analysis was done by two observers in a mixed group of 22 patients with congenital heart disease affecting right ventricular loading conditions (dextro-transposition of the great arteries and right ventricle to pulmonary artery conduit) and a group of 17 healthy children. We used Bland-Altman analysis and coefficient of variation. Comparison between the conventional method and the knowledge-based method showed a systematically higher volume for the latter group. We found an overestimation for end-diastolic volume (bias -40 ± 24 mL, r = .956), end-systolic volume (bias -34 ± 24 mL, r = .943), stroke volume (bias -6 ± 17 mL, r = .735) and an underestimation of ejection fraction (bias 7 ± 7%, r = .671) by knowledge-based reconstruction. The intra-observer variability of knowledge-based reconstruction varied with a coefficient of variation of 9% for end-diastolic volume and 22% for stroke volume. The same trend was noted for inter-observer variability. A systematic difference (overestimation) was noted for right ventricular size as assessed with knowledge-based reconstruction compared with conventional methods for analysis. Observer variability for the new method was comparable to what has been reported for the right ventricle in children and congenital

  2. Dual-energy contrast-enhanced breast tomosynthesis: optimization of beam quality for dose and image quality

    International Nuclear Information System (INIS)

    Samei, Ehsan; Saunders, Robert S Jr

    2011-01-01

    Dual-energy contrast-enhanced breast tomosynthesis is a promising technique to obtain three-dimensional functional information from the breast with high resolution and speed. To optimize this new method, this study searched for the beam quality that maximized image quality in terms of mass detection performance. A digital tomosynthesis system was modeled using a fast ray-tracing algorithm, which created simulated projection images by tracking photons through a voxelized anatomical breast phantom containing iodinated lesions. The single-energy images were combined into dual-energy images through a weighted log subtraction process. The weighting factor was optimized to minimize anatomical noise, while the dose distribution was chosen to minimize quantum noise. The dual-energy images were analyzed for the signal difference to noise ratio (SdNR) of iodinated masses. The fast ray-tracing explored 523 776 dual-energy combinations to identify which yields optimum mass SdNR. The ray-tracing results were verified using a Monte Carlo model for a breast tomosynthesis system with a selenium-based flat-panel detector. The projection images from our voxelized breast phantom were obtained at a constant total glandular dose. The projections were combined using weighted log subtraction and reconstructed using commercial reconstruction software. The lesion SdNR was measured in the central reconstructed slice. The SdNR performance varied markedly across the kVp and filtration space. Ray-tracing results indicated that the mass SdNR was maximized with a high-energy tungsten beam at 49 kVp with 92.5 μm of copper filtration and a low-energy tungsten beam at 49 kVp with 95 μm of tin filtration. This result was consistent with Monte Carlo findings. This mammographic technique led to a mass SdNR of 0.92 ± 0.03 in the projections and 3.68 ± 0.19 in the reconstructed slices. These values were markedly higher than those for non-optimized techniques. Our findings indicate that dual

  3. Digital x-ray tomosynthesis with interpolated projection data for thin slab objects

    Science.gov (United States)

    Ha, S.; Yun, J.; Kim, H. K.

    2017-11-01

    In relation with a thin slab-object inspection, we propose a digital tomosynthesis reconstruction with fewer numbers of measured projections in combinations with additional virtual projections, which are produced by interpolating the measured projections. Hence we can reconstruct tomographic images with less few-view artifacts. The projection interpolation assumes that variations in cone-beam ray path-lengths through an object are negligible and the object is rigid. The interpolation is performed in the projection-space domain. Pixel values in the interpolated projection are the weighted sum of pixel values of the measured projections considering their projection angles. The experimental simulation shows that the proposed method can enhance the contrast-to-noise performance in reconstructed images while sacrificing the spatial resolving power.

  4. Radiation dosimetry in digital breast tomosynthesis: Report of AAPM Tomosynthesis Subcommittee Task Group 223

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, Ioannis, E-mail: isechop@emory.edu [Departments of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Sabol, John M. [GE Healthcare, Global Diagnostic X-Ray, Mailstop W-701, 3000 North Grandview Boulevard, Waukesha, Wisconsin 53188 (United States); Berglund, Johan [Research and Development, Philips Women' s Healthcare, Solna (Sweden); Bolch, Wesley E. [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Brateman, Libby [University of Florida, Gainesville, Florida 32611 (United States); Christodoulou, Emmanuel; Goodsitt, Mitchell [Department of Radiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109 (United States); Flynn, Michael [Department of Radiology, Henry Ford Health System, Radiology Research 2F, 1 Ford Place, Detroit, Michigan 48202 (United States); Geiser, William [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Kyle Jones, A. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Lo, Joseph Y.; Paul Segars, W. [Department of Radiology, Medical Physics Graduate Program, and Department of Biomedical Engineering, Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Maidment, Andrew D. A. [Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-4206 (United States); Nishino, Kazuyoshi [R and D X-ray Products Group, Shimadzu Corporation, Tokyo (Japan); Nosratieh, Anita [Biomedical Engineering Graduate Group, Department of Radiology, University of California, Davis, California 95817 (United States); and others

    2014-09-15

    The radiation dose involved in any medical imaging modality that uses ionizing radiation needs to be well understood by the medical physics and clinical community. This is especially true of screening modalities. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Therefore, it is important that the medical physics community have the required information to be able to understand, estimate, and communicate the radiation dose levels involved in breast tomosynthesis imaging. For this purpose, the American Association of Physicists in Medicine Task Group 223 on Dosimetry in Tomosynthesis Imaging has prepared this report that discusses dosimetry in breast imaging in general, and describes a methodology and provides the data necessary to estimate mean breast glandular dose from a tomosynthesis acquisition. In an effort to maximize familiarity with the procedures and data provided in this Report, the methodology to perform the dose estimation in DBT is based as much as possible on that used in mammography dose estimation.

  5. Radiation dosimetry in digital breast tomosynthesis: Report of AAPM Tomosynthesis Subcommittee Task Group 223

    International Nuclear Information System (INIS)

    Sechopoulos, Ioannis; Sabol, John M.; Berglund, Johan; Bolch, Wesley E.; Brateman, Libby; Christodoulou, Emmanuel; Goodsitt, Mitchell; Flynn, Michael; Geiser, William; Kyle Jones, A.; Lo, Joseph Y.; Paul Segars, W.; Maidment, Andrew D. A.; Nishino, Kazuyoshi; Nosratieh, Anita

    2014-01-01

    The radiation dose involved in any medical imaging modality that uses ionizing radiation needs to be well understood by the medical physics and clinical community. This is especially true of screening modalities. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Therefore, it is important that the medical physics community have the required information to be able to understand, estimate, and communicate the radiation dose levels involved in breast tomosynthesis imaging. For this purpose, the American Association of Physicists in Medicine Task Group 223 on Dosimetry in Tomosynthesis Imaging has prepared this report that discusses dosimetry in breast imaging in general, and describes a methodology and provides the data necessary to estimate mean breast glandular dose from a tomosynthesis acquisition. In an effort to maximize familiarity with the procedures and data provided in this Report, the methodology to perform the dose estimation in DBT is based as much as possible on that used in mammography dose estimation

  6. Computer-aided detection of masses in digital tomosynthesis mammography: Comparison of three approaches

    International Nuclear Information System (INIS)

    Chan Heangping; Wei Jun; Zhang Yiheng; Helvie, Mark A.; Moore, Richard H.; Sahiner, Berkman; Hadjiiski, Lubomir; Kopans, Daniel B.

    2008-01-01

    The authors are developing a computer-aided detection (CAD) system for masses on digital breast tomosynthesis mammograms (DBT). Three approaches were evaluated in this study. In the first approach, mass candidate identification and feature analysis are performed in the reconstructed three-dimensional (3D) DBT volume. A mass likelihood score is estimated for each mass candidate using a linear discriminant analysis (LDA) classifier. Mass detection is determined by a decision threshold applied to the mass likelihood score. A free response receiver operating characteristic (FROC) curve that describes the detection sensitivity as a function of the number of false positives (FPs) per breast is generated by varying the decision threshold over a range. In the second approach, prescreening of mass candidate and feature analysis are first performed on the individual two-dimensional (2D) projection view (PV) images. A mass likelihood score is estimated for each mass candidate using an LDA classifier trained for the 2D features. The mass likelihood images derived from the PVs are backprojected to the breast volume to estimate the 3D spatial distribution of the mass likelihood scores. The FROC curve for mass detection can again be generated by varying the decision threshold on the 3D mass likelihood scores merged by backprojection. In the third approach, the mass likelihood scores estimated by the 3D and 2D approaches, described above, at the corresponding 3D location are combined and evaluated using FROC analysis. A data set of 100 DBT cases acquired with a GE prototype system at the Breast Imaging Laboratory in the Massachusetts General Hospital was used for comparison of the three approaches. The LDA classifiers with stepwise feature selection were designed with leave-one-case-out resampling. In FROC analysis, the CAD system for detection in the DBT volume alone achieved test sensitivities of 80% and 90% at average FP rates of 1.94 and 3.40 per breast, respectively. With the

  7. Determination of the optimal dose reduction level via iterative reconstruction using 640-slice volume chest CT in a pig model.

    Directory of Open Access Journals (Sweden)

    Xingli Liu

    Full Text Available To determine the optimal dose reduction level of iterative reconstruction technique for paediatric chest CT in pig models.27 infant pigs underwent 640-slice volume chest CT with 80kVp and different mAs. Automatic exposure control technique was used, and the index of noise was set to SD10 (Group A, routine dose, SD12.5, SD15, SD17.5, SD20 (Groups from B to E to reduce dose respectively. Group A was reconstructed with filtered back projection (FBP, and Groups from B to E were reconstructed using iterative reconstruction (IR. Objective and subjective image quality (IQ among groups were compared to determine an optimal radiation reduction level.The noise and signal-to-noise ratio (SNR in Group D had no significant statistical difference from that in Group A (P = 1.0. The scores of subjective IQ in Group A were not significantly different from those in Group D (P>0.05. There were no obvious statistical differences in the objective and subjective index values among the subgroups (small, medium and large subgroups of Group D. The effective dose (ED of Group D was 58.9% lower than that of Group A (0.20±0.05mSv vs 0.48±0.10mSv, p <0.001.In infant pig chest CT, using iterative reconstruction can provide diagnostic image quality; furthermore, it can reduce the dosage by 58.9%.

  8. Digital tomosynthesis in breast cancer: A systematic review.

    Science.gov (United States)

    García-León, F J; Llanos-Méndez, A; Isabel-Gómez, R

    2015-01-01

    To estimate and compare the diagnostic validity of tomosynthesis and digital mammography for screening and diagnosing breast cancer. We systematically searched MedLine, EMBASE, and Web of Science for the terms breast cancer, screening, tomosynthesis, mammography, sensitivity, and specificity in publications in the period comprising June 2010 through February 2013. We included studies on diagnostic tests and systematic reviews. Two reviewers selected and evaluated the articles. We used QUADAS 2 to evaluate the risk of bias and the NICE criteria to determine the level of evidence. We compiled a narrative synthesis. Of the 151 original studies identified, we selected 11 that included a total of 2475 women. The overall quality was low, with a risk of bias and follow-up and limitations regarding the applicability of the results. The level of evidence was not greater than level II. The sensitivity of tomosynthesis ranged from 69% to 100% and the specificity ranged from 54% to 100%. The negative likelihood ratio was good, and this makes tomosynthesis useful as a test to confirm a diagnosis. One-view tomosynthesis was no better than two-view digital mammography, and the evidence for the superiority of two-view tomosynthesis was inconclusive. The results for the diagnostic validity of tomosynthesis in the diagnosis of breast cancer were inconclusive and there were no results for its use in screening. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  9. Initial application of digital tomosynthesis for detection of pulmonary nodules

    International Nuclear Information System (INIS)

    Sun Zhiyuan; Su Hong; Zhao Yane; Ju Bing; Chang Shuanghui; Hu Qiuju; Lu Guangming

    2010-01-01

    Objective: To discuss the value of digital tomosynthesis for detection of pulmonary nodules. Methods: Thirty patients suspected of having pulmonary nodules underwent chest radiography, digital tomosynthesis and CT examination. Above image data were transferred to postprocessing work station and were reviewed by 2 radiologists with 3 years of chest-radiology diagnosis experience in a double-blind method. The number, location and size of nodules were recorded. Then, 2 radiologists reviewed the all images once more, and discuss in consensus. The sensitivities of chest radiography and digital tomosynthesis for detection of pulmonary nodules were respectively calculated according to the CT results. Chi-square test was used for radiography, digital tomosynthesis and CT examination. Results: Of 30 patients, 21 were detected having pulmonary nodules by X-ray radiography and 9 were negative, the total number of 40 nodules was detected, while 89 nodules in 26 patients were detected by digital tomosynthesis, and only 4 patients were negative. CT demonstrated 102 nodules in 27 patients, and 3 patients were negative. Taking CT as 'gold standard', the sensitivities of X-ray radiography and digital tomosynthesis were 27.4%(28/102)and 87.2%(89/102), X 2 =4.35, P<0.05, respectively. Conclusion: Digital tomosynthesis has a high sensitivity for detection of pulmonary nodules compared with X-ray radiography, and could be an excellent and necessary supplementary technique of X-ray radiography. (authors)

  10. Automatic correspondence detection in mammogram and breast tomosynthesis images

    Science.gov (United States)

    Ehrhardt, Jan; Krüger, Julia; Bischof, Arpad; Barkhausen, Jörg; Handels, Heinz

    2012-02-01

    Two-dimensional mammography is the major imaging modality in breast cancer detection. A disadvantage of mammography is the projective nature of this imaging technique. Tomosynthesis is an attractive modality with the potential to combine the high contrast and high resolution of digital mammography with the advantages of 3D imaging. In order to facilitate diagnostics and treatment in the current clinical work-flow, correspondences between tomosynthesis images and previous mammographic exams of the same women have to be determined. In this paper, we propose a method to detect correspondences in 2D mammograms and 3D tomosynthesis images automatically. In general, this 2D/3D correspondence problem is ill-posed, because a point in the 2D mammogram corresponds to a line in the 3D tomosynthesis image. The goal of our method is to detect the "most probable" 3D position in the tomosynthesis images corresponding to a selected point in the 2D mammogram. We present two alternative approaches to solve this 2D/3D correspondence problem: a 2D/3D registration method and a 2D/2D mapping between mammogram and tomosynthesis projection images with a following back projection. The advantages and limitations of both approaches are discussed and the performance of the methods is evaluated qualitatively and quantitatively using a software phantom and clinical breast image data. Although the proposed 2D/3D registration method can compensate for moderate breast deformations caused by different breast compressions, this approach is not suitable for clinical tomosynthesis data due to the limited resolution and blurring effects perpendicular to the direction of projection. The quantitative results show that the proposed 2D/2D mapping method is capable of detecting corresponding positions in mammograms and tomosynthesis images automatically for 61 out of 65 landmarks. The proposed method can facilitate diagnosis, visual inspection and comparison of 2D mammograms and 3D tomosynthesis images for

  11. An approach of long-view tomosynthesis in peripheral arterial angiographic examinations

    Science.gov (United States)

    Notohara, Daisuke; Nishino, Kazuyoshi; Shibata, Koichi

    2011-03-01

    Tomosynthesis (TS) has been evaluated as a useful diagnostic imaging tool for the orthopedic market and lung cancer screening. Previously, we proposed Long-View Tomosynthesis (LVTS) to apply further clinical application by expanding the reconstructed region of TS. LVTS method consists of three steps. First, it acquires multiple images while X-ray tube and Flat Panel Detector (FPD) are moving in the same linear direction simultaneously at a constant speed. Second, each image is divided into fixed length strips, and then the strips from different images having similar X-ray beam trajectory angles are stitched together. Last, multi slice coronal images are reconstructed by utilizing the Filtered Back Projection (FBP) technique from the long stitched images. The present LVTS method requires the acquisition by the constant speed motion to stitch each strip precisely. It is necessary to improve the LVTS method to apply peripheral angiographic examinations that are usually acquired at arbitrary variable speeds to chase the contrast media in the blood vessel. We propose adding the method of detecting the moved distance of frames along with anatomical structure and the method of selecting pixel values with contrast media to stitching algorithm. As a result, LVTS can extract new clinical information like 3-D structure of superficial femoral arteries and the entire blood vessel from images already acquired by routine bolus chasing techniques.

  12. Tomosynthesis and contrast-enhanced digital mammography: recent advances in digital mammography

    International Nuclear Information System (INIS)

    Diekmann, Felix; Bick, Ulrich

    2007-01-01

    Digital mammography is more and more replacing conventional mammography. Initial concerns about an inferior image quality of digital mammography have been largely overcome and recent studies even show digital mammography to be superior in women with dense breasts, while at the same time reducing radiation exposure. Nevertheless, an important limitation of digital mammography remains: namely, the fact that summation may obscure lesions in dense breast tissue. However, digital mammography offers the option of so-called advanced applications, and two of these, contrast-enhanced mammography and tomosynthesis, are promising candidates for improving the detection of breast lesions otherwise obscured by the summation of dense tissue. Two techniques of contrast-enhanced mammography are available: temporal subtraction of images acquired before and after contrast administration and the so-called dual-energy technique, which means that pairs of low/high-energy images acquired after contrast administration are subtracted. Tomosynthesis on the other hand provides three-dimensional information on the breast. The images are acquired with different angulations of the X-ray tube while the object or detector is static. Various reconstruction algorithms can then be applied to the set of typically nine to 28 source images to reconstruct 1-mm slices with a reduced risk of obscuring pathology. Combinations of both advanced applications have only been investigated in individual experimental studies; more advanced software algorithms and CAD systems are still in their infancy and have only undergone preliminary clinical evaluation. (orig.)

  13. Geometric estimation method for x-ray digital intraoral tomosynthesis

    Science.gov (United States)

    Li, Liang; Yang, Yao; Chen, Zhiqiang

    2016-06-01

    It is essential for accurate image reconstruction to obtain a set of parameters that describes the x-ray scanning geometry. A geometric estimation method is presented for x-ray digital intraoral tomosynthesis (DIT) in which the detector remains stationary while the x-ray source rotates. The main idea is to estimate the three-dimensional (3-D) coordinates of each shot position using at least two small opaque balls adhering to the detector surface as the positioning markers. From the radiographs containing these balls, the position of each x-ray focal spot can be calculated independently relative to the detector center no matter what kind of scanning trajectory is used. A 3-D phantom which roughly simulates DIT was designed to evaluate the performance of this method both quantitatively and qualitatively in the sense of mean square error and structural similarity. Results are also presented for real data acquired with a DIT experimental system. These results prove the validity of this geometric estimation method.

  14. Digital Breast Tomosynthesis: State of the Art

    Science.gov (United States)

    Vedantham, Srinivasan; Vijayaraghavan, Gopal R.; Kopans, Daniel B.

    2015-01-01

    This topical review on digital breast tomosynthesis (DBT) is provided with the intent of describing the state of the art in terms of technology, results from recent clinical studies, advanced applications, and ongoing efforts to develop multimodality imaging systems that include DBT. Particular emphasis is placed on clinical studies. The observations of increase in cancer detection rates, particularly for invasive cancers, and the reduction in false-positive rates with DBT in prospective trials indicate its benefit for breast cancer screening. Retrospective multireader multicase studies show either noninferiority or superiority of DBT compared with mammography. Methods to curtail radiation dose are of importance. © RSNA, 2015 PMID:26599926

  15. Description and validation of a scoring system for tomosynthesis in pulmonary cystic fibrosis.

    Science.gov (United States)

    Vult von Steyern, Kristina; Björkman-Burtscher, Isabella M; Höglund, Peter; Bozovic, Gracijela; Wiklund, Marie; Geijer, Mats

    2012-12-01

    To design and validate a scoring system for tomosynthesis (digital tomography) in pulmonary cystic fibrosis. A scoring system dedicated to tomosynthesis in pulmonary cystic fibrosis was designed. Three radiologists independently scored 88 pairs of radiographs and tomosynthesis examinations of the chest in 60 patients with cystic fibrosis and 7 oncology patients. Radiographs were scored according to the Brasfield scoring system and tomosynthesis examinations were scored using the new scoring system. Observer agreements for the tomosynthesis score were almost perfect for the total score with square-weighted kappa >0.90, and generally substantial to almost perfect for subscores. Correlation between the tomosynthesis score and the Brasfield score was good for the three observers (Kendall's rank correlation tau 0.68, 0.77 and 0.78). Tomosynthesis was generally scored higher as a percentage of the maximum score. Observer agreements for the total score for Brasfield score were almost perfect (square-weighted kappa 0.80, 0.81 and 0.85). The tomosynthesis scoring system seems robust and correlates well with the Brasfield score. Compared with radiography, tomosynthesis is more sensitive to cystic fibrosis changes, especially bronchiectasis and mucus plugging, and the new tomosynthesis scoring system offers the possibility of more detailed and accurate scoring of disease severity. Tomosynthesis is more sensitive than conventional radiography for pulmonary cystic fibrosis changes. The radiation dose from chest tomosynthesis is low compared with computed tomography. Tomosynthesis may become useful in the regular follow-up of patients with cystic fibrosis.

  16. Effect of Scanning and Reconstruction Parameters on Three Dimensional Volume and CT Value Measurement of Pulmonary Nodules: A Phantom Study

    Directory of Open Access Journals (Sweden)

    Datong SU

    2017-08-01

    Full Text Available Background and objective The computed tomography (CT follow-up of indeterminate pulmonary nodules aiming to evaluate the change of the volume and CT value is the common strategy in clinic. The CT dose needs to considered on serious CT scans in addition to the measurement accuracy. The purpose of this study is to quantify the precision of pulmonary nodule volumetric measurement and CT value measurement with various tube currents and reconstruction algorithms in a phantom study with dual-energy CT. Methods A chest phantom containing 9 artificial spherical solid nodules with known diameter (D=2.5 mm, 5 mm, 10 mm and density (-100 HU, 60 HU and 100 HU was scanned using a 64-row detector CT canner at 120 Kilovolt & various currents (10 mA, 20 mA, 50 mA, 80 mA,100 mA, 150 mA and 350 mA. Raw data were reconstructed with filtered back projection and three levels of adaptive statistical iterative reconstruction algorithm (FBP, ASIR; 30%, 50% and 80%. Automatic volumetric measurements were performed using commercially available software. The relative volume error (RVE and the absolute attenuation error (AAE between the software measures and the reference-standard were calculated. Analyses of the variance were performed to evaluate the effect of reconstruction methods, different scan parameters, nodule size and attenuation on the RPE. Results The software substantially overestimated the very small (D=2.5 mm nodule's volume [mean RVE: (100.8%±28%] and underestimated it attenuation [mean AAE: (-756±80 HU]. The mean RVEs of nodule with diameter as 5 mm and 10 mm were small [(-0.9%±1.1% vs (0.9%±1.4%], however, the mean AAEs [(-243±26 HU vs (-129±7 HU] were large. The ANOVA analysis for repeated measurements showed that different tube current and reconstruction algorithm had no significant effect on the volumetric measurements for nodules with diameter of 5 mm and 10 mm (F=5.60, P=0.10 vs F=11.13, P=0.08, but significant effects on the measurement of CT

  17. Computer Aided Detection of Breast Masses in Digital Tomosynthesis

    Science.gov (United States)

    2008-06-01

    of unknown pathology , all other ROIs generated from that specific subject’s reconstructed volumes were excluded from the KB. For scheme B, all the FPs...query ROI of unknown pathology , all other ROIs generated from that specific subject’s reconstructed volumes were excluded from the KB. For scheme B...Qian, L. Li, and L.P. Clarke, "Image feature extraction for mass detection in digital mammography: Influence of wavelet analysis." Med. Phys. 26

  18. Tomosynthesis Breast Imaging Early Detection and Characterization of Breast Cancer

    National Research Council Canada - National Science Library

    Hamberg, Leena

    2000-01-01

    A digital tomosynthesis mammography method was developed with which to obtain tomographic images of the breast by acquiring a series of low radiation dose images as the x-ray tube moves in an arc above the breast...

  19. Computer Aided Detection of Breast Masses in Digital Tomosynthesis

    National Research Council Canada - National Science Library

    Singh, Swatee; Lo, Joseph

    2008-01-01

    The purpose of this study was to investigate feasibility of computer-aided detection of masses and calcification clusters in breast tomosynthesis images and obtain reliable estimates of sensitivity...

  20. Tomosynthesis Breast Imaging: Early Detection and Characterization of Breast Cancer

    National Research Council Canada - National Science Library

    Hamberg, Leena

    1999-01-01

    Our aim for the second year of this grant was to investigate the tomosynthetic image quality by performing experimental studies using the specially developed phantoms and to quantitate tomosynthesis...

  1. Construction of an Anthropomorphic Phantom for Use in Evaluating Pediatric Airway Digital Tomosynthesis Protocols

    Directory of Open Access Journals (Sweden)

    Nima Kasraie

    2018-01-01

    Full Text Available Interpretation of radiolucent foreign bodies (FBs is a common task charged to pediatric radiologists. The use of a motion compensated technique to decrease breathing motion on images would greatly decrease overall exposure to ionizing radiation and increase access to treatment yielding a great impact on clinical care. This study reports on the methodology and materials used to construct an in-house anthropomorphic phantom for investigating image quality in digital tomosynthesis protocols for volumetric imaging of the pediatric airway. Availability and cost of possible substitute materials were considered and simplifying assumptions were made. Two different modular phantoms were assembled in coronal slab layers using materials designed to approximate a one- and three-year-old thorax at diagnostic photon energies for use with digital tomosynthesis protocols such as those offered on GE’s VolumeRAD application. Exposures were made using both phantoms with inserted food particles inside an oscillating airway. The goal of the phantom is to help evaluate (1 whether the currently used protocol is sufficient to image the airway despite breathing motion and (2 whether it is not, to find the optimal protocol by testing various commercially available protocols using this phantom. The affordable construction of the pediatric sized phantom aimed at optimizing GE’s VolumeRAD protocol for airway foreign body imaging is demonstrated in this study which can be used to test VolumeRAD’s ability to image the airways with and without a low-density foreign body within the airways.

  2. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis

    Science.gov (United States)

    Godfrey, Devon J.; Page McAdams, H.; Dobbins, James T.

    2013-01-01

    Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20° and 5 mm plane separation, seven MITS planes must be

  3. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, Devon J. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Page McAdams, H. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Dobbins, James T. III [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Department of Biomedical Engineering, Department of Physics, and Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States)

    2013-02-15

    Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20 Degree-Sign and 5 mm plane separation, seven MITS

  4. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis.

    Science.gov (United States)

    Godfrey, Devon J; McAdams, H Page; Dobbins, James T

    2013-02-01

    Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. For scan angles of 20° and 5 mm plane separation, seven MITS planes must be averaged to sufficiently

  5. The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis

    International Nuclear Information System (INIS)

    Godfrey, Devon J.; Page McAdams, H.; Dobbins, James T. III

    2013-01-01

    Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20° and 5 mm plane separation, seven MITS planes must be

  6. Evidence on Synthesized Two-dimensional Mammography Versus Digital Mammography When Using Tomosynthesis (Three-dimensional Mammography) for Population Breast Cancer Screening.

    Science.gov (United States)

    Houssami, Nehmat

    2017-09-28

    One limitation of using digital breast tomosynthesis (3-dimensional [3D] mammography) technology with conventional (2-dimensional [2D]) mammography for breast cancer (BC) screening is the increased radiation dose from dual acquisitions. To resolve this problem, synthesized 2D (s2D) reconstruction images similar to 2D mammography were developed using tomosynthesis acquisitions. The present review summarizes the evidence for s2D versus digital mammography (2D) when using tomosynthesis (3D) for BC screening to address whether using s2D instead of 2D (alongside 3D) will yield similar detection measures. Comparative population screening studies have provided consistent evidence that cancer detection rates do not differ between integrated 2D/3D (range, 5.45-8.5/1000 screens) and s2D/3D (range, 5.03-8.8/1000 screens). Also, although the recall measures were relatively heterogeneous across included studies, little difference was found between the 2 modalities. The mean glandular dose for s2D/3D was 55% to 58% of that for 2D/3D. In the context of BC screening, s2D/3D involves substantially less radiation than 2D/3D and provides similar detection measures. Thus, consideration of transitioning to tomosynthesis screening should aim to use s2D/3D to minimize harm. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Subtalar joint stress imaging with tomosynthesis.

    Science.gov (United States)

    Teramoto, Atsushi; Watanabe, Kota; Takashima, Hiroyuki; Yamashita, Toshihiko

    2014-06-01

    The purpose of this study was to perform stress imaging of hindfoot inversion and eversion using tomosynthesis and to assess the subtalar joint range of motion (ROM) of healthy subjects. The subjects were 15 healthy volunteers with a mean age of 29.1 years. Coronal tomosynthesis stress imaging of the subtalar joint was performed in a total of 30 left and right ankles. A Telos stress device was used for the stress load, and the load was 150 N for both inversion and eversion. Tomographic images in which the posterior talocalcaneal joint could be confirmed on the neutral position images were used in measurements. The angle of the intersection formed by a line through the lateral articular facet of the posterior talocalcaneal joint and a line through the surface of the trochlea of the talus was measured. The mean change in the angle of the calcaneus with respect to the talus was 10.3 ± 4.8° with inversion stress and 5.0 ± 3.8° with eversion stress from the neutral position. The result was a clearer depiction of the subtalar joint, and inversion and eversion ROM of the subtalar joint was shown to be about 15° in healthy subjects. Diagnostic, Level IV.

  8. Individualised calculation of tissue imparted energy in breast tomosynthesis

    International Nuclear Information System (INIS)

    Geeraert, N.; Klausz, R.; Muller, S.; Bosmans, H.; Bloch, I.

    2016-01-01

    The imparted energy to the glandular tissue in the breast (glandular imparted energy, GIE) is proposed for an improved assessment of the individual radiation-induced risk resulting from X-ray breast imaging. GIE is computed from an estimation of the quantity and localisation of glandular tissue in the breast. After a digital breast tomosynthesis (DBT) acquisition, the volumetric glandular content (volumetric breast density, VBD) is computed from the central X-ray projection. The glandular tissue distribution is determined by labelling the DBT voxels to ensure the conservation of the VBD. Finally, the GIE is calculated by Monte Carlo computation on the resulting tissue-labelled DBT volume. For verification, the method was applied to 10 breast-shaped digital phantoms made of different glandular spheres in an adipose background, and to a digital anthropomorphic phantom. Results were compared to direct GIE computations on the phantoms considered as 'ground-truth'. The major limitations in accuracy are those of DBT, in particular the limited z-resolution. However, for most phantoms, the results can be considered as acceptable. (authors)

  9. 3D Representative Volume Element Reconstruction of Fiber Composites via Orientation Tensor and Substructure Features

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Chen, Wei; Xu, Hongyi; Jin, Xuejun

    2016-01-01

    To provide a seamless integration of manufacturing processing simulation and fiber microstructure modeling, two new stochastic 3D microstructure reconstruction methods are proposed for two types of random fiber composites: random short fiber composites, and Sheet Molding Compounds (SMC) chopped fiber composites. A Random Sequential Adsorption (RSA) algorithm is first developed to embed statistical orientation information into 3D RVE reconstruction of random short fiber composites. For the SMC composites, an optimized Voronoi diagram based approach is developed for capturing the substructure features of SMC chopped fiber composites. The proposed methods are distinguished from other reconstruction works by providing a way of integrating statistical information (fiber orientation tensor) obtained from material processing simulation, as well as capturing the multiscale substructures of the SMC composites.

  10. Dual-volume excitation and parallel reconstruction for J-difference-edited MR spectroscopy

    DEFF Research Database (Denmark)

    Oeltzschner, Georg; Puts, Nicolaas A J; Chan, Kimberly L

    2017-01-01

    successfully reconstructed with a mean in vivo g-factor of 1.025 (typical voxel-center separation: 7-8 cm). MEGA-PRIAM experiments showed higher signal-to-noise ratio than sequential single-voxel experiments of the same total duration (mean improvement 1.38 ± 0.24). CONCLUSIONS: Simultaneous acquisition of J......PURPOSE: To develop J-difference editing with parallel reconstruction in accelerated multivoxel (PRIAM) for simultaneous measurement in two separate brain regions of γ-aminobutyric acid (GABA) or glutathione. METHODS: PRIAM separates signals from two simultaneously excited voxels using receiver...

  11. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit; Prabhu, Sanjay P.; Warfield, Simon K. [Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aganj, Iman [Radiology Department, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Sahin, Mustafa [Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-12-15

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  12. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    International Nuclear Information System (INIS)

    Gholipour, Ali; Afacan, Onur; Scherrer, Benoit; Prabhu, Sanjay P.; Warfield, Simon K.; Aganj, Iman; Sahin, Mustafa

    2015-01-01

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  13. Digital chest tomosynthesis: the 2017 updated review of an emerging application

    Science.gov (United States)

    Ferrari, Arianna; Bertolaccini, Luca; Solli, Piergiorgio; Di Salvia, Paola Oriana

    2018-01-01

    Lung cancer is the leading cause of cancer death and second most common cancer among both men and women, but most of them are detected when patients become symptomatic and in late-stage. Chest radiography (CR) is a basic technique for the investigation of lung cancer and has the benefit of convenience and low radiation dose, but detection of malignancy is often difficult. The introduction of computed tomography (CT) for screening has increased the proportion of lung cancer detected but with higher exposure dose and higher costs. Digital chest tomosynthesis (DCT), a tomographic technique, may offer an alternative to CT. DCT uses a conventional radiograph tube, a flat-panel detector, a computer-controlled tube mover and reconstruction algorithms to produce section images. It shows promise in the detection of potentially malignant lung nodules, with higher sensibility than CR, and is emerging as a low-dose and low-cost alternative to CT to improve treatment decisions. In fact, an increasing number of researchers are showing that tomosynthesis could have a role in the detection of lung cancer, in addition to its present role in breast screening. However, DCT offers some limitations, such as limited depth resolution, which may explain the difficulty in detecting pathologies in the subpleural region and the occurrence of artefacts from medical devices. Once solved these limitations and once more studies supporting its use will be available, DCT could become the first-line lung cancer screening tool among patients at considerable risk of lung cancer. PMID:29666814

  14. Comparison study of noise reduction algorithms in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, D.; Kim, Y.-S.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2018-04-01

    Dual energy chest digital tomosynthesis (CDT) is a recently developed medical technique that takes advantage of both tomosynthesis and dual energy X-ray images. However, quantum noise, which occurs in dual energy X-ray images, strongly interferes with diagnosis in various clinical situations. Therefore, noise reduction is necessary in dual energy CDT. In this study, noise-compensating algorithms, including a simple smoothing of high-energy images (SSH) and anti-correlated noise reduction (ACNR), were evaluated in a CDT system. We used a newly developed prototype CDT system and anthropomorphic chest phantom for experimental studies. The resulting images demonstrated that dual energy CDT can selectively image anatomical structures, such as bone and soft tissue. Among the resulting images, those acquired with ACNR showed the best image quality. Both coefficient of variation and contrast to noise ratio (CNR) were the highest in ACNR among the three different dual energy techniques, and the CNR of bone was significantly improved compared to the reconstructed images acquired at a single energy. This study demonstrated the clinical value of dual energy CDT and quantitatively showed that ACNR is the most suitable among the three developed dual energy techniques, including standard log subtraction, SSH, and ACNR.

  15. Three-dimensional sheaf of ultrasound planes reconstruction (SOUPR) of ablated volumes.

    Science.gov (United States)

    Ingle, Atul; Varghese, Tomy

    2014-08-01

    This paper presents an algorithm for 3-D reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radio-frequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full 3-D rendering of the ablation can then be created from this stack of C-planes; hence the name "Sheaf Of Ultrasound Planes Reconstruction" or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as six imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes.

  16. A dual-view digital tomosynthesis imaging technique for improved chest imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C., E-mail: cshaw@mdanderson.org [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054 (United States)

    2015-09-15

    Purpose: Digital tomosynthesis (DTS) has been shown to be useful for reducing the overlapping of abnormalities with anatomical structures at various depth levels along the posterior–anterior (PA) direction in chest radiography. However, DTS provides crude three-dimensional (3D) images that have poor resolution in the lateral view and can only be displayed with reasonable quality in the PA view. Furthermore, the spillover of high-contrast objects from off-fulcrum planes generates artifacts that may impede the diagnostic use of the DTS images. In this paper, the authors describe and demonstrate the use of a dual-view DTS technique to improve the accuracy of the reconstructed volume image data for more accurate rendition of the anatomy and slice images with improved resolution and reduced artifacts, thus allowing the 3D image data to be viewed in views other than the PA view. Methods: With the dual-view DTS technique, limited angle scans are performed and projection images are acquired in two orthogonal views: PA and lateral. The dual-view projection data are used together to reconstruct 3D images using the maximum likelihood expectation maximization iterative algorithm. In this study, projection images were simulated or experimentally acquired over 360° using the scanning geometry for cone beam computed tomography (CBCT). While all projections were used to reconstruct CBCT images, selected projections were extracted and used to reconstruct single- and dual-view DTS images for comparison with the CBCT images. For realistic demonstration and comparison, a digital chest phantom derived from clinical CT images was used for the simulation study. An anthropomorphic chest phantom was imaged for the experimental study. The resultant dual-view DTS images were visually compared with the single-view DTS images and CBCT images for the presence of image artifacts and accuracy of CT numbers and anatomy and quantitatively compared with root-mean-square-deviation (RMSD) values

  17. SU-E-J-56: Static Gantry Digital Tomosynthesis From the Beam’s-Eye-View

    International Nuclear Information System (INIS)

    Partain, L; Kwon, J; Boyd, D; Rottmann, J; Berbeco, R; Zentai, G

    2015-01-01

    Purpose We have designed a novel TumoTrak™ x-ray system that delivers 19 distinct kV views with the linac gantry stationary. It images MV treatment beam above and below the patient with a kV tomosysthesis slice image from the therapy beam’s-eye-view. Results will be high quality images without MLC shadowing for notable improvements relative to conventional fluoroscopic MV imaging and fluoroscopic kV imaging. Methods A complete design has a kV electron beam multisource X-ray tube that fits around the MV treatment beam path, with little interference with normal radiotherapy and unblocked by the multi-leaf-collimator. To simulate digital tomosynthesis, we used cone-beam CT projection data from a lung SBRT patient. These data were acquired at 125 kVp and 11 fps (0.4 mAs per projection). We chose 19 projections evenly spaced over 27° around one of the treatment angles (240°). Digital tomosynthesis reconstruction of a slice through the tumor was performed using iterative reconstruction. The visibility of the lesion was assessed for the reconstructed digital tomosynthesis (DTS), using fluoroscopy MV images acquired during radiation therapy, and a kV single projection image acquired at the same angle as the treatment field (240°). Results The fluoroscopic DTS images provide the best tumor contrast, surpassing the conventional radiographic and the in-treatment MV portal images. The electron beam multisource X-ray tube design has been completed and the tube is being fabricated. The estimated time to cycle through all 19 projections is 700 ms, enabling high frame-rate imaging. While the initial proposed use case is for image guided and gated treatment delivery, the enhanced imaging will also deliver superior radiographic images for patient setup. Conclusion The proposed device will deliver high quality planar images from the beam’s-eye-view without MLC obstruction. The prototype has been designed and is being assembled with first imaging scheduled for May 2015. L

  18. SU-E-J-56: Static Gantry Digital Tomosynthesis From the Beam’s-Eye-View

    Energy Technology Data Exchange (ETDEWEB)

    Partain, L; Kwon, J; Boyd, D [TeleSecurity Sciences, Las Vegas, NV (United States); Rottmann, J; Berbeco, R [Brigham and Woman’s Hospital, Boston, MA (United States); Zentai, G [Varian Medical Systems, Palo Alto, CA (United States)

    2015-06-15

    Purpose We have designed a novel TumoTrak™ x-ray system that delivers 19 distinct kV views with the linac gantry stationary. It images MV treatment beam above and below the patient with a kV tomosysthesis slice image from the therapy beam’s-eye-view. Results will be high quality images without MLC shadowing for notable improvements relative to conventional fluoroscopic MV imaging and fluoroscopic kV imaging. Methods A complete design has a kV electron beam multisource X-ray tube that fits around the MV treatment beam path, with little interference with normal radiotherapy and unblocked by the multi-leaf-collimator. To simulate digital tomosynthesis, we used cone-beam CT projection data from a lung SBRT patient. These data were acquired at 125 kVp and 11 fps (0.4 mAs per projection). We chose 19 projections evenly spaced over 27° around one of the treatment angles (240°). Digital tomosynthesis reconstruction of a slice through the tumor was performed using iterative reconstruction. The visibility of the lesion was assessed for the reconstructed digital tomosynthesis (DTS), using fluoroscopy MV images acquired during radiation therapy, and a kV single projection image acquired at the same angle as the treatment field (240°). Results The fluoroscopic DTS images provide the best tumor contrast, surpassing the conventional radiographic and the in-treatment MV portal images. The electron beam multisource X-ray tube design has been completed and the tube is being fabricated. The estimated time to cycle through all 19 projections is 700 ms, enabling high frame-rate imaging. While the initial proposed use case is for image guided and gated treatment delivery, the enhanced imaging will also deliver superior radiographic images for patient setup. Conclusion The proposed device will deliver high quality planar images from the beam’s-eye-view without MLC obstruction. The prototype has been designed and is being assembled with first imaging scheduled for May 2015. L

  19. Evaluation of the reconstruction method and effect of partial volume in brain scintiscanning; Avaliacao do metodo de reconstrucao e efeito do volume parcial em cintilografia cerebral

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Monica Araujo

    2016-10-01

    Alzheimer's disease is a neurodegenerative disorder, on which occurs a progressive and irreversible destruction of neurons. According to the World Health Organization (WHO) 35.6 million people are living with dementia, being recommended that governments prioritize early diagnosis techniques. Laboratory and psychological tests for cognitive assessment are conducted and further complemented by neurological imaging from nuclear medicine exams in order to establish an accurate diagnosis. The image quality evaluation and reconstruction process effects are important tools in clinical routine. In the present work, these quality parameters were studied, and the effects of partial volume (PVE) for lesions of different sizes and geometries that are attributed to the limited resolution of the equipment. In dementia diagnosis, this effect can be confused with intake losses due to cerebral cortex atrophy. The evaluation was conducted by two phantoms of different shapes as suggested by (a) American College of Radiology (ACR) and (b) National Electrical Manufacturers Association (NEMA) for Contrast, Contrast-to-Noise Ratio (CNR) and Recovery Coefficient (RC) calculation versus lesions shape and size. Technetium-99m radionuclide was used in a local brain scintigraphy protocol, for proportions lesion to background of 2:1, 4:1, 6:1, 8:1 and 10:1. Fourteen reconstruction methods were used for each concentration applying different filters and algorithms. Before the analysis of all image properties, the conclusion is that the predominant effect is the partial volume, leading to errors of measurement of more than 80%. Furthermore, it was demonstrate that the most effective method of reconstruction is FBP with Metz filter, providing better contrast and contrast to noise ratio results. In addition, this method shows the best Recovery Coefficients correction for each lesion. The ACR phantom showed the best results assigned to a more precise reconstruction of a cylinder, which does not

  20. A Software Phantom : Application in Digital Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lazos, D; Kolitsi, Z; Badea, C; Pallikarakis, N [Medical Physics Laboratory, School of Medicine, Univercity of Patras (Greece)

    1999-12-31

    A software phantom intended to be used in radiographic applications has been developed. The application was used for research in the field of Digital Tomosynthesis and specifically for studying tomographic noise removal methods. The application consists of a phantom design and a phantom imaging module. The radiation-matter interaction is based on the exponential relation of attenuation. Projections are formed by simulated irradiation with selectable geometrical parameters, source spectrum and detector response. Phantoms are defined either as sets containing certain geometrical objects or as groups of voxels. Comparison with real projections taken from a physical phantom with identical geometry and composition with the simulated one, showed good approximation with improved contrast due to the absence of scatter in the simulated projections. The software phantom proved to be a very useful tool for DTS investigations. Further development to include scatter is expected to expand the use of the application to more areas in radiological imaging research. (author) 4 refs., 3 figs

  1. A Software Phantom : Application in Digital Tomosynthesis

    International Nuclear Information System (INIS)

    Lazos, D.; Kolitsi, Z.; Badea, C.; Pallikarakis, N.

    1998-01-01

    A software phantom intended to be used in radiographic applications has been developed. The application was used for research in the field of Digital Tomosynthesis and specifically for studying tomographic noise removal methods. The application consists of a phantom design and a phantom imaging module. The radiation-matter interaction is based on the exponential relation of attenuation. Projections are formed by simulated irradiation with selectable geometrical parameters, source spectrum and detector response. Phantoms are defined either as sets containing certain geometrical objects or as groups of voxels. Comparison with real projections taken from a physical phantom with identical geometry and composition with the simulated one, showed good approximation with improved contrast due to the absence of scatter in the simulated projections. The software phantom proved to be a very useful tool for DTS investigations. Further development to include scatter is expected to expand the use of the application to more areas in radiological imaging research. (author)

  2. LERFCM: a computer code for spatial reconstruction of volume emission from chord measurements in plasmas

    International Nuclear Information System (INIS)

    Navarro, A.P.; Pare, V.K.; Dunlap, J.L.

    1981-01-01

    Local Emissivity Reconstruction from Chord Measurements (LERFCM) is a package of computer programs used to determine the two-dimensional spatial distribution of the emission intensity of radiation in a plasma from line integral data, which represents signals from arrays of collimated detectors looking through the plasma along different chords in a plane. The method requires data from only a few detector arrays and assumes that the emission distribution in the plane of observation has a smooth angular dependence that can be represented by a few low-order harmonics. The intended application is a reconstruction of plasma shape and MHD instabilities, using data from arrays of soft x-ray detectors on Impurity Study Experiment Tokamak

  3. Scout-view assisted interior digital tomosynthesis (iDTS) based on compressed-sensing theory

    Science.gov (United States)

    Park, S. Y.; Kim, G. A.; Cho, H. S.; Seo, C. W.; Je, U. K.; Park, C. K.; Lim, H. W.; Kim, K. S.; Lee, D. Y.; Lee, H. W.; Kang, S. Y.; Park, J. E.; Woo, T. H.; Lee, M. S.

    2017-12-01

    Conventional digital tomosynthesis (DTS) based on the filtered-backprojection (FBP) reconstruction requires full field-of-view scan and also relatively dense projections, which results in still high dose for medical imaging purposes. In this work, to overcome these difficulties, we propose a new type of DTS examinations, the so-called scout-view assisted interior DTS (iDTS), in which the x-ray beam span covers only a small region-of-interest (ROI) containing target diagnosis with the help of some scout views and they are used in the reconstruction to add additional information to interior ROI otherwise absent with conventional iDTS reconstruction methods. We considered an effective iterative algorithm based on compressed-sensing theory, rather than the FBP-based algorithm, for more accurate iDTS reconstruction. We implemented the proposed algorithm, performed a systematic simulation and experiment, and investigated the image characteristics. We successfully reconstructed iDTS images of substantially high accuracy and no truncation artifacts by using the proposed method, preserving superior image homogeneity, edge sharpening, and in-plane spatial resolution.

  4. Three Dimensional Sheaf of Ultrasound Planes Reconstruction (SOUPR) of Ablated Volumes

    Science.gov (United States)

    Ingle, Atul; Varghese, Tomy

    2014-01-01

    This paper presents an algorithm for three dimensional reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radiofrequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full three dimensional rendering of the ablation can then be created from this stack of C-planes; hence the name “Sheaf Of Ultrasound Planes Reconstruction” or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as 6 imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes. PMID:24808405

  5. Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Wei, Jun; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Lu, Yao; Zhou, Chuan; Samala, Ravi

    2014-01-01

    Purpose: To investigate the feasibility of a new two-dimensional (2D) multichannel response (MCR) analysis approach for the detection of clustered microcalcifications (MCs) in digital breast tomosynthesis (DBT). Methods: With IRB approval and informed consent, a data set of two-view DBTs from 42 breasts containing biopsy-proven MC clusters was collected in this study. The authors developed a 2D approach for MC detection using projection view (PV) images rather than the reconstructed three-dimensional (3D) DBT volume. Signal-to-noise ratio (SNR) enhancement processing was first applied to each PV to enhance the potential MCs. The locations of MC candidates were then identified with iterative thresholding. The individual MCs were decomposed with Hermite–Gaussian (HG) and Laguerre–Gaussian (LG) basis functions and the channelized Hotelling model was trained to produce the MCRs for each MC on the 2D images. The MCRs from the PVs were fused in 3D by a coincidence counting method that backprojects the MC candidates on the PVs and traces the coincidence of their ray paths in 3D. The 3D MCR was used to differentiate the true MCs from false positives (FPs). Finally a dynamic clustering method was used to identify the potential MC clusters in the DBT volume based on the fact that true MCs of clinical significance appear in clusters. Using two-fold cross validation, the performance of the 3D MCR for classification of true and false MCs was estimated by the area under the receiver operating characteristic (ROC) curve and the overall performance of the MCR approach for detection of clustered MCs was assessed by free response receiver operating characteristic (FROC) analysis. Results: When the HG basis function was used for MCR analysis, the detection of MC cluster achieved case-based test sensitivities of 80% and 90% at the average FP rates of 0.65 and 1.55 FPs per DBT volume, respectively. With LG basis function, the average FP rates were 0.62 and 1.57 per DBT volume at

  6. Organ dose variability and trends in tomosynthesis and radiography.

    Science.gov (United States)

    Hoye, Jocelyn; Zhang, Yakun; Agasthya, Greeshma; Sturgeon, Greg; Kapadia, Anuj; Segars, W Paul; Samei, Ehsan

    2017-07-01

    The purpose of this study was to investigate relationships between patient attributes and organ dose for a population of computational phantoms for 20 tomosynthesis and radiography protocols. Organ dose was estimated from 54 adult computational phantoms (age: 18 to 78 years, weight 52 to 117 kg) using a validated Monte-Carlo simulation (PENELOPE) of a system capable of performing tomosynthesis and radiography. The geometry and field of view for each exam were modeled to match clinical protocols. For each protocol, the energy deposited in each organ was estimated by the simulations, converted to dose units, and then normalized by exposure in air. Dose to radiosensitive organs was studied as a function of average patient thickness in the region of interest and as a function of body mass index. For tomosynthesis, organ doses were also studied as a function of x-ray tube position. This work developed comprehensive information for organ dose dependencies across a range of tomosynthesis and radiography protocols. The results showed a protocol-dependent exponential decrease with an increasing patient size. There was a variability in organ dose across the patient population, which should be incorporated in the metrology of organ dose. The results can be used to prospectively and retrospectively estimate organ dose for tomosynthesis and radiography.

  7. Effective dose to patients from thoracic spine examinations with tomosynthesis

    International Nuclear Information System (INIS)

    Svalkvist, Angelica; Baath, Magnus; Soederman, Christina

    2016-01-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm -2 was obtained. (authors)

  8. EFFECTIVE DOSE TO PATIENTS FROM THORACIC SPINE EXAMINATIONS WITH TOMOSYNTHESIS.

    Science.gov (United States)

    Svalkvist, Angelica; Söderman, Christina; Båth, Magnus

    2016-06-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm(-2) was obtained. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Lesion characterization in spectral photon-counting tomosynthesis

    Science.gov (United States)

    Cederström, Björn; Fredenberg, Erik; Berggren, Karl; Erhard, Klaus; Danielsson, Mats; Wallis, Matthew

    2017-03-01

    It has previously been shown that 2D spectral mammography can be used to discriminate between (likely benign) cystic and (potentially malignant) solid lesions in order to reduce unnecessary recalls in mammography. One limitation of the technique is, however, that the composition of overlapping tissue needs to be interpolated from a region surrounding the lesion. The purpose of this investigation was to demonstrate that lesion characterization can be done with spectral tomosynthesis, and to investigate whether the 3D information available in tomosynthesis can reduce the uncertainty from the interpolation of surrounding tissue. A phantom experiment was designed to simulate a cyst and a tumor, where the tumor was overlaid with a structure that made it mimic a cyst. In 2D, the two targets appeared similar in composition, whereas spectral tomosynthesis revealed the exact compositional difference. However, the loss of discrimination signal due to spread from the plane of interest was of the same strength as the reduction of anatomical noise. Results from a preliminary investigation on clinical tomosynthesis images of solid lesions yielded results that were consistent with the phantom experiments, but were still to some extent inconclusive. We conclude that lesion characterization is feasible in spectral tomosynthesis, but more data, as well as refinement of the calibration and discrimination algorithms, are needed to draw final conclusions about the benefit compared to 2D.

  10. Association between epicardial adipose tissue volumes on 3-dimensional reconstructed CT images and recurrence of atrial fibrillation after catheter ablation

    International Nuclear Information System (INIS)

    Nagashima, Koichi; Okumura, Yasuo; Watanabe, Ichiro

    2011-01-01

    Whether epicardial adipose tissue (EAT) is independently associated with atrial fibrillation (AF) and outcome after catheter ablation (CA) for AF remains unclear. Three-dimensional volume-rendering reconstructed images of EAT (total EAT) and EAT surrounding the left atrium (LA-EAT) were measured on 320-row multidetector computed tomography in 40 patients with AF (paroxysmal AF [PAF], n=24; persistent AF [PerAF], n=16) who underwent CA, and in 37 age-matched control patients. EAT volumes were as follows for the control, PAF and PerAF patients: total EAT, 138.3±45.2 cm 3 vs. 158.3±47.2 cm 3 vs. 226.4±93.3 cm 3 (P 3 vs. 41.3±15.3 cm 3 vs. 66.8±35.1 cm 3 (P 3 vs. 106.2±27.3 cm 3 , P=0.021; LA-EAT: 34.0±10.6 cm 3 vs. 21.8±6.9 cm 3 , P=0.0006). EAT volumes were greater in the 15 AF patients (37.5%) with post-ablation recurrence than in patients without recurrence (total EAT: 239.0±90.2 cm 3 vs. 153.5±42.7 cm 3 , P=0.0002; LA-EAT: 69.6±35.5 cm 3 vs. 40.7±13.9 cm 3 , P=0.0008). EAT volume increases in AF patients independent of conventional risk factors and is greater in patients with lone AF than in non-AF patients. EAT volume might be useful for predicting AF recurrence after CA. (author)

  11. Cell volume and geometric parameters determination in living cells using confocal microscopy and 3D reconstruction

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: David Hevia, Aida Rodriguez-Garcia, Marta Alonso-Gervós, Isabel Quirós-González, Henar M Cimadevilla, Carmen Gómez-Cordovés, Rosa M Sainz & Juan C Mayo ### Abstract The protocol reported here describes a simple, easy, fast and reproducible method aimed to know the geometric parameters of living cells based on confocal laser scanning microscopy combined with 3D reconstruction software. Briefly, the method is based on intrinsic fluorescence properties of acridine orange (AO), a...

  12. SU-E-T-143: Effect of X-Ray and Cone Beam CT Reconstruction Parameters On Estimation of Bone Volume of Mice Used in Aging Research

    Energy Technology Data Exchange (ETDEWEB)

    Russ, M; Pang, M; Troen, B; Rudin, S; Ionita, C [University at Buffalo, Buffalo, NY (United States)

    2014-06-01

    Purpose: To investigate the variations in bone volume calculations in mice involved in aging research when changing cone beam micro-CT x-ray and reconstruction parameters. Methods: Mouse spines were placed on an indexed turn table that rotated 0.5° per projection and imaged by a self-built micro CT machine containing a CCD-based high-resolution x-ray detector. After the full 360° rotation data set of object images was obtained, a standard filtered back-projection cone beam reconstruction was performed. Four different kVp's between 40–70 kVp in 10kVp increments were selected. For each kVp two mAs settings were used. Each acquisition was reconstructed using two voxel sizes (12 and 25μm) and two step angles, 0.5° and 1°, respectively. A LabView program was written to determine the total bone volume contained in the mouse's total spine volume (bone plus gaps) as a measure of spine health. First, the user selected the desired 512×512 reconstruction to view the whole spine volume which was then used to select a gray-level threshold that allowed for viewing of the bone structure, then another threshold to include gaps. The program returned bone volume, bone × gap volume, and their ratio, BVF. Results: The calculated bone volume fractions were compared as a function of tube potential. Cases with 25μm slice thickness showed trials with lower kVp's had greater image contrast, which resulted in higher calculated bone volume fractions. Cases with 12μm reconstructed slice thickness were significantly noisier, and showed no clear maximum BVF. Conclusion: Using the projection images and reconstructions acquired from the micro CT, it can be shown that the micro-CT x-ray and reconstruction parameters significantly affect the total bone volume calculations. When comparing mice cohorts treated with different therapies researchers need to be aware of such details and use volumes which were acquired and processed in identical conditions.

  13. Demons Registration of CT Volume and CBCT Projections for Adaptive Radiotherapy: Avoiding CBCT Reconstruction

    DEFF Research Database (Denmark)

    Bjerre, Troels; Aznar, M.; Munck af Rosenschöld, P.

    2012-01-01

    with adaptive fluidity (smoothing kernel width). For forward/back-projection, the separable footprints algorithm with trapezoid functions was applied. The similarity between the simulated and measured projections was measured as the SSD. Results: The figure shows a slice of; the CT volume (reference), the CT...

  14. [Breast tomosynthesis: a new tool for diagnosing breast cancer].

    Science.gov (United States)

    Martínez Miravete, P; Etxano, J

    2015-01-01

    Breast cancer continues to be the most common malignant tumor in women in occidental countries. Mammography is currently the technique of choice for screening programs; however, although it has been widely validated, mammography has its limitations, especially in dense breasts. Breast tomosynthesis is a revolutionary advance in the diagnosis of breast cancer. It makes it possible to define lesions that are occult in the glandular tissue and therefore to detect breast tumors that are impossible to see on conventional mammograms. In considering the combined use of mammography and tomosynthesis, many factors must be taken into account apart from cancer detection; these include additional radiation, the recall rate, and the time necessary to carry out and interpret the two tests. In this article, we review the technical principles of tomosynthesis, it main uses, and the future perspective for this imaging technique. Copyright © 2013 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  15. A Monte Carlo estimation of effective dose in chest tomosynthesis

    International Nuclear Information System (INIS)

    Sabol, John M.

    2009-01-01

    Purpose: The recent introduction of digital tomosynthesis imaging into routine clinical use has enabled the acquisition of volumetric patient data within a standard radiographic examination. Tomosynthesis requires the acquisition of multiple projection views, requiring additional dose compared to a standard projection examination. Knowledge of the effective dose is needed to make an appropriate decision between standard projection, tomosynthesis, and CT for thoracic x-ray examinations. In this article, the effective dose to the patient of chest tomosynthesis is calculated and compared to a standard radiographic examination and to values published for thoracic CT. Methods: Radiographic technique data for posterior-anterior (PA) and left lateral (LAT) radiographic chest examinations of medium-sized adults was obtained from clinical sites. From these data, the average incident air kerma for the standard views was determined. A commercially available tomosynthesis system was used to define the acquisition technique and geometry for each projection view. Using Monte Carlo techniques, the effective dose of the PA, LAT, and each tomosynthesis projection view was calculated. The effective dose for all projections of the tomosynthesis sweep was summed and compared to the calculated PA and LAT values and to the published values for thoracic CT. Results: The average incident air kerma for the PA and left lateral clinical radiographic examinations were found to be 0.10 and 0.40 mGy, respectively. The effective dose for the PA view of a patient of the size of an average adult male was determined to be 0.017 mSv (ICRP 60) [0.018 mSv (ICRP 103)]. For the left lateral view of the same sized patient, the effective dose was determined to be 0.039 mSv (ICRP 60) [0.050 mSv (ICRP 103)]. The cumulative mA s for a tomosynthesis examination is recommended to be ten times the mA s of the PA image. With this technique, the effective dose for an average tomosynthesis examination was

  16. Image quality and dose assessment in digital breast tomosynthesis: A Monte Carlo study

    International Nuclear Information System (INIS)

    Baptista, M.; Di Maria, S.; Oliveira, N.; Matela, N.; Janeiro, L.; Almeida, P.; Vaz, P.

    2014-01-01

    Mammography is considered a standard technique for the early detection of breast cancer. However, its sensitivity is limited essentially due to the issue of the overlapping breast tissue. This limitation can be partially overcome, with a relatively new technique, called digital breast tomosynthesis (DBT). For this technique, optimization of acquisition parameters which maximize image quality, whilst complying with the ALARA principle, continues to be an area of considerable research. The aim of this work was to study the best quantum energies that optimize the image quality with the lowest achievable dose in DBT and compare these results with the digital mammography (DM) ones. Monte Carlo simulations were performed using the state-of-the-art computer program MCNPX 2.7.0 in order to generate several 2D cranio-caudal (CC) projections obtained during an acquisition of a standard DBT examination. Moreover, glandular absorbed doses and photon flux calculations, for each projection image, were performed. A homogeneous breast computational phantom with 50%/50% glandular/adipose tissue composition was used and two compressed breast thicknesses were evaluated: 4 cm and 8 cm. The simulated projection images were afterwards reconstructed with an algebraic reconstruction tool and the signal difference to noise ratio (SDNR) was calculated in order to evaluate the image quality in DBT and DM. Finally, a thorough comparison between the results obtained in terms of SDNR and dose assessment in DBT and DM was performed. - Highlights: • Optimization of the image quality in digital breast tomosynthesis. • Calculation of photon energies that maximize the signal difference to noise ratio. • Projections images and dose calculations through the Monte Carlo (MC) method. • Tumor masses and microcalcifications included in the MC model. • A dose saving of about 30% can be reached if optimal photon energies are used

  17. Application of digital tomosynthesis (DTS) of optimal deblurring filters for dental X-ray imaging

    International Nuclear Information System (INIS)

    Oh, J. E.; Cho, H. S.; Kim, D. S.; Choi, S. I.; Je, U. K.

    2012-01-01

    Digital tomosynthesis (DTS) is a limited-angle tomographic technique that provides some of the tomographic benefits of computed tomography (CT) but at reduced dose and cost. Thus, the potential for application of DTS to dental X-ray imaging seems promising. As a continuation of our dental radiography R and D, we developed an effective DTS reconstruction algorithm and implemented it in conjunction with a commercial dental CT system for potential use in dental implant placement. The reconstruction algorithm employed a backprojection filtering (BPF) method based upon optimal deblurring filters to suppress effectively both the blur artifacts originating from the out-focus planes and the high-frequency noise. To verify the usefulness of the reconstruction algorithm, we performed systematic simulation works and evaluated the image characteristics. We also performed experimental works in which DTS images of enhanced anatomical resolution were successfully obtained by using the algorithm and were promising to our ongoing applications to dental X-ray imaging. In this paper, our approach to the development of the DTS reconstruction algorithm and the results are described in detail.

  18. Characterization of lesions in dense breasts: Does tomosynthesis help?

    Directory of Open Access Journals (Sweden)

    Krithika Rangarajan

    2016-01-01

    Full Text Available Context: Mammography in dense breasts is challenging due to lesion obscuration by tissue overlap. Does tomosynthesis offers a solution? Aims: To study the impact of digital breast tomosynthesis (DBT in characterizing lesions in breasts of different mammographic densities. Settings and Design: Prospective blinded study comparing mammography in two views with Mammography + Tomosynthesis. Methods and Material: Tomosynthesis was performed in 199 patients who were assigned Breast imaging reporting and data system (BIRADS categories 0, 3, 4, or 5 on two-dimensional (2D mammogram. Mammograms were first categorized into one of 4 mammographic breast densities in accordance with the American College of Radiology (ACR. Three radiologists independently analyzed these images and assigned a BIRADS category first based on 2D mammogram alone, and then assigned a fresh BIRADS category after taking mammography and tomosynthesis into consideration. A composite gold-standard was used in the study (histopathology, ultrasound, follow-up mammogram, magnetic resonance imaging. Each lesion was categorized into 3 groups—superior categorization with DBT, no change in BIRADS, or inferior BIRADS category based on comparison with the gold-standard. The percentage of lesions in each group was calculated for different breast densities. Results: There were 260 lesions (ages 28–85. Overall, superior categorization was seen in 21.2% of our readings on addition of DBT to mammography. DBT was most useful in ACR Densities 3 and 4 breasts where it led to more appropriate categorization in 27 and 42% of lesions, respectively. DBT also increased diagnostic confidence in 54.5 and 63.6% of lesions in ACR Densities 3 and 4, respectively. Conclusions: In a diagnostic setting, the utility of tomosynthesis increases with increasing breast density. This helps in identifying the sub category of patients where DBT can actually change management.

  19. Characterization of lesions in dense breasts: Does tomosynthesis help?

    Science.gov (United States)

    Rangarajan, Krithika; Hari, Smriti; Thulkar, Sanjay; Sharma, Sanjay; Srivastava, Anurag; Parshad, Rajinder

    2016-01-01

    Mammography in dense breasts is challenging due to lesion obscuration by tissue overlap. Does tomosynthesis offers a solution? To study the impact of digital breast tomosynthesis (DBT) in characterizing lesions in breasts of different mammographic densities. Prospective blinded study comparing mammography in two views with Mammography + Tomosynthesis. Tomosynthesis was performed in 199 patients who were assigned Breast imaging reporting and data system (BIRADS) categories 0, 3, 4, or 5 on two-dimensional (2D) mammogram. Mammograms were first categorized into one of 4 mammographic breast densities in accordance with the American College of Radiology (ACR). Three radiologists independently analyzed these images and assigned a BIRADS category first based on 2D mammogram alone, and then assigned a fresh BIRADS category after taking mammography and tomosynthesis into consideration. A composite gold-standard was used in the study (histopathology, ultrasound, follow-up mammogram, magnetic resonance imaging). Each lesion was categorized into 3 groups-superior categorization with DBT, no change in BIRADS, or inferior BIRADS category based on comparison with the gold-standard. The percentage of lesions in each group was calculated for different breast densities. There were 260 lesions (ages 28-85). Overall, superior categorization was seen in 21.2% of our readings on addition of DBT to mammography. DBT was most useful in ACR Densities 3 and 4 breasts where it led to more appropriate categorization in 27 and 42% of lesions, respectively. DBT also increased diagnostic confidence in 54.5 and 63.6% of lesions in ACR Densities 3 and 4, respectively. In a diagnostic setting, the utility of tomosynthesis increases with increasing breast density. This helps in identifying the sub category of patients where DBT can actually change management.

  20. Scatter radiation in digital tomosynthesis of the breast

    International Nuclear Information System (INIS)

    Sechopoulos, Ioannis; Suryanarayanan, Sankararaman; Vedantham, Srinivasan; D'Orsi, Carl J.; Karellas, Andrew

    2007-01-01

    Digital tomosynthesis of the breast is being investigated as one possible solution to the problem of tissue superposition present in planar mammography. This imaging technique presents various advantages that would make it a feasible replacement for planar mammography, among them similar, if not lower, radiation glandular dose to the breast; implementation on conventional digital mammography technology via relatively simple modifications; and fast acquisition time. One significant problem that tomosynthesis of the breast must overcome, however, is the reduction of x-ray scatter inclusion in the projection images. In tomosynthesis, due to the projection geometry and radiation dose considerations, the use of an antiscatter grid presents several challenges. Therefore, the use of postacquisition software-based scatter reduction algorithms seems well justified, requiring a comprehensive evaluation of x-ray scatter content in the tomosynthesis projections. This study aims to gain insight into the behavior of x-ray scatter in tomosynthesis by characterizing the scatter point spread functions (PSFs) and the scatter to primary ratio (SPR) maps found in tomosynthesis of the breast. This characterization was performed using Monte Carlo simulations, based on the Geant4 toolkit, that simulate the conditions present in a digital tomosynthesis system, including the simulation of the compressed breast in both the cranio-caudal (CC) and the medio-lateral oblique (MLO) views. The variation of the scatter PSF with varying tomosynthesis projection angle, as well as the effects of varying breast glandular fraction and x-ray spectrum, was analyzed. The behavior of the SPR for different projection angle, breast size, thickness, glandular fraction, and x-ray spectrum was also analyzed, and computer fit equations for the magnitude of the SPR at the center of mass for both the CC and the MLO views were found. Within mammographic energies, the x-ray spectrum was found to have no appreciable

  1. Description and validation of a scoring system for tomosynthesis in pulmonary cystic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Vult von Steyern, Kristina; Bjoerkman-Burtscher, Isabella M.; Bozovic, Gracijela; Wiklund, Marie; Geijer, Mats [Skaane University Hospital, Lund University, Centre for Medical Imaging and Physiology, Lund (Sweden); Hoeglund, Peter [Skaane University Hospital, Competence Centre for Clinical Research, Lund (Sweden)

    2012-12-15

    To design and validate a scoring system for tomosynthesis (digital tomography) in pulmonary cystic fibrosis. A scoring system dedicated to tomosynthesis in pulmonary cystic fibrosis was designed. Three radiologists independently scored 88 pairs of radiographs and tomosynthesis examinations of the chest in 60 patients with cystic fibrosis and 7 oncology patients. Radiographs were scored according to the Brasfield scoring system and tomosynthesis examinations were scored using the new scoring system. Observer agreements for the tomosynthesis score were almost perfect for the total score with square-weighted kappa >0.90, and generally substantial to almost perfect for subscores. Correlation between the tomosynthesis score and the Brasfield score was good for the three observers (Kendall's rank correlation tau 0.68, 0.77 and 0.78). Tomosynthesis was generally scored higher as a percentage of the maximum score. Observer agreements for the total score for Brasfield score were almost perfect (square-weighted kappa 0.80, 0.81 and 0.85). The tomosynthesis scoring system seems robust and correlates well with the Brasfield score. Compared with radiography, tomosynthesis is more sensitive to cystic fibrosis changes, especially bronchiectasis and mucus plugging, and the new tomosynthesis scoring system offers the possibility of more detailed and accurate scoring of disease severity. (orig.)

  2. Tomosynthesis-detected Architectural Distortion: Management Algorithm with Radiologic-Pathologic Correlation.

    Science.gov (United States)

    Durand, Melissa A; Wang, Steven; Hooley, Regina J; Raghu, Madhavi; Philpotts, Liane E

    2016-01-01

    As use of digital breast tomosynthesis becomes increasingly widespread, new management challenges are inevitable because tomosynthesis may reveal suspicious lesions not visible at conventional two-dimensional (2D) full-field digital mammography. Architectural distortion is a mammographic finding associated with a high positive predictive value for malignancy. It is detected more frequently at tomosynthesis than at 2D digital mammography and may even be occult at conventional 2D imaging. Few studies have focused on tomosynthesis-detected architectural distortions to date, and optimal management of these distortions has yet to be well defined. Since implementing tomosynthesis at our institution in 2011, we have learned some practical ways to assess architectural distortion. Because distortions may be subtle, tomosynthesis localization tools plus improved visualization of adjacent landmarks are crucial elements in guiding mammographic identification of elusive distortions. These same tools can guide more focused ultrasonography (US) of the breast, which facilitates detection and permits US-guided tissue sampling. Some distortions may be sonographically occult, in which case magnetic resonance imaging may be a reasonable option, both to increase diagnostic confidence and to provide a means for image-guided biopsy. As an alternative, tomosynthesis-guided biopsy, conventional stereotactic biopsy (when possible), or tomosynthesis-guided needle localization may be used to achieve tissue diagnosis. Practical uses for tomosynthesis in evaluation of architectural distortion are highlighted, potential complications are identified, and a working algorithm for management of tomosynthesis-detected architectural distortion is proposed. (©)RSNA, 2016.

  3. Description and validation of a scoring system for tomosynthesis in pulmonary cystic fibrosis

    International Nuclear Information System (INIS)

    Vult von Steyern, Kristina; Bjoerkman-Burtscher, Isabella M.; Bozovic, Gracijela; Wiklund, Marie; Geijer, Mats; Hoeglund, Peter

    2012-01-01

    To design and validate a scoring system for tomosynthesis (digital tomography) in pulmonary cystic fibrosis. A scoring system dedicated to tomosynthesis in pulmonary cystic fibrosis was designed. Three radiologists independently scored 88 pairs of radiographs and tomosynthesis examinations of the chest in 60 patients with cystic fibrosis and 7 oncology patients. Radiographs were scored according to the Brasfield scoring system and tomosynthesis examinations were scored using the new scoring system. Observer agreements for the tomosynthesis score were almost perfect for the total score with square-weighted kappa >0.90, and generally substantial to almost perfect for subscores. Correlation between the tomosynthesis score and the Brasfield score was good for the three observers (Kendall's rank correlation tau 0.68, 0.77 and 0.78). Tomosynthesis was generally scored higher as a percentage of the maximum score. Observer agreements for the total score for Brasfield score were almost perfect (square-weighted kappa 0.80, 0.81 and 0.85). The tomosynthesis scoring system seems robust and correlates well with the Brasfield score. Compared with radiography, tomosynthesis is more sensitive to cystic fibrosis changes, especially bronchiectasis and mucus plugging, and the new tomosynthesis scoring system offers the possibility of more detailed and accurate scoring of disease severity. (orig.)

  4. Tomosynthesis as a screening tool for breast cancer: A systematic review

    International Nuclear Information System (INIS)

    Coop, P.; Cowling, C.; Lawson, C.

    2016-01-01

    Background: Mammography is an important screening tool for reducing breast cancer mortality. Digital breast tomosynthesis (DBT) can potentially be integrated with mammography to aid in cancer detection. Method: Using the PRISMA guidelines, a systematic review of current literature was conducted to identify issues relating to the use of tomosynthesis as a screening tool together with mammography. Findings: Using tomosynthesis with digital mammography (DM) increases breast cancer detection, reduces recall rates and increases the positive predictive value of those cases recalled. Invasive cancer detection is significantly improved in tomosynthesis compared to mammography, and has improved success for women with heterogeneous or extremely dense breasts. Conclusion: Tomosynthesis reduces some limitations of mammography at the time of screening that until recently were most often addressed by ultrasound at later work-up. Tomosynthesis can potentially be adopted alongside mammography as a screening tool. - Highlights: • Using tomosynthesis with digital mammography increases breast cancer detection. • Tomosynthesis has improved detection for women with extremely dense breasts. • Tomosynthesis reduces the need for ultrasound to address mammography limitations. • When Tomosynthesis is combined with mammography, recall rates are reduced.

  5. The role of tomosynthesis in breast cancer staging in 75 patients.

    Science.gov (United States)

    Mercier, J; Kwiatkowski, F; Abrial, C; Boussion, V; Dieu-de Fraissinette, V; Marraoui, W; Petitcolin-Bidet, V; Lemery, S

    2015-01-01

    Compare tomosynthesis to mammography, ultrasound, MRI, and histology for the detection and staging of BI-RADS 4-5 anomalies, as a function of breast composition, lesion location, size, and histology. Seventy-five patients underwent mammography, tomosynthesis, ultrasound, and MRI. The diagnostic accuracy of the different examinations was compared. The sensitivities for detection were as follows: 92.5% with MRI, 79% for ultrasound, 75% for tomosynthesis, and 59.5% for mammography. Tomosynthesis improves the sensitivity of mammography (P=0.00013), but not the specificity. The detection of multifocality and multicentricity was improved, but not significantly. Tomosynthesis identified more lesions than mammography in 10% of cases and improved lesion staging irrespective of the density, but was still inferior to MRI. The detection of ductal neoplasia was superior with tomosynthesis than with mammography (P=0.016), but this was not the case with lobular cancer. The visualization of masses was improved with tomosynthesis (P=0.00012), but not microcalcifications. Tomosynthesis was capable of differentiating lesions of all sizes, but the smaller lesions were easier to see. Lesion sizes measured with tomosynthesis, excluding the spicules, concurred with histological dimensions. Spicules lead to an overestimation of the size. In our series, tomosynthesis found more lesions than mammography in 10% of patients, resulting in an adaption of the surgical plan. Copyright © 2014 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  6. Tomosynthesis of the thoracic spine: added value in diagnosing vertebral fractures in the elderly.

    Science.gov (United States)

    Geijer, Mats; Gunnlaugsson, Eirikur; Götestrand, Simon; Weber, Lars; Geijer, Håkan

    2017-02-01

    Thoracic spine radiography becomes more difficult with age. Tomosynthesis is a low-dose tomographic extension of radiography which may facilitate thoracic spine evaluation. This study assessed the added value of tomosynthesis in imaging of the thoracic spine in the elderly. Four observers compared the image quality of 50 consecutive thoracic spine radiography and tomosynthesis data sets from 48 patients (median age 67 years, range 55-92 years) on a number of image quality criteria. Observer variation was determined by free-marginal multirater kappa. The conversion factor and effective dose were determined from the dose-area product values. For all observers significantly more vertebrae were seen with tomosynthesis than with radiography (mean 12.4/9.3, P tomosynthesis was significantly higher than for radiography, for all evaluated structures. Tomosynthesis took longer to evaluate than radiography. Despite this, all observers scored a clear preference for tomosynthesis. Observer agreement was substantial (mean κ = 0.73, range 0.51-0.94). The calibration or conversion factor was 0.11 mSv/(Gy cm 2 ) for the combined examination. The resulting effective dose was 0.87 mSv. Tomosynthesis can increase the detection rate of thoracic vertebral fractures in the elderly, at low added radiation dose. • Tomosynthesis helps evaluate the thoracic spine in the elderly. • Observer agreement for thoracic spine tomosynthesis was substantial (mean κ = 0.73). • Significantly more vertebrae and significantly more fractures were seen with tomosynthesis. • Tomosynthesis took longer to evaluate than radiography. • There was a clear preference among all observers for tomosynthesis over radiography.

  7. WE-AB-303-09: Rapid Projection Computations for On-Board Digital Tomosynthesis in Radiation Therapy

    International Nuclear Information System (INIS)

    Iliopoulos, AS; Sun, X; Pitsianis, N; Yin, FF; Ren, L

    2015-01-01

    Purpose: To facilitate fast and accurate iterative volumetric image reconstruction from limited-angle on-board projections. Methods: Intrafraction motion hinders the clinical applicability of modern radiotherapy techniques, such as lung stereotactic body radiation therapy (SBRT). The LIVE system may impact clinical practice by recovering volumetric information via Digital Tomosynthesis (DTS), thus entailing low time and radiation dose for image acquisition during treatment. The DTS is estimated as a deformation of prior CT via iterative registration with on-board images; this shifts the challenge to the computational domain, owing largely to repeated projection computations across iterations. We address this issue by composing efficient digital projection operators from their constituent parts. This allows us to separate the static (projection geometry) and dynamic (volume/image data) parts of projection operations by means of pre-computations, enabling fast on-board processing, while also relaxing constraints on underlying numerical models (e.g. regridding interpolation kernels). Further decoupling the projectors into simpler ones ensures the incurred memory overhead remains low, within the capacity of a single GPU. These operators depend only on the treatment plan and may be reused across iterations and patients. The dynamic processing load is kept to a minimum and maps well to the GPU computational model. Results: We have integrated efficient, pre-computable modules for volumetric ray-casting and FDK-based back-projection with the LIVE processing pipeline. Our results show a 60x acceleration of the DTS computations, compared to the previous version, using a single GPU; presently, reconstruction is attained within a couple of minutes. The present implementation allows for significant flexibility in terms of the numerical and operational projection model; we are investigating the benefit of further optimizations and accurate digital projection sub

  8. WE-AB-303-09: Rapid Projection Computations for On-Board Digital Tomosynthesis in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, AS; Sun, X [Duke University, Durham, NC (United States); Pitsianis, N [Aristotle University of Thessaloniki (Greece); Duke University, Durham, NC (United States); Yin, FF; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To facilitate fast and accurate iterative volumetric image reconstruction from limited-angle on-board projections. Methods: Intrafraction motion hinders the clinical applicability of modern radiotherapy techniques, such as lung stereotactic body radiation therapy (SBRT). The LIVE system may impact clinical practice by recovering volumetric information via Digital Tomosynthesis (DTS), thus entailing low time and radiation dose for image acquisition during treatment. The DTS is estimated as a deformation of prior CT via iterative registration with on-board images; this shifts the challenge to the computational domain, owing largely to repeated projection computations across iterations. We address this issue by composing efficient digital projection operators from their constituent parts. This allows us to separate the static (projection geometry) and dynamic (volume/image data) parts of projection operations by means of pre-computations, enabling fast on-board processing, while also relaxing constraints on underlying numerical models (e.g. regridding interpolation kernels). Further decoupling the projectors into simpler ones ensures the incurred memory overhead remains low, within the capacity of a single GPU. These operators depend only on the treatment plan and may be reused across iterations and patients. The dynamic processing load is kept to a minimum and maps well to the GPU computational model. Results: We have integrated efficient, pre-computable modules for volumetric ray-casting and FDK-based back-projection with the LIVE processing pipeline. Our results show a 60x acceleration of the DTS computations, compared to the previous version, using a single GPU; presently, reconstruction is attained within a couple of minutes. The present implementation allows for significant flexibility in terms of the numerical and operational projection model; we are investigating the benefit of further optimizations and accurate digital projection sub

  9. Advancement of 31P Magnetic Resonance Spectroscopy Using GRAPPA Reconstruction on a 3D Volume

    Science.gov (United States)

    Clevenger, Tony

    The overall objective of this research is to improve currently available metabolic imaging techniques for clinical use in monitoring and predicting treatment response to radiation therapy in liver cancer. Liver metabolism correlates with inflammatory and neoplastic liver diseases, which alter the intracellular concentration of phosphorus- 31 (31P) metabolites [1]. It is assumed that such metabolic changes occur prior to physical changes of the tissue. Therefore, information on regional changes of 31P metabolites in the liver, obtained by Magnetic Resonance Spectroscopic Imaging (MRSI) [1,2], can help in diagnosis and follow-up of various liver diseases. Specifically, there appears to be an immediate need of this technology for both the assessment of tumor response in patients with Hepatocellular Carcinoma (HCC) treated with Stereotactic Body Radiation Therapy (SBRT) [3--5], as well as assessment of radiation toxicity, which can result in worsening liver dysfunction [6]. Pilot data from our lab has shown that 31P MRSI has the potential to identify treatment response five months sooner than conventional methods [7], and to assess the biological response of liver tissue to radiation 24 hours post radiation therapy [8]. While this data is very promising, commonly occurring drawbacks for 31P MRSI are patient discomfort due to long scan times and prone positioning within the scanner, as well as reduced data quality due to patient motion and respiration. To further advance the full potential of 31P MRSI as a clinical diagnostic tool in the management of liver cancer, this PhD research project had the following aims: I) Reduce the long acquisition time of 3D 31P MRS by formulating and imple- menting an appropriate GRAPPA undersampling scheme and reconstruction on a clinical MRI scanner II) Testing and quantitative validation of GRAPPA reconstruction on 3D 31P MRSI on developmental phantoms and healthy volunteers At completion, this work should considerably advance 31P MRSI

  10. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    International Nuclear Information System (INIS)

    Zhang, Yakun; Li, Xiang; Segars, W. Paul; Samei, Ehsan

    2014-01-01

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI vol and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose metrics

  11. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yakun [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Li, Xiang [Medical Physics Graduate Program, Department of Physics, Cleveland State University, Cleveland, Ohio 44115 (United States); Segars, W. Paul [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan, E-mail: samei@duke.edu [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Departments of Physics, Biomedical Engineering, and Electrical and Computer Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States)

    2014-02-15

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI{sub vol} and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose

  12. Oak Ridge Health Studies Phase 1 report, Volume 2: Part A, Dose Reconstruction Feasibility Study

    International Nuclear Information System (INIS)

    Bruce, G.M.; Buddenbaum, J.E.; Lamb, J.K.; Widner, T.E.

    1993-09-01

    The Phase I feasibility study has focused on determining the availability of information for estimating exposures of the public to chemicals and radionuclides released as a result of historical operation of the facilities at the Oak Ridge Reservation (ORR). The estimation of such past exposures is frequently called dose reconstruction. The initial project tasks, Tasks 1 and 2 were designed to identify and collect information that documents the history of activities at the ORR that resulted in the release of contamination and to characterize the availability of data that could be used to estimate the magnitude of the contaminant releases or public exposures. A history of operations that are likely to have generated off-site releases has been documented as a result of Task 1 activities. The activities required to perform this task involved the extensive review of historical operation records and interviews with present and past employees as well as other knowledgeable individuals. The investigation process is documented in this report. The Task 1 investigations have led to the documentation of an overview of the activities that have taken place at each of the major complexes, including routine operations, waste management practices, special projects, and accidents and incidents. Historical activities that appear to warrant the highest priority in any further investigations were identified based on their likely association with off-site emissions of hazardous materials as indicated by the documentation reviewed or information obtained in interviews

  13. Oak Ridge Health Studies Phase 1 report, Volume 2: Part C, Dose Reconstruction Feasibility Study

    International Nuclear Information System (INIS)

    DaMassa, C.L.; Widner, T.E.

    1993-09-01

    A significant number of information sources have been identified that are relevant to historical locations and activities of populations potentially affected by releases from the Oak Ridge Reservation. The information that has been reviewed as part of this Task 5 investigation has shown that numerous residences and farms have historically been present near the ORR boundary and that a variety of land uses and recreational activities have been practiced. Based on this information alone, it would appear that many routes of off-site exposure could have been plausible. Most of the available published information addresses demographic and land use data on a regional or county-wide basis over fairly broad time periods. The information sources that are most readily available do not support direct evaluation of potential exposure pathways at specific geographic locations near the Oak Ridge facilities at specific points in time. A number of information sources have been identified that can provide demography and land use information more specific to locations and time periods that are identified to be of interest. Examples of data sources in this category include individual USGS topographic maps, aerial photographs, lowest-level census tract data, and interviews with long-time local residents. However, specific release events and periods of interest should be identified prior to attempts to collect more specific demographic or land use information for actual dose reconstruction

  14. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure

    International Nuclear Information System (INIS)

    Maier, Joscha; Sawall, Stefan; Kachelrieß, Marc

    2014-01-01

    Purpose: Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Methods: Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Results: Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the

  15. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure.

    Science.gov (United States)

    Maier, Joscha; Sawall, Stefan; Kachelrieß, Marc

    2014-05-01

    Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the HDTV algorithm shows the

  16. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Joscha, E-mail: joscha.maier@dkfz.de [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Sawall, Stefan; Kachelrieß, Marc [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen (Germany)

    2014-05-15

    Purpose: Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Methods: Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Results: Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the

  17. Comparing low volume saphenous-obturator block with placebo and femoral-obturator block for anterior cruciate ligament reconstruction: a randomized controlled trial

    DEFF Research Database (Denmark)

    Lenz, Katja; Jensen, Kenneth; Tanggaard, Katrine

    2018-01-01

    BACKGROUND: Anterior cruciate ligament reconstruction (ACL-RC) is often associated with moderate to severe postoperative pain even with a multimodal analgesic regimen. We aimed to compare the analgesic efficacy of low volume saphenous-obturator block with placebo and femoral- obturator block in p...

  18. Experimental Models Used in Fat Grafting Research for Volume Augmentation in Soft Tissue Reconstruction

    Directory of Open Access Journals (Sweden)

    Jorge Lujan-Hernandez

    2017-09-01

    Full Text Available As the popularity of fat grafting research increases, animal models are being used as the source of pre-clinical experimental information for discovery and to enhance techniques. To date, animal models used in this research have not been compared to provide a standardized model. We analyzed publications from 1968–2015 to compare published accounts of animal models in fat grafting research. Data collected included: species used, graft characteristics (donor tissue, recipient area, amount injected, injection technique, time of sacrifice and quantification methods. Mice were most commonly used (56% of studies, with the “athymic nude” strain utilized most frequently (44%. Autologous fat was the most common source of grafted tissue (52%. Subcutaneous dorsum was the most common recipient site (51%. On average, 0.80±0.60 mL of fat was grafted. A single bolus technique was used in 57% of studies. Fat volume assessment was typically completed at the end of the study, occurring at less than 1 week to one year. Graft volume was quantified by weight (63%, usually in conjunction with another analysis. The results demonstrate the current heterogeneity of animal models in this research. We propose that the research community reach a consensus to allow better comparison of techniques and results. One example is the model used in our laboratory and others; this model is described in detail. Eventually, larger animal models may better translate to the human condition but, given increased financial costs and animal facility capability, should be explored when data obtained from small animal studies is exhausted or inconclusive.

  19. Three-dimensional computed tomographic angiography to predict weight and volume of deep inferior epigastric artery perforator flap for breast reconstruction.

    Science.gov (United States)

    Rosson, Gedge D; Shridharani, Sachin M; Magarakis, Michael; Manahan, Michele A; Stapleton, Sahael M; Gilson, Marta M; Flores, Jaime I; Basdag, Basak; Fishman, Elliot K

    2011-10-01

    Three-dimensional computed tomographic angiography (3D CTA) can be used preoperatively to evaluate the course and caliber of perforating blood vessels for abdominal free-flap breast reconstruction. For postmastectomy breast reconstruction, many women inquire whether the abdominal tissue volume will match that of the breast to be removed. Therefore, our goal was to estimate preoperative volume and weight of the proposed flap and compare them with the actual volume and weight to determine if diagnostic imaging can accurately identify the amount of tissue that could potentially to be harvested. Preoperative 3D CTA was performed in 15 patients, who underwent breast reconstruction using the deep inferior epigastric artery perforator flap. Before each angiogram, stereotactic fiducials were placed on the planned flap outline. The radiologist reviewed each preoperative angiogram to estimate the volume, and thus, weight of the flap. These estimated weights were compared with the actual intraoperative weights. The average estimated weight was 99.7% of the actual weight. The interquartile range (25th to 75th percentile), which represents the "middle half" of the patients, was 91-109%, indicating that half of the patients had an estimated weight within 9% of the actual weight; however, there was a large range (70-133%). 3D CTA with stereotactic fiducials allows surgeons to adequately estimate abdominal flap volume before surgery, potentially giving guidance in the amount of tissue that can be harvested from a patient's lower abdomen. Copyright © 2011 Wiley-Liss, Inc.

  20. Variability of left ventricular ejection fraction and volumes with quantitative gated SPECT: influence of algorithm, pixel size and reconstruction parameters in small and normal-sized hearts

    International Nuclear Information System (INIS)

    Hambye, Anne-Sophie; Vervaet, Ann; Dobbeleir, Andre

    2004-01-01

    Several software packages are commercially available for quantification of left ventricular ejection fraction (LVEF) and volumes from myocardial gated single-photon emission computed tomography (SPECT), all of which display a high reproducibility. However, their accuracy has been questioned in patients with a small heart. This study aimed to evaluate the performances of different software and the influence of modifications in acquisition or reconstruction parameters on LVEF and volume measurements, depending on the heart size. In 31 patients referred for gated SPECT, 64 2 and 128 2 matrix acquisitions were consecutively obtained. After reconstruction by filtered back-projection (Butterworth, 0.4, 0.5 or 0.6 cycles/cm cut-off, order 6), LVEF and volumes were computed with different software [three versions of Quantitative Gated SPECT (QGS), the Emory Cardiac Toolbox (ECT) and the Stanford University (SU-Segami) Medical School algorithm] and processing workstations. Depending upon their end-systolic volume (ESV), patients were classified into two groups: group I (ESV>30 ml, n=14) and group II (ESV 2 to 128 2 were associated with significantly larger volumes as well as lower LVEF values. Increasing the filter cut-off frequency had the same effect. With SU-Segami, a larger matrix was associated with larger end-diastolic volumes and smaller ESVs, resulting in a highly significant increase in LVEF. Increasing the filter sharpness, on the other hand, had no influence on LVEF though the measured volumes were significantly larger. (orig.)

  1. Evaluation of tomosynthesis elastography in a breast-mimicking phantom

    International Nuclear Information System (INIS)

    Engelken, Florian Jan; Sack, Ingolf; Klatt, Dieter; Fischer, Thomas; Fallenberg, Eva Maria; Bick, Ulrich; Diekmann, Felix

    2012-01-01

    Objective: To evaluate whether measurement of strain under static compression in tomosynthesis of a breast-mimicking phantom can be used to distinguish tumor-simulating lesions of different elasticities and to compare the results to values predicted by rheometric analysis as well as results of ultrasound elastography. Materials and methods: We prepared three soft breast-mimicking phantoms containing simulated tumors of different elasticities. The phantoms were imaged using a wide angle tomosynthesis system with increasing compression settings ranging from 0 N to 105 N in steps of 15 N. Strain of the inclusions was measured in two planes using a commercially available mammography workstation. The elasticity of the phantom matrix and inclusion material was determined by rheometric analysis. Ultrasound elastography of the inclusions was performed using two different ultrasound elastography algorithms. Results: Strain at maximal compression was 24.4%/24.5% in plane 1/plane 2, respectively, for the soft inclusion, 19.6%/16.9% for the intermediate inclusion, and 6.0%/10.2% for the firm inclusion. The strain ratios predicted by rheometrical testing were 0.41, 0.83 and 1.26 for the soft, intermediate, and firm inclusions, respectively. The strain ratios obtained for the soft, intermediate, and firm inclusions were 0.72 ± 0.13, 1.02 ± 0.21 and 2.67 ± 1.70, respectively for tomosynthesis elastography, 0.91, 1.64 and 2.07, respectively, for ultrasound tissue strain imaging, and 0.97, 2.06 and 2.37, respectively, for ultrasound real-time elastography. Conclusions: Differentiation of tumor-simulating inclusions by elasticity in a breast mimicking phantom may be possible by measuring strain in tomosynthesis. This method may be useful for assessing elasticity of breast lesions tomosynthesis of the breast

  2. Tomographic reconstruction of atmospheric volumes from infrared limb-imager measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ungermann, Joern

    2011-08-12

    State-of-the art nadir and limb-sounders, but also in situ measurements, do not offer the capability to highly resolve the atmosphere in all three dimensions. This leaves an observational gap with respect to small-scale structures that arise frequently in the atmosphere and that still lack a quantitative understanding. For instance, filaments and tropopause folds in the upper troposphere and lower stratosphere (UTLS) are crucial for its composition and variability. One way to achieve a highly resolved three-dimensional (3-D) picture of the atmosphere is the tomographic evaluation of limb-imager measurements. This thesis presents a methodology for the tomographic reconstruction of atmospheric constituents. To be able to deal with the large increase of observations and unknowns compared to conventional retrievals, great care is taken to reduce memory consumption and processing time. This method is used to evaluate the performance of two upcoming infrared limb-imager instruments and to prepare their missions. The first examined instrument is the infrared limb-imager on board of PREMIER (Process Exploration through Measurements of Infrared and millimetrewave Emitted Radiation), one of three remaining candidates for ESA's 7th Earth Explorer mission. Scientific goals of PREMIER are, among others, the examination of gravity waves and the quantification of processes controlling atmospheric composition in the UTLS, a region of particular importance for climate change. Simulations based on the performance requirements of this instrument deliver a vertical resolution that is slightly better than its vertical field-of-view (about 0.75 km) and a horizontal resolution of {approx}25km x 70 km. Non-linear end-to-end simulations for various gravity wave patterns demonstrate that the high 3-D resolution of PREMIER considerably extends the range of detectable gravity waves in terms of horizontal and vertical wavelength compared to previous observations. The second examined

  3. Tomographic reconstruction of atmospheric volumes from infrared limb-imager measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ungermann, Joern

    2011-08-12

    State-of-the art nadir and limb-sounders, but also in situ measurements, do not offer the capability to highly resolve the atmosphere in all three dimensions. This leaves an observational gap with respect to small-scale structures that arise frequently in the atmosphere and that still lack a quantitative understanding. For instance, filaments and tropopause folds in the upper troposphere and lower stratosphere (UTLS) are crucial for its composition and variability. One way to achieve a highly resolved three-dimensional (3-D) picture of the atmosphere is the tomographic evaluation of limb-imager measurements. This thesis presents a methodology for the tomographic reconstruction of atmospheric constituents. To be able to deal with the large increase of observations and unknowns compared to conventional retrievals, great care is taken to reduce memory consumption and processing time. This method is used to evaluate the performance of two upcoming infrared limb-imager instruments and to prepare their missions. The first examined instrument is the infrared limb-imager on board of PREMIER (Process Exploration through Measurements of Infrared and millimetrewave Emitted Radiation), one of three remaining candidates for ESA's 7th Earth Explorer mission. Scientific goals of PREMIER are, among others, the examination of gravity waves and the quantification of processes controlling atmospheric composition in the UTLS, a region of particular importance for climate change. Simulations based on the performance requirements of this instrument deliver a vertical resolution that is slightly better than its vertical field-of-view (about 0.75 km) and a horizontal resolution of {approx}25km x 70 km. Non-linear end-to-end simulations for various gravity wave patterns demonstrate that the high 3-D resolution of PREMIER considerably extends the range of detectable gravity waves in terms of horizontal and vertical wavelength compared to previous observations. The second examined instrument

  4. A feasibility study for anatomical noise reduction in dual-energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, D.; Kim, Y.-s.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide. Thus, early diagnosis is of considerable importance. For early screening of lung cancer, computed tomography (CT) has been used as the gold standard. Chest digital tomosynthesis (CDT) is a recently introduced modality for lung cancer screening with a relatively low radiation dose compared to CT. The dual energy material decomposition method has been proposed for better detection of pulmonary nodules by means of reducing anatomical noise. In this study, the possibility of material decomposition in CDT was tested by both a simulation study and an experimental study using a CDT prototype. The Geant4 application for tomographic emission (GATE) v6 and tungsten anode spectral model using interpolating polynomials (TASMIP) codes were used for the simulation study to create simulated phantom shapes consisting of five inner cylinders filled with different densities of bone and airequivalent materials. Furthermore, the CDT prototype system and human phantom chest were used for the experimental study. CDT scan in both the simulation and experimental studies was performed with linear movement and 21 projection images were obtained over a 30 degree angular range with a 1.5 degree angular interval. To obtain materialselective images, a projectionbased energy subtraction technique was applied to high and low energy images. The resultant simulation images showed that dual-energy reconstruction could achieve an approximately 32% higher contrast to noise ratio (CNR) in images and the difference in CNR value according to bone density was significant compared to single energy CDT. Additionally, image artifacts were effectively corrected in dual energy CDT simulation studies. Likewise the experimental study with dual energy produced clear images of lung fields and bone structure by removing unnecessary anatomical structures. Dual energy tomosynthesis is a new technique; therefore, there is little guidance regarding its

  5. A feasibility study for anatomical noise reduction in dual-energy chest digital tomosynthesis

    International Nuclear Information System (INIS)

    Lee, D.; Choi, S.; Kim, H.-J.; Kim, Y.-S.; Choi, S.; Lee, H.

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide. Thus, early diagnosis is of considerable importance. For early screening of lung cancer, computed tomography (CT) has been used as the gold standard. Chest digital tomosynthesis (CDT) is a recently introduced modality for lung cancer screening with a relatively low radiation dose compared to CT. The dual energy material decomposition method has been proposed for better detection of pulmonary nodules by means of reducing anatomical noise. In this study, the possibility of material decomposition in CDT was tested by both a simulation study and an experimental study using a CDT prototype. The Geant4 application for tomographic emission (GATE) v6 and tungsten anode spectral model using interpolating polynomials (TASMIP) codes were used for the simulation study to create simulated phantom shapes consisting of five inner cylinders filled with different densities of bone and airequivalent materials. Furthermore, the CDT prototype system and human phantom chest were used for the experimental study. CDT scan in both the simulation and experimental studies was performed with linear movement and 21 projection images were obtained over a 30 degree angular range with a 1.5 degree angular interval. To obtain materialselective images, a projectionbased energy subtraction technique was applied to high and low energy images. The resultant simulation images showed that dual-energy reconstruction could achieve an approximately 32% higher contrast to noise ratio (CNR) in images and the difference in CNR value according to bone density was significant compared to single energy CDT. Additionally, image artifacts were effectively corrected in dual energy CDT simulation studies. Likewise the experimental study with dual energy produced clear images of lung fields and bone structure by removing unnecessary anatomical structures. Dual energy tomosynthesis is a new technique; therefore, there is little guidance regarding its

  6. Baseline Screening Mammography: Performance of Full-Field Digital Mammography Versus Digital Breast Tomosynthesis.

    Science.gov (United States)

    McDonald, Elizabeth S; McCarthy, Anne Marie; Akhtar, Amana L; Synnestvedt, Marie B; Schnall, Mitchell; Conant, Emily F

    2015-11-01

    Baseline mammography studies have significantly higher recall rates than mammography studies with available comparison examinations. Digital breast tomosynthesis reduces recalls when compared with digital mammographic screening alone, but many sites operate in a hybrid environment. To maximize the effect of screening digital breast tomosynthesis with limited resources, choosing which patient populations will benefit most is critical. This study evaluates digital breast tomosynthesis in the baseline screening population. Outcomes were compared for 10,728 women who underwent digital mammography screening, including 1204 (11.2%) baseline studies, and 15,571 women who underwent digital breast tomosynthesis screening, including 1859 (11.9%) baseline studies. Recall rates, cancer detection rates, and positive predictive values were calculated. Logistic regression estimated the odds ratios of recall for digital mammography versus digital breast tomosynthesis for patients undergoing baseline screening and previously screened patients, adjusted for age, race, and breast density. In the baseline subgroup, recall rates for digital mammography and digital breast tomosynthesis screening were 20.5% and 16.0%, respectively (p = 0.002); digital breast tomosynthesis screening in the baseline subgroup resulted in a 22% reduction in recall compared with digital mammography, or 45 fewer patients recalled per 1000 patients screened. Digital breast tomosynthesis screening in the previously screened patients resulted in recall reduction of 14.3% (p tomosynthesis than from digital mammography alone.

  7. Gamma emission tomosynthesis based on an automated slant hole collimation system

    Science.gov (United States)

    Pellegrini, R.; Pani, R.; Cinti, M. N.; Longo, M.; Lo Meo, S.; Viviano, M.

    2015-03-01

    The imaging capabilities of radioisotope molecular imaging systems are limited by their ring geometry and by the object-to-detector distance, which impairs spatial resolution, efficiency and image quality. These detection capabilities could be enhanced by performing acquisitions with dedicated gamma cameras placed in close proximity to the object that has to be examined. The main aim of this work is to develop a compact camera suitable for detecting small and low-contrast lesions, with a higher detection efficiency than conventional SPECT, through a gamma emission tomosynthesis method. In this contribution a prototype of a new automated slant hole collimator, coupled to a small Field of View (FoV) gamma camera, is presented. The proposed device is able to acquire planar projection images at different angles without rotating around the patient body; these projection images are then three-dimensional reconstructed. Therefore, in order to perform the volumetric reconstruction of the studied object, the traditional Back Projection (BP) reconstruction is compared with the Shift And Add (SAA) method. In order to verify the effectiveness of the technique and to test the image reconstruction algorithms, a Monte Carlo simulation, based on the GEANT4 code, was implemented. The method was also validated by a set of experimental measurements. The discussed device is designed to work in patient proximity for detecting lesions placed at a distances ranged from 0 to 8 cm, thus allowing few millimeters planar resolutions and sagittal resolution of about 2 cm. The new collimation method implies high-resolution capabilities demonstrated by reconstructing the projection images through the BP and the SAA methods. The latter is simpler than BP and produces comparable spatial resolutions with respect to the traditional tomographic method, while preserving the image counts.

  8. Overview of two years of clinical experience of chest tomo-synthesis at Sahlgrenska university hospital

    International Nuclear Information System (INIS)

    Johnsson, Aa. A.; Vikgren, J.; Svalkvist, A.; Zachrisson, S.; Flinck, A.; Boijsen, M.; Kheddache, S.; Maansson, L. G.; Baath, M.

    2010-01-01

    Since December 2006, ∼ 3800 clinical chest tomo-synthesis examinations have been performed at our department at Sahlgrenska Univ. Hospital. A subset of the examinations has been included in studies of the detectability of pulmonary nodules, using computed tomography (CT) as the gold standard. Visibility studies, in which chest tomo-synthesis and CT have been compared side-by side, have been used to determine the depiction potential of chest tomo-synthesis. Comparisons with conventional chest radiography have been made. In the clinical setting, chest tomo-synthesis has mostly been used as an additional examination. The most frequent indication for chest tomo-synthesis has been suspicion of a nodule or tumour. In visibility studies, tomo-synthesis has depicted over 90% of the nodules seen on the CT scan. The corresponding figure for chest radiography has been <30%. In the detection studies, the lesion-level sensitivity has been ∼ 60% for tomo-synthesis and 20% for chest radiography. In one of the detection studies, an analysis of all false-positive nodules was performed. This analysis showed that all findings had morphological correlates on the CT examinations. The majority of the false-positive nodules were localised in the immediate sub-pleural region. In conclusion, chest tomo-synthesis is an improved chest radiography method, which can be used to optimise the use of CT resources, thereby reducing the radiation dose to the patient population. However, there are some limitations with chest tomo-synthesis. For example, patients undergoing tomo-synthesis have to be able to stand still and hold their breath firmly for 10 s. Also, chest tomo-synthesis has a limited depth resolution, which may explain why pathology in the sub-pleural region is more difficult to interpret and artefacts from medical devices may occur. (authors)

  9. A feasibility study of digital tomosynthesis for volumetric dental imaging

    International Nuclear Information System (INIS)

    Cho, M K; Kim, H K; Youn, H; Kim, S S

    2012-01-01

    We present a volumetric dental tomography method that compensates for insufficient projection views obtained from limited-angle scans. The reconstruction algorithm is based on the backprojection filtering method which employs apodizing filters that reduce out-of-plane blur artifacts and suppress high-frequency noise. In order to accompolish this volumetric imaging two volume-reconstructed datasets are synthesized. These individual datasets provide two different limited-angle scans performed at orthogonal angles. The obtained reconstructed images, using less than 15% of the number of projection views needed for a full skull phantom scan, demonstrate the potential use of the proposed method in dental imaging applications. This method enables a much smaller radiation dose for the patient compared to conventional dental tomography.

  10. Effect of the glandular composition on digital breast tomosynthesis image quality and dose optimisation

    International Nuclear Information System (INIS)

    Marques, T.; Di Maria, S.; Vaz, P.; Ribeiro, A.; Belchior, A.; Cardoso, J.; Matela, N.; Oliveira, N.; Almeida, P.; Janeiro, L.

    2015-01-01

    In the image quality assessment for digital breast tomosynthesis (DBT), a breast phantom with an average percentage of 50 % glandular tissue is seldom used, which may not be representative of the breast tissue composition of the women undergoing such examination. This work aims at studying the effect of the glandular composition of the breast on the image quality taking into consideration different sizes of lesions. Monte Carlo simulations were performed using the state-of-the-art computer program PENELOPE to validate the image acquisition system of the DBT equipment as well as to calculate the mean glandular dose for each projection image and for different breast compositions. The integrated PENELOPE imaging tool (PenEasy) was used to calculate, in mammography, for each clinical detection task the X-ray energy that maximises the figure of merit. All the 2D cranial-caudal projections for DBT were simulated and then underwent the reconstruction process applying the Simultaneous Algebraic Reconstruction Technique. Finally, through signal-to-noise ratio analysis, the image quality in DBT was assessed. (authors)

  11. A limited memory BFGS method for a nonlinear inverse problem in digital breast tomosynthesis

    Science.gov (United States)

    Landi, G.; Loli Piccolomini, E.; Nagy, J. G.

    2017-09-01

    Digital breast tomosynthesis (DBT) is an imaging technique that allows the reconstruction of a pseudo three-dimensional image of the breast from a finite number of low-dose two-dimensional projections obtained by different x-ray tube angles. An issue that is often ignored in DBT is the fact that an x-ray beam is polyenergetic, i.e. it is composed of photons with different levels of energy. The polyenergetic model requires solving a large-scale, nonlinear inverse problem, which is more expensive than the typically used simplified, linear monoenergetic model. However, the polyenergetic model is much less susceptible to beam hardening artifacts, which show up as dark streaks and cupping (i.e. background nonuniformities) in the reconstructed image. In addition, it has been shown that the polyenergetic model can be exploited to obtain additional quantitative information about the material of the object being imaged. In this paper we consider the multimaterial polyenergetic DBT model, and solve the nonlinear inverse problem with a limited memory BFGS quasi-Newton method. Regularization is enforced at each iteration using a diagonally modified approximation of the Hessian matrix, and by truncating the iterations.

  12. Feasibility study on low-dosage digital tomosynthesis (DTS) using a multislit collimation technique

    Science.gov (United States)

    Park, S. Y.; Kim, G. A.; Park, C. K.; Cho, H. S.; Seo, C. W.; Lee, D. Y.; Kang, S. Y.; Kim, K. S.; Lim, H. W.; Lee, H. W.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Woo, T. H.

    2018-04-01

    In this study, we investigated an effective low-dose digital tomosynthesis (DTS) where a multislit collimator placed between the X-ray tube and the patient oscillates during projection data acquisition, partially blocking the X-ray beam to the patient thereby reducing the radiation dosage. We performed a simulation using the proposed DTS with two sets of multislit collimators both having a 50% duty cycle and investigated the image characteristics to demonstrate the feasibility of this proposed approach. In the simulation, all projections were taken at a tomographic angle of θ = ± 50° and an angle step of Δθ =2°. We utilized an iterative algorithm based on a compressed-sensing (CS) scheme for more accurate DTS reconstruction. Using the proposed DTS, we successfully obtained CS-reconstructed DTS images with no bright-band artifacts around the multislit edges of the collimator, thus maintaining the image quality. Therefore, the use of multislit collimation in current real-world DTS systems can reduce the radiation dosage to patients.

  13. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: Relevance to morphology of structures such as microcalcifications

    International Nuclear Information System (INIS)

    Chen Ying; Lo, Joseph Y.; Dobbins, James T. III

    2007-01-01

    Digital breast tomosynthesis is a three-dimensional imaging technique that provides an arbitrary set of reconstruction planes in the breast from a limited-angle series of projection images acquired while the x-ray tube moves. Traditional shift-and-add (SAA) tomosynthesis reconstruction is a common mathematical method to line up each projection image based on its shifting amount to generate reconstruction slices. With parallel-path geometry of tube motion, the path of the tube lies in a plane parallel to the plane of the detector. The traditional SAA algorithm gives shift amounts for each projection image calculated only along the direction of x-ray tube movement. However, with the partial isocentric motion of the x-ray tube in breast tomosynthesis, small objects such as microcalcifications appear blurred (for instance, about 1-4 pixels in blur for a microcalcification in a human breast) in traditional SAA images in the direction perpendicular to the direction of tube motion. Some digital breast tomosynthesis algorithms reported in the literature utilize a traditional one-dimensional SAA method that is not wholly suitable for isocentric motion. In this paper, a point-by-point back projection (BP) method is described and compared with traditional SAA for the important clinical task of evaluating morphology of small objects such as microcalcifications. Impulse responses at different three-dimensional locations with five different combinations of imaging acquisition parameters were investigated. Reconstruction images of microcalcifications in a human subject were also evaluated. Results showed that with traditional SAA and 45 deg. view angle of tube movement with respect to the detector, at the same height above the detector, the in-plane blur artifacts were obvious for objects farther away from x-ray source. In a human subject, the appearance of calcifications was blurred in the direction orthogonal to the tube motion with traditional SAA. With point-by-point BP, the

  14. Digital breast tomosynthesis: observer performance of clustered microcalcification detection on breast phantom images acquired with an experimental system using variable scan angles, angular increments, and number of projection views.

    Science.gov (United States)

    Chan, Heang-Ping; Goodsitt, Mitchell M; Helvie, Mark A; Zelakiewicz, Scott; Schmitz, Andrea; Noroozian, Mitra; Paramagul, Chintana; Roubidoux, Marilyn A; Nees, Alexis V; Neal, Colleen H; Carson, Paul; Lu, Yao; Hadjiiski, Lubomir; Wei, Jun

    2014-12-01

    To investigate the dependence of microcalcification cluster detectability on tomographic scan angle, angular increment, and number of projection views acquired at digital breast tomosynthesis ( DBT digital breast tomosynthesis ). A prototype DBT digital breast tomosynthesis system operated in step-and-shoot mode was used to image breast phantoms. Four 5-cm-thick phantoms embedded with 81 simulated microcalcification clusters of three speck sizes (subtle, medium, and obvious) were imaged by using a rhodium target and rhodium filter with 29 kV, 50 mAs, and seven acquisition protocols. Fixed angular increments were used in four protocols (denoted as scan angle, angular increment, and number of projection views, respectively: 16°, 1°, and 17; 24°, 3°, and nine; 30°, 3°, and 11; and 60°, 3°, and 21), and variable increments were used in three (40°, variable, and 13; 40°, variable, and 15; and 60°, variable, and 21). The reconstructed DBT digital breast tomosynthesis images were interpreted by six radiologists who located the microcalcification clusters and rated their conspicuity. The mean sensitivity for detection of subtle clusters ranged from 80% (22.5 of 28) to 96% (26.8 of 28) for the seven DBT digital breast tomosynthesis protocols; the highest sensitivity was achieved with the 16°, 1°, and 17 protocol (96%), but the difference was significant only for the 60°, 3°, and 21 protocol (80%, P .99). The conspicuity of subtle and medium clusters with the 16°, 1°, and 17 protocol was rated higher than those with other protocols; the differences were significant for subtle clusters with the 24°, 3°, and nine protocol and for medium clusters with 24°, 3°, and nine; 30°, 3°, and 11; 60°, 3° and 21; and 60°, variable, and 21 protocols (P tomosynthesis provided higher sensitivity and conspicuity than wide-angle DBT digital breast tomosynthesis for subtle microcalcification clusters. © RSNA, 2014.

  15. Tubular Carcinoma of the Breast: Advantages and Limitations of Breast Tomosynthesis

    Directory of Open Access Journals (Sweden)

    Filipa Vilaverde

    2016-01-01

    Full Text Available Tubular carcinoma of the breast is a rare variant of invasive ductal carcinoma. We report a case of 42-year-old asymptomatic female with a histopathological proven multifocal tubular carcinoma, studied by mammography, Tomosynthesis, Ultrasound, and Magnetic Resonance. Herein, we discuss the advantages and limitations of Tomosynthesis, an emerging imaging technique, in this particular case.

  16. Semi-Automated Quantification of Finger Joint Space Narrowing Using Tomosynthesis in Patients with Rheumatoid Arthritis.

    Science.gov (United States)

    Ichikawa, Shota; Kamishima, Tamotsu; Sutherland, Kenneth; Kasahara, Hideki; Shimizu, Yuka; Fujimori, Motoshi; Yasojima, Nobutoshi; Ono, Yohei; Kaneda, Takahiko; Koike, Takao

    2017-06-01

    The purpose of the study is to validate the semi-automated method using tomosynthesis images for the assessment of finger joint space narrowing (JSN) in patients with rheumatoid arthritis (RA), by using the semi-quantitative scoring method as the reference standard. Twenty patients (14 females and 6 males) with RA were included in this retrospective study. All patients underwent radiography and tomosynthesis of the bilateral hand and wrist. Two rheumatologists and a radiologist independently scored JSN with two modalities according to the Sharp/van der Heijde score. Two observers independently measured joint space width on tomosynthesis images using an in-house semi-automated method. More joints with JSN were revealed with tomosynthesis score (243 joints) and the semi-automated method (215 joints) than with radiography (120 joints), and the associations between tomosynthesis scores and radiography scores were demonstrated (P tomosynthesis scores with r = -0.606 (P tomosynthesis images was in almost perfect agreement with intra-class correlation coefficient (ICC) values of 0.964 and 0.963, respectively. The semi-automated method using tomosynthesis images provided sensitive, quantitative, and reproducible measurement of finger joint space in patients with RA.

  17. Tomosynthesis of the thoracic spine: added value in diagnosing vertebral fractures in the elderly

    International Nuclear Information System (INIS)

    Geijer, Mats; Gunnlaugsson, Eirikur; Goetestrand, Simon; Weber, Lars; Geijer, Haakan

    2017-01-01

    Thoracic spine radiography becomes more difficult with age. Tomosynthesis is a low-dose tomographic extension of radiography which may facilitate thoracic spine evaluation. This study assessed the added value of tomosynthesis in imaging of the thoracic spine in the elderly. Four observers compared the image quality of 50 consecutive thoracic spine radiography and tomosynthesis data sets from 48 patients (median age 67 years, range 55-92 years) on a number of image quality criteria. Observer variation was determined by free-marginal multirater kappa. The conversion factor and effective dose were determined from the dose-area product values. For all observers significantly more vertebrae were seen with tomosynthesis than with radiography (mean 12.4/9.3, P < 0.001) as well as significantly more fractures (mean 0.9/0.7, P = 0.017). The image quality score for tomosynthesis was significantly higher than for radiography, for all evaluated structures. Tomosynthesis took longer to evaluate than radiography. Despite this, all observers scored a clear preference for tomosynthesis. Observer agreement was substantial (mean κ = 0.73, range 0.51-0.94). The calibration or conversion factor was 0.11 mSv/(Gy cm 2 ) for the combined examination. The resulting effective dose was 0.87 mSv. Tomosynthesis can increase the detection rate of thoracic vertebral fractures in the elderly, at low added radiation dose. (orig.)

  18. Tomosynthesis of the wrist and hand in patients with rheumatoid arthritis: comparison with radiography and MRI.

    Science.gov (United States)

    Aoki, Takatoshi; Fujii, Masami; Yamashita, Yoshiko; Takahashi, Hiroyuki; Oki, Hodaka; Hayashida, Yoshiko; Saito, Kazuyoshi; Tanaka, Yoshiya; Korogi, Yukunori

    2014-02-01

    The purpose of this article is to compare tomosynthesis with radiography and MRI of the wrist and hand for evaluating bone erosion in patients with rheumatoid arthritis (RA). Twenty consecutive patients with an established diagnosis of RA and five control patients were included in this study. They underwent radiography, tomosynthesis, and MRI of the bilateral hand and wrist within a week. The mean total dose of radiography and tomosynthesis was 0.13 and 0.25 mGy, respectively. MRI evaluation was performed according to the Outcome Measures in Rheumatology Clinical Trials recommendations. Bone erosion on images from the three modalities was independently reviewed by two certificated radiologists with a 4-point scale (0, normal; 1, discrete erosion; 2, tomosynthesis, and MRI were 26.5%, 36.1%, and 36.7%, respectively. Significantly more bone erosions were revealed with tomosynthesis and MRI than with radiography (p tomosynthesis. Interobserver agreement (kappa value) for bone erosion was good to excellent on tomosynthesis and MRI for all joints (0.65-1.00 and 0.68-1.00, respectively), whereas it was slight to fair on radiography for some carpal bones and bases of metacarpal bones (0.22-0.56). Tomosynthesis is superior to radiography and almost comparable to MRI for the detection of bone erosion in patients with RA.

  19. Tomosynthesis of the thoracic spine: added value in diagnosing vertebral fractures in the elderly

    Energy Technology Data Exchange (ETDEWEB)

    Geijer, Mats [Oerebro University, Department of Radiology, Oerebro (Sweden); Lund University, Department of Clinical Sciences, Lund (Sweden); Gunnlaugsson, Eirikur; Goetestrand, Simon [Lund University and Skaane University Hospital, Department of Medical Imaging and Physiology, Lund (Sweden); Weber, Lars [Lund University, Department of Clinical Sciences, Lund (Sweden); Skaane University Hospital, Department of Radiation Physics, Lund (Sweden); Geijer, Haakan [Oerebro University, Department of Radiology, Faculty of Medicine and Health, Oerebro (Sweden)

    2017-02-15

    Thoracic spine radiography becomes more difficult with age. Tomosynthesis is a low-dose tomographic extension of radiography which may facilitate thoracic spine evaluation. This study assessed the added value of tomosynthesis in imaging of the thoracic spine in the elderly. Four observers compared the image quality of 50 consecutive thoracic spine radiography and tomosynthesis data sets from 48 patients (median age 67 years, range 55-92 years) on a number of image quality criteria. Observer variation was determined by free-marginal multirater kappa. The conversion factor and effective dose were determined from the dose-area product values. For all observers significantly more vertebrae were seen with tomosynthesis than with radiography (mean 12.4/9.3, P < 0.001) as well as significantly more fractures (mean 0.9/0.7, P = 0.017). The image quality score for tomosynthesis was significantly higher than for radiography, for all evaluated structures. Tomosynthesis took longer to evaluate than radiography. Despite this, all observers scored a clear preference for tomosynthesis. Observer agreement was substantial (mean κ = 0.73, range 0.51-0.94). The calibration or conversion factor was 0.11 mSv/(Gy cm{sup 2}) for the combined examination. The resulting effective dose was 0.87 mSv. Tomosynthesis can increase the detection rate of thoracic vertebral fractures in the elderly, at low added radiation dose. (orig.)

  20. Tubular Carcinoma of the Breast: Advantages and Limitations of Breast Tomosynthesis

    Science.gov (United States)

    Rocha, Ana; Reis, Alcinda

    2016-01-01

    Tubular carcinoma of the breast is a rare variant of invasive ductal carcinoma. We report a case of 42-year-old asymptomatic female with a histopathological proven multifocal tubular carcinoma, studied by mammography, Tomosynthesis, Ultrasound, and Magnetic Resonance. Herein, we discuss the advantages and limitations of Tomosynthesis, an emerging imaging technique, in this particular case. PMID:28116205

  1. Selective photon counter for digital x-ray mammography tomosynthesis

    Science.gov (United States)

    Goldan, Amir H.; Karim, Karim S.; Rowlands, J. A.

    2006-03-01

    Photon counting is an emerging detection technique that is promising for mammography tomosynthesis imagers. In photon counting systems, the value of each image pixel is equal to the number of photons that interact with the detector. In this research, we introduce the design and implementation of a low noise, novel selective photon counting pixel for digital mammography tomosynthesis in crystalline silicon CMOS (complementary metal oxide semiconductor) 0.18 micron technology. The design comprises of a low noise charge amplifier (CA), two low offset voltage comparators, a decision-making unit (DMU), a mode selector, and a pseudo-random counter. Theoretical calculations and simulation results of linearity, gain, and noise of the photon counting pixel are presented.

  2. Prospective study aiming to compare 2D mammography and tomosynthesis + synthesized mammography in terms of cancer detection and recall. From double reading of 2D mammography to single reading of tomosynthesis.

    Science.gov (United States)

    Romero Martín, Sara; Raya Povedano, Jose Luis; Cara García, María; Santos Romero, Ana Luz; Pedrosa Garriguet, Margarita; Álvarez Benito, Marina

    2018-06-01

    To evaluate tomosynthesis compared with 2D-mammography in cancer detection and recalls in a screening-programme, and assess performing synthesized instead of 2D, and compare double reading of 2D with single reading of tomosynthesis. Women (age 50-69 years) participating in the screening-programme were included. 2D-mammography and tomosynthesis were performed. There were four reading models: 2D-mammography (first); 2D-mammography (second); tomosynthesis + synthesized (third); tomosynthesis + synthesized + 2D (fourth reading). Paired double reading of 2D (first+second) and tomosynthesis (third+fourth) were analysed. In 16,067 participants, there were 98 cancers and 1,196 recalls. Comparing double reading of 2D with single reading of tomosynthesis, there was an increase of 12.6 % in cancer detection with the third reading (p= 0.043) and 6.9 % with the fourth reading (p=0.210), and a decrease in recalls of 40.5 % (ptomosynthesis. Single reading of tomosynthesis plus synthesized increased cancer detection and decreased recalls compared with double reading 2D. 2D did not improve results when added to tomosynthesis. • Tomosynthesis increases cancer detection and decreases recall rates versus 2D mammography. • Synthesized-mammography avoids performing 2D, showing higher cancer detection. • Single reading of tomosynthesis + synthesized is feasible as a new practice.

  3. Digital breast tomosynthesis versus digital mammography: a clinical performance study

    International Nuclear Information System (INIS)

    Gennaro, Gisella; Baldan, Enrica; Bezzon, Elisabetta; Polico, Ilaria; Proietti, Alessandro; Toffoli, Aida; Toledano, Alicia; Di Maggio, Cosimo; La Grassa, Manuela; Pescarini, Luigi; Muzzio, Pier Carlo

    2010-01-01

    To compare the clinical performance of digital breast tomosynthesis (DBT) with that of full-field digital mammography (FFDM) in a diagnostic population. The study enrolled 200 consenting women who had at least one breast lesion discovered by mammography and/or ultrasound classified as doubtful or suspicious or probably malignant. They underwent tomosynthesis in one view [mediolateral oblique (MLO)] of both breasts at a dose comparable to that of standard screen-film mammography in two views [craniocaudal (CC) and MLO]. Images were rated by six breast radiologists using the BIRADS score. Ratings were compared with the truth established according to the standard of care and a multiple-reader multiple-case (MRMC) receiver-operating characteristic (ROC) analysis was performed. Clinical performance of DBT compared with that of FFDM was evaluated in terms of the difference between areas under ROC curves (AUCs) for BIRADS scores. Overall clinical performance with DBT and FFDM for malignant versus all other cases was not significantly different (AUCs 0.851 vs 0.836, p = 0.645). The lower limit of the 95% CI or the difference between DBT and FFDM AUCs was -4.9%. Clinical performance of tomosynthesis in one view at the same total dose as standard screen-film mammography is not inferior to digital mammography in two views. (orig.)

  4. High-speed large angle mammography tomosynthesis system

    Science.gov (United States)

    Eberhard, Jeffrey W.; Staudinger, Paul; Smolenski, Joe; Ding, Jason; Schmitz, Andrea; McCoy, Julie; Rumsey, Michael; Al-Khalidy, Abdulrahman; Ross, William; Landberg, Cynthia E.; Claus, Bernhard E. H.; Carson, Paul; Goodsitt, Mitchell; Chan, Heang-Ping; Roubidoux, Marilyn; Thomas, Jerry A.; Osland, Jacqueline

    2006-03-01

    A new mammography tomosynthesis prototype system that acquires 21 projection images over a 60 degree angular range in approximately 8 seconds has been developed and characterized. Fast imaging sequences are facilitated by a high power tube and generator for faster delivery of the x-ray exposure and a high speed detector read-out. An enhanced a-Si/CsI flat panel digital detector provides greater DQE at low exposure, enabling tomo image sequence acquisitions at total patient dose levels between 150% and 200% of the dose of a standard mammographic view. For clinical scenarios where a single MLO tomographic acquisition per breast may replace the standard CC and MLO views, total tomosynthesis breast dose is comparable to or below the dose in standard mammography. The system supports co-registered acquisition of x-ray tomosynthesis and 3-D ultrasound data sets by incorporating an ultrasound transducer scanning system that flips into position above the compression paddle for the ultrasound exam. Initial images acquired with the system are presented.

  5. Clinical experience of photon counting breast tomosynthesis: comparison with traditional mammography

    International Nuclear Information System (INIS)

    Svane, Gunilla; Azavedo, Edward; Lindman, Karin; Urech, Mattias; Nilsson, Jonas; Weber, Niclas; Lindqvist, Lars; Ullberg, Christer

    2011-01-01

    Background: In two-dimensional mammography, a well-known problem is over- and underlying tissue which can either obstruct a lesion or create a false-positive result. Tomosynthesis, with an ability to layer the tissue in the image, has the potential to resolve these issues. Purpose: To compare the diagnostic quality, sensitivity and specificity of a single tomosynthesis mammography image and a traditional two-view set of two-dimensional mammograms and to assess the comfort of the two techniques. Material and Methods: One hundred and forty-four women, mainly chosen because of suspicious features on standard mammograms (76 malignant), had a single tomosynthesis image taken of one breast using a novel photon counting system. On average, the dose of the tomosynthesis images was 0.63 times that of the two-view images and the compression force during the procedure was halved. The resulting images were viewed by two radiologists and assessed both individually and comparing the two techniques. Results: In 56% of the cases the radiologists rated the diagnostic quality of the lesion details higher in the tomosynthesis images than in the conventional images (and in 91% equal or higher), which means there is a statistically significant preference for the tomosynthesis technique. This included the calcifications which were rated as having better quality in 41% of the cases. While sensitivity was slightly higher for traditional mammography the specificity was higher for tomosynthesis. However, neither of these two differences was large enough to be statistically significant. Conclusion: The overall accuracy of the two techniques was virtually equal despite the radiologist's very limited experience with tomosynthesis images and vast experience with two-dimensional mammography. As the diagnostic quality of the lesion details in the tomosynthesis images was valued considerably higher this factor should improve with experience. The patients also favored the tomosynthesis examination

  6. Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening.

    Science.gov (United States)

    Haas, Brian M; Kalra, Vivek; Geisel, Jaime; Raghu, Madhavi; Durand, Melissa; Philpotts, Liane E

    2013-12-01

    To compare screening recall rates and cancer detection rates of tomosynthesis plus conventional digital mammography to those of conventional digital mammography alone. All patients presenting for screening mammography between October 1, 2011, and September 30, 2012, at four clinical sites were reviewed in this HIPAA-compliant retrospective study, for which the institutional review board granted approval and waived the requirement for informed consent. Patients at sites with digital tomosynthesis were offered screening with digital mammography plus tomosynthesis. Patients at sites without tomosynthesis underwent conventional digital mammography. Recall rates were calculated and stratified according to breast density and patient age. Cancer detection rates were calculated and stratified according to the presence of a risk factor for breast cancer. The Fisher exact test was used to compare the two groups. Multivariate logistic regression was used to assess the effect of screening method, breast density, patient age, and cancer risk on the odds of recall from screening. A total of 13 158 patients presented for screening mammography; 6100 received tomosynthesis. The overall recall rate was 8.4% for patients in the tomosynthesis group and 12.0% for those in the conventional mammography group (P tomosynthesis reduced recall rates for all breast density and patient age groups, with significant differences (P tomosynthesis versus 5.2 per 1000 in patients receiving conventional mammography alone (P = .70). Patients undergoing tomosynthesis plus digital mammography had significantly lower screening recall rates. The greatest reductions were for those younger than 50 years and those with dense breasts. A nonsignificant 9.5% increase in cancer detection was observed in the tomosynthesis group. © RSNA, 2013.

  7. Digital breast tomosynthesis (DBT): initial experience in a clinical setting

    International Nuclear Information System (INIS)

    Skaane, Per; Gullien, Randi; Eben, Ellen B.; Haakenaasen, Unni; Naess Jebsen, Ingvild; Krager, Mona; Bjoerndal, Hilde; Ekseth, Ulrika; Jahr, Gunnar

    2012-01-01

    Background: Digital breast tomosynthesis (DBT) is a promising new technology. Some experimental clinical studies have shown positive results, but the future role and indications of this new technique, whether in a screening or clinical setting, need to be evaluated. Purpose: To compare digital mammography and DBT in a side-by-side feature analysis for cancer conspicuity, and to assess whether there is a potential additional value of DBT to standard state-of-the-art conventional imaging work-up with respect to detection of additional malignancies. Material and Methods: The study had ethics committee approval. A total of 129 women underwent 2D digital mammography including supplementary cone-down and magnification views and breast ultrasonography if indicated, as well as digital breast tomosynthesis. The indication for conventional imaging in the clinical setting included a palpable lump in 30 (23%), abnormal mammographic screening findings in 54 (42%), and surveillance in 45 (35%) of the women. The women were examined according to present guidelines, including spot-magnification views, ultrasonography, and needle biopsies, if indicated. The DBT examinations were interpreted several weeks after the conventional imaging without knowledge of the conventional imaging findings. In a later session, three radiologists performed a side-by-side feature analysis for cancer conspicuity in a sample of 50 cases. Results: State-of-the-art conventional imaging resulted in needle biopsy of 45 breasts, of which 20 lesions were benign and a total of 25 cancers were diagnosed. The remaining 84 women were dismissed with a normal/definitely benign finding and without indication for needle biopsy. The subsequent DBT interpretation found suspicious findings in four of these 84 women, and these four women had to be called back for repeated work-up with knowledge of the tomosynthesis findings. These delayed work-ups resulted in two cancers (increasing the cancer detection by 8%) and two

  8. A comparison of methods to evaluate gray scale response of tomosynthesis systems using a software breast phantom

    Science.gov (United States)

    Sousa, Maria A. Z.; Bakic, Predrag R.; Schiabel, Homero; Maidment, Andrew D. A.

    2017-03-01

    Digital breast tomosynthesis (DBT) has been shown to be an effective imaging tool for breast cancer diagnosis as it provides three-dimensional images of the breast with minimal tissue overlap. The quality of the reconstructed image depends on many factors that can be assessed using uniform or realistic phantoms. In this paper, we created four models of phantoms using an anthropomorphic software breast phantom and compared four methods to evaluate the gray scale response in terms of the contrast, noise and detectability of adipose and glandular tissues binarized according to phantom ground truth. For each method, circular regions of interest (ROIs) were selected with various sizes, quantity and positions inside a square area in the phantom. We also estimated the percent density of the simulated breast and the capability of distinguishing both tissues by receiver operating characteristic (ROC) analysis. Results shows a sensitivity of the methods to the ROI size, placement and to the slices considered.

  9. Localization of a Portion of an Endorectal Balloon for Prostate Image-Guided Radiation Therapy Using Cone-Beam Tomosynthesis: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Sook Kien, E-mail: Sook_Ng@dfci.harvard.edu [Department of Radiation Oncology, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA (United States); Department of Radiation Oncology, Mannheim Medical Centre, University of Heidelberg, Mannheim (Germany); Zygmanski, Piotr; Lyatskaya, Yulia; D' Amico, Anthony V.; Cormack, Robert A. [Department of Radiation Oncology, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA (United States)

    2012-06-01

    Purpose: To assess the feasibility of using cone-beam tomosynthesis (CBTS) to localize the air-tissue interface for the application of prostate image-guided radiation therapy using an endorectal balloon for immobilization and localization. Methods and Materials: A Feldkamp-David-Kress-based CBTS reconstruction was applied to selected sets of cone-beam computed tomography (CBCT) projection data to simulate volumetric imaging achievable from tomosynthesis for a limited range of scan angles. Projection data were calculated from planning CT images of 10 prostate cancer patients treated with an endorectal balloon, as were experimental CBCT projections for a pelvic phantom in two patients. More than 50 points at the air-tissue interface were objectively identified by an intensity-based interface-finding algorithm. Using three-dimensional point sets extracted from CBTS images compared with points extracted from corresponding CBCT images, the relative shift resulting from a reduced scan angle was determined. Because the CBCT and CBTS images were generated from the same projection data set, shift identified was presumed to be due to distortions introduced by the tomosynthesis technique. Results: Scans of {>=}60 Degree-Sign were shown to be able to localize an air-tissue interface near the isocenter with accuracy on the order of a millimeter. The accuracy was quantified in terms of the mean discrepancy as a function of reconstruction angle. Conclusion: This work provides an understanding of the effect of scan angle used in localization of a portion of an endorectal balloon by means of CBTS. CBTS with relatively small scan angles is capable of accurately localizing an extended interface near the isocenter and may provide clinically relevant measurements to guide IGRT treatments while reducing imaging radiation to the patient.

  10. Localization of a Portion of an Endorectal Balloon for Prostate Image-Guided Radiation Therapy Using Cone-Beam Tomosynthesis: A Feasibility Study

    International Nuclear Information System (INIS)

    Ng, Sook Kien; Zygmanski, Piotr; Lyatskaya, Yulia; D’Amico, Anthony V.; Cormack, Robert A.

    2012-01-01

    Purpose: To assess the feasibility of using cone-beam tomosynthesis (CBTS) to localize the air–tissue interface for the application of prostate image-guided radiation therapy using an endorectal balloon for immobilization and localization. Methods and Materials: A Feldkamp-David-Kress-based CBTS reconstruction was applied to selected sets of cone-beam computed tomography (CBCT) projection data to simulate volumetric imaging achievable from tomosynthesis for a limited range of scan angles. Projection data were calculated from planning CT images of 10 prostate cancer patients treated with an endorectal balloon, as were experimental CBCT projections for a pelvic phantom in two patients. More than 50 points at the air–tissue interface were objectively identified by an intensity-based interface-finding algorithm. Using three-dimensional point sets extracted from CBTS images compared with points extracted from corresponding CBCT images, the relative shift resulting from a reduced scan angle was determined. Because the CBCT and CBTS images were generated from the same projection data set, shift identified was presumed to be due to distortions introduced by the tomosynthesis technique. Results: Scans of ≥60° were shown to be able to localize an air–tissue interface near the isocenter with accuracy on the order of a millimeter. The accuracy was quantified in terms of the mean discrepancy as a function of reconstruction angle. Conclusion: This work provides an understanding of the effect of scan angle used in localization of a portion of an endorectal balloon by means of CBTS. CBTS with relatively small scan angles is capable of accurately localizing an extended interface near the isocenter and may provide clinically relevant measurements to guide IGRT treatments while reducing imaging radiation to the patient.

  11. Tomosynthesis in the Diagnostic Setting: Changing Rates of BI-RADS Final Assessment over Time.

    Science.gov (United States)

    Raghu, Madhavi; Durand, Melissa A; Andrejeva, Liva; Goehler, Alexander; Michalski, Mark H; Geisel, Jaime L; Hooley, Regina J; Horvath, Laura J; Butler, Reni; Forman, Howard P; Philpotts, Liane E

    2016-10-01

    Purpose To evaluate the effect of tomosynthesis in diagnostic mammography on the Breast Imaging Reporting and Data System (BI-RADS) final assessment categories over time. Materials and Methods This retrospective study was approved by the institutional review board. The authors reviewed all diagnostic mammograms obtained during a 12-month interval before (two-dimensional [2D] mammography [June 2, 2010, to June 1, 2011]) and for 3 consecutive years after (tomosynthesis year 1 [2012], tomosynthesis year 2 [2013], and tomosynthesis year 3 [2014]) the implementation of tomosynthesis. The requirement to obtain informed consent was waived. The rates of BI-RADS final assessment categories 1-5 were compared between the 2D and tomosynthesis groups. The positive predictive values after biopsy (PPV3) for BI-RADS category 4 and 5 cases were compared. The mammographic features (masses, architectural distortions, calcifications, focal asymmetries) of lesions categorized as probably benign (BI-RADS category 3) and those for which biopsy was recommended (BI-RADS category 4 or 5) were reviewed. The χ(2) test was used to compare the rates of BI-RADS final assessment categories 1-5 between the two groups, and multivariate logistic regression analysis was performed to compare all diagnostic studies categorized as BI-RADS 3-5. Results There was an increase in the percentage of cases reported as negative or benign (BI-RADS category 1 or 2) with tomosynthesis (58.7% with 2D mammography vs 75.8% with tomosynthesis at year 3, P tomosynthesis at year 3, P tomosynthesis (8.0% with 2D mammography vs 7.8% with tomosynthesis at year 3, P = .2), there was a significant increase in the PPV3 (29.6% vs 50%, respectively; P tomosynthesis use. Conclusion Tomosynthesis in the diagnostic setting resulted in progressive shifts in the BI-RADS final assessment categories over time, with a significant increase in the proportion of studies classified as normal, a continued decrease in the rate of studies

  12. Multi-slice CT (MSCT) in cardiac function imaging: threshold-value-supported 3D volume reconstructions to determine the left ventricular ejection fraction in comparison to MRI

    International Nuclear Information System (INIS)

    Ehrhard, K.; Oberholzer, K.; Gast, K.; Mildenberger, P.; Kreitner, K.F.; Thelen, M.

    2002-01-01

    Purpose: To assess MSCT of the heart to determining left ventricular ejection fraction (EF) based on threshold-value-supported 3D volume reconstructions compared to MRI. Methods: Cardiac MSCT was performed in 7 patients. Images were reconstructed during end-systolic and end-diastolic phases of the cardiac cycle and transformed to 3D volumes to determine end-systolic (ESV) and end-diastolic volume (EDV) by using different lower threshold values: besides fixed lower threshold values, identical for each image sequence, individual lower threshold values dependent on contrast enhancement of the left ventricle were applied. The latter represent the mean value calculated by combining the average CT-density of the myocardium and the contrast-enhanced blood in the left ventricle. The EF derived from ESV and EDV. Results: The best correlation with MR imaging was obtained for ESV and EDV by using the individual lower threshold values for the respective sequence. The correlation coefficient for ESV was 0.95 and for EDV it was 0.93. On average, the ESV was overestimated by 3.72 ml, while the ESD was underestimated by 2.85 ml. The respective standard deviation for the ESV was 14,87 ml, for the EDV it was 26.83 ml. On average, the EF was underestimated by 3.57% with a standard deviation of 9.43% and a correlation coefficient of 0.83 in comparison to MRI. Conclusion: The threshold-value-supported 3D volume reconstruction of the left ventricle represents a good method to determine the left ventricular function parameters. Due to the differences in the contrast enhancement, the use of an individual lower threshold value for every image sequence is of particular importance. (orig.) [de

  13. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.

    Science.gov (United States)

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-04-01

    The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection

  14. The added value of tomosynthesis in endoscopic retrograde cholangiography with radiography for the detection of choledocholithiasis.

    Science.gov (United States)

    Suyama, Yohsuke; Yamada, Yoshitake; Yamaguchi, Hideki; Someya, Gou; Otsuka, Seiji; Murayama, Yoshitami; Shinmoto, Hiroshi; Jinzaki, Masahiro; Ogawa, Kenji

    2018-04-16

    The diagnostic performance of endoscopic retrograde cholangiography (ERC) with radiography is imperfect. We assessed the value of adding tomosynthesis to ERC with radiography for the detection of choledocholithiasis. This study included 102 consecutive patients (choledocholithiasis/non-choledocholithiasis, n = 57/45), who underwent both radiography and tomosynthesis for ERC in the same examination and were not diagnosed with malignancy. The reference standard for the existence of choledocholithiasis was confirmed by endoscopic stone extraction during ERC, intraoperative cholangiography, or follow up with magnetic resonance cholangiopancreatography (n = 78, 11, and 13, respectively). A gastroenterologist and a radiologist independently evaluated the radiographs and the combination of tomosynthesis and radiographic images in a blinded and randomised manner. Receiver operating characteristic analysis was used for statistical analysis. The areas under the receiver operating characteristic curve for combined tomosynthesis and radiography were significantly higher than those for radiography alone for both readers: Reader 1/Reader 2, 0.929/0.956 [95% confidence interval (CI), 0.861-0.965/0.890-0.983) vs 0.803/0.769 (95% confidence interval, 0.707-0.873/0.668-0.846), respectively (p = 0.0047/tomosynthesis to radiography improved the diagnostic performance of ERC for detection of choledocholithiasis. Advances in knowledge: Adding tomosynthesis to radiography improves detection of choledocholithiasis and tomosynthesis images can be obtained easily after radiographs and repeated immediately.

  15. Tomosynthesis applied to digital subtraction angiography

    International Nuclear Information System (INIS)

    Kruger, R.A.; Sedaghati, M.; Roy, D.G.; Liu, P.; Nelson, J.A.; Kubal, W.; Del Rio, P.

    1984-01-01

    This extension of the author's previous work on tomographic digital subtraction angiography (DSA) describes the theory of tomosynthetic DSA image reconstruction techniques. In addition to developing the resolution limits resulting from x-ray exposure length and image intensifier field curvature, the authors describe one method of image formation and show tomosynthetic DSA images of animal and human anatomy. Methods for improving the present technique are discussed

  16. Digital Tomosynthesis to Evaluate Fracture Healing: Prospective Comparison With Radiography and CT.

    Science.gov (United States)

    Ha, Alice S; Lee, Amie Y; Hippe, Daniel S; Chou, Shinn-Huey S; Chew, Felix S

    2015-07-01

    Radiography, currently the standard for postoperative fracture imaging, is limited by overlapping bone and hardware. Tomosynthesis has the benefit of level-by-level imaging without the disadvantages of metal artifacts, increased radiation, and higher costs of CT, the current problem-solving tool. The purpose of this study was to compare tomosynthesis with radiography for evaluating fracture healing. In a prospective study, patients within 1 year of wrist hardware fixation underwent radiography, tomosynthesis, and CT, and the images were interpreted by three readers. The diagnostic accuracy of radiology and tomosynthesis was assessed with ROC curves, and interreader agreement was assessed with Cohen kappa. Fracture scores were correlated with Disabilities of the Arm, Shoulder, and Hand (DASH) and pain scores. The study participants were 49 patients with 51 fractures. The most common fracture sites were distal radius (43%), scaphoid (18%), and metacarpals (18%). Rates of cortex obscuration by hardware were 2% for CT, 8% for tomosynthesis, and 15% for radiography (p tomosynthesis than with radiography (AUC, 0.84 vs 0.76, p = 0.01). Inter-reader agreement was moderate for both radiography and tomosynthesis (κ = 0.44 vs 0.55, p = 0.051). There was no significant correlation between fracture scores and DASH scores. There was significant correlation between reported pain levels and both tomosynthesis (r = 0.28, p = 0.03) and CT (r = 0.29, p = 0.04) fracture scores. Tomosynthesis provides diagnostic information superior to that of ra diography in postoperative evaluation of wrist fractures with lower cost and radiation than CT and should be considered in fracture follow-up imaging of other bones.

  17. Addition of tomosynthesis to conventional digital mammography: effect on image interpretation time of screening examinations.

    Science.gov (United States)

    Dang, Pragya A; Freer, Phoebe E; Humphrey, Kathryn L; Halpern, Elkan F; Rafferty, Elizabeth A

    2014-01-01

    To determine the effect of implementing a screening tomosynthesis program on real-world clinical performance by quantifying differences between interpretation times for conventional screening mammography and combined tomosynthesis and mammography for multiple participating radiologists with a wide range of experience in a large academic center. In this HIPAA-compliant, institutional review board-approved study, 10 radiologists prospectively read images from screening digital mammography or screening combined tomosynthesis and mammography examinations for 1-hour-long uninterrupted sessions. Images from 3665 examinations (1502 combined and 2163 digital mammography) from July 2012 to January 2013 were interpreted in at least five sessions per radiologist per modality. The number of cases reported during each session was recorded for each reader. The experience level for each radiologist was also correlated to the average number of cases reported per hour. Analysis of variance was used to assess the number of studies interpreted per hour. A linear regression model was used to evaluate correlation between breast imaging experience and time taken to interpret images from both modalities. The mean number of studies interpreted in hour was 23.8 ± 0.55 (standard deviation) (range, 14.4-40.4) for combined tomosynthesis and mammography and 34.0 ± 0.55 (range, 20.4-54.3) for digital mammography alone. A mean of 10.2 fewer studies were interpreted per hour during combined tomosynthesis and mammography compared with digital mammography sessions (P tomosynthesis and mammography and 1.9 minutes ± 0.6 (range, 1.1-3.0) for digital mammography; interpretation time with combined tomosynthesis and mammography was 0.9 minute longer (47% longer) compared with digital mammography alone (P tomosynthesis and mammography examinations decreased (R(2) = 0.52, P = .03). Addition of tomosynthesis to mammography results in increased time to interpret images from screening examinations compared

  18. Detection of osteophytes and subchondral cysts in the knee with use of tomosynthesis.

    Science.gov (United States)

    Hayashi, Daichi; Xu, Li; Roemer, Frank W; Hunter, David J; Li, Ling; Katur, Avinash M; Guermazi, Ali

    2012-04-01

    To evaluate the diagnostic performance of tomosynthesis in depicting osteophytes and subchondral cysts, with use of magnetic resonance (MR) imaging as the reference, and to test whether the lesions detected at radiography and tomosynthesis are associated with pain. The study was approved by local institutional review board, and all subjects gave written informed consent. Forty subjects (80 knees) older than 40 years were recruited irrespective of knee pain or radiographic osteoarthritis. Knees were imaged with radiography, tomosynthesis, and MR imaging. Presence of osteophytes and subchondral cysts in four locations of tibiofemoral joint (medial and lateral femur and tibia) was recorded. Knee pain was assessed by using the Western Ontario and McMaster University pain subscale. MR imaging depicted 171 osteophytes and 51 subchondral cysts. Tomosynthesis had a higher sensitivity for osteophyte detection in left and right lateral femur (0.96 vs 0.75, P = .025, and 1.00 vs 0.71, P = .008, respectively), right medial femur (0.94 vs 0.72, P = .046), and right lateral tibia (1.00 vs 0.83, P = .046). For subchondral cyst detection, the sensitivity of tomosynthesis was 0.14-1.00 and that of radiography was 0.00-0.56. Both modalities had similar specificity for both lesions. Subjects with tomosynthesis-depicted osteophytes (odds ratio, 4.2-6.4; P = .001-.011) and medially located subchondral cysts (odds ratio, 6.7-17.8; P = .004-.03) were more likely to feel pain than those without. However, radiography-depicted osteophytes were more strongly associated with pain than were tomosynthesis-depicted osteophytes. Tomosynthesis depicted more osteophytes and subchondral cysts than did radiography. Subjects with tomosynthesis-depicted osteophytes and subchondral cysts were more likely to feel pain than those without such lesions. © RSNA, 2012.

  19. Effect of age on breast cancer screening using tomosynthesis in combination with digital mammography.

    Science.gov (United States)

    Rafferty, Elizabeth A; Rose, Stephen L; Miller, Dave P; Durand, Melissa A; Conant, Emily F; Copit, Debra S; Friedewald, Sarah M; Plecha, Donna M; Ott, Ingrid L; Hayes, Mary K; Carlson, Kara L; Cink, Thomas M; Barke, Lora D; Greer, Linda N; Niklason, Loren T

    2017-08-01

    To determine the effect of tomosynthesis imaging as a function of age for breast cancer screening. Screening performance metrics from 13 institutions were examined for 12 months prior to introduction of tomosynthesis (period 1) and compared to those after introduction of tomosynthesis (period 2, range 3-22 months). Screening metrics for women ages 40-49, 50-59, 60-69, and 70+ , included rates per 1000 screens for recalls, biopsies, cancers, and invasive cancers detected. Performance parameters were compared for women screened with digital mammography alone (n = 278,908) and digital mammography + tomosynthesis (n = 173,414). Addition of tomosynthesis to digital mammography produced significant reductions in recall rates for all age groups and significant increases in cancer detection rates for women 40-69. Largest recall rate reduction with tomosynthesis was for women 40-49, decreasing from 137 (95% CI 117-156) to 115 (95% CI 95-135); difference, -22 (95% CI -26 to -18; P cancer detection rate for women 40-49 from 1.6 (95% CI 1.2-1.9) to 2.7 (95% CI 2.2-3.1) with tomosynthesis (difference, 1.1; 95% CI 0.6-1.6; P cancer detection rates for women 40-69 and decreased recall rates for all age groups with largest performance gains seen in women 40-49. The similar performance seen with tomosynthesis screening for women in their 40s compared to digital mammography for women in their 50s argues strongly for commencement of mammography screening at age 40 using tomosynthesis.

  20. Automation of 3D reconstruction of neural tissue from large volume of conventional serial section transmission electron micrographs.

    Science.gov (United States)

    Mishchenko, Yuriy

    2009-01-30

    We describe an approach for automation of the process of reconstruction of neural tissue from serial section transmission electron micrographs. Such reconstructions require 3D segmentation of individual neuronal processes (axons and dendrites) performed in densely packed neuropil. We first detect neuronal cell profiles in each image in a stack of serial micrographs with multi-scale ridge detector. Short breaks in detected boundaries are interpolated using anisotropic contour completion formulated in fuzzy-logic framework. Detected profiles from adjacent sections are linked together based on cues such as shape similarity and image texture. Thus obtained 3D segmentation is validated by human operators in computer-guided proofreading process. Our approach makes possible reconstructions of neural tissue at final rate of about 5 microm3/manh, as determined primarily by the speed of proofreading. To date we have applied this approach to reconstruct few blocks of neural tissue from different regions of rat brain totaling over 1000microm3, and used these to evaluate reconstruction speed, quality, error rates, and presence of ambiguous locations in neuropil ssTEM imaging data.

  1. Image quality of microcalcifications in digital breast tomosynthesis: Effects of projection-view distributions

    International Nuclear Information System (INIS)

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Goodsitt, Mitch; Carson, Paul L.; Hadjiiski, Lubomir; Schmitz, Andrea; Eberhard, Jeffrey W.; Claus, Bernhard E. H.

    2011-01-01

    Purpose: To analyze the effects of projection-view (PV) distribution on the contrast and spatial blurring of microcalcifications on the tomosynthesized slices (X-Y plane) and along the depth (Z) direction for the same radiation dose in digital breast tomosynthesis (DBT). Methods: A GE GEN2 prototype DBT system was used for acquisition of DBT scans. The system acquires PV images from 21 angles in 3 deg. increments over a ±30 deg. range. From these acquired PV images, the authors selected six subsets of PV images to simulate DBT of different angular ranges and angular increments. The number of PV images in each subset was fixed at 11 to simulate a constant total dose. These different PV distributions were subjectively divided into three categories: uniform group, nonuniform central group, and nonuniform extreme group with different angular ranges and angular increments. The simultaneous algebraic reconstruction technique (SART) was applied to each subset to reconstruct the DBT slices. A selective diffusion regularization method was employed to suppress noise. The image quality of microcalcifications in the reconstructed DBTs with different PV distributions was compared using the DBT scans of an American College of Radiology phantom and three human subjects. The contrast-to-noise ratio (CNR) and the full width at half maximum (FWHM) of the line profiles of microcalcifications within their in-focus DBT slices (parallel to detector plane) and the FWHMs of the interplane artifact spread function (ASF) in the Z-direction (perpendicular to detector plane) were used as image quality measures. Results: The results indicate that DBT acquired with a large angular range or, for an equal angular range,with a large fraction of PVs at large angles yielded superior ASF with smaller FWHM in the Z-direction. PV distributions with a narrow angular range or a large fraction of PVs at small angles had stronger interplane artifacts. In the X-Y focal planes, the effect of PV

  2. Automatic exposure control at single- and dual-heartbeat CTCA on a 320-MDCT volume scanner: effect of heart rate, exposure phase window setting, and reconstruction algorithm.

    Science.gov (United States)

    Funama, Yoshinori; Utsunomiya, Daisuke; Taguchi, Katsuyuki; Oda, Seitaro; Shimonobo, Toshiaki; Yamashita, Yasuyuki

    2014-05-01

    To investigate whether electrocardiogram (ECG)-gated single- and dual-heartbeat computed tomography coronary angiography (CTCA) with automatic exposure control (AEC) yields images with uniform image noise at reduced radiation doses. Using an anthropomorphic chest CT phantom we performed prospectively ECG-gated single- and dual-heartbeat CTCA on a second-generation 320-multidetector CT volume scanner. The exposure phase window was set at 75%, 70-80%, 40-80%, and 0-100% and the heart rate at 60 or 80 or corr80 bpm; images were reconstructed with filtered back projection (FBP) or iterative reconstruction (IR, adaptive iterative dose reduction 3D). We applied AEC and set the image noise level to 20 or 25 HU. For each technique we determined the image noise and the radiation dose to the phantom center. With half-scan reconstruction at 60 bpm, a 70-80% phase window- and a 20-HU standard deviation (SD) setting, the imagenoise level and -variation along the z axis manifested similar curves with FBP and IR. With half-scan reconstruction, the radiation dose to the phantom center with 70-80% phase window was 18.89 and 12.34 mGy for FBP and 4.61 and 3.10 mGy for IR at an SD setting SD of 20 and 25 HU, respectively. At 80 bpm with two-segment reconstruction the dose was approximately twice that of 60 bpm at both SD settings. However, increasing radiation dose at corr80 bpm was suppressed to 1.39 times compared to 60 bpm. AEC at ECG-gated single- and dual-heartbeat CTCA controls the image noise at different radiation dose. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Digital tomosynthesis for verifying spine position during radiotherapy: a phantom study

    International Nuclear Information System (INIS)

    Gurney-Champion, Oliver J; Dahele, Max; Slotman, Ben J; Verbakel, Wilko F A R; Mostafavi, Hassan

    2013-01-01

    Monitoring the stability of patient position is essential during high-precision radiotherapy such as spine stereotactic body radiotherapy (SBRT). We evaluated the combination of digital tomosynthesis (DTS) and triangulation for spine position detection, using non-clinical DTS software and an anthropomorphic pelvic phantom that includes a bone-like spine structure. Kilovoltage cone beam CT projection images over 2–16° gantry rotation were used to generate single slice DTS images. Each DTS slice was registered to a digitally reconstructed DTS derived from the planning CT scan to determine 2D shifts between actual phantom and treatment plan position. Two or more DTS registrations, central axes 4–22° apart, were triangulated to determine the 3D phantom position. Using sequentially generated DTS images, the phantom position can be updated every degree with a small latency of DTS and triangulation angle. The precision of position determination was investigated as function of DTS and triangulation angle. To mimic the scenario of spine SBRT, the effect on the standard deviation of megavoltage radiation delivery during kV image acquisition was tested. In addition, the ability of the system to detect different types of movement was investigated for a variety of small sudden and gradual movements during kV image acquisition. (paper)

  4. Investigation on location-dependent detectability of a small mass for digital breast tomosynthesis evaluation

    Science.gov (United States)

    Lee, Changwoo; Baek, Jongduk; Park, Subok

    2016-03-01

    Digital breast tomosynthesis (DBT) is an emerging imaging modality for improved breast cancer detection and diagnosis [1-5]. Numerous efforts have been made to find quantitative metrics associated with mammographic image quality assessment, such as the exponent β of anatomical noise power spectrum, glandularity, contrast noise ratio, etc. [6-8]. In addition, with the use of Fourier-domain detectability for a task-based assessment of DBT, a stationarity assumption on reconstructed image statistics was often made [9-11], resulting in the use of multiple regions-of-interest (ROIs) from different locations in order to increase sample size. While all these metrics provide some information on mammographic image characteristics and signal detection, the relationship between these metrics and detectability in DBT evaluation has not been fully understood. In this work, we investigated spatial-domain detectability trends and levels as a function of the number of slices Ns at three different ROI locations on the same image slice, where background statistics differ in terms of the aforementioned metrics. Detectabilities for the three ROI locations were calculated using multi-slice channelized Hotelling observers with 2D/3D Laguerre-Gauss channels. Our simulation results show that detectability levels and trends as a function of Ns vary across these three ROI locations. They also show that the exponent β, mean glandularity, and mean attenuation coefficient vary across the three ROI locations but they do not necessarily predict the ranking of detectability levels and trends across these ROI locations.

  5. Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis

    Science.gov (United States)

    Zimmermann, Bernhard B.; Deng, Bin; Singh, Bhawana; Martino, Mark; Selb, Juliette; Fang, Qianqian; Sajjadi, Amir Y.; Cormier, Jayne; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.; Saksena, Mansi A.; Carp, Stefan A.

    2017-04-01

    Diffuse optical tomography (DOT) is emerging as a noninvasive functional imaging method for breast cancer diagnosis and neoadjuvant chemotherapy monitoring. In particular, the multimodal approach of combining DOT with x-ray digital breast tomosynthesis (DBT) is especially synergistic as DBT prior information can be used to enhance the DOT reconstruction. DOT, in turn, provides a functional information overlay onto the mammographic images, increasing sensitivity and specificity to cancer pathology. We describe a dynamic DOT apparatus designed for tight integration with commercial DBT scanners and providing a fast (up to 1 Hz) image acquisition rate to enable tracking hemodynamic changes induced by the mammographic breast compression. The system integrates 96 continuous-wave and 24 frequency-domain source locations as well as 32 continuous wave and 20 frequency-domain detection locations into low-profile plastic plates that can easily mate to the DBT compression paddle and x-ray detector cover, respectively. We demonstrate system performance using static and dynamic tissue-like phantoms as well as in vivo images acquired from the pool of patients recalled for breast biopsies at the Massachusetts General Hospital Breast Imaging Division.

  6. Development of a stationary digital breast tomosynthesis system for clinical applications

    Science.gov (United States)

    Tucker, Andrew Wallace

    Digital breast tomosynthesis (DBT) has been shown to be a very beneficial tool in the fight against breast cancer. However, current DBT systems have poor spatial resolution compared to full field digital mammography (FFDM), the current gold standard for screening mammography. The poor spatial resolution of DBT systems is a result of the single X-ray source design. In DBT systems a single X-ray source is rotated over an angular span in order to acquire the images needed for 3D reconstruction. The rotation of the X-ray source degrades the spatial resolution of the images. DBT systems which are approved for use in the United States for screening mammography are required to also take a full field digital mammogram with every DBT acquisition in order to compensate for the poor spatial resolution. This double exposure essentially doubles the radiation dose to patients. Over the past few years our research group has developed a carbon nanotube (CNT) based X-ray source technology. The unique nature of CNT X-ray sources allows for multiple X-ray focal spots in a single X-ray source. Using this technology we have recently developed a stationary DBT system (s-DBT) system which is capable of producing a full tomosynthesis image dataset with zero motion of the X-ray source. This system has been shown to have increased spatial resolution over other DBT systems in a laboratory setting. The goal of this thesis work was to optimize the s-DBT system, demonstrate its usefulness over other systems, and finally implement it into the clinic for a clinical trial. The s-DBT system was optimized using different image quality measurements. The optimized system was then used in a breast specimen imaging trial which compared s-DBT to magnified 2D mammography and a conventional single source DBT system. Readers preferred s-DBT to magnified 2D mammography for specimen margin delineation and mass detection, these results were not significant. Using physical measures for spatial resolution the s

  7. Real-time tomosynthesis for radiation therapy guidance.

    Science.gov (United States)

    Hsieh, Scott S; Ng, Lydia W

    2017-11-01

    Fluoroscopy has been a tool of choice for monitoring treatments or interventions because of its extremely fast imaging times. However, the contrast obtained in fluoroscopy may be insufficient for certain clinical applications. In stereotactic ablative radiation therapy of the lung, fluoroscopy often lacks sufficient contrast for gating treatment. The purpose of this work is to describe and assess a real-time tomosynthesis design that can produce sufficient contrast for guidance of lung tumor treatment within a small field of view. Previous tomosynthesis designs in radiation oncology have temporal resolution on the order of seconds. The proposed system design uses parallel acquisition of multiple frames by simultaneously illuminating the field of view with multiple sources, enabling a temporal resolution of up to 30 frames per second. For a small field of view, a single flat-panel detector could be used if different sectors of the detector are assigned to specific sources. Simulated images were generated by forward projection of existing clinical datasets. The authors varied the number of tubes and the power of each tube in order to determine the impact on tumor visualization. Visualization of the tumor was much clearer in tomosynthesis than in fluoroscopy. Contrast generally improved with the number of sources used, and a minimum of four sources should be used. The high contrast of the lung allows very low system power, and in most cases, less than 1 mA was needed. More power is required in the lateral direction than the AP direction. The proposed system produces images adequate for real-time guidance of radiation therapy. The additional hardware requirements are modest, and the system is capable of imaging at high frame rates and low dose. Further development, including a prototype system and a dosimetry study, is needed to further evaluate the feasibility of this device for radiation therapy guidance. © 2017 American Association of Physicists in Medicine.

  8. UWB tomosynthesis of objects in mediums with metal inclusions

    Science.gov (United States)

    Yakubov, V. P.; Shipilov, S. E.; Sukhanov, D. Ya; Minin, I. V.; Minin, O. V.

    2017-08-01

    Radiowave tomography of dielectric objects containing metal inclusions is a rather complex problem, since the scattering of waves by dielectric inhomogeneities occurs against the background of substantially stronger reflections from metal parts, even if they are geometrically small. The arising features of obtaining a tomogram in such conditions, including overcoming of disguising by reinforcing ribbons and the appearance of locational shadows at different depths, are discussed in the paper. Herewith principled importance to achieve high focusing of UWB radiation by tomosynthesis is noted on the basis of direct experimental data.

  9. Diagnostic accuracy and recall rates for digital mammography and digital mammography combined with one-view and two-view tomosynthesis: results of an enriched reader study.

    Science.gov (United States)

    Rafferty, Elizabeth A; Park, Jeong Mi; Philpotts, Liane E; Poplack, Steven P; Sumkin, Jules H; Halpern, Elkan F; Niklason, Loren T

    2014-02-01

    The purpose of this study was to compare two methods of combining tomosynthesis with digital mammography by assessing diagnostic accuracy and recall rates for digital mammography alone and digital mammography combined with one-view tomosynthesis and two-view tomosynthesis. Three hundred ten cases including biopsy-proven malignancies (51), biopsy-proven benign findings (47), recalled screening cases (138), and negative screening cases (74) were reviewed by 15 radiologists sequentially using digital mammography, adding one-view tomosynthesis, and then two-view tomosynthesis. Cases were assessed for recall and assigned a BI-RADS score and probability of malignancy for each imaging method. Diagnostic accuracy was assessed using receiver operating characteristic (ROC) analysis. Screening recall rates were compared using pooled logistical regression analysis. A p value of tomosynthesis, and DM plus two-view tomosynthesis was 0.828, 0.864, and 0.895, respectively. Both one-view and two-view tomosynthesis plus DM were significantly better than DM alone (Δ AUCs 0.036 [p = 0.009] and 0.068 [p tomosynthesis, and DM plus two-view tomosynthesis were 44.2%, 27.2%, and 24.0%, respectively. Combined with DM, one-view and two-view tomosynthesis both showed significantly lower noncancer recall rates than digital mammography alone (p tomosynthesis showed a significantly lower recall rate than digital mammography with one-view tomosynthesis (p tomosynthesis compared with digital mammography alone. Compared with digital mammography, diagnostic sensitivity for invasive cancers increased with the addition of both one-view (Δ12.0%, p tomosynthesis. The addition of one-view tomosynthesis to conventional digital mammography improved diagnostic accuracy and reduced the recall rate; however, the addition of two-view tomosynthesis provided twice the performance gain in diagnostic accuracy while further reducing the recall rate.

  10. Damage, Loss, and Needs Assessment Guidance Notes : Volume 3. Estimation of Post-Disaster Needs for Recovery and Reconstruction

    OpenAIRE

    Jovel, Roberto J.; Mudahar, Mohinder

    2010-01-01

    This is a guideline for World Bank task team leaders (TTLs) entrusted with the design and execution of assessments to determine disaster impacts as well as post-disaster needs for recovery, reconstruction, and disaster risk reduction or management. Assessments estimate, first, the short-term government interventions required to initiate recovery and second, the financial requirements to ac...

  11. Boundary-enhancement in propagation-based x-ray phase-contrast tomosynthesis improves depth position characterization.

    Science.gov (United States)

    Guan, Huifeng; Xu, Qiaofeng; Garson, Alfred B; Anastasio, Mark A

    2015-04-21

    Propagation-based x-ray phase-contrast (PB XPC) tomosynthesis combines the concepts of tomosynthesis and XPC imaging to realize the advantages of both for biological imaging applications. Tomosynthesis permits reductions in acquisition times compared with full-view tomography, while XPC imaging provides the opportunity to resolve weakly absorbing structures. In this note, an investigation of the depth resolving properties of PB XPC tomosynthesis is conducted. The results demonstrate that in-plane structures display strong boundary-enhancement while out-of-plane structures do not. This effect can facilitate the identification of in-plane structures in PB XPC tomosynthesis that could normally not be distinguished from out-of-plane structures in absorption-based tomosynthesis.

  12. Boundary-enhancement in propagation-based x-ray phase-contrast tomosynthesis improves depth position characterization

    International Nuclear Information System (INIS)

    Guan, Huifeng; Xu, Qiaofeng; Garson, Alfred B III; Anastasio, Mark A

    2015-01-01

    Propagation-based x-ray phase-contrast (PB XPC) tomosynthesis combines the concepts of tomosynthesis and XPC imaging to realize the advantages of both for biological imaging applications. Tomosynthesis permits reductions in acquisition times compared with full-view tomography, while XPC imaging provides the opportunity to resolve weakly absorbing structures. In this note, an investigation of the depth resolving properties of PB XPC tomosynthesis is conducted. The results demonstrate that in-plane structures display strong boundary-enhancement while out-of-plane structures do not. This effect can facilitate the identification of in-plane structures in PB XPC tomosynthesis that could normally not be distinguished from out-of-plane structures in absorption-based tomosynthesis. (note)

  13. The cerebellar development in chinese children-a study by voxel-based volume measurement of reconstructed 3D MRI scan.

    Science.gov (United States)

    Wu, Kuan-Hsun; Chen, Chia-Yuan; Shen, Ein-Yiao

    2011-01-01

    Cerebellar disorder was frequently reported to have relation with structural brain volume alteration and/or morphology change. In dealing with such clinical situations, we need a convenient and noninvasive imaging tool to provide clinicians with a means of tracing developmental changes in the cerebellum. Herein, we present a new daily practice method for cerebellum imaging that uses a work station and a software program to process reconstructed 3D neuroimages after MRI scanning. In a 3-y period, 3D neuroimages reconstructed from MRI scans of 50 children aged 0.2-12.7 y were taken. The resulting images were then statistically analyzed against a growth curve. We observed a remarkable increase in the size of the cerebellum in the first 2 y of life. Furthermore, the unmyelinated cerebellum grew mainly between birth and 2 y of age in the postnatal stage. In contrast, the postnatal development of the brain mainly depended on the growth of myelinated cerebellum from birth through adolescence. This study presents basic data from a study of ethnic Chinese children's cerebellums using reconstructed 3D brain images. Based on the technique we introduce here, clinicians can evaluate the growth of the brain.

  14. Experimental validation of a three-dimensional linear system model for breast tomosynthesis

    International Nuclear Information System (INIS)

    Zhao Bo; Zhou Jun; Hu Yuehoung; Mertelmeier, Thomas; Ludwig, Jasmina; Zhao Wei

    2009-01-01

    A three-dimensional (3D) linear model for digital breast tomosynthesis (DBT) was developed to investigate the effects of different imaging system parameters on the reconstructed image quality. In the present work, experimental validation of the model was performed on a prototype DBT system equipped with an amorphous selenium (a-Se) digital mammography detector and filtered backprojection (FBP) reconstruction methods. The detector can be operated in either full resolution with 85 μm pixel size or 2x1 pixel binning mode to reduce acquisition time. Twenty-five projection images were acquired with a nominal angular range of ±20 deg. The images were reconstructed using a slice thickness of 1 mm with 0.085x0.085 mm in-plane pixel dimension. The imaging performance was characterized by spatial frequency-dependent parameters including a 3D noise power spectrum (NPS) and in-plane modulation transfer function (MTF). Scatter-free uniform x-ray images were acquired at four different exposure levels for noise analysis. An aluminum (Al) edge phantom with 0.2 mm thickness was imaged to measure the in-plane presampling MTF. The measured in-plane MTF and 3D NPS were both in good agreement with the model. The dependence of DBT image quality on reconstruction filters was investigated. It was found that the slice thickness (ST) filter, a Hanning window to limit the high-frequency components in the slice thickness direction, reduces noise aliasing and improves 3D DQE. An ACR phantom was imaged to investigate the effects of angular range and detector operational modes on reconstructed image quality. It was found that increasing the angular range improves the MTF at low frequencies, resulting in better detection of large-area, low-contrast mass lesions in the phantom. There is a trade-off between noise and resolution for pixel binning and full resolution modes, and the choice of detector mode will depend on radiation dose and the targeted lesion.

  15. Experimental validation of a three-dimensional linear system model for breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Bo; Zhou Jun; Hu Yuehoung; Mertelmeier, Thomas; Ludwig, Jasmina; Zhao Wei [Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460 (United States); Siemens AG Healthcare, Henkestrasse 127, D-91052 Erlangen (Germany); Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460 (United States)

    2009-01-15

    A three-dimensional (3D) linear model for digital breast tomosynthesis (DBT) was developed to investigate the effects of different imaging system parameters on the reconstructed image quality. In the present work, experimental validation of the model was performed on a prototype DBT system equipped with an amorphous selenium (a-Se) digital mammography detector and filtered backprojection (FBP) reconstruction methods. The detector can be operated in either full resolution with 85 {mu}m pixel size or 2x1 pixel binning mode to reduce acquisition time. Twenty-five projection images were acquired with a nominal angular range of {+-}20 deg. The images were reconstructed using a slice thickness of 1 mm with 0.085x0.085 mm in-plane pixel dimension. The imaging performance was characterized by spatial frequency-dependent parameters including a 3D noise power spectrum (NPS) and in-plane modulation transfer function (MTF). Scatter-free uniform x-ray images were acquired at four different exposure levels for noise analysis. An aluminum (Al) edge phantom with 0.2 mm thickness was imaged to measure the in-plane presampling MTF. The measured in-plane MTF and 3D NPS were both in good agreement with the model. The dependence of DBT image quality on reconstruction filters was investigated. It was found that the slice thickness (ST) filter, a Hanning window to limit the high-frequency components in the slice thickness direction, reduces noise aliasing and improves 3D DQE. An ACR phantom was imaged to investigate the effects of angular range and detector operational modes on reconstructed image quality. It was found that increasing the angular range improves the MTF at low frequencies, resulting in better detection of large-area, low-contrast mass lesions in the phantom. There is a trade-off between noise and resolution for pixel binning and full resolution modes, and the choice of detector mode will depend on radiation dose and the targeted lesion.

  16. Digital tomosynthesis using a 35 mm X-ray cinematogram during an isocentric rotational motion

    International Nuclear Information System (INIS)

    Maeda, Hirofumi; Aikawa, Hisayuki; Maeda, Tohru; Miyake, Hidetoshi; Sugahara, Tetsuo.

    1988-01-01

    Digital tomosynthesis is performed using a 35 mm X-ray cinematogram obtained during an isocentric rotational motion of the cineangiographic apparatus. Formula of image shift for digital tomosynthesis using an isocentric rotational motion is induced by perspective projection and affine transformation. Images of desired layer are aligned at the same point in the image processor and summed. Resultant final image is displayed in sharp focus. We can set tomosynthetic factors on any desired projection, sweep angle and depth as concerns digital tomosynthesis using an isocentric rotational motion. Especially we emphasize that tomosynthesis tilted for central axis of isocentric rotational motion can be obtained, using shear transformation of image in the image processor. (author)

  17. Optimization of Tomosynthesis Imaging for Improved Mass and Microcalcification Detection in the Breast

    National Research Council Canada - National Science Library

    Xia, Dan

    2008-01-01

    The goal of this research is to obtain systematic understandings of the effects of various physical factors that are important in breast tomosynthesis imaging and to develop techniques for effectively...

  18. Comparative study between breast tomosynthesis and classic digital mammography in the evaluation of different breast lesions

    Directory of Open Access Journals (Sweden)

    Sahar Mansour

    2014-09-01

    Conclusion: Three-dimensional tomosynthesis significantly enhanced the detection and characterization of breast lesions on digital mammography especially in the context of dense breast parenchyma (ACR 3&4.

  19. Potential impact of tomosynthesis on the detection and diagnosis of breast lesi

    Directory of Open Access Journals (Sweden)

    Tamer F. Taha Ali

    2016-03-01

    Conclusion: Breast tomosynthesis is a promising technology that offers improved diagnostic and screening accuracy, fewer recalls as well as 3D lesion localization. Lesion conspicuity is improved using DBT compared with FFDM with a more confidence in making clinical decisions.

  20. WE-DE-207B-05: Measuring Spatial Resolution in Digital Breast Tomosynthesis: Update of AAPM Task Group 245

    Energy Technology Data Exchange (ETDEWEB)

    Scaduto, DA; Hu, Y-H; Zhao, W [Stony Brook Medicine, Stony Brook, NY (United States); Goodsitt, M; Chan, H-P [University Michigan, Ann Arbor, MI (United States); Olafsdottir, H [Image Owl, 105 Reykjavik (Iceland); Das, M [University Houston, Houston, TX (United States); Fredenberg, E [Philips Healthcare, Solna (Sweden); Geiser, W [UT MD Anderson Cancer Center, Houston, TX (United States); Goodenough, D [The George Washington University, Washington, DC (United States); Heid, P [ARCADES, Marseille (France); Liu, B [Massachusetts General Hospital, Boston, MA (United States); Mainprize, J [Sunnybrook Health Sciences Centre, North York, ON (Canada); Reiser, I [The University of Chicago, Chicago, IL (United States); Van Engen, R [LRCB, Nijmegen (Netherlands); Varchena, V [CIRS Inc., Norfolk, VA (United States); Vecchio, S [I.M.S., Pontecchio Marconi (Italy); Glick, S [Food and Drug Administration, Silver Spring, MD (United States)

    2016-06-15

    Purpose: Spatial resolution in digital breast tomosynthesis (DBT) is affected by inherent/binned detector resolution, oblique entry of x-rays, and focal spot size/motion; the limited angular range further limits spatial resolution in the depth-direction. While DBT is being widely adopted clinically, imaging performance metrics and quality control protocols have not been standardized. AAPM Task Group 245 on Tomosynthesis Quality Control has been formed to address this deficiency. Methods: Methods of measuring spatial resolution are evaluated using two prototype quality control phantoms for DBT. Spatial resolution in the detector plane is measured in projection and reconstruction domains using edge-spread function (ESF), point-spread function (PSF) and modulation transfer function (MTF). Spatial resolution in the depth-direction and effective slice thickness are measured in the reconstruction domain using slice sensitivity profile (SSP) and artifact spread function (ASF). An oversampled PSF in the depth-direction is measured using a 50 µm angulated tungsten wire, from which the MTF is computed. Object-dependent PSF is derived and compared with ASF. Sensitivity of these measurements to phantom positioning, imaging conditions and reconstruction algorithms is evaluated. Results are compared from systems of varying acquisition geometry (9–25 projections over 15–60°). Dependence of measurements on feature size is investigated. Results: Measurements of spatial resolution using PSF and LSF are shown to depend on feature size; depth-direction spatial resolution measurements are shown to similarly depend on feature size for ASF, though deconvolution with an object function removes feature size-dependence. A slanted wire may be used to measure oversampled PSFs, from which MTFs may be computed for both in-plane and depth-direction resolution. Conclusion: Spatial resolution measured using PSF is object-independent with sufficiently small object; MTF is object

  1. Breast Cancer Risk Estimation Using Parenchymal Texture Analysis in Digital Breast Tomosynthesis

    International Nuclear Information System (INIS)

    Ikejimba, Lynda C.; Kontos, Despina; Maidment, Andrew D. A.

    2010-01-01

    Mammographic parenchymal texture has been shown to correlate with genetic markers of developing breast cancer. Digital breast tomosynthesis (DBT) is a novel x-ray imaging technique in which tomographic images of the breast are reconstructed from multiple source projections acquired at different angles of the x-ray tube. Compared to digital mammography (DM), DBT eliminates breast tissue overlap, offering superior parenchymal tissue visualization. We hypothesize that texture analysis in DBT could potentially provide a better assessment of parenchymal texture and ultimately result in more accurate assessment of breast cancer risk. As a first step towards validating this hypothesis, we investigated the association between DBT parenchymal texture and breast percent density (PD), a known breast cancer risk factor, and compared it to DM. Bilateral DBT and DM images from 71 women participating in a breast cancer screening trial were analyzed. Filtered-backprojection was used to reconstruct DBT tomographic planes in 1 mm increments with 0.22 mm in-plane resolution. Corresponding DM images were acquired at 0.1 mm pixel resolution. Retroareolar regions of interest (ROIs) equivalent to 2.5 cm 3 were segmented from the DBT images and corresponding 2.5 cm 2 ROIs were segmented from the DM images. Breast PD was mammographically estimated using the Cumulus scale. Overall, DBT texture features demonstrated a stronger correlation than DM to PD. The Pearson correlation coefficients for DBT were r = 0.40 (p 2 = 0.39) compared to DM (R 2 = 0.33). We attribute these observations to the superior parenchymal tissue visualization in DBT. Our study is the first to perform DBT texture analysis in a screening population of women, showing that DBT could potentially provide better breast cancer risk assessment in the future.

  2. Breast tissue classification in digital breast tomosynthesis images using texture features: a feasibility study

    Science.gov (United States)

    Kontos, Despina; Berger, Rachelle; Bakic, Predrag R.; Maidment, Andrew D. A.

    2009-02-01

    Mammographic breast density is a known breast cancer risk factor. Studies have shown the potential to automate breast density estimation by using computerized texture-based segmentation of the dense tissue in mammograms. Digital breast tomosynthesis (DBT) is a tomographic x-ray breast imaging modality that could allow volumetric breast density estimation. We evaluated the feasibility of distinguishing between dense and fatty breast regions in DBT using computer-extracted texture features. Our long-term hypothesis is that DBT texture analysis can be used to develop 3D dense tissue segmentation algorithms for estimating volumetric breast density. DBT images from 40 women were analyzed. The dense tissue area was delineated within each central source projection (CSP) image using a thresholding technique (Cumulus, Univ. Toronto). Two (2.5cm)2 ROIs were manually selected: one within the dense tissue region and another within the fatty region. Corresponding (2.5cm)3 ROIs were placed within the reconstructed DBT images. Texture features, previously used for mammographic dense tissue segmentation, were computed. Receiver operating characteristic (ROC) curve analysis was performed to evaluate feature classification performance. Different texture features appeared to perform best in the 3D reconstructed DBT compared to the 2D CSP images. Fractal dimension was superior in DBT (AUC=0.90), while contrast was best in CSP images (AUC=0.92). We attribute these differences to the effects of tissue superimposition in CSP and the volumetric visualization of the breast tissue in DBT. Our results suggest that novel approaches, different than those conventionally used in projection mammography, need to be investigated in order to develop DBT dense tissue segmentation algorithms for estimating volumetric breast density.

  3. A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows

    International Nuclear Information System (INIS)

    Aulisa, Eugenio; Manservisi, Sandro; Scardovelli, Ruben

    2003-01-01

    In this work we present a new mixed markers and volume-of-fluid (VOF) algorithm for the reconstruction and advection of interfaces in the two-dimensional space. The interface is described by using both the volume fraction function C, as in VOF methods, and surface markers, which locate the interface within the computational cells. The C field and the markers are advected by following the streamlines. New markers are determined by computing the intersections of the advected interface with the grid lines, then other markers are added inside each cut cell to conserve the volume fraction C. A smooth motion of the interface is obtained, typical of the marker approach, with a good volume conservation, as in standard VOF methods. In this article we consider a few typical two-dimensional tests and compare the results of the mixed algorithm with those obtained with VOF methods. Translations, rotations and vortex tests are performed showing that many problems of the VOF technique can be solved and a good accuracy in the geometrical motion and mass conservation can be achieved

  4. Added value of one-view breast tomosynthesis combined with digital mammography according to reader experience

    International Nuclear Information System (INIS)

    Thomassin-Naggara, Isabelle; Perrot, Nicolas; Dechoux, Sophie; Ribeiro, Carine; Chopier, Jocelyne; Bazelaire, Cedric de

    2015-01-01

    Highlights: • Breast tomosynthesis improves diagnostic performance especially for radiologists with lower experience in mammography. • Adding only one-view digital breast tomosynthesis to mammography improves the cancer detection rate. • Breast tomosynthesis is mainly useful for helping radiologists to detect architectural distortion. - Abstract: Purpose: To retrospectively evaluate the added value of one-view breast tomosynthesis in adjunct with mammography to characterize breast lesions. Materials and methods: Our institutional ethics committees approved the study and granted a waiver of informed consent. One hundred fifty-five women (mean age, 51.3 years, range: 24–92 years) who systematically underwent mammography and breast tomosynthesis with subsequent percutaneous biopsy were analyzed. Four radiologists (two seniors, R1 and R2, and two juniors, R3 and R4 with 30, 10, 3 and 1 years of experience in breast imaging, respectively) independently reviewed exams in two steps: mammography alone and tomosynthesis in adjunct with mammography. The lesions in the cohort included 39.3% (61/155) cancers, 2.5% (4/155) high-risk lesions and 58.1% (90/155) benign lesions. A receiver operating characteristic (ROC) curve analysis was performed to compare the results of the two readings. Results: There was almost perfect agreement irrespective of reader experience for the reading of the mammography in adjunct with tomosynthesis, whereas agreement was poor between junior and senior readers for the reading of mammography alone. Area under the ROC (Az) values for the tomosynthesis in adjunct with mammography were significantly better than Az values for mammography alone for all readers except the most experienced, for whom only a tendency was noted. The proportion of cancers undiagnosed by mammography alone that were well diagnosed by tomosynthesis in adjunct with mammography was 6.5% (4/61), 13.1% (8/61), 27.8% (17/61) and 26.2% (16/61) for Readers 1, 2, 3 and 4

  5. Added value of one-view breast tomosynthesis combined with digital mammography according to reader experience

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin-Naggara, Isabelle, E-mail: isabelle.thomassin@tnn.aphp.fr [Sorbonne Universités, UPMC Univ Paris 06, IUC, 75005 Paris (France); INSERM, UMR970, Equipe 2, Imagerie de l’angiogenèse, 75005 Paris (France); AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Perrot, Nicolas [AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Centre Pyramides, Paris (France); Dechoux, Sophie [Sorbonne Universités, UPMC Univ Paris 06, IUC, 75005 Paris (France); AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Ribeiro, Carine [Centre Pyramides, Paris (France); Chopier, Jocelyne [AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Bazelaire, Cedric de [APHP, Department of Radiology, Hôpital Saint Louis, 75010 Paris (France)

    2015-02-15

    Highlights: • Breast tomosynthesis improves diagnostic performance especially for radiologists with lower experience in mammography. • Adding only one-view digital breast tomosynthesis to mammography improves the cancer detection rate. • Breast tomosynthesis is mainly useful for helping radiologists to detect architectural distortion. - Abstract: Purpose: To retrospectively evaluate the added value of one-view breast tomosynthesis in adjunct with mammography to characterize breast lesions. Materials and methods: Our institutional ethics committees approved the study and granted a waiver of informed consent. One hundred fifty-five women (mean age, 51.3 years, range: 24–92 years) who systematically underwent mammography and breast tomosynthesis with subsequent percutaneous biopsy were analyzed. Four radiologists (two seniors, R1 and R2, and two juniors, R3 and R4 with 30, 10, 3 and 1 years of experience in breast imaging, respectively) independently reviewed exams in two steps: mammography alone and tomosynthesis in adjunct with mammography. The lesions in the cohort included 39.3% (61/155) cancers, 2.5% (4/155) high-risk lesions and 58.1% (90/155) benign lesions. A receiver operating characteristic (ROC) curve analysis was performed to compare the results of the two readings. Results: There was almost perfect agreement irrespective of reader experience for the reading of the mammography in adjunct with tomosynthesis, whereas agreement was poor between junior and senior readers for the reading of mammography alone. Area under the ROC (Az) values for the tomosynthesis in adjunct with mammography were significantly better than Az values for mammography alone for all readers except the most experienced, for whom only a tendency was noted. The proportion of cancers undiagnosed by mammography alone that were well diagnosed by tomosynthesis in adjunct with mammography was 6.5% (4/61), 13.1% (8/61), 27.8% (17/61) and 26.2% (16/61) for Readers 1, 2, 3 and 4

  6. Comparison of Generated Parallel Capillary Arrays to Three-Dimensional Reconstructed Capillary Networks in Modeling Oxygen Transport in Discrete Microvascular Volumes

    Science.gov (United States)

    Fraser, Graham M.; Goldman, Daniel; Ellis, Christopher G.

    2013-01-01

    Objective We compare Reconstructed Microvascular Networks (RMN) to Parallel Capillary Arrays (PCA) under several simulated physiological conditions to determine how the use of different vascular geometry affects oxygen transport solutions. Methods Three discrete networks were reconstructed from intravital video microscopy of rat skeletal muscle (84×168×342 μm, 70×157×268 μm and 65×240×571 μm) and hemodynamic measurements were made in individual capillaries. PCAs were created based on statistical measurements from RMNs. Blood flow and O2 transport models were applied and the resulting solutions for RMN and PCA models were compared under 4 conditions (rest, exercise, ischemia and hypoxia). Results Predicted tissue PO2 was consistently lower in all RMN simulations compared to the paired PCA. PO2 for 3D reconstructions at rest were 28.2±4.8, 28.1±3.5, and 33.0±4.5 mmHg for networks I, II, and III compared to the PCA mean values of 31.2±4.5, 30.6±3.4, and 33.8±4.6 mmHg. Simulated exercise yielded mean tissue PO2 in the RMN of 10.1±5.4, 12.6±5.7, and 19.7±5.7 mmHg compared to 15.3±7.3, 18.8±5.3, and 21.7±6.0 in PCA. Conclusions These findings suggest that volume matched PCA yield different results compared to reconstructed microvascular geometries when applied to O2 transport modeling; the predominant characteristic of this difference being an over estimate of mean tissue PO2. Despite this limitation, PCA models remain important for theoretical studies as they produce PO2 distributions with similar shape and parameter dependence as RMN. PMID:23841679

  7. Computation of the glandular radiation dose in digital tomosynthesis of the breast

    International Nuclear Information System (INIS)

    Sechopoulos, Ioannis; Suryanarayanan, Sankararaman; Vedantham, Srinivasan; D'Orsi, Carl; Karellas, Andrew

    2007-01-01

    Tomosynthesis of the breast is currently a topic of intense interest as a logical next step in the evolution of digital mammography. This study reports on the computation of glandular radiation dose in digital tomosynthesis of the breast. Previously, glandular dose estimations in tomosynthesis have been performed using data from studies of radiation dose in conventional planar mammography. This study evaluates, using Monte Carlo methods, the normalized glandular dose (D g N) to the breast during a tomosynthesis study, and characterizes its dependence on breast size, tissue composition, and x-ray spectrum. The conditions during digital tomosynthesis imaging of the breast were simulated using a computer program based on the Geant4 toolkit. With the use of simulated breasts of varying size, thickness and tissue composition, the D g N to the breast tissue was computed for varying x-ray spectra and tomosynthesis projection angle. Tomosynthesis projections centered about both the cranio-caudal (CC) and medio-lateral oblique (MLO) views were simulated. For each projection angle, the ratio of the glandular dose for that projection to the glandular dose for the zero degree projection was computed. This ratio was denoted the relative glandular dose (RGD) coefficient, and its variation under different imaging parameters was analyzed. Within mammographic energies, the RGD was found to have a weak dependence on glandular fraction and x-ray spectrum for both views. A substantial dependence on breast size and thickness was found for the MLO view, and to a lesser extent for the CC view. Although RGD values deviate substantially from unity as a function of projection angle, the RGD averaged over all projections in a complete tomosynthesis study varies from 0.91 to 1.01. The RGD results were fit to mathematical functions and the resulting equations are provided

  8. Radiation dose reduction in digital breast tomosynthesis (DBT) by means of deep-learning-based supervised image processing

    Science.gov (United States)

    Liu, Junchi; Zarshenas, Amin; Qadir, Ammar; Wei, Zheng; Yang, Limin; Fajardo, Laurie; Suzuki, Kenji

    2018-03-01

    To reduce cumulative radiation exposure and lifetime risks for radiation-induced cancer from breast cancer screening, we developed a deep-learning-based supervised image-processing technique called neural network convolution (NNC) for radiation dose reduction in DBT. NNC employed patched-based neural network regression in a convolutional manner to convert lower-dose (LD) to higher-dose (HD) tomosynthesis images. We trained our NNC with quarter-dose (25% of the standard dose: 12 mAs at 32 kVp) raw projection images and corresponding "teaching" higher-dose (HD) images (200% of the standard dose: 99 mAs at 32 kVp) of a breast cadaver phantom acquired with a DBT system (Selenia Dimensions, Hologic, CA). Once trained, NNC no longer requires HD images. It converts new LD images to images that look like HD images; thus the term "virtual" HD (VHD) images. We reconstructed tomosynthesis slices on a research DBT system. To determine a dose reduction rate, we acquired 4 studies of another test phantom at 4 different radiation doses (1.35, 2.7, 4.04, and 5.39 mGy entrance dose). Structural SIMilarity (SSIM) index was used to evaluate the image quality. For testing, we collected half-dose (50% of the standard dose: 32+/-14 mAs at 33+/-5 kVp) and full-dose (standard dose: 68+/-23 mAs at 33+/-5 kvp) images of 10 clinical cases with the DBT system at University of Iowa Hospitals and Clinics. NNC converted half-dose DBT images of 10 clinical cases to VHD DBT images that were equivalent to full dose DBT images. Our cadaver phantom experiment demonstrated 79% dose reduction.

  9. Application of digital tomosynthesis in diagnosing the fractures or dislocations in irregular bones and regions with complex structures.

    Science.gov (United States)

    Tuerdi, Batuer; Wang, Hui; Zhang, Ying; Zhou, Hao; Zhang, Hao

    2015-01-01

    The application potential of digital tomosynthesis in diagnosing fractures or dislocations in irregular bones and regions with complex structures was evaluated. Digital radiography and tomosynthesis were performed in 121 patients, and the image quality, accuracy, sensitivity, and specificity were compared. The number of participants with a definite diagnosis of fracture and/or dislocation was 98. The ratio of excellent images, accuracy, sensitivity, and specificity of digital tomosynthesis were higher than that of direct radiography. Digital tomosynthesis could be applied in the diagnosis of fractures or dislocations in irregular bones and regions with complex structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The use of phase sequence image sets to reconstruct the total volume occupied by a mobile lung tumor

    International Nuclear Information System (INIS)

    Gagne, Isabelle M.; Robinson, Don M.; Halperin, Ross; Roa, Wilson

    2005-01-01

    The use of phase sequence image (PSI) sets to reveal the total volume occupied by a mobile target is presented. Isocontrast composite clinical target volumes (CCTVs) may be constructed from PSI sets in order to reveal the total volume occupied by a mobile target during the course of its travel. The ability of the CCTV technique to properly account for target motion is demonstrated by comparison to contours of the true total volume occupied (TVO) for a number of experimental phantom geometries. Finally, using real patient data, the clinical utility of the CCTV technique to properly account for internal tumor motion while minimizing the volume of healthy lung tissue irradiated is assessed by comparison to the standard approach of applying safety margins. Results of the phantom study reveal that CCTV cross sections constructed at the 20% isocontrast level yield good agreement with the total cross sections (TXO) of mobile targets. These CCTVs conform well to the TVOs of the moving targets examined whereby the addition of small uniform margins ensures complete circumscription of the TVO with the inclusion of minimal amounts of surrounding external volumes. The CCTV technique is seen to be clearly superior to the common practice of the addition of safety margins to individual CTV contours in order to account for internal target motion. Margins required with the CCTV technique are eight to ten times smaller than those required with individual CTVs

  11. The application of digital tomosynthesis to the diagnosis of the styloid process syndrome

    International Nuclear Information System (INIS)

    Ge Hequan; Zheng Kuihong; Wang Zijun; Huang Minhua; Ying Ligang

    2011-01-01

    Objective: To investigate the clinical value of digital tomosynthesis in the diagnosis of the styloid process syndrome. Methods: The thirty patients suspected of the styloid process syndrome underwent both multi-slice spiral CT scanning and digital tomosynthesis scanning. Two kinds of imaging were analyzed, and the length and angle of styloid on lateral and AP views were measured. Results: Both images could clearly show the styloid length, size, shape, direction and the relationship with surrounding structures. There was no significant difference in the length, medial angle in the AP position and anterior angle in the lateral position between multi-slice spiral CT scanning and digital tomosynthesis scanning (P>0.1). The styloid length on lateral digital tomosynthesis was significant smaller than that on multi-slice spiral CT scanning (P<0.01). Conclusions: The length of styloid measured should take the AP position as the standard using the digital tomosynthesis technique, which improve the image quality during the diagnosis of the styloid process syndrome and is less coitly and at a lower dose of radiation. Digital tomosynthesis could provide extensive clinical information and preoperative preparation of the very high referential value as CT canning. (authors)

  12. Lung cancer detection with digital chest tomosynthesis: first round results from the SOS observational study.

    Science.gov (United States)

    Bertolaccini, Luca; Viti, Andrea; Tavella, Chiara; Priotto, Roberto; Ghirardo, Donatella; Grosso, Maurizio; Terzi, Alberto

    2015-04-01

    Baseline results of the Studio OSservazionale (SOS), observational study, a single-arm observational study of digital chest tomosynthesis for lung cancer detection in an at-risk population demonstrated a detection rate of lung cancer comparable to that of studies that used low dose CT scan (LDCT). We present the results of the first round. Totally 1,703 out of 1,843 (92%) subjects who had a baseline digital chest tomosynthesis underwent a first round reevaluation after 1 year. At first round chest digital tomosynthesis, 13 (0.7%) subjects had an indeterminate nodule larger than 5 mm and underwent low-dose CT scan for nodule confirmation. PET/CT study was obtained in 10 (0.5%) subjects and 2 subjects had a low-dose CT follow up. Surgery, either video-assisted thoracoscopic or open surgery for indeterminate pulmonary nodules was performed in 10 (0.2%) subjects. A lung cancer was diagnosed and resected in five patients. The lung cancer detection rate at first round was 0.3% (5/1,703). The detection rate of lung cancer at first round for tomosynthesis is comparable to rates reported for CT. In addition, results of first round digital chest tomosynthesis confirm chest tomosynthesis as a possible first-line lung cancer-screening tool.

  13. Radiation dose with digital breast tomosynthesis compared to digital mammography: per-view analysis.

    Science.gov (United States)

    Gennaro, Gisella; Bernardi, D; Houssami, N

    2018-02-01

    To compare radiation dose delivered by digital mammography (FFDM) and breast tomosynthesis (DBT) for a single view. 4,780 FFDM and 4,798 DBT images from 1,208 women enrolled in a screening trial were used to ground dose comparison. Raw images were processed by an automatic software to determine volumetric breast density (VBD) and were used together with exposure data to compute the mean glandular dose (MGD) according to Dance's model. DBT and FFDM were compared in terms of operation of the automatic exposure control (AEC) and MGD level. Statistically significant differences were found between FFDM and DBT MGDs for all views (CC: MGD FFDM =1.366 mGy, MGD DBT =1.858 mGy; ptomosynthesis compared to FFDM. Given the emerging role of DBT, its use in conjunction with synthetic 2D images should not be deterred by concerns regarding radiation burden, and should draw on evidence of potential clinical benefit. • Most studies compared tomosynthesis in combination with mammography vs. mammography alone. • There is some concern about the dose increase with tomosynthesis. • Clinical data show a small increase in radiation dose with tomosynthesis. • Synthetic 2D images from tomosynthesis at zero dose reduce potential harm. • The small dose increase should not be a barrier to use of tomosynthesis.

  14. The Role of Routine Whole Volume SPECT Reconstruction in Comparison to Cine Raw Data in the Detection of Extracardiac Uptake on Myocardial Perfusion Scans

    International Nuclear Information System (INIS)

    Maharaj, M.; Korowlay, N.A.

    2011-01-01

    The objective of this study was to determine the role of routine whole volume reconstructed single-photon emission tomography (rSPECT) compared to cine raw data to detect extracardiac uptake of Sestamibi (MIBI). In a retrospective study, the myocardial perfusion studies of 426 patients were inspected separately for extracardiac uptake on cine raw data and rSPECT. The acquisition parameters for all the images were done according to departmental protocol. The whole volume SPECT data was selected and processed by HOSEM iterative reconstruction using the HERMES computer software system. The images were assessed by two observers, a student in training and a senior consultant nuclear medicine physician. The overall mean age and standard deviation of the 426 patients at the time of the study was 60 ± 12 years. Statistical analysis was performed using the Kappa and McNemars tests. The clinical significance of the extracardiac uptake was evaluated using hospital folders and /or laboratory results after viewing images. rSPECT detected 25 patients (5.9%) and cine raw data identified 18 patients (4.2%) with extracardiac uptake. All the areas of extracardiac uptake noted on cine raw data were seen on the rSPECT images. Only 21 of the 25 patients had complete 5-year clinical follow-up. The value of the clinical significance of the extracardiac uptake was limited due to the study being retrospective. The proportion of positives identified by rSPECT was significantly larger than those identified by cine raw data (P = 0.0082). Although our study demonstrates that rSPECT is more sensitive than cine raw data in detecting extracardiac uptake, it also shows that there is no benefit in routine whole volume rSPECT in daily clinical practice

  15. Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning.

    Science.gov (United States)

    Yousefi, Mina; Krzyżak, Adam; Suen, Ching Y

    2018-05-01

    Digital breast tomosynthesis (DBT) was developed in the field of breast cancer screening as a new tomographic technique to minimize the limitations of conventional digital mammography breast screening methods. A computer-aided detection (CAD) framework for mass detection in DBT has been developed and is described in this paper. The proposed framework operates on a set of two-dimensional (2D) slices. With plane-to-plane analysis on corresponding 2D slices from each DBT, it automatically learns complex patterns of 2D slices through a deep convolutional neural network (DCNN). It then applies multiple instance learning (MIL) with a randomized trees approach to classify DBT images based on extracted information from 2D slices. This CAD framework was developed and evaluated using 5040 2D image slices derived from 87 DBT volumes. The empirical results demonstrate that this proposed CAD framework achieves much better performance than CAD systems that use hand-crafted features and deep cardinality-restricted Bolzmann machines to detect masses in DBTs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Track reconstruction method in a small volume self-shunted streamer chamber - analysis of the errors for low energy electrons

    International Nuclear Information System (INIS)

    Parizet, M.J.; Augerat, J.; Avan, M.; Ballet, M.; Vialle, M.

    1977-01-01

    A programme has been worked out to reconstruct electron tracks of low energy (from 100 keV to 2 MeV) curved by a magnetic field in a small streamer chamber (size 10x11x51 cm 3 ). Before a study of the problems involved in the experimental set-up, the geometrical programme is described and the different errors are evaluated. Finally the accuracies on kinetic energies and angles which can be obtained for low energy elctron tracks are given. (Auth.)

  17. Influence of the partial volume correction method on (18)F-fluorodeoxyglucose brain kinetic modelling from dynamic PET images reconstructed with resolution model based OSEM.

    Science.gov (United States)

    Bowen, Spencer L; Byars, Larry G; Michel, Christian J; Chonde, Daniel B; Catana, Ciprian

    2013-10-21

    Kinetic parameters estimated from dynamic (18)F-fluorodeoxyglucose ((18)F-FDG) PET acquisitions have been used frequently to assess brain function in humans. Neglecting partial volume correction (PVC) for a dynamic series has been shown to produce significant bias in model estimates. Accurate PVC requires a space-variant model describing the reconstructed image spatial point spread function (PSF) that accounts for resolution limitations, including non-uniformities across the field of view due to the parallax effect. For ordered subsets expectation maximization (OSEM), image resolution convergence is local and influenced significantly by the number of iterations, the count density, and background-to-target ratio. As both count density and background-to-target values for a brain structure can change during a dynamic scan, the local image resolution may also concurrently vary. When PVC is applied post-reconstruction the kinetic parameter estimates may be biased when neglecting the frame-dependent resolution. We explored the influence of the PVC method and implementation on kinetic parameters estimated by fitting (18)F-FDG dynamic data acquired on a dedicated brain PET scanner and reconstructed with and without PSF modelling in the OSEM algorithm. The performance of several PVC algorithms was quantified with a phantom experiment, an anthropomorphic Monte Carlo simulation, and a patient scan. Using the last frame reconstructed image only for regional spread function (RSF) generation, as opposed to computing RSFs for each frame independently, and applying perturbation geometric transfer matrix PVC with PSF based OSEM produced the lowest magnitude bias kinetic parameter estimates in most instances, although at the cost of increased noise compared to the PVC methods utilizing conventional OSEM. Use of the last frame RSFs for PVC with no PSF modelling in the OSEM algorithm produced the lowest bias in cerebral metabolic rate of glucose estimates, although by less than 5% in

  18. Possible Laminographic and Tomosynthesis Applications for Wolter Microscope Scan Geometries

    International Nuclear Information System (INIS)

    Schneberk, D; Jackson, J; Martz, H

    2004-01-01

    The Wolter microscope includes a number of attractive features for x-ray imaging, and possible connections to laminographic and tomosynthesis 3D object recovery algorithms. This type of instrument employs x-ray optics to sift out single energy x-rays from a broader spectral energy source, and direct those x-rays to a ''focus plane'' similar to the operation of a optical microscope (see Figure 1 for schematic of a Wolter instrument). Unlike optical microscopes the 3D object can be thick in the direction of the x-rays and in this case more of the intensity of the image is affected by the out-of-focus planes, since the ray-paths span the entire depth of the object. It is clear that the ''in-focus'' plane of a Wolter contain more 3D information than a simple ''point-projection'' radiograph. However, it is not clear just how the impact of the out-of-focus planes obscures or distorts features of interest for the in-focus planes. Further, it is not clear just how object positioning can be combined with multiple acquisitions to enable recovery of other planes within the object function or the entire object function. Of particular interest here are Wolter microscopes configured for mesoscale objects (mm extent with um features). Laminographic and tomosynthesis scanning methods can be strategic for this type of inspection instrument. First, photon output for inspection purposes can be meager in this type of ''small field of view'' system. With laboratory x-ray sources a single image can require up to 10 minutes to accumulate adequate signal. Techniques that can obtain 3D object information from small numbers of views, rotational or translational, are consequently at a premium. Laminographic and tomosynthesis scanning methods require relatively small numbers of views (2-30). Secondly, the Wolter microscope scan geometry in a single view is a fit with the type of source-detector geometry achieved through source-object-detector re-positioning in laminographic and tomosynthesis

  19. Digital breast tomosynthesis: studies of the effects of acquisition geometry on contrast-to-noise ratio and observer preference of low-contrast objects in breast phantom images

    International Nuclear Information System (INIS)

    Goodsitt, Mitchell M; Chan, Heang-Ping; Telang, Santosh; Hadjiiski, Lubomir; Helvie, Mark A; Paramagul, Chintana; Neal, Colleen; Christodoulou, Emmanuel; Larson, Sandra C; Carson, Paul L; Schmitz, Andrea; Zelakiewicz, Scott; Watcharotone, Kuanwong

    2014-01-01

    The effect of acquisition geometry in digital breast tomosynthesis was evaluated with studies of contrast-to-noise ratios (CNRs) and observer preference. Contrast-detail (CD) test objects in 5 cm thick phantoms with breast-like backgrounds were imaged. Twelve different angular acquisitions (average glandular dose for each ∼1.1 mGy) were performed ranging from narrow angle 16° with 17 projection views (16d17p) to wide angle 64d17p. Focal slices of SART-reconstructed images of the CD arrays were selected for CNR computations and the reader preference study. For the latter, pairs of images obtained with different acquisition geometries were randomized and scored by 7 trained readers. The total scores for all images and readings for each acquisition geometry were compared as were the CNRs. In general, readers preferred images acquired with wide angle as opposed to narrow angle geometries. The mean percent preferred was highly correlated with tomosynthesis angle (R = 0.91). The highest scoring geometries were 60d21p (95%), 64d17p (80%), and 48d17p (72%); the lowest scoring were 16d17p (4%), 24d9p (17%) and 24d13p (33%). The measured CNRs for the various acquisitions showed much overlap but were overall highest for wide-angle acquisitions. Finally, the mean reader scores were well correlated with the mean CNRs (R = 0.83). (paper)

  20. Digital breast tomosynthesis: Studies of the effects of acquisition geometry on contrast-to-noise ratio and observer preference of low-contrast objects in breast phantom images

    Science.gov (United States)

    Goodsitt, Mitchell M.; Chan, Heang-Ping; Schmitz, Andrea; Zelakiewicz, Scott; Telang, Santosh; Hadjiiski, Lubomir; Watcharotone, Kuanwong; Helvie, Mark A.; Paramagul, Chintana; Neal, Colleen; Christodoulou, Emmanuel; Larson, Sandra C.; Carson, Paul L.

    2014-01-01

    The effect of acquisition geometry in digital breast tomosynthesis (DBT) was evaluated with studies of contrast-to-noise ratios (CNRs) and observer preference. Contrast-detail (CD) test objects in 5 cm thick phantoms with breast-like backgrounds were imaged. Twelve different angular acquisitions (average glandular dose for each ~1.1 mGy) were performed ranging from narrow angle 16° with 17 projection views (16d17p) to wide angle 64d17p. Focal slices of SART-reconstructed images of the CD arrays were selected for CNR computations and the reader preference study. For the latter, pairs of images obtained with different acquisition geometries were randomized and scored by 7 trained readers. The total scores for all images and readings for each acquisition geometry were compared as were the CNRs. In general, readers preferred images acquired with wide angle as opposed to narrow angle geometries. The mean percent preferred was highly correlated with tomosynthesis angle (R=0.91). The highest scoring geometries were 60d21p (95%), 64d17p (80%), and 48d17p (72%); the lowest scoring were 16d17p (4%), 24d9p (17%) and 24d13p (33%). The measured CNRs for the various acquisitions showed much overlap but were overall highest for wide-angle acquisitions. Finally, the mean reader scores were well correlated with the mean CNRs (R=0.83). PMID:25211509

  1. Fast volume reconstruction in positron emission tomography: Implementation of four algorithms on a high-performance scalable parallel platform

    International Nuclear Information System (INIS)

    Egger, M.L.; Scheurer, A.H.; Joseph, C.

    1996-01-01

    The issue of long reconstruction times in PET has been addressed from several points of view, resulting in an affordable dedicated system capable of handling routine 3D reconstruction in a few minutes per frame: on the hardware side using fast processors and a parallel architecture, and on the software side, using efficient implementations of computationally less intensive algorithms. Execution times obtained for the PRT-1 data set on a parallel system of five hybrid nodes, each combining an Alpha processor for computation and a transputer for communication, are the following (256 sinograms of 96 views by 128 radial samples): Ramp algorithm 56 s, Favor 81 s and reprojection algorithm of Kinahan and Rogers 187 s. The implementation of fast rebinning algorithms has shown our hardware platform to become communications-limited; they execute faster on a conventional single-processor Alpha workstation: single-slice rebinning 7 s, Fourier rebinning 22 s, 2D filtered backprojection 5 s. The scalability of the system has been demonstrated, and a saturation effect at network sizes above ten nodes has become visible; new T9000-based products lifting most of the constraints on network topology and link throughput are expected to result in improved parallel efficiency and scalability properties

  2. Microfocal X-ray computed tomography post-processing operations for optimizing reconstruction volumes of stented arteries during 3D computational fluid dynamics modeling.

    Science.gov (United States)

    Ladisa, John F; Olson, Lars E; Ropella, Kristina M; Molthen, Robert C; Haworth, Steven T; Kersten, Judy R; Warltier, David C; Pagel, Paul S

    2005-08-01

    Restenosis caused by neointimal hyperplasia (NH) remains an important clinical problem after stent implantation. Restenosis varies with stent geometry, and idealized computational fluid dynamics (CFD) models have indicated that geometric properties of the implanted stent may differentially influence NH. However, 3D studies capturing the in vivo flow domain within stented vessels have not been conducted at a resolution sufficient to detect subtle alterations in vascular geometry caused by the stent and the subsequent temporal development of NH. We present the details and limitations of a series of post-processing operations used in conjunction with microfocal X-ray CT imaging and reconstruction to generate geometrically accurate flow domains within the localized region of a stent several weeks after implantation. Microfocal X-ray CT reconstruction volumes were subjected to an automated program to perform arterial thresholding, spatial orientation, and surface smoothing of stented and unstented rabbit iliac arteries several weeks after antegrade implantation. A transfer function was obtained for the current post-processing methodology containing reconstructed 16 mm stents implanted into rabbit iliac arteries for up to 21 days after implantation and resolved at circumferential and axial resolutions of 32 and 50 microm, respectively. The results indicate that the techniques presented are sufficient to resolve distributions of WSS with 80% accuracy in segments containing 16 surface perturbations over a 16 mm stented region. These methods will be used to test the hypothesis that reductions in normalized wall shear stress (WSS) and increases in the spatial disparity of WSS immediately after stent implantation may spatially correlate with the temporal development of NH within the stented region.

  3. Geometric calibration of a stationary digital breast tomosynthesis system based on distributed carbon nanotube X-ray source arrays.

    Directory of Open Access Journals (Sweden)

    Changhui Jiang

    Full Text Available Stationary digital breast tomosynthesis (sDBT with distributed X-ray sources based on carbon nanotube (CNT field emission cathodes has been recently proposed as an approach that can prevent motion blur produced by traditional DBT systems. In this paper, we simulate a geometric calibration method based on a proposed multi-source CNT X-ray sDBT system. This method is a projection matrix-based approach with seven geometric parameters, all of which can be obtained from only one projection datum of the phantom. To our knowledge, this study reports the first application of this approach in a CNT-based multi-beam X-ray sDBT system. The simulation results showed that the extracted geometric parameters from the calculated projection matrix are extremely close to the input values and that the proposed method is effective and reliable for a square sDBT system. In addition, a traditional cone-beam computed tomography (CT system was also simulated, and the uncalibrated and calibrated geometric parameters were used in image reconstruction based on the filtered back-projection (FBP method. The results indicated that the images reconstructed with calibrated geometric parameters have fewer artifacts and are closer to the reference image. All the simulation tests showed that this geometric calibration method is optimized for sDBT systems but can also be applied to other application-specific CT imaging systems.

  4. Geometric calibration of a stationary digital breast tomosynthesis system based on distributed carbon nanotube X-ray source arrays.

    Science.gov (United States)

    Jiang, Changhui; Zhang, Na; Gao, Juan; Hu, Zhanli

    2017-01-01

    Stationary digital breast tomosynthesis (sDBT) with distributed X-ray sources based on carbon nanotube (CNT) field emission cathodes has been recently proposed as an approach that can prevent motion blur produced by traditional DBT systems. In this paper, we simulate a geometric calibration method based on a proposed multi-source CNT X-ray sDBT system. This method is a projection matrix-based approach with seven geometric parameters, all of which can be obtained from only one projection datum of the phantom. To our knowledge, this study reports the first application of this approach in a CNT-based multi-beam X-ray sDBT system. The simulation results showed that the extracted geometric parameters from the calculated projection matrix are extremely close to the input values and that the proposed method is effective and reliable for a square sDBT system. In addition, a traditional cone-beam computed tomography (CT) system was also simulated, and the uncalibrated and calibrated geometric parameters were used in image reconstruction based on the filtered back-projection (FBP) method. The results indicated that the images reconstructed with calibrated geometric parameters have fewer artifacts and are closer to the reference image. All the simulation tests showed that this geometric calibration method is optimized for sDBT systems but can also be applied to other application-specific CT imaging systems.

  5. Strategies to Increase Cancer Detection: Review of True-Positive and False-Negative Results at Digital Breast Tomosynthesis Screening

    Science.gov (United States)

    Weinstein, Susan P.; McDonald, Elizabeth S.; Conant, Emily F.

    2016-01-01

    Digital breast tomosynthesis (DBT) represents a valuable addition to breast cancer screening by decreasing recall rates while increasing cancer detection rates. The increased accuracy achieved with DBT is due to the quasi–three-dimensional format of the reconstructed images and the ability to “scroll through” breast tissue in the reconstructed images, thereby reducing the effect of tissue superimposition found with conventional planar digital mammography. The margins of both benign and malignant lesions are more conspicuous at DBT, which allows improved lesion characterization, increased reader confidence, and improved screening outcomes. However, even with the improvements in accuracy achieved with DBT, there remain differences in breast cancer conspicuity by mammographic view. Early data suggest that breast cancers may be more conspicuous on craniocaudal (CC) views than on mediolateral oblique (MLO) views. While some very laterally located breast cancers may be visualized on only the MLO view, the increased conspicuity of cancers on the CC view compared with the MLO view suggests that DBT screening should be performed with two-view imaging. Even with the improved conspicuity of lesions at DBT, there may still be false-negative studies. Subtle lesions seen on only one view may be discounted, and dense and/or complex tissue patterns may make some cancers occult or extremely difficult to detect. Therefore, radiologists should be cognizant of both perceptual and cognitive errors to avoid potential pitfalls in lesion detection and characterization. ©RSNA, 2016 Online supplemental material is available for this article. PMID:27715711

  6. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis.

    Science.gov (United States)

    Asplund, Sara A; Johnsson, Åse A; Vikgren, Jenny; Svalkvist, Angelica; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A; Månsson, Lars Gunnar; Båth, Magnus

    2014-07-01

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70% of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100% dose levels, respectively. The differences in FOM between the 12% dose level and the 32, 70, and 100% dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32%. • A substantial radiation dose reduction in chest tomosynthesis may be possible. • Pulmonary nodule detectability remained unchanged at 32% of the effective dose. • Tomosynthesis might be performed at the dose of a lateral chest radiograph.

  7. Comparative effectiveness of combined digital mammography and tomosynthesis screening for women with dense breasts.

    Science.gov (United States)

    Lee, Christoph I; Cevik, Mucahit; Alagoz, Oguzhan; Sprague, Brian L; Tosteson, Anna N A; Miglioretti, Diana L; Kerlikowske, Karla; Stout, Natasha K; Jarvik, Jeffrey G; Ramsey, Scott D; Lehman, Constance D

    2015-03-01

    To evaluate the effectiveness of combined biennial digital mammography and tomosynthesis screening, compared with biennial digital mammography screening alone, among women with dense breasts. An established, discrete-event breast cancer simulation model was used to estimate the comparative clinical effectiveness and cost-effectiveness of biennial screening with both digital mammography and tomosynthesis versus digital mammography alone among U.S. women aged 50-74 years with dense breasts from a federal payer perspective and a lifetime horizon. Input values were estimated for test performance, costs, and health state utilities from the National Cancer Institute Breast Cancer Surveillance Consortium, Medicare reimbursement rates, and medical literature. Sensitivity analyses were performed to determine the implications of varying key model parameters, including combined screening sensitivity and specificity, transient utility decrement of diagnostic work-up, and additional cost of tomosynthesis. For the base-case analysis, the incremental cost per quality-adjusted life year gained by adding tomosynthesis to digital mammography screening was $53 893. An additional 0.5 deaths were averted and 405 false-positive findings avoided per 1000 women after 12 rounds of screening. Combined screening remained cost-effective (less than $100 000 per quality-adjusted life year gained) over a wide range of incremental improvements in test performance. Overall, cost-effectiveness was most sensitive to the additional cost of tomosynthesis. Biennial combined digital mammography and tomosynthesis screening for U.S. women aged 50-74 years with dense breasts is likely to be cost-effective if priced appropriately (up to $226 for combined examinations vs $139 for digital mammography alone) and if reported interpretive performance metrics of improved specificity with tomosynthesis are met in routine practice.

  8. Three-dimensional reconstructions of the orbital floor by volume-rendering of multidetector-row CT data

    International Nuclear Information System (INIS)

    Yoshikawa, Tetsuya; Miyajima, Akira; Fujita, Yuko; Yamada, Kazuo

    2011-01-01

    The advent of 3D-CT has made the evaluation of complicated facial fractures much easier than before. However, its use in injuries involving the orbital floor has been limited by the difficulty of visualizing the thin bony structures given artifacts caused by the partial volume effect. Nevertheless, high-technology machines such as multidetector-row CT (MDCT) and new-generation software have improved the quality of 3D imaging, and this paper describes a procedure for obtaining better visualization of the orbital floor using a MDCT scanner. Forty trauma cases were subject to MDCT: 13 with injury to the orbital floor, and 27 without. All scans were performed in the standard manner, at slice thicknesses of 0.5 mm. 3D-CT images were created overlooking the orbital floor including soft tissue to minimize the pseudo-foramen artifacts produced through volume rendering. Bone deficits, fracture lines, and grafted bone were visible in the 3D images, and visualization was supported by the ready creation of stereoscopic images from MDCT volume data. Measurement of the pseudo-foramen revealed approximately half the artifacts to be less than 5 mm in diameter, suggesting practicality of this method without subjecting the patient to undue increases in radiation exposure in the treatment of cases involving injury to the orbital floor. (author)

  9. Accurate joint space quantification in knee osteoarthritis: a digital x-ray tomosynthesis phantom study

    Science.gov (United States)

    Sewell, Tanzania S.; Piacsek, Kelly L.; Heckel, Beth A.; Sabol, John M.

    2011-03-01

    The current imaging standard for diagnosis and monitoring of knee osteoarthritis (OA) is projection radiography. However radiographs may be insensitive to markers of early disease such as osteophytes and joint space narrowing (JSN). Relative to standard radiography, digital X-ray tomosynthesis (DTS) may provide improved visualization of the markers of knee OA without the interference of superimposed anatomy. DTS utilizes a series of low-dose projection images over an arc of +/-20 degrees to reconstruct tomographic images parallel to the detector. We propose that DTS can increase accuracy and precision in JSN quantification. The geometric accuracy of DTS was characterized by quantifying joint space width (JSW) as a function of knee flexion and position using physical and anthropomorphic phantoms. Using a commercially available digital X-ray system, projection and DTS images were acquired for a Lucite rod phantom with known gaps at various source-object-distances, and angles of flexion. Gap width, representative of JSW, was measured using a validated algorithm. Over an object-to-detector-distance range of 5-21cm, a 3.0mm gap width was reproducibly measured in the DTS images, independent of magnification. A simulated 0.50mm (+/-0.13) JSN was quantified accurately (95% CI 0.44-0.56mm) in the DTS images. Angling the rods to represent knee flexion, the minimum gap could be precisely determined from the DTS images and was independent of flexion angle. JSN quantification using DTS was insensitive to distance from patient barrier and flexion angle. Potential exists for the optimization of DTS for accurate radiographic quantification of knee OA independent of patient positioning.

  10. The Diagnostic Reproducibility of Tomosynthesis for the Correlation between Acromiohumeral Distance and Rotator Cuff Size or Type.

    Science.gov (United States)

    Song, Yoonah; Lee, Seunghun; Lee, Bong Gun; Joo, Young Bin; Song, Soon-Young

    2018-01-01

    To correlate the acromiohumeral distance (AHD) using tomosynthesis and rotator cuff (RC) pathology and various anatomical indices and to assess the diagnostic reproducibility of tomosynthesis for the evaluation of subacromial impingement. A retrospective review of 63 patients with clinically suspected subacromial impingement was conducted. Two musculoskeletal radiologists independently measured the following quantitative data: the AHD on plain radiographs and the AHD at three compartments (anterior, middle, and posterior) using tomosynthesis, computed tomography (CT) arthrography, or magnetic resonance (MR) arthrography. To investigate the association between the AHD and RC pathology and various anatomical indices, we reviewed the arthroscopic operation record as the referenced standard. The size of rotator cuff tear (RCT) in full-thickness tears displayed a significant inverse correlation with the middle and the posterior tomosynthetic AHDs ( p tomosynthesis, and CT or MR arthrography ( p tomosynthesis is reproducible compared with other modalities.

  11. Initial Experience of Tomosynthesis-Guided Vacuum-Assisted Biopsies of Tomosynthesis-Detected (2D Mammography and Ultrasound Occult) Architectural Distortions.

    Science.gov (United States)

    Patel, Bhavika K; Covington, Matthew; Pizzitola, Victor J; Lorans, Roxanne; Giurescu, Marina; Eversman, William; Lewin, John

    2018-03-23

    As experience and aptitude in digital breast tomosynthesis (DBT) have increased, radiologists are seeing more areas of architectural distortion (AD) on DBT images compared with standard 2D mammograms. The purpose of this study is to report our experience using tomosynthesis-guided vacuum-assisted biopsies (VABs) for ADs that were occult at 2D mammography and ultrasound and to analyze the positive predictive value for malignancy. We performed a retrospective review of 34 DBT-detected ADs that were occult at mammography and ultrasound. We found a positive predictive value of 26% (nine malignancies in 34 lesions). Eight of the malignancies were invasive and one was ductal carcinoma in situ. The invasive cancers were grade 1 (4/8; 50%), grade 2 (2/8; 25%), or grade 3 (1/8; 13%); information about one invasive cancer was not available. The mean size of the invasive cancers at pathologic examination was 7.5 mm (range, 6-30 mm). Tomosynthesis-guided VAB is a feasible method to sample ADs that are occult at 2D mammography and ultrasound. Tomosynthesis-guided VAB is a minimally invasive method that detected a significant number of carcinomas, most of which were grade 1 cancers. Further studies are needed.

  12. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, Sara A.; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Medical Physics and Biomedical Engineering, Gothenburg (Sweden); Johnsson, Aase A.; Vikgren, Jenny; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A. [University of Gothenburg, Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Radiology, Gothenburg (Sweden)

    2014-07-15

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70 % of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100 % dose levels, respectively. The differences in FOM between the 12 % dose level and the 32, 70, and 100 % dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32 %. (orig.)

  13. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis

    International Nuclear Information System (INIS)

    Asplund, Sara A.; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus; Johnsson, Aase A.; Vikgren, Jenny; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A.

    2014-01-01

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70 % of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100 % dose levels, respectively. The differences in FOM between the 12 % dose level and the 32, 70, and 100 % dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32 %. (orig.)

  14. Developmental potential of bovine hand-made clone embryos reconstructed by aggregation or fusion with distinct cytoplasmic volumes.

    Science.gov (United States)

    Ribeiro, Eduardo de Souza; Gerger, Renato Pereira da Costa; Ohlweiler, Lain Uriel; Ortigari, Ivens; Mezzalira, Joana Cláudia; Forell, Fabiana; Bertolini, Luciana Relly; Rodrigues, José Luiz; Ambrósio, Carlos Eduardo; Miglino, Maria Angélica; Mezzalira, Alceu; Bertolini, Marcelo

    2009-09-01

    Animal cloning has been associated with developmental abnormalities, with the level of heteroplasmy caused by the procedure being one of its potential limiting factors. The aim of this study was to determine the effect of the fusion of hemicytoplasts or aggregation of hemiembryos, varying the final cytoplasmic volume, on development and cell density of embryos produced by hand-made cloning (HMC), parthenogenesis or by in vitro fertilization (IVF). One or two enucleated hemicytoplasts were paired and fused with one skin somatic cell. Activated clone and zona-free parthenote embryos and hemiembryos were in vitro cultured in the well-of-the-well (WOW) system, being allocated to one of six experimental groups, on a per WOW basis: single clone or parthenote hemiembryos (1 x 50%); aggregation of two (2 x 50%), three (3 x 50%), or four (4 x 50%) clone or parthenote hemiembryos; single clone or parthenote embryos (1 x 100%); or aggregation of two clone or parthenote embryos (2 x 100%). Control zona-intact parthenote or IVF embryos were in vitro cultured in four-well dishes. Results indicated that the increase in the number of aggregated structures within each WOW was followed by a linear increase in cleavage, blastocyst rate, and cell density. The increase in cytoplasmic volume, either by fusion or by aggregation, had a positive effect on embryo development, supporting the establishment of pregnancies and the birth of a viable clone calf after transfer to recipients. However, embryo aggregation did not improve development on a hemicytoplast basis, except for the aggregation of two clone embryos.

  15. Anatomy-based reconstruction of FDG-PET images with implicit partial volume correction improves detection of hypometabolic regions in patients with epilepsy due to focal cortical dysplasia diagnosed on MRI

    International Nuclear Information System (INIS)

    Goffin, Karolien; Baete, Kristof; Nuyts, Johan; Laere, Koen van; Van Paesschen, Wim; Dupont, Patrick; Palmini, Andre

    2010-01-01

    Detection of hypometabolic areas on interictal FDG-PET images for assessing the epileptogenic zone is hampered by partial volume effects. We evaluated the performance of an anatomy-based maximum a-posteriori (A-MAP) reconstruction algorithm which combined noise suppression with correction for the partial volume effect in the detection of hypometabolic areas in patients with focal cortical dysplasia (FCD). FDG-PET images from 14 patients with refractory partial epilepsy were reconstructed using A-MAP and maximum likelihood (ML) reconstruction. In all patients, presurgical evaluation showed that FCD represented the epileptic lesion. Correspondence between the FCD location and regional metabolism on a predefined atlas was evaluated. An asymmetry index of FCD to normal cortex was calculated. Hypometabolism at the FCD location was detected in 9/14 patients (64%) using ML and in 10/14 patients (71%) using A-MAP reconstruction. Hypometabolic areas outside the FCD location were detected in 12/14 patients (86%) using ML and in 11/14 patients (79%) using A-MAP reconstruction. The asymmetry index was higher using A-MAP reconstruction (0.61, ML 0.49, p=0.03). The A-MAP reconstruction algorithm improved visual detection of epileptic FCD on brain FDG-PET images compared to ML reconstruction, due to higher contrast and better delineation of the lesion. This improvement failed to reach significance in our small sample. Hypometabolism outside the lesion is often present, consistent with the observation that the functional deficit zone tends to be larger than the epileptogenic zone. (orig.)

  16. Anatomy-based reconstruction of FDG-PET images with implicit partial volume correction improves detection of hypometabolic regions in patients with epilepsy due to focal cortical dysplasia diagnosed on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Goffin, Karolien; Baete, Kristof; Nuyts, Johan; Laere, Koen van [University Hospital Leuven, Division of Nuclear Medicine and Medical Imaging Center, Leuven (Belgium); Van Paesschen, Wim [University Hospital Leuven, Neurology Department, Leuven (Belgium); Dupont, Patrick [University Hospital Leuven, Division of Nuclear Medicine and Medical Imaging Center, Leuven (Belgium); University Hospital Leuven, Laboratory of Cognitive Neurology, Leuven (Belgium); Palmini, Andre [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre Epilepsy Surgery Program, Hospital Sao Lucas, Porto Alegre (Brazil)

    2010-06-15

    Detection of hypometabolic areas on interictal FDG-PET images for assessing the epileptogenic zone is hampered by partial volume effects. We evaluated the performance of an anatomy-based maximum a-posteriori (A-MAP) reconstruction algorithm which combined noise suppression with correction for the partial volume effect in the detection of hypometabolic areas in patients with focal cortical dysplasia (FCD). FDG-PET images from 14 patients with refractory partial epilepsy were reconstructed using A-MAP and maximum likelihood (ML) reconstruction. In all patients, presurgical evaluation showed that FCD represented the epileptic lesion. Correspondence between the FCD location and regional metabolism on a predefined atlas was evaluated. An asymmetry index of FCD to normal cortex was calculated. Hypometabolism at the FCD location was detected in 9/14 patients (64%) using ML and in 10/14 patients (71%) using A-MAP reconstruction. Hypometabolic areas outside the FCD location were detected in 12/14 patients (86%) using ML and in 11/14 patients (79%) using A-MAP reconstruction. The asymmetry index was higher using A-MAP reconstruction (0.61, ML 0.49, p=0.03). The A-MAP reconstruction algorithm improved visual detection of epileptic FCD on brain FDG-PET images compared to ML reconstruction, due to higher contrast and better delineation of the lesion. This improvement failed to reach significance in our small sample. Hypometabolism outside the lesion is often present, consistent with the observation that the functional deficit zone tends to be larger than the epileptogenic zone. (orig.)

  17. Influence of the in-plane artefact in chest tomosynthesis on pulmonary nodule size measurements

    International Nuclear Information System (INIS)

    Soederman, Christina; Allansdotter Johnsson, Aase; Vikgren, Jenny; Rossi Norrlund, Rauni; Molnar, David; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus

    2016-01-01

    The aim of the present study was to investigate how the in-plane artefact present in the scan direction around structures in tomosynthesis images should be managed when measuring the size of nodules in chest tomosynthesis images in order to achieve acceptable measurement accuracy. Data from measurements, performed by radiologists, of the longest diameter of artificial nodules inserted in chest tomosynthesis images were used. The association between the measurement error and the direction of the longest nodule diameter, relative to the scan direction, was evaluated using the Kendall rank correlation coefficient. All of the radiologists had chosen to not include the artefact in the measurements. Significant association between measurement error and the direction of the longest diameter was found for nodules larger than 12 mm, which indicates that, for these nodules, there is a risk of underestimating the nodule size if the in-plane artefact is omitted from manual diameter measurements. (authors)

  18. Technical innovation: digital tomosynthesis of the hip following intra-articular administration of contrast

    International Nuclear Information System (INIS)

    Gazaille, Roland E.; Flynn, Michael J.; Page, Walter; Finley, Sonia; Holsbeeck, Marnix van

    2011-01-01

    To demonstrate the clinical use of digital tomosynthesis in the depiction of labral and chondral pathology in the setting of post-operative CAM-type impingement of the hip following intra-articular administration of dilute iodinated contrast. We present images from a 46 year-old African American female with suspected CAM-type femoroacetabular impingement (FAI) following percutaneous pinning of the right hip for slipped capital femoral epiphysis (SCFE). A partial tear of the labrum and clinically significant acetabular chondral abnormalities were demonstrated with the use of digital tomosynthesis with superb anatomic detail. Digital tomosynthesis can be of great clinical utility and can depict pathology in superb anatomic detail, particularly in situations in which MRI is not available as well as under circumstances in which artifact due to orthopedic hardware is of concern as shown in this case. (orig.)

  19. Refraction-enhanced tomosynthesis of a finger joint by X-ray dark-field imaging

    International Nuclear Information System (INIS)

    Shimao, Daisuke; Kunisada, Toshiyuki; Sugiyama, Hiroshi; Ando, Masami

    2007-01-01

    A finger joint tomogram based on X-ray dark-field imaging (XDFI) was demonstrated using the simplest shift-and-add tomosynthesis algorithm. Raw XDFI image data for tomosynthesis were acquired in a total of 11 views through 10deg, in increments of 1deg, by rotating the object and detector synchronously. Incident X-ray energy was monochromatic 36.0 keV, derived from synchrotron radiation. The total dosage in acquiring 11 views for raw image data was equivalent to that of one XDFI image. A clear tomogram was obtained of a finger joint (including articular cartilage, which is invisible by conventional tomosynthesis) without an increase in X-ray dosage. (author)

  20. Four dimensional digital tomosynthesis using on-board imager for the verification of respiratory motion.

    Directory of Open Access Journals (Sweden)

    Justin C Park

    Full Text Available PURPOSE: To evaluate respiratory motion of a patient by generating four-dimensional digital tomosynthesis (4D DTS, extracting respiratory signal from patients' on-board projection data, and ensuring the feasibility of 4D DTS as a localization tool for the targets which have respiratory movement. METHODS AND MATERIALS: Four patients with lung and liver cancer were included to verify the feasibility of 4D-DTS with an on-board imager. CBCT acquisition (650-670 projections was used to reconstruct 4D DTS images and the breath signal of the patients was generated by extracting the motion of diaphragm during data acquisition. Based on the extracted signal, the projection data was divided into four phases: peak-exhale phase, mid-inhale phase, peak-inhale phase, and mid-exhale phase. The binned projection data was then used to generate 4D DTS, where the total scan angle was assigned as ±22.5° from rotation center, centered on 0° and 180° for coronal "half-fan" 4D DTS, and 90° and 270° for sagittal "half-fan" 4D DTS. The result was then compared with 4D CBCT which we have also generated with the same phase distribution. RESULTS: The motion of the diaphragm was evident from the 4D DTS results for peak-exhale, mid-inhale, peak-inhale and mid-exhale phase assignment which was absent in 3D DTS. Compared to the result of 4D CBCT, the view aliasing effect due to arbitrary angle reconstruction was less severe. In addition, the severity of metal artifacts, the image distortion due to presence of metal, was less than that of the 4D CBCT results. CONCLUSION: We have implemented on-board 4D DTS on patients data to visualize the movement of anatomy due to respiratory motion. The results indicate that 4D-DTS could be a promising alternative to 4D CBCT for acquiring the respiratory motion of internal organs just prior to radiotherapy treatment.

  1. Added value of one-view breast tomosynthesis combined with digital mammography according to reader experience.

    Science.gov (United States)

    Thomassin-Naggara, Isabelle; Perrot, Nicolas; Dechoux, Sophie; Ribeiro, Carine; Chopier, Jocelyne; de Bazelaire, Cedric

    2015-02-01

    To retrospectively evaluate the added value of one-view breast tomosynthesis in adjunct with mammography to characterize breast lesions. Our institutional ethics committees approved the study and granted a waiver of informed consent. One hundred fifty-five women (mean age, 51.3 years, range: 24-92 years) who systematically underwent mammography and breast tomosynthesis with subsequent percutaneous biopsy were analyzed. Four radiologists (two seniors, R1 and R2, and two juniors, R3 and R4 with 30, 10, 3 and 1 years of experience in breast imaging, respectively) independently reviewed exams in two steps: mammography alone and tomosynthesis in adjunct with mammography. The lesions in the cohort included 39.3% (61/155) cancers, 2.5% (4/155) high-risk lesions and 58.1% (90/155) benign lesions. A receiver operating characteristic (ROC) curve analysis was performed to compare the results of the two readings. There was almost perfect agreement irrespective of reader experience for the reading of the mammography in adjunct with tomosynthesis, whereas agreement was poor between junior and senior readers for the reading of mammography alone. Area under the ROC (Az) values for the tomosynthesis in adjunct with mammography were significantly better than Az values for mammography alone for all readers except the most experienced, for whom only a tendency was noted. The proportion of cancers undiagnosed by mammography alone that were well diagnosed by tomosynthesis in adjunct with mammography was 6.5% (4/61), 13.1% (8/61), 27.8% (17/61) and 26.2% (16/61) for Readers 1, 2, 3 and 4, respectively. The proportion of false positive cases induced by the addition of breast tomosynthesis to mammography was 2.1% (2/94), 2.1% (2/94), 9.5% (9/94) and 12.7% (12/94) for Readers 1, 2, 3 and 4, respectively. Adding breast tomosynthesis to mammography improved sensitivity and negative predictive value for all readers except for the most experienced one, in whom only a tendency for improvement

  2. A parameterization method and application in breast tomosynthesis dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinhua; Zhang, Da; Liu, Bob [Division of Diagnostic Imaging Physics and Webster Center for Advanced Research and Education in Radiation, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2013-09-15

    Purpose: To present a parameterization method based on singular value decomposition (SVD), and to provide analytical parameterization of the mean glandular dose (MGD) conversion factors from eight references for evaluating breast tomosynthesis dose in the Mammography Quality Standards Act (MQSA) protocol and in the UK, European, and IAEA dosimetry protocols.Methods: MGD conversion factor is usually listed in lookup tables for the factors such as beam quality, breast thickness, breast glandularity, and projection angle. The authors analyzed multiple sets of MGD conversion factors from the Hologic Selenia Dimensions quality control manual and seven previous papers. Each data set was parameterized using a one- to three-dimensional polynomial function of 2–16 terms. Variable substitution was used to improve accuracy. A least-squares fit was conducted using the SVD.Results: The differences between the originally tabulated MGD conversion factors and the results computed using the parameterization algorithms were (a) 0.08%–0.18% on average and 1.31% maximum for the Selenia Dimensions quality control manual, (b) 0.09%–0.66% on average and 2.97% maximum for the published data by Dance et al. [Phys. Med. Biol. 35, 1211–1219 (1990); ibid. 45, 3225–3240 (2000); ibid. 54, 4361–4372 (2009); ibid. 56, 453–471 (2011)], (c) 0.74%–0.99% on average and 3.94% maximum for the published data by Sechopoulos et al. [Med. Phys. 34, 221–232 (2007); J. Appl. Clin. Med. Phys. 9, 161–171 (2008)], and (d) 0.66%–1.33% on average and 2.72% maximum for the published data by Feng and Sechopoulos [Radiology 263, 35–42 (2012)], excluding one sample in (d) that does not follow the trends in the published data table.Conclusions: A flexible parameterization method is presented in this paper, and was applied to breast tomosynthesis dosimetry. The resultant data offer easy and accurate computations of MGD conversion factors for evaluating mean glandular breast dose in the MQSA

  3. Review and management of breast lesions detected with breast tomosynthesis but not visible on mammography and ultrasonography.

    Science.gov (United States)

    Taskin, Fusun; Durum, Yasemin; Soyder, Aykut; Unsal, Alparslan

    2017-12-01

    Background Breast tomosynthesis is more sensitive than mammography and can detect lesions that are not always visible with conventional methods such as digital mammography (MG) and ultrasonography (US). No standardized approach is available for the management of lesions that are detectable with tomosynthesis but are not visible on MG or US. Purpose To review suspicious breast lesions detected with tomosynthesis but not visible on two-dimensional (2D) MG or US and to determine the management options for these lesions. Material and Methods Ethical committee approval was obtained. The radiological records, biopsy or surgery results, and follow-up findings of 107 patients who had a tomosynthesis-positive but MG- or US-negative breast lesion between 2011 and 2016 were retrospectively evaluated. Results Of 107 lesions visible only with tomosynthesis, 74% were architectural distortions and 26% were asymmetrical opacities. All patients underwent magnetic resonance imaging (MRI) for further evaluation. Among the 48 (45%) MRI-negative lesions, none had a suspicious alteration during the follow-up period. Among the MRI-positive lesions, 28% of the 50 architectural distortions and 11% of the nine asymmetrical opacities were malignant. Conclusion Given the inherent high false-positive rate of breast tomosynthesis, breast MRI prior to biopsy may reduce the number of unnecessary biopsies for suspicious breast lesions that are tomosynthesis-positive only.

  4. SU-D-BRF-04: Digital Tomosynthesis for Improved Daily Setup in Treatment of Liver Lesions

    International Nuclear Information System (INIS)

    Armstrong, H; Jones, B; Miften, M

    2014-01-01

    Purpose: Daily localization of liver lesions with cone-beam CT (CBCT) is difficult due to poor image quality caused by scatter, respiratory motion, and the lack of radiographic contrast between the liver parenchyma and the lesion(s). Digital tomosynthesis (DTS) is investigated as a modality to improve liver visualization and lesion/parenchyma contrast for daily setup. Methods: An in-house tool was developed to generate DTS images using a point-by-point filtered back-projection method from on-board CBCT projection data. DTS image planes are generated in a user defined orientation to visualize the anatomy at various depths. Reference DTS images are obtained from forward projection of the planning CT dataset at each projection angle. The CBCT DTS image set can then be registered to the reference DTS image set as a means for localization. Contour data from the planning CT's associate RT Structure file and forward projected similarly to the planning CT data. DTS images are created for each contoured structure, which can then be overlaid onto the DTS images for organ volume visualization. Results: High resolution DTS images generated from CBCT projections show fine anatomical detail, including small blood vessels, within the patient. However, the reference DTS images generated from forward projection of the planning CT lacks this level of detail due to the low resolution of the CT voxels as compared to the pixel size in the projection images; typically 1mm-by-1mm-by-3mm (lat, vrt, lng) for the planning CT vs. 0.4mm-by-0.4mm for CBCT projections. Overlaying of the contours onto the DTS image allows for visualization of structures of interest. Conclusion: The ability to generate DTS images over a limited range of projection angles allows for reduction in the amount of respiratory motion within each acquisition. DTS may provide improved visualization of structures and lesions as compared to CBCT for highly mobile tumors

  5. Digital Tomosynthesis for Respiratory Gated Liver Treatment: Clinical Feasibility for Daily Image Guidance

    International Nuclear Information System (INIS)

    Wu, Q. Jackie; Meyer, Jeffrey; Fuller, Jessica; Godfrey, Devon; Wang Zhiheng; Zhang Junan; Yin Fangfang

    2011-01-01

    Purpose: Breath-hold (BH) treatment minimizes internal target volumes (ITV) when treating sites prone to motion. Digital tomosynthesis (DTS) imaging has advantages over cone-beam CT (CBCT) for BH imaging: BH-DTS scan can be completed during a single breath-hold, whereas BH-CBCT is usually acquired by parsing the gantry rotation into multiple BH segments. This study evaluates the localization accuracy of DTS for BH treatment of liver tumors. Methods: Both planning CT and on-board DTS/CBCT images were acquired under BH, using the planning CT BH window as reference. Onboard imaging data sets included two independent DTS orientations (coronal and sagittal), and CBCT images. Soft tissue target positioning was measured by each imaging modality and translated into couch shifts. Performance of the two DTS orientations was evaluated by comparing target positioning with the CBCT benchmark, determined by two observers. Results: Image data sets were collected from thirty-eight treatment fractions (14 patients). Mean differences between the two DTS methods and the CBCT method were <1 mm in all directions (except the lateral direction with sagittal-DTS: 1.2 mm); the standard deviation was in the range of 2.1-3.5 mm for all techniques. The Pearson correlation showed good interobserver agreement for the coronal-DTS (0.72-0.78). The interobserver agreement for the sagittal-DTS was good for the in-plane directions (0.70-0.82), but poor in the out-of-plane direction (lateral, 0.26). Conclusions: BH-DTS may be a simpler alternative to BH-CBCT for onboard soft tissue localization of the liver, although the precision of DTS localization appears to be somewhat lower because of the presence of subtle out-of-plane blur.

  6. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program.

    Science.gov (United States)

    Skaane, Per; Bandos, Andriy I; Gullien, Randi; Eben, Ellen B; Ekseth, Ulrika; Haakenaasen, Unni; Izadi, Mina; Jebsen, Ingvild N; Jahr, Gunnar; Krager, Mona; Niklason, Loren T; Hofvind, Solveig; Gur, David

    2013-04-01

    To assess cancer detection rates, false-positive rates before arbitration, positive predictive values for women recalled after arbitration, and the type of cancers detected with use of digital mammography alone and combined with tomosynthesis in a large prospective screening trial. A prospective, reader- and modality-balanced screening study of participants undergoing combined mammography plus tomosynthesis, the results of which were read independently by four different radiologists, is under way. The study was approved by a regional ethics committee, and all participants provided written informed consent. The authors performed a preplanned interim analysis of results from 12,631 examinations interpreted by using mammography alone and mammography plus tomosynthesis from November 22, 2010, to December 31, 2011. Analyses were based on marginal log-linear models for binary data, accounting for correlated interpretations and adjusting for reader-specific performance levels by using a two-sided significance level of .0294. Detection rates, including those for invasive and in situ cancers, were 6.1 per 1000 examinations for mammography alone and 8.0 per 1000 examinations for mammography plus tomosynthesis (27% increase, adjusted for reader; P = .001). False-positive rates before arbitration were 61.1 per 1000 examinations with mammography alone and 53.1 per 1000 examinations with mammography plus tomosynthesis (15% decrease, adjusted for reader; P tomosynthesis; P = .72). Twenty-five additional invasive cancers were detected with mammography plus tomosynthesis (40% increase, adjusted for reader; P tomosynthesis (P tomosynthesis in a screening environment resulted in a significantly higher cancer detection rate and enabled the detection of more invasive cancers. Clinical trial registration no. NCT01248546. RSNA, 2013

  7. Low-tube-voltage (80 kVp) CT aortography using 320-row volume CT with adaptive iterative reconstruction: lower contrast medium and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Ming; Chu, Sung-Yu; Hsu, Ming-Yi [Chang Gung University, Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital Linkou, College of Medicine, Taoyuan (China); Liao, Ying-Lan [National Tsing Hua University, Department of Biomedical Engineering and Environmental Sciences, Hsinchu (China); Tsai, Hui-Yu [Chang Gung University, Department of Medical Imaging and Radiological Sciences, College of Medicine, Taoyuan (China); Chang Gung University, Healthy Aging Research Center, Taoyuan (China); Chang Gung University, Department of Medical Imaging and Radiological Sciences, Taoyuan (China)

    2014-02-15

    To evaluate CT aortography at reduced tube voltage and contrast medium dose while maintaining image quality through iterative reconstruction (IR). The Institutional Review Board approved a prospective study of 48 patients who underwent follow-up CT aortography. We performed intra-individual comparisons of arterial phase images using 120 kVp (standard tube voltage) and 80 kVp (low tube voltage). Low-tube-voltage imaging was performed on a 320-detector CT with IR following injection of 40 ml of contrast medium. We assessed aortic attenuation, aortic attenuation gradient, image noise, contrast-to-noise ratio (CNR), volume CT dose index (CTDI{sub vol}), and figure of merit (FOM) of image noise and CNR. Two readers assessed images for diagnostic quality, image noise, and artefacts. The low-tube-voltage protocol showed 23-31 % higher mean aortic attenuation and image noise (both P < 0.01) than the standard-tube-voltage protocol, but no significant difference in the CNR and aortic attenuation gradients. The low-tube-voltage protocol showed a 48 % reduction in CTDI{sub vol} and an 80 % increase in FOM of CNR. Subjective diagnostic quality was similar for both protocols, but low-tube-voltage images showed greater image noise (P = 0.01). Application of IR to an 80-kVp CT aortography protocol allows radiation dose and contrast medium reduction without affecting image quality. (orig.)

  8. Digital tomosynthesis with metal artifact reduction for assessing cementless hip arthroplasty: a diagnostic cohort study of 48 patients

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hao; Yang, Dejin; Guo, Shengjie; Tang, Jing; Liu, Jian; Wang, Dacheng; Zhou, Yixin [Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Department of Orthopaedic Surgery, Beijing (China)

    2016-11-15

    For postoperative imaging assessment of cementless hip arthroplasty, radiography and computed tomography (CT) were restricted by overlapping structures and metal artifacts, respectively. A new tomosynthesis with metal artifact reduction (TMAR) is introduced by using metal extraction and ordered subset-expectation maximization (OS-EM) reconstruction. This study investigated the effectiveness of TMAR in assessing fixation stability of cementless hip arthroplasty components. We prospectively included 48 consecutive patients scheduled for revision hip arthroplasty in our hospital, with 41 femoral and 35 acetabular cementless components available for evaluation. All patients took the three examinations of radiography, CT, and TMAR preoperatively, with intraoperative mechanical tests, and absence or presence of osteointegration on retrieved prosthesis as reference standards. Three senior surgeons and four junior surgeons evaluated these images independently with uniform criteria. For TMAR, 82 % diagnoses on the femoral side and 84 % diagnoses on the acetabular side were accurate. The corresponding values were 44 and 67 % for radiography, and 39 % and 74 % for CT. Senior surgeons had significantly higher accuracy than junior surgeons by radiography (p < 0.05), but not by TMAR or CT. By minimizing metal artifacts in the bone-implant interface and clearly depicting peri-implant trabecular structures, the TMAR technique improved the diagnostic accuracy of assessing fixation stability of cementless hip arthroplasty, and shortened the learning curve of less experienced surgeons. Level II, diagnostic cohort study. (orig.)

  9. An experimental study of the scatter correction by using a beam-stop-array algorithm with digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ye-Seul; Park, Hye-Suk; Kim, Hee-Joung [Yonsei University, Wonju (Korea, Republic of); Choi, Young-Wook; Choi, Jae-Gu [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of)

    2014-12-15

    Digital breast tomosynthesis (DBT) is a technique that was developed to overcome the limitations of conventional digital mammography by reconstructing slices through the breast from projections acquired at different angles. In developing and optimizing DBT, The x-ray scatter reduction technique remains a significant challenge due to projection geometry and radiation dose limitations. The most common approach to scatter reduction is a beam-stop-array (BSA) algorithm; however, this method raises concerns regarding the additional exposure involved in acquiring the scatter distribution. The compressed breast is roughly symmetric, and the scatter profiles from projections acquired at axially opposite angles are similar to mirror images. The purpose of this study was to apply the BSA algorithm with only two scans with a beam stop array, which estimates the scatter distribution with minimum additional exposure. The results of the scatter correction with angular interpolation were comparable to those of the scatter correction with all scatter distributions at each angle. The exposure increase was less than 13%. This study demonstrated the influence of the scatter correction obtained by using the BSA algorithm with minimum exposure, which indicates its potential for practical applications.

  10. Performance of breast cancer screening using digital breast tomosynthesis: results from the prospective population-based Oslo Tomosynthesis Screening Trial.

    Science.gov (United States)

    Skaane, Per; Sebuødegård, Sofie; Bandos, Andriy I; Gur, David; Østerås, Bjørn Helge; Gullien, Randi; Hofvind, Solveig

    2018-02-10

    Digital breast tomosynthesis (DBT) has the potential to overcome limitations of conventional mammography. This study investigated the effects of addition of DBT on interval and detected cancers in population-based screening. Oslo Tomosynthesis Screening Trial (OTST) was a prospective, independent double-reading trial inviting women 50-69 years biennially, comparing full-field digital mammography (FFDM) plus DBT with FFDM alone. Performance indicators and characteristics of screen-detected and interval cancers were compared with two previous FFDM rounds. 24,301 consenting women underwent FFDM + DBT screening over a 2-year period. Results were compared with 59,877 FFDM examinations during prior rounds. Addition of DBT resulted in a non-significant increase in sensitivity (76.2%, 378/496, vs. 80.8%, 227/281, p = 0.151) and a significant increase in specificity (96.4%, 57229/59381 vs. 97.5%, 23427/24020, p < .001). Number of recalls per screen-detected cancer decreased from 6.7 (2530/378) to 3.6 (820/227) with DBT (p < .001). Cancer detection per 1000 women screened increased (6.3, 378/59877, vs. 9.3, 227/24301, p < .001). Interval cancer rate per 1000 screens for FFDM + DBT remained similar to previous FFDM rounds (2.1, 51/24301 vs. 2.0, 118/59877, p = 0.734). Interval cancers post-DBT were comparable to prior rounds but significantly different in size, grade, and node status from cancers detected only using DBT. 39.6% (19/48) of interval cancers had positive nodes compared with only 3.9% (2/51) of additional DBT-only-detected cancers. DBT-supplemented screening resulted in significant increases in screen-detected cancers and specificity. However, no significant change was observed in the rate, size, node status, or grade of interval cancers. ClinicalTrials.gov: NCT01248546.

  11. The Adjunctive Digital Breast Tomosynthesis in Diagnosis of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Tsung-Lung Yang

    2013-01-01

    Full Text Available Purpose. To compare the diagnostic performance of digital breast tomosynthesis (DBT and digital mammography (DM for breast cancers. Materials and Methods. Fifty-seven female patients with pathologically proved breast cancer were enrolled. Three readers gave a subjective assessment superiority of the index lesions (mass, focal asymmetry, architectural distortion, or calcifications and a forced BIRADS score, based on DM reading alone and with additional DBT information. The relevance between BIRADS category and index lesions of breast cancer was compared by chi-square test. Result. A total of 59 breast cancers were reviewed, including 17 (28.8% mass lesions, 12 (20.3% focal asymmetry/density, 6 (10.2% architecture distortion, 23 (39.0% calcifications, and 1 (1.7% intracystic tumor. Combo DBT was perceived to be more informative in 58.8% mass lesions, 83.3% density, 94.4% architecture distortion, and only 11.6% calcifications. As to the forced BIRADS score, 84.4% BIRADS 0 on DM was upgraded to BIRADS 4 or 5 on DBT, whereas only 27.3% BIRADS 4A on DM was upgraded on DBT, as BIRADS 4A lesions were mostly calcifications. A significant P value (<0.001 between the BIRADS category and index lesions was noted. Conclusion. Adjunctive DBT gives exquisite information for mass lesion, focal asymmetry, and/or architecture distortion to improve the diagnostic performance in mammography.

  12. Investigation on 3D dose distribution in digital breast tomosynthesis

    Science.gov (United States)

    Masi, M.

    2017-03-01

    Monte Carlo calculations for dosimetry in digital breast tomosynthesis (DBT) require experimental validations. We measured the 3D dose distribution in a breast phantom in a DBT scan, using XR-QA2 radiochromic films. We positioned film pieces at the entrance surface, at the bottom surface and at four depths between adjacent slabs in the 5-slabs, 5-cm-thick phantom simulating a compressed breast with 50% glandular fraction. We irradiated the phantom at 40kV (half value layer 1.1mm Al) for three angular tilting of the beam central axis ( {±}25° and 0° normal incidence). We determined the transverse and longitudinal distributions of the average dose in the phantom (in terms of air kerma normalized to the entrance air kerma), showing the angular dependence of the depth-resolved 3D dose distributions. In transverse planes the maximum dose variations were between 5.0% and 14.8% for normal incidence, and by 8.6% from the central to the tilted view. In the direction of the beam axis, the dose decreases up to about 71% from the entrance to the exit value. The extimated backscatter fraction was between 3% and 8%.

  13. Description and benefits of dynamic collimation in digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Popova, Y.; Hersemeule, G.; Klausz, R.; Souchay, H.

    2015-01-01

    X-ray field to image receptor active area alignment is usually tested in mammographic QC. In digital breast tomosynthesis (dBT), the source moves during the acquisition, generating a displacement of the X-ray beam edges relative to the detector, in or out of the detector active area. To minimise unnecessary radiation while maximising the useful field of view, a solution consisting in adjusting the collimation with the source rotation was implemented on the GE SenoClaire dBT system. This solution is described and tested using three different methods based on: (1) images from the detector, (2) a non-screen film and (3) a semiconductor tool providing the X-ray intensity profile. Method 1 demonstrated a maximum positioning error of 0.3 mm. Method 2 was found non-applicable; Method 3 provided measurements within 1.5 mm. Dynamic collimation enables maintaining an X-ray field to detector congruence comparable with 2D. Measuring the position of the X-ray field edges using a dedicated tool makes routine QC possible. (authors)

  14. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Tushita, E-mail: tp3rn@virginia.edu [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Peppard, Heather [Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908 (United States); Williams, Mark B. [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908 (United States); Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908 (United States)

    2016-04-15

    Purpose: Radiation scattered from the breast in digital breast tomosynthesis (DBT) causes image degradation, including loss of contrast between cancerous and background tissue. Unlike in 2-dimensional (2D) mammography, an antiscatter grid cannot readily be used in DBT because changing alignment between the tube and detector during the scan would result in unacceptable loss of primary radiation. However, in the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis, the tube and detector rotate around a common axis, thereby maintaining a fixed tube-detector alignment. This C-arm geometry raises the possibility of using a 2D (cellular) focused antiscatter grid. The purpose of this study is to assess change in image quality when using an antiscatter grid in the DBT portion of a DMT scan under conditions of fixed radiation dose. Methods: Two 2D focused prototype grids with 80 cm focal length were tested, one stack-laminated from copper (Cu) and one cast from a tungsten-polymer (W-poly). They were reciprocated using a motion scheme designed to maximize transmission of primary x-ray photons. Grid-in and grid-out scatter-to-primary ratios (SPRs) were measured for rectangular blocks of material simulating 30%, 50%, and 70% glandular tissue compositions. For assessment of changes in image quality through the addition of a grid, the Computerized Imaging Reference Systems, Inc., phantom Model 011A containing a set of 1 cm thick blocks simulating a range of glandular/adipose ratios from 0/100 to 100/0 was used. To simulate 6.5 and 8.5 cm thick compressed breasts, 1 cm thick slices of PMMA were added to the Model 011A phantom. DBT images were obtained with and without the grid, with exposure parameters fixed for a given compressed thickness. Signal-difference-to-noise ratios (SDNRs), contrast, and voxel value-based attenuation coefficients (μ) were measured for all blocks from reconstructed phantom images. Results: For 4, 6, and

  15. High performance volume-of-intersection projectors for 3D-PET image reconstruction based on polar symmetries and SIMD vectorisation

    International Nuclear Information System (INIS)

    Scheins, J J; Vahedipour, K; Pietrzyk, U; Shah, N J

    2015-01-01

    For high-resolution, iterative 3D PET image reconstruction the efficient implementation of forward-backward projectors is essential to minimise the calculation time. Mathematically, the projectors are summarised as a system response matrix (SRM) whose elements define the contribution of image voxels to lines-of-response (LORs). In fact, the SRM easily comprises billions of non-zero matrix elements to evaluate the tremendous number of LORs as provided by state-of-the-art PET scanners. Hence, the performance of iterative algorithms, e.g. maximum-likelihood-expectation-maximisation (MLEM), suffers from severe computational problems due to the intensive memory access and huge number of floating point operations.Here, symmetries occupy a key role in terms of efficient implementation. They reduce the amount of independent SRM elements, thus allowing for a significant matrix compression according to the number of exploitable symmetries. With our previous work, the PET REconstruction Software TOolkit (PRESTO), very high compression factors (>300) are demonstrated by using specific non-Cartesian voxel patterns involving discrete polar symmetries. In this way, a pre-calculated memory-resident SRM using complex volume-of-intersection calculations can be achieved. However, our original ray-driven implementation suffers from addressing voxels, projection data and SRM elements in disfavoured memory access patterns. As a consequence, a rather limited numerical throughput is observed due to the massive waste of memory bandwidth and inefficient usage of cache respectively.In this work, an advantageous symmetry-driven evaluation of the forward-backward projectors is proposed to overcome these inefficiencies. The polar symmetries applied in PRESTO suggest a novel organisation of image data and LOR projection data in memory to enable an efficient single instruction multiple data vectorisation, i.e. simultaneous use of any SRM element for symmetric LORs. In addition, the calculation

  16. The compressed breast during mammography and breast tomosynthesis: in vivo shape characterization and modeling

    NARCIS (Netherlands)

    Rodriguez Ruiz, A.; Agasthya, G.A.; Sechopoulos, I.

    2017-01-01

    To characterize and develop a patient-based 3D model of the compressed breast undergoing mammography and breast tomosynthesis. During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3D breast surface imaging with structured light (SL) during breast compression, along

  17. Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data

    NARCIS (Netherlands)

    Bouwman, R. W.; van Engen, R. E.; Young, K. C.; den Heeten, G. J.; Broeders, M. J. M.; Schopphoven, S.; Jeukens, C. R. L. P. N.; Veldkamp, W. J. H.; Dance, D. R.

    2015-01-01

    For the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT) phantoms simulating standard model breasts are used. These phantoms consist of slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE). In the last

  18. Correlating locations in ipsilateral breast tomosynthesis views using an analytical hemispherical compression model

    NARCIS (Netherlands)

    Schie, G. van; Tanner, C.; Snoeren, P.R.; Samulski, M.; Leifland, K.; Wallis, M.G.; Karssemeijer, N.

    2011-01-01

    To improve cancer detection in mammography, breast examinations usually consist of two views per breast. In order to combine information from both views, corresponding regions in the views need to be matched. In 3D digital breast tomosynthesis (DBT), this may be a difficult and time-consuming task

  19. Comparison of Sonography versus Digital Breast Tomosynthesis to Locate Intramammary Marker Clips.

    Science.gov (United States)

    Schulz-Wendtland, R; Dankerl, P; Dilbat, G; Bani, M; Fasching, P A; Heusinger, K; Lux, M P; Loehberg, C R; Jud, S M; Rauh, C; Bayer, C M; Beckmann, M W; Wachter, D L; Uder, M; Meier-Meitinger, M; Brehm, B

    2015-01-01

    Introduction: This study aimed to compare the accuracy of sonography versus digital breast tomosynthesis to locate intramammary marker clips placed under ultrasound guidance. Patients and Methods: Fifty patients with suspicion of breast cancer (lesion diameter less than 2 cm [cT1]) had ultrasound-guided core needle biopsy with placement of a marker clip in the center of the tumor. Intramammary marker clips were subsequently located with both sonography and digital breast tomosynthesis. Results: Sonography detected no dislocation of intrammammary marker clips in 42 of 50 patients (84 %); dislocation was reported in 8 patients (16 %) with a maximum dislocation of 7 mm along the x-, y- or z-axis. Digital breast tomosynthesis showed accurate placement without dislocation of the intramammary marker clip in 48 patients (96 %); 2 patients (4 %) had a maximum clip dislocation of 3 mm along the x-, y- or z-axis (p tomosynthesis could improve the accuracy when locating intramammary marker clips compared to sonography and could, in future, be used to complement or even completely replace sonography.

  20. X-ray Digital Linear Tomosynthesis Imaging for Artificial Pulmonary Nodule Detection

    Directory of Open Access Journals (Sweden)

    Tsutomu Gomi

    2011-01-01

    Full Text Available The purpose of this paper is to identify indications for volumetric X-ray digital linear tomosynthesis (DLT with single- and dual-energy subtraction techniques for artificial pulmonary nodule detection and compare X-ray DLT, X-ray digital radiography, and computed tomography.

  1. Can Breast Compression Be Reduced in Digital Mammography and Breast Tomosynthesis?

    NARCIS (Netherlands)

    Agasthya, G.A.; D'Orsi, E.; Kim, Y. J.; Handa, P.; Ho, C.P.; D'Orsi, C.J.; Sechopoulos, I.

    2017-01-01

    OBJECTIVE: The objective of this study was to investigate the impact of decreasing breast compression during digital mammography and breast tomosynthesis (DBT) on perceived pain and image quality. MATERIALS AND METHODS: In this two-part study, two groups of women with prior mammograms were

  2. Demystifying the status of fracture healing using tomosynthesis: A case report

    Directory of Open Access Journals (Sweden)

    Eira S. Roth, MD

    2015-10-01

    Full Text Available Radiography is the most common imaging method for assessing the progress of fracture healing. However, accurate assessment may be confounded by fracture complexity in which a combination of anatomic overlay and hypertrophic callous can be visually misleading. We present just such an instance in which delayed fracture healing was further elucidated using tomosynthesis.

  3. Investigation of absorbed radiation dose in refraction-enhanced breast tomosynthesis by a Laue case analyser

    International Nuclear Information System (INIS)

    Sato, H.; Ando, M.; Shimao, D.

    2011-01-01

    An early diagnosis system for breast cancer using refraction-enhanced breast tomosynthesis is under development. Tomograms of breast specimens based on refraction-contrast were demonstrated using the simplest shift-and-add tomosynthesis algorithm. Raw projection image data of breast specimens for tomosynthesis were acquired for a total of 51 views over an angle of 50 deg., in increments of 1 deg., by rotating the object. The incident X ray was monochromatic synchrotron radiation with 20 keV. The purpose of this study was to estimate the absorbed dose of a new X-ray imaging method. As breast cancer almost always arises in glandular breast tissue, the average absorbed dose in such glandular tissue should be measured to estimate the radiation risk associated with mammography. The absorbed dose of the mammary gland due to monochromatic X rays was calculated by the Monte Carlo method, and the optimal X ray energy range for refraction-enhanced breast tomosynthesis was investigated through actual measurements. Compared with the conventional method, it was found to be below one-sixth per inspection. (authors)

  4. Phantoms for quality control procedures in digital breast tomosynthesis: dose assessment

    NARCIS (Netherlands)

    Bouwman, R. W.; Diaz, O.; van Engen, R. E.; Young, K. C.; den Heeten, G. J.; Broeders, M. J. M.; Veldkamp, W. J. H.; Dance, D. R.

    2013-01-01

    The recent introduction of digital breast tomosynthesis into clinical practice requires quality control procedures. In this study we have investigated whether the assessment of the average glandular dose for modelled standard breasts can be performed using a combination of polymethyl methacrylate

  5. Amorphous In-Ga-Zn-O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, Chumin; Kanicki, Jerzy

    2014-09-01

    The breast cancer detection rate for digital breast tomosynthesis (DBT) is limited by the x-ray image quality. The limiting Nyquist frequency for current DBT systems is around 5 lp/mm, while the fine image details contained in the high spatial frequency region (>5 lp/mm) are lost. Also today the tomosynthesis patient dose is high (0.67-3.52 mGy). To address current issues, in this paper, for the first time, a high-resolution low-dose organic photodetector/amorphous In-Ga-Zn-O thin-film transistor (a-IGZO TFT) active pixel sensor (APS) x-ray imager is proposed for next generation DBT systems. The indirect x-ray detector is based on a combination of a novel low-cost organic photodiode (OPD) and a cesium iodide-based (CsI:Tl) scintillator. The proposed APS x-ray imager overcomes the difficulty of weak signal detection, when small pixel size and low exposure conditions are used, by an on-pixel signal amplification with a significant charge gain. The electrical performance of a-IGZO T