WorldWideScience

Sample records for reconstructed tomosynthesis volumes

  1. Computer-aided detection of clustered microcalcifications in multiscale bilateral filtering regularized reconstructed digital breast tomosynthesis volume

    Energy Technology Data Exchange (ETDEWEB)

    Samala, Ravi K., E-mail: rsamala@umich.edu; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir; Wei, Jun; Helvie, Mark A. [Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109-5842 (United States); Sahiner, Berkman [Center for Devices and Radiological Health, U.S. Food and Drug Administration, Maryland 20993 (United States)

    2014-02-15

    Purpose: Develop a computer-aided detection (CADe) system for clustered microcalcifications in digital breast tomosynthesis (DBT) volume enhanced with multiscale bilateral filtering (MSBF) regularization. Methods: With Institutional Review Board approval and written informed consent, two-view DBT of 154 breasts, of which 116 had biopsy-proven microcalcification (MC) clusters and 38 were free of MCs, was imaged with a General Electric GEN2 prototype DBT system. The DBT volumes were reconstructed with MSBF-regularized simultaneous algebraic reconstruction technique (SART) that was designed to enhance MCs and reduce background noise while preserving the quality of other tissue structures. The contrast-to-noise ratio (CNR) of MCs was further improved with enhancement-modulated calcification response (EMCR) preprocessing, which combined multiscale Hessian response to enhance MCs by shape and bandpass filtering to remove the low-frequency structured background. MC candidates were then located in the EMCR volume using iterative thresholding and segmented by adaptive region growing. Two sets of potential MC objects, cluster centroid objects and MC seed objects, were generated and the CNR of each object was calculated. The number of candidates in each set was controlled based on the breast volume. Dynamic clustering around the centroid objects grouped the MC candidates to form clusters. Adaptive criteria were designed to reduce false positive (FP) clusters based on the size, CNR values and the number of MCs in the cluster, cluster shape, and cluster based maximum intensity projection. Free-response receiver operating characteristic (FROC) and jackknife alternative FROC (JAFROC) analyses were used to assess the performance and compare with that of a previous study. Results: Unpaired two-tailedt-test showed a significant increase (p < 0.0001) in the ratio of CNRs for MCs with and without MSBF regularization compared to similar ratios for FPs. For view-based detection, a

  2. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

    Directory of Open Access Journals (Sweden)

    Arefan D

    2015-06-01

    Full Text Available Digital Breast Tomosynthesis (DBT is a technology that creates three dimensional (3D images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU. At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU card and the Graphics Processing Unit (GPU. It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU.

  3. Limited angle C-arm tomosynthesis reconstruction algorithms

    Science.gov (United States)

    Malalla, Nuhad A. Y.; Xu, Shiyu; Chen, Ying

    2015-03-01

    In this paper, C-arm tomosynthesis with digital detector was investigated as a novel three dimensional (3D) imaging technique. Digital tomosythses is an imaging technique to provide 3D information of the object by reconstructing slices passing through the object, based on a series of angular projection views with respect to the object. C-arm tomosynthesis provides two dimensional (2D) X-ray projection images with rotation (-/+20 angular range) of both X-ray source and detector. In this paper, four representative reconstruction algorithms including point by point back projection (BP), filtered back projection (FBP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were investigated. Dataset of 25 projection views of 3D spherical object that located at center of C-arm imaging space was simulated from 25 angular locations over a total view angle of 40 degrees. With reconstructed images, 3D mesh plot and 2D line profile of normalized pixel intensities on focus reconstruction plane crossing the center of the object were studied with each reconstruction algorithm. Results demonstrated the capability to generate 3D information from limited angle C-arm tomosynthesis. Since C-arm tomosynthesis is relatively compact, portable and can avoid moving patients, it has been investigated for different clinical applications ranging from tumor surgery to interventional radiology. It is very important to evaluate C-arm tomosynthesis for valuable applications.

  4. Ray tracing reconstruction investigation for C-arm tomosynthesis

    Science.gov (United States)

    Malalla, Nuhad A. Y.; Chen, Ying

    2016-04-01

    C-arm tomosynthesis is a three dimensional imaging technique. Both x-ray source and the detector are mounted on a C-arm wheeled structure to provide wide variety of movement around the object. In this paper, C-arm tomosynthesis was introduced to provide three dimensional information over a limited view angle (less than 180o) to reduce radiation exposure and examination time. Reconstruction algorithms based on ray tracing method such as ray tracing back projection (BP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were developed for C-arm tomosynthesis. C-arm tomosynthesis projection images of simulated spherical object were simulated with a virtual geometric configuration with a total view angle of 40 degrees. This study demonstrated the sharpness of in-plane reconstructed structure and effectiveness of removing out-of-plane blur for each reconstruction algorithms. Results showed the ability of ray tracing based reconstruction algorithms to provide three dimensional information with limited angle C-arm tomosynthesis.

  5. Convergence of iterative image reconstruction algorithms for Digital Breast Tomosynthesis

    DEFF Research Database (Denmark)

    Sidky, Emil; Jørgensen, Jakob Heide; Pan, Xiaochuan

    2012-01-01

    solutions can aid in iterative image reconstruction algorithm design. This issue is particularly acute for iterative image reconstruction in Digital Breast Tomosynthesis (DBT), where the corresponding data model IS particularly poorly conditioned. The impact of this poor conditioning is that iterative......Most iterative image reconstruction algorithms are based on some form of optimization, such as minimization of a data-fidelity term plus an image regularizing penalty term. While achieving the solution of these optimization problems may not directly be clinically relevant, accurate optimization....... Math. Imag. Vol. 40, pgs 120-145) and apply it to iterative image reconstruction in DBT....

  6. Multiscale regularized reconstruction for enhancing microcalcification in digital breast tomosynthesis

    Science.gov (United States)

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Hadjiiski, Lubomir; Zhou, Chuan

    2012-03-01

    Digital breast tomosynthesis (DBT) holds strong promise for improving the sensitivity of detecting subtle mass lesions. Detection of microcalcifications is more difficult because of high noise and subtle signals in the large DBT volume. It is important to enhance the contrast-to-noise ratio (CNR) of microcalcifications in DBT reconstruction. A major challenge of implementing microcalcification enhancement or noise regularization in DBT reconstruction is to preserve the image quality of masses, especially those with ill-defined margins and subtle spiculations. We are developing a new multiscale regularization (MSR) method for the simultaneous algebraic reconstruction technique (SART) to improve the CNR of microcalcifications without compromising the quality of masses. Each DBT slice is stratified into different frequency bands via wavelet decomposition and the regularization method applies different degrees of regularization to different frequency bands to preserve features of interest and suppress noise. Regularization is constrained by a characteristic map to avoid smoothing subtle microcalcifications. The characteristic map is generated via image feature analysis to identify potential microcalcification locations in the DBT volume. The MSR method was compared to the non-convex total pvariation (TpV) method and SART with no regularization (NR) in terms of the CNR and the full width at half maximum of the line profiles intersecting calcifications and mass spiculations in DBT of human subjects. The results demonstrated that SART regularized by the MSR method was superior to the TpV method for subtle microcalcifications in terms of CNR enhancement. The MSR method preserved the quality of subtle spiculations better than the TpV method in comparison to NR.

  7. Quantification of resolution in multiplanar reconstructions for digital breast tomosynthesis

    Science.gov (United States)

    Vent, Trevor L.; Acciavatti, Raymond J.; Kwon, Young Joon; Maidment, Andrew D. A.

    2016-03-01

    Multiplanar reconstruction (MPR) in digital breast tomosynthesis (DBT) allows tomographic images to be portrayed in various orientations. We have conducted research to determine the resolution of tomosynthesis MPR. We built a phantom that houses a star test pattern to measure resolution. This phantom provides three rotational degrees of freedom. The design consists of two hemispheres with longitudinal and latitudinal grooves that reference angular increments. When joined together, the hemispheres form a dome that sits inside a cylindrical encasement. The cylindrical encasement contains reference notches to match the longitudinal and latitudinal grooves that guide the phantom's rotations. With this design, any orientation of the star-pattern can be analyzed. Images of the star-pattern were acquired using a DBT mammography system at the Hospital of the University of Pennsylvania. Images taken were reconstructed and analyzed by two different methods. First, the maximum visible frequency (in line pairs per millimeter) of the star test pattern was measured. Then, the contrast was calculated at a fixed spatial frequency. These analyses confirm that resolution decreases with tilt relative to the breast support. They also confirm that resolution in tomosynthesis MPR is dependent on object orientation. Current results verify that the existence of super-resolution depends on the orientation of the frequency; the direction parallel to x-ray tube motion shows super-resolution. In conclusion, this study demonstrates that the direction of the spatial frequency relative to the motion of the x-ray tube is a determinant of resolution in MPR for DBT.

  8. Semi-automated segmentation and classification of digital breast tomosynthesis reconstructed images.

    Science.gov (United States)

    Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew; Michaelsen, Kelly E; Krishnaswamy, Venkataramanan; Pogue, Brian W; Paulsen, Keith D

    2011-01-01

    Digital breast tomosynthesis (DBT) is a limited-angle tomographic x-ray imaging technique that reduces the effect of tissue superposition observed in planar mammography. An integrated imaging platform that combines DBT with near infrared spectroscopy (NIRS) to provide co-registered anatomical and functional imaging is under development. Incorporation of anatomic priors can benefit NIRS reconstruction. In this work, we provide a segmentation and classification method to extract potential lesions, as well as adipose, fibroglandular, muscle and skin tissue in reconstructed DBT images that serve as anatomic priors during NIRS reconstruction. The method may also be adaptable for estimating tumor volume, breast glandular content, and for extracting lesion features for potential application to computer aided detection and diagnosis.

  9. Denoised ordered subset statistically penalized algebraic reconstruction technique (DOS-SPART) in digital breast tomosynthesis

    Science.gov (United States)

    Garrett, John; Li, Yinsheng; Li, Ke; Chen, Guang-Hong

    2017-03-01

    Digital breast tomosynthesis (DBT) is a three dimensional (3D) breast imaging modality in which projections are acquired over a limited angular span around the compressed breast and reconstructed into image slices parallel to the detector. DBT has been shown to help alleviate the breast tissue overlapping issues of two dimensional (2D) mammography. Since the overlapping tissues may simulate cancer masses or obscure true cancers, this improvement is critically important for improved breast cancer screening and diagnosis. In this work, a model-based image reconstruction method is presented to show that spatial resolution in DBT volumes can be maintained while dose is reduced using the presented method when compared to that of a state-of-the-art commercial reconstruction technique. Spatial resolution was measured in phantom images and subjectively in a clinical dataset. Noise characteristics were explored in a cadaver study. In both the quantitative and subjective results the image sharpness was maintained and overall image quality was maintained at reduced doses when the model-based iterative reconstruction was used to reconstruct the volumes.

  10. Adaptive diffusion regularization for enhancement of microcalcifications in digital breast tomosynthesis (DBT) reconstruction

    Science.gov (United States)

    Lu, Yao; Chan, Heang-Ping; Fessler, Jeffrey A.; Hadjiiski, Lubomir; Wei, Jun; Goodsitt, Mitchell M.

    2011-03-01

    Digital breast tomosynthesis (DBT) has been shown to increase mass detection. Detection of microcalcifications in DBT is challenging because of the small, subtle signals to be searched in the large breast volume and the noise in the reconstructed volume. We developed an adaptive diffusion (AD) regularization method that can differentially regularize noise and potential signal regions during reconstruction based on local contrast-to-noise ratio (CNR) information. This method adaptively applies different degrees of regularity to signal and noise regions, as guided by a CNR map for each DBT slice within the image volume, such that potential signals will be preserved while noise is suppressed. DBT scans of an American College of Radiology phantom and the breast of a subject with biopsy-proven calcifications were acquired with a GE prototype DBT system at 21 angles in 3° increments over a +/-30° range. Simultaneous algebraic reconstruction technique (SART) was used for DBT reconstruction. The AD regularization method was compared to the non-convex total p-variation (TpV) method and SART with no regularization (NR) in terms of the CNR and the full width at half maximum (FWHM) of the central gray-level line profile in the focal plane of a calcification. The results demonstrated that the SART regularized by the AD method enhanced the CNR and preserved the sharpness of microcalcifications compared to reconstruction without regularization. The AD regularization was superior to the TpV method for subtle microcalcifications in terms of the CNR while the FWHM was comparable. The AD regularized reconstruction has the potential to improve the CNR of microcalcifications in DBT for human or machine detection.

  11. Development of a prototype chest digital tomosynthesis (CDT) R/F system with fast image reconstruction using graphics processing unit (GPU) programming

    Science.gov (United States)

    Choi, Sunghoon; Lee, Seungwan; Lee, Haenghwa; Lee, Donghoon; Choi, Seungyeon; Shin, Jungwook; Seo, Chang-Woo; Kim, Hee-Joung

    2017-03-01

    Digital tomosynthesis offers the advantage of low radiation doses compared to conventional computed tomography (CT) by utilizing small numbers of projections ( 80) acquired over a limited angular range. It produces 3D volumetric data, although there are artifacts due to incomplete sampling. Based upon these characteristics, we developed a prototype digital tomosynthesis R/F system for applications in chest imaging. Our prototype chest digital tomosynthesis (CDT) R/F system contains an X-ray tube with high power R/F pulse generator, flat-panel detector, R/F table, electromechanical radiographic subsystems including a precise motor controller, and a reconstruction server. For image reconstruction, users select between analytic and iterative reconstruction methods. Our reconstructed images of Catphan700 and LUNGMAN phantoms clearly and rapidly described the internal structures of phantoms using graphics processing unit (GPU) programming. Contrast-to-noise ratio (CNR) values of the CTP682 module of Catphan700 were higher in images using a simultaneous algebraic reconstruction technique (SART) than in those using filtered back-projection (FBP) for all materials by factors of 2.60, 3.78, 5.50, 2.30, 3.70, and 2.52 for air, lung foam, low density polyethylene (LDPE), Delrin® (acetal homopolymer resin), bone 50% (hydroxyapatite), and Teflon, respectively. Total elapsed times for producing 3D volume were 2.92 s and 86.29 s on average for FBP and SART (20 iterations), respectively. The times required for reconstruction were clinically feasible. Moreover, the total radiation dose from our system (5.68 mGy) was lower than that of conventional chest CT scan. Consequently, our prototype tomosynthesis R/F system represents an important advance in digital tomosynthesis applications.

  12. Investigation of various reconstruction parameters for algebraic reconstruction technique in a newly developed chest digital tomosynthesis

    Science.gov (United States)

    Lee, H.; Choi, S.; Lee, D.; Kim, Y.-s.; Park, H.-S.; Lee, Y.; Seo, C.-W.; Kim, H.-J.

    2017-08-01

    Chest digital tomosynthesis (CDT) is a promising new modality that provides 3D information by reconstructing limited projection views. CDT systems have been developed to improve the limitations of conventional radiography such as image degradation and low sensitivity. However, the development of reconstruction methods is challenging because of the limited projection views within various angular ranges. Optimization of reconstruction parameters for various reconsturction methods in CDT system also is needed. The purpose of this study was to investigate the feasibility of algebraic reconstruction technique (ART) method, and to evaluate the effect of the reconstruction parameters for our newly developed CDT system. We designed ART method with 41 projection views over an angular range of ±20°. To investigate the effect of reconstruction parameters, we measured the contrast-to-noise ratio (CNR), artifact spread function (ASF), and quality factor (QF) using LUNGMAN phantom included tumors. We found that the proper choice of reconstruction parameters such as relaxation parameter, initial guess, and number of iterations improved the quality of reconstructed images from the same projection views. Optimal values of ART relaxation parameter with uniform (UI) and back-projection (BP) initial guesses were 0.4 and 0.6, respectively. BP initial guess improved image quality in comparison with UI initial guess, in terms of providing a higher CNR and QF values with a faster speed. CNR and QF values improved with increasing number of iteration. Particularly, ART method with BP initial guess (when β = 0.6) after 3-terations provide satisfactory reconstructed image. In conclusion, the use of ART method with proper reconstruction parameters provided better image quality than FBP method as well as conventional radiography. These results indicated that the ART method with optimal reconstruction parameters could improve image quality for nodule detection using the CDT system.

  13. Optimization and Comparison of Different Digital Mammographic Tomosynthesis Reconstruction Methods

    Science.gov (United States)

    2008-04-01

    isocentric motion in breast tomosynthesis. We have published our results in Medical Physics , the premiere peer-reviewed journal in the field of... Medical Physics ; please see Appendix #1 for the reprinted publication. 1.2. Characterize the effect of three acquisition parameters including total...working on a Medical Physics journal manuscript preparation for GFB algorithm. We have used impulse response and MTF analysis method to compare BP and

  14. Breast percent density estimation from 3D reconstructed digital breast tomosynthesis images

    Science.gov (United States)

    Bakic, Predrag R.; Kontos, Despina; Carton, Ann-Katherine; Maidment, Andrew D. A.

    2008-03-01

    Breast density is an independent factor of breast cancer risk. In mammograms breast density is quantitatively measured as percent density (PD), the percentage of dense (non-fatty) tissue. To date, clinical estimates of PD have varied significantly, in part due to the projective nature of mammography. Digital breast tomosynthesis (DBT) is a 3D imaging modality in which cross-sectional images are reconstructed from a small number of projections acquired at different x-ray tube angles. Preliminary studies suggest that DBT is superior to mammography in tissue visualization, since superimposed anatomical structures present in mammograms are filtered out. We hypothesize that DBT could also provide a more accurate breast density estimation. In this paper, we propose to estimate PD from reconstructed DBT images using a semi-automated thresholding technique. Preprocessing is performed to exclude the image background and the area of the pectoral muscle. Threshold values are selected manually from a small number of reconstructed slices; a combination of these thresholds is applied to each slice throughout the entire reconstructed DBT volume. The proposed method was validated using images of women with recently detected abnormalities or with biopsy-proven cancers; only contralateral breasts were analyzed. The Pearson correlation and kappa coefficients between the breast density estimates from DBT and the corresponding digital mammogram indicate moderate agreement between the two modalities, comparable with our previous results from 2D DBT projections. Percent density appears to be a robust measure for breast density assessment in both 2D and 3D x-ray breast imaging modalities using thresholding.

  15. A task-based comparison of two reconstruction algorithms for digital breast tomosynthesis

    Science.gov (United States)

    Mahadevan, Ravi; Ikejimba, Lynda C.; Lin, Yuan; Samei, Ehsan; Lo, Joseph Y.

    2014-03-01

    Digital breast tomosynthesis (DBT) generates 3-D reconstructions of the breast by taking X-Ray projections at various angles around the breast. DBT improves cancer detection as it minimizes tissue overlap that is present in traditional 2-D mammography. In this work, two methods of reconstruction, filtered backprojection (FBP) and the Newton-Raphson iterative reconstruction were used to create 3-D reconstructions from phantom images acquired on a breast tomosynthesis system. The task based image analysis method was used to compare the performance of each reconstruction technique. The task simulated a 10mm lesion within the breast containing iodine concentrations between 0.0mg/ml and 8.6mg/ml. The TTF was calculated using the reconstruction of an edge phantom, and the NPS was measured with a structured breast phantom (CIRS 020) over different exposure levels. The detectability index d' was calculated to assess image quality of the reconstructed phantom images. Image quality was assessed for both conventional, single energy and dual energy subtracted reconstructions. Dose allocation between the high and low energy scans was also examined. Over the full range of dose allocations, the iterative reconstruction yielded a higher detectability index than the FBP for single energy reconstructions. For dual energy subtraction, detectability index was maximized when most of the dose was allocated to the high energy image. With that dose allocation, the performance trend for reconstruction algorithms reversed; FBP performed better than the corresponding iterative reconstruction. However, FBP performance varied very erratically with changing dose allocation. Therefore, iterative reconstruction is preferred for both imaging modalities despite underperforming dual energy FBP, as it provides stable results.

  16. Metal artifact reduction using a patch-based reconstruction for digital breast tomosynthesis

    Science.gov (United States)

    Borges, Lucas R.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2017-03-01

    Digital breast tomosynthesis (DBT) is rapidly emerging as the main clinical tool for breast cancer screening. Although several reconstruction methods for DBT are described by the literature, one common issue is the interplane artifacts caused by out-of-focus features. For breasts containing highly attenuating features, such as surgical clips and large calcifications, the artifacts are even more apparent and can limit the detection and characterization of lesions by the radiologist. In this work, we propose a novel method of combining backprojected data into tomographic slices using a patch-based approach, commonly used in denoising. Preliminary tests were performed on a geometry phantom and on an anthropomorphic phantom containing metal inserts. The reconstructed images were compared to a commercial reconstruction solution. Qualitative assessment of the reconstructed images provides evidence that the proposed method reduces artifacts while maintaining low noise levels. Objective assessment supports the visual findings. The artifact spread function shows that the proposed method is capable of suppressing artifacts generated by highly attenuating features. The signal difference to noise ratio shows that the noise levels of the proposed and commercial methods are comparable, even though the commercial method applies post-processing filtering steps, which were not implemented on the proposed method. Thus, the proposed method can produce tomosynthesis reconstructions with reduced artifacts and low noise levels.

  17. Numerical Methods for Coupled Reconstruction and Registration in Digital Breast Tomosynthesis

    CERN Document Server

    Yang, Guang; Hawkes, David J; Arridge, Simon R

    2013-01-01

    Digital Breast Tomosynthesis (DBT) provides an insight into the fine details of normal fibroglandular tissues and abnormal lesions by reconstructing a pseudo-3D image of the breast. In this respect, DBT overcomes a major limitation of conventional X-ray mammography by reducing the confounding effects caused by the superposition of breast tissue. In a breast cancer screening or diagnostic context, a radiologist is interested in detecting change, which might be indicative of malignant disease. To help automate this task image registration is required to establish spatial correspondence between time points. Typically, images, such as MRI or CT, are first reconstructed and then registered. This approach can be effective if reconstructing using a complete set of data. However, for ill-posed, limited-angle problems such as DBT, estimating the deformation is complicated by the significant artefacts associated with the reconstruction, leading to severe inaccuracies in the registration. This paper presents a mathemati...

  18. Dynamic relaxation in algebraic reconstruction technique (ART) for breast tomosynthesis imaging.

    Science.gov (United States)

    Oliveira, N; Mota, A M; Matela, N; Janeiro, L; Almeida, P

    2016-08-01

    A major challenge in Digital Breast Tomosynthesis (DBT) is handling image noise since the 3D reconstructed images are obtained from low dose projections and limited angular range. The use of the iterative reconstruction algorithm Algebraic Reconstruction Technique (ART) in clinical context depends on two key factors: the number of iterations needed (time consuming) and the image noise after iterations. Both factors depend highly on a relaxation coefficient (λ), which may give rise to slow or noisy reconstructions, when a single λ value is considered for the entire iterative process. The aim of this work is to present a new implementation for the ART that takes into account a dynamic mode to calculate λ in DBT image reconstruction. A set of initial reconstructions of real phantom data was done using constant λ values. The results were used to choose, for each iteration, the suitable λ value, taking into account the image noise level and the convergence speed. A methodology to optimize λ automatically during the image reconstruction was proposed. Results showed we can dynamically choose λ values in such a way that the time needed to reconstruct the images can be significantly reduced (up to 70%) while achieving similar image quality. These results were confirmed with one clinical dataset. With simple methodology we were able to dynamically choose λ in DBT image reconstruction with ART, allowing a shorter image reconstruction time without increasing image noise. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Optimization of digital breast tomosynthesis (DBT) acquisition parameters for human observers: effect of reconstruction algorithms

    Science.gov (United States)

    Zeng, Rongping; Badano, Aldo; Myers, Kyle J.

    2017-04-01

    We showed in our earlier work that the choice of reconstruction methods does not affect the optimization of DBT acquisition parameters (angular span and number of views) using simulated breast phantom images in detecting lesions with a channelized Hotelling observer (CHO). In this work we investigate whether the model-observer based conclusion is valid when using humans to interpret images. We used previously generated DBT breast phantom images and recruited human readers to find the optimal geometry settings associated with two reconstruction algorithms, filtered back projection (FBP) and simultaneous algebraic reconstruction technique (SART). The human reader results show that image quality trends as a function of the acquisition parameters are consistent between FBP and SART reconstructions. The consistent trends confirm that the optimization of DBT system geometry is insensitive to the choice of reconstruction algorithm. The results also show that humans perform better in SART reconstructed images than in FBP reconstructed images. In addition, we applied CHOs with three commonly used channel models, Laguerre-Gauss (LG) channels, square (SQR) channels and sparse difference-of-Gaussian (sDOG) channels. We found that LG channels predict human performance trends better than SQR and sDOG channel models for the task of detecting lesions in tomosynthesis backgrounds. Overall, this work confirms that the choice of reconstruction algorithm is not critical for optimizing DBT system acquisition parameters.

  20. Digital tomosynthesis of hands using simultaneous algebraic reconstruction technique with distance driven projector

    Energy Technology Data Exchange (ETDEWEB)

    Levakhina, Y.M. [Luebeck Univ. (Germany). Graduate School for Computing in Medicine and Life Sciences; Luebeck Univ. (Germany). Inst. of Medical Engineering; Duschka, R.L.; Barkhausen, J. [Universitaetsklinikum Schleswig-Holstein, Luebeck (Germany). Klinik fuer Radiologie und Nuklearmedizin; Buzug, T.M. [Luebeck Univ. (Germany). Inst. of Medical Engineering

    2011-07-01

    Digital tomosynthesis (DT) is an X-ray tomographic technique for producing a three-dimensional stack of crosssectional images, based on a limited number of low-dose two-dimensional projections, acquired over a limited angular range. Currently, DT has mainly been investigated for the breast and chest imaging. Another application of DT may be an orthopaedic imaging of hands. A three-dimensional reconstruction with a high in-plane resolution, a low dose and potentially low costs make DT attractive for hand imaging comparing with the planar radiography or computed tomography. However, it should be noted that an accurate image reconstruction in DT is a challenging task due to the high degree of data incompleteness. Images are affected by the residual blur of structures that are located above and below the plane of interest. A human hand consists of 27 bones and therefore the artifact problem becomes even more acute in this case, since the magnitude of artifacts is related not only to the chosen reconstruction type but also to the size and contrast of the artifact-generating object. The study presented in the current work has been performed to show a capability of Simultaneous Algebraic Reconstruction Technique (SART) for hand visualization in tomosynthesis. A distance-driven type for the projector and backprojector operator has been used to make the calculation fast and accurate. Studies have been carried out on a phantom with an uniform background and millimeter-sized balls, a dried finger bone and an in toto hand phantom. A Siemens Mammomat Inspiration device has been used to acquire the projection data. Experimental results show that SART is able to reduce out-of-plane artifacts caused by bone tissue. It provides reconstruction with acceptable quality in only one iteration with the recovered visibility of the obscured trabecular structures as well as the joint spaces and the margins. (orig.)

  1. Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shiyu, E-mail: shiyu.xu@gmail.com; Chen, Ying, E-mail: adachen@siu.edu [Department of Electrical and Computer Engineering, Southern Illinois University Carbondale, Carbondale, Illinois 62901 (United States); Lu, Jianping; Zhou, Otto [Department of Physics and Astronomy and Curriculum in Applied Sciences and Engineering, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-09-15

    Purpose: Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means to overcome these challenges is statistical iterative reconstruction (IR), since it provides the flexibility of accurate physics modeling and a general description of system geometry. The authors’ goal was to develop techniques for applying statistical IR to tomosynthesis imaging data. Methods: These techniques include the following: a physics model with a local voxel-pair based prior with flexible parameters to fine-tune image quality; a precomputed parameter λ in the prior, to remove data dependence and to achieve a uniform resolution property; an effective ray-driven technique to compute the forward and backprojection; and an oversampled, ray-driven method to perform high resolution reconstruction with a practical region-of-interest technique. To assess the performance of these techniques, the authors acquired phantom data on the stationary DBT prototype system. To solve the estimation problem, the authors proposed an optimization-transfer based algorithm framework that potentially allows fewer iterations to achieve an acceptably converged reconstruction. Results: IR improved the detectability of low-contrast and small microcalcifications, reduced cross-plane artifacts, improved spatial resolution, and lowered noise in reconstructed images. Conclusions: Although the computational load remains a significant challenge for practical development, the superior image quality provided by statistical IR, combined with advancing computational techniques, may bring benefits to screening, diagnostics, and intraoperative imaging in clinical applications.

  2. Effects of detector blur and correlated noise on digital breast tomosynthesis reconstruction

    Science.gov (United States)

    Zheng, Jiabei; Fessler, Jeffrey A.; Chan, Heang-Ping

    2017-03-01

    To improve digital breast tomosynthesis (DBT) image quality, we are developing model-based iterative reconstruction methods. We developed the SQS-DBCN algorithm, which incorporated detector blur into the system model and correlation into the noise model under some simplifying assumptions. In this paper, we further improved the regularization in the SQS-DBCN method by incorporating neighbors along the diagonal directions. To further understand the role of the different components in the system model of the SQS-DBCN method, we reconstructed DBT images without modeling either the detector blur or noise correlation for comparison. Visual comparison of the reconstructed images showed that regularizing with diagonal directions reduced artifacts and the noise level. The SQS-DBCN reconstructed images had better image quality than reconstructions without models for detector blur or correlated noise, as indicated by the contrast-to-noise ratios (CNR) of MCs and textural artifacts. These results indicated that regularized DBT reconstruction with detector blur and correlated noise modeling, even with simplifying assumptions, can improve DBT image quality compared to that without system modeling.

  3. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.

    Science.gov (United States)

    Kim, Ye-seul; Park, Hye-suk; Lee, Haeng-Hwa; Choi, Young-Wook; Choi, Jae-Gu; Kim, Hak Hee; Kim, Hee-Joung

    2016-02-01

    Digital breast tomosynthesis (DBT) is a recently developed system for three-dimensional imaging that offers the potential to reduce the false positives of mammography by preventing tissue overlap. Many qualitative evaluations of digital breast tomosynthesis were previously performed by using a phantom with an unrealistic model and with heterogeneous background and noise, which is not representative of real breasts. The purpose of the present work was to compare reconstruction algorithms for DBT by using various breast phantoms; validation was also performed by using patient images. DBT was performed by using a prototype unit that was optimized for very low exposures and rapid readout. Three algorithms were compared: a back-projection (BP) algorithm, a filtered BP (FBP) algorithm, and an iterative expectation maximization (EM) algorithm. To compare the algorithms, three types of breast phantoms (homogeneous background phantom, heterogeneous background phantom, and anthropomorphic breast phantom) were evaluated, and clinical images were also reconstructed by using the different reconstruction algorithms. The in-plane image quality was evaluated based on the line profile and the contrast-to-noise ratio (CNR), and out-of-plane artifacts were evaluated by means of the artifact spread function (ASF). Parenchymal texture features of contrast and homogeneity were computed based on reconstructed images of an anthropomorphic breast phantom. The clinical images were studied to validate the effect of reconstruction algorithms. The results showed that the CNRs of masses reconstructed by using the EM algorithm were slightly higher than those obtained by using the BP algorithm, whereas the FBP algorithm yielded much lower CNR due to its high fluctuations of background noise. The FBP algorithm provides the best conspicuity for larger calcifications by enhancing their contrast and sharpness more than the other algorithms; however, in the case of small-size and low

  4. Parallelizable 3D statistical reconstruction for C-arm tomosynthesis system

    Science.gov (United States)

    Wang, Beilei; Barner, Kenneth; Lee, Denny

    2005-04-01

    Clinical diagnosis and security detection tasks increasingly require 3D information which is difficult or impossible to obtain from 2D (two dimensional) radiographs. As a 3D (three dimensional) radiographic and non-destructive imaging technique, digital tomosynthesis is especially fit for cases where 3D information is required while a complete projection data is not available. Nowadays, FBP (filtered back projection) is extensively used in industry for its fast speed and simplicity. However, it is hard to deal with situations where only a limited number of projections from constrained directions are available, or the SNR (signal to noises ratio) of the projections is low. In order to deal with noise and take into account a priori information of the object, a statistical image reconstruction method is described based on the acquisition model of X-ray projections. We formulate a ML (maximum likelihood) function for this model and develop an ordered-subsets iterative algorithm to estimate the unknown attenuation of the object. Simulations show that satisfied results can be obtained after 1 to 2 iterations, and after that there is no significant improvement of the image quality. An adaptive wiener filter is also applied to the reconstructed image to remove its noise. Some approximations to speed up the reconstruction computation are also considered. Applying this method to computer generated projections of a revised Shepp phantom and true projections from diagnostic radiographs of a patient"s hand and mammography images yields reconstructions with impressive quality. Parallel programming is also implemented and tested. The quality of the reconstructed object is conserved, while the computation time is considerably reduced by almost the number of threads used.

  5. Ultra-fast digital tomosynthesis reconstruction using general-purpose GPU programming for image-guided radiation therapy.

    Science.gov (United States)

    Park, Justin C; Park, Sung Ho; Kim, Jin Sung; Han, Youngyih; Cho, Min Kook; Kim, Ho Kyung; Liu, Zhaowei; Jiang, Steve B; Song, Bongyong; Song, William Y

    2011-08-01

    The purpose of this work is to demonstrate an ultra-fast reconstruction technique for digital tomosynthesis (DTS) imaging based on the algorithm proposed by Feldkamp, Davis, and Kress (FDK) using standard general-purpose graphics processing unit (GPGPU) programming interface. To this end, the FDK-based DTS algorithm was programmed "in-house" with C language with utilization of 1) GPU and 2) central processing unit (CPU) cards. The GPU card consisted of 480 processing cores (2 x 240 dual chip) with 1,242 MHz processing clock speed and 1,792 MB memory space. In terms of CPU hardware, we used 2.68 GHz clock speed, 12.0 GB DDR3 RAM, on a 64-bit OS. The performance of proposed algorithm was tested on twenty-five patient cases (5 lung, 5 liver, 10 prostate, and 5 head-and-neck) scanned either with a full-fan or half-fan mode on our cone-beam computed tomography (CBCT) system. For the full-fan scans, the projections from 157.5°-202.5° (45°-scan) were used to reconstruct coronal DTS slices, whereas for the half-fan scans, the projections from both 157.5°-202.5° and 337.5°-22.5° (2 x 45°-scan) were used to reconstruct larger FOV coronal DTS slices. For this study, we chose 45°-scan angle that contained ~80 projections for the full-fan and ~160 projections with 2 x 45°-scan angle for the half-fan mode, each with 1024 x 768 pixels with 32-bit precision. Absolute pixel value differences, profiles, and contrast-to-noise ratio (CNR) calculations were performed to compare and evaluate the images reconstructed using GPU- and CPU-based implementations. The time dependence on the reconstruction volume was also tested with (512 x 512) x 16, 32, 64, 128, and 256 slices. In the end, the GPU-based implementation achieved, at most, 1.3 and 2.5 seconds to complete full reconstruction of 512 x 512 x 256 volume, for the full-fan and half-fan modes, respectively. In turn, this meant that our implementation can process > 13 projections-per-second (pps) and > 18 pps for the full

  6. Image reconstruction for digital breast tomosynthesis (DBT) by using projection-angle-dependent filter functions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeonok; Park, Chulkyu; Cho, Hyosung; Je, Uikyu; Hong, Daeki; Lee, Minsik; Cho, Heemoon; Choi, Sungil; Koo, Yangseo [Yonsei University, Wonju (Korea, Republic of)

    2014-09-15

    Digital breast tomosynthesis (DBT) is considered in clinics as a standard three-dimensional imaging modality, allowing the earlier detection of cancer. It typically acquires only 10-30 projections over a limited angle range of 15 - 60 .deg. with a stationary detector and typically uses a computationally-efficient filtered-backprojection (FBP) algorithm for image reconstruction. However, a common FBP algorithm yields poor image quality resulting from the loss of average image value and the presence of severe image artifacts due to the elimination of the dc component of the image by the ramp filter and to the incomplete data, respectively. As an alternative, iterative reconstruction methods are often used in DBT to overcome these difficulties, even though they are still computationally expensive. In this study, as a compromise, we considered a projection-angle dependent filtering method in which one-dimensional geometry-adapted filter kernels are computed with the aid of a conjugate-gradient method and are incorporated into the standard FBP framework. We implemented the proposed algorithm and performed systematic simulation works to investigate the imaging characteristics. Our results indicate that the proposed method is superior to a conventional FBP method for DBT imaging and has a comparable computational cost, while preserving good image homogeneity and edge sharpening with no serious image artifacts.

  7. Two complementary model observers to evaluate reconstructions of simulated micro-calcifications in digital breast tomosynthesis

    Science.gov (United States)

    Michielsen, Koen; Zanca, Federica; Marshall, Nicholas; Bosmans, Hilde; Nuyts, Johan

    2013-03-01

    New imaging modalities need to be properly evaluated before being introduced in clinical practice. The gold standard is to perform clinical trials or dedicated clinical performance related observer experiments with experienced readers. Unfortunately this is not feasible during development or optimization of new reconstruction algorithms due to their many degrees of freedom. Our goal is to design a set of model observers to evaluate the performance of newly developed reconstruction methods on the assessment of micro-calcifications in digital breast tomosynthesis. In order to do so, the model observers need to evaluate both detection and classification of micro-calcifications. A channelized Hotelling observer was created for the detection task and a Hotelling observer working on an extracted feature vector was implemented for the classification task. These observers were evaluated on their ability to predict the results of human observers. Results from a previous observer study were used as reference to compare performance between human and model observers. This study evaluated detection of small micro-calcifications (100 { 200 _m) by a free search task in a power law filtered noise background and classification of two types of larger micro-calcifications (200 {600 _m) in the same background. Scores from the free search study were evaluated using the weighted JAFROC method and the classification scores were analyzed using the DBM MRMC method. The same analysis methods were applied to the model observer scores. Results of the detection model observer were related linearly with the human observer results with a correlation coefficient of 0.962. The correlation coefficient for the classification task was 0.959 with a power law non-linear regression.

  8. GPU-accelerated compressed-sensing (CS) image reconstruction in chest digital tomosynthesis (CDT) using CUDA programming

    Science.gov (United States)

    Choi, Sunghoon; Lee, Haenghwa; Lee, Donghoon; Choi, Seungyeon; Shin, Jungwook; Jang, Woojin; Seo, Chang-Woo; Kim, Hee-Joung

    2017-03-01

    A compressed-sensing (CS) technique has been rapidly applied in medical imaging field for retrieving volumetric data from highly under-sampled projections. Among many variant forms, CS technique based on a total-variation (TV) regularization strategy shows fairly reasonable results in cone-beam geometry. In this study, we implemented the TV-based CS image reconstruction strategy in our prototype chest digital tomosynthesis (CDT) R/F system. Due to the iterative nature of time consuming processes in solving a cost function, we took advantage of parallel computing using graphics processing units (GPU) by the compute unified device architecture (CUDA) programming to accelerate our algorithm. In order to compare the algorithmic performance of our proposed CS algorithm, conventional filtered back-projection (FBP) and simultaneous algebraic reconstruction technique (SART) reconstruction schemes were also studied. The results indicated that the CS produced better contrast-to-noise ratios (CNRs) in the physical phantom images (Teflon region-of-interest) by factors of 3.91 and 1.93 than FBP and SART images, respectively. The resulted human chest phantom images including lung nodules with different diameters also showed better visual appearance in the CS images. Our proposed GPU-accelerated CS reconstruction scheme could produce volumetric data up to 80 times than CPU programming. Total elapsed time for producing 50 coronal planes with 1024×1024 image matrix using 41 projection views were 216.74 seconds for proposed CS algorithms on our GPU programming, which could match the clinically feasible time ( 3 min). Consequently, our results demonstrated that the proposed CS method showed a potential of additional dose reduction in digital tomosynthesis with reasonable image quality in a fast time.

  9. Characterization of masses in digital breast tomosynthesis: Comparison of machine learning in projection views and reconstructed slices

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Heang-Ping; Wu Yita; Sahiner, Berkman; Wei, Jun; Helvie, Mark A.; Zhang Yiheng; Moore, Richard H.; Kopans, Daniel B.; Hadjiiski, Lubomir; Way, Ted [Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2010-07-15

    Purpose: In digital breast tomosynthesis (DBT), quasi-three-dimensional (3D) structural information is reconstructed from a small number of 2D projection view (PV) mammograms acquired over a limited angular range. The authors developed preliminary computer-aided diagnosis (CADx) methods for classification of malignant and benign masses and compared the effectiveness of analyzing lesion characteristics in the reconstructed DBT slices and in the PVs. Methods: A data set of MLO view DBT of 99 patients containing 107 masses (56 malignant and 51 benign) was collected at the Massachusetts General Hospital with IRB approval. The DBTs were obtained with a GE prototype system which acquired 11 PVs over a 50 deg. arc. The authors reconstructed the DBTs at 1 mm slice interval using a simultaneous algebraic reconstruction technique. The region of interest (ROI) containing the mass was marked by a radiologist in the DBT volume and the corresponding ROIs on the PVs were derived based on the imaging geometry. The subsequent processes were fully automated. For classification of masses using the DBT-slice approach, the mass on each slice was segmented by an active contour model initialized with adaptive k-means clustering. A spiculation likelihood map was generated by analysis of the gradient directions around the mass margin and spiculation features were extracted from the map. The rubber band straightening transform (RBST) was applied to a band of pixels around the segmented mass boundary. The RBST image was enhanced by Sobel filtering in the horizontal and vertical directions, from which run-length statistics texture features were extracted. Morphological features including those from the normalized radial length were designed to describe the mass shape. A feature space composed of the spiculation features, texture features, and morphological features extracted from the central slice alone and seven feature spaces obtained by averaging the corresponding features from three to 19

  10. Evaluation of the image quality in digital breast tomosynthesis (DBT) employed with a compressed-sensing (CS)-based reconstruction algorithm by using the mammographic accreditation phantom

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeonok; Cho, Heemoon; Je, Uikyu; Cho, Hyosung, E-mail: hscho1@yonsei.ac.kr; Park, Chulkyu; Lim, Hyunwoo; Kim, Kyuseok; Kim, Guna; Park, Soyoung; Woo, Taeho; Choi, Sungil

    2015-12-21

    In this work, we have developed a prototype digital breast tomosynthesis (DBT) system which mainly consists of an x-ray generator (28 kV{sub p}, 7 mA s), a CMOS-type flat-panel detector (70-μm pixel size, 230.5×339 mm{sup 2} active area), and a rotational arm to move the x-ray generator in an arc. We employed a compressed-sensing (CS)-based reconstruction algorithm, rather than a common filtered-backprojection (FBP) one, for more accurate DBT reconstruction. Here the CS is a state-of-the-art mathematical theory for solving the inverse problems, which exploits the sparsity of the image with substantially high accuracy. We evaluated the reconstruction quality in terms of the detectability, the contrast-to-noise ratio (CNR), and the slice-sensitive profile (SSP) by using the mammographic accreditation phantom (Model 015, CIRS Inc.) and compared it to the FBP-based quality. The CS-based algorithm yielded much better image quality, preserving superior image homogeneity, edge sharpening, and cross-plane resolution, compared to the FBP-based one. - Highlights: • A prototype digital breast tomosynthesis (DBT) system is developed. • Compressed-sensing (CS) based reconstruction framework is employed. • We reconstructed high-quality DBT images by using the proposed reconstruction framework.

  11. Digital breast tomosynthesis; Digitale Tomosynthese der Brust

    Energy Technology Data Exchange (ETDEWEB)

    Haegele, Julian; Barkhausen, Joerg [Universtiaetsklinikum Schleswig-Holstein, Luebeck (Germany). Klinik fuer Radiologie und Nuklearmedizin; Pursche, Telja [Universtiaetsklinikum Schleswig-Holstein, Luebeck (Germany). Brustzentrum; Schaefer, Fritz K.W. [Universtiaetsklinikum Schleswig-Holstein, Kiel (Germany). Bereich Mammadiagnostik und Intervention

    2015-09-15

    In digital breast tomosynthesis a digital tomographic data set with a very high spatial resolution is reconstructed from low-dose projections collected over a limited rotation angle. This allows a very detailed assessment of e. g. masses and architectural distortions. The average glandular dose is comparable to 2 D mammography. First clinical studies demonstrated that tomosynthesis is able to supply important additional information in suspicious mammographic findings. In comparison to projection mammography, tomosynthesis shows an at least comparable diagnostic accuracy. In everyday practice, tomosynthesis is currently mostly used for further evaluation of suspicious findings in mammography.

  12. Stationary digital chest tomosynthesis for coronary artery calcium scoring

    Science.gov (United States)

    Wu, Gongting; Wang, Jiong; Potuzko, Marci; Harman, Allison; Pearce, Caleb; Shan, Jing; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2016-03-01

    The coronary artery calcium score (CACS) measures the buildup of calcium on the coronary artery wall and has been shown to be an important predictor of the risk of coronary artery diseases (CAD). Currently CACS is measured using CT, though the relatively high cost and high radiation dose has limited its adoption as a routine screening procedure. Digital Chest Tomosynthesis (DCT), a low dose and low cost alternative to CT, and has been shown to achieve 90% of sensitivity of CT in lung disease screening. However commercial DCT requires long scanning time and cannot be adapted for high resolution gated cardiac imaging, necessary for CACS. The stationary DCT system (s- DCT), developed in our lab, has the potential to significantly shorten the scanning time and enables high resolution cardiac gated imaging. Here we report the preliminary results of using s-DCT to estimate the CACS. A phantom heart model was developed and scanned by the s-DCT system and a clinical CT in a phantom model with realistic coronary calcifications. The adapted fan-beam volume reconstruction (AFVR) method, developed specifically for stationary tomosynthesis systems, is used to obtain high resolution tomosynthesis images. A trained cardiologist segmented out the calcifications and the CACS was obtained. We observed a strong correlation between the tomosynthesis derived CACS and CT CACS (r2 = 0.88). Our results shows s-DCT imaging has the potential to estimate CACS, thus providing a possible low cost and low dose imaging protocol for screening and monitoring CAD.

  13. Initial application of digital tomosynthesis to improve brachytherapy treatment planning

    Science.gov (United States)

    Baydush, Alan H.; Mirzaei McKee, Mahta; King, June; Godfrey, Devon J.

    2007-03-01

    We present preliminary investigations that examine the feasibility of incorporating volumetric images generated using digital tomosynthesis into brachytherapy treatment planning. The Integrated Brachytherapy Unit (IBU) at our facility consists of an L-arm, C-arm isocentric motion system with an x-ray tube and fluoroscopic imager attached. Clinically, this unit is used to generate oblique, anterior-posterior, and lateral images for simple treatment planning and dose prescriptions. Oncologists would strongly prefer to have volumetric data to better determine three dimensional dose distributions (dose-volume histograms) to the target area and organs at risk. Moving the patient back and forth to CT causes undo stress on the patient, allows extensive motion of organs and treatment applicators, and adds additional time to patient treatment. We propose to use the IBU imaging system with digital tomosynthesis to generate volumetric patient data, which can be used for improving treatment planning and overall reducing treatment time. Initial image data sets will be acquired over a limited arc of a human-like phantom composed of real bones and tissue equivalent material. A brachytherapy applicator will be incorporated into one of the phantoms for visualization purposes. Digital tomosynthesis will be used to generate a volumetric image of this phantom setup. This volumetric image set will be visually inspected to determine the feasibility of future incorporation of these types of images into brachytherapy treatment planning. We conclude that initial images using the tomosynthesis reconstruction technique show much promise and bode well for future work.

  14. Live ultrasound volume reconstruction using scout scanning

    Science.gov (United States)

    Meyer, Amelie; Lasso, Andras; Ungi, Tamas; Fichtinger, Gabor

    2015-03-01

    Ultrasound-guided interventions often necessitate scanning of deep-seated anatomical structures that may be hard to visualize. Visualization can be improved using reconstructed 3D ultrasound volumes. High-resolution 3D reconstruction of a large area during clinical interventions is challenging if the region of interest is unknown. We propose a two-stage scanning method allowing the user to perform quick low-resolution scouting followed by high-resolution live volume reconstruction. Scout scanning is accomplished by stacking 2D tracked ultrasound images into a low-resolution volume. Then, within a region of interest defined in the scout scan, live volume reconstruction can be performed by continuous scanning until sufficient image density is achieved. We implemented the workflow as a module of the open-source 3D Slicer application, within the SlicerIGT extension and building on the PLUS toolkit. Scout scanning is performed in a few seconds using 3 mm spacing to allow region of interest definition. Live reconstruction parameters are set to provide good image quality (0.5 mm spacing, hole filling enabled) and feedback is given during live scanning by regularly updated display of the reconstructed volume. Use of scout scanning may allow the physician to identify anatomical structures. Subsequent live volume reconstruction in a region of interest may assist in procedures such as targeting needle interventions or estimating brain shift during surgery.

  15. Evaluating the sensitivity of the optimization of acquisition geometry to the choice of reconstruction algorithm in digital breast tomosynthesis through a simulation study

    Science.gov (United States)

    Zeng, Rongping; Park, Subok; Bakic, Predrag; Myers, Kyle J.

    2015-02-01

    Due to the limited number of views and limited angular span in digital breast tomosynthesis (DBT), the acquisition geometry design is an important factor that affects the image quality. Therefore, intensive studies have been conducted regarding the optimization of the acquisition geometry. However, different reconstruction algorithms were used in most of the reported studies. Because each type of reconstruction algorithm can provide images with its own image resolution, noise properties and artifact appearance, it is unclear whether the optimal geometries concluded for the DBT system in one study can be generalized to the DBT systems with a reconstruction algorithm different to the one applied in that study. Hence, we investigated the effect of the reconstruction algorithm on the optimization of acquisition geometry parameters through carefully designed simulation studies. Our results show that using various reconstruction algorithms, including the filtered back-projection, the simultaneous algebraic reconstruction technique, the maximum-likelihood method and the total-variation regularized least-square method, gave similar performance trends for the acquisition parameters for detecting lesions. The consistency of system ranking indicates that the choice of the reconstruction algorithm may not be critical for DBT system geometry optimization.

  16. Effect of View, Scan Orientation and Analysis Volume on Digital Tomosynthesis (DTS) Based Textural Analysis of Bone.

    Science.gov (United States)

    Kim, Woong; Oravec, Daniel; Divine, George W; Flynn, Michael J; Yeni, Yener N

    2017-05-01

    Digital tomosynthesis (DTS) derived textural parameters of human vertebral cancellous bone have been previously correlated to the finite element (FE) stiffness and 3D microstructure. The objective of this study was to optimize scanning configuration and use of multiple image slices in the analysis, so that FE stiffness prediction using DTS could be maximized. Forty vertebrae (T6, T8, T11, and L3) from ten cadavers (63-90 years) were scanned using microCT to obtain trabecular bone volume fraction (BV/TV) and FE stiffness. The vertebrae were then scanned using DTS anteroposteriorly (AP) and laterally (LM) while aligned axially (0°), transversely (90°) or obliquely (23°) to the superior-inferior axis of the vertebrae. From the serial DTS images, fractal dimension (FD), mean intercept length (MIL) and line fraction deviation (LFD) parameters were obtained from a 2D-single mid-stack location and 3D-multi-image stack. The DTS derived textural parameters were then correlated with FE stiffness using linear regression models within each scanning orientation. 3D-multi-image stack models obtained from Transverse-LM scanning orientation (90°) were most explanatory regardless of accounting for the effects of BV/TV. Therefore, DTS scanning perpendicular to the axis of the spine in an LM view is the preferred configuration for prediction of vertebral cancellous bone stiffness.

  17. Modeling the Anisotropic Resolution and Noise Properties of Digital Breast Tomosynthesis Image Reconstructions

    Science.gov (United States)

    2012-01-01

    oral presentation at the Annual Meeting of the American Association of Physicists in Medicine ( AAPM ) in Vancouver, British Columbia on August 2...Annual AAPM Meeting, my graduate supervisor, Dr. Maidment, presented this topic at Vancouver in my absence. In order to demonstrate the existence...Download PDF | View Cart Jump to Content Increase text size Decrease text size Medical Physics / Volume 38 / Issue 6 / 2011 JOINT AAPM /COMP

  18. Image artifacts in digital breast tomosynthesis: Investigation of the effects of system geometry and reconstruction parameters using a linear system approach

    Science.gov (United States)

    Hu, Yue-Houng; Zhao, Bo; Zhao, Wei

    2008-01-01

    Digital breast tomosynthesis (DBT) is a three-dimensional (3D) x-ray imaging modality that reconstructs image slices parallel to the detector plane. Image acquisition is performed using a limited angular range (less than 50 degrees) and a limited number of projection views (less than 50 views). Due to incomplete data sampling, image artifacts are unavoidable in DBT. In this preliminary study, the image artifacts in DBT were investigated systematically using a linear system approximation. A cascaded linear system model of DBT was developed to calculate the 3D presampling modulation transfer function (MTF) with different image acquisition geometries and reconstruction filters using a filtered backprojection (FBP) algorithm. A thin, slanted tungsten (W) wire was used to measure the presampling MTF of the DBT system in the cross-sectional plane defined by the thickness (z-) and tube travel (x-) directions. The measurement was in excellent agreement with the calculation using the model. A small steel bead was used to calculate the artifact spread function (ASF) of the DBT system. The ASF was correlated with the convolution of the two-dimensional (2D) point spread function (PSF) of the system and the object function of the bead. The results showed that the cascaded linear system model can be used to predict the magnitude of image artifacts of small, high-contrast objects with different image acquisition geometry and reconstruction filters. PMID:19175083

  19. Design and evaluation of a grid reciprocation scheme for use in digital breast tomosynthesis

    Science.gov (United States)

    Patel, Tushita; Sporkin, Helen; Peppard, Heather; Williams, Mark B.

    2016-03-01

    This work describes a methodology for efficient removal of scatter radiation during digital breast tomosynthesis (DBT). The goal of this approach is to enable grid image obscuration without a large increase in radiation dose by minimizing misalignment of the grid focal point (GFP) and x-ray focal spot (XFS) during grid reciprocation. Hardware for the motion scheme was built and tested on the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis (MBT) on a single gantry. The DMT scanner uses fully isocentric rotation of tube and x-ray detector for maintaining a fixed tube-detector alignment during DBT imaging. A cellular focused copper prototype grid with 80 cm focal length, 3.85 mm height, 0.1 mm thick lamellae, and 1.1 mm hole pitch was tested. Primary transmission of the grid at 28 kV tube voltage was on average 74% with the grid stationary and aligned for maximum transmission. It fell to 72% during grid reciprocation by the proposed method. Residual grid line artifacts (GLAs) in projection views and reconstructed DBT images are characterized and methods for reducing the visibility of GLAs in the reconstructed volume through projection image flat-field correction and spatial frequency-based filtering of the DBT slices are described and evaluated. The software correction methods reduce the visibility of these artifacts in the reconstructed volume, making them imperceptible both in the reconstructed DBT images and their Fourier transforms.

  20. Investigation of the Z-axis resolution of breast tomosynthesis mammography systems

    Science.gov (United States)

    Zhang, Yiheng; Chan, Heang-Ping; Sahiner, Berkman; Wei, Jun; Ge, Jun; Hadjiiski, Lubomir M.; Zhou, Chuan

    2007-03-01

    Digital Tomosynthesis Mammography (DTM) is a promising modality that can improve breast cancer detection. DTM acquires low-dose mammograms at a number of projection angles over a limited angular range and reconstructs the 3D breast volume. DTM can provide depth information to separate overlapping breast tissues occurred in conventional mammograms, thereby facilitating detection of subtle lesions. In this work, we investigated the impact of the imaging parameters and reconstruction methods on the Z-axis resolution in DTM systems. The Z-axis resolution represents the ability of the DTM system to distinguish adjacent objects along the depth direction. A DTM system with variable image acquisition parameters was modeled. In this preliminary study, a computer phantom containing a high-density point object embedded in an air volume was used. We simulated a range of DTM conditions by generating an appropriate number of PV images in 3° increments covering a total tomosynthesis angle from +/-15° to +/-30°. The Simultaneous Algebraic Reconstruction Technique (SART) was used for reconstruction of the imaged volume from the noise-free projection data and the results were compared to those of back-projection method. Vertical line profiles along the Z-axis and through the object center were extracted from the reconstructed volume and the full-width-at-half-maximum (FWHM) of the normalized intensity profile was used to evaluate the Z-axis resolution. Preliminary results demonstrated that while the Z-axis resolution remains almost constant as a function of depth within a 5-cm-thick volume, it is strongly affected by the PV angular range such that the depth resolution improves with increasing total tomosynthesis angle. The depth resolution also depends on the reconstruction algorithm employed; the SART method is superior to the simple back-projection method in terms of depth resolution.

  1. Improved volumetric imaging in tomosynthesis using combined multiaxial sweeps.

    Science.gov (United States)

    Gersh, Jacob A; Wiant, David B; Best, Ryan C M; Bennett, Marcus C; Munley, Michael T; King, June D; McKee, Mahta M; Baydush, Alan H

    2010-09-03

    This study explores the volumetric reconstruction fidelity attainable using tomosynthesis with a kV imaging system which has a unique ability to rotate isocentrically and with multiple degrees of mechanical freedom. More specifically, we seek to investigate volumetric reconstructions by combining multiple limited-angle rotational image acquisition sweeps. By comparing these reconstructed images with those of a CBCT reconstruction, we can gauge the volumetric fidelity of the reconstructions. In surgical situations, the described tomosynthesis-based system could provide high-quality volumetric imaging without requiring patient motion, even with rotational limitations present. Projections were acquired using the Digital Integrated Brachytherapy Unit, or IBU-D. A phantom was used which contained several spherical objects of varying contrast. Using image projections acquired during isocentric sweeps around the phantom, reconstructions were performed by filtered backprojection. For each image acquisition sweep configuration, a contrasting sphere is analyzed using two metrics and compared to a gold standard CBCT reconstruction. Since the intersection of a reconstructed sphere and an imaging plane is ideally a circle with an eccentricity of zero, the first metric presented compares the effective eccentricity of intersections of reconstructed volumes and imaging planes. As another metric of volumetric reconstruction fidelity, the volume of one of the contrasting spheres was determined using manual contouring. By comparing these manually delineated volumes with a CBCT reconstruction, we can gauge the volumetric fidelity of reconstructions. The configuration which yielded the highest overall volumetric reconstruction fidelity, as determined by effective eccentricities and volumetric contouring, consisted of two orthogonally-offset 60° L-arm sweeps and a single C-arm sweep which shared a pivot point with one the L-arm sweeps. When compared to a similar configuration that

  2. Saturated Reconstruction of a Volume of Neocortex.

    Science.gov (United States)

    Kasthuri, Narayanan; Hayworth, Kenneth Jeffrey; Berger, Daniel Raimund; Schalek, Richard Lee; Conchello, José Angel; Knowles-Barley, Seymour; Lee, Dongil; Vázquez-Reina, Amelio; Kaynig, Verena; Jones, Thouis Raymond; Roberts, Mike; Morgan, Josh Lyskowski; Tapia, Juan Carlos; Seung, H Sebastian; Roncal, William Gray; Vogelstein, Joshua Tzvi; Burns, Randal; Sussman, Daniel Lewis; Priebe, Carey Eldin; Pfister, Hanspeter; Lichtman, Jeff William

    2015-07-30

    We describe automated technologies to probe the structure of neural tissue at nanometer resolution and use them to generate a saturated reconstruction of a sub-volume of mouse neocortex in which all cellular objects (axons, dendrites, and glia) and many sub-cellular components (synapses, synaptic vesicles, spines, spine apparati, postsynaptic densities, and mitochondria) are rendered and itemized in a database. We explore these data to study physical properties of brain tissue. For example, by tracing the trajectories of all excitatory axons and noting their juxtapositions, both synaptic and non-synaptic, with every dendritic spine we refute the idea that physical proximity is sufficient to predict synaptic connectivity (the so-called Peters' rule). This online minable database provides general access to the intrinsic complexity of the neocortex and enables further data-driven inquiries.

  3. Accuracy and reading time for six strategies using digital breast tomosynthesis in women with mammographically negative dense breasts.

    Science.gov (United States)

    Tagliafico, Alberto Stefano; Calabrese, Massimo; Bignotti, Bianca; Signori, Alessio; Fisci, Erica; Rossi, Federica; Valdora, Francesca; Houssami, Nehmat

    2017-06-22

    To compare six strategies using digital breast tomosynthesis in women with mammographically negative dense breasts. This is a substudy of the 'ASTOUND' trial. 163 women who underwent tomosynthesis with synthetically reconstructed projection images (S-2D) inclusive of 13 (7.9%) cases diagnosed with breast cancer at histopathology after surgery were evaluated. Accuracy measures and screen-reading time of six reading strategies were assessed: (A) Single reading of S-2D alone, (B) single reading of tomosynthesis alone, (C) single reading of joint interpretation of tomosynthesis + S-2D, (D) double-reading of S-2D alone, (E) double reading of tomosynthesis alone, (F) double reading of joint interpretation of tomosynthesis + S-2D. The median age of the patients was 53 years (range, 36-88 years). The highest global accuracy was obtained with double reading of tomosynthesis + S2D (F) with an AUC of 0.979 (preading time of 154 s versus 34 s for the fastest strategy (single reading of S-2D alone). The AUCs for the other five strategies did not differ from each other. Double reading of tomosynthesis+ S2D had the best accuracy of six screen-reading strategies although it had the longest reading time. • Tomosynthesis acquisitions are progressively implemented with reconstructed synthesized 2D images • Double reading using S-2D plus tomosynthesis had the highest global accuracy (preading of S-2D plus tomosynthesis increased reading time.

  4. TOMOGRAPHIC MAMMOGRAPHY AND TOMOSYNTHESIS USING OPENGL

    Directory of Open Access Journals (Sweden)

    S. A. Zolotarev

    2016-01-01

    Full Text Available Computed tomography is still being intensively studied and widely used to solve a number of industrial and medical applications. The simultaneous algebraic reconstruction technique (SART and Bayesian inference reconstruction (BIR are considered as advantageous iteration methods that are most suitable for improving the quality of the reconstructed 3D-images. The paper deals with the parallel iterative algorithms to ensure the reconstruction of threedimensional images of the breast, recovered from a limited set of noisy X-ray projections. Algebraic method of reconstruction with simultaneous iterations – SART and iterative method for statistical reconstruction of BIR are deemed to be the most preferred iterative methods. We believe that these methods are particularly useful for improving the quality of breast reconstructed image. We use the graphics processor (GPU to accelerate the process of reconstruction. Preliminary results show that all investigated methods are useful in breast reconstruction layered images. However, it was found that the method of classical tomosynthesis SAA is less efficient than iterative methods SART and BIR as the worst suppress the anatomical noise. Despite the fact that the estimated ratio of the contrast / noise ratio in the presence of internal structures with low contrast is higher for classical tomosynthesis method the SAA, its effectiveness in the presence of highly structured background is low. In our opinion the best results can be achieved using statistical iterative reconstruction BIR.

  5. Dynamic Contrast-Enhanced Digital Breast Tomosynthesis

    Science.gov (United States)

    2013-03-01

    two papers accepted to Medical Physics ), we spent considerable time and effort to understand the implications of these changes. The details of...Acquisition Geometry and Reconstruction Parameters in Tomosynthesis. Submitted to Medical Physics for peer-review, June 2013 Brian C. Lee BS, Susan...Kao YH, Albert M, et al. Validation of MTF measurement for digital mammography quality control. Medical Physics . 2005;32(6):1684-95. 6. Kao Y-H

  6. Automatic segmentation of mammogram and tomosynthesis images

    Science.gov (United States)

    Sargent, Dusty; Park, Sun Young

    2016-03-01

    Breast cancer is a one of the most common forms of cancer in terms of new cases and deaths both in the United States and worldwide. However, the survival rate with breast cancer is high if it is detected and treated before it spreads to other parts of the body. The most common screening methods for breast cancer are mammography and digital tomosynthesis, which involve acquiring X-ray images of the breasts that are interpreted by radiologists. The work described in this paper is aimed at optimizing the presentation of mammography and tomosynthesis images to the radiologist, thereby improving the early detection rate of breast cancer and the resulting patient outcomes. Breast cancer tissue has greater density than normal breast tissue, and appears as dense white image regions that are asymmetrical between the breasts. These irregularities are easily seen if the breast images are aligned and viewed side-by-side. However, since the breasts are imaged separately during mammography, the images may be poorly centered and aligned relative to each other, and may not properly focus on the tissue area. Similarly, although a full three dimensional reconstruction can be created from digital tomosynthesis images, the same centering and alignment issues can occur for digital tomosynthesis. Thus, a preprocessing algorithm that aligns the breasts for easy side-by-side comparison has the potential to greatly increase the speed and accuracy of mammogram reading. Likewise, the same preprocessing can improve the results of automatic tissue classification algorithms for mammography. In this paper, we present an automated segmentation algorithm for mammogram and tomosynthesis images that aims to improve the speed and accuracy of breast cancer screening by mitigating the above mentioned problems. Our algorithm uses information in the DICOM header to facilitate preprocessing, and incorporates anatomical region segmentation and contour analysis, along with a hidden Markov model (HMM) for

  7. TU-EF-207-04: Advances in Detector Technology for Breast Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W. [SUNY Stony Brook (United States)

    2015-06-15

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation.

  8. Radiative Transport Based Flame Volume Reconstruction from Videos.

    Science.gov (United States)

    Shen, Liang; Zhu, Dengming; Nadeem, Saad; Wang, Zhaoqi; Kaufman, Arie E

    2017-06-06

    We introduce a novel approach for flame volume reconstruction from videos using inexpensive charge-coupled device (CCD) consumer cameras. The approach includes an economical data capture technique using inexpensive CCD cameras. Leveraging the smear feature of the CCD chip, we present a technique for synchronizing CCD cameras while capturing flame videos from different views. Our reconstruction is based on the radiative transport equation which enables complex phenomena such as emission, extinction, and scattering to be used in the rendering process. Both the color intensity and temperature reconstructions are implemented using the CUDA parallel computing framework, which provides real-time performance and allows visualization of reconstruction results after every iteration. We present the results of our approach using real captured data and physically-based simulated data. Finally, we also compare our approach against the other state-of-the-art flame volume reconstruction methods and demonstrate the efficacy and efficiency of our approach in four different applications: (1) rendering of reconstructed flames in virtual environments, (2) rendering of reconstructed flames in augmented reality, (3) flame stylization, and (4) reconstruction of other semitransparent phenomena.

  9. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    Directory of Open Access Journals (Sweden)

    Saeed Seyyedi

    2013-01-01

    Full Text Available Digital breast tomosynthesis (DBT is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART and total variation regularized reconstruction techniques (ART+TV are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM values.

  10. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Schleede, Simone, E-mail: Schleede@tum.de [Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Bech, Martin, E-mail: martin.bech@tum.de [Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Medical Radiation Physics, Lund University, 22185 Lund (Sweden); Grandl, Susanne, E-mail: Susanne.Grandl@med.uni-muenchen.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377 München (Germany); Sztrókay, Aniko, E-mail: Aniko.Sztrokay@med.uni-muenchen.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377 München (Germany); Herzen, Julia, E-mail: julia.herzen@hzg.de [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht (Germany); Mayr, Doris, E-mail: doris.mayr@med.uni-muenchen.de [Institute of Pathology, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337 Munich (Germany); Stockmar, Marco, E-mail: marco.stockmar@ph.tum.de [Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Potdevin, Guillaume, E-mail: potdevinguillaume@gmail.com [Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); and others

    2014-03-15

    Purpose: Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. Material and methods: A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. Results: Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase

  11. Optical geometry calibration method for free-form digital tomosynthesis

    Science.gov (United States)

    Chtcheprov, Pavel; Hartman, Allison; Shan, Jing; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2016-03-01

    Digital tomosynthesis is a type of limited angle tomography that allows 3D information to be reconstructed from a set of x-ray projection images taken at various angles using an x-ray tube, a mechanical arm to rotate the tube about the object, and a digital detector. Tomosynthesis reconstruction requires the precise location of the detector with respect to each x-ray source, forcing all current clinical tomosynthesis systems to use a physically coupled source and detector so the geometry is always known and is always the same. This limits the imaging geometries and its large size is impractical for mobile or field operations. To counter this, we have developed a free form tomosynthesis with a decoupled, free-moving source and detector that uses a novel optical method for accurate and real-time geometry calibration to allow for manual, hand-held tomosynthesis and even CT imaging. We accomplish this by using a camera, attached to the source, to track the motion of the source relative to the detector. Attached to the detector is an optical pattern and the image captured by the camera is then used to determine the relative camera/pattern position and orientation by analyzing the pattern distortion and calculating the source positions for each projection, necessary for 3D reconstruction. This allows for portable imaging in the field and also as an inexpensive upgrade to existing 2D systems, such as in developing countries, to provide 3D image data. Here we report the first feasibility demonstrations of free form digital tomosynthesis systems using the method.

  12. In-line phase shift tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hammonds, Jeffrey C.; Price, Ronald R.; Pickens, David R.; Donnelly, Edwin F. [Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232 (United States)

    2013-08-15

    Purpose: The purpose of this work is to (1) demonstrate laboratory measurements of phase shift images derived from in-line phase-contrast radiographs using the attenuation-partition based algorithm (APBA) of Yan et al.[Opt. Express 18(15), 16074–16089 (2010)], (2) verify that the APBA reconstructed images obey the linearity principle, and (3) reconstruct tomosynthesis phase shift images from a collection of angularly sampled planar phase shift images.Methods: An unmodified, commercially available cabinet x-ray system (Faxitron LX-60) was used in this experiment. This system contains a tungsten anode x-ray tube with a nominal focal spot size of 10 μm. The digital detector uses CsI/CMOS with a pixel size of 50 × 50 μm. The phantoms used consisted of one acrylic plate, two polystyrene plates, and a habanero pepper. Tomosynthesis images were reconstructed from 51 images acquired over a ±25° arc. All phase shift images were reconstructed using the APBA.Results: Image contrast derived from the planar phase shift image of an acrylic plate of uniform thickness exceeded the contrast of the traditional attenuation image by an approximate factor of two. Comparison of the planar phase shift images from a single, uniform thickness polystyrene plate with two polystyrene plates demonstrated an approximate linearity of the estimated phase shift with plate thickness (−1600 rad vs −2970 rad). Tomographic phase shift images of the habanero pepper exhibited acceptable spatial resolution and contrast comparable to the corresponding attenuation image.Conclusions: This work demonstrated the feasibility of laboratory-based phase shift tomosynthesis and suggests that phase shift imaging could potentially provide a new imaging biomarker. Further investigation will be needed to determine if phase shift contrast will be able to provide new tissue contrast information or improved clinical performance.

  13. Three-dimensional linear system analysis for breast tomosynthesis

    Science.gov (United States)

    Zhao, Bo; Zhao, Wei

    2008-01-01

    The optimization of digital breast tomosynthesis (DBT) geometry and reconstruction is crucial for the clinical translation of this exciting new imaging technique. In the present work, the authors developed a three-dimensional (3D) cascaded linear system model for DBT to investigate the effects of detector performance, imaging geometry, and image reconstruction algorithm on the reconstructed image quality. The characteristics of a prototype DBT system equipped with an amorphous selenium flat-panel detector and filtered backprojection reconstruction were used as an example in the implementation of the linear system model. The propagation of signal and noise in the frequency domain was divided into six cascaded stages incorporating the detector performance, imaging geometry, and reconstruction filters. The reconstructed tomosynthesis imaging quality was characterized by spatial frequency dependent presampling modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) in 3D. The results showed that both MTF and NPS were affected by the angular range of the tomosynthesis scan and the reconstruction filters. For image planes parallel to the detector (in-plane), MTF at low frequencies was improved with increase in angular range. The shape of the NPS was affected by the reconstruction filters. Noise aliasing in 3D could be introduced by insufficient voxel sampling, especially in the z (slice-thickness) direction where the sampling distance (slice thickness) could be more than ten times that for in-plane images. Aliasing increases the noise at high frequencies, which causes degradation in DQE. Application of a reconstruction filter that limits the frequency components beyond the Nyquist frequency in the z direction, referred to as the slice thickness filter, eliminates noise aliasing and improves 3D DQE. The focal spot blur, which arises from continuous tube travel during tomosynthesis acquisition, could degrade DQE significantly

  14. Threee—Dimensional Volume Datafield Reconstruction from Physical Model

    Institute of Scientific and Technical Information of China (English)

    董峰; 蔡文立; 等

    1997-01-01

    This paper focuses on entirety interpretation,representation and reconstruction of three-dimensional volume data sets based on the physical model of the data.The data model is represented by three-dimensional geometric model The surfaces inside the datafield are extracted and matched to the model surfaces in order to reconstruct the new datafield based on the model.A conclusion is drawn that physical modeling provides a good basis and approach to interpret and represent the data sets.This paper also presents a subdivision algorithm to fast trace B-spline curve and the contrary algorithms is adopted to extract the geometry feature of the curve.

  15. Auto-focused panoramic dental tomosynthesis imaging with exponential polynomial based sharpness indicators

    Science.gov (United States)

    Lee, Taewon; Lee, Yeon Ju; Cho, Seungryong

    2017-02-01

    In this paper, we develop an improved auto-focusing capability of a panoramic dental tomosynthesis imager. We propose an auto-focusing algorithm with an efficient sharpness indicator based on exponential polynomials which provides better quantitation of steep gradients than the conventional one based on algebraic polynomials. With its accurate estimation of the sharpness of the reconstructed slices, the proposed method resulted in a better performance of automatically extracting in-focus slices in the dental panoramic tomosynthesis.

  16. TU-EF-207-03: Advances in Stationary Breast Tomosynthesis Using Distributed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, O. [The University of North Carolina at Chapel Hill (United States)

    2015-06-15

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation.

  17. Stochastic noise characteristics in matrix inversion tomosynthesis (MITS).

    Science.gov (United States)

    Godfrey, Devon J; McAdams, H P; Dobbins, James T Third

    2009-05-01

    Matrix inversion tomosynthesis (MITS) uses known imaging geometry and linear systems theory to deterministically separate in-plane detail from residual tomographic blur in a set of conventional tomosynthesis ("shift-and-add") planes. A previous investigation explored the effect of scan angle (ANG), number of projections (N), and number of reconstructed planes (NP) on the MITS impulse response and modulation transfer function characteristics, and concluded that ANG = 20 degrees, N = 71, and NP = 69 is the optimal MITS imaging technique for chest imaging on our prototype tomosynthesis system. This article examines the effect of ANG, N, and NP on the MITS exposure-normalized noise power spectra (ENNPS) and seeks to confirm that the imaging parameters selected previously by an analysis of the MITS impulse response also yield reasonable stochastic properties in MITS reconstructed planes. ENNPS curves were generated for experimentally acquired mean-subtracted projection images, conventional tomosynthesis planes, and MITS planes with varying combinations of the parameters ANG, N, and NP. Image data were collected using a prototype tomosynthesis system, with 11.4 cm acrylic placed near the image receptor to produce lung-equivalent beam hardening and scattered radiation. Ten identically acquired tomosynthesis data sets (realizations) were collected for each selected technique and used to generate ensemble mean images that were subtracted from individual image realizations prior to noise power spectra (NPS) estimation. NPS curves were normalized to account for differences in entrance exposure (as measured with an ion chamber), yielding estimates of the ENNPS for each technique. Results suggest that mid- and high-frequency noise in MITS planes is fairly equivalent in magnitude to noise in conventional tomosynthesis planes, but low-frequency noise is amplified in the most anterior and posterior reconstruction planes. Selecting the largest available number of projections (N

  18. Interactive multiscale tensor reconstruction for multiresolution volume visualization.

    Science.gov (United States)

    Suter, Susanne K; Guitián, José A Iglesias; Marton, Fabio; Agus, Marco; Elsener, Andreas; Zollikofer, Christoph P E; Gopi, M; Gobbetti, Enrico; Pajarola, Renato

    2011-12-01

    Large scale and structurally complex volume datasets from high-resolution 3D imaging devices or computational simulations pose a number of technical challenges for interactive visual analysis. In this paper, we present the first integration of a multiscale volume representation based on tensor approximation within a GPU-accelerated out-of-core multiresolution rendering framework. Specific contributions include (a) a hierarchical brick-tensor decomposition approach for pre-processing large volume data, (b) a GPU accelerated tensor reconstruction implementation exploiting CUDA capabilities, and (c) an effective tensor-specific quantization strategy for reducing data transfer bandwidth and out-of-core memory footprint. Our multiscale representation allows for the extraction, analysis and display of structural features at variable spatial scales, while adaptive level-of-detail rendering methods make it possible to interactively explore large datasets within a constrained memory footprint. The quality and performance of our prototype system is evaluated on large structurally complex datasets, including gigabyte-sized micro-tomographic volumes.

  19. A novel solid-angle tomosynthesis (SAT) scanning scheme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jin; Yu, Cedric [Department of Radiation Oncology, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, Maryland 21201 and Xcision Medical System, LLC, 12707 Chapel Chase Drive, Clarksville, Maryland 21209 (United States)

    2010-08-15

    Purpose: Digital tomosynthesis (DTS) recently gained extensive research interests in both diagnostic and radiation therapy fields. Conventional DTS images are generated by scanning an x-ray source and flat-panel detector pair on opposite sides of an object, with the scanning trajectory on a one-dimensional curve. A novel tomosynthesis method named solid-angle tomosynthesis (SAT) is proposed, where the x-ray source scans on an arbitrary shaped two-dimensional surface. Methods: An iterative algorithm in the form of total variation regulated expectation maximization is developed for SAT image reconstruction. The feasibility and effectiveness of SAT is corroborated by computer simulation studies using three-dimensional (3D) numerical phantoms including a 3D Shepp-Logan phantom and a volumetric CT image set of a human breast. Results: SAT is able to cover more space in Fourier domain more uniformly than conventional DTS. Greater coverage and more isotropy in the frequency domain translate to fewer artifacts and more accurately restored features in the in-plane reconstruction. Conclusions: Comparing with conventional DTS, SAT allows cone-shaped x-ray beams to project from more solid angles, thus provides more coverage in the spatial-frequency domain, resulting in better quality of reconstructed image.

  20. Application of Hydrogel in Reconstruction Surgery: Hydrogel/Fat Graft Complex Filler for Volume Reconstruction in Critical Sized Muscle Defects

    Directory of Open Access Journals (Sweden)

    Y. F. Lui

    2016-01-01

    Full Text Available Autogenic fat graft usually suffers from degeneration and volume shrinkage in volume reconstruction applications. How to maintain graft viability and graft volume is an essential consideration in reconstruction therapies. In this presented investigation, a new fat graft transplantation method was developed aiming to improve long term graft viability and volume reconstruction effect by incorporation of hydrogel. The harvested fat graft is dissociated into small fragments and incorporated into a collagen based hydrogel to form a hydrogel/fat graft complex for volume reconstruction purpose. In vitro results indicate that the collagen based hydrogel can significantly improve the survivability of cells inside isolated graft. In a 6-month investigation on artificial created defect model, this hydrogel/fat graft complex filler has demonstrated the ability of promoting fat pad formation inside the targeted defect area. The newly generated fat pad can cover the whole defect and restore its original dimension in 6-month time point. Compared to simple fat transplantation, this hydrogel/fat graft complex system provides much improvement on long term volume restoration effect against degeneration and volume shrinkage. One notable effect is that there is continuous proliferation of adipose tissue throughout the 6-month period. In summary, the hydrogel/fat graft system presented in this investigation demonstrated a better and more significant effect on volume reconstruction in large sized volume defect than simple fat transplantation.

  1. In-line phase-contrast breast tomosynthesis: a phantom feasibility study at a synchrotron radiation facility

    Science.gov (United States)

    Bliznakova, K.; Russo, P.; Kamarianakis, Z.; Mettivier, G.; Requardt, H.; Bravin, A.; Buliev, I.

    2016-08-01

    The major objective is to adopt, apply and test developed in-house algorithms for volumetric breast reconstructions from projection images, obtained in in-line phase-contrast mode. Four angular sets, each consisting of 17 projection images obtained from four physical phantoms, were acquired at beamline ID17, European Synchroton Radiation Facility, Grenoble, France. The tomosynthesis arc was  ±32°. The physical phantoms differed in complexity of texture and introduced features of interest. Three of the used phantoms were in-house developed, and made of epoxy resin, polymethyl-methacrylate and paraffin wax, while the fourth phantom was the CIRS BR3D. The projection images had a pixel size of 47 µm  ×  47 µm. Tomosynthesis images were reconstructed with standard shift-and-add (SAA) and filtered backprojection (FBP) algorithms. It was found that the edge enhancement observed in planar x-ray images is preserved in tomosynthesis images from both phantoms with homogeneous and highly heterogeneous backgrounds. In case of BR3D, it was found that features not visible in the planar case were well outlined in the tomosynthesis slices. In addition, the edge enhancement index calculated for features of interest was found to be much higher in tomosynthesis images reconstructed with FBP than in planar images and tomosynthesis images reconstructed with SAA. The comparison between images reconstructed by the two reconstruction algorithms shows an advantage for the FBP method in terms of better edge enhancement. Phase-contrast breast tomosynthesis realized in in-line mode benefits the detection of suspicious areas in mammography images by adding the edge enhancement effect to the reconstructed slices.

  2. Detection of soft tissue densities from digital breast tomosynthesis: comparison of conventional and deep learning approaches

    Science.gov (United States)

    Fotin, Sergei V.; Yin, Yin; Haldankar, Hrishikesh; Hoffmeister, Jeffrey W.; Periaswamy, Senthil

    2016-03-01

    Computer-aided detection (CAD) has been used in screening mammography for many years and is likely to be utilized for digital breast tomosynthesis (DBT). Higher detection performance is desirable as it may have an impact on radiologist's decisions and clinical outcomes. Recently the algorithms based on deep convolutional architectures have been shown to achieve state of the art performance in object classification and detection. Similarly, we trained a deep convolutional neural network directly on patches sampled from two-dimensional mammography and reconstructed DBT volumes and compared its performance to a conventional CAD algorithm that is based on computation and classification of hand-engineered features. The detection performance was evaluated on the independent test set of 344 DBT reconstructions (GE SenoClaire 3D, iterative reconstruction algorithm) containing 328 suspicious and 115 malignant soft tissue densities including masses and architectural distortions. Detection sensitivity was measured on a region of interest (ROI) basis at the rate of five detection marks per volume. Moving from conventional to deep learning approach resulted in increase of ROI sensitivity from 0:832 +/- 0:040 to 0:893 +/- 0:033 for suspicious ROIs; and from 0:852 +/- 0:065 to 0:930 +/- 0:046 for malignant ROIs. These results indicate the high utility of deep feature learning in the analysis of DBT data and high potential of the method for broader medical image analysis tasks.

  3. Theoretical framework for filtered back projection in tomosynthesis

    Science.gov (United States)

    Lauritsch, Guenter; Haerer, Wolfgang H.

    1998-06-01

    Tomosynthesis provides only incomplete 3D-data of the imaged object. Therefore it is important for reconstruction tasks to take all available information carefully into account. We are focusing on geometrical aspects of the scan process which can be incorporated into reconstruction algorithms by filtered backprojection methods. Our goal is a systematic approach to filter design. A unified theory of tomosynthesis is derived in the context of linear system theory, and a general four-step filter design concept is presented. Since the effects of filtering are understandable in this context, a methodical formulation of filter functions is possible in order to optimize image quality regarding the specific requirements of any application. By variation of filter parameters the slice thickness and the spatial resolution can easily be adjusted. The proposed general concept of filter design is exemplarily discussed for circular scanning but is valid for any specific scan geometry. The inherent limitations of tomosynthesis are pointed out and strategies for reducing the effects of incomplete sampling are developed. Results of a dental application show a striking improvement in image quality.

  4. Compact high order finite volume method on unstructured grids III: Variational reconstruction

    Science.gov (United States)

    Wang, Qian; Ren, Yu-Xin; Pan, Jianhua; Li, Wanai

    2017-05-01

    This paper presents a variational reconstruction for the high order finite volume method in solving the two-dimensional Navier-Stokes equations on arbitrary unstructured grids. In the variational reconstruction, an interfacial jump integration is defined to measure the jumps of the reconstruction polynomial and its spatial derivatives on each cell interface. The system of linear equations to determine the reconstruction polynomials is derived by minimizing the total interfacial jump integration in the computational domain using the variational method. On each control volume, the derived equations are implicit relations between the coefficients of the reconstruction polynomials defined on a compact stencil involving only the current cell and its direct face-neighbors. The reconstruction and time integration coupled iteration method proposed in our previous paper is used to achieve high computational efficiency. A problem-independent shock detector and the WBAP limiter are used to suppress non-physical oscillations in the simulation of flow with discontinuities. The advantages of the finite volume method using the variational reconstruction over the compact least-squares finite volume method proposed in our previous papers are higher accuracy, higher computational efficiency, more flexible boundary treatment and non-singularity of the reconstruction matrix. A number of numerical test cases are solved to verify the accuracy, efficiency and shock-capturing capability of the finite volume method using the variational reconstruction.

  5. Circular tomosynthesis for neuro perfusion imaging on an interventional C-arm

    Science.gov (United States)

    Claus, Bernhard E.; Langan, David A.; Al Assad, Omar; Wang, Xin

    2015-03-01

    There is a clinical need to improve cerebral perfusion assessment during the treatment of ischemic stroke in the interventional suite. The clinician is able to determine whether the arterial blockage was successfully opened but is unable to sufficiently assess blood flow through the parenchyma. C-arm spin acquisitions can image the cerebral blood volume (CBV) but are challenged to capture the temporal dynamics of the iodinated contrast bolus, which is required to derive, e.g., cerebral blood flow (CBF) and mean transit time (MTT). Here we propose to utilize a circular tomosynthesis acquisition on the C-arm to achieve the necessary temporal sampling of the volume at the cost of incomplete data. We address the incomplete data problem by using tools from compressed sensing and incorporate temporal interpolation to improve our temporal resolution. A CT neuro perfusion data set is utilized for generating a dynamic (4D) volumetric model from which simulated tomo projections are generated. The 4D model is also used as a ground truth reference for performance evaluation. The performance that may be achieved with the tomo acquisition and 4D reconstruction (under simulation conditions, i.e., without considering data fidelity limitations due to imaging physics and imaging chain) is evaluated. In the considered scenario, good agreement between the ground truth and the tomo reconstruction in the parenchyma was achieved.

  6. Towards an accurate volume reconstruction in atom probe tomography.

    Science.gov (United States)

    Beinke, Daniel; Oberdorfer, Christian; Schmitz, Guido

    2016-06-01

    An alternative concept for the reconstruction of atom probe data is outlined. It is based on the calculation of realistic trajectories of the evaporated ions in a recursive refinement process. To this end, the electrostatic problem is solved on a Delaunay tessellation. To enable the trajectory calculation, the order of reconstruction is inverted with respect to previous reconstruction schemes: the last atom detected is reconstructed first. In this way, the emitter shape, which controls the trajectory, can be defined throughout the duration of the reconstruction. A proof of concept is presented for 3D model tips, containing spherical precipitates or embedded layers of strongly contrasting evaporation thresholds. While the traditional method following Bas et al. generates serious distortions in these cases, a reconstruction with the proposed electrostatically informed approach improves the geometry of layers and particles significantly.

  7. Interventional C-arm tomosynthesis for vascular imaging: initial results

    Science.gov (United States)

    Langan, David A.; Claus, Bernhard E. H.; Al Assad, Omar; Trousset, Yves; Riddell, Cyril; Avignon, Gregoire; Solomon, Stephen B.; Lai, Hao; Wang, Xin

    2015-03-01

    As percutaneous endovascular procedures address more complex and broader disease states, there is an increasing need for intra-procedure 3D vascular imaging. In this paper, we investigate C-Arm 2-axis tomosynthesis ("Tomo") as an alternative to C-Arm Cone Beam Computed Tomography (CBCT) for workflow situations in which the CBCT acquisition may be inconvenient or prohibited. We report on our experience in performing tomosynthesis acquisitions with a digital angiographic imaging system (GE Healthcare Innova 4100 Angiographic Imaging System, Milwaukee, WI). During a tomo acquisition the detector and tube each orbit on a plane above and below the table respectively. The tomo orbit may be circular or elliptical, and the tomographic half-angle in our studies varied from approximately 16 to 28 degrees as a function of orbit period. The trajectory, geometric calibration, and gantry performance are presented. We overview a multi-resolution iterative reconstruction employing compressed sensing techniques to mitigate artifacts associated with incomplete data reconstructions. In this work, we focus on the reconstruction of small high contrast objects such as iodinated vasculature and interventional devices. We evaluate the overall performance of the acquisition and reconstruction through phantom acquisitions and a swine study. Both tomo and comparable CBCT acquisitions were performed during the swine study thereby enabling the use of CBCT as a reference in the evaluation of tomo vascular imaging. We close with a discussion of potential clinical applications for tomo, reflecting on the imaging and workflow results achieved.

  8. Geometry calibration between X-ray source and detector for tomosynthesis with a portable X-ray system.

    Science.gov (United States)

    Sato, Kohei; Ohnishi, Takashi; Sekine, Masashi; Haneishi, Hideaki

    2017-05-01

    Tomosynthesis is attracting attention as a low-dose tomography technology compared with X-ray CT. However, conventional tomosynthesis imaging devices are large and stationary. Furthermore, there is a limitation in the working range of the X-ray source during image acquisition. We have previously proposed the use of a portable X-ray device for tomosynthesis that can be used for ward rounds and emergency medicine. The weight of this device can be reduced by using a flat panel detector (FPD), and flexibility is realized by the free placement of the X-ray source and FPD. Tomosynthesis using a portable X-ray device requires calibration of the geometry between the X-ray source and detector at each image acquisition. We propose a method for geometry calibration and demonstrate tomosynthesis image reconstruction by this method. An image processing-based calibration method using an asymmetric and multilayered calibration object (AMCO) is presented. Since the AMCO is always attached to the X-ray source housing for geometry calibration, the additional setting of a calibration object or marker around or on the patients is not required. The AMCO's multilayer structure improves the calibration accuracy, especially in the out-of-plane direction. Two experiments were conducted. The first was performed to evaluate the calibration accuracy using an XY positioning stage and a gonio stage. As a result, an accuracy of approximately 1 mm was achieved both in the in-plane and out-of-plane directions. An angular accuracy of approximately [Formula: see text] was confirmed. The second experiment was conducted to evaluate the reconstructed image using a foot model phantom. Only the sagittal plane could be clearly observed with the proposed method. We proposed a tomosynthesis imaging system using a portable X-ray device. From the experimental results, the proposed method could provide sufficient calibration accuracy and a clear sagittal plane of the reconstructed tomosynthesis image.

  9. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2009-01-01

    Full Text Available Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed in this paper. This method divides both projection data and reconstructed image volume into subsets according to geometric symmetries in circular cone-beam projection layout, and a fast reconstruction for large data volume can be implemented by packing the subsets of projection data into the RGBA channels of GPU, performing the reconstruction chunk by chunk and combining the individual results in the end. The method is evaluated by reconstructing 3D images from computer-simulation data and real micro-CT data. Our results indicate that the GPU implementation can maintain original precision and speed up the reconstruction process by 110–120 times for circular cone-beam scan, as compared to traditional CPU implementation.

  10. Stationary intraoral tomosynthesis for dental imaging

    Science.gov (United States)

    Inscoe, Christina R.; Wu, Gongting; Soulioti, Danai E.; Platin, Enrique; Mol, Andre; Gaalaas, Laurence R.; Anderson, Michael R.; Tucker, Andrew W.; Boyce, Sarah; Shan, Jing; Gonzales, Brian; Lu, Jianping; Zhou, Otto

    2017-03-01

    Despite recent advances in dental radiography, the diagnostic accuracies for some of the most common dental diseases have not improved significantly, and in some cases remain low. Intraoral x-ray is the most commonly used x-ray diagnostic tool in dental clinics. It however suffers from the typical limitations of a 2D imaging modality including structure overlap. Cone-beam computed tomography (CBCT) uses high radiation dose and suffers from image artifacts and relatively low resolution. The purpose of this study is to investigate the feasibility of developing a stationary intraoral tomosynthesis (s-IOT) using spatially distributed carbon nanotube (CNT) x-ray array technology, and to evaluate its diagnostic accuracy compared to conventional 2D intraoral x-ray. A bench-top s-IOT device was constructed using a linear CNT based X-ray source array and a digital intraoral detector. Image reconstruction was performed using an iterative reconstruction algorithm. Studies were performed to optimize the imaging configuration. For evaluation of s-IOT's diagnostic accuracy, images of a dental quality assurance phantom, and extracted human tooth specimens were acquired. Results show s-IOT increases the diagnostic sensitivity for caries compared to intraoral x-ray at a comparable dose level.

  11. A dual-axis tilt acquisition geometry for digital musculoskeletal tomosynthesis

    Science.gov (United States)

    Levakhina, Yulia M.; Duschka, Robert L.; Vogt, Florian M.; Barkhausen, Joerg; Buzug, Thorsten M.

    2013-07-01

    Digital tomosynthesis (DT) is a limited angle tomographic x-ray technique. It is an attractive low-dose alternative to computed tomography (CT) in many imaging applications. However, the DT dataset is incomplete, which leads to out-of-focus artifacts and limited axial resolution. In this paper, a novel dual-axis tilt acquisition geometry is proposed and evaluated. This geometry solves some issues in tomosynthesis with the traditional scanning geometry by scanning the object with a set of perpendicular arcs. In this geometry the acquisition in the additional perpendicular direction is done using a tiltable object supporting platform. The proposed geometry allows for capturing more singularities of the Radon transform, filling the Fourier space with more data and better approximating the Tuy-Smith conditions. In order to evaluate the proposed system, several studies have been carried out. To validate the simulation setup the performance of the traditional scanning geometry has been simulated and compared to known results from the literature. It has also been shown that the possible improvement of the image quality in the traditional geometry is limited. These limitations can be partially overcome by using the proposed dual-axis tilt geometry. The novel geometry is superior and with the same number of projections better reconstructed images can be obtained. All studies have been made using a software tomosynthesis simulator. A micro-CT reconstruction of a bone has been used as a software phantom. Simultaneous algebraic reconstruction has been used to reconstruct simulated projections. As a conclusion, acquiring data outside the standard arc allows for improving performance of musculoskeletal tomosynthesis. With the proposed dual-axis acquisition geometry a performance gain is achieved without an increase in dose and major modifications to the instrumentation of existing tomosynthesis devices.

  12. Voting strategy for artifact reduction in digital breast tomosynthesis.

    Science.gov (United States)

    Wu, Tao; Moore, Richard H; Kopans, Daniel B

    2006-07-01

    Artifacts are observed in digital breast tomosynthesis (DBT) reconstructions due to the small number of projections and the narrow angular range that are typically employed in tomosynthesis imaging. In this work, we investigate the reconstruction artifacts that are caused by high-attenuation features in breast and develop several artifact reduction methods based on a "voting strategy." The voting strategy identifies the projection(s) that would introduce artifacts to a voxel and rejects the projection(s) when reconstructing the voxel. Four approaches to the voting strategy were compared, including projection segmentation, maximum contribution deduction, one-step classification, and iterative classification. The projection segmentation method, based on segmentation of high-attenuation features from the projections, effectively reduces artifacts caused by metal and large calcifications that can be reliably detected and segmented from projections. The other three methods are based on the observation that contributions from artifact-inducing projections have higher value than those from normal projections. These methods attempt to identify the projection(s) that would cause artifacts by comparing contributions from different projections. Among the three methods, the iterative classification method provides the best artifact reduction; however, it can generate many false positive classifications that degrade the image quality. The maximum contribution deduction method and one-step classification method both reduce artifacts well from small calcifications, although the performance of artifact reduction is slightly better with the one-step classification. The combination of one-step classification and projection segmentation removes artifacts from both large and small calcifications.

  13. A second pass correction method for calcification artifacts in digital breast tomosynthesis

    NARCIS (Netherlands)

    Erhard, K.; Grass, M.; Nielsen, T.

    2011-01-01

    Digital breast tomosynthesis (DBT) aims for improving the diagnosis of breast cancer and reducing the false positive rates by going from 2D projection mammography to 3D volume information. With the acquisition of a series of projection images, taken over a limited angular range, DBT allows for tomog

  14. Influences of Motion Artifacts on Three-Dimensional Reconstruction Volume and Conformal Radiotherapy Planning

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To investigate the influences of motion artifacts on three-dimensional (3D) reconstruction volume and conformal radiotherapy planning. Methods: A phantom which can mimic the clip motion of lung tumor along the cranial-caudal direction is constructed by step motor, small ball of polyethylene and potato. Ten different scan protocols were set and CT data of the phantom were acquired by using a commercial GE LightSpeed16 CT scanner. The 3D reconstruction of the CT data was implemented by adopting volume-rendering technology of GE AdvantageSim 6.0 system. The reconstructed volumes of each target in different scan protocols were measured through 3D measuring tools. Thus, relative deviations of the reconstruction volumes between moving targets and static ones were determined. The three-dimensional conformal radiation therapy (3DCRT) plans and conformal fields were created and compared for a static/moving target with the WiMRT treatment planning system (TPS). Results:For a static target, there was no obvious difference among the 3D reconstruction volumes when the CT data were acquired with different pitches and slices. The appearance of 3D reconstruction volume and 3D conformal field of a moving target was quite different from that of static one. The maximum relative deviation is nearly 90% for a moving target scanned with different scan protocols. The relative deviations are variable among the different targets, about from -39.8% to 89.5% for a smaller target and from -18.4% to 20.5% for a larger one.Conclusion:The motion artifacts have great effects on 3D-CRT planning and reconstruction volume, which will greatly induce distorted conformal radiation fields and false DVHs for a moving target.

  15. Numerical solution of a nonlinear least squares problem in digital breast tomosynthesis

    Science.gov (United States)

    Landi, G.; Loli Piccolomini, E.; Nagy, J. G.

    2015-11-01

    In digital tomosynthesis imaging, multiple projections of an object are obtained along a small range of different incident angles in order to reconstruct a pseudo-3D representation (i.e., a set of 2D slices) of the object. In this paper we describe some mathematical models for polyenergetic digital breast tomosynthesis image reconstruction that explicitly takes into account various materials composing the object and the polyenergetic nature of the x-ray beam. A polyenergetic model helps to reduce beam hardening artifacts, but the disadvantage is that it requires solving a large-scale nonlinear ill-posed inverse problem. We formulate the image reconstruction process (i.e., the method to solve the ill-posed inverse problem) in a nonlinear least squares framework, and use a Levenberg-Marquardt scheme to solve it. Some implementation details are discussed, and numerical experiments are provided to illustrate the performance of the methods.

  16. The Relation Between Volume of ACL Reconstruction and Future Knee Surgery

    Science.gov (United States)

    Schairer, William W.; Marx, Robert G.; Dempsey, Brendan; Ge, Yile; Lyman, Stephen

    2017-01-01

    Objectives: A large body of volume-outcomes literature has now demonstrated a strong positive relationship between increasing annual surgical volume and improved patient outcomes across a wide variety of surgical procedures, including orthopedics. Unfortunately, most previous research has been limited by methods that arbitrarily assign cutoffs of “low” or “high” volume that may not be clinically meaningful. Thus, it is unknown how many cases should be performed each year to maintain competence in the procedure. The purpose of this study was to determine meaningful annual volume thresholds for ACL reconstruction. Methods: We identified ACL reconstructions performed in New York (NY) State hospitals between 2003 and 2014 using the NY-SPARCS hospital in-patient and ambulatory surgery database. These cases were followed until subsequent ipsilateral knee surgery (revision ACL, meniscus/cartilage surgery, or total knee replacement) or until the end of the study period, December 31, 2014. Surgeon volume was calculated as the number of ACL reconstructions performed by that surgeon in the 365 days prior to the case of interest. Stratum specific likelihood ratio (SSLR) analysis is a method to identify clinically meaningful cutpoints by correlating volume with outcomes through evaluating a receiver operating characteristic (ROC) curve. A Cox proportional hazards model was used to measure the effect of surgeon annual ACL reconstruction volume on risk of subsequent ipsilateral knee surgery adjusting for patient characteristics: age, sex, race, and insurance type. Results: Between 2003 and 2014, 77,899 ACL reconstructions were performed in NY State by 1,316 surgeons. Mean patient age was 30.8+/- 12.5 years, and patients were 61% male, 65% white race, and 74% covered by private insurance. SSLR analysis revealed 2 meaningful cutpoints in risk of subsequent ipsilateral knee surgery: 17 & 35 cases per year. The Cox proportional hazards model demonstrated a 29% decreased risk

  17. Application of dual volume reconstruction technique in embolization of intracranial aneurysms

    Directory of Open Access Journals (Sweden)

    Xiang-hai ZHANG

    2014-03-01

    Full Text Available Objective To explore the value of dual volume reconstruction technique in Guglielmi detachable coil (GDC embolization of intracranial aneurysms. Methods Three-dimensional imaging data of 20 patients received GDC embolization of intracranial aneurysms from Jun. 2012 to Apr. 2013 were analyzed for dual volume reconstruction. The value of application of dual volume reconstruction was evaluated by the detection rate of coils bolus, degree of aneurysm occlusion, the length of aneurysm sac and aneurysm neck before and after embolization, and the characteristics and clinical value of the reconstructed images. Results  A total of 20 coil boluses were detected by dual volume reconstruction images, and the detection rate was 100%. Among all of 20 patients, no visualization of contrast medium in the aneurysm was found in 13 patients, while contrast agent was found in the aneurysm sac in 3 patients and in the aneurysm neck in 4 patients. The length of aneurysm neck and sac was somewhat changed before and after embolization with no statistically significant difference (P>0.05. The dual volume reconstruction could reveal coil bolus, vessels, cranium and fusion images, and the aneurysms could be shown by different imaging modes according to the clinical requirement. Conclusion Dual volume reconstruction technique can display the location of coil bolus, degree of occlusion and aneurysm size, and evaluate the embolization effect by multifarious imaging modes, providing a great deal of information for the evaluation of GDC embolization of intracranial aneurysm. DOI: 10.11855/j.issn.0577-7402.2014.02.13

  18. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, Eman, E-mail: eman.shaheen@uzleuven.be; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van [Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  19. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis.

    Science.gov (United States)

    Shaheen, Eman; De Keyzer, Frederik; Bosmans, Hilde; Dance, David R; Young, Kenneth C; Van Ongeval, Chantal

    2014-08-01

    This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly suggestive for malignancy (BIRADS 5

  20. Measuring stone volume - three-dimensional software reconstruction or an ellipsoid algebra formula?

    Science.gov (United States)

    Finch, William; Johnston, Richard; Shaida, Nadeem; Winterbottom, Andrew; Wiseman, Oliver

    2014-04-01

    To determine the optimal method for assessing stone volume, and thus stone burden, by comparing the accuracy of scalene, oblate, and prolate ellipsoid volume equations with three-dimensional (3D)-reconstructed stone volume. Kidney stone volume may be helpful in predicting treatment outcome for renal stones. While the precise measurement of stone volume by 3D reconstruction can be accomplished using modern computer tomography (CT) scanning software, this technique is not available in all hospitals or with routine acute colic scanning protocols. Therefore, maximum diameters as measured by either X-ray or CT are used in the calculation of stone volume based on a scalene ellipsoid formula, as recommended by the European Association of Urology. In all, 100 stones with both X-ray and CT (1-2-mm slices) were reviewed. Complete and partial staghorn stones were excluded. Stone volume was calculated using software designed to measure tissue density of a certain range within a specified region of interest. Correlation coefficients among all measured outcomes were compared. Stone volumes were analysed to determine the average 'shape' of the stones. The maximum stone diameter on X-ray was 3-25 mm and on CT was 3-36 mm, with a reasonable correlation (r = 0.77). Smaller stones (15 mm towards scalene ellipsoids. There was no difference in stone shape by location within the kidney. As the average shape of renal stones changes with diameter, no single equation for estimating stone volume can be recommended. As the maximum diameter increases, calculated stone volume becomes less accurate, suggesting that larger stones have more asymmetric shapes. We recommend that research looking at stone clearance rates should use 3D-reconstructed stone volumes when available, followed by prolate, oblate, or scalene ellipsoid formulas depending on the maximum stone diameter. © 2013 The Authors. BJU International © 2013 BJU International.

  1. Breast cancer screening with digital breast tomosynthesis.

    Science.gov (United States)

    Skaane, Per

    2017-01-01

    To give an overview of studies comparing full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) in breast cancer screening. The implementation of tomosynthesis in breast imaging is rapidly increasing world-wide. Experimental clinical studies of relevance for DBT screening have shown that tomosynthesis might have a great potential in breast cancer screening, although most of these retrospective reading studies are based on small populations, so that final conclusions are difficult to draw from individual reports. Several retrospective studies and three prospective trials on tomosynthesis in breast cancer screening have been published so far, confirming the great potential of DBT in mammography screening. The main results of these screening studies are presented. The retrospective screening studies from USA have all shown a significant decrease in the recall rate using DBT as adjunct to mammography. Most of these studies have also shown an increase in the cancer detection rate, and the non-significant results in some studies might be explained by a lack of statistical power. All the three prospective European trials have shown a significant increase in the cancer detection rate. The retrospective and the prospective screening studies comparing FFDM and DBT have all demonstrated that tomosynthesis has a great potential for improving breast cancer screening. DBT should be regarded as a better mammogram that could improve or overcome limitations of the conventional mammography, and tomosynthesis might be considered as the new technique in the next future of breast cancer screening.

  2. Preoperative TRAM free flap volume estimation for breast reconstruction in lean patients.

    Science.gov (United States)

    Minn, Kyung Won; Hong, Ki Yong; Lee, Sang Woo

    2010-04-01

    To obtain pleasing symmetry in breast reconstruction with transverse rectus abdominis myocutaneous (TRAM) free flap, a large amount of abdominal flap is elevated and remnant tissue is trimmed in most cases. However, elevation of abundant abdominal flap can cause excessive tension in donor site closure and increase the possibility of hypertrophic scarring especially in lean patients. The TRAM flap was divided into 4 zones in routine manner; the depth and dimension of the 4 zones were obtained using ultrasound and AutoCAD (Autodesk Inc., San Rafael, CA), respectively. The acquired numbers were then multiplied to obtain an estimate of volume of each zone and the each zone volume was added. To confirm the relation between the estimated volume and the actual volume, authors compared intraoperative actual TRAM flap volumes with preoperative estimated volumes in 30 consecutive TRAM free flap breast reconstructions. The estimated volumes and the actual elevated volumes of flap were found to be correlated by regression analysis (r = 0.9258, P AutoCAD (Autodesk Inc.) allow the authors to attain the precise volume desired for elevation. This method provides advantages in terms of minimal flap trimming, easier closure of donor sites, reduced scar widening and symmetry, especially in lean patients.

  3. A Pipeline for Neuron Reconstruction Based on Spatial Sliding Volume Filter Seeding

    Directory of Open Access Journals (Sweden)

    Dong Sui

    2014-01-01

    Full Text Available Neuron’s shape and dendritic architecture are important for biosignal transduction in neuron networks. And the anatomy architecture reconstruction of neuron cell is one of the foremost challenges and important issues in neuroscience. Accurate reconstruction results can facilitate the subsequent neuron system simulation. With the development of confocal microscopy technology, researchers can scan neurons at submicron resolution for experiments. These make the reconstruction of complex dendritic trees become more feasible; however, it is still a tedious, time consuming, and labor intensity task. For decades, computer aided methods have been playing an important role in this task, but none of the prevalent algorithms can reconstruct full anatomy structure automatically. All of these make it essential for developing new method for reconstruction. This paper proposes a pipeline with a novel seeding method for reconstructing neuron structures from 3D microscopy images stacks. The pipeline is initialized with a set of seeds detected by sliding volume filter (SVF, and then the open curve snake is applied to the detected seeds for reconstructing the full structure of neuron cells. The experimental results demonstrate that the proposed pipeline exhibits excellent performance in terms of accuracy compared with traditional method, which is clearly a benefit for 3D neuron detection and reconstruction.

  4. Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data

    Science.gov (United States)

    Martins, Fabio J. W. A.; Foucaut, Jean-Marc; Thomas, Lionel; Azevedo, Luis F. A.; Stanislas, Michel

    2015-08-01

    Tomographic PIV is a three-component volumetric velocity measurement technique based on the tomographic reconstruction of a particle distribution imaged by multiple camera views. In essence, the performance and accuracy of this technique is highly dependent on the parametric adjustment and the reconstruction algorithm used. Although synthetic data have been widely employed to optimize experiments, the resulting reconstructed volumes might not have optimal quality. The purpose of the present study is to offer quality indicators that can be applied to data samples in order to improve the quality of velocity results obtained by the tomo-PIV technique. The methodology proposed can potentially lead to significantly reduction in the time required to optimize a tomo-PIV reconstruction, also leading to better quality velocity results. Tomo-PIV data provided by a six-camera turbulent boundary-layer experiment were used to optimize the reconstruction algorithms according to this methodology. Velocity statistics measurements obtained by optimized BIMART, SMART and MART algorithms were compared with hot-wire anemometer data and velocity measurement uncertainties were computed. Results indicated that BIMART and SMART algorithms produced reconstructed volumes with equivalent quality as the standard MART with the benefit of reduced computational time.

  5. Spherically symmetric volume elements as basis functions for image reconstructions in computed laminography.

    Science.gov (United States)

    Trampert, Patrick; Vogelgesang, Jonas; Schorr, Christian; Maisl, Michael; Bogachev, Sviatoslav; Marniok, Nico; Louis, Alfred; Dahmen, Tim; Slusallek, Philipp

    2017-03-21

    Laminography is a tomographic technique that allows three-dimensional imaging of flat and elongated objects that stretch beyond the extent of a reconstruction volume. Laminography images can be reconstructed using iterative algorithms based on the Kaczmarz method. This study aims to develop and demonstrate a new reconstruction algorithm that may provide superior image reconstruction quality for this challenged imaging application. The images are initially represented using the coefficients over basis functions, which are typically piecewise constant functions (voxels). By replacing voxels with spherically symmetric volume elements (blobs) based on the generalized Kaiser-Bessel window functions, the images are reconstructed using this new adapted version of the algebraic image reconstruction technique. Band-limiting properties of blob functions are beneficial particular in the case of noisy projections and with only a limited number of available projections. Study showed that using blob basis functions improved full-width-at-half-maximum resolution from 10.2±1.0 to 9.9±0.9 (p functions, especially if noisy data is expected.

  6. Three-Dimensional Computer-Aided Detection of Microcalcification Clusters in Digital Breast Tomosynthesis

    Directory of Open Access Journals (Sweden)

    Ji-wook Jeong

    2016-01-01

    Full Text Available We propose computer-aided detection (CADe algorithm for microcalcification (MC clusters in reconstructed digital breast tomosynthesis (DBT images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%.

  7. Improving image quality for digital breast tomosynthesis: an automated detection and diffusion-based method for metal artifact reduction

    Science.gov (United States)

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Hadjiiski, Lubomir M.; Samala, Ravi K.

    2017-10-01

    In digital breast tomosynthesis (DBT), the high-attenuation metallic clips marking a previous biopsy site in the breast cause errors in the estimation of attenuation along the ray paths intersecting the markers during reconstruction, which result in interplane and inplane artifacts obscuring the visibility of subtle lesions. We proposed a new metal artifact reduction (MAR) method to improve image quality. Our method uses automatic detection and segmentation to generate a marker location map for each projection (PV). A voting technique based on the geometric correlation among different PVs is designed to reduce false positives (FPs) and to label the pixels on the PVs and the voxels in the imaged volume that represent the location and shape of the markers. An iterative diffusion method replaces the labeled pixels on the PVs with estimated tissue intensity from the neighboring regions while preserving the original pixel values in the neighboring regions. The inpainted PVs are then used for DBT reconstruction. The markers are repainted on the reconstructed DBT slices for radiologists’ information. The MAR method is independent of reconstruction techniques or acquisition geometry. For the training set, the method achieved 100% success rate with one FP in 19 views. For the test set, the success rate by view was 97.2% for core biopsy microclips and 66.7% for clusters of large post-lumpectomy markers with a total of 10 FPs in 58 views. All FPs were large dense benign calcifications that also generated artifacts if they were not corrected by MAR. For the views with successful detection, the metal artifacts were reduced to a level that was not visually apparent in the reconstructed slices. The visibility of breast lesions obscured by the reconstruction artifacts from the metallic markers was restored.

  8. Design and performance of the prototype full field breast tomosynthesis system with selenium based flat panel detector

    Science.gov (United States)

    Ren, Baorui; Ruth, Chris; Stein, Jay; Smith, Andrew; Shaw, Ian; Jing, Zhenxue

    2005-04-01

    We have developed a breast tomosynthesis system utilizing a selenium-based direct conversion flat panel detector. This prototype system is a modification of Selenia, Hologic"s full field digital mammography system, using an add-on breast holding device to allow 3D tomosynthetic imaging. During a tomosynthesis scan, the breast is held stationary while the x-ray source and detector mounted on a c-arm rotate continuously around the breast over an angular range up to 30 degrees. The x-ray tube is pulsed to acquire 11 projections at desired c-arm angles. Images are reconstructed in planes parallel to the breastplate using a filtered backprojection algorithm. Processing time is typically 1 minute for a 50 mm thick breast at 0.1 mm in-plane pixel size, 1 mm slice-to-slice separation. Clinical studies are in progress. Performance evaluations were carried out at the system and the subsystem levels including spatial resolution, signal-to-noise ratio, spectra optimization, imaging technique, and phantom and patient studies. Experimental results show that we have successfully built a tomosynthesis system with images showing less structure noise and revealing 3D information compared with the conventional mammogram. We introduce, for the first time, the definition of "Depth of Field" for tomosynthesis based on a spatial resolution study. This parameter is used together with Modulation Transfer Function (MTF) to evaluate 3D resolution of a tomosynthesis system as a function of system design, imaging technique, and reconstruction algorithm. Findings from the on-going clinical studies will help the design of the next generation tomosynthesis system offering improved performance.

  9. Metal and calcification artifact reduction for digital breast tomosynthesis

    Science.gov (United States)

    Wicklein, Julia; Jerebko, Anna; Ritschl, Ludwig; Mertelmeier, Thomas

    2017-03-01

    Tomosynthesis images of the breast suffer from artifacts caused by the presence of highly absorbing materials. These can be either induced by metal objects like needles or clips inserted during biopsy devices, or larger calcifications inside the examined breast. Mainly two different kinds of artifacts appear after the filtered backprojection procedure. The first type is undershooting artifacts near edges of high-contrast objects caused by the filtering step. The second type is out-of-plane (ripple) artifacts that appear even in slices where the metal object or macrocalcifications does not exist. Due to the limited angular range of tomosynthesis systems, overlapping structures have high influence on neighboring regions. To overcome these problems, a segmentation of artifact introducing objects is performed on the projection images. Both projection versions, with and without high-contrast objects are filtered independently to avoid undershootings. During backprojection a decision is made for each reconstructed voxel, if it is artifact or high-contrast object. This is based on a mask image, gained from the segmentation of high-contrast objects. This procedure avoids undershooting artifacts and additionally reduces out-of-plane ripple. Results are demonstrated for different kinds of artifact inducing objects and calcifications.

  10. Investigation of the extraordinary null reconstruction phenomenon in polarization volume hologram.

    Science.gov (United States)

    Wang, J; Kang, G; Wu, A; Liu, Y; Zang, J; Li, P; Tan, X; Shimura, T; Kuroda, K

    2016-01-25

    Polarization holography is the superposition of differently polarized beams. Due to its ability to record the polarization states, some extraordinary optical phenomena were found in the polarization holography. For example, the recently reported null-reconstruction phenomenon in polarization volume hologram is odd for the conventional holography which only records the amplitude and phase. In this paper, we perform a thorough investigation of the null reconstruction of polarization hologram recorded by orthogonal circularly polarized waves. To explore the mechanism behind this phenomenon, an interferometry was built to measure the phase difference between the same polarized components within the reconstructed wave. The phase difference of π was secured in our experiment, indicating a destructive interfering effect, which nicely explains the extraordinary null reconstruction observed in the polarization hologram.

  11. Three-dimensional wavelet transform and multiresolution surface reconstruction from volume data

    Science.gov (United States)

    Wang, Yun; Sloan, Kenneth R., Jr.

    1995-04-01

    Multiresolution surface reconstruction from volume data is very useful in medical imaging, data compression and multiresolution modeling. This paper presents a hierarchical structure for extracting multiresolution surfaces from volume data by using a 3-D wavelet transform. The hierarchical scheme is used to visualize different levels of detail of the surface and allows a user to explore different features of the surface at different scales. We use 3-D surface curvature as a smoothness condition to control the hierarchical level and the distance error between the reconstructed surface and the original data as the stopping criteria. A 3-D wavelet transform provides an appropriate hierarchical structure to build the volume pyramid. It can be constructed by the tensor products of 1-D wavelet transforms in three subspaces. We choose the symmetric and smoothing filters such as Haar, linear, pseudoCoiflet, cubic B-spline and their corresponding orthogonal wavelets to build the volume pyramid. The surface is reconstructed at each level of volume data by using the cell interpolation method. Some experimental results are shown through the comparison of the different filters based on the distance errors of the surfaces.

  12. Quality control in breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jakubiak, R.R.; Messias, P.C.; Santos, M.F., E-mail: requi@utfpr.edu.br [Universidade Tecnologia Federal do Parana (UTFPR), Curitiba, PR (Brazil). Departamento Academico de Fisica; Urban, L.A.B.D., E-mail: lineiurban@hotmail.com [Diagnostico Avancado por Imagem, Curitiba, PR (Brazil)

    2015-07-01

    In Brazil, breast cancer is the most common and the leading cause of death among women, with estimated 57,000 new cases in 2014. The mammography (2D) plays an important role in the early detection of breast cancer, but in some cases can be difficult to detect malignant lesions due overlap of breast tissues. The Digital Breasts Tomosynthesis (DBT: 3D) reduces the effects of overlap, providing improved characterization of mammographic findings. However, the dose may double as compared with mammography. This study presents results of Contrast to Noise Ratio (CNR) and image quality evaluation on Siemens mammography equipment Mammomat Inspiration with tomosynthesis. The CNR was determined with Polymethylmethacrylate (PMMA) layers of 20 to 70 mm thick and an aluminum foils of 0,2 mm thickness and area of 10 mm². Image quality was assessed with the ACR Breast Simulator. In the evaluation of image quality, the detectability of fibers and masses was identical in 2D and 3D systems. Displaying fibers were 4,5 and 4 mass in both modes. In 2D mode were identified 3,5 microcalcifications groups, and 3D showed 3 groups. The Mean Glandular Dose (MGD) for the simulator in 2D mode was 1,17 mGy and 2,35 mGy for the 3D mode. The result reinforces the importance of quality control in the process of obtaining the images and obtained in accordance CNR values, ensuring image quality and compatible dose in 2D and 3D processes. (author)

  13. Optimization of the volume reconstruction for classical Tomo-PIV algorithms (MART, BIMART and SMART): synthetic and experimental studies

    Science.gov (United States)

    Thomas, L.; Tremblais, B.; David, L.

    2014-03-01

    Optimization of multiplicative algebraic reconstruction technique (MART), simultaneous MART and block iterative MART reconstruction techniques was carried out on synthetic and experimental data. Different criteria were defined to improve the preprocessing of the initial images. Knowledge of how each reconstruction parameter influences the quality of particle volume reconstruction and computing time is the key in Tomo-PIV. These criteria were applied to a real case, a jet in cross flow, and were validated.

  14. Quantifying the Impact of Immediate Reconstruction in Postmastectomy Radiation: A Large, Dose-Volume Histogram-Based Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ohri, Nisha [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Cordeiro, Peter G. [Department of Plastic Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Keam, Jennifer [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ballangrud, Ase [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Shi Weiji; Zhang Zhigang [Department of Biostatistics and Epidemiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Nerbun, Claire T.; Woch, Katherine M.; Stein, Nicholas F.; Zhou Ying [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); McCormick, Beryl; Powell, Simon N. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ho, Alice Y., E-mail: HoA1234@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2012-10-01

    Purpose: To assess the impact of immediate breast reconstruction on postmastectomy radiation (PMRT) using dose-volume histogram (DVH) data. Methods and Materials: Two hundred forty-seven women underwent PMRT at our center, 196 with implant reconstruction and 51 without reconstruction. Patients with reconstruction were treated with tangential photons, and patients without reconstruction were treated with en-face electron fields and customized bolus. Twenty percent of patients received internal mammary node (IMN) treatment. The DVH data were compared between groups. Ipsilateral lung parameters included V20 (% volume receiving 20 Gy), V40 (% volume receiving 40 Gy), mean dose, and maximum dose. Heart parameters included V25 (% volume receiving 25 Gy), mean dose, and maximum dose. IMN coverage was assessed when applicable. Chest wall coverage was assessed in patients with reconstruction. Propensity-matched analysis adjusted for potential confounders of laterality and IMN treatment. Results: Reconstruction was associated with lower lung V20, mean dose, and maximum dose compared with no reconstruction (all P<.0001). These associations persisted on propensity-matched analysis (all P<.0001). Heart doses were similar between groups (P=NS). Ninety percent of patients with reconstruction had excellent chest wall coverage (D95 >98%). IMN coverage was superior in patients with reconstruction (D95 >92.0 vs 75.7%, P<.001). IMN treatment significantly increased lung and heart parameters in patients with reconstruction (all P<.05) but minimally affected those without reconstruction (all P>.05). Among IMN-treated patients, only lower lung V20 in those without reconstruction persisted (P=.022), and mean and maximum heart doses were higher than in patients without reconstruction (P=.006, P=.015, respectively). Conclusions: Implant reconstruction does not compromise the technical quality of PMRT when the IMNs are untreated. Treatment technique, not reconstruction, is the primary

  15. kV x-ray dual digital tomosynthesis for image guided lung SBRT

    Science.gov (United States)

    Partain, Larry; Boyd, Douglas; Kim, Namho; Hernandez, Andrew; Daly, Megan; Boone, John

    2016-03-01

    Two simulated sets of digital tomosynthesis images of the lungs, each acquired at a 90 degree angle from the other, with 19 projection images used for each set and SART iterative reconstructed, gives dual tomosynthesis slice image quality approaching that of spiral CT, and with a data acquisition time that is 3% of that of cone beam CT. This fast kV acquisition, should allow near real time tracking of lung tumors in patients receiving SBRT, based on a novel TumoTrakTM multi-source X-ray tube design. Until this TumoTrakTM prototype is completed over the next year, its projected performance was simulated from the DRR images created from a spiral CT data set from a lung cancer patient. The resulting dual digital tomosynthesis reconstructed images of the lung tumor were exceptional and approached that of the gold standard Feldkamp CT reconstruction of breath hold, diagnostic, spiral, multirow, CT data. The relative dose at 46 mAs was less than 10% of what it would have been if the digital tomosynthesis had been done at the 472 mAs of the CT data set. This is for a 0.77 fps imaging rate sufficient to resolve respiratory motion in many free breathing patients during SBRT. Such image guidance could decrease the magnitudes of targeting error margins by as much as 20 mm or more in the craniocaudal direction for lower lobe lesions while markedly reducing dose to normal lung, heart and other critical structures. These initial results suggest a wide range of topics for future work.

  16. Deep-learning convolution neural network for computer-aided detection of microcalcifications in digital breast tomosynthesis

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Cha, Kenny; Helvie, Mark A.

    2016-03-01

    A deep learning convolution neural network (DLCNN) was designed to differentiate microcalcification candidates detected during the prescreening stage as true calcifications or false positives in a computer-aided detection (CAD) system for clustered microcalcifications. The microcalcification candidates were extracted from the planar projection image generated from the digital breast tomosynthesis volume reconstructed by a multiscale bilateral filtering regularized simultaneous algebraic reconstruction technique. For training and testing of the DLCNN, true microcalcifications are manually labeled for the data sets and false positives were obtained from the candidate objects identified by the CAD system at prescreening after exclusion of the true microcalcifications. The DLCNN architecture was selected by varying the number of filters, filter kernel sizes and gradient computation parameter in the convolution layers, resulting in a parameter space of 216 combinations. The exhaustive grid search method was used to select an optimal architecture within the parameter space studied, guided by the area under the receiver operating characteristic curve (AUC) as a figure-of-merit. The effects of varying different categories of the parameter space were analyzed. The selected DLCNN was compared with our previously designed CNN architecture for the test set. The AUCs of the CNN and DLCNN was 0.89 and 0.93, respectively. The improvement was statistically significant (p < 0.05).

  17. 'Orbital volume restoration rate after orbital fracture'; a CT-based orbital volume measurement for evaluation of orbital wall reconstructive effect.

    Science.gov (United States)

    Wi, J M; Sung, K H; Chi, M

    2017-01-13

    PurposeTo evaluate the effect of orbital reconstruction and factors related to the effect of orbital reconstruction by assessing of orbital volume using orbital computed tomography (CT) in cases of orbital wall fracture.MethodsIn this retrospective study, 68 patients with isolated blowout fractures were evaluated. The volumes of orbits and herniated orbital tissues were determined by CT scans using a three-dimensional reconstruction technique (the Eclipse Treatment Planning System). Orbital CT was performed preoperatively, immediately after surgery, and at final follow ups (minimum of 6 months). We evaluated the reconstructive effect of surgery making a new formula, 'orbital volume reconstruction rate' from orbital volume differences between fractured and contralateral orbits before surgery, immediately after surgery, and at final follow up.ResultsMean volume of fractured orbits before surgery was 23.01±2.60 cm(3) and that of contralateral orbits was 21.31±2.50 cm(3) (P=0.005). Mean volume of the fractured orbits immediately after surgery was 21.29±2.42 cm(3), and that of the contralateral orbits was 21.33±2.52 cm(3) (P=0.921). Mean volume of fractured orbits at final follow up was 21.50±2.44 cm(3), and that of contralateral orbits was 21.32±2.50 cm(3) (P=0.668). The mean orbital volume reconstruction rate was 100.47% immediately after surgery and 99.17% at final follow up. No significant difference in orbital volume reconstruction rate was observed with respect to fracture site or orbital implant type. Patients that underwent operation within 14 days of trauma had a better reconstruction rate at final follow up than patients who underwent operation over 14 days after trauma (P=0.039).ConclusionComputer-based measurements of orbital fracture volume can be used to evaluate the reconstructive effect of orbital implants and provide useful quantitative information. Significant reduction of orbital volume is observed immediately after orbital wall

  18. High-order conservative reconstruction schemes for finite volume methods in cylindrical and spherical coordinates

    CERN Document Server

    Mignone, A

    2014-01-01

    High-order reconstruction schemes for the solution of hyperbolic conservation laws in orthogonal curvilinear coordinates are revised in the finite volume approach. The formulation employs a piecewise polynomial approximation to the zone-average values to reconstruct left and right interface states from within a computational zone to arbitrary order of accuracy by inverting a Vandermonde-like linear system of equations with spatially varying coefficients. The approach is general and can be used on uniform and non-uniform meshes although explicit expressions are derived for polynomials from second to fifth degree in cylindrical and spherical geometries with uniform grid spacing. It is shown that, in regions of large curvature, the resulting expressions differ considerably from their Cartesian counterparts and that the lack of such corrections can severely degrade the accuracy of the solution close to the coordinate origin. Limiting techniques and monotonicity constraints are revised for conventional reconstruct...

  19. Relationship between muscle volume and muscle torque of the hamstrings after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Konishi, Yu; Fukubayashi, Toru

    2010-01-01

    The muscle torque per unit volume of the hamstrings on the injured and uninjured sides in patients with ACL reconstruction were compared with participants with no history of knee injury to examine whether a similar mechanism leading to quadriceps weakness exists in the hamstrings of these patients. The study population consisted of 18 and 52 patients at torque per unit volume, the peak torque of knee flexion was divided by the hamstring volume. Most muscle torque per unit volume indexes were not significantly different between the patients at torque per unit volume of patients at 12 months in both injured (0.118+/-0.03 Nm/cm(3), 60 degrees /s; 0.092+/-0.02 Nm/cm(3), 180 degrees /s) and uninjured sides (0.120+/-0.03 Nm/cm(3) at 60 degrees /s; 0.094+/-0.02 Nm/cm(3), 180 degrees /s) were significantly lower than those of controls (P<0.01). We found no evidence of recruitment disorder in the hamstrings of the patients. The results of this study indicated that the mechanism of muscle weakness of the hamstrings after reconstruction was different from that of the quadriceps, although the precise mechanism remains to be determined.

  20. Quantitative Digital Tomosynthesis Mammography for Improved Breast Cancer Detection and Diagnosis

    Science.gov (United States)

    2008-04-01

    reconstruction", Medical Physics , 34(9), 3603-3613, 2007. Conference Proceedings: 1. Y. Zhang, H.-P. Chan, Y.-T. Wu, B. Sahiner, C. Zhou, J. Wei, J. Ge...Wei, L. M. Hadjiiski, "Application of boundary detection information in breast tomosynthesis reconstruction", Medical Physics , 34(9), 3603-3613, 2007...application of Medical Physics , Vol. 34, No. 9, September 2007the 2D and 3D breast boundary information to DTM recon- struction in an effort to reduce

  1. 3D Reconstruction from X-ray Fluoroscopy for Clinical Veterinary Medicine using Differential Volume Rendering

    Science.gov (United States)

    Khongsomboon, Khamphong; Hamamoto, Kazuhiko; Kondo, Shozo

    3D reconstruction from ordinary X-ray equipment which is not CT or MRI is required in clinical veterinary medicine. Authors have already proposed a 3D reconstruction technique from X-ray photograph to present bone structure. Although the reconstruction is useful for veterinary medicine, the thechnique has two problems. One is about exposure of X-ray and the other is about data acquisition process. An x-ray equipment which is not special one but can solve the problems is X-ray fluoroscopy. Therefore, in this paper, we propose a method for 3D-reconstruction from X-ray fluoroscopy for clinical veterinary medicine. Fluoroscopy is usually used to observe a movement of organ or to identify a position of organ for surgery by weak X-ray intensity. Since fluoroscopy can output a observed result as movie, the previous two problems which are caused by use of X-ray photograph can be solved. However, a new problem arises due to weak X-ray intensity. Although fluoroscopy can present information of not only bone structure but soft tissues, the contrast is very low and it is very difficult to recognize some soft tissues. It is very useful to be able to observe not only bone structure but soft tissues clearly by ordinary X-ray equipment in the field of clinical veterinary medicine. To solve this problem, this paper proposes a new method to determine opacity in volume rendering process. The opacity is determined according to 3D differential coefficient of 3D reconstruction. This differential volume rendering can present a 3D structure image of multiple organs volumetrically and clearly for clinical veterinary medicine. This paper shows results of simulation and experimental investigation of small dog and evaluation by veterinarians.

  2. Comparison of computerized mass detection in digital breast tomosynthesis (DBT) mammograms and conventional mammograms

    Science.gov (United States)

    Chan, Heang-Ping; Wei, Jun; Sahiner, Berkman; Hadjiiski, Lubomir; Helvie, Mark A.

    2009-02-01

    We are developing a CAD system for mass detection on digital breast tomosynthesis (DBT) mammograms. In this study, we compared the detection accuracy on DBT and conventional screen-film mammograms (SFMs). DBT mammograms were acquired with a GE prototype system at the University of Michigan. 47 cases containing the CC- and MLO-view DBT mammograms of the breast with a biopsy-proven mass and the corresponding two-view SFMs of the same breast were collected. Subjective judgment showed that the masses were much more conspicuous on DBT slices than on SFMs. The CAD system for DBT includes two parallel processes, one performs mass detection in the reconstructed DBT volume, and the other in the projection view (PV) images. The mass likelihood scores estimated for each mass candidate in the two processes are merged to differentiate masses and false positives (FPs). For detection on SFMs, we previously developed a dual system approach by fusing two single CAD systems optimized for detection of average and subtle masses, respectively. A trained neural network is used to merge the mass likelihood scores of the two single systems to reduce FPs. At the case-based sensitivities of 80% and 85%, mass detection in the DBT volume resulted in an average of 0.72 and 1.06 FPs/view, and detection in the SFMs yielded 0.94 and 1.67 FPs/view, respectively. The difference fell short of statistical significance (p=0.07) by JAFROC analysis. Study is underway to collect a larger data set and to further improve the DBT CAD system.

  3. Breast volume estimation from systematic series of CT scans using the Cavalieri principle and 3D reconstruction.

    Science.gov (United States)

    Erić, Mirela; Anderla, Andraš; Stefanović, Darko; Drapšin, Miodrag

    2014-01-01

    Preoperative breast volume estimation is very important for the success of the breast surgery. In the present study, two different breast volume determination methods, Cavalieri principle and 3D reconstruction were compared. Consecutive sections were taken in slice thickness of 5 mm. Every 2nd breast section in a set of consecutive sections was selected. We marked breast tissue with blue line on each selected section, and so prepared CT scans used for breast volume estimation. The volumes of the 60 breasts were estimated using the Cavalieri principle and 3D reconstruction. The mean breast volume value was established to be 467.79 ± 188.90 cm(3) with Cavalieri method and 465.91 ± 191.41 cm(3) with 3D reconstruction. The mean CE for the estimates in this study was calculated as 0.25%. Skin-sparing volume was about 91.64% of the whole breast volume. Both methods are very accurate and have a strong linear association. Our results suggest that the calculation of breast volume or its part in vivo from systematic series of CT scans using the Cavalieri principle or 3D breast reconstruction is accurate enough to have a significant clinical benefit in planning reconstructive breast surgery. These methods can help the surgeon guide the choice of the most appropriate implant or/and flap preoperatively. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  4. The effects of computed tomography with iterative reconstruction on solid pulmonary nodule volume quantification.

    Directory of Open Access Journals (Sweden)

    Martin J Willemink

    Full Text Available BACKGROUND: The objectives of this study were to evaluate the influence of iterative reconstruction (IR on pulmonary nodule volumetry with chest computed tomography (CT. METHODS: Twenty patients (12 women and 8 men, mean age 61.9, range 32-87 underwent evaluation of pulmonary nodules with a 64-slice CT-scanner. Data were reconstructed using filtered back projection (FBP and IR (Philips Healthcare, iDose(4-levels 2, 4 and 6 at similar radiation dose. Volumetric nodule measurements were performed with semi-automatic software on thin slice reconstructions. Only solid pulmonary nodules were measured, no additional selection criteria were used for the nature of nodules. For intra-observer and inter-observer variability, measurements were performed once by one observer and twice by another observer. Algorithms were compared using the concordance correlation-coefficient (pc and Friedman-test, and post-hoc analysis with the Wilcoxon-signed ranks-test with Bonferroni-correction (significance-level p<0.017. RESULTS: Seventy-eight nodules were present including 56 small nodules (volume<200 mm(3, diameter<8 mm and 22 large nodules (volume≥200 mm(3, diameter≥8 mm. No significant differences in measured pulmonary nodule volumes between FBP, iDose(4-levels 2, 4 and 6 were found in both small nodules and large nodules. FBP and iDose(4-levels 2, 4 and 6 were correlated with pc-values of 0.98 or higher for both small and large nodules. Pc-values of intra-observer and inter-observer variability were 0.98 or higher. CONCLUSIONS: Measurements of solid pulmonary nodule volume measured with standard-FBP were comparable with IR, regardless of the IR-level and no significant differences between measured volumes of both small and large solid nodules were found.

  5. Mastectomy Weight and Tissue Expander Volume Predict Necrosis and Increased Costs Associated with Breast Reconstruction

    Science.gov (United States)

    Yalanis, Georgia C.; Nag, Shayoni; Georgek, Jakob R.; Cooney, Carisa M.; Manahan, Michele A.; Rosson, Gedge D.

    2015-01-01

    Introduction: Impaired vascular perfusion in tissue expander (TE) breast reconstruction leads to mastectomy skin necrosis. We investigated factors and costs associated with skin necrosis in postmastectomy breast reconstruction. Methods: Retrospective review of 169 women with immediate TE placement following mastectomy between May 1, 2009 and May 31, 2013 was performed. Patient demographics, comorbidities, intraoperative, and postoperative outcomes were collected. Logistic regression analysis on individual variables was performed to determine the effects of tissue expander fill volume and mastectomy specimen weight on skin necrosis. Billing data was obtained to determine the financial burden associated with necrosis. Results: This study included 253 breast reconstructions with immediate TE placement from 169 women. Skin necrosis occurred in 20 flaps for 15 patients (8.9%). Patients with hypertension had 8 times higher odds of skin necrosis [odd ratio (OR), 8.10, P 300 cm3 had 10 times higher odds of skin necrosis (OR, 10.66, P =0.010). Volumes >400 cm3 had 15 times higher odds of skin necrosis (OR, 15.56, P = 0.002). Mastectomy specimen weight was correlated with skin necrosis. Specimens >500 g had 10 times higher odds of necrosis and specimens >1000 g had 18 times higher odds of necrosis (OR, 10.03 and OR, 18.43; P =0.003 and P Mastectomy skin necrosis was associated with a 50% increased inpatient charge. Conclusion: Mastectomy flap necrosis is associated with HTN, larger TE volumes and mastectomy specimen weights, resulting in increased inpatient charges. Conservative TE volumes should be considered for patients with hypertension and larger mastectomy specimens. PMID:26301139

  6. Iterative reconstruction technique with reduced volume CT dose index: diagnostic accuracy in pediatric acute appendicitis

    Energy Technology Data Exchange (ETDEWEB)

    Didier, Ryne A. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Vajtai, Petra L. [Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States); Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Hopkins, Katharine L. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States)

    2014-07-05

    Iterative reconstruction technique has been proposed as a means of reducing patient radiation dose in pediatric CT. Yet, the effect of such reductions on diagnostic accuracy has not been thoroughly evaluated. This study compares accuracy of diagnosing pediatric acute appendicitis using contrast-enhanced abdominopelvic CT scans performed with traditional pediatric weight-based protocols and filtered back projection reconstruction vs. a filtered back projection/iterative reconstruction technique blend with reduced volume CT dose index (CTDI{sub vol}). Results of pediatric contrast-enhanced abdominopelvic CT scans done for pain and/or suspected appendicitis were reviewed in two groups: A, 192 scans performed with the hospital's established weight-based CT protocols and filtered back projection reconstruction; B, 194 scans performed with iterative reconstruction technique and reduced CTDI{sub vol}. Reduced CTDI{sub vol} was achieved primarily by reductions in effective tube current-time product (mAs{sub eff}) and tube peak kilovoltage (kVp). CT interpretation was correlated with clinical follow-up and/or surgical pathology. CTDI{sub vol}, size-specific dose estimates (SSDE) and performance characteristics of the two CT techniques were then compared. Between groups A and B, mean CTDI{sub vol} was reduced by 45%, and mean SSDE was reduced by 46%. Sensitivity, specificity and diagnostic accuracy were 96%, 97% and 96% in group A vs. 100%, 99% and 99% in group B. Accuracy in diagnosing pediatric acute appendicitis was maintained in contrast-enhanced abdominopelvic CT scans that incorporated iterative reconstruction technique, despite reductions in mean CTDI{sub vol} and SSDE by nearly half as compared to the hospital's traditional weight-based protocols. (orig.)

  7. Dose to patient in tomosynthesis; Dosis a paciente en tomosintesis

    Energy Technology Data Exchange (ETDEWEB)

    Minambres Moro, A.; Fernandez Leton, P.; Garcia Rui-Zorrilla, J.; Perez Moreno, J. M.; Zucca Aparicio, D.

    2013-07-01

    They are beginning to implement digital mammography with the possibility of acquiring in tomosynthesis, whose biggest advantage is to distinguish structures without overlapping through of pseudotridimensionals images. With these modified mammograms can acquire a planar mammography, with fixed x-ray tube, or a tomosynthesis with tube by turning. For acquire tomosynthesis is necessary a detector of high efficiency together with tungsten white tubes. The objective of this study is to know the dose received by the patient with this new imaging. (Author)

  8. Anatomical decomposition in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Lung cancer is the leading cause of cancer death worldwide and the early diagnosis of lung cancer has recently become more important. For early screening lung cancer, computed tomography (CT) has been used as a gold standard for early diagnosis of lung cancer [1]. The major advantage of CT is that it is not susceptible to the problem of misdiagnosis caused by anatomical overlapping while CT has extremely high radiation dose and cost compared to chest radiography. Chest digital tomosynthesis (CDT) is a recently introduced new modality for lung cancer screening with relatively low radiation dose compared to CT [2] and also showing high sensitivity and specificity to prevent anatomical overlapping occurred in chest radiography. Dual energy material decomposition method has been proposed for better detection of pulmonary nodules as means of reducing the anatomical noise [3]. In this study, possibility of material decomposition in CDT was tested by simulation study and actual experiment using prototype CDT. Furthermore organ absorbed dose and effective dose were compared with single energy CDT. The Gate v6 (Geant4 application for tomographic emission), and TASMIP (Tungsten anode spectral model using the interpolating polynomial) code were used for simulation study and simulated cylinder shape phantom consisted of 4 inner beads which were filled with spine, rib, muscle and lung equivalent materials. The patient dose was estimated by PCXMC 1.5 Monte Carlo simulation tool [4]. The tomosynthesis scan was performed with a linear movement and 21 projection images were obtained over 30 degree of angular range with 1.5° degree of angular interval. The proto type CDT system has same geometry with simulation study and composed of E7869X (Toshiba, Japan) x-ray tube and FDX3543RPW (Toshiba, Japan) detector. The result images showed that reconstructed with dual energy clearly visualize lung filed by removing unnecessary bony structure. Furthermore, dual energy CDT could enhance

  9. Measurements of system sharpness for two digital breast tomosynthesis systems.

    Science.gov (United States)

    Marshall, N W; Bosmans, H

    2012-11-21

    The aim of this work was to propose system sharpness parameters for digital breast tomosynthesis (DBT) systems that include the influence of focus size and focus motion for use in quality assurance protocols. X-ray focus size was measured using a multiple pinhole test object, while detector presampling modulation transfer function (MTF) was measured from projection images of a 10 cm × 10 cm, 1 mm thick steel edge, for the Siemens Inspiration and Hologic Selenia Dimensions DBT systems. The height of the edge above the table was then varied from 1 to 78 mm. The MTF expected from theory for the projection images was calculated from the measured detector MTF, focus size MTF and focus motion MTF and was compared against measured curves. Two methods were used to measure the in-plane MTF in the DBT volume: a tungsten wire of diameter 25 µm and an Al edge 0.2 mm thick, both imaged with a 15 mm thick poly(methyl methacrylate) (PMMA) plate. The in-depth point spread function (PSF) was measured using an angled tungsten wire. The full 3D MTF was estimated with a 0.5 mm diameter aluminium bead held in a 45 mm thick PMMA phantom, with the bead 15 and 65 mm above the table. Inspiration DBT projection images are saved at native detector resolution (85 µm), while the Dimensions re-bins projections to 140 µm pixels (2 × 2 binning); both systems used 2 × 2 binning of projection data before reconstruction. The 50% point for the MTF (MTF(0.50)) measured in the DBT projection images for the tube-travel direction fell as a function of height above the table from 3.60 to 0.90 mm(-1) for the Inspiration system and from 2.50 to 1.20 mm(-1) for the Dimensions unit. The maximum deviation of measured MTF(0.50) from the calculated value was 13%. MTF(0.50) measured in-plane (tube-travel direction) fell as a function of height above the table from 1.66 to 0.97 mm(-1) for the Inspiration system and from 2.21 to 1.31 mm(-1) for the Dimensions system. The full-width half-maximum for the in

  10. Estimation of the average glandular dose on a team of tomosynthesis; Estimacion de la dosis glandular media en un equipo de tomosintesis

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Martinez, L. M. R.; Sanchez Jimenez, J.; Pizarro trigo, F.

    2013-07-01

    Seeking to improve the information that gives us an image of mammography the manufacturers have implemented tomosynthesis. With this method of acquisition and reconstruction of image we went from having a 2D to a 3D image image, in such a way that it reduces or eliminates the effect of overlap of tissues. The estimate of the dose, which is always a fundamental parameter in the control of quality of radiology equipment, is more in the case of mammography by the radiosensitivity of this body and the frequency of their use. The objective of this work is the determination of the mean in a team glandular dose of with tomosynthesis mammography. (Author)

  11. Source fields reconstruction with 3D mapping by means of the virtual acoustic volume concept

    Science.gov (United States)

    Forget, S.; Totaro, N.; Guyader, J. L.; Schaeffer, M.

    2016-10-01

    This paper presents the theoretical framework of the virtual acoustic volume concept and two related inverse Patch Transfer Functions (iPTF) identification methods (called u-iPTF and m-iPTF depending on the chosen boundary conditions for the virtual volume). They are based on the application of Green's identity on an arbitrary closed virtual volume defined around the source. The reconstruction of sound source fields combines discrete acoustic measurements performed at accessible positions around the source with the modal behavior of the chosen virtual acoustic volume. The mode shapes of the virtual volume can be computed by a Finite Element solver to handle the geometrical complexity of the source. As a result, it is possible to identify all the acoustic source fields at the real surface of an irregularly shaped structure and irrespective of its acoustic environment. The m-iPTF method is introduced for the first time in this paper. Conversely to the already published u-iPTF method, the m-iPTF method needs only acoustic pressure and avoids particle velocity measurements. This paper is focused on its validation, both with numerical computations and by experiments on a baffled oil pan.

  12. Fast reconstruction of 3D volumes from 2D CT projection data with GPUs.

    Science.gov (United States)

    Leeser, Miriam; Mukherjee, Saoni; Brock, James

    2014-08-30

    Biomedical image reconstruction applications require producing high fidelity images in or close to real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data, then creates the final 3D volume. We have implemented the algorithm using several hardware and software approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are compared against the heterogeneous versions written in CUDA-C and OpenCL. Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an AMD GPU compared to a parallel version in C with OpenMP constructs. In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler's image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup over the parallel CPU version.

  13. Evaluation of respiration-correlated digital tomosynthesis in lung1

    Science.gov (United States)

    Santoro, Joseph; Kriminski, Sergey; Lovelock, D. Michael; Rosenzweig, Kenneth; Mostafavi, Hassan; Amols, Howard I.; Mageras, Gig S.

    2010-01-01

    Digital tomosynthesis (DTS) with a linear accelerator-mounted imaging system provides a means of reconstructing tomographic images from radiographic projections over a limited gantry arc, thus requiring only a few seconds to acquire. Its application in the thorax, however, often results in blurred images from respiration-induced motion. This work evaluates the feasibility of respiration-correlated (RC) DTS for soft-tissue visualization and patient positioning. Image data acquired with a gantry-mounted kilovoltage imaging system while recording respiration were retrospectively analyzed from patients receiving radiotherapy for non-small-cell lung carcinoma. Projection images spanning an approximately 30° gantry arc were sorted into four respiration phase bins prior to DTS reconstruction, which uses a backprojection, followed by a procedure to suppress structures above and below the reconstruction plane of interest. The DTS images were reconstructed in planes at different depths through the patient and normal to a user-selected angle close to the center of the arc. The localization accuracy of RC-DTS was assessed via a comparison with CBCT. Evaluation of RC-DTS in eight tumors shows visible reduction in image blur caused by the respiratory motion. It also allows the visualization of tumor motion extent. The best image quality is achieved at the end-exhalation phase of the respiratory motion. Comparison of RC-DTS with respiration-correlated cone-beam CT in determining tumor position, motion extent and displacement between treatment sessions shows agreement in most cases within 2–3 mm, comparable in magnitude to the intraobserver repeatability of the measurement. These results suggest the method’s applicability for soft-tissue image guidance in lung, but must be confirmed with further studies in larger numbers of patients. PMID:20384261

  14. A new volume conservation enforcement method for PLIC reconstruction in general convex grids

    Science.gov (United States)

    López, J.; Hernández, J.; Gómez, P.; Faura, F.

    2016-07-01

    A comprehensive study is made of methods for resolving the volume conservation enforcement problem in the PLIC reconstruction of an interface in general 3D convex grids. Different procedures to bracket the solution when solving the problem using previous standard methods are analyzed in detail. A new interpolation bracketing procedure and an improved analytical method to find the interface plane constant are proposed. These techniques are combined in a new method to enforce volume conservation, which does not require the sequential polyhedra truncation operations typically used in standard methods. The new methods have been implemented into existing geometrical routines described in López and Hernández [15], which are further improved by using more efficient formulae to compute areas and volumes of general convex 2 and 3D polytopes. Different tests using regular and irregular cell geometries are carried out to demonstrate the robustness and substantial improvement in computational efficiency of the proposed techniques, which increase the computation speed of the mentioned routines by up to 3 times for the 3D problems considered in this work.

  15. A new approach for volume reconstruction in TomoPIV with the alternating direction method of multipliers

    Science.gov (United States)

    Barbu, Ioana; Herzet, Cédric

    2016-10-01

    We adapt and import into the TomoPIV scenery a fast algorithm for solving the volume reconstruction problem. Our approach is based on the reformulation of the volume reconstruction task as a constrained optimization problem and the resort to the ‘alternating directions method of multipliers’ (ADMM). The inherent primal-dual algorithm is summarized in this article to solve the optimization problem related to the TomoPIV. In particular, the general formulation of the volume reconstruction problem considered in this paper allows one to: (i) take explicitly into account the level of the noise affecting the data; (ii) account for both the nonnegativity and the sparsity of the solution. Experiments on a numerical TomoPIV benchmark show that the proposed framework is a serious contender for the state-of-the-art.

  16. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    Science.gov (United States)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less

  17. Dual-energy contrast-enhanced breast tomosynthesis: optimization of beam quality for dose and image quality.

    Science.gov (United States)

    Samei, Ehsan; Saunders, Robert S

    2011-10-07

    Dual-energy contrast-enhanced breast tomosynthesis is a promising technique to obtain three-dimensional functional information from the breast with high resolution and speed. To optimize this new method, this study searched for the beam quality that maximized image quality in terms of mass detection performance. A digital tomosynthesis system was modeled using a fast ray-tracing algorithm, which created simulated projection images by tracking photons through a voxelized anatomical breast phantom containing iodinated lesions. The single-energy images were combined into dual-energy images through a weighted log subtraction process. The weighting factor was optimized to minimize anatomical noise, while the dose distribution was chosen to minimize quantum noise. The dual-energy images were analyzed for the signal difference to noise ratio (SdNR) of iodinated masses. The fast ray-tracing explored 523 776 dual-energy combinations to identify which yields optimum mass SdNR. The ray-tracing results were verified using a Monte Carlo model for a breast tomosynthesis system with a selenium-based flat-panel detector. The projection images from our voxelized breast phantom were obtained at a constant total glandular dose. The projections were combined using weighted log subtraction and reconstructed using commercial reconstruction software. The lesion SdNR was measured in the central reconstructed slice. The SdNR performance varied markedly across the kVp and filtration space. Ray-tracing results indicated that the mass SdNR was maximized with a high-energy tungsten beam at 49 kVp with 92.5 µm of copper filtration and a low-energy tungsten beam at 49 kVp with 95 µm of tin filtration. This result was consistent with Monte Carlo findings. This mammographic technique led to a mass SdNR of 0.92 ± 0.03 in the projections and 3.68 ± 0.19 in the reconstructed slices. These values were markedly higher than those for non-optimized techniques. Our findings indicate that dual

  18. An edge-preserving algorithm of joint image restoration and volume reconstruction for rotation-scanning 4D echocardiographic images

    Institute of Scientific and Technical Information of China (English)

    GUO Qiang; YANG Xin

    2006-01-01

    A statistical algorithm for the reconstruction from time sequence echocardiographic images is proposed in this paper.The ability to jointly restore the images and reconstruct the 3D images without blurring the boundary is the main innovation of this algorithm. First, a Bayesian model based on MAP-MRF is used to reconstruct 3D volume, and extended to deal with the images acquired by rotation scanning method. Then, the spatiotemporal nature of ultrasound images is taken into account for the parameter of energy function, which makes this statistical model anisotropic. Hence not only can this method reconstruct 3D ultrasound images, but also remove the speckle noise anisotropically. Finally, we illustrate the experiments of our method on the synthetic and medical images and compare it with the isotropic reconstruction method.

  19. Low dose four-dimensional computerized tomography with volume rendering reconstruction for primary hyperparathyroidism: How I do it?

    Institute of Scientific and Technical Information of China (English)

    Timothy; A; Platz; Moshim; Kukar; Rania; Elmarzouky; William; Cance; Ahmed; Abdelhalim

    2014-01-01

    Abstract Modification of 4-dimensional computed tomography(4D-CT)technique with volume rendering reconstruc-tions and significant dose reduction is a safe and ac-curate method of pre-operative localization for primary hyperparathyroidism.Modified low dose 4D-CT with volume rendering reconstructions provides precise preoperative localization and is associated with a sig-nificant reduction in radiation exposure compared to classic preoperative localizing techniques.It should be considered the preoperative localization study of choice for primary hyperparathyroidism.

  20. Radiation dosimetry in digital breast tomosynthesis: Report of AAPM Tomosynthesis Subcommittee Task Group 223

    Energy Technology Data Exchange (ETDEWEB)

    Sechopoulos, Ioannis, E-mail: isechop@emory.edu [Departments of Radiology and Imaging Sciences, Hematology and Medical Oncology and Winship Cancer Institute, Emory University, 1701 Uppergate Drive Northeast, Suite 5018, Atlanta, Georgia 30322 (United States); Sabol, John M. [GE Healthcare, Global Diagnostic X-Ray, Mailstop W-701, 3000 North Grandview Boulevard, Waukesha, Wisconsin 53188 (United States); Berglund, Johan [Research and Development, Philips Women' s Healthcare, Solna (Sweden); Bolch, Wesley E. [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Brateman, Libby [University of Florida, Gainesville, Florida 32611 (United States); Christodoulou, Emmanuel; Goodsitt, Mitchell [Department of Radiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109 (United States); Flynn, Michael [Department of Radiology, Henry Ford Health System, Radiology Research 2F, 1 Ford Place, Detroit, Michigan 48202 (United States); Geiser, William [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Kyle Jones, A. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Lo, Joseph Y.; Paul Segars, W. [Department of Radiology, Medical Physics Graduate Program, and Department of Biomedical Engineering, Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Maidment, Andrew D. A. [Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-4206 (United States); Nishino, Kazuyoshi [R and D X-ray Products Group, Shimadzu Corporation, Tokyo (Japan); Nosratieh, Anita [Biomedical Engineering Graduate Group, Department of Radiology, University of California, Davis, California 95817 (United States); and others

    2014-09-15

    The radiation dose involved in any medical imaging modality that uses ionizing radiation needs to be well understood by the medical physics and clinical community. This is especially true of screening modalities. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Therefore, it is important that the medical physics community have the required information to be able to understand, estimate, and communicate the radiation dose levels involved in breast tomosynthesis imaging. For this purpose, the American Association of Physicists in Medicine Task Group 223 on Dosimetry in Tomosynthesis Imaging has prepared this report that discusses dosimetry in breast imaging in general, and describes a methodology and provides the data necessary to estimate mean breast glandular dose from a tomosynthesis acquisition. In an effort to maximize familiarity with the procedures and data provided in this Report, the methodology to perform the dose estimation in DBT is based as much as possible on that used in mammography dose estimation.

  1. Radiation dosimetry in digital breast tomosynthesis: report of AAPM Tomosynthesis Subcommittee Task Group 223.

    Science.gov (United States)

    Sechopoulos, Ioannis; Sabol, John M; Berglund, Johan; Bolch, Wesley E; Brateman, Libby; Christodoulou, Emmanuel; Flynn, Michael; Geiser, William; Goodsitt, Mitchell; Jones, A Kyle; Lo, Joseph Y; Maidment, Andrew D A; Nishino, Kazuyoshi; Nosratieh, Anita; Ren, Baorui; Segars, W Paul; Von Tiedemann, Miriam

    2014-09-01

    The radiation dose involved in any medical imaging modality that uses ionizing radiation needs to be well understood by the medical physics and clinical community. This is especially true of screening modalities. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Therefore, it is important that the medical physics community have the required information to be able to understand, estimate, and communicate the radiation dose levels involved in breast tomosynthesis imaging. For this purpose, the American Association of Physicists in Medicine Task Group 223 on Dosimetry in Tomosynthesis Imaging has prepared this report that discusses dosimetry in breast imaging in general, and describes a methodology and provides the data necessary to estimate mean breast glandular dose from a tomosynthesis acquisition. In an effort to maximize familiarity with the procedures and data provided in this Report, the methodology to perform the dose estimation in DBT is based as much as possible on that used in mammography dose estimation.

  2. Digital tomosynthesis in breast cancer: A systematic review.

    Science.gov (United States)

    García-León, F J; Llanos-Méndez, A; Isabel-Gómez, R

    2015-01-01

    To estimate and compare the diagnostic validity of tomosynthesis and digital mammography for screening and diagnosing breast cancer. We systematically searched MedLine, EMBASE, and Web of Science for the terms breast cancer, screening, tomosynthesis, mammography, sensitivity, and specificity in publications in the period comprising June 2010 through February 2013. We included studies on diagnostic tests and systematic reviews. Two reviewers selected and evaluated the articles. We used QUADAS 2 to evaluate the risk of bias and the NICE criteria to determine the level of evidence. We compiled a narrative synthesis. Of the 151 original studies identified, we selected 11 that included a total of 2475 women. The overall quality was low, with a risk of bias and follow-up and limitations regarding the applicability of the results. The level of evidence was not greater than level II. The sensitivity of tomosynthesis ranged from 69% to 100% and the specificity ranged from 54% to 100%. The negative likelihood ratio was good, and this makes tomosynthesis useful as a test to confirm a diagnosis. One-view tomosynthesis was no better than two-view digital mammography, and the evidence for the superiority of two-view tomosynthesis was inconclusive. The results for the diagnostic validity of tomosynthesis in the diagnosis of breast cancer were inconclusive and there were no results for its use in screening. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  3. Transformation diffusion reconstruction of three-dimensional histology volumes from two-dimensional image stacks.

    Science.gov (United States)

    Casero, Ramón; Siedlecka, Urszula; Jones, Elizabeth S; Gruscheski, Lena; Gibb, Matthew; Schneider, Jürgen E; Kohl, Peter; Grau, Vicente

    2017-05-01

    Traditional histology is the gold standard for tissue studies, but it is intrinsically reliant on two-dimensional (2D) images. Study of volumetric tissue samples such as whole hearts produces a stack of misaligned and distorted 2D images that need to be reconstructed to recover a congruent volume with the original sample's shape. In this paper, we develop a mathematical framework called Transformation Diffusion (TD) for stack alignment refinement as a solution to the heat diffusion equation. This general framework does not require contour segmentation, is independent of the registration method used, and is trivially parallelizable. After the first stack sweep, we also replace registration operations by operations in the space of transformations, several orders of magnitude faster and less memory-consuming. Implementing TD with operations in the space of transformations produces our Transformation Diffusion Reconstruction (TDR) algorithm, applicable to general transformations that are closed under inversion and composition. In particular, we provide formulas for translation and affine transformations. We also propose an Approximated TDR (ATDR) algorithm that extends the same principles to tensor-product B-spline transformations. Using TDR and ATDR, we reconstruct a full mouse heart at pixel size 0.92µm×0.92µm, cut 10µm thick, spaced 20µm (84G). Our algorithms employ only local information from transformations between neighboring slices, but the TD framework allows theoretical analysis of the refinement as applying a global Gaussian low-pass filter to the unknown stack misalignments. We also show that reconstruction without an external reference produces large shape artifacts in a cardiac specimen while still optimizing slice-to-slice alignment. To overcome this problem, we use a pre-cutting blockface imaging process previously developed by our group that takes advantage of Brewster's angle and a polarizer to capture the outline of only the topmost layer of wax

  4. Digital breast tomosynthesis: Dose and image quality assessment.

    Science.gov (United States)

    Maldera, A; De Marco, P; Colombo, P E; Origgi, D; Torresin, A

    2017-01-01

    The aim of this work was to evaluate how different acquisition geometries and reconstruction parameters affect the performance of four digital breast tomosynthesis (DBT) systems (Senographe Essential - GE, Mammomat Inspiration - Siemens, Selenia Dimensions - Hologic and Amulet Innovality - Fujifilm) on the basis of a physical characterization. Average Glandular Dose (AGD) and image quality parameters such as in-plane/in-depth resolution, signal difference to noise ratio (SDNR) and artefact spread function (ASF) were examined. Measured AGD values resulted below EUREF limits for 2D imaging. A large variability was recorded among the investigated systems: the mean dose ratio DBT/2D ranged between 1.1 and 1.9. In-plane resolution was in the range: 2.2mm(-1)-3.8mm(-1) in chest wall-nipple direction. A worse resolution was found for all devices in tube travel direction. In-depth resolution improved with increasing scan angle but was also affected by the choice of reconstruction and post-processing algorithms. The highest z-resolution was provided by Siemens (50°, FWHM=2.3mm) followed by GE (25°, FWHM=2.8mm), while the Fujifilm HR showed the lowest one, despite its wide scan angle (40°, FWHM=4.1mm). The ASF was dependent on scan angle: smaller range systems showed wider ASF curves; however a clear relationship was not found between scan angle and ASF, due to the different post processing and reconstruction algorithms. SDNR analysis, performed on Fujifilm system, demonstrated that pixel binning improves detectability for a fixed dose/projection. In conclusion, we provide a performance comparison among four DBT systems under a clinical acquisition mode. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Evaluating curvature for the volume of fluid method via interface reconstruction

    Science.gov (United States)

    Evrard, Fabien; Denner, Fabian; van Wachem, Berend

    2016-11-01

    The volume of fluid method (VOF) is widely adopted for the simulation of interfacial flows. A critical step in VOF modelling is to evaluate the local mean curvature of the fluid interface for the computation of surface tension. Most existing curvature evaluation techniques exhibit errors due to the discrete nature of the field they are dealing with, and potentially to the smoothing of this field that the method might require. This leads to the production of inaccurate or unphysical results. We present a curvature evaluation method which aims at greatly reducing these errors. The interface is reconstructed from the volume fraction field and the curvature is evaluated by fitting local quadric patches onto the resulting triangulation. The patch that best fits the triangulated interface can be found by solving a local minimisation problem. Combined with a partition of unity strategy with compactly supported radial basis functions, the method provides a semi-global implicit expression for the interface from which curvature can be exactly derived. The local mean curvature is then integrated back on the Eulerian mesh. We show a detailed analysis of the associated errors and comparisons with existing methods. The method can be extended to unstructured meshes. Financial support from Petrobras is gratefully acknowledged.

  6. Design and feasibility studies of a stationary digital breast tomosynthesis system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G., E-mail: yangg@email.unc.edu [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Qian, X. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Phan, T. [Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Sprenger, F. [XinRay Systems LLC, Research Triangle Park, NC 27709 (United States); Sultana, S.; Calderon-Colon, X. [Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Kearse, B.; Spronk, D. [XinRay Systems LLC, Research Triangle Park, NC 27709 (United States); Lu, J. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Zhou, O., E-mail: zhou@physics.unc.edu [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States)

    2011-08-21

    Studies have shown that digital breast tomosynthesis (DBT) can improve breast cancer diagnosis by reconstructing 3D images. However, DBT scanners based on rotation gantry prolong the imaging time and reduce spatial resolution due to motion comparing with the regular two-view mammography. To obtain three dimension reconstruction images and maintain the high image quality of conventional mammography, we proposed a prototype stationary digital breast tomosynthesis system (s-DBT). The proposed s-DBT system acquires projection images without mechanical movement. The core component of the s-DBT system is a specially designed spatially distributed multi-beam X-ray tube based on the carbon nanotube field emission X-ray technology. The multi-beam X-ray source array enables collection of all projection images from different viewing angles without mechanical motion. Preliminary results show the s-DBT system can achieve a scan time comparable with the regular two-view mammography, and improve the spatial resolution comparing with rotating gantry DBT.

  7. Optimization of digital breast tomosynthesis using the Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taewon; Min, Jonghwan; Cho, Seungryong [KAIST, Daejeon (Korea, Republic of). Dept. of Nuclear and Quantum Engineering

    2011-07-01

    Digital breast tomosynthesis (DBT) has been demonstrated to be a promising technique in early breast cancer detection. The DBT performance is generally affected by many factors including scanning parameters such as limited angle and limited dose value, and reconstruction method. Many investigators have studied the effects of those factors on image quality of DBT, and optimized the factors accordingly. The suggested scanning parameters, however, vary widely among the investigators. Optimization in DBT can be challenging partly due to the large number of parameters that are involved in the optimization, and also due to diverse imaging tasks under consideration. In this work, we propose an optimization method for DBT based on the Taguchi design-of-experiment method. It should be noted that we are not searching for a universal, optimum DBT technique, which we believe is very difficult if not impossible, but instead we would like to demonstrate that the Taguchi method provides an efficient and systematic way of optimizing many parameters for a given DBT system and a given imaging task. As a preliminary, we conducted a numerical simulation study, and showed that the Taguchi method effectively selected the (near-) optimum parameters for a mass detection task. (orig.)

  8. A three-dimensional volume-of-fluid method for reconstructing and advecting three-material interfaces forming contact lines

    Science.gov (United States)

    Pathak, Ashish; Raessi, Mehdi

    2016-02-01

    We introduce a piecewise-linear, volume-of-fluid method for reconstructing and advecting three-dimensional interfaces and contact lines formed by three materials. The new method employs a set of geometric constructs that can be used in conjunction with any volume-tracking scheme. In this work, we used the mass-conserving scheme of Youngs to handle two-material cells, perform interface reconstruction in three-material cells, and resolve the contact line. The only information required by the method is the available volume fraction field. Although the proposed method is order dependent and requires a priori information on material ordering, it is suitable for typical contact line applications, where the material representing the contact surface is always known. Following the reconstruction of the contact surface, to compute the interface orientation in a three-material cell, the proposed method minimizes an error function that is based on volume fraction distribution around that cell. As an option, the minimization procedure also allows the user to impose a contact angle. Performance of the proposed method is assessed via both static and advection test cases. The tests show that the new method preserves the accuracy and mass-conserving property of the Youngs method in volume-tracking three materials.

  9. Reconstruction

    Directory of Open Access Journals (Sweden)

    Stefano Zurrida

    2011-01-01

    Full Text Available Breast cancer is the most common cancer in women. Primary treatment is surgery, with mastectomy as the main treatment for most of the twentieth century. However, over that time, the extent of the procedure varied, and less extensive mastectomies are employed today compared to those used in the past, as excessively mutilating procedures did not improve survival. Today, many women receive breast-conserving surgery, usually with radiotherapy to the residual breast, instead of mastectomy, as it has been shown to be as effective as mastectomy in early disease. The relatively new skin-sparing mastectomy, often with immediate breast reconstruction, improves aesthetic outcomes and is oncologically safe. Nipple-sparing mastectomy is newer and used increasingly, with better acceptance by patients, and again appears to be oncologically safe. Breast reconstruction is an important adjunct to mastectomy, as it has a positive psychological impact on the patient, contributing to improved quality of life.

  10. Relationship between quadriceps femoris muscle volume and muscle torque at least 18 months after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Konishi, Y; Oda, T; Tsukazaki, S; Kinugasa, R; Fukubayashi, T

    2012-12-01

    The purpose of this study was to evaluate motor unit recruitment in the quadriceps femoris (QF) after anterior cruciate ligament (ACL) rupture and repair. Subjects included 24 patients at ≥ 18 months after ACL reconstruction and 22 control subjects with no history of knee injury. A series of cross-sectional magnetic resonance images were obtained to compare the QF of patients' injured side with that of their uninjured sides and that of uninjured control subjects. Muscle torque per muscle volume was calculated as isokinetic peak torque divided by QF muscle volume (cm(3)). The mean muscle torque per unit volume of the injured side of patients was not significantly different from that of the uninjured side or control subjects (one-way ANOVA) Results of the present study were contrary to the results of a previous study that evaluated patients at ≤ 12 months after ACL reconstruction. The present study found that high-threshold motor unit recruitment was restored at ≥ 18 months after ACL reconstruction. Thus, clinicians must develop techniques that increase the recruitment of high-threshold motor units in the QF from the period immediately after the injury until approximately 18 months after ACL reconstruction.

  11. Optimization of the matrix inversion tomosynthesis (MITS) impulse response and modulation transfer function characteristics for chest imaging.

    Science.gov (United States)

    Godfrey, Devon J; McAdams, H P; Dobbins, James T

    2006-03-01

    Matrix inversion tomosynthesis (MITS) uses linear systems theory, along with a priori knowledge of the imaging geometry, to deterministically distinguish between true structure and overlying tomographic blur in a set of conventional tomosynthesis planes. In this paper we examine the effect of total scan angle (ANG), number of input projections (N), and plane separation/number of reconstructed planes (NP) on the MITS impulse response (IR) and modulation transfer function (MTF), with the purpose of optimizing MITS imaging of the chest. MITS IR and MTF data were generated by simulating the imaging of a very thin wire, using various combinations of ANG, N, and NP. Actual tomosynthesis data of an anthropomorphic chest phantom were acquired with a prototype experimental system, using the same imaging parameter combinations as those in the simulations. Thoracic projection data from two human subjects were collected for corroboration of the system response analysis in vivo. Results suggest that ANG=20 degrees, N=71, NP=69 is the optimal combination for MITS chest imaging given the inherent constraints of our prototype system. MITS chest data from human subjects demonstrates that the selected imaging strategy can effectively produce high-quality MITS thoracic images in vivo.

  12. Knowledge-based reconstruction for measurement of right ventricular volumes on cardiovascular magnetic resonance images in a mixed population.

    Science.gov (United States)

    Pieterman, Elise D; Budde, Ricardo P J; Robbers-Visser, Daniëlle; van Domburg, Ron T; Helbing, Willem A

    2017-06-05

    Follow-up of right ventricular performance is important for patients with congenital heart disease. Cardiac magnetic resonance imaging is optimal for this purpose. However, observer-dependency of manual analysis of right ventricular volumes limit its use. Knowledge-based reconstruction is a new semiautomatic analysis tool that uses a database including knowledge of right ventricular shape in various congenital heart diseases. We evaluated whether knowledge-based reconstruction is a good alternative for conventional analysis. To assess the inter- and intra-observer variability and agreement of knowledge-based versus conventional analysis of magnetic resonance right ventricular volumes, analysis was done by two observers in a mixed group of 22 patients with congenital heart disease affecting right ventricular loading conditions (dextro-transposition of the great arteries and right ventricle to pulmonary artery conduit) and a group of 17 healthy children. We used Bland-Altman analysis and coefficient of variation. Comparison between the conventional method and the knowledge-based method showed a systematically higher volume for the latter group. We found an overestimation for end-diastolic volume (bias -40 ± 24 mL, r = .956), end-systolic volume (bias -34 ± 24 mL, r = .943), stroke volume (bias -6 ± 17 mL, r = .735) and an underestimation of ejection fraction (bias 7 ± 7%, r = .671) by knowledge-based reconstruction. The intra-observer variability of knowledge-based reconstruction varied with a coefficient of variation of 9% for end-diastolic volume and 22% for stroke volume. The same trend was noted for inter-observer variability. A systematic difference (overestimation) was noted for right ventricular size as assessed with knowledge-based reconstruction compared with conventional methods for analysis. Observer variability for the new method was comparable to what has been reported for the right ventricle in children and congenital

  13. A novel partial volume effects correction technique integrating deconvolution associated with denoising within an iterative PET image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Merlin, Thibaut, E-mail: thibaut.merlin@telecom-bretagne.eu [Université Bordeaux INCIA, CNRS UMR 5287, Hôpital de Bordeaux , Bordeaux 33 33076 (France); Visvikis, Dimitris [INSERM, UMR1101, LaTIM, Université de Bretagne Occidentale, Brest 29 29609 (France); Fernandez, Philippe; Lamare, Frederic [Université Bordeaux INCIA, CNRS UMR 5287, Hôpital de Bordeaux, Bordeaux 33 33076 (France)

    2015-02-15

    Purpose: Partial volume effect (PVE) plays an important role in both qualitative and quantitative PET image accuracy, especially for small structures. A previously proposed voxelwise PVE correction method applied on PET reconstructed images involves the use of Lucy–Richardson deconvolution incorporating wavelet-based denoising to limit the associated propagation of noise. The aim of this study is to incorporate the deconvolution, coupled with the denoising step, directly inside the iterative reconstruction process to further improve PVE correction. Methods: The list-mode ordered subset expectation maximization (OSEM) algorithm has been modified accordingly with the application of the Lucy–Richardson deconvolution algorithm to the current estimation of the image, at each reconstruction iteration. Acquisitions of the NEMA NU2-2001 IQ phantom were performed on a GE DRX PET/CT system to study the impact of incorporating the deconvolution inside the reconstruction [with and without the point spread function (PSF) model] in comparison to its application postreconstruction and to standard iterative reconstruction incorporating the PSF model. The impact of the denoising step was also evaluated. Images were semiquantitatively assessed by studying the trade-off between the intensity recovery and the noise level in the background estimated as relative standard deviation. Qualitative assessments of the developed methods were additionally performed on clinical cases. Results: Incorporating the deconvolution without denoising within the reconstruction achieved superior intensity recovery in comparison to both standard OSEM reconstruction integrating a PSF model and application of the deconvolution algorithm in a postreconstruction process. The addition of the denoising step permitted to limit the SNR degradation while preserving the intensity recovery. Conclusions: This study demonstrates the feasibility of incorporating the Lucy–Richardson deconvolution associated with a

  14. Mean glandular dose estimation using MCNPX for a digital breast tomosynthesis system with tungsten/aluminum and tungsten/aluminum+silver x-ray anode-filter combinations.

    Science.gov (United States)

    Ma, Andy K W; Darambara, Dimitra G; Stewart, Alexander; Gunn, Spencer; Bullard, Edward

    2008-12-01

    Breast cancer screening with x-ray mammography, using one or two projection images of the breast, is an indispensible tool in the early detection of breast cancer in women. Digital breast tomosynthesis (DBT) is a 3D imaging technique that promises higher sensitivity and specificity in breast cancer screening at a similar radiation dose to conventional two-view screening mammography. In DBT a 3D volume is reconstructed with anisotropic voxels from a limited number of x-ray projection images acquired over a limited angle. Although the benefit of early cancer detection through screening mammography outweighs the potential risks associated with radiation, the radiation dosage to women in terms of mean glandular dose (MGD) is carefully monitored. This work studies the MGD arising from a prototype DBT system under various parameters. Two anode/filter combinations (W∕Al and W∕Al+Ag) were investigated; the tube potential ranges from 20to50kVp; and the breast size varied between 4 and 10cm chest wall-to-nipple distance and between 3 and 7cm compressed breast thickness. The dosimetric effect of breast positioning with respect to the imaging detector was also reviewed. It was found that the position of the breast can affect the MGD by as much as 5% to 13% depending on the breast size. © 2008 American Association of Physicists in Medicine.

  15. Optimization and Comparison of Different Digital Mammographic Tomosynthesis Reconstruction Methods

    Science.gov (United States)

    2007-04-01

    resulted in a proceedings abstract at AAPM , a scientific conference for medical imaging in 2006. In the abstract, we used the impulse response...together to emphasize structures in the in-focus plane and blur out structures in other planes. 145 150 155 As shown in figure 1, plane S

  16. Molecular breast tomosynthesis with scanning focus multi-pinhole cameras

    Science.gov (United States)

    van Roosmalen, Jarno; Goorden, Marlies C.; Beekman, Freek J.

    2016-08-01

    Planar molecular breast imaging (MBI) is rapidly gaining in popularity in diagnostic oncology. To add 3D capabilities, we introduce a novel molecular breast tomosynthesis (MBT) scanner concept based on multi-pinhole collimation. In our design, the patient lies prone with the pendant breast lightly compressed between transparent plates. Integrated webcams view the breast through these plates and allow the operator to designate the scan volume (e.g. a whole breast or a suspected region). The breast is then scanned by translating focusing multi-pinhole plates and NaI(Tl) gamma detectors together in a sequence that optimizes count yield from the volume-of-interest. With simulations, we compared MBT with existing planar MBI. In a breast phantom containing different lesions, MBT improved tumour-to-background contrast-to-noise ratio (CNR) over planar MBI by 12% and 111% for 4.0 and 6.0 mm lesions respectively in case of whole breast scanning. For the same lesions, much larger CNR improvements of 92% and 241% over planar MBI were found in a scan that focused on a breast region containing several lesions. MBT resolved 3.0 mm rods in a Derenzo resolution phantom in the transverse plane compared to 2.5 mm rods distinguished by planar MBI. While planar MBI cannot provide depth information, MBT offered 4.0 mm depth resolution. Our simulations indicate that besides offering 3D localization of increased tracer uptake, multi-pinhole MBT can significantly increase tumour-to-background CNR compared to planar MBI. These properties could be promising for better estimating the position, extend and shape of lesions and distinguishing between single and multiple lesions.

  17. Whole-Body Clinical Applications of Digital Tomosynthesis.

    Science.gov (United States)

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Ishikawa, Takuya; Tate, Etsuko; Ueno, Eiko; Nye, Katelyn; Sabol, John M

    2016-01-01

    With flat-panel detector mammography, radiography, and fluoroscopy systems, digital tomosynthesis (DT) has been recently introduced as an advanced clinical application that removes overlying structures, enhances local tissue separation, and provides depth information about structures of interest by providing high-quality tomographic images. DT images are generated from projection image data, typically using filtered back-projection or iterative reconstruction. These low-dose x-ray projection images are easily and swiftly acquired over a range of angles during a single linear or arc sweep of the x-ray tube assembly. DT is advantageous in a variety of clinical contexts, including breast, chest, head and neck, orthopedic, emergency, and abdominal imaging. Specifically, compared with conventional mammography, radiography, and fluoroscopy, as a result of reduced tissue overlap DT can improve detection of breast cancer, pulmonary nodules, sinonasal mucosal thickening, and bone fractures and delineation of complex anatomic structures such as the ostiomeatal unit, atlantoaxial joint, carpal and tarsal bones, and pancreatobiliary and gastrointestinal tracts. Compared with computed tomography, DT offers reduced radiation exposure, better in-plane resolution to improve assessment of fine bony changes, and less metallic artifact, improving postoperative evaluation of patients with metallic prostheses and osteosynthesis materials. With more flexible patient positioning, DT is also useful for functional, weight-bearing, and stress tests. To optimize patient management, a comprehensive understanding of the clinical applications and limitations of whole-body DT applications is important for improvement of diagnostic quality, workflow, and cost-effectiveness. Online supplemental material is available for this article. (©)RSNA, 2016.

  18. Effect of Scanning and Reconstruction Parameters on Three Dimensional Volume and CT Value Measurement of Pulmonary Nodules: A Phantom Study

    Directory of Open Access Journals (Sweden)

    Datong SU

    2017-08-01

    Full Text Available Background and objective The computed tomography (CT follow-up of indeterminate pulmonary nodules aiming to evaluate the change of the volume and CT value is the common strategy in clinic. The CT dose needs to considered on serious CT scans in addition to the measurement accuracy. The purpose of this study is to quantify the precision of pulmonary nodule volumetric measurement and CT value measurement with various tube currents and reconstruction algorithms in a phantom study with dual-energy CT. Methods A chest phantom containing 9 artificial spherical solid nodules with known diameter (D=2.5 mm, 5 mm, 10 mm and density (-100 HU, 60 HU and 100 HU was scanned using a 64-row detector CT canner at 120 Kilovolt & various currents (10 mA, 20 mA, 50 mA, 80 mA,100 mA, 150 mA and 350 mA. Raw data were reconstructed with filtered back projection and three levels of adaptive statistical iterative reconstruction algorithm (FBP, ASIR; 30%, 50% and 80%. Automatic volumetric measurements were performed using commercially available software. The relative volume error (RVE and the absolute attenuation error (AAE between the software measures and the reference-standard were calculated. Analyses of the variance were performed to evaluate the effect of reconstruction methods, different scan parameters, nodule size and attenuation on the RPE. Results The software substantially overestimated the very small (D=2.5 mm nodule's volume [mean RVE: (100.8%±28%] and underestimated it attenuation [mean AAE: (-756±80 HU]. The mean RVEs of nodule with diameter as 5 mm and 10 mm were small [(-0.9%±1.1% vs (0.9%±1.4%], however, the mean AAEs [(-243±26 HU vs (-129±7 HU] were large. The ANOVA analysis for repeated measurements showed that different tube current and reconstruction algorithm had no significant effect on the volumetric measurements for nodules with diameter of 5 mm and 10 mm (F=5.60, P=0.10 vs F=11.13, P=0.08, but significant effects on the measurement of CT

  19. A Monte Carlo estimation of effective dose in chest tomosynthesis.

    Science.gov (United States)

    Sabol, John M

    2009-12-01

    The recent introduction of digital tomosynthesis imaging into routine clinical use has enabled the acquisition of volumetric patient data within a standard radiographic examination. Tomosynthesis requires the acquisition of multiple projection views, requiring additional dose compared to a standard projection examination. Knowledge of the effective dose is needed to make an appropriate decision between standard projection, tomosynthesis, and CT for thoracic x-ray examinations. In this article, the effective dose to the patient of chest tomosynthesis is calculated and compared to a standard radiographic examination and to values published for thoracic CT. Radiographic technique data for posterior-anterior (PA) and left lateral (LAT) radiographic chest examinations of medium-sized adults was obtained from clinical sites. From these data, the average incident air kerma for the standard views was determined. A commercially available tomosynthesis system was used to define the acquisition technique and geometry for each projection view. Using Monte Carlo techniques, the effective dose of the PA, LAT, and each tomosynthesis projection view was calculated. The effective dose for all projections of the tomosynthesis sweep was summed and compared to the calculated PA and LAT values and to the published values for thoracic CT. The average incident air kerma for the PA and left lateral clinical radiographic examinations were found to be 0.10 and 0.40 mGy, respectively. The effective dose for the PA view of a patient of the size of an average adult male was determined to be 0.017 mSv (ICRP 60) [0.018 mSv (ICRP 103)]. For the left lateral view of the same sized patient, the effective dose was determined to be 0.039 mSv (ICRP 60) [0.050 mSv (ICRP 103)]. The cumulative mA s for a tomosynthesis examination is recommended to be ten times the mA s of the PA image. With this technique, the effective dose for an average tomosynthesis examination was calculated to be 0.124 mSv (ICRP60

  20. [Breast tomosynthesis: a new tool for diagnosing breast cancer].

    Science.gov (United States)

    Martínez Miravete, P; Etxano, J

    2015-01-01

    Breast cancer continues to be the most common malignant tumor in women in occidental countries. Mammography is currently the technique of choice for screening programs; however, although it has been widely validated, mammography has its limitations, especially in dense breasts. Breast tomosynthesis is a revolutionary advance in the diagnosis of breast cancer. It makes it possible to define lesions that are occult in the glandular tissue and therefore to detect breast tumors that are impossible to see on conventional mammograms. In considering the combined use of mammography and tomosynthesis, many factors must be taken into account apart from cancer detection; these include additional radiation, the recall rate, and the time necessary to carry out and interpret the two tests. In this article, we review the technical principles of tomosynthesis, it main uses, and the future perspective for this imaging technique. Copyright © 2013 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  1. Using mastectomy specimens to develop breast models for breast tomosynthesis and CT breast imaging

    Science.gov (United States)

    O'Connor, J. Michael; Das, Mini; Didier, Clay; Mah'D, Mufeed; Glick, Stephen J.

    2008-03-01

    Dedicated x-ray computed tomography (CT) of the breast using a cone-beam flat-panel detector system is a modality under investigation by a number of research teams. As previously reported, we have fabricated a prototype, bench-top flat-panel CT breast imaging (CTBI) system and developed computer simulation software to model such a system. We are developing a methodology to use high resolution, low noise CT reconstructions of fresh mastectomy specimens for generating an ensemble of 3D digital breast phantoms that realistically model 3D compressed and uncompressed breast anatomy. These breast models can be used to simulate realistic projection data for both breast tomosynthesis (BT) and CT systems thereby providing a powerful evaluation and optimization mechanism.

  2. Characterization of lesions in dense breasts: Does tomosynthesis help?

    Directory of Open Access Journals (Sweden)

    Krithika Rangarajan

    2016-01-01

    Full Text Available Context: Mammography in dense breasts is challenging due to lesion obscuration by tissue overlap. Does tomosynthesis offers a solution? Aims: To study the impact of digital breast tomosynthesis (DBT in characterizing lesions in breasts of different mammographic densities. Settings and Design: Prospective blinded study comparing mammography in two views with Mammography + Tomosynthesis. Methods and Material: Tomosynthesis was performed in 199 patients who were assigned Breast imaging reporting and data system (BIRADS categories 0, 3, 4, or 5 on two-dimensional (2D mammogram. Mammograms were first categorized into one of 4 mammographic breast densities in accordance with the American College of Radiology (ACR. Three radiologists independently analyzed these images and assigned a BIRADS category first based on 2D mammogram alone, and then assigned a fresh BIRADS category after taking mammography and tomosynthesis into consideration. A composite gold-standard was used in the study (histopathology, ultrasound, follow-up mammogram, magnetic resonance imaging. Each lesion was categorized into 3 groups—superior categorization with DBT, no change in BIRADS, or inferior BIRADS category based on comparison with the gold-standard. The percentage of lesions in each group was calculated for different breast densities. Results: There were 260 lesions (ages 28–85. Overall, superior categorization was seen in 21.2% of our readings on addition of DBT to mammography. DBT was most useful in ACR Densities 3 and 4 breasts where it led to more appropriate categorization in 27 and 42% of lesions, respectively. DBT also increased diagnostic confidence in 54.5 and 63.6% of lesions in ACR Densities 3 and 4, respectively. Conclusions: In a diagnostic setting, the utility of tomosynthesis increases with increasing breast density. This helps in identifying the sub category of patients where DBT can actually change management.

  3. Characterization of lesions in dense breasts: Does tomosynthesis help?

    Science.gov (United States)

    Rangarajan, Krithika; Hari, Smriti; Thulkar, Sanjay; Sharma, Sanjay; Srivastava, Anurag; Parshad, Rajinder

    2016-01-01

    Mammography in dense breasts is challenging due to lesion obscuration by tissue overlap. Does tomosynthesis offers a solution? To study the impact of digital breast tomosynthesis (DBT) in characterizing lesions in breasts of different mammographic densities. Prospective blinded study comparing mammography in two views with Mammography + Tomosynthesis. Tomosynthesis was performed in 199 patients who were assigned Breast imaging reporting and data system (BIRADS) categories 0, 3, 4, or 5 on two-dimensional (2D) mammogram. Mammograms were first categorized into one of 4 mammographic breast densities in accordance with the American College of Radiology (ACR). Three radiologists independently analyzed these images and assigned a BIRADS category first based on 2D mammogram alone, and then assigned a fresh BIRADS category after taking mammography and tomosynthesis into consideration. A composite gold-standard was used in the study (histopathology, ultrasound, follow-up mammogram, magnetic resonance imaging). Each lesion was categorized into 3 groups-superior categorization with DBT, no change in BIRADS, or inferior BIRADS category based on comparison with the gold-standard. The percentage of lesions in each group was calculated for different breast densities. There were 260 lesions (ages 28-85). Overall, superior categorization was seen in 21.2% of our readings on addition of DBT to mammography. DBT was most useful in ACR Densities 3 and 4 breasts where it led to more appropriate categorization in 27 and 42% of lesions, respectively. DBT also increased diagnostic confidence in 54.5 and 63.6% of lesions in ACR Densities 3 and 4, respectively. In a diagnostic setting, the utility of tomosynthesis increases with increasing breast density. This helps in identifying the sub category of patients where DBT can actually change management.

  4. Iodine-131 releases from the Hanford Site, 1944--1947. Volume 2, Data: Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Heeb, C.M.

    1993-03-01

    Detailed results of the Hanford Environmental Dose Reconstruction project (HEDR) iodine-131 release reconstruction are presented in this volume. Included are daily data on B, D, and F Plant, reactor operations from the P-Department Daily Reports (General Electric Company 1947). Tables of B and T Plant material processed from the three principal sources on separations plant operations: The Jaech report (Jaech undated), the 200 Area Report (Acken and Bird 1945; Bird and Donihee 1945), and the Metal History Reports (General Electric Company 1946). A transcription of the Jaech report is also provided because it is computer-generated and is not readily readable in its original format. The iodine-131 release data are from the STRM model. Cut-by-cut release estimates are provided, along with daily, monthly, and yearly summations. These summations are based on the hourly release estimates. The hourly data are contained in a 28 megabyte electronic file. Interested individuals may request a copy.

  5. Description and validation of a scoring system for tomosynthesis in pulmonary cystic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Vult von Steyern, Kristina; Bjoerkman-Burtscher, Isabella M.; Bozovic, Gracijela; Wiklund, Marie; Geijer, Mats [Skaane University Hospital, Lund University, Centre for Medical Imaging and Physiology, Lund (Sweden); Hoeglund, Peter [Skaane University Hospital, Competence Centre for Clinical Research, Lund (Sweden)

    2012-12-15

    To design and validate a scoring system for tomosynthesis (digital tomography) in pulmonary cystic fibrosis. A scoring system dedicated to tomosynthesis in pulmonary cystic fibrosis was designed. Three radiologists independently scored 88 pairs of radiographs and tomosynthesis examinations of the chest in 60 patients with cystic fibrosis and 7 oncology patients. Radiographs were scored according to the Brasfield scoring system and tomosynthesis examinations were scored using the new scoring system. Observer agreements for the tomosynthesis score were almost perfect for the total score with square-weighted kappa >0.90, and generally substantial to almost perfect for subscores. Correlation between the tomosynthesis score and the Brasfield score was good for the three observers (Kendall's rank correlation tau 0.68, 0.77 and 0.78). Tomosynthesis was generally scored higher as a percentage of the maximum score. Observer agreements for the total score for Brasfield score were almost perfect (square-weighted kappa 0.80, 0.81 and 0.85). The tomosynthesis scoring system seems robust and correlates well with the Brasfield score. Compared with radiography, tomosynthesis is more sensitive to cystic fibrosis changes, especially bronchiectasis and mucus plugging, and the new tomosynthesis scoring system offers the possibility of more detailed and accurate scoring of disease severity. (orig.)

  6. A software tool of digital tomosynthesis application for patient positioning in radiotherapy.

    Science.gov (United States)

    Yan, Hui; Dai, Jian-Rong

    2016-03-08

    Digital Tomosynthesis (DTS) is an image modality in reconstructing tomographic images from two-dimensional kV projections covering a narrow scan angles. Comparing with conventional cone-beam CT (CBCT), it requires less time and radiation dose in data acquisition. It is feasible to apply this technique in patient positioning in radiotherapy. To facilitate its clinical application, a software tool was developed and the reconstruction processes were accelerated by graphic process-ing unit (GPU). Two reconstruction and two registration processes are required for DTS application which is different from conventional CBCT application which requires one image reconstruction process and one image registration process. The reconstruction stage consists of productions of two types of DTS. One type of DTS is reconstructed from cone-beam (CB) projections covering a narrow scan angle and is named onboard DTS (ODTS), which represents the real patient position in treatment room. Another type of DTS is reconstructed from digitally reconstructed radiography (DRR) and is named reference DTS (RDTS), which represents the ideal patient position in treatment room. Prior to the reconstruction of RDTS, The DRRs are reconstructed from planning CT using the same acquisition setting of CB projections. The registration stage consists of two matching processes between ODTS and RDTS. The target shift in lateral and longitudinal axes are obtained from the matching between ODTS and RDTS in coronal view, while the target shift in longitudinal and vertical axes are obtained from the matching between ODTS and RDTS in sagittal view. In this software, both DRR and DTS reconstruction algorithms were implemented on GPU environments for acceleration purpose. The comprehensive evaluation of this software tool was performed including geometric accuracy, image quality, registration accuracy, and reconstruction efficiency. The average correlation coefficient between DRR/DTS generated by GPU-based algorithm

  7. The Partition of Unity Method for High-Order Finite Volume Schemes Using Radial Basis Functions Reconstruction

    Institute of Scientific and Technical Information of China (English)

    Serena Morigi; Fiorella Sgallari

    2009-01-01

    This paper introduces the use of partition of unity method for the develop-ment of a high order finite volume discretization scheme on unstructured grids for solv-ing diffusion models based on partial differential equations. The unknown function and its gradient can be accurately reconstructed using high order optimal recovery based on radial basis functions. The methodology proposed is applied to the noise removal prob-lem in functional surfaces and images. Numerical results demonstrate the effectiveness of the new numerical approach and provide experimental order of convergence.

  8. Application of digital tomosynthesis (DTS) of optimal deblurring filters for dental X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J. E.; Cho, H. S.; Kim, D. S.; Choi, S. I.; Je, U. K. [Yonsei University, Wonju (Korea, Republic of)

    2012-04-15

    Digital tomosynthesis (DTS) is a limited-angle tomographic technique that provides some of the tomographic benefits of computed tomography (CT) but at reduced dose and cost. Thus, the potential for application of DTS to dental X-ray imaging seems promising. As a continuation of our dental radiography R and D, we developed an effective DTS reconstruction algorithm and implemented it in conjunction with a commercial dental CT system for potential use in dental implant placement. The reconstruction algorithm employed a backprojection filtering (BPF) method based upon optimal deblurring filters to suppress effectively both the blur artifacts originating from the out-focus planes and the high-frequency noise. To verify the usefulness of the reconstruction algorithm, we performed systematic simulation works and evaluated the image characteristics. We also performed experimental works in which DTS images of enhanced anatomical resolution were successfully obtained by using the algorithm and were promising to our ongoing applications to dental X-ray imaging. In this paper, our approach to the development of the DTS reconstruction algorithm and the results are described in detail.

  9. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yakun [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Li, Xiang [Medical Physics Graduate Program, Department of Physics, Cleveland State University, Cleveland, Ohio 44115 (United States); Segars, W. Paul [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan, E-mail: samei@duke.edu [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Departments of Physics, Biomedical Engineering, and Electrical and Computer Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States)

    2014-02-15

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI{sub vol} and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose

  10. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit; Prabhu, Sanjay P.; Warfield, Simon K. [Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aganj, Iman [Radiology Department, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Sahin, Mustafa [Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-12-15

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  11. WE-AB-303-09: Rapid Projection Computations for On-Board Digital Tomosynthesis in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, AS; Sun, X [Duke University, Durham, NC (United States); Pitsianis, N [Aristotle University of Thessaloniki (Greece); Duke University, Durham, NC (United States); Yin, FF; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To facilitate fast and accurate iterative volumetric image reconstruction from limited-angle on-board projections. Methods: Intrafraction motion hinders the clinical applicability of modern radiotherapy techniques, such as lung stereotactic body radiation therapy (SBRT). The LIVE system may impact clinical practice by recovering volumetric information via Digital Tomosynthesis (DTS), thus entailing low time and radiation dose for image acquisition during treatment. The DTS is estimated as a deformation of prior CT via iterative registration with on-board images; this shifts the challenge to the computational domain, owing largely to repeated projection computations across iterations. We address this issue by composing efficient digital projection operators from their constituent parts. This allows us to separate the static (projection geometry) and dynamic (volume/image data) parts of projection operations by means of pre-computations, enabling fast on-board processing, while also relaxing constraints on underlying numerical models (e.g. regridding interpolation kernels). Further decoupling the projectors into simpler ones ensures the incurred memory overhead remains low, within the capacity of a single GPU. These operators depend only on the treatment plan and may be reused across iterations and patients. The dynamic processing load is kept to a minimum and maps well to the GPU computational model. Results: We have integrated efficient, pre-computable modules for volumetric ray-casting and FDK-based back-projection with the LIVE processing pipeline. Our results show a 60x acceleration of the DTS computations, compared to the previous version, using a single GPU; presently, reconstruction is attained within a couple of minutes. The present implementation allows for significant flexibility in terms of the numerical and operational projection model; we are investigating the benefit of further optimizations and accurate digital projection sub

  12. Three-dimensional sheaf of ultrasound planes reconstruction (SOUPR) of ablated volumes.

    Science.gov (United States)

    Ingle, Atul; Varghese, Tomy

    2014-08-01

    This paper presents an algorithm for 3-D reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radio-frequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full 3-D rendering of the ablation can then be created from this stack of C-planes; hence the name "Sheaf Of Ultrasound Planes Reconstruction" or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as six imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes.

  13. Evaluation of the reconstruction method and effect of partial volume in brain scintiscanning; Avaliacao do metodo de reconstrucao e efeito do volume parcial em cintilografia cerebral

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Monica Araujo

    2016-10-01

    Alzheimer's disease is a neurodegenerative disorder, on which occurs a progressive and irreversible destruction of neurons. According to the World Health Organization (WHO) 35.6 million people are living with dementia, being recommended that governments prioritize early diagnosis techniques. Laboratory and psychological tests for cognitive assessment are conducted and further complemented by neurological imaging from nuclear medicine exams in order to establish an accurate diagnosis. The image quality evaluation and reconstruction process effects are important tools in clinical routine. In the present work, these quality parameters were studied, and the effects of partial volume (PVE) for lesions of different sizes and geometries that are attributed to the limited resolution of the equipment. In dementia diagnosis, this effect can be confused with intake losses due to cerebral cortex atrophy. The evaluation was conducted by two phantoms of different shapes as suggested by (a) American College of Radiology (ACR) and (b) National Electrical Manufacturers Association (NEMA) for Contrast, Contrast-to-Noise Ratio (CNR) and Recovery Coefficient (RC) calculation versus lesions shape and size. Technetium-99m radionuclide was used in a local brain scintigraphy protocol, for proportions lesion to background of 2:1, 4:1, 6:1, 8:1 and 10:1. Fourteen reconstruction methods were used for each concentration applying different filters and algorithms. Before the analysis of all image properties, the conclusion is that the predominant effect is the partial volume, leading to errors of measurement of more than 80%. Furthermore, it was demonstrate that the most effective method of reconstruction is FBP with Metz filter, providing better contrast and contrast to noise ratio results. In addition, this method shows the best Recovery Coefficients correction for each lesion. The ACR phantom showed the best results assigned to a more precise reconstruction of a cylinder, which does not

  14. Sustained regeneration of high-volume adipose tissue for breast reconstruction using computer aided design and biomanufacturing.

    Science.gov (United States)

    Chhaya, Mohit Prashant; Melchels, Ferry Petrus Wilhelmus; Holzapfel, Boris Michael; Baldwin, Jeremy Grant; Hutmacher, Dietmar Werner

    2015-06-01

    Adipose tissue engineering offers a promising alternative to the current breast reconstruction options. Here we investigated patient-specific breast scaffolds fabricated from poly(d,l)-lactide polymer with pore sizes>1 mm for their potential in long-term sustained regeneration of high volume adipose tissue. An optimised scaffold geometry was modelled in silico via a laser scanning data set from a patient who underwent breast reconstruction surgery. After the design process scaffolds were fabricated using an additive manufacturing technology termed fused deposition modelling. Breast-shaped scaffolds were seeded with human umbilical cord perivascular cells and cultured under static conditions for 4 weeks and subsequently 2 weeks in a biaxial rotating bioreactor. These in vitro engineered constructs were then seeded with human umbilical vein endothelial cells and implanted subcutaneously into athymic nude rats for 24 weeks. Angiogenesis and adipose tissue formation were observed throughout all constructs at all timepoints. The percentage of adipose tissue compared to overall tissue area increased from 37.17% to 62.30% between week 5 and week 15 (pbreast reconstruction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Quantification of gully volume using very high resolution DSM generated through 3D reconstruction from airborne and field digital imagery

    Science.gov (United States)

    Castillo, Carlos; Zarco-Tejada, Pablo; Laredo, Mario; Gómez, Jose Alfonso

    2013-04-01

    estimates of the main dimensions of the gully (length, slope profile and total volume) for both methods. This analysis proved useful to define the field of application for each technique, considering their accuracy, cost and processing requirements. References Castillo, C., R. Perez, M.R. James, J.N. Quinton, E.V. Taguas, J.A. Gómez. 2012. Comparing the Accuracy of Several Field Methods for Measuring Gully Erosion. Soil Science Society of America Journal 76: 1319-1332. James, M. and Robson, S. 2012. Straightforward reconstruction of 3d surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research, 117.

  16. Demons Registration of CT Volume and CBCT Projections for Adaptive Radiotherapy: Avoiding CBCT Reconstruction

    DEFF Research Database (Denmark)

    Bjerre, Troels; Aznar, M.; Munck af Rosenschöld, P.

    2012-01-01

    . CBCT scans, are typically reconstructed using the filtered back-projection algorithm, which introduces significant artefacts, causing deteriorated image quality and registration results. We study the feasibility of performing demons registration without tomographic reconstruction of the CBCT...... and registered image was 1.4·10-3 HU2. The mean absolute difference between the Jacobian determinant of the true and estimated deformation field was 4.0·10- 4. Time consumption was 11 min. using 8 2.3 GHz AMD Opteron cores. Conclusions: In this feasibility study, using a known deformation and synthetic noise......Purpose/Objective: In adaptive radiotherapy, the dose plan is adapted throughout the fractionation schedule to accommodate for anatomical changes. This can be achieved by deformable image registration of the planning PET-CT scan with segmented tumor and organs to daily cone beam CT (CBCT) scans...

  17. Sub-volume averaging of repetitive structural features in angularly filtered electron tomographic reconstructions.

    Science.gov (United States)

    Kováčik, L; Kereïche, S; Matula, P; Raška, I

    2014-01-01

    Electron tomographic reconstructions suffer from a number of artefacts arising from effects accompanying the processes of acquisition of a set of tilted projections of the specimen in a transmission electron microscope and from its subsequent computational handling. The most pronounced artefacts usually come from imprecise projection alignment, distortion of specimens during tomogram acquisition and from the presence of a region of missing data in the Fourier space, the "missing wedge". The ray artefacts caused by the presence of the missing wedge can be attenuated by the angular image filter, which attenuates the transition between the data and the missing wedge regions. In this work, we present an analysis of the influence of angular filtering on the resolution of averaged repetitive structural motives extracted from three-dimensional reconstructions of tomograms acquired in the single-axis tilting geometry.

  18. Does Reader Performance with Digital Breast Tomosynthesis Vary according to Experience with Two-dimensional Mammography?

    Science.gov (United States)

    Tucker, Lorraine; Gilbert, Fiona J; Astley, Susan M; Dibden, Amanda; Seth, Archana; Morel, Juliet; Bundred, Sara; Litherland, Janet; Klassen, Herman; Lip, Gerald; Purushothaman, Hema; Dobson, Hilary M; McClure, Linda; Skippage, Philippa; Stoner, Katherine; Kissin, Caroline; Beetles, Ursula; Lim, Yit Yoong; Hurley, Emma; Goligher, Jane; Rahim, Rumana; Gagliardi, Tanja J; Suaris, Tamara; Duffy, Stephen W

    2017-05-01

    Purpose To assess whether individual reader performance with digital breast tomosynthesis (DBT) and two-dimensional (2D) mammography varies with number of years of experience or volume of 2D mammograms read. Materials and Methods After written informed consent was obtained, 8869 women (age range, 29-85 years; mean age, 56 years) were recruited into the TOMMY trial (A Comparison of Tomosynthesis with Digital Mammography in the UK National Health Service Breast Screening Program), an ethically approved, multicenter, multireader, retrospective reading study, between July 2011 and March 2013. Each case was read prospectively for clinical assessment and to establish ground truth. A retrospective reading data set of 7060 cases was created and randomly allocated for independent blinded review of (a) 2D mammograms, (b) DBT images and 2D mammograms, and (c) synthetic 2D mammograms and DBT images, without access to previous examinations. Readers (19 radiologists, three advanced practitioner radiographers, and two breast clinicians) who had 3-25 (median, 10) years of experience in the U.K. National Health Service Breast Screening Program and read 5000-13 000 (median, 8000) cases per annum were included in this study. Specificity was analyzed according to reader type and years and volume of experience, and then both specificity and sensitivity were analyzed by matched inference. The median duration of experience (10 years) was used as the cutoff point for comparison of reader performance. Results Specificity improved with the addition of DBT for all readers. This was significant for all staff groups (56% vs 68% and 49% vs 67% [P readers and was significantly higher for those with less than 10 years of experience (91% vs 86%; P = .03) and those with total mammographic experience of fewer than 80 000 cases (88% vs 86%; P = .03). Conclusion The addition of DBT to conventional 2D screening mammography improved specificity for all readers, but the gain in sensitivity was greater

  19. Task-based performance analysis of FBP, SART and ML for digital breast tomosynthesis using signal CNR and Channelised Hotelling Observers.

    Science.gov (United States)

    Van de Sompel, Dominique; Brady, Sir Michael; Boone, John

    2011-02-01

    We assess the performance of filtered backprojection (FBP), the simultaneous algebraic reconstruction technique (SART) and the maximum likelihood (ML) algorithm for digital breast tomosynthesis (DBT) under variations in key imaging parameters, including the number of iterations, number of projections, angular range, initial guess, and radiation dose. This is the first study to compare these algorithms for the application of DBT. We present a methodology for the evaluation of DBT reconstructions, and use it to conduct preliminary experiments investigating trade-offs between the selected imaging parameters. This investigation includes trade-offs not previously considered in the DBT literature, such as the use of a stationary detector versus a C-arm imaging geometry. A real breast CT volume serves as a ground truth digital phantom from which to simulate X-ray projections under the various acquisition parameters. The reconstructed image quality is measured using task-based metrics, namely signal CNR and the AUC of a Channelised Hotelling Observer with Laguerre-Gauss basis functions. The task at hand is the detection of a simulated mass inserted into the breast CT volume. We find that the image quality in limited view tomography is highly dependent on the particular acquisition and reconstruction parameters used. In particular, we draw the following conclusions. First, we find that optimising the FBP filter design and SART relaxation parameter yields significant improvements in reconstruction quality from the same projection data. Second, we show that the convergence rate of the maximum likelihood algorithm, optimised with paraboloidal surrogates and conjugate gradient ascent (ML-PSCG), can be greatly accelerated using view-by-view updates. Third, we find that the optimal initial guess is algorithm dependent. In particular, we obtained best results with a zero initial guess for SART, and an FBP initial guess for ML-PSCG. Fourth, when the exposure per view is constant

  20. Open-source algorithm for automatic choroid segmentation of OCT volume reconstructions

    Science.gov (United States)

    Mazzaferri, Javier; Beaton, Luke; Hounye, Gisèle; Sayah, Diane N.; Costantino, Santiago

    2017-02-01

    The use of optical coherence tomography (OCT) to study ocular diseases associated with choroidal physiology is sharply limited by the lack of available automated segmentation tools. Current research largely relies on hand-traced, single B-Scan segmentations because commercially available programs require high quality images, and the existing implementations are closed, scarce and not freely available. We developed and implemented a robust algorithm for segmenting and quantifying the choroidal layer from 3-dimensional OCT reconstructions. Here, we describe the algorithm, validate and benchmark the results, and provide an open-source implementation under the General Public License for any researcher to use (https://www.mathworks.com/matlabcentral/fileexchange/61275-choroidsegmentation).

  1. Cell volume and geometric parameters determination in living cells using confocal microscopy and 3D reconstruction

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: David Hevia, Aida Rodriguez-Garcia, Marta Alonso-Gervós, Isabel Quirós-González, Henar M Cimadevilla, Carmen Gómez-Cordovés, Rosa M Sainz & Juan C Mayo ### Abstract The protocol reported here describes a simple, easy, fast and reproducible method aimed to know the geometric parameters of living cells based on confocal laser scanning microscopy combined with 3D reconstruction software. Briefly, the method is based on intrinsic fluorescence properties of acridine orange (AO...

  2. SU-E-T-143: Effect of X-Ray and Cone Beam CT Reconstruction Parameters On Estimation of Bone Volume of Mice Used in Aging Research

    Energy Technology Data Exchange (ETDEWEB)

    Russ, M; Pang, M; Troen, B; Rudin, S; Ionita, C [University at Buffalo, Buffalo, NY (United States)

    2014-06-01

    Purpose: To investigate the variations in bone volume calculations in mice involved in aging research when changing cone beam micro-CT x-ray and reconstruction parameters. Methods: Mouse spines were placed on an indexed turn table that rotated 0.5° per projection and imaged by a self-built micro CT machine containing a CCD-based high-resolution x-ray detector. After the full 360° rotation data set of object images was obtained, a standard filtered back-projection cone beam reconstruction was performed. Four different kVp's between 40–70 kVp in 10kVp increments were selected. For each kVp two mAs settings were used. Each acquisition was reconstructed using two voxel sizes (12 and 25μm) and two step angles, 0.5° and 1°, respectively. A LabView program was written to determine the total bone volume contained in the mouse's total spine volume (bone plus gaps) as a measure of spine health. First, the user selected the desired 512×512 reconstruction to view the whole spine volume which was then used to select a gray-level threshold that allowed for viewing of the bone structure, then another threshold to include gaps. The program returned bone volume, bone × gap volume, and their ratio, BVF. Results: The calculated bone volume fractions were compared as a function of tube potential. Cases with 25μm slice thickness showed trials with lower kVp's had greater image contrast, which resulted in higher calculated bone volume fractions. Cases with 12μm reconstructed slice thickness were significantly noisier, and showed no clear maximum BVF. Conclusion: Using the projection images and reconstructions acquired from the micro CT, it can be shown that the micro-CT x-ray and reconstruction parameters significantly affect the total bone volume calculations. When comparing mice cohorts treated with different therapies researchers need to be aware of such details and use volumes which were acquired and processed in identical conditions.

  3. ELUCID - Exploring the Local Universe with reConstructed Initial Density field III: Constrained Simulation in the SDSS Volume

    CERN Document Server

    Wang, Huiyuan; Yang, Xiaohu; Zhang, Youcai; Shi, JingJing; Jing, Y P; Liu, Chengze; Li, Shijie; Kang, Xi; Gao, Yang

    2016-01-01

    A method we developed recently for the reconstruction of the initial density field in the nearby Universe is applied to the Sloan Digital Sky Survey Data Release 7. A high-resolution N-body constrained simulation (CS) of the reconstructed initial condition, with $3072^3$ particles evolved in a 500 Mpc/h box, is carried out and analyzed in terms of the statistical properties of the final density field and its relation with the distribution of SDSS galaxies. We find that the statistical properties of the cosmic web and the halo populations are accurately reproduced in the CS. The galaxy density field is strongly correlated with the CS density field, with a bias that depend on both galaxy luminosity and color. Our further investigations show that the CS provides robust quantities describing the environments within which the observed galaxies and galaxy systems reside. Cosmic variance is greatly reduced in the CS so that the statistical uncertainties can be controlled effectively even for samples of small volumes...

  4. Tomosynthesis of the thoracic spine: added value in diagnosing vertebral fractures in the elderly

    Energy Technology Data Exchange (ETDEWEB)

    Geijer, Mats [Oerebro University, Department of Radiology, Oerebro (Sweden); Lund University, Department of Clinical Sciences, Lund (Sweden); Gunnlaugsson, Eirikur; Goetestrand, Simon [Lund University and Skaane University Hospital, Department of Medical Imaging and Physiology, Lund (Sweden); Weber, Lars [Lund University, Department of Clinical Sciences, Lund (Sweden); Skaane University Hospital, Department of Radiation Physics, Lund (Sweden); Geijer, Haakan [Oerebro University, Department of Radiology, Faculty of Medicine and Health, Oerebro (Sweden)

    2017-02-15

    Thoracic spine radiography becomes more difficult with age. Tomosynthesis is a low-dose tomographic extension of radiography which may facilitate thoracic spine evaluation. This study assessed the added value of tomosynthesis in imaging of the thoracic spine in the elderly. Four observers compared the image quality of 50 consecutive thoracic spine radiography and tomosynthesis data sets from 48 patients (median age 67 years, range 55-92 years) on a number of image quality criteria. Observer variation was determined by free-marginal multirater kappa. The conversion factor and effective dose were determined from the dose-area product values. For all observers significantly more vertebrae were seen with tomosynthesis than with radiography (mean 12.4/9.3, P < 0.001) as well as significantly more fractures (mean 0.9/0.7, P = 0.017). The image quality score for tomosynthesis was significantly higher than for radiography, for all evaluated structures. Tomosynthesis took longer to evaluate than radiography. Despite this, all observers scored a clear preference for tomosynthesis. Observer agreement was substantial (mean κ = 0.73, range 0.51-0.94). The calibration or conversion factor was 0.11 mSv/(Gy cm{sup 2}) for the combined examination. The resulting effective dose was 0.87 mSv. Tomosynthesis can increase the detection rate of thoracic vertebral fractures in the elderly, at low added radiation dose. (orig.)

  5. Advancement of 31P Magnetic Resonance Spectroscopy Using GRAPPA Reconstruction on a 3D Volume

    Science.gov (United States)

    Clevenger, Tony

    The overall objective of this research is to improve currently available metabolic imaging techniques for clinical use in monitoring and predicting treatment response to radiation therapy in liver cancer. Liver metabolism correlates with inflammatory and neoplastic liver diseases, which alter the intracellular concentration of phosphorus- 31 (31P) metabolites [1]. It is assumed that such metabolic changes occur prior to physical changes of the tissue. Therefore, information on regional changes of 31P metabolites in the liver, obtained by Magnetic Resonance Spectroscopic Imaging (MRSI) [1,2], can help in diagnosis and follow-up of various liver diseases. Specifically, there appears to be an immediate need of this technology for both the assessment of tumor response in patients with Hepatocellular Carcinoma (HCC) treated with Stereotactic Body Radiation Therapy (SBRT) [3--5], as well as assessment of radiation toxicity, which can result in worsening liver dysfunction [6]. Pilot data from our lab has shown that 31P MRSI has the potential to identify treatment response five months sooner than conventional methods [7], and to assess the biological response of liver tissue to radiation 24 hours post radiation therapy [8]. While this data is very promising, commonly occurring drawbacks for 31P MRSI are patient discomfort due to long scan times and prone positioning within the scanner, as well as reduced data quality due to patient motion and respiration. To further advance the full potential of 31P MRSI as a clinical diagnostic tool in the management of liver cancer, this PhD research project had the following aims: I) Reduce the long acquisition time of 3D 31P MRS by formulating and imple- menting an appropriate GRAPPA undersampling scheme and reconstruction on a clinical MRI scanner II) Testing and quantitative validation of GRAPPA reconstruction on 3D 31P MRSI on developmental phantoms and healthy volunteers At completion, this work should considerably advance 31P MRSI

  6. Finite volume effects in pion-kaon scattering and reconstruction of the kappa(800) resonance

    CERN Document Server

    Döring, M

    2011-01-01

    Simulating the kappa(800) on the lattice is a challenging task that starts to become feasible due to the rapid progress in recent-years lattice QCD calculations. As the resonance is broad, special attention to finite-volume effects has to be paid, because no sharp resonance signal as from avoided level crossing can be expected. In the present article, we investigate the finite volume effects in the framework of unitarized chiral perturbation theory using next-to-leading order terms. After a fit to meson-meson partial wave data, lattice levels for piK scattering are predicted. In addition, levels are shown for the quantum numbers in which the sigma(600), f_0(980), a_0(980), phi(1020), K*(892), and rho(770) appear, as well as the repulsive channels. Methods to extract the kappa(800) signal from the lattice spectrum are presented. Using pseudo-data, we estimate the precision that lattice data should have to allow for a clear-cut extraction of this resonance. To put the results into context, in particular the req...

  7. Digital Mammography Imaging: Breast Tomosynthesis and Advanced Applications

    Science.gov (United States)

    Helvie, Mark A.

    2011-01-01

    Synopsis This article discusses recent developments in advanced derivative technologies associated with digital mammography. Digital breast tomosynthesis – its principles, development, and early clinical trials are reviewed. Contrast enhanced digital mammography and combined imaging systems with digital mammography and ultrasound are also discussed. Although all these methods are currently research programs, they hold promise for improving cancer detection and characterization if early results are confirmed by clinical trials. PMID:20868894

  8. Image quality and dose assessment in digital breast tomosynthesis: A Monte Carlo study

    Science.gov (United States)

    Baptista, M.; Di Maria, S.; Oliveira, N.; Matela, N.; Janeiro, L.; Almeida, P.; Vaz, P.

    2014-11-01

    Mammography is considered a standard technique for the early detection of breast cancer. However, its sensitivity is limited essentially due to the issue of the overlapping breast tissue. This limitation can be partially overcome, with a relatively new technique, called digital breast tomosynthesis (DBT). For this technique, optimization of acquisition parameters which maximize image quality, whilst complying with the ALARA principle, continues to be an area of considerable research. The aim of this work was to study the best quantum energies that optimize the image quality with the lowest achievable dose in DBT and compare these results with the digital mammography (DM) ones. Monte Carlo simulations were performed using the state-of-the-art computer program MCNPX 2.7.0 in order to generate several 2D cranio-caudal (CC) projections obtained during an acquisition of a standard DBT examination. Moreover, glandular absorbed doses and photon flux calculations, for each projection image, were performed. A homogeneous breast computational phantom with 50%/50% glandular/adipose tissue composition was used and two compressed breast thicknesses were evaluated: 4 cm and 8 cm. The simulated projection images were afterwards reconstructed with an algebraic reconstruction tool and the signal difference to noise ratio (SDNR) was calculated in order to evaluate the image quality in DBT and DM. Finally, a thorough comparison between the results obtained in terms of SDNR and dose assessment in DBT and DM was performed.

  9. Effect of the glandular composition on digital breast tomosynthesis image quality and dose optimisation.

    Science.gov (United States)

    Marques, T; Ribeiro, A; Di Maria, S; Belchior, A; Cardoso, J; Matela, N; Oliveira, N; Janeiro, L; Almeida, P; Vaz, P

    2015-07-01

    In the image quality assessment for digital breast tomosynthesis (DBT), a breast phantom with an average percentage of 50 % glandular tissue is seldom used, which may not be representative of the breast tissue composition of the women undergoing such examination. This work aims at studying the effect of the glandular composition of the breast on the image quality taking into consideration different sizes of lesions. Monte Carlo simulations were performed using the state-of-the-art computer program PENELOPE to validate the image acquisition system of the DBT equipment as well as to calculate the mean glandular dose for each projection image and for different breast compositions. The integrated PENELOPE imaging tool (PenEasy) was used to calculate, in mammography, for each clinical detection task the X-ray energy that maximises the figure of merit. All the 2D cranial-caudal projections for DBT were simulated and then underwent the reconstruction process applying the Simultaneous Algebraic Reconstruction Technique. Finally, through signal-to-noise ratio analysis, the image quality in DBT was assessed.

  10. Breast Cancer Risk Estimation Using Parenchymal Texture Analysis in Digital Breast Tomosynthesis

    Science.gov (United States)

    Ikejimba, Lynda C.; Kontos, Despina; Maidment, Andrew D. A.

    2010-10-01

    Mammographic parenchymal texture has been shown to correlate with genetic markers of developing breast cancer. Digital breast tomosynthesis (DBT) is a novel x-ray imaging technique in which tomographic images of the breast are reconstructed from multiple source projections acquired at different angles of the x-ray tube. Compared to digital mammography (DM), DBT eliminates breast tissue overlap, offering superior parenchymal tissue visualization. We hypothesize that texture analysis in DBT could potentially provide a better assessment of parenchymal texture and ultimately result in more accurate assessment of breast cancer risk. As a first step towards validating this hypothesis, we investigated the association between DBT parenchymal texture and breast percent density (PD), a known breast cancer risk factor, and compared it to DM. Bilateral DBT and DM images from 71 women participating in a breast cancer screening trial were analyzed. Filtered-backprojection was used to reconstruct DBT tomographic planes in 1 mm increments with 0.22 mm in-plane resolution. Corresponding DM images were acquired at 0.1 mm pixel resolution. Retroareolar regions of interest (ROIs) equivalent to 2.5 cm3 were segmented from the DBT images and corresponding 2.5 cm2 ROIs were segmented from the DM images. Breast PD was mammographically estimated using the Cumulus scale. Overall, DBT texture features demonstrated a stronger correlation than DM to PD. The Pearson correlation coefficients for DBT were r = 0.40 (pbreast cancer risk assessment in the future.

  11. A limited memory BFGS method for a nonlinear inverse problem in digital breast tomosynthesis

    Science.gov (United States)

    Landi, G.; Loli Piccolomini, E.; Nagy, J. G.

    2017-09-01

    Digital breast tomosynthesis (DBT) is an imaging technique that allows the reconstruction of a pseudo three-dimensional image of the breast from a finite number of low-dose two-dimensional projections obtained by different x-ray tube angles. An issue that is often ignored in DBT is the fact that an x-ray beam is polyenergetic, i.e. it is composed of photons with different levels of energy. The polyenergetic model requires solving a large-scale, nonlinear inverse problem, which is more expensive than the typically used simplified, linear monoenergetic model. However, the polyenergetic model is much less susceptible to beam hardening artifacts, which show up as dark streaks and cupping (i.e. background nonuniformities) in the reconstructed image. In addition, it has been shown that the polyenergetic model can be exploited to obtain additional quantitative information about the material of the object being imaged. In this paper we consider the multimaterial polyenergetic DBT model, and solve the nonlinear inverse problem with a limited memory BFGS quasi-Newton method. Regularization is enforced at each iteration using a diagonally modified approximation of the Hessian matrix, and by truncating the iterations.

  12. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Joscha, E-mail: joscha.maier@dkfz.de [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Sawall, Stefan; Kachelrieß, Marc [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen (Germany)

    2014-05-15

    Purpose: Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Methods: Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Results: Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the

  13. Digital tomosynthesis (DTS) for verification of target position in early stage lung cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Sörnsen de Koste, John R. van; Dahele, Max; Senan, Suresh; Weide, Lineke van der; Slotman, Ben J.; Verbakel, Wilko F. A. R. [Department of Radiation Oncology, VU University Medical Center (VUMC), Amsterdam, Noord-Holland 1081 HV (Netherlands); Mostafavi, Hassan [Varian Medical Systems, Palo Alto, California (United States)

    2013-09-15

    Purpose: The ability to verify intrafraction tumor position is clinically useful for hypofractionated treatments. Short arc kV digital tomosynthesis (DTS) could facilitate more frequent target verification. The authors used DTS combined with triangulation to determine the mean temporal position of small-volume lung tumor targets treated with stereotactic radiotherapy. DTS registration results were benchmarked against online clinical localization using registration between free-breathing cone-beam computed tomography (CBCT) and the average intensity projection (AvIP) of the planning 4DCT.Methods: In this retrospective study, 76 sets of kV-projection images from online CBCT scans of 13 patients were used to generate DTS image slices (CB-DTS) with nonclinical research software (DTS Toolkit, Varian Medical Systems). Three-dimensional tumor motion was 1.3–4 mm in six patients and 6.1–25.4 mm in seven patients on 4DCT (significant difference in the mean of the groups, P < 0.01). The 4DCT AvIP was used to digitally reconstruct the Reference-DTS. DTS registration and DTS registration combined with triangulation were investigated. Progressive shortening of total DTS arc lengths from 95° to 35° around 0° gantry position was evaluated for different scenarios: DTS registration using the entire arc; DTS registration plus triangulation using two nonoverlapping arcs; and for 55° and 45° total gantry rotation, DTS registration plus triangulation using two overlapping arcs. Finally, DTS registration plus triangulation performed at eight gantry angles, each separated by 45° was evaluated using full fan kV projection data for one patient with an immobile tumor and five patients with mobile tumors.Results: For DTS registration alone, shortening arc length did not influence accuracy in X- and Y-directions, but in Z-direction, mean deviations from online CBCT localization systematically increased for shorter arc length (P < 0.05). For example, using a 95° arc mean DTS

  14. Comparing low volume saphenous-obturator block with placebo and femoral-obturator block for anterior cruciate ligament reconstruction: a randomized controlled trial

    DEFF Research Database (Denmark)

    Lenz, Katja; Jensen, Kenneth; Tanggaard, Katrine

    2017-01-01

    BACKGROUND: Anterior cruciate ligament reconstruction (ACL-RC) is often associated with moderate to severe postoperative pain even with a multimodal analgesic regimen. We aimed to compare the analgesic efficacy of low volume saphenous-obturator block with placebo and femoral- obturator block in p...

  15. Stereoscopic interpretation of low-dose breast tomosynthesis projection images.

    Science.gov (United States)

    Muralidhar, Gautam S; Markey, Mia K; Bovik, Alan C; Haygood, Tamara Miner; Stephens, Tanya W; Geiser, William R; Garg, Naveen; Adrada, Beatriz E; Dogan, Basak E; Carkaci, Selin; Khisty, Raunak; Whitman, Gary J

    2014-04-01

    The purpose of this study was to evaluate stereoscopic perception of low-dose breast tomosynthesis projection images. In this Institutional Review Board exempt study, craniocaudal breast tomosynthesis cases (N = 47), consisting of 23 biopsy-proven malignant mass cases and 24 normal cases, were retrospectively reviewed. A stereoscopic pair comprised of two projection images that were ±4° apart from the zero angle projection was displayed on a Planar PL2010M stereoscopic display (Planar Systems, Inc., Beaverton, OR, USA). An experienced breast imager verified the truth for each case stereoscopically. A two-phase blinded observer study was conducted. In the first phase, two experienced breast imagers rated their ability to perceive 3D information using a scale of 1-3 and described the most suspicious lesion using the BI-RADS® descriptors. In the second phase, four experienced breast imagers were asked to make a binary decision on whether they saw a mass for which they would initiate a diagnostic workup or not and also report the location of the mass and provide a confidence score in the range of 0-100. The sensitivity and the specificity of the lesion detection task were evaluated. The results from our study suggest that radiologists who can perceive stereo can reliably interpret breast tomosynthesis projection images using stereoscopic viewing.

  16. Digital breast tomosynthesis versus digital mammography: a clinical performance study

    Energy Technology Data Exchange (ETDEWEB)

    Gennaro, Gisella; Baldan, Enrica; Bezzon, Elisabetta; Polico, Ilaria; Proietti, Alessandro; Toffoli, Aida [Venetian Oncological Institute (IOV), IRCCS, Department of Radiology, Padua (Italy); Toledano, Alicia [Statistics Collaborative Inc., Washington, DC (United States); Di Maggio, Cosimo [Padua University, Department of Oncological and Surgical Sciences, Padua (Italy); La Grassa, Manuela [Aviano Oncological Reference Center (CRO), IRCCS, Department of Radiology, Aviano (Pordenone) (Italy); Pescarini, Luigi [Venetian Oncological Institute (IOV), IRCCS, Department of Radiology, Padua (Italy); Padua University, Department of Oncological and Surgical Sciences, Padua (Italy); Muzzio, Pier Carlo [Venetian Oncological Institute (IOV), IRCCS, Department of Radiology, Padua (Italy); Padua University, Department of Medical Diagnostic Sciences, Padua (Italy)

    2010-07-15

    To compare the clinical performance of digital breast tomosynthesis (DBT) with that of full-field digital mammography (FFDM) in a diagnostic population. The study enrolled 200 consenting women who had at least one breast lesion discovered by mammography and/or ultrasound classified as doubtful or suspicious or probably malignant. They underwent tomosynthesis in one view [mediolateral oblique (MLO)] of both breasts at a dose comparable to that of standard screen-film mammography in two views [craniocaudal (CC) and MLO]. Images were rated by six breast radiologists using the BIRADS score. Ratings were compared with the truth established according to the standard of care and a multiple-reader multiple-case (MRMC) receiver-operating characteristic (ROC) analysis was performed. Clinical performance of DBT compared with that of FFDM was evaluated in terms of the difference between areas under ROC curves (AUCs) for BIRADS scores. Overall clinical performance with DBT and FFDM for malignant versus all other cases was not significantly different (AUCs 0.851 vs 0.836, p = 0.645). The lower limit of the 95% CI or the difference between DBT and FFDM AUCs was -4.9%. Clinical performance of tomosynthesis in one view at the same total dose as standard screen-film mammography is not inferior to digital mammography in two views. (orig.)

  17. Distributed source x-ray tube technology for tomosynthesis imaging

    Science.gov (United States)

    Sprenger, F.; Calderon-Colon, X.; Cheng, Y.; Englestad, K.; Lu, J.; Maltz, J.; Paidi, A.; Qian, X.; Spronk, D.; Sultana, S.; Yang, G.; Zhou, O.

    2010-04-01

    Tomosynthesis imaging requires projection images from different viewing angles. Conventional systems use a moving xray source to acquire the individual projections. Using a stationary distributed x-ray source with a number of sources that equals the number of required projections, this can be achieved without any mechanical motion. Advantages are a potentially faster image acquisition speed, higher spatial and temporal resolution and simple system design. We present distributed x-ray sources based on carbon nanotube (CNT) field emission cathodes. The field emission cathodes deliver the electrons required for x-ray production. CNT emitters feature a stable emission at high current density, a cold emission, excellent temporal control of the emitted electrons and good configurability. We discuss the use of stationary sources for two applications: (i) a linear tube for stationary digital breast tomosynthesis (sDBT), and (ii) a square tube for on-board tomosynthesis image-guided radiation therapy (IGRT). Results from high energy distributed sources up to 160kVp are also presented.

  18. Diagnostic accuracy of digital mammography versus tomosynthesis: effect of radiologists' experience

    Science.gov (United States)

    Zanca, F.; Wallis, M.; Moa, E.; Leifland, K.; Danielsson, M.; Oyen, R.; Bosmans, H.

    2012-02-01

    Purpose: To investigate whether readers' experience affects performance in a study comparing 2D digital mammography (2D) with 2-view (CC and MLO) or 1-view (MLO) tomosynthesis. Materials and Methods: One-hundred-thirty 2D cases were collected from screening assessment and referral clinics; 64 of the cases had verified abnormalities and the remaining were confirmed normal. Two-view tomosynthesis images were obtained from the same patients. Ten accredited readers (5 with >= 10 years experience in mammography and 5 with time. Results: No significant difference was reached between 2D and 2-view tomosynthesis for experienced readers (pvalue= 0.25); for less experienced readers the p-value was significant (0.03). No significant difference was found between 2D and 1-view tomosynthesis, independent of readers' experience. RR for benign cases decreased for tomosynthesis (for booth 1- and 2-view), independent of experience. Average reading time per case was 79 s (range 65- 91 s) and 134 s (range 119-158 s) for experienced readers; 56 s (range 46-67 s) and 115s (range 97-142 s) for nonexperienced, for 2D and 2-view tomosynthesis respectively. Reading time was 74 s (range 43-98 s) and 99 s (range 73- 117 s) for experienced readers; 74 s (range 62-85 s) and 94 s (range 82-137 s) for non-experienced, for 2D and 1-view tomosynthesis respectively. Conclusions: For experienced readers, there is no evidence of improved diagnostic accuracy when using 2-view or 1- view tomosynthesis, while less experienced readers perform better with 2-view tomosynthesis than 2D images. Tomosynthesis reduces the number of recall of benign cases, without hindering cancer detection.

  19. Reconstructing coherent networks from electroencephalography and magnetoencephalography with reduced contamination from volume conduction or magnetic field spread.

    Directory of Open Access Journals (Sweden)

    Mark Drakesmith

    Full Text Available Volume conduction (VC and magnetic field spread (MFS induce spurious correlations between EEG/MEG sensors, such that the estimation of functional networks from scalp recordings is inaccurate. Imaginary coherency [1] reduces VC/MFS artefacts between sensors by assuming that instantaneous interactions are caused predominantly by VC/MFS and do not contribute to the imaginary part of the cross-spectral densities (CSDs. We propose an adaptation of the dynamic imaging of coherent sources (DICS [2] - a method for reconstructing the CSDs between sources, and subsequently inferring functional connectivity based on coherences between those sources. Firstly, we reformulate the principle of imaginary coherency by performing an eigenvector decomposition of the imaginary part of the CSD to estimate the power that only contributes to the non-zero phase-lagged (NZPL interactions. Secondly, we construct an NZPL-optimised spatial filter with two a priori assumptions: (1 that only NZPL interactions exist at the source level and (2 the NZPL CSD at the sensor level is a good approximation of the projected source NZPL CSDs. We compare the performance of the NZPL method to the standard method by reconstructing a coherent network from simulated EEG/MEG recordings. We demonstrate that, as long as there are phase differences between the sources, the NZPL method reliably detects the underlying networks from EEG and MEG. We show that the method is also robust to very small phase lags, noise from phase jitter, and is less sensitive to regularisation parameters. The method is applied to a human dataset to infer parts of a coherent network underpinning face recognition.

  20. Digital breast tomosynthesis (DBT): initial experience in a clinical setting

    Energy Technology Data Exchange (ETDEWEB)

    Skaane, Per; Gullien, Randi; Eben, Ellen B.; Haakenaasen, Unni; Naess Jebsen, Ingvild; Krager, Mona [Dept of Radiology, Oslo Univ. Hospital Ullevaal, Univ. of Oslo, Oslo (Norway)], e-mail: PERSKA@ous-hf.no; Bjoerndal, Hilde [Dept of Radiology, Oslo Univ. Hospital The Norwegian Radium Hospital, Oslo (Norway); Ekseth, Ulrika [Curato Roentgen Institute, Oslo (Norway); Jahr, Gunnar [Dept. of Radiology, Oslo Univ. Hospital Rikshospitalet, Oslo (Norway)

    2012-06-15

    Background: Digital breast tomosynthesis (DBT) is a promising new technology. Some experimental clinical studies have shown positive results, but the future role and indications of this new technique, whether in a screening or clinical setting, need to be evaluated. Purpose: To compare digital mammography and DBT in a side-by-side feature analysis for cancer conspicuity, and to assess whether there is a potential additional value of DBT to standard state-of-the-art conventional imaging work-up with respect to detection of additional malignancies. Material and Methods: The study had ethics committee approval. A total of 129 women underwent 2D digital mammography including supplementary cone-down and magnification views and breast ultrasonography if indicated, as well as digital breast tomosynthesis. The indication for conventional imaging in the clinical setting included a palpable lump in 30 (23%), abnormal mammographic screening findings in 54 (42%), and surveillance in 45 (35%) of the women. The women were examined according to present guidelines, including spot-magnification views, ultrasonography, and needle biopsies, if indicated. The DBT examinations were interpreted several weeks after the conventional imaging without knowledge of the conventional imaging findings. In a later session, three radiologists performed a side-by-side feature analysis for cancer conspicuity in a sample of 50 cases. Results: State-of-the-art conventional imaging resulted in needle biopsy of 45 breasts, of which 20 lesions were benign and a total of 25 cancers were diagnosed. The remaining 84 women were dismissed with a normal/definitely benign finding and without indication for needle biopsy. The subsequent DBT interpretation found suspicious findings in four of these 84 women, and these four women had to be called back for repeated work-up with knowledge of the tomosynthesis findings. These delayed work-ups resulted in two cancers (increasing the cancer detection by 8%) and two

  1. Full Field Digital Mammography (FFDM) versus CMOS Technology, Specimen Radiography System (SRS) and Tomosynthesis (DBT) - Which System Can Optimise Surgical Therapy?

    Science.gov (United States)

    Schulz-Wendtland, R; Dilbat, G; Bani, M; Fasching, P A; Heusinger, K; Lux, M P; Loehberg, C R; Brehm, B; Hammon, M; Saake, M; Dankerl, P; Jud, S M; Rauh, C; Bayer, C M; Beckmann, M W; Uder, M; Meier-Meitinger, M

    2013-05-01

    Aim: This prospective clinical study aimed to evaluate whether it would be possible to reduce the rate of re-excisions using CMOS technology, a specimen radiography system (SRS) or digital breast tomosynthesis (DBT) compared to a conventional full field digital mammography (FFDM) system. Material and Method: Between 12/2012 and 2/2013 50 patients were diagnosed with invasive breast cancer (BI-RADS™ 5). After histological verification, all patients underwent breast-conserving therapy with intraoperative imaging using 4 different systems and differing magnifications: 1. Inspiration™ (Siemens, Erlangen, Germany), amorphous selenium, tungsten source, focus 0.1 mm, resolution 85 µm pixel pitch, 8 lp/mm; 2. BioVision™ (Bioptics, Tucson, AZ, USA), CMOS technology, photodiode array, flat panel, tungsten source, focus 0.05, resolution 50 µm pixel pitch, 12 lp/mm; 3. the Trident™ specimen radiography system (SRS) (Hologic, Bedford, MA, USA), amorphous selenium, tungsten source, focus 0.05, resolution 70 µm pixel pitch, 7.1 lp/mm; 4. tomosynthesis (Siemens, Erlangen, Germany), amorphous selenium, tungsten source, focus 0.1 mm, resolution 85 µm pixel pitch, 8 lp/mm, angular range 50 degrees, 25 projections, scan time > 20 s, geometry: uniform scanning, reconstruction: filtered back projection. The 600 radiographs were prospectively shown to 3 radiologists. Results: Of the 50 patients with histologically proven breast cancer (BI-RADS™ 6), 39 patients required no further surgical therapy (re-excision) after breast-conserving surgery. A retrospective analysis (n = 11) showed a significant (p < 0.05) increase of sensitivity with the BioVision™, the Trident™ and tomosynthesis compared to the Inspiration™ at a magnification of 1.0 : 2.0 or 1.0 : 1.0 (tomosynthesis) (2.6, 3.3 or 3.6 %), i.e. re-excision would not have been necessary in 2, 3 or 4 patients, respectively, compared to findings obtained with a standard

  2. Volumetric analysis of lung nodules in computed tomography (CT): comparison of two different segmentation algorithm softwares and two different reconstruction filters on automated volume calculation.

    Science.gov (United States)

    Christe, Andreas; Brönnimann, Alain; Vock, Peter

    2014-02-01

    A precise detection of volume change allows for better estimating the biological behavior of the lung nodules. Postprocessing tools with automated detection, segmentation, and volumetric analysis of lung nodules may expedite radiological processes and give additional confidence to the radiologists. To compare two different postprocessing software algorithms (LMS Lung, Median Technologies; LungCARE®, Siemens) in CT volumetric measurement and to analyze the effect of soft (B30) and hard reconstruction filter (B70) on automated volume measurement. Between January 2010 and April 2010, 45 patients with a total of 113 pulmonary nodules were included. The CT exam was performed on a 64-row multidetector CT scanner (Somatom Sensation, Siemens, Erlangen, Germany) with the following parameters: collimation, 24x1.2 mm; pitch, 1.15; voltage, 120 kVp; reference tube current-time, 100 mAs. Automated volumetric measurement of each lung nodule was performed with the two different postprocessing algorithms based on two reconstruction filters (B30 and B70). The average relative volume measurement difference (VME%) and the limits of agreement between two methods were used for comparison. At soft reconstruction filters the LMS system produced mean nodule volumes that were 34.1% (P filters (B30) was significantly larger than with hard filters (B70); 11.2% for LMS and 1.6% for LungCARE®, respectively (both with P filters, 13.6% for soft and 3.8% for hard filters, respectively (P  0.05). There is a substantial inter-software (LMS/LungCARE®) as well as intra-software variability (B30/B70) in lung nodule volume measurement; therefore, it is mandatory to use the same equipment with the same reconstruction filter for the follow-up of lung nodule volume.

  3. Tomographic reconstruction of atmospheric volumes from infrared limb-imager measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ungermann, Joern

    2011-08-12

    State-of-the art nadir and limb-sounders, but also in situ measurements, do not offer the capability to highly resolve the atmosphere in all three dimensions. This leaves an observational gap with respect to small-scale structures that arise frequently in the atmosphere and that still lack a quantitative understanding. For instance, filaments and tropopause folds in the upper troposphere and lower stratosphere (UTLS) are crucial for its composition and variability. One way to achieve a highly resolved three-dimensional (3-D) picture of the atmosphere is the tomographic evaluation of limb-imager measurements. This thesis presents a methodology for the tomographic reconstruction of atmospheric constituents. To be able to deal with the large increase of observations and unknowns compared to conventional retrievals, great care is taken to reduce memory consumption and processing time. This method is used to evaluate the performance of two upcoming infrared limb-imager instruments and to prepare their missions. The first examined instrument is the infrared limb-imager on board of PREMIER (Process Exploration through Measurements of Infrared and millimetrewave Emitted Radiation), one of three remaining candidates for ESA's 7th Earth Explorer mission. Scientific goals of PREMIER are, among others, the examination of gravity waves and the quantification of processes controlling atmospheric composition in the UTLS, a region of particular importance for climate change. Simulations based on the performance requirements of this instrument deliver a vertical resolution that is slightly better than its vertical field-of-view (about 0.75 km) and a horizontal resolution of {approx}25km x 70 km. Non-linear end-to-end simulations for various gravity wave patterns demonstrate that the high 3-D resolution of PREMIER considerably extends the range of detectable gravity waves in terms of horizontal and vertical wavelength compared to previous observations. The second examined

  4. Safety of Local Intracutaneous Lidocaine Anesthesia Used by Dermatologic Surgeons for Skin Cancer Excision and Postcancer Reconstruction: Quantification of Standard Injection Volumes and Adverse Event Rates.

    Science.gov (United States)

    Alam, Murad; Schaeffer, Matthew R; Geisler, Amelia; Poon, Emily; Fosko, Scott W; Srivastava, Divya

    2016-12-01

    Intracutaneous lidocaine is used for anesthesia in dermatologic surgery for skin cancer excision and repair with exceedingly low incidence of reported adverse events. To measure (1) the quantity of lidocaine typically used for facial skin cancer excision and reconstruction; and (2) the frequency and character of associated adverse events. Survey study of dermatologic surgeons with longitudinal reporting. Reported practice during 10 business days: (1) mean volume of 1% lidocaine per skin cancer excision; (2) maximum per excision; (3) mean per reconstruction; and (4) maximum per reconstruction. A total of 437 of 1,175 subjects contacted (37.2%) responded. Mean per excision was 3.44 mL (SD: 2.97), and reconstruction 11.70 mL (10.14). Maximum per excision was 6.54 mL (4.23), and reconstruction was 15.85 mL (10.39). No cases of lidocaine toxicity were reported, diagnosed, or treated. Incidence of adverse events possibly anesthesia related was >0.15%, with most (0.13%) being mild cases of dizziness, drowsiness, or lightheadedness from epinephrine tachycardia. Toxicity associated with local anesthesia other than lidocaine was not studied. Volumes of lidocaine in skin cancer excision and repair are modest and within safe limits. Lidocaine toxicity is exceedingly rare to entirely absent. For comparable indications, lidocaine is safer than conscious sedation or general anesthesia.

  5. A fast 3D surface reconstruction and volume estimation method for grain storage based on priori model

    Science.gov (United States)

    Liang, Xian-hua; Sun, Wei-dong

    2011-06-01

    Inventory checking is one of the most significant parts for grain reserves, and plays a very important role on the macro-control of food and food security. Simple, fast and accurate method to obtain internal structure information and further to estimate the volume of the grain storage is needed. Here in our developed system, a special designed multi-site laser scanning system is used to acquire the range data clouds of the internal structure of the grain storage. However, due to the seriously uneven distribution of the range data, this data should firstly be preprocessed by an adaptive re-sampling method to reduce the data redundancy as well as noise. Then the range data is segmented and useful features, such as plane and cylinder information, are extracted. With these features a coarse registration between all of these single-site range data is done, and then an Iterative Closest Point (ICP) algorithm is carried out to achieve fine registration. Taking advantage of the structure of the grain storage being well defined and the types of them are limited, a fast automatic registration method based on the priori model is proposed to register the multi-sites range data more efficiently. Then after the integration of the multi-sites range data, the grain surface is finally reconstructed by a delaunay based algorithm and the grain volume is estimated by a numerical integration method. This proposed new method has been applied to two common types of grain storage, and experimental results shown this method is more effective and accurate, and it can also avoids the cumulative effect of errors when registering the overlapped area pair-wisely.

  6. Influence of health insurance, hospital factors and physician volume on receipt of immediate post-mastectomy reconstruction in women with invasive and non-invasive breast cancer.

    Science.gov (United States)

    Hershman, D L; Richards, C A; Kalinsky, K; Wilde, E T; Lu, Y S; Ascherman, J A; Neugut, A I; Wright, J D

    2012-11-01

    For women with breast cancer who undergo mastectomy, immediate breast reconstruction (IR) offers a cosmetic and psychological advantage. We evaluated the association between demographic, hospital, surgeon and insurance factors and receipt of IR. We conducted a retrospective hospital-based analysis with the Perspective database. Women who underwent a mastectomy for invasive breast cancer (IBC) and ductal carcinoma in situ (DCIS) from 2000 to 2010 were included. Logistic regression analysis was used to determine factors predictive of IR. Analyses were stratified by age (insurance (OR 3.38) and Medicare (OR 1.66) insurance (vs. self-pay), high surgeon-volume (OR 1.19), high hospital-volume (OR 2.24), and large hospital size (OR 1.20). The results were identical for DCIS, and by age category. The absolute difference between the proportion of patients who received IR with commercial insurance compared to other insurance, increased over time. Immediate in-hospital complication rates were higher for flap reconstruction compared to implant or no reconstruction (15.2, 4.0, and 6.1 %, respectively, P insurance status, hospital size, hospital location, and physician volume strongly predict IR. Public policy should ensure that access to reconstructive surgery is universally available.

  7. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.

    Science.gov (United States)

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-04-01

    The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection

  8. Three-Dimensional Histology Volume Reconstruction of Axonal Tract Tracing Data: Exploring Topographical Organization in Subcortical Projections from Rat Barrel Cortex.

    Directory of Open Access Journals (Sweden)

    Izabela M Zakiewicz

    Full Text Available Topographical organization is a hallmark of the mammalian brain, and the spatial organization of axonal connections in different brain regions provides a structural framework accommodating specific patterns of neural activity. The presence, amount, and spatial distribution of axonal connections are typically studied in tract tracing experiments in which axons or neurons are labeled and examined in histological sections. Three-dimensional (3-D reconstruction techniques are used to achieve more complete visualization and improved understanding of complex topographical relationships. 3-D reconstruction approaches based on manually or semi-automatically recorded spatial points representing axonal labeling have been successfully applied for investigation of smaller brain regions, but are not practically feasible for whole-brain analysis of multiple regions. We here reconstruct serial histological images from four whole brains (originally acquired for conventional microscopic analysis into volumetric images that are spatially registered to a 3-D atlas template. The aims were firstly to evaluate the quality of the 3-D reconstructions and the usefulness of the approach, and secondly to investigate axonal projection patterns and topographical organization in rat corticostriatal and corticothalamic pathways. We demonstrate that even with the limitations of the original routine histological material, the 3-D reconstructed volumetric images allow efficient visualization of tracer injection sites and axonal labeling, facilitating detection of spatial distributions and across-case comparisons. Our results further show that clusters of S1 corticostriatal and corticothalamic projections are distributed within narrow, elongated or spherical subspaces extending across the entire striatum / thalamus. We conclude that histology volume reconstructions facilitate mapping of spatial distribution patterns and topographical organization. The reconstructed image volumes

  9. Multi-detector row computed tomography of the heart: does a multi-segment reconstruction algorithm improve left ventricular volume measurements?

    Energy Technology Data Exchange (ETDEWEB)

    Juergens, Kai Uwe; Maintz, David; Heimes, Britta; Fallenberg, Eva Maria; Heindel, Walter; Fischbach, Roman [University of Muenster, Department of Clinical Radiology, Muenster (Germany); Grude, Matthias [University of Muenster, Department of Cardiology and Angiology, Muenster (Germany); Boese, Jan M. [Siemens Medical Solutions, Forchheim (Germany)

    2005-01-01

    A multi-segment cardiac image reconstruction algorithm in multi-detector row computed tomography (MDCT) was evaluated regarding temporal resolution and determination of left ventricular (LV) volumes and global LV function. MDCT and cine magnetic resonance (CMR) imaging were performed in 12 patients with known or suspected coronary artery disease. Patients gave informed written consent for the MDCT and the CMR exam. MDCT data were reconstructed using the standard adaptive cardiac volume (ACV) algorithm as well as a multi-segment algorithm utilizing data from three, five and seven rotations. LV end-diastolic (LV-EDV) and end-systolic volumes and ejection fraction (LV-EF) were determined from short-axis image reformations and compared to CMR data. Mean temporal resolution achieved was 192{+-}24 ms using the ACV algorithm and improved significantly utilizing the three, five and seven data segments to 139{+-}12, 113{+-}13 and 96{+-}11 ms (P<0.001 for each). Mean LV-EDV was without significant differences using the ACV algorithm, the multi-segment approach and CMR imaging. Despite improved temporal resolution with multi-segment image reconstruction, end-systolic volumes were less accurately measured (mean differences 3.9{+-}11.8 ml to 8.1{+-}13.9 ml), resulting in a consistent underestimation of LV-EF by 2.3-5.4% in comparison to CMR imaging (Bland-Altman analysis). Multi-segment image reconstruction improves temporal resolution compared to the standard ACV algorithm, but this does not result in a benefit for determination of LV volume and function. (orig.)

  10. Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis

    Science.gov (United States)

    Zimmermann, Bernhard B.; Deng, Bin; Singh, Bhawana; Martino, Mark; Selb, Juliette; Fang, Qianqian; Sajjadi, Amir Y.; Cormier, Jayne; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.; Saksena, Mansi A.; Carp, Stefan A.

    2017-04-01

    Diffuse optical tomography (DOT) is emerging as a noninvasive functional imaging method for breast cancer diagnosis and neoadjuvant chemotherapy monitoring. In particular, the multimodal approach of combining DOT with x-ray digital breast tomosynthesis (DBT) is especially synergistic as DBT prior information can be used to enhance the DOT reconstruction. DOT, in turn, provides a functional information overlay onto the mammographic images, increasing sensitivity and specificity to cancer pathology. We describe a dynamic DOT apparatus designed for tight integration with commercial DBT scanners and providing a fast (up to 1 Hz) image acquisition rate to enable tracking hemodynamic changes induced by the mammographic breast compression. The system integrates 96 continuous-wave and 24 frequency-domain source locations as well as 32 continuous wave and 20 frequency-domain detection locations into low-profile plastic plates that can easily mate to the DBT compression paddle and x-ray detector cover, respectively. We demonstrate system performance using static and dynamic tissue-like phantoms as well as in vivo images acquired from the pool of patients recalled for breast biopsies at the Massachusetts General Hospital Breast Imaging Division.

  11. Investigation on location-dependent detectability of a small mass for digital breast tomosynthesis evaluation

    Science.gov (United States)

    Lee, Changwoo; Baek, Jongduk; Park, Subok

    2016-03-01

    Digital breast tomosynthesis (DBT) is an emerging imaging modality for improved breast cancer detection and diagnosis [1-5]. Numerous efforts have been made to find quantitative metrics associated with mammographic image quality assessment, such as the exponent β of anatomical noise power spectrum, glandularity, contrast noise ratio, etc. [6-8]. In addition, with the use of Fourier-domain detectability for a task-based assessment of DBT, a stationarity assumption on reconstructed image statistics was often made [9-11], resulting in the use of multiple regions-of-interest (ROIs) from different locations in order to increase sample size. While all these metrics provide some information on mammographic image characteristics and signal detection, the relationship between these metrics and detectability in DBT evaluation has not been fully understood. In this work, we investigated spatial-domain detectability trends and levels as a function of the number of slices Ns at three different ROI locations on the same image slice, where background statistics differ in terms of the aforementioned metrics. Detectabilities for the three ROI locations were calculated using multi-slice channelized Hotelling observers with 2D/3D Laguerre-Gauss channels. Our simulation results show that detectability levels and trends as a function of Ns vary across these three ROI locations. They also show that the exponent β, mean glandularity, and mean attenuation coefficient vary across the three ROI locations but they do not necessarily predict the ranking of detectability levels and trends across these ROI locations.

  12. Optimization of image quality in breast tomosynthesis using lumpectomy and mastectomy specimens

    Science.gov (United States)

    Timberg, Pontus; Ruschin, Mark; Båth, Magnus; Hemdal, Bengt; Andersson, Ingvar; Svahn, Tony; Mattsson, Sören; Tingberg, Anders

    2007-03-01

    The purpose of this study was to determine how image quality in breast tomosynthesis (BT) is affected when acquisition modes are varied, using human breast specimens containing malignant tumors and/or microcalcifications. Images of thirty-one breast lumpectomy and mastectomy specimens were acquired on a BT prototype based on a Mammomat Novation (Siemens) full-field digital mammography system. BT image acquisitions of the same specimens were performed varying the number of projections, angular range, and detector signal collection mode (binned and nonbinned in the scan direction). An enhanced filtered back projection reconstruction method was applied with constant settings of spectral and slice thickness filters. The quality of these images was evaluated via relative visual grading analysis (VGA) human observer performance experiments using image quality criteria. Results from the relative VGA study indicate that image quality increases with number of projections and angular range. A binned detector collecting mode results in less noise, but reduced resolution of structures. Human breast specimens seem to be suitable for comparing image sets in BT with image quality criteria.

  13. Single breath-hold 3D measurement of left atrial volume using compressed sensing cardiovascular magnetic resonance and a non-model-based reconstruction approach.

    Science.gov (United States)

    Vardoulis, Orestis; Monney, Pierre; Bermano, Amit; Vaxman, Amir; Gotsman, Craig; Schwitter, Janine; Stuber, Matthias; Stergiopulos, Nikolaos; Schwitter, Juerg

    2015-06-11

    Left atrial (LA) dilatation is associated with a large variety of cardiac diseases. Current cardiovascular magnetic resonance (CMR) strategies to measure LA volumes are based on multi-breath-hold multi-slice acquisitions, which are time-consuming and susceptible to misregistration. To develop a time-efficient single breath-hold 3D CMR acquisition and reconstruction method to precisely measure LA volumes and function. A highly accelerated compressed-sensing multi-slice cine sequence (CS-cineCMR) was combined with a non-model-based 3D reconstruction method to measure LA volumes with high temporal and spatial resolution during a single breath-hold. This approach was validated in LA phantoms of different shapes and applied in 3 patients. In addition, the influence of slice orientations on accuracy was evaluated in the LA phantoms for the new approach in comparison with a conventional model-based biplane area-length reconstruction. As a reference in patients, a self-navigated high-resolution whole-heart 3D dataset (3D-HR-CMR) was acquired during mid-diastole to yield accurate LA volumes. Phantom studies. LA volumes were accurately measured by CS-cineCMR with a mean difference of -4.73 ± 1.75 ml (-8.67 ± 3.54%, r2 = 0.94). For the new method the calculated volumes were not significantly different when different orientations of the CS-cineCMR slices were applied to cover the LA phantoms. Long-axis "aligned" vs "not aligned" with the phantom long-axis yielded similar differences vs the reference volume (-4.87 ± 1.73 ml vs. -4.45 ± 1.97 ml, p = 0.67) and short-axis "perpendicular" vs. "not-perpendicular" with the LA long-axis (-4.72 ± 1.66 ml vs. -4.75 ± 2.13 ml; p = 0.98). The conventional bi-plane area-length method was susceptible for slice orientations (p = 0.0085 for the interaction of "slice orientation" and "reconstruction technique", 2-way ANOVA for repeated measures). To use the 3D-HR-CMR as the reference for LA volumes

  14. Combining EEG and MEG for the reconstruction of epileptic activity using a calibrated realistic volume conductor model.

    Directory of Open Access Journals (Sweden)

    Ümit Aydin

    Full Text Available To increase the reliability for the non-invasive determination of the irritative zone in presurgical epilepsy diagnosis, we introduce here a new experimental and methodological source analysis pipeline that combines the complementary information in EEG and MEG, and apply it to data from a patient, suffering from refractory focal epilepsy. Skull conductivity parameters in a six compartment finite element head model with brain anisotropy, constructed from individual MRI data, are estimated in a calibration procedure using somatosensory evoked potential (SEP and field (SEF data. These data are measured in a single run before acquisition of further runs of spontaneous epileptic activity. Our results show that even for single interictal spikes, volume conduction effects dominate over noise and need to be taken into account for accurate source analysis. While cerebrospinal fluid and brain anisotropy influence both modalities, only EEG is sensitive to skull conductivity and conductivity calibration significantly reduces the difference in especially depth localization of both modalities, emphasizing its importance for combining EEG and MEG source analysis. On the other hand, localization differences which are due to the distinct sensitivity profiles of EEG and MEG persist. In case of a moderate error in skull conductivity, combined source analysis results can still profit from the different sensitivity profiles of EEG and MEG to accurately determine location, orientation and strength of the underlying sources. On the other side, significant errors in skull modeling are reflected in EEG reconstruction errors and could reduce the goodness of fit to combined datasets. For combined EEG and MEG source analysis, we therefore recommend calibrating skull conductivity using additionally acquired SEP/SEF data.

  15. Potential impact of tomosynthesis on the detection and diagnosis of breast lesi

    Directory of Open Access Journals (Sweden)

    Tamer F. Taha Ali

    2016-03-01

    Conclusion: Breast tomosynthesis is a promising technology that offers improved diagnostic and screening accuracy, fewer recalls as well as 3D lesion localization. Lesion conspicuity is improved using DBT compared with FFDM with a more confidence in making clinical decisions.

  16. Added value of one-view breast tomosynthesis combined with digital mammography according to reader experience

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin-Naggara, Isabelle, E-mail: isabelle.thomassin@tnn.aphp.fr [Sorbonne Universités, UPMC Univ Paris 06, IUC, 75005 Paris (France); INSERM, UMR970, Equipe 2, Imagerie de l’angiogenèse, 75005 Paris (France); AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Perrot, Nicolas [AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Centre Pyramides, Paris (France); Dechoux, Sophie [Sorbonne Universités, UPMC Univ Paris 06, IUC, 75005 Paris (France); AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Ribeiro, Carine [Centre Pyramides, Paris (France); Chopier, Jocelyne [AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Bazelaire, Cedric de [APHP, Department of Radiology, Hôpital Saint Louis, 75010 Paris (France)

    2015-02-15

    Highlights: • Breast tomosynthesis improves diagnostic performance especially for radiologists with lower experience in mammography. • Adding only one-view digital breast tomosynthesis to mammography improves the cancer detection rate. • Breast tomosynthesis is mainly useful for helping radiologists to detect architectural distortion. - Abstract: Purpose: To retrospectively evaluate the added value of one-view breast tomosynthesis in adjunct with mammography to characterize breast lesions. Materials and methods: Our institutional ethics committees approved the study and granted a waiver of informed consent. One hundred fifty-five women (mean age, 51.3 years, range: 24–92 years) who systematically underwent mammography and breast tomosynthesis with subsequent percutaneous biopsy were analyzed. Four radiologists (two seniors, R1 and R2, and two juniors, R3 and R4 with 30, 10, 3 and 1 years of experience in breast imaging, respectively) independently reviewed exams in two steps: mammography alone and tomosynthesis in adjunct with mammography. The lesions in the cohort included 39.3% (61/155) cancers, 2.5% (4/155) high-risk lesions and 58.1% (90/155) benign lesions. A receiver operating characteristic (ROC) curve analysis was performed to compare the results of the two readings. Results: There was almost perfect agreement irrespective of reader experience for the reading of the mammography in adjunct with tomosynthesis, whereas agreement was poor between junior and senior readers for the reading of mammography alone. Area under the ROC (Az) values for the tomosynthesis in adjunct with mammography were significantly better than Az values for mammography alone for all readers except the most experienced, for whom only a tendency was noted. The proportion of cancers undiagnosed by mammography alone that were well diagnosed by tomosynthesis in adjunct with mammography was 6.5% (4/61), 13.1% (8/61), 27.8% (17/61) and 26.2% (16/61) for Readers 1, 2, 3 and 4

  17. Initial clinical evaluation of stationary digital chest tomosynthesis

    Science.gov (United States)

    Hartman, Allison E.; Shan, Jing; Wu, Gongting; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping; Heath, Michael; Wang, Xiaohui; Foos, David

    2016-03-01

    Computed Tomography (CT) is the gold standard for image evaluation of lung disease, including lung cancer and cystic fibrosis. It provides detailed information of the lung anatomy and lesions, but at a relatively high cost and high dose of radiation. Chest radiography is a low dose imaging modality but it has low sensitivity. Digital chest tomosynthesis (DCT) is an imaging modality that produces 3D images by collecting x-ray projection images over a limited angle. DCT is less expensive than CT and requires about 1/10th the dose of radiation. Commercial DCT systems acquire the projection images by mechanically scanning an x-ray tube. The movement of the tube head limits acquisition speed. We recently demonstrated the feasibility of stationary digital chest tomosynthesis (s-DCT) using a carbon nanotube (CNT) x-ray source array in benchtop phantom studies. The stationary x-ray source allows for fast image acquisition. The objective of this study is to demonstrate the feasibility of s-DCT for patient imaging. We have successfully imaged 31 patients. Preliminary evaluation by board certified radiologists suggests good depiction of thoracic anatomy and pathology.

  18. Improvement of image performance in digital breast tomosynthesis (DBT) by incorporating a compressed-sensing (CS)-based deblurring scheme

    Science.gov (United States)

    Kim, Kyuseok; Park, Yeonok; Cho, Heemoon; Cho, Hyosung; Je, Uikyu; Park, Chulkyu; Lim, Hyunwoo; Park, Soyoung; Woo, Taeho; Choi, Sungil

    2016-10-01

    In this work, we investigated a compressed-sensing (CS)-based deblurring scheme incorporated with the total-variation (TV) regularization penalty for image deblurring of high accuracy and adopted it into the image reconstruction in conventional digital breast tomosynthesis (DBT). We implemented the proposed algorithm and performed a systematic simulation to demonstrate its viability for improving the image performance in DBT as well as two-dimensional (2D) mammography. In the simulation, blurred noisy projection images of a 3D numerical breast phantom were generated by convolving their original (or exact) version by a designed 2D Gaussian filter kernel (standard deviation=2 in pixel unit, kernel size=11×11), followed by adding Gaussian noise (mean=0, variance=0.05), and deblurred by using the algorithm before performing the DBT reconstruction procedure. Here the projection images were taken with a half tomographic angle of θ=20° and an angle step of Δθ=2°. We investigated the image performance of the reconstructed DBT images quantitatively in terms of the modulation and the slice-sensitive profile (SSP).

  19. Circular tomosynthesis implemented with a clinical interventional flat-panel based C-Arm: initial performance study

    Science.gov (United States)

    Nett, Brian E.; Zambelli, Joseph; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong

    2007-03-01

    There exists a strong desire for a platform in which researchers may investigate planar tomosynthesis (i.e. all source positions reside in a single plane that is parallel to the reconstructed image planes) trajectories directly on an interventional C-arm system. In this work we describe an experimental system designed to accomplish this aim, as well as the potential of this system for testing multiple aspects of the tomosynthetic image acquisition process. The system enables one to evaluate the effect of the physical imaging parameters on the image quality, as well as the effect of the reconstruction algorithm utilized. The experimental data collection for this work is from the Innova 4100 (Flat-panel based interventional C-arm system manufactured by GE Healthcare). The system is calibrated using a phantom with known geometrical placement of multiple small metallic spheres. Initial performance was assessed with three physical phantoms and performance was assessed by varying: the reconstruction algorithm (backprojection, filtered backprojection), the half tomographic angle (15°, 25°, 35°), and the angular sampling (20,40,80 views / acquisition). Initial results demonstrate the ability to well differentiate simulated vessels separated by 1 cm, even with the modest half tomographic angle of 15° and modest sampling of 20 views/acquisition.

  20. Experimental validation of a three-dimensional linear system model for breast tomosynthesis

    Science.gov (United States)

    Zhao, Bo; Zhou, Jun; Hu, Yue-Houng; Mertelmeier, Thomas; Ludwig, Jasmina; Zhao, Wei

    2009-01-01

    A three-dimensional (3D) linear model for digital breast tomosynthesis (DBT) was developed to investigate the effects of different imaging system parameters on the reconstructed image quality. In the present work, experimental validation of the model was performed on a prototype DBT system equipped with an amorphous selenium (a-Se) digital mammography detector and filtered backprojection (FBP) reconstruction methods. The detector can be operated in either full resolution with 85 μm pixel size or 2×1 pixel binning mode to reduce acquisition time. Twenty-five projection images were acquired with a nominal angular range of ±20°. The images were reconstructed using a slice thickness of 1 mm with 0.085×0.085 mm in-plane pixel dimension. The imaging performance was characterized by spatial frequency-dependent parameters including a 3D noise power spectrum (NPS) and in-plane modulation transfer function (MTF). Scatter-free uniform x-ray images were acquired at four different exposure levels for noise analysis. An aluminum (Al) edge phantom with 0.2 mm thickness was imaged to measure the in-plane presampling MTF. The measured in-plane MTF and 3D NPS were both in good agreement with the model. The dependence of DBT image quality on reconstruction filters was investigated. It was found that the slice thickness (ST) filter, a Hanning window to limit the high-frequency components in the slice thickness direction, reduces noise aliasing and improves 3D DQE. An ACR phantom was imaged to investigate the effects of angular range and detector operational modes on reconstructed image quality. It was found that increasing the angular range improves the MTF at low frequencies, resulting in better detection of large-area, low-contrast mass lesions in the phantom. There is a trade-off between noise and resolution for pixel binning and full resolution modes, and the choice of detector mode will depend on radiation dose and the targeted lesion. PMID:19235392

  1. Detection of microcalcification clusters by 2D-mammography and narrow and wide angle digital breast tomosynthesis

    Science.gov (United States)

    Hadjipanteli, Andria; Elangovan, Premkumar; Looney, Padraig T.; Mackenzie, Alistair; Wells, Kevin; Dance, David R.; Young, Kenneth C.

    2016-03-01

    The aim of this study was to compare the detection of microcalcification clusters by human observers in breast images using 2D-mammography and narrow (15°/15 projections) and wide (50°/25 projections) angle digital breast tomosynthesis (DBT). Simulated microcalcification clusters with a range of microcalcification diameters (125 μm-275 μm) were inserted into 6 cm thick simulated compressed breasts. Breast images were produced with and without inserted microcalcification clusters using a set of image modelling tools, which were developed to represent clinical imaging by mammography and tomosynthesis. Commercially available software was used for image processing and image reconstruction. The images were then used in a series of 4-alternative forced choice (4AFC) human observer experiments conducted for signal detection with the microcalcification clusters as targets. The minimum detectable calcification diameter was found for each imaging modality: (i) 2D-mammography: 164+/-5 μm (ii) narrow angle DBT: 210+/-5 μm, (iii) wide angle DBT: 255+/-4 μm. A statistically significant difference was found between the minimum detectable calcification diameters that can be detected by the three imaging modalities. Furthermore, it was found that there was not a statistically significant difference between the results of the five observers that participated in this study. In conclusion, this study presents a method that quantifies the threshold diameter required for microcalcification detection, using high resolution, realistic images with observers, for the comparison of DBT geometries with 2D-mammography. 2Dmammography can visualise smaller detail diameter than both DBT imaging modalities and narrow-angle DBT can visualise a smaller detail diameter than wide-angle DBT.

  2. Serial sectioning and electron microscopy of large tissue volumes for 3D analysis and reconstruction: a case study of the calyx of Held.

    Science.gov (United States)

    Hoffpauir, Brian K; Pope, Brian A; Spirou, George A

    2007-01-01

    Serial section electron microscopy is typically applied to investigation of small tissue volumes encompassing subcellular structures. However, in neurobiology, the need to relate subcellular structure to organization of neural circuits can require investigation of large tissue volumes at ultrastructural resolution. Analysis of ultrastructure and three-dimensional reconstruction of even one to a few cells is time consuming, and still does not generate the necessary numbers of observations to form well-grounded insights into biological principles. We describe an assemblage of existing computer-based methods and strategies for graphical analysis of large photographic montages to accomplish the study of multiple neurons through large tissue volumes. Sample preparation, data collection and subsequent analyses can be completed within 3-4 months. These methods generate extremely large data sets that can be mined in future studies of nervous system organization.

  3. Comparative effectiveness of combined digital mammography and tomosynthesis screening for women with dense breasts.

    Science.gov (United States)

    Lee, Christoph I; Cevik, Mucahit; Alagoz, Oguzhan; Sprague, Brian L; Tosteson, Anna N A; Miglioretti, Diana L; Kerlikowske, Karla; Stout, Natasha K; Jarvik, Jeffrey G; Ramsey, Scott D; Lehman, Constance D

    2015-03-01

    To evaluate the effectiveness of combined biennial digital mammography and tomosynthesis screening, compared with biennial digital mammography screening alone, among women with dense breasts. An established, discrete-event breast cancer simulation model was used to estimate the comparative clinical effectiveness and cost-effectiveness of biennial screening with both digital mammography and tomosynthesis versus digital mammography alone among U.S. women aged 50-74 years with dense breasts from a federal payer perspective and a lifetime horizon. Input values were estimated for test performance, costs, and health state utilities from the National Cancer Institute Breast Cancer Surveillance Consortium, Medicare reimbursement rates, and medical literature. Sensitivity analyses were performed to determine the implications of varying key model parameters, including combined screening sensitivity and specificity, transient utility decrement of diagnostic work-up, and additional cost of tomosynthesis. For the base-case analysis, the incremental cost per quality-adjusted life year gained by adding tomosynthesis to digital mammography screening was $53 893. An additional 0.5 deaths were averted and 405 false-positive findings avoided per 1000 women after 12 rounds of screening. Combined screening remained cost-effective (less than $100 000 per quality-adjusted life year gained) over a wide range of incremental improvements in test performance. Overall, cost-effectiveness was most sensitive to the additional cost of tomosynthesis. Biennial combined digital mammography and tomosynthesis screening for U.S. women aged 50-74 years with dense breasts is likely to be cost-effective if priced appropriately (up to $226 for combined examinations vs $139 for digital mammography alone) and if reported interpretive performance metrics of improved specificity with tomosynthesis are met in routine practice.

  4. Lesion detectability in stereoscopically viewed digital breast tomosynthesis projection images: a model observer study with anthropomorphic computational breast phantoms

    Science.gov (United States)

    Reinhold, Jacob; Wen, Gezheng; Lo, Joseph Y.; Markey, Mia K.

    2017-03-01

    Stereoscopic views of 3D breast imaging data may better reveal the 3D structures of breasts, and potentially improve the detection of breast lesions. The imaging geometry of digital breast tomosynthesis (DBT) lends itself naturally to stereo viewing because a stereo pair can be easily formed by two projection images with a reasonable separation angle for perceiving depth. This simulation study attempts to mimic breast lesion detection on stereo viewing of a sequence of stereo pairs of DBT projection images. 3D anthropomorphic computational breast phantoms were scanned by a simulated DBT system, and spherical signals were inserted into different breast regions to imitate the presence of breast lesions. The regions of interest (ROI) had different local anatomical structures and consequently different background statistics. The projection images were combined into a sequence of stereo pairs, and then presented to a stereo matching model observer for determining lesion presence. The signal-to-noise ratio (SNR) was used as the figure of merit in evaluation, and the SNR from the stack of reconstructed slices was considered as the benchmark. We have shown that: 1) incorporating local anatomical backgrounds may improve lesion detectability relative to ignoring location-dependent image characteristics. The SNR was lower for the ROIs with the higher local power-law-noise coefficient β. 2) Lesion detectability may be inferior on stereo viewing of projection images relative to conventional viewing of reconstructed slices, but further studies are needed to confirm this observation.

  5. Impact of dose on observer performance in breast tomosynthesis using breast specimens

    Science.gov (United States)

    Timberg, Pontus; Båth, Magnus; Andersson, Ingvar; Svahn, Tony; Ruschin, Mark; Hemdal, Bengt; Mattsson, Sören; Tingberg, Anders

    2008-03-01

    The purpose of this study was to investigate the effect of dose on lesion detection and characterization in breast tomosynthesis (BT), using human breast specimens. Images of 27 lesions in breast specimens were acquired on a BT prototype based on a Mammomat Novation (Siemens) full-field digital mammography (FFDM) system. Two detector modes - binned (2×1 in the scan direction) and full resolution - and four BT exposure levels - approximately 2×, 1.5×, 1×, and 0.5× the total mAs at the same beam quality as used in a single FFDM view with a Mammomat Novation unit under automatic exposure control (AEC) conditions - were examined. The exposure for all BT scans was equally divided among 25 projections. An enhanced filtered back projection reconstruction method was applied with a constant filter setting. A human observer performance study was conducted in which the observers were forced to select the minimum (threshold) exposure level at which each lesion could be both detected and characterized for assessment of recall or not in a screening situation. The median threshold exposure level for all observers and all lesions corresponded to approximately 1×, which is half the exposure of what we currently use for BT. A substantial variation in exposure thresholds was noticed for different lesion types. For low contrast lesions with diffuse borders, an exposure threshold of approximately 2× was required, whereas for spiculated high contrast lesions and lesions with well defined borders, the exposure threshold was lower than 0.5×. The use of binned mode had no statistically significant impact on observer performance compared to full resolution mode. There was no substantial difference between the modes for the detection and characterization of the lesion types.

  6. Clinical benefits of combined diagnostic three-dimensional digital breast tomosynthesis and ultrasound imaging

    Science.gov (United States)

    Varjonen, Mari; Pamilo, Martti; Raulisto, Leena

    2005-04-01

    Our goal is to evaluate diagnostic digital breast tomosynthesis and ultrasound imaging clinical value in detecting and diagnosing early stage breast cancers. Determine if fusion imaging would decrease the number of biopsies and reduce further patient workup otherwise required to establish a definitive diagnosis. This paper presents the clinical results based on the study conducted at Helsinki University Central Hospital. Presentation demonstrates clinical dual modality images and results. Tomosynthesis of amorphous selenium based full field digital mammography system will be also presented. Forty asymptomatic women enrolled in the study based on prior identification of suspicious findings on screening mammograms where the possibility of breast cancer could not be excluded. Abnormal screening mammogram findings included tumor-like densities, parenchymal asymmetries and architectural distortions. Eight women were operated and 32 were not referred for surgery. Those cases, which were operated, three lesions represented ductal carcinoma in situ, two ductal carcinomas, one atypical ductal hyperplasia, one fibroadenoma and one radial scar. The 32 not operated cases revealed to be benign or superimposition of normal parenchymal breast tissue. The cases were returned to biennial screening. Ultrasound did not show clearly any lesions, but using tomosynthesis and ultrasound together we were able to analyze and locate the lesions exactly. Special tomosynthesis improves overall lesion detection and analysis. The value of tomosynthesis and ultrasound fusion imaging will be to provide additional clinical information in order to improve decision making accuracy to either confirm or exclude a suspected abnormality and in particular detect small breast cancers.

  7. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, Sara A.; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Medical Physics and Biomedical Engineering, Gothenburg (Sweden); Johnsson, Aase A.; Vikgren, Jenny; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A. [University of Gothenburg, Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Radiology, Gothenburg (Sweden)

    2014-07-15

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70 % of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100 % dose levels, respectively. The differences in FOM between the 12 % dose level and the 32, 70, and 100 % dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32 %. (orig.)

  8. Monge and the three point space resection problem: an application to the reconstruction of heights and volumes from a photograph of 1892

    Directory of Open Access Journals (Sweden)

    Federico Fallavollita

    2013-10-01

    Full Text Available The purpose of photogrammetric restitution is the reconstruction of the volumes, now lost, located along the road that crosses the village, on the left side of the photo. The reconstruction of points in space from twodimensional images is possible if these photos are projective figure and we have at least two projective oriented stars. The first image is a vintage photograph, the second is a figure reconstructed from an aerial photo of AM in 1938 and from the survey of the masonry still present at the site. For the survey, one of the two projective stars is assimilated to a class of vertical straight lines. With regard to photography, the problem is decomposed into two typical phases of photogrammetric processes: the internal orientation and the absolute orientation. For the absolute orientation we used the method of the pyramid vertex which, in use since the Eighteenth Century, consists in determining the projection center from three given points of which are known the positions in space.

  9. Visualization of inner ear dysplasias in patients with sensorineural hearing loss. High-resolution MR imaging and volume-rendered reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Klingebiel, R.; Bockmuehl, U. [Charite CM, Humboldt Univ., Berlin (Germany). Dept. of Radiology; Werbs, M. [Charite CM, Humboldt Univ., Berlin (Germany). ENT Dept.; Freigang, B. [O. von Guericke Univ., Magdeburg (Germany). ENT Dept.; Vorwerk, W. [St. Salvator Krankenhaus, Halberstadt (Germany). ENT Dept.; Thieme, N.; Lehmann, R. [Charite CM, Humboldt Univ., Berlin (Germany). Dept. of Radiology

    2001-11-01

    Purpose: We evaluated a data acquisition and post-processing protocol for inner ear (IE) assessment by MR imaging in patients, suffering from various labyrinth malformations. Material and Methods: MR IE studies of 158 consecutive patients (316 IEs) suffering from sensorineural hearing loss without evidence of an acoustic neurinoma were reviewed for pathologies of the IE and internal acoustic meatus. High-resolution MR data of all abnormal IE studies (n=45) were post-processed to previously standardized 3D volume rendered (VR) reconstructions. Results: In 9 patients (5.7%) the following IE dysplasias were detected: malformation of the cochlea (6 IEs), vestibulum (4 IEs), semicircular canals (12 IEs) and vestibular aqueduct/endolymphatic sac (10 IEs). One patient showed evidence of an aplasia of the vestibulocochlear nerve. In 4 patients multiple IE dysplasias were encountered. Comprehensive 3D visualization of all labyrinthine dysplasias was achieved by the use of two VR reconstructions. The overall time for bilateral IE assessment amounted to 30-35 min. Conclusion: The imaging protocol allows for rapid and comprehensive visualization of various IE dysplasias, based on a limited number of VR reconstructions.

  10. Defining the Most Accurate Measurable Dimension(s of the Liver in Predicting Liver Volume Based on CT Volumetery and Reconstruction

    Directory of Open Access Journals (Sweden)

    Reza Saadat Mostafavi

    2010-05-01

    Full Text Available Background/Objective: The presence of liver volume has a great effect on diagnosis and management of different diseases such as lymphoproliferative conditions. "nPatients and Methods: Abdominal CT scan of 100 patients without any findings for liver disease (in history and imaging was subjected to volumetry and reconstruction. Along with the liver volume, in axial series, the AP diameter of the left lobe (in midline and right lobe (mid-clavicular and lateral maximum diameter of the liver in the mid-axiliary line and maximum diameter to IVC were calculated. In the coronal mid-axillary and sagittal mid-clavicular plane, maximum superior-inferior dimensions were calculated with their various combinations (multiplying. Regression analysis between dimensions and volume were performed. "nResults: The most accurate combination was the superior inferior sagittal dimension multiplied by AP diameter of the right lobe (R squared 0.78, P-value<0.001 and the most solitary dimension was the lateral dimension to IVC in the axial plane (R squared 0.57, P-value<0.001 with an interval of 9-11cm for 68% of normal. "nConclusion: We recommend the lateral maximum diameter of liver from surface to IVC in the axial plane in ultrasound for liver volume prediction with an interval of 9-11cm for 68% of normal. Out of this range is regarded as abnormal.

  11. Standard Splenic Volume Estimation in North Indian Adult Population: Using 3D Reconstruction of Abdominal CT Scan Images

    Directory of Open Access Journals (Sweden)

    Adil Asghar

    2011-01-01

    Full Text Available A prospective study was carried out to establish normative data for splenic dimensions in North Indian population and their correlation with physical standard on abdominal CT of 21 patients aged between 20 and 70 years having no splenic disorders. Splenic volume was measured by two methods—volume and surface rendering technique of Able 3D doctor software and prolate ellipsoid formula. Volumes measured by both the techniques were correlated with their physical standards. Mean splenic volume was 161.57±90.2 cm3 and range 45.7–271.46 cm3. The volume of spleen had linear correlation with body height (r=0.512, P<.05. Splenic volume (cm3 = 7 × height (cm − 961 can be used to generate normal standard volume of spleen as a function of body height in North Indian population (with 95% confidence interval. This formula can be used to objectively measure the size of the spleen in adults who have clinically suspected splenomegaly.

  12. A Retrospective Volume Matched Analysis of the Submental Artery Island Pedicled Flap as Compared to the Forearm Free Flap: Is It a Good Alternative Choice for the Reconstruction of Defects of the Oral Cavity and Oropharynx?

    Science.gov (United States)

    Aslam-Pervez, Nawaf; Caldroney, Steven J; Isaiah, Amal; Lubek, Joshua E

    2017-08-12

    The submental artery island pedicled flap (SMIF) is an underused alternative for reconstruction of head and neck defects after tumor ablation. The purpose of this study was to perform a comparative evaluation of reconstructive outcomes based on surgical site and ablative defect volume in patients who underwent reconstruction with the SMIF versus the forearm free flap (FFF). A retrospective cohort study of all patients with oral cavity and oropharyngeal defects reconstructed with the SMIF and a cohort of patients with similar volume defects reconstructed with the FFF were compared for oncologic safety and viability of equivalent reconstructive outcomes. All statistical comparisons were assessed by analysis of variance and Fisher exact test. Average age was 61.8 years in the SMIF group versus 57.9 years in the FFF group. The most common defect was located in the tongue, with squamous cell carcinoma being the most common pathology identified. Flap volumes were similar (SMIF, 38.79 cm(3); FFF, 39.77 cm(3)). Significant comparative outcomes identified with SMIF versus FFF reconstruction included shorter anesthesia times (815 vs 1,209 minutes; P speech and swallowing function. Mean follow-up was 15.5 months. This is the first study to compare the SMIF with the FFF for reconstruction of oral cavity defects based on ablative volume deficit. The SMIF is a viable surgical option compared with the FFF that can be considered oncologically safe in the N0 neck, allowing for an excellent esthetic reconstruction, with decreased operative time, hospital stay, and donor site morbidity. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Estimation of non-solid lung nodule volume with low-dose CT protocols: effect of reconstruction algorithm and measurement method

    Science.gov (United States)

    Gavrielides, Marios A.; DeFilippo, Gino; Berman, Benjamin P.; Li, Qin; Petrick, Nicholas; Schultz, Kurt; Siegelman, Jenifer

    2017-03-01

    Computed tomography is primarily the modality of choice to assess stability of nonsolid pulmonary nodules (sometimes referred to as ground-glass opacity) for three or more years, with change in size being the primary factor to monitor. Since volume extracted from CT is being examined as a quantitative biomarker of lung nodule size, it is important to examine factors affecting the performance of volumetric CT for this task. More specifically, the effect of reconstruction algorithms and measurement method in the context of low-dose CT protocols has been an under-examined area of research. In this phantom study we assessed volumetric CT with two different measurement methods (model-based and segmentation-based) for nodules with radiodensities of both nonsolid (-800HU and -630HU) and solid (-10HU) nodules, sizes of 5mm and 10mm, and two different shapes (spherical and spiculated). Imaging protocols included CTDIvol typical of screening (1.7mGy) and sub-screening (0.6mGy) scans and different types of reconstruction algorithms across three scanners. Results showed that radio-density was the factor contributing most to overall error based on ANOVA. The choice of reconstruction algorithm or measurement method did not affect substantially the accuracy of measurements; however, measurement method affected repeatability with repeatability coefficients ranging from around 3-5% for the model-based estimator to around 20-30% across reconstruction algorithms for the segmentation-based method. The findings of the study can be valuable toward developing standardized protocols and performance claims for nonsolid nodules.

  14. The Role of Routine Whole Volume SPECT Reconstruction in Comparison to Cine Raw Data in the Detection of Extracardiac Uptake on Myocardial Perfusion Scans.

    Science.gov (United States)

    Maharaj, M; Korowlay, N A

    2011-01-01

    The objective of this study was to determine the role of routine whole volume reconstructed single-photon emission tomography (rSPECT) compared to cine raw data to detect extracardiac uptake of Sestamibi (MIBI). In a retrospective study, the myocardial perfusion studies of 426 patients were inspected separately for extracardiac uptake on cine raw data and rSPECT. The acquisition parameters for all the images were done according to departmental protocol. The whole volume SPECT data was selected and processed by HOSEM iterative reconstruction using the HERMES computer software system. The images were assessed by two observers, a student in training and a senior consultant nuclear medicine physician. The overall mean age and standard deviation of the 426 patients at the time of the study was 60 ± 12 years. Statistical analysis was performed using the Kappa and McNemars tests. The clinical significance of the extracardiac uptake was evaluated using hospital folders and /or laboratory results after viewing images. rSPECT detected 25 patients (5.9%) and cine raw data identified 18 patients (4.2%) with extracardiac uptake. All the areas of extracardiac uptake noted on cine raw data were seen on the rSPECT images. Only 21 of the 25 patients had complete 5-year clinical follow-up. The value of the clinical significance of the extracardiac uptake was limited due to the study being retrospective. The proportion of positives identified by rSPECT was significantly larger than those identified by cine raw data (P = 0.0082). Although our study demonstrates that rSPECT is more sensitive than cine raw data in detecting extracardiac uptake, it also shows that there is no benefit in routine whole volume rSPECT in daily clinical practice.

  15. Digital tomosynthesis of the thorax - The influence of respiratory motion artifacts on lung nodule detection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Mok; Chung, Myung Jin; Lee, Kyung Soo; Kang, Hee; Song, In-Young; Lee, Eun Joo; Hwang, Hye Sun [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan Univ. School of Medicine, Seoul (Korea, Republic of)], e-mail: mj1.chung@samsung.com

    2013-07-15

    Background: Digital tomosynthesis considerably reduces problems created by overlapping anatomy compared with chest X-ray (CXR). However, digital tomosynthesis requires a longer scan time compared with CXR, and thus may be vulnerable to motion artifacts. Purpose: To compare the diagnostic performance of digital tomosynthesis in subjects with and without respiratory motion artifacts. Material and Methods: The institutional review board approved this retrospective study, and the requirement for written informed consent was waived. A total of 46 subjects with imaging containing respiratory motion artifacts were enrolled in this study, 18 of whom were positive and 28 of whom were negative for lung nodules on computed tomography (CT). The control group was comprised of 92 age-matched subjects with imaging devoid of motion artifacts. Of these, 36 were positive and 56 were negative for lung nodules on subsequent CT scan. The size criteria of nodules were 4-0 mm. Three chest radiologists independently evaluated the radiographs and digital tomosynthesis images for the presence of pulmonary nodules. Multireader multicase receiver-operating characteristic (ROC) analyses was used for statistical comparisons. Results: Within the control group, the areas under curve (AUC) for observer performances in detecting lung nodules on digital tomosynthesis was higher than that on CXR (P = 0.017). Within the study group, there were no significant differences in AUCs for observer performances (P = 0.576). Conclusion: When no motion artifacts are present, the detection performance of nodules (4-10 mm) on digital tomosynthesis is significantly better than that on CXR, whereas there is not a significant difference in cases with motion artifacts.

  16. A parameterization method and application in breast tomosynthesis dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinhua; Zhang, Da; Liu, Bob [Division of Diagnostic Imaging Physics and Webster Center for Advanced Research and Education in Radiation, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2013-09-15

    Purpose: To present a parameterization method based on singular value decomposition (SVD), and to provide analytical parameterization of the mean glandular dose (MGD) conversion factors from eight references for evaluating breast tomosynthesis dose in the Mammography Quality Standards Act (MQSA) protocol and in the UK, European, and IAEA dosimetry protocols.Methods: MGD conversion factor is usually listed in lookup tables for the factors such as beam quality, breast thickness, breast glandularity, and projection angle. The authors analyzed multiple sets of MGD conversion factors from the Hologic Selenia Dimensions quality control manual and seven previous papers. Each data set was parameterized using a one- to three-dimensional polynomial function of 2–16 terms. Variable substitution was used to improve accuracy. A least-squares fit was conducted using the SVD.Results: The differences between the originally tabulated MGD conversion factors and the results computed using the parameterization algorithms were (a) 0.08%–0.18% on average and 1.31% maximum for the Selenia Dimensions quality control manual, (b) 0.09%–0.66% on average and 2.97% maximum for the published data by Dance et al. [Phys. Med. Biol. 35, 1211–1219 (1990); ibid. 45, 3225–3240 (2000); ibid. 54, 4361–4372 (2009); ibid. 56, 453–471 (2011)], (c) 0.74%–0.99% on average and 3.94% maximum for the published data by Sechopoulos et al. [Med. Phys. 34, 221–232 (2007); J. Appl. Clin. Med. Phys. 9, 161–171 (2008)], and (d) 0.66%–1.33% on average and 2.72% maximum for the published data by Feng and Sechopoulos [Radiology 263, 35–42 (2012)], excluding one sample in (d) that does not follow the trends in the published data table.Conclusions: A flexible parameterization method is presented in this paper, and was applied to breast tomosynthesis dosimetry. The resultant data offer easy and accurate computations of MGD conversion factors for evaluating mean glandular breast dose in the MQSA

  17. Digital tomosynthesis (DTS) for quantitative assessment of trabecular microstructure in human vertebral bone.

    Science.gov (United States)

    Kim, Woong; Oravec, Daniel; Nekkanty, Srikant; Yerramshetty, Janardhan; Sander, Edward A; Divine, George W; Flynn, Michael J; Yeni, Yener N

    2015-01-01

    Digital tomosynthesis (DTS) provides slice images of an object using conventional radiographic methods with high in-plane resolution. The objective of this study was to explore the potential of DTS for describing microstructural, stiffness and stress distribution properties of vertebral cancellous bone. Forty vertebrae (T6, T8, T11, and L3) from 10 cadavers (63-90 years) were scanned using microCT and DTS. Anisotropy (μCT.DA), and the specimen-average and standard deviation of trabecular bone volume fraction (BV/TV), thickness (Tb.Th), number (Tb.N) and separation (Tb.Sp) were obtained using stereology. Apparent modulus (EFEM), and the magnitude (VMExp/σapp) and variability (VMCV) of trabecular stresses were calculated using microCT-based finite element modeling. Mean intercept length, line fraction deviation and fractal parameters were obtained from coronal DTS slices, then correlated with stereological and finite element parameters using linear regression models. Twenty-one DTS parameters (out of 27) correlated to BV/TV, Tb.Th, Tb.N, Tb.Sp and/or μCT.DA (p<0.0001-p<0.05). DTS parameters increased the explained variability in EFEM and VMCV (by 9-11% and 13-19%, respectively; p<0.0001-p<0.04) over that explained by BV/TV. In conclusion, DTS has potential for quantitative assessment of cancellous bone and may be used as a modality complementary to those measuring bone mass for assessing spinal fracture risk. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. The Adjunctive Digital Breast Tomosynthesis in Diagnosis of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Tsung-Lung Yang

    2013-01-01

    Full Text Available Purpose. To compare the diagnostic performance of digital breast tomosynthesis (DBT and digital mammography (DM for breast cancers. Materials and Methods. Fifty-seven female patients with pathologically proved breast cancer were enrolled. Three readers gave a subjective assessment superiority of the index lesions (mass, focal asymmetry, architectural distortion, or calcifications and a forced BIRADS score, based on DM reading alone and with additional DBT information. The relevance between BIRADS category and index lesions of breast cancer was compared by chi-square test. Result. A total of 59 breast cancers were reviewed, including 17 (28.8% mass lesions, 12 (20.3% focal asymmetry/density, 6 (10.2% architecture distortion, 23 (39.0% calcifications, and 1 (1.7% intracystic tumor. Combo DBT was perceived to be more informative in 58.8% mass lesions, 83.3% density, 94.4% architecture distortion, and only 11.6% calcifications. As to the forced BIRADS score, 84.4% BIRADS 0 on DM was upgraded to BIRADS 4 or 5 on DBT, whereas only 27.3% BIRADS 4A on DM was upgraded on DBT, as BIRADS 4A lesions were mostly calcifications. A significant P value (<0.001 between the BIRADS category and index lesions was noted. Conclusion. Adjunctive DBT gives exquisite information for mass lesion, focal asymmetry, and/or architecture distortion to improve the diagnostic performance in mammography.

  19. The adjunctive digital breast tomosynthesis in diagnosis of breast cancer.

    Science.gov (United States)

    Yang, Tsung-Lung; Liang, Huei-Lung; Chou, Chen-Pin; Huang, Jer-Shyung; Pan, Huay-Ben

    2013-01-01

    To compare the diagnostic performance of digital breast tomosynthesis (DBT) and digital mammography (DM) for breast cancers. Fifty-seven female patients with pathologically proved breast cancer were enrolled. Three readers gave a subjective assessment superiority of the index lesions (mass, focal asymmetry, architectural distortion, or calcifications) and a forced BIRADS score, based on DM reading alone and with additional DBT information. The relevance between BIRADS category and index lesions of breast cancer was compared by chi-square test. A total of 59 breast cancers were reviewed, including 17 (28.8%) mass lesions, 12 (20.3%) focal asymmetry/density, 6 (10.2%) architecture distortion, 23 (39.0%) calcifications, and 1 (1.7%) intracystic tumor. Combo DBT was perceived to be more informative in 58.8% mass lesions, 83.3% density, 94.4% architecture distortion, and only 11.6% calcifications. As to the forced BIRADS score, 84.4% BIRADS 0 on DM was upgraded to BIRADS 4 or 5 on DBT, whereas only 27.3% BIRADS 4A on DM was upgraded on DBT, as BIRADS 4A lesions were mostly calcifications. A significant P value (BIRADS category and index lesions was noted. Adjunctive DBT gives exquisite information for mass lesion, focal asymmetry, and/or architecture distortion to improve the diagnostic performance in mammography.

  20. A new virtual ring-based system matrix generator for iterative image reconstruction in high resolution small volume PET systems.

    Science.gov (United States)

    Li, K; Safavi-Naeini, M; Franklin, D R; Han, Z; Rosenfeld, A B; Hutton, B; Lerch, M L F

    2015-09-07

    A common approach to improving the spatial resolution of small animal PET scanners is to reduce the size of scintillation crystals and/or employ high resolution pixellated semiconductor detectors. The large number of detector elements results in the system matrix--an essential part of statistical iterative reconstruction algorithms--becoming impractically large. In this paper, we propose a methodology for system matrix modelling which utilises a virtual single-layer detector ring to greatly reduce the size of the system matrix without sacrificing precision. Two methods for populating the system matrix are compared; the first utilises a geometrically-derived system matrix based on Siddon's ray tracer method with the addition of an accurate detector response function, while the second uses Monte Carlo simulation to populate the system matrix. The effectiveness of both variations of the proposed technique is demonstrated via simulations of PETiPIX, an ultra high spatial resolution small animal PET scanner featuring high-resolution DoI capabilities, which has previously been simulated and characterised using classical image reconstruction methods. Compression factors of 5 x 10(7) and 2.5 x 10(7)are achieved using this methodology for the system matrices produced using the geometric and Monte Carlo-based approaches, respectively, requiring a total of 0.5-1.2 GB of memory-resident storage. Images reconstructed from Monte Carlo simulations of various point source and phantom models, produced using system matrices generated via both geometric and simulation methods, are used to evaluate the quality of the resulting system matrix in terms of achievable spatial resolution and the CRC, CoV and CW-SSIM index image quality metrics. The Monte Carlo-based system matrix is shown to provide the best image quality at the cost of substantial one-off computational effort and a lower (but still practical) compression factor. Finally, a straightforward extension of the virtual ring

  1. Digital tomosynthesis with metal artifact reduction for assessing cementless hip arthroplasty: a diagnostic cohort study of 48 patients

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hao; Yang, Dejin; Guo, Shengjie; Tang, Jing; Liu, Jian; Wang, Dacheng; Zhou, Yixin [Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Department of Orthopaedic Surgery, Beijing (China)

    2016-11-15

    For postoperative imaging assessment of cementless hip arthroplasty, radiography and computed tomography (CT) were restricted by overlapping structures and metal artifacts, respectively. A new tomosynthesis with metal artifact reduction (TMAR) is introduced by using metal extraction and ordered subset-expectation maximization (OS-EM) reconstruction. This study investigated the effectiveness of TMAR in assessing fixation stability of cementless hip arthroplasty components. We prospectively included 48 consecutive patients scheduled for revision hip arthroplasty in our hospital, with 41 femoral and 35 acetabular cementless components available for evaluation. All patients took the three examinations of radiography, CT, and TMAR preoperatively, with intraoperative mechanical tests, and absence or presence of osteointegration on retrieved prosthesis as reference standards. Three senior surgeons and four junior surgeons evaluated these images independently with uniform criteria. For TMAR, 82 % diagnoses on the femoral side and 84 % diagnoses on the acetabular side were accurate. The corresponding values were 44 and 67 % for radiography, and 39 % and 74 % for CT. Senior surgeons had significantly higher accuracy than junior surgeons by radiography (p < 0.05), but not by TMAR or CT. By minimizing metal artifacts in the bone-implant interface and clearly depicting peri-implant trabecular structures, the TMAR technique improved the diagnostic accuracy of assessing fixation stability of cementless hip arthroplasty, and shortened the learning curve of less experienced surgeons. Level II, diagnostic cohort study. (orig.)

  2. An experimental study of the scatter correction by using a beam-stop-array algorithm with digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ye-Seul; Park, Hye-Suk; Kim, Hee-Joung [Yonsei University, Wonju (Korea, Republic of); Choi, Young-Wook; Choi, Jae-Gu [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of)

    2014-12-15

    Digital breast tomosynthesis (DBT) is a technique that was developed to overcome the limitations of conventional digital mammography by reconstructing slices through the breast from projections acquired at different angles. In developing and optimizing DBT, The x-ray scatter reduction technique remains a significant challenge due to projection geometry and radiation dose limitations. The most common approach to scatter reduction is a beam-stop-array (BSA) algorithm; however, this method raises concerns regarding the additional exposure involved in acquiring the scatter distribution. The compressed breast is roughly symmetric, and the scatter profiles from projections acquired at axially opposite angles are similar to mirror images. The purpose of this study was to apply the BSA algorithm with only two scans with a beam stop array, which estimates the scatter distribution with minimum additional exposure. The results of the scatter correction with angular interpolation were comparable to those of the scatter correction with all scatter distributions at each angle. The exposure increase was less than 13%. This study demonstrated the influence of the scatter correction obtained by using the BSA algorithm with minimum exposure, which indicates its potential for practical applications.

  3. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Tushita, E-mail: tp3rn@virginia.edu [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Peppard, Heather [Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908 (United States); Williams, Mark B. [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908 (United States); Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908 (United States)

    2016-04-15

    Purpose: Radiation scattered from the breast in digital breast tomosynthesis (DBT) causes image degradation, including loss of contrast between cancerous and background tissue. Unlike in 2-dimensional (2D) mammography, an antiscatter grid cannot readily be used in DBT because changing alignment between the tube and detector during the scan would result in unacceptable loss of primary radiation. However, in the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis, the tube and detector rotate around a common axis, thereby maintaining a fixed tube-detector alignment. This C-arm geometry raises the possibility of using a 2D (cellular) focused antiscatter grid. The purpose of this study is to assess change in image quality when using an antiscatter grid in the DBT portion of a DMT scan under conditions of fixed radiation dose. Methods: Two 2D focused prototype grids with 80 cm focal length were tested, one stack-laminated from copper (Cu) and one cast from a tungsten-polymer (W-poly). They were reciprocated using a motion scheme designed to maximize transmission of primary x-ray photons. Grid-in and grid-out scatter-to-primary ratios (SPRs) were measured for rectangular blocks of material simulating 30%, 50%, and 70% glandular tissue compositions. For assessment of changes in image quality through the addition of a grid, the Computerized Imaging Reference Systems, Inc., phantom Model 011A containing a set of 1 cm thick blocks simulating a range of glandular/adipose ratios from 0/100 to 100/0 was used. To simulate 6.5 and 8.5 cm thick compressed breasts, 1 cm thick slices of PMMA were added to the Model 011A phantom. DBT images were obtained with and without the grid, with exposure parameters fixed for a given compressed thickness. Signal-difference-to-noise ratios (SDNRs), contrast, and voxel value-based attenuation coefficients (μ) were measured for all blocks from reconstructed phantom images. Results: For 4, 6, and

  4. 基于全局低分辨率CT扫描的合成层析成像技术%Global Low-Resolution CT Scan Regulated Tomo-synthesis

    Institute of Scientific and Technical Information of China (English)

    曾凯; 赵世英; Laurie Lee Fajardo; 王革

    2005-01-01

    Tomosynthesis reconstructs a 3D object from a scan (c)onsisting of a limited number of projections. Hence, tomosynthesis requires much less radiation dosage as compared to computed tomography (CT). A major problem with tomosynthesis is image artifacts associated with incompleteness of data. In this paper, we propose a tomosynthesis approach to achieve higher image quality in a region of interest (ROI) than competing techniques. First, a low-resolution global CT scan is acquired. Then, a high-resolution local scan is performed with respect to the ROI. Finally, images of the ROI are reconstructed from these two datasets. Our numerical simulation results show that images of the ROI obtained by our approach are significantly better than the counterparts without using the global scan information.%合成层析成像可由有限几个投影数据重建三维物体,与传统CT相比,该方法所需的射线剂量少得多.由于投影数据不完备,导致的重建图像伪影是合成层析成像的一个主要问题.本文提出一种对感兴趣区域进行合成层析成像方法,和其他方法相比可以得到更好的重建图像质量.该方法首先对目标进行低分辨率全局扫描,然后对感兴趣区域进行高分辨率局部扫描,最后,利用两次扫描的投影数据集合重建感兴趣区域的图像.数值仿真结果表明,用本方法重建感兴趣区域图像,要明显好于没有使用全局扫描信息的方法.

  5. Stereotactic vacuum-assisted biopsies on a digital breast 3D-tomosynthesis system.

    Science.gov (United States)

    Viala, Juliette; Gignier, Pierre; Perret, Baudouin; Hovasse, Claudie; Hovasse, Denis; Chancelier-Galan, Marie-Dominique; Bornet, Gregoire; Hamrouni, Adel; Lasry, Jean-Louis; Convard, Jean-Paul

    2013-01-01

    The purpose of this study was to describe our operating process and to report results of 118 stereotactic vacuum-assisted biopsies performed on a digital breast 3D-tomosynthesis system. From October 2009 to December 2010, 118 stereotactic vacuum assisted biopsies have been performed on a digital breast 3D-tomosynthesis system. Informed consent was obtained for all patients. A total of 106 patients had a lesion, six had two lesions. Sixty-one lesions were clusters of micro-calcifications, 54 were masses and three were architectural distortions. Patients were in lateral decubitus position to allow shortest skin-target approach (or sitting). Specific compression paddle, adapted on the system, performed, and graduated, allowing localization in X-Y. Tomosynthesis views define the depth of lesion. Graduated Coaxial localization kit determines the beginning of the biopsy window. Biopsies were performed with an ATEC-Suros, 9 Gauge handpiece. All biopsies, except one, have reached the lesions. Five hemorrhages were incurred in the process, but no interruption was needed. Eight breast hematomas, were all spontaneously resolved. One was an infection. About 40% of patients had a skin ecchymosis. Processing is fast, easy, and requires lower irradiation dose than with classical stereotactic biopsies. Histology analysis reported 45 benign clusters of micro-calcifications, 16 malignant clusters of micro-calcifications, 24 benign masses, and 33 malignant masses. Of 13 malignant lesions, digital 2D-mammography failed to detect eight lesions and underestimated the classification of five lesions. Digital breast 3D-tomosynthesis depicts malignant lesions not visualized on digital 2D-mammography. Development of tomosynthesis biopsy unit integrated to stereotactic system will permit histology analysis for suspicious lesions.

  6. Prospective gated chest tomosynthesis using CNT X-ray source array

    Science.gov (United States)

    Shan, Jing; Burk, Laurel; Wu, Gongting; Lee, Yueh Z.; Heath, Michael D.; Wang, Xiaohui; Foos, David; Lu, Jianping; Zhou, Otto

    2015-03-01

    Chest tomosynthesis is a low-dose 3-D imaging modality that has been shown to have comparable sensitivity as CT in detecting lung nodules and other lung pathologies. We have recently demonstrated the feasibility of stationary chest tomosynthesis (s-DCT) using a distributed CNT X-ray source array. The technology allows acquisition of tomographic projections without moving the X-ray source. The electronically controlled CNT x-ray source also enables physiologically gated imaging, which will minimize image blur due to the patient's respiration motion. In this paper, we investigate the feasibility of prospective gated chest tomosynthesis using a bench-top s-DCT system with a CNT source array, a high- speed at panel detector and realistic patient respiratory signals captured using a pressure sensor. Tomosynthesis images of inflated pig lungs placed inside an anthropomorphic chest phantom were acquired at different respiration rate, with and without gating for image quality comparison. Metal beads of 2 mm diameter were placed on the pig lung for quantitative measure of the image quality. Without gating, the beads were blurred to 3:75 mm during a 3 s tomosynthesis acquisition. When gated to the end of the inhalation and exhalation phase the detected bead size reduced to 2:25 mm, much closer to the actual bead size. With gating the observed airway edges are sharper and there are more visible structural details in the lung. Our results demonstrated the feasibility of prospective gating in the s-DCT, which substantially reduces image blur associated with lung motion.

  7. Breast Cancers Found with Digital Breast Tomosynthesis: A Comparison of Pathology and Histologic Grade.

    Science.gov (United States)

    Wang, Wei-Shin; Hardesty, Lara; Borgstede, James; Takahashi, Jayme; Sams, Sharon

    2016-11-01

    To compare the pathology and histologic grading of breast cancers detected with digital breast tomosynthesis to those found with conventional digital mammography. The institutional review board approved this study. A database search for all breast cancers diagnosed from June 2012 through December 2013 was performed. Imaging records for these cancers were reviewed and patients who had screening mammography with tomosynthesis as their initial examination were selected. Five dedicated breast imaging radiologists reviewed each of these screening mammograms to determine whether the cancer was visible on conventional digital mammography or whether tomosynthesis was needed to identify the cancer. A cancer was considered mammographically occult if all five radiologists agreed that the cancer could not be seen on conventional digital mammography. The size, pathology and histologic grading for all diagnosed breast cancers were then reviewed. The Mann-Whitney U and Fisher exact tests were utilized to determine any association between imaging findings and cancer size, pathologic type and histologic grade. Sixty-five cancers in 63 patients were identified. Ten of these cancers were considered occult on conventional digital mammography and detected with the addition of tomosynthesis. These mammographically occult cancers were significantly associated with Nottingham grade 1 histologic pathology (p = 0.02), were smaller (median size: 6 mm versus 10 mm, p = 0.07) and none demonstrated axillary nodal metastases. Breast cancers identified through the addition of tomosynthesis are associated with Nottingham grade 1 histologic pathology and prognostically more favorable than cancers identified with conventional digital mammography alone.

  8. A virtual trial framework for quantifying the detectability of masses in breast tomosynthesis projection data

    Energy Technology Data Exchange (ETDEWEB)

    Young, Stefano [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Bakic, Predrag R. [Radiology Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Myers, Kyle J.; Jennings, Robert J.; Park, Subok [Division of Imaging and Applied Mathematics, Center for Devices and Radiological Health, FDA, Silver Spring, Maryland 20993 (United States)

    2013-05-15

    Purpose: Digital breast tomosynthesis (DBT) is a promising breast cancer screening tool that has already begun making inroads into clinical practice. However, there is ongoing debate over how to quantitatively evaluate and optimize these systems, because different definitions of image quality can lead to different optimal design strategies. Powerful and accurate tools are desired to extend our understanding of DBT system optimization and validate published design principles. Methods: The authors developed a virtual trial framework for task-specific DBT assessment that uses digital phantoms, open-source x-ray transport codes, and a projection-space, spatial-domain observer model for quantitative system evaluation. The authors considered evaluation of reconstruction algorithms as a separate problem and focused on the information content in the raw, unfiltered projection images. Specifically, the authors investigated the effects of scan angle and number of angular projections on detectability of a small (3 mm diameter) signal embedded in randomly-varying anatomical backgrounds. Detectability was measured by the area under the receiver-operating characteristic curve (AUC). Experiments were repeated for three test cases where the detectability-limiting factor was anatomical variability, quantum noise, or electronic noise. The authors also juxtaposed the virtual trial framework with other published studies to illustrate its advantages and disadvantages. Results: The large number of variables in a virtual DBT study make it difficult to directly compare different authors' results, so each result must be interpreted within the context of the specific virtual trial framework. The following results apply to 25% density phantoms with 5.15 cm compressed thickness and 500 {mu}m{sup 3} voxels (larger 500 {mu}m{sup 2} detector pixels were used to avoid voxel-edge artifacts): 1. For raw, unfiltered projection images in the anatomical-variability-limited regime, AUC appeared to

  9. Validation of mean glandular dose values provided by a digital breast tomosynthesis system in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Beraldo O, B.; Paixao, L.; Donato da S, S. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Post-graduation in Sciences and Technology of Radiations Minerals and Materials, Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte (Brazil); Araujo T, M. H. [Dr Maria Helena Araujo Teixeira Clinic, Guajajaras 40, 30180-100 Belo Horizonte (Brazil); Nogueira, M. S., E-mail: bbo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte (Brazil)

    2014-08-15

    Digital breast tomosynthesis (DBT) is an emerging imaging modality that provides quasi-three-dimensional structural information of the breast and has strong promise to improve the differentiation of normal tissue and suspicious masses reducing the tissue overlaps. DBT images are reconstructed from a sequence of low-dose X-ray projections of the breast acquired at a small number of angles over a limited angular range. The Ho logic Selen ia Dimensions system is equipped with an amorphous Selenium (a-Se) detector layer of 250 μm thickness and a 70 μm pixel pitch. Studies are needed to determine the radiation dose of patients that are undergoing this emerging procedure to compare with the results obtained in DBT images. The mean glandular dose (D{sub G}) is the dosimetric quantity used in quality control of the mammographic systems. The aim of this work is to validate D{sub G} values for different breast thicknesses provided by a Ho logic Selen ia Dimensions system using a DBT mode in comparison with the same results obtained by a calibrated 90 X 5-6M-model Radcal ionization chamber. D{sub G} values were derived from the incident air kerma (K{sub i}) measurements and tabulated conversion coefficients that are dependent on the half value layer (HVL) of the X-ray spectrum. Voltage and tube loading values were recorded in irradiations using W/Al anode/filter combination, automatic exposure control mode and polymethyl methacrylate (PMMA) slabs which simulate different breast thicknesses. For K{sub i} measurements, the ionization chamber was positioned at 655 mm from the focus and the same radiographic technique values were selected with the manual mode. D{sub G} values for a complete procedure ranged from 0.9 ± 0.1 to 3.7 ± 0.4 mGy. The results for different breast thicknesses are in accordance with values obtained by DBT images and with acceptable levels established by the Commission of the European Communities (Cec) and the International Atomic Energy Agency (IAEA

  10. Breast MRI, digital mammography and breast tomosynthesis: comparison of three methods for early detection of breast cancer

    Directory of Open Access Journals (Sweden)

    Dragana Roganovic

    2015-11-01

    Full Text Available Breast cancer is the most common malignancy in women and early detection is important for its successful treatment. The aim of this study was to investigate the sensitivity and specificity of three methods for early detection of breast cancer: breast magnetic resonance imaging (MRI, digital mammography, and breast tomosynthesis in comparison to histopathology, as well as to investigate the intraindividual variability between these modalities.  We included 57 breast lesions, each detected by three diagnostic modalities: digital mammography, breast MRI, and breast tomosynthesis, and subsequently confirmed by histopathology. Breast Imaging-Reporting and Data System (BI-RADS was used for characterizing the lesions. One experienced radiologist interpreted all three diagnostic modalities. Twenty-nine of the breast lesions were malignant while 28 were benign. The sensitivity for digital mammography, breast MRI, and breast tomosynthesis, was 72.4%, 93.1%, and 100%, respectively; while the specificity was 46.4%, 60.7%, and 75%, respectively. Receiver operating characteristics (ROC curve analysis showed an overall diagnostic advantage of breast tomosynthesis over both breast MRI and digital mammography. The difference in performance between breast tomosynthesis and digital mammography was significant (p < 0.001, while the difference between breast tomosynthesis and breast MRI was not significant (p = 0.20. 

  11. Automated Breast Density Computation in Digital Mammography and Digital Breast Tomosynthesis: Influence on Mean Glandular Dose and BIRADS Density Categorization.

    Science.gov (United States)

    Castillo-García, Maria; Chevalier, Margarita; Garayoa, Julia; Rodriguez-Ruiz, Alejandro; García-Pinto, Diego; Valverde, Julio

    2017-07-01

    The study aimed to compare the breast density estimates from two algorithms on full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) and to analyze the clinical implications. We selected 561 FFDM and DBT examinations from patients without breast pathologies. Two versions of a commercial software (Quantra 2D and Quantra 3D) calculated the volumetric breast density automatically in FFDM and DBT, respectively. Other parameters such as area breast density and total breast volume were evaluated. We compared the results from both algorithms using the Mann-Whitney U non-parametric test and the Spearman's rank coefficient for data correlation analysis. Mean glandular dose (MGD) was calculated following the methodology proposed by Dance et al. Measurements with both algorithms are well correlated (r ≥ 0.77). However, there are statistically significant differences between the medians (P BIRADS (Breast Imaging-Reporting and Data System) b and c categories, respectively. There are no significant differences between the MGD calculated using the breast density from each algorithm. DBT delivers higher MGD than FFDM, with a lower difference (5%) for breasts in the BIRADS d category. MGD is, on average, 6% higher than values obtained with the breast glandularity proposed by Dance et al. Breast density measurements from both algorithms lead to equivalent BIRADS classification and MGD values, hence showing no difference in clinical outcomes. The median MGD values of FFDM and DBT examinations are similar for dense breasts (BIRADS d category). Published by Elsevier Inc.

  12. Average glandular dose in digital mammography and breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Olgar, T. [Ankara Univ. (Turkey). Dept. of Engineering Physics; Universitaetsklinikum Leipzig AoeR (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie; Kahn, T.; Gosch, D. [Universitaetsklinikum Leipzig AoeR (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie

    2012-10-15

    Purpose: To determine the average glandular dose (AGD) in digital full-field mammography (2 D imaging mode) and in breast tomosynthesis (3 D imaging mode). Materials and Methods: Using the method described by Boone, the AGD was calculated from the exposure parameters of 2247 conventional 2 D mammograms and 984 mammograms in 3 D imaging mode of 641 patients examined with the digital mammographic system Hologic Selenia Dimensions. The breast glandular tissue content was estimated by the Hologic R2 Quantra automated volumetric breast density measurement tool for each patient from right craniocaudal (RCC) and left craniocaudal (LCC) images in 2 D imaging mode. Results: The mean compressed breast thickness (CBT) was 52.7 mm for craniocaudal (CC) and 56.0 mm for mediolateral oblique (MLO) views. The mean percentage of breast glandular tissue content was 18.0 % and 17.4 % for RCC and LCC projections, respectively. The mean AGD values in 2 D imaging mode per exposure for the standard breast were 1.57 mGy and 1.66 mGy, while the mean AGD values after correction for real breast composition were 1.82 mGy and 1.94 mGy for CC and MLO views, respectively. The mean AGD values in 3 D imaging mode per exposure for the standard breast were 2.19 mGy and 2.29 mGy, while the mean AGD values after correction for the real breast composition were 2.53 mGy and 2.63 mGy for CC and MLO views, respectively. No significant relationship was found between the AGD and CBT in 2 D imaging mode and a good correlation coefficient of 0.98 in 3 D imaging mode. Conclusion: In this study the mean calculated AGD per exposure in 3 D imaging mode was on average 34 % higher than for 2 D imaging mode for patients examined with the same CBT.

  13. An atlas-based organ dose estimator for tomosynthesis and radiography

    Science.gov (United States)

    Hoye, Jocelyn; Zhang, Yakun; Agasthya, Greeshma; Sturgeon, Greg; Kapadia, Anuj; Segars, W. Paul; Samei, Ehsan

    2017-03-01

    The purpose of this study was to provide patient-specific organ dose estimation based on an atlas of human models for twenty tomosynthesis and radiography protocols. The study utilized a library of 54 adult computational phantoms (age: 18-78 years, weight 52-117 kg) and a validated Monte-Carlo simulation (PENELOPE) of a tomosynthesis and radiography system to estimate organ dose. Positioning of patient anatomy was based on radiographic positioning handbooks. The field of view for each exam was calculated to include relevant organs per protocol. Through simulations, the energy deposited in each organ was binned to estimate normalized organ doses into a reference database. The database can be used as the basis to devise a dose calculator to predict patient-specific organ dose values based on kVp, mAs, exposure in air, and patient habitus for a given protocol. As an example of the utility of this tool, dose to an organ was studied as a function of average patient thickness in the field of view for a given exam and as a function of Body Mass Index (BMI). For tomosynthesis, organ doses can also be studied as a function of x-ray tube position. This work developed comprehensive information for organ dose dependencies across tomosynthesis and radiography. There was a general exponential decrease dependency with increasing patient size that is highly protocol dependent. There was a wide range of variability in organ dose across the patient population, which needs to be incorporated in the metrology of organ dose.

  14. Issues to consider before implementing digital breast tomosynthesis into a breast imaging practice.

    Science.gov (United States)

    Hardesty, Lara A

    2015-03-01

    OBJECTIVE. The purpose of this article is to discuss issues surrounding the implementation of digital breast tomosynthesis (DBT) into a clinical breast imaging practice and assist radiologists, technologists, and administrators who are considering the addition of this new technology to their practices. CONCLUSION. When appropriate attention is given to image acquisition, interpretation, storage, technologist and radiologist training, patient selection, billing, radiation dose, and marketing, implementation of DBT into a breast imaging practice can be successful.

  15. Breast mass detection in tomosynthesis projection images using information-theoretic similarity measures

    Science.gov (United States)

    Singh, Swatee; Tourassi, Georgia D.; Lo, Joseph Y.

    2007-03-01

    The purpose of this project is to study Computer Aided Detection (CADe) of breast masses for digital tomosynthesis. It is believed that tomosynthesis will show improvement over conventional mammography in detection and characterization of breast masses by removing overlapping dense fibroglandular tissue. This study used the 60 human subject cases collected as part of on-going clinical trials at Duke University. Raw projections images were used to identify suspicious regions in the algorithm's high-sensitivity, low-specificity stage using a Difference of Gaussian (DoG) filter. The filtered images were thresholded to yield initial CADe hits that were then shifted and added to yield a 3D distribution of suspicious regions. These were further summed in the depth direction to yield a flattened probability map of suspicious hits for ease of scoring. To reduce false positives, we developed an algorithm based on information theory where similarity metrics were calculated using knowledge databases consisting of tomosynthesis regions of interest (ROIs) obtained from projection images. We evaluated 5 similarity metrics to test the false positive reduction performance of our algorithm, specifically joint entropy, mutual information, Jensen difference divergence, symmetric Kullback-Liebler divergence, and conditional entropy. The best performance was achieved using the joint entropy similarity metric, resulting in ROC A z of 0.87 +/- 0.01. As a whole, the CADe system can detect breast masses in this data set with 79% sensitivity and 6.8 false positives per scan. In comparison, the original radiologists performed with only 65% sensitivity when using mammography alone, and 91% sensitivity when using tomosynthesis alone.

  16. Comparison of digital mammography and digital breast tomosynthesis in the detection of architectural distortion.

    Science.gov (United States)

    Dibble, Elizabeth H; Lourenco, Ana P; Baird, Grayson L; Ward, Robert C; Maynard, A Stanley; Mainiero, Martha B

    2017-07-14

    To compare interobserver variability (IOV), reader confidence, and sensitivity/specificity in detecting architectural distortion (AD) on digital mammography (DM) versus digital breast tomosynthesis (DBT). This IRB-approved, HIPAA-compliant reader study used a counterbalanced experimental design. We searched radiology reports for AD on screening mammograms from 5 March 2012-27 November 2013. Cases were consensus-reviewed. Controls were selected from demographically matched non-AD examinations. Two radiologists and two fellows blinded to outcomes independently reviewed images from two patient groups in two sessions. Readers recorded presence/absence of AD and confidence level. Agreement and differences in confidence and sensitivity/specificity between DBT versus DM and attendings versus fellows were examined using weighted Kappa and generalised mixed modeling, respectively. There were 59 AD patients and 59 controls for 1,888 observations (59 × 2 (cases and controls) × 2 breasts × 2 imaging techniques × 4 readers). For all readers, agreement improved with DBT versus DM (0.61 vs. 0.37). Confidence was higher with DBT, p = .001. DBT achieved higher sensitivity (.59 vs. .32), p .90). DBT achieved higher positive likelihood ratio values, smaller negative likelihood ratio values, and larger ROC values. DBT decreases IOV, increases confidence, and improves sensitivity while maintaining high specificity in detecting AD. • Digital breast tomosynthesis decreases interobserver variability in the detection of architectural distortion. • Digital breast tomosynthesis increases reader confidence in the detection of architectural distortion. • Digital breast tomosynthesis improves sensitivity in the detection of architectural distortion.

  17. The Use of Tomosynthesis in the Global Study of Knee Subchondral Insufficiency Fractures.

    Science.gov (United States)

    Nelson, Fred; Bokhari, Omaima; Oravec, Daniel; Kim, Woong; Flynn, Michael; Lumley, Catherine; McPhilamy, Austin; Yeni, Yener N

    2017-02-01

    Subchondral insufficiency fractures (SIF), previously termed spontaneous osteonecrosis of the knee, are marked by a sudden onset of severe pain. Other than the size of the lesion, prediction for progression to joint replacement is difficult. The objective was to determine if quantitative analysis of bone texture using digital tomosynthesis imaging would be useful in predicting more rapid progression to joint replacement. Tomosynthesis studies of 30 knees with documented SIF were quantified by fractal, mean intercept length (MIL), and line fraction deviation analyses. Fractal dimension, lacunarity, MIL, and line fraction deviation variables measured from these analyses were then correlated to short interval progression to joint replacement surgery. Higher odds for joint replacement were related to higher values of the standard deviation of slope lacunarity and to morphometric measures (eg, MIL). Using digital tomosynthesis images for bone texture assessment may help distinguish condylar bone response in SIF, potentially acting as a clinically relevant predictive tool. In the future, contrasting SIF to the more gradual long-term process of osteoarthritis, there may be a better understanding of the different mechanisms for the two conditions. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. A feasibility study of automatic lung nodule detection in chest digital tomosynthesis with machine learning based on support vector machine

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Jo, Byungdu; Choi, Seungyeon; Shin, Jungwook; Kim, Hee-Joung

    2017-03-01

    The chest digital tomosynthesis(CDT) is recently developed medical device that has several advantage for diagnosing lung disease. For example, CDT provides depth information with relatively low radiation dose compared to computed tomography (CT). However, a major problem with CDT is the image artifacts associated with data incompleteness resulting from limited angle data acquisition in CDT geometry. For this reason, the sensitivity of lung disease was not clear compared to CT. In this study, to improve sensitivity of lung disease detection in CDT, we developed computer aided diagnosis (CAD) systems based on machine learning. For design CAD systems, we used 100 cases of lung nodules cropped images and 100 cases of normal lesion cropped images acquired by lung man phantoms and proto type CDT. We used machine learning techniques based on support vector machine and Gabor filter. The Gabor filter was used for extracting characteristics of lung nodules and we compared performance of feature extraction of Gabor filter with various scale and orientation parameters. We used 3, 4, 5 scales and 4, 6, 8 orientations. After extracting features, support vector machine (SVM) was used for classifying feature of lesions. The linear, polynomial and Gaussian kernels of SVM were compared to decide the best SVM conditions for CDT reconstruction images. The results of CAD system with machine learning showed the capability of automatically lung lesion detection. Furthermore detection performance was the best when Gabor filter with 5 scale and 8 orientation and SVM with Gaussian kernel were used. In conclusion, our suggested CAD system showed improving sensitivity of lung lesion detection in CDT and decide Gabor filter and SVM conditions to achieve higher detection performance of our developed CAD system for CDT.

  19. Evaluation of the technical performance of three different commercial digital breast tomosynthesis systems in the clinical environment.

    Science.gov (United States)

    Rodríguez-Ruiz, A; Castillo, M; Garayoa, J; Chevalier, M

    2016-06-01

    The aim of this work was to research and evaluate the performance of three different digital breast tomosynthesis (DBT) systems in the clinical environment (Siemens Mammomat Inspiration, Hologic Selenia Dimensions, and Fujifilm Amulet Innovality). The characterization included the study of the detector, the automatic exposure control, and the resolution of DBT projections and reconstructed planes. The modulation transfer function (MTF) of the DBT projections was measured with a 1mm thick steel edge, showing a strong anisotropy (30-40% lower MTF0.5 frequencies in the tube travel direction). The in-plane MTF0.5, measured with a 25μm tungsten wire, ranges from 1.3 to 1.8lp/mm in the tube-travel direction and between 2.4 and 3.7lp/mm in the chest wall-nipple. In the latter direction, the MTF peak shift is more emphasized for large angular range systems (2.0 versus 1.0lp/mm). In-depth resolution of the planes, via the full width at half maximum (FWHM) from the point spread function of a 25μm tungsten wire, is not only influenced by angular range and yields 1.3-4.6mm among systems. The artifact spread function from 1mm diameter tungsten beads depends mainly on angular range, yielding two tendencies whether large (FWHM is 4.5mm) or small (FWHM is 10mm) angular range is used. DBT delivers per scan a mean glandular dose between 1.4 and 2.7mGy for a 45mm thick polymethyl methacrylate (PMMA) block. In conclusion, we have identified and analysed specific metrics that can be used for quality assurance of DBT systems. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. A new generation of stationary digital breast tomosynthesis system with wider angular span and faster scanning time

    Science.gov (United States)

    Calliste, Jabari; Wu, Gongting; Laganis, Philip E.; Spronk, Derrek; Jafari, Houman; Olson, Kyle; Gao, Bo; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2016-03-01

    We have developed a clinically ready first generation stationary breast tomosynthesis system (s-DBT). In the s-DBT system, focal spot blur associated with x-ray source motion is completely eliminated, allowing for rapid acquisition of projection images over a larger angular span without changing the acquisition time. In the phantom studies the 1st generation s-DBT system has demonstrated 30% higher spatial resolution than the corresponding continuous motion DBT systems. The system is currently being evaluated for its diagnostic performance in 100 patient clinical evaluation against FFDM. Initial results indicate that the s­-DBT system can produce increased lesion conspicuity and comparable MC visibility. However due to x­-ray flux limitations, certain large size patients have to be excluded. Recent studies have shown that increasing the angular span beyond 30° can be beneficial for enhanced depth resolution. We report the preliminary characterization of the 2nd generation s-­DBT system with a new CNT x-­ray source array, increased tube flux and a larger angular span. Increasing x-ray tube flux allows for a larger patient population and dual energy imaging. Results indicate that the system delivers more than twice the flux, allowing for imaging of all size patients with acquisition time of 2­-4 seconds. A 7° increase in angular span over 1st generation decreased the ASF by 37%. Additionally, the 2nd generation s-DBT system utilizing a specific AFVR reconstruction method resulted in a 92% increase in the in plane resolution over CM DBT system, and a 37% increase in spatial resolution over the 1st generation s--DBT system.

  1. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyungsang; Ye, Jong Chul, E-mail: jong.ye@kaist.ac.kr [Bio Imaging and Signal Processing Laboratory, Department of Bio and Brain Engineering, KAIST 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Taewon; Cho, Seungryong [Medical Imaging and Radiotherapeutics Laboratory, Department of Nuclear and Quantum Engineering, KAIST 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Seong, Younghun; Lee, Jongha; Jang, Kwang Eun [Samsung Advanced Institute of Technology, Samsung Electronics, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803 (Korea, Republic of); Choi, Jaegu; Choi, Young Wook [Korea Electrotechnology Research Institute (KERI), 111, Hanggaul-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 426-170 (Korea, Republic of); Kim, Hak Hee; Shin, Hee Jung; Cha, Joo Hee [Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 138-736 (Korea, Republic of)

    2015-09-15

    Purpose: In digital breast tomosynthesis (DBT), scatter correction is highly desirable, as it improves image quality at low doses. Because the DBT detector panel is typically stationary during the source rotation, antiscatter grids are not generally compatible with DBT; thus, a software-based scatter correction is required. This work proposes a fully iterative scatter correction method that uses a novel fast Monte Carlo simulation (MCS) with a tissue-composition ratio estimation technique for DBT imaging. Methods: To apply MCS to scatter estimation, the material composition in each voxel should be known. To overcome the lack of prior accurate knowledge of tissue composition for DBT, a tissue-composition ratio is estimated based on the observation that the breast tissues are principally composed of adipose and glandular tissues. Using this approximation, the composition ratio can be estimated from the reconstructed attenuation coefficients, and the scatter distribution can then be estimated by MCS using the composition ratio. The scatter estimation and image reconstruction procedures can be performed iteratively until an acceptable accuracy is achieved. For practical use, (i) the authors have implemented a fast MCS using a graphics processing unit (GPU), (ii) the MCS is simplified to transport only x-rays in the energy range of 10–50 keV, modeling Rayleigh and Compton scattering and the photoelectric effect using the tissue-composition ratio of adipose and glandular tissues, and (iii) downsampling is used because the scatter distribution varies rather smoothly. Results: The authors have demonstrated that the proposed method can accurately estimate the scatter distribution, and that the contrast-to-noise ratio of the final reconstructed image is significantly improved. The authors validated the performance of the MCS by changing the tissue thickness, composition ratio, and x-ray energy. The authors confirmed that the tissue-composition ratio estimation was quite

  2. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update.

    Science.gov (United States)

    Kim, Kyungsang; Lee, Taewon; Seong, Younghun; Lee, Jongha; Jang, Kwang Eun; Choi, Jaegu; Choi, Young Wook; Kim, Hak Hee; Shin, Hee Jung; Cha, Joo Hee; Cho, Seungryong; Ye, Jong Chul

    2015-09-01

    In digital breast tomosynthesis (DBT), scatter correction is highly desirable, as it improves image quality at low doses. Because the DBT detector panel is typically stationary during the source rotation, antiscatter grids are not generally compatible with DBT; thus, a software-based scatter correction is required. This work proposes a fully iterative scatter correction method that uses a novel fast Monte Carlo simulation (MCS) with a tissue-composition ratio estimation technique for DBT imaging. To apply MCS to scatter estimation, the material composition in each voxel should be known. To overcome the lack of prior accurate knowledge of tissue composition for DBT, a tissue-composition ratio is estimated based on the observation that the breast tissues are principally composed of adipose and glandular tissues. Using this approximation, the composition ratio can be estimated from the reconstructed attenuation coefficients, and the scatter distribution can then be estimated by MCS using the composition ratio. The scatter estimation and image reconstruction procedures can be performed iteratively until an acceptable accuracy is achieved. For practical use, (i) the authors have implemented a fast MCS using a graphics processing unit (GPU), (ii) the MCS is simplified to transport only x-rays in the energy range of 10-50 keV, modeling Rayleigh and Compton scattering and the photoelectric effect using the tissue-composition ratio of adipose and glandular tissues, and (iii) downsampling is used because the scatter distribution varies rather smoothly. The authors have demonstrated that the proposed method can accurately estimate the scatter distribution, and that the contrast-to-noise ratio of the final reconstructed image is significantly improved. The authors validated the performance of the MCS by changing the tissue thickness, composition ratio, and x-ray energy. The authors confirmed that the tissue-composition ratio estimation was quite accurate under a variety of

  3. Rapid review: Estimates of incremental breast cancer detection from tomosynthesis (3D-mammography) screening in women with dense breasts.

    Science.gov (United States)

    Houssami, Nehmat; Turner, Robin M

    2016-12-01

    High breast tissue density increases breast cancer (BC) risk, and the risk of an interval BC in mammography screening. Density-tailored screening has mostly used adjunct imaging to screen women with dense breasts, however, the emergence of tomosynthesis (3D-mammography) provides an opportunity to steer density-tailored screening in new directions potentially obviating the need for adjunct imaging. A rapid review (a streamlined evidence synthesis) was performed to summarise data on tomosynthesis screening in women with heterogeneously dense or extremely dense breasts, with the aim of estimating incremental (additional) BC detection attributed to tomosynthesis in comparison with standard 2D-mammography. Meta-analysed data from prospective trials comparing these mammography modalities in the same women (N = 10,188) in predominantly biennial screening showed significant incremental BC detection of 3.9/1000 screens attributable to tomosynthesis (P mammography (N = 177,814) yielded a pooled difference in BC detection of 1.4/1000 screens representing significantly higher BC detection in tomosynthesis-screened women (P mammography. These estimates can inform planning of future trials of density-tailored screening and may guide discussion of screening women with dense breasts.

  4. NPS comparison of anatomical noise characteristics in mammography, tomosynthesis, and breast CT images using power law metrics

    Science.gov (United States)

    Chen, Lin; Boone, John M.; Nosratieh, Anita; Abbey, Craig K.

    2011-03-01

    Digital mammography is the current standard for breast cancer screening, however breast tomosynthesis and breast CT (bCT) have been studied in clinical trials. At our institution, 30 women (BIRADS 4 and 5) underwent IRB-approved imaging by mammography, breast tomosynthesis, and bCT on the same day. Twenty three data sets were used for analysis. The 2D noise power spectrum (NPS) was computed and averaged for each data set. The NPS was computed for different slice thicknesses of dx × N, where dx ~ 0.3 mm and N=1-64, on the bCT data. Each 2D NPS was radially averaged, and the 1D data were fit using a power law function as proposed by Burgess: NPS(f) = αf-β. The value of β was determined over a range of frequencies corresponding to anatomical noise, for each patient and each modality. Averaged over the 30 women (26 for bCT, 28 for tomosynthesis, 28 for mammography), for mammography β=3.06 (0.25), for CC tomosynthesis β=2.91 (0.35), and for axial bCT β=1.72 (0.47). For sagittal bCT β=1.77 (0.36) and for coronal bCT, β=1.88 (0.45). The computation of β versus slice thickness on the coronal bCT data set led to β~1.7 for N=1, asymptotically reaching β ~ 3 for larger slice thickness. These results suggest that there is a fundamental difference in breast anatomic noise as characterized by β, between thin slices (<2 mm) and thicker slices. Tomosynthesis was found to have anatomic noise properties closer to mammography than breast CT, most likely due to the relatively thick slice sensitivity profile of tomosynthesis.

  5. Second Order Volume of Fluid Interface Reconstruction Method in Three Dimensions%三维空间二阶精度流体体积界面重构方法

    Institute of Scientific and Technical Information of China (English)

    梁仙红

    2013-01-01

    给出三维空间网格模板含81个单元的最小二乘流体体积界面重构方法,并和Youngs方法及网格模板含125个单元的最小二乘流体体积界面重构方法进行比较.静态和动态的测试例子均表明:该方法能精确重构任意方向的平面界面,对C2光滑曲面它能达到二阶收敛精度.和网格模板含125个单元的最小二乘流体体积界面重构方法相比,在达到同样网格精度的条件下,减少了计算量,节省了计算时间,提高了计算效率.%A second order least squares volume of fluid interface reconstruction algorithm with 81 cells in mesh stencil is introduced.The algorithm is compared with Youngs algorithm and a second order least squares volume of fluid interface reconstruction algorithm with 125 cells in mesh stencil.L∞ criteria function in three dimensions is used to measure stationary interface reconstruction errors.Stationary and advecting tests show that the algorithm can track any oriented plane exactly and it is second order accurate.Compared with second order least squares volume of fluid interface reconstruction algorithm with 125 cells in mesh stencil,calculation amount of the algoritm is much smaller.Thus CPU time is saved and computing efficiency is improved.

  6. ACL reconstruction

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007208.htm ACL reconstruction To use the sharing features on this page, please enable JavaScript. ACL reconstruction is surgery to reconstruct the ligament in ...

  7. 3D volume assessment techniques and computer-aided design and manufacturing for preoperative fabrication of implants in head and neck reconstruction.

    Science.gov (United States)

    Patel, Ashish; Otterburn, David; Saadeh, Pierre; Levine, Jamie; Hirsch, David L

    2011-11-01

    Cases in subdisciplines of craniomaxillofacial surgery--corrective jaw surgery, maxillofacial trauma, temporomandibular joint/skull base, jaw reconstruction, and postablative reconstruction-illustrate the ease of use, cost effectiveness, and superior results that can be achieved when using computer-assisted design and 3D volumetric analysis in preoperative surgical planning. This article discusses the materials and methods needed to plan cases, illustrates implementation of guides and implants, and describes postoperative analysis in relation to the virtually planned surgery.

  8. BPF-type Region-of-interest Reconstruction for Parallel Translational Computed Tomography

    CERN Document Server

    Wu, Weiwen; Wang, Shaoyu; Liu, Fenglin

    2016-01-01

    Recently, an ultra-low-cost linear scan based tomography architecture was proposed by our team. Similar to linear tomosynthesis, the source and detector are translated in opposite directions and the data acquisition system targets on a region-of-interest (ROI) to acquire data for image reconstruction. This kind of tomography architecture was named parallel translational computed tomography (PTCT). In our previous studies, filtered backprojection (FBP)-type algorithms were developed to reconstruct images from PTCT. However, the reconstructed ROI images from truncated projections have severe truncation artifacts. In this paper, we propose two backprojection filtering (BPF)-type algorithms named MP-BPF and MZ-BPF to reconstruct ROI images from truncated PTCT data. A weight function is constructed to deal with data redundancy for multi-linear translations modes. Extensive numerical simulations are performed to evaluate the proposed MP-BPF and MZ-BPF algorithms for PTCT in fan-beam geometry. Qualitative and quanti...

  9. Diagnostic value of the stand-alone synthetic image in digital breast tomosynthesis examinations.

    Science.gov (United States)

    Garayoa, Julia; Chevalier, Margarita; Castillo, Maria; Mahillo-Fernández, Ignacio; Amallal El Ouahabi, Najim; Estrada, Carmen; Tejerina, Alejandro; Benitez, Olivia; Valverde, Julio

    2017-08-15

    To demonstrate the non-inferiority of synthetic image (SI) mammography versus full-field digital mammography (FFDM) in breast tomosynthesis (DBT) examinations. An observational, retrospective, single-centre, multireader blinded study was performed, using 2384 images to directly compare SI and FFDM based on Breast Imaging Reporting and Data System (BIRADS) categorisation and visibility of radiological findings. Readers had no access to digital breast tomosynthesis slices. Multiple reader, multiple case (MRMC) receiver operating characteristic (ROC) methodology was used to compare the diagnostic performance of SI and FFDM images. The kappa statistic was used to estimate the inter-reader and intra-reader reliability. The area under the ROC curves (AUC) reveals the non-inferiority of SI versus FFDM based on BIRADS categorisation [difference between AUC (ΔAUC), -0.014] and lesion visibility (ΔAUC, -0.001) but the differences were not statistically significant (p=0.282 for BIRADS; p=0.961 for lesion visibility). On average, 77.4% of malignant lesions were detected with SI versus 76.5% with FFDM. Sensitivity and specificity of SI are superior to FFDM for malignant lesions scored as BIRADS 5 and breasts categorised as BIRADS 1. SI is not inferior to FFDM when DBT slices are not available during image reading. SI can replace FFDM, reducing the dose by 45%. • Stand-alone SI demonstrated performance not inferior for lesion visibility as compared to FFDM. • Stand-alone SI demonstrated performance not inferior for lesion BIRADS categorisation as compared to FFDM. • Synthetic images provide important dose savings in breast tomosynthesis examinations.

  10. 50 μm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, C; Konstantinidis, A C; Zheng, Y; Anaxagoras, T; Speller, R D; Kanicki, J

    2015-12-07

    Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS APS x-ray detectors by taking into account the device nonlinear signal and noise properties. The imaging properties such as modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were extracted from both measurements and the nonlinear cascaded system analysis. The results show that the DynAMITe x-ray detector achieves a high spatial resolution of 10 mm(-1) and a DQE of around 0.5 at spatial frequencies  CMOS APS x-ray detector, image aquisition geometry and image reconstruction techniques should be considered.

  11. The effect of system geometry and dose on the threshold detectable calcification diameter in 2D-mammography and digital breast tomosynthesis

    Science.gov (United States)

    Hadjipanteli, Andria; Elangovan, Premkumar; Mackenzie, Alistair; Looney, Padraig T.; Wells, Kevin; Dance, David R.; Young, Kenneth C.

    2017-02-01

    Digital breast tomosynthesis (DBT) is under consideration to replace or to be used in combination with 2D-mammography in breast screening. The aim of this study was the comparison of the detection of microcalcification clusters by human observers in simulated breast images using 2D-mammography, narrow angle (15°/15 projections) and wide angle (50°/25 projections) DBT. The effects of the cluster height in the breast and the dose to the breast on calcification detection were also tested. Simulated images of 6 cm thick compressed breasts were produced with and without microcalcification clusters inserted, using a set of image modelling tools for 2D-mammography and DBT. Image processing and reconstruction were performed using commercial software. A series of 4-alternative forced choice (4AFC) experiments was conducted for signal detection with the microcalcification clusters as targets. Threshold detectable calcification diameter was found for each imaging modality with standard dose: 2D-mammography: 2D-mammography (165  ±  9 µm), narrow angle DBT (211  ±  11 µm) and wide angle DBT (257  ±  14 µm). Statistically significant differences were found when using different doses, but different geometries had a greater effect. No differences were found between the threshold detectable calcification diameters at different heights in the breast. Calcification clusters may have a lower detectability using DBT than 2D imaging.

  12. "Off Label" Use of FDA-Approved Devices and Digital Breast Tomosynthesis.

    Science.gov (United States)

    Kopans, Daniel B

    2015-11-01

    The purpose of this article is to clarify for radiologists the meaning of U.S. Food and Drug Administration (FDA) approval with respect to Digital Breast Tomosynthesis (DBT). DBT is a major improvement over 2D mammography in the detection of cancers (sensitivity) and the reduction in recalls resulting from screening (specificity). Most imaging systems that have been approved by the FDA are used "off label" for breast imaging. Although the FDA determines which claims a manufacturer can make for a device, physicians may use approved devices, such as DBT, off label to provide better patient care.

  13. Evaluation of the technical performance of three different commercial digital breast tomosynthesis systems in the clinical environment

    NARCIS (Netherlands)

    Rodriguez Ruiz, A.; Castillo, M.; Garayoa, J.; Chevalier, M.

    2016-01-01

    The aim of this work was to research and evaluate the performance of three different digital breast tomosynthesis (DBT) systems in the clinical environment (Siemens Mammomat Inspiration, Hologic Selenia Dimensions, and Fujifilm Amulet Innovality). The characterization included the study of the

  14. Image performance of a new amorphous selenium flat panel x-ray detector designed for digital breast tomosynthesis

    Science.gov (United States)

    Cheung, L. K.; Jing, Z.; Bogdanovich, S.; Golden, K.; Robinson, S.; Beliaevskaia, E.; Parikh, S.

    2005-04-01

    The purpose of this work is to report the performance of an amorphous selenium (a-Se) based flat-panel x-ray imager under development for application in digital breast tomosynthesis. This detector is designed to perform both in the conventional Full Field Digital Mammography (FFDM) mode and the tomosynthesis mode. The large area 24 x 29 cm detector achieves rapid image acquisition rates of up to 4 frames per second with minimal trapped charge induced effects such as ghost or lag images of previously acquired objects. In this work, a new a-Se/TFT detector layer structure is evaluated. The design uses a top conductive layer in direct contact with the a-Se x-ray detection layer. The simple structure has few layers and minimal hole and electron trapping effects. Prototype detectors were built to investigate the basic image performance of this new a-Se/TFT detector. Image signal generation, image ghosting, image lag, and detector DQE were studied. For digital mammography applications, the residual image ghosting was less than 1% at 30 seconds elapsed time. DQE, measured at a field of 5.15 V/um, showed significantly higher values over previously reported data, especially at low exposure levels. For digital breast tomosynthesis, the image lag at dynamic readout rate was < 0.6 % at 0.5-second elapsed time. A prototype tomosynthesis system is being developed utilizing this new a-Se/TFT detector.

  15. Amorphous In–Ga–Zn–O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu [Solid-State Electronic Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-09-15

    detector entrance exposure per projection can be reduced from 1 to 0.3 mR without a significant reduction of DQE. The signal-to-noise ratio of the a-IGZO APS imager under 0.3 mR x-ray exposure is comparable to that of a-Si:H passive pixel sensor imager under 1 mR, indicating good image quality under low dose. A threefold reduction of current tomosynthesis dose is expected if proposed technology is combined with an advanced DBT image reconstruction method. Conclusions: The proposed a-IGZO APS x-ray imager with a pixel pitch <75 μm is capable to achieve a high spatial frequency (>6.67 lp/mm) and a low dose (<0.4 mGy) in next generation DBT systems.

  16. Digital breast tomosynthesis-guided vacuum-assisted breast biopsy: initial experiences and comparison with prone stereotactic vacuum-assisted biopsy

    National Research Council Canada - National Science Library

    Schrading, Simone; Distelmaier, Martina; Dirrichs, Timm; Detering, Sabine; Brolund, Liv; Strobel, Kevin; Kuhl, Christiane K

    2015-01-01

    To use digital breast tomosynthesis (DBT)-guided vacuum-assisted biopsy (VAB) to sample target lesions identified at full-field digital screening mammography and compare clinical performance with that of prone stereotactic (PS) VAB...

  17. Digital breast tomosynthesis versus mammography and breast ultrasound: a multireader performance study

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, Fabienne; Malhaire, Caroline; Tardivon, Anne [Department of Radiology, Paris Cedex 05 (France); Dromain, Clarisse; Balleyguier, Corinne S. [Institut de cancerologie Gustave-Roussy, Department of Radiology, Villejuif (France); Breucq, Catherine [Universitair Ziekenhuis-VUB, Department of Radiology, Bruxelles (Belgium); Steyaert, Luc [Department of Radiology, Brugge (Belgium); Baldan, Enrica [Veneto Institute of Oncology (IOV)-IRCCS, Department of Radiology, Padua (Italy); Drevon, Harir [Numerus Ltd, Lyon (France)

    2013-09-15

    To compare the diagnostic performance of single-view breast tomosynthesis (BT) with that of dual-view mammography (MX); to assess the benefit of adding the craniocaudal (CC) mammographic view to BT, and of adding BT to MX plus breast ultrasound, considered to be the reference work-up. One hundred and fifty-five consenting patients with unresolved mammographic and/or ultrasound findings or breast symptoms underwent conventional work-up plus mediolateral oblique-view BT of the affected breast. The final study set in 130 patients resulted in 55 malignant and 76 benign and normal cases. Seven breast radiologists rated the cases through five sequential techniques using a BIRADS-based scale: MX, MX + ultrasound, MX + ultrasound + BT, BT, BT + MX(CC). Multireader, multicase receiver operating characteristic (ROC) analysis was performed and performance of the techniques was assessed from the areas under ROC curves. The performance of BT and of BT + MX(CC) was tested versus MX; the performance of MX + ultrasound + BT tested versus MX + ultrasound. Tomosynthesis was found to be non-inferior to mammography. BT + MX(CC) did not appear to be superior to MX, and MX + ultrasound + BT not superior to MX + ultrasound. Overall, none of the five techniques tested outperformed the others. Further clinical studies are needed to clarify the role of BT as a substitute for traditional work-up in the diagnostic environment. (orig.)

  18. Characterization of Breast Lesions: Comparison of Digital Breast Tomosynthesis and Ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ah [Department of Radiology, Human Medical Imaging & Intervention Center, Seoul 135-120 (Korea, Republic of); Chang, Jung Min; Cho, Nariya [Department of Radiology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Yi, Ann [Department of Radiology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul 135-984 (Korea, Republic of); Moon, Woo Kyung [Department of Radiology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-11-01

    To compare the diagnostic performance of digital breast tomosynthesis (DBT) and conventional breast ultrasound (US) to characterize breast lesions as benign or malignant. A total of 332 women, presenting for screening examinations or for breast biopsy between March and June 2012 were recruited to undergo digital mammography (DM), DBT, and breast US examination. Among them, 113 patients with 119 breast lesions depicted on DM were finally included. Three blinded radiologists performed an enriched reader study and reviewed the DBT and US images. Each reader analyzed the lesions in random order, assigned Breast Imaging Reporting and Data System (BI-RADS) descriptors, rated the images for the likelihood of malignancy (%) and made a BI-RADS final assessment. Diagnostic accuracy, as assessed by the area under the receiver operating characteristic curve, sensitivity, and specificity of DBT and US were compared. Among the 119 breast lesions depicted on DM, 75 were malignant and the remaining 44 were benign. The average diagnostic performance for characterizing breast lesions as benign or malignant in terms of area under the curve was 0.899 for DBT and 0.914 for US (p = 0.394). Mean sensitivity (97.3% vs. 98.7%, p = 0.508) and specificity (44.7% vs. 39.4%, p = 0.360) were also not significantly different. Digital breast tomosynthesis may provide similar reader lesion characterization performance to that of US for breast lesions depicted on DM.

  19. An adaptive toolkit for image quality evaluation in system performance test of digital breast tomosynthesis

    Science.gov (United States)

    Zhang, Guozhi; Petrov, Dimitar; Marshall, Nicholas; Bosmans, Hilde

    2017-03-01

    Digital breast tomosynthesis (DBT) is a relatively new diagnostic imaging modality for women. Currently, various models of DBT systems are available on the market and the number of installations is rapidly increasing. EUREF, the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services, has proposed a preliminary Guideline - protocol for the quality control of the physical and technical aspects of digital breast tomosynthesis systems, with an ultimate aim of providing limiting values guaranteeing proper performance for different applications of DBT. In this work, we introduce an adaptive toolkit developed in accordance with this guideline to facilitate the process of image quality evaluation in DBT performance test. This toolkit implements robust algorithms to quantify various technical parameters of DBT images and provides a convenient user interface in practice. Each test is built into a separate module with configurations set corresponding to the European guideline, which can be easily adapted to different settings and extended with additional tests. This toolkit largely improves the efficiency for image quality evaluation of DBT. It is also going to evolve with the development of protocols in quality control of DBT systems.

  20. Assessment of maxillary sinus wall thickness with paranasal sinus digital tomosynthesis and CT

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Ji Eun; Shim, Sung Shine; Kim, Yoo Kyung; Kong, Kyoung Ae [Mokdong Hospital, Ewha Womans University School of Medicine, Seoul (Korea, Republic of)

    2017-05-15

    This study was performed to compare paranasal sinus tomosynthesis with computed tomography (CT) imaging as a radiologic tool to evaluate the paranasal sinuses, using measurement of the soft tissue thickness of the maxillary sinus. A total of 114 patients with sinusitis who underwent both paranasal sinus digital tomosynthesis (DT) and CT were enrolled in this retrospective study. Two observers independently assessed soft tissue thickness in both maxillary sinus chambers using both DT and CT images. The mean difference in soft tissue thickness measured by each observer was −0.31 mm on CT and 0.15 mm on DT. The mean differences in soft tissue thickness measured with DT and CT were −0.15 by observer 1 and −0.31 by observer 2. Evaluation of the agreement in measurement of soft tissue thickness in the maxillary sinus using DT and CT showed a high intraclass correlation, with the 95% limit of agreement ranging from −3.36 mm to 3.06 mm [intraclass correlation coefficient (ICC), 0.994: p<0.01] for observer 1 and from −5.56 mm to 4.95 mm (ICC, 0.984: p<0.01) for observer 2. As an imaging tool, DT is comparable to CT for assessing the soft tissue thickness of maxillary sinuses in patients with sinusitis.

  1. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J

    2017-03-07

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm(-1)) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  2. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis

    Science.gov (United States)

    Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.

    2017-03-01

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm-1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  3. Breast Reconstruction

    Science.gov (United States)

    ... rebuild the shape of the breast. Instead of breast reconstruction, you could choose to wear a breast form ... one woman may not be right for another. Breast reconstruction may be done at the same time as ...

  4. Iterative ct reconstruction from few projections for the nondestructive post irradiation examination of nuclear fuel assemblies

    Science.gov (United States)

    Abir, Muhammad Imran Khan

    The core components (e.g. fuel assemblies, spacer grids, control rods) of the nuclear reactors encounter harsh environment due to high temperature, physical stress, and a tremendous level of radiation. The integrity of these elements is crucial for safe operation of the nuclear power plants. The Post Irradiation Examination (PIE) can reveal information about the integrity of the elements during normal operations and off?normal events. Computed tomography (CT) is a tool for evaluating the structural integrity of elements non-destructively. CT requires many projections to be acquired from different view angles after which a mathematical algorithm is adopted for reconstruction. Obtaining many projections is laborious and expensive in nuclear industries. Reconstructions from a small number of projections are explored to achieve faster and cost-efficient PIE. Classical reconstruction algorithms (e.g. filtered back projection) cannot offer stable reconstructions from few projections and create severe streaking artifacts. In this thesis, conventional algorithms are reviewed, and new algorithms are developed for reconstructions of the nuclear fuel assemblies using few projections. CT reconstruction from few projections falls into two categories: the sparse-view CT and the limited-angle CT or tomosynthesis. Iterative reconstruction algorithms are developed for both cases in the field of compressed sensing (CS). The performance of the algorithms is assessed using simulated projections and validated through real projections. The thesis also describes the systematic strategy towards establishing the conditions of reconstructions and finds the optimal imaging parameters for reconstructions of the fuel assemblies from few projections.

  5. Effects of angular range on image quality of chest digital tomosynthesis

    Science.gov (United States)

    Lee, Haenghwa; Kim, Ye-seul; Choi, Sunghoon; Lee, Dong-Hoon; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Chest digital tomosynthesis (CDT) is a new 3D imaging technique that can be expected to improve clinical diagnosis over conventional chest radiography. We investigated the effect of the angular range of data acquisition on the image quality using newly developed CDT system. The four different acquisition sets were studied using +/-15°, +/-20°, +/-30°, and +/-35° angular ranges with 21 projection views (PVs). The point spread function (PSF), modulation transfer function (MTF), artifact spread function (ASF), and normalized contrast-to-noise ratio (CNR) were used to evaluate the image quality. We found that increasing angular ranges improved vertical resolution. The results indicated that there was the opposite relationship of the CNR with angular range for the two tissue types. While CNR for heart tissue increased with increasing angular range, CNR for spine bone decreased. The results showed that the angular range is an important parameter for the CDT exam.

  6. Calibration and optimization of 3D digital breast tomosynthesis guided near infrared spectral tomography.

    Science.gov (United States)

    Michaelsen, Kelly E; Krishnaswamy, Venkataramanan; Shi, Linxi; Vedantham, Srinivasan; Poplack, Steven P; Karellas, Andrew; Pogue, Brian W; Paulsen, Keith D

    2015-12-01

    Calibration of a three-dimensional multimodal digital breast tomosynthesis (DBT) x-ray and non-fiber based near infrared spectral tomography (NIRST) system is challenging but essential for clinical studies. Phantom imaging results yielded linear contrast recovery of total hemoglobin (HbT) concentration for cylindrical inclusions of 15 mm, 10 mm and 7 mm with a 3.5% decrease in the HbT estimate for each 1 cm increase in inclusion depth. A clinical exam of a patient's breast containing both benign and malignant lesions was successfully imaged, with greater HbT was found in the malignancy relative to the benign abnormality and fibroglandular regions (11 μM vs. 9.5 μM). Tools developed improved imaging system characterization and optimization of signal quality, which will ultimately improve patient selection and subsequent clinical trial results.

  7. The compressed breast during mammography and breast tomosynthesis: in vivo shape characterization and modeling

    Science.gov (United States)

    Rodríguez-Ruiz, Alejandro; Agasthya, Greeshma A.; Sechopoulos, Ioannis

    2017-09-01

    To characterize and develop a patient-based 3D model of the compressed breast undergoing mammography and breast tomosynthesis. During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3D breast surface imaging with structured light (SL) during breast compression, along with simultaneous acquisition of a tomosynthesis image. A pair of SL systems were used to acquire 3D surface images by projecting 24 different patterns onto the compressed breast and capturing their reflection off the breast surface in approximately 12-16 s. The 3D surface was characterized and modeled via principal component analysis. The resulting surface model was combined with a previously developed 2D model of projected compressed breast shapes to generate a full 3D model. Data from ten patients were discarded due to technical problems during image acquisition. The maximum breast thickness (found at the chest-wall) had an average value of 56 mm, and decreased 13% towards the nipple (breast tilt angle of 5.2°). The portion of the breast not in contact with the compression paddle or the support table extended on average 17 mm, 18% of the chest-wall to nipple distance. The outermost point along the breast surface lies below the midline of the total thickness. A complete 3D model of compressed breast shapes was created and implemented as a software application available for download, capable of generating new random realistic 3D shapes of breasts undergoing compression. Accurate characterization and modeling of the breast curvature and shape was achieved and will be used for various image processing and clinical tasks.

  8. Quality control in breast tomosynthesis; Controle de qualidade em tomossintese mamaria

    Energy Technology Data Exchange (ETDEWEB)

    Jakubiak, Rosangela Requi; Messias, Pricila Cordeiro; Santos, Marilia Fernanda, E-mail: requi@gmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Urban, Linei Augusta B.D., E-mail: ineiurban@hotmail.com [Diagnostico Avancado por Imagem (DAPI), Curitiba, PR (Brazil)

    2014-07-01

    In Brazil breast cancer is the most common and the leading cause of death among women, with estimated 57,000 new cases in 2014. The mammography (2D) plays an important role in the early detection of breast cancer, but in some cases can be difficult to detect malignant lesions due overlap of breast tissues. The Breast Digital Tomosynthesis (BDT: 3D) reduces the effects of overlap, providing improved characterization of mammographic findings. However, the dose may double as compared to the mammography. This study presents results of Contrast Ratio Noise tests (CRN) and quality image on a Siemens mammography equipment Mammomat Inspiration with tomosynthesis. The CRN was determined with plates Polymethylmethacrylate (PMMA) of 20 to 70 mm thickness and an aluminum plate of 10 mm{sup 2} and 0.2 mm thickness. Image quality was assessed with the ACR Breast Simulator. In assessment of image quality, the detectability of fibers and masses was identical in 2D and 3D systems. Were visualized 4.5 fibers and 4 mass in both modes. In 2D mode groups have been identified 3.5 microcalcifications, and 3D were 3 groups. The Mean Glandular Dose for the simulator in 2D mode was 1.17 mGy and 2.35 mGy for the 3D mode. The result reinforces the importance of quality control in the process of obtaining the images and obtained in accordance CRN values, ensuring image quality and dose compatible in 2D and 3D processes.

  9. Role of digital tomosynthesis and dual energy subtraction digital radiography in detecting pulmonary nodules

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvana G. [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Garg, Mandeep Kumar, E-mail: gargmandeep01@gmail.com [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Khandelwal, Niranjan; Gupta, Pankaj [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Gupta, Dheeraj; Aggarwal, Ashutosh Nath [Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Bansal, Subash Chand [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India)

    2015-07-15

    Highlights: • Accuracy of digital tomosynthesis for nodule detection is substantially higher. • Improvement in diagnostic accuracy is most pronounced for nodules <10 mm. • There is five times increase in radiation dose compared to DR. - Abstract: Objective: Digital tomosynthesis (DT) and dual-energy subtraction digital radiography (DES-DR) are known to perform better than conventional radiography in the detection of pulmonary nodules. Yet the comparative diagnostic performances of DT, DES-DR and digital radiography (DR) is not known. The present study compares the diagnostic performances of DT, DES-DR and DR in detecting pulmonary nodules. Subjects and methods: The institutional Review Board approved the study and informed written consent was obtained. Fifty-five patients (30 with pulmonary nodules, 25 with non-nodular focal chest pathology) were included in the study. DT and DES-DR were performed within14 days of MDCT. Composite images acquired at high kVp as part of DES-DR were used as DR images. Images were analyzed for presence of nodules and calcification in nodules. Interpretations were assigned confidence levels from 1 to 5 according to Five-Point rating scale. Areas under the receiver operating characteristic curves were compared using Z test. Results: A total of 110 (88 non-calcified, 22 calcified) nodules were identified on MDCT. For detection of nodules, DR showed cumulative sensitivity and specificity of 25.45% and 67.97%, respectively. DT showed a cumulative sensitivity and specificity of 60.9% and 85.07%, respectively. The performance was significantly better than DR (p < 0.003). DES-DR showed sensitivity and specificity of 27.75% and 82.64%, not statistically different from those of DR (p—0.92). In detection of calcification, there was no statistically significant difference between DT, DES-DR and DR. Conclusions: DT performs significantly better than DES-DR and DR at the cost of moderate increase in radiation dose.

  10. A reader study comparing prospective tomosynthesis interpretations with retrospective readings of the corresponding FFDM examinations.

    Science.gov (United States)

    Rose, Stephen L; Tidwell, Andra L; Ice, Mary F; Nordmann, Amy S; Sexton, Russell; Song, Rui

    2014-09-01

    To compare performance of prospective interpretations of clinical tomosynthesis (digital breast tomosynthesis [DBT]) plus full-field digital mammography (FFDM) examinations with retrospective readings of the corresponding FFDM examinations alone. Seven Mammography Quality Standard Act-qualified radiologists retrospectively interpreted 10,878 FFDM examinations that had been interpreted by other radiologists during prospective clinical interpretations of DBT plus FFDM. The radiologists were blinded to the Breast Imaging Reporting and Data System (BIRADS) category given during the clinical interpretations and the verified outcome by follow-up and/or any diagnostic workup that may have followed. Ratings (BIRADS 0, 1, or 2) were recorded. Group performance levels in terms of recall rates and attributable cancer detection rates were compared to the prospective clinical interpretations of the same examinations (DBT plus FFDM) using McNemar test (two sided/tailed) with significance level of .05. During the prospective clinical interpretations of DBT plus FFDM, 588 cases were recalled (588 of 10,878, 5.41%) compared to 888 cases recalled (888 of 10,878, 8.16%) during the FFDM-alone retrospective interpretations (absolute difference, 35%; P<.0001). There were 59 and 38 suspicious abnormalities later verified as cancers detected during the DBT plus FFDM and the FFDM-alone interpretations, respectively (absolute increase, 55%; P<.0001). Invasive cancer detections were 48 and 29, respectively (absolute increase, 66%; P<.0001). The combination of DBT plus FFDM for screening asymptomatic women resulted in a significant reduction in recall rates and a simultaneous increase in cancer detection rates when compared to retrospective interpretations of corresponding FFDM examinations alone. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  11. Quantitative evaluation of anatomical noise in chest digital tomosynthesis, digital radiography, and computed tomography

    Science.gov (United States)

    Lee, D.; Choi, S.; Lee, H.; Kim, D.; Choi, S.; Kim, H.-J.

    2017-04-01

    Lung cancer is currently the worldwide leading cause of death from cancer. Thus, detection of lung cancer at its early stages is critical for improving the survival rate of patients. Chest digital tomosynthesis (CDT) is a recently developed imaging modality, combining many advantages of digital radiography (DR) and computed tomography (CT). This method has the potential to be widely used in the clinical setting. In this study, we introduce a developed CDT R/F system and compare its image quality with those of DR and CT, especially with respect to anatomical noise and lung nodule conspicuity, for LUNGMAN phantoms. The developed CDT R/F system consists of a CsI scintillator flat panel detector, X-ray tube, and tomosynthesis data acquisition geometry. For CDT R/F imaging, 41 projections were acquired at different angles, over the ± 20° angular range, in a linear translation geometry. To evaluate the clinical effectiveness of the CDT R/F system, the acquired images were compared with CT (Philips brilliance CT 64, Philips healthcare, U.S.) and DR (ADR-M, LISTEM, Korea) phantom images in terms of the anatomical noise power spectrum (aNPS). DR images exhibited low conspicuity for a small-size lung nodule, while CDT R/F and CT exhibited relatively high sensitivity for all lung nodule sizes. The aNPS of the CDT R/F system was better than that of DR, by resolving anatomical overlapping problems. In conclusion, the developed CDT R/F system is likely to contribute to early diagnosis of lung cancer, while requiring a relatively low patient dose, compared with CT.

  12. An HTML5-Based Pure Website Solution for Rapidly Viewing and Processing Large-Scale 3D Medical Volume Reconstruction on Mobile Internet.

    Science.gov (United States)

    Qiao, Liang; Chen, Xin; Zhang, Ye; Zhang, Jingna; Wu, Yi; Li, Ying; Mo, Xuemei; Chen, Wei; Xie, Bing; Qiu, Mingguo

    2017-01-01

    This study aimed to propose a pure web-based solution to serve users to access large-scale 3D medical volume anywhere with good user experience and complete details. A novel solution of the Master-Slave interaction mode was proposed, which absorbed advantages of remote volume rendering and surface rendering. On server side, we designed a message-responding mechanism to listen to interactive requests from clients (Slave model) and to guide Master volume rendering. On client side, we used HTML5 to normalize user-interactive behaviors on Slave model and enhance the accuracy of behavior request and user-friendly experience. The results showed that more than four independent tasks (each with a data size of 249.4 MB) could be simultaneously carried out with a 100-KBps client bandwidth (extreme test); the first loading time was <12 s, and the response time of each behavior request for final high quality image remained at approximately 1 s, while the peak value of bandwidth was <50-KBps. Meanwhile, the FPS value for each client was ≥40. This solution could serve the users by rapidly accessing the application via one URL hyperlink without special software and hardware requirement in a diversified network environment and could be easily integrated into other telemedical systems seamlessly.

  13. An HTML5-Based Pure Website Solution for Rapidly Viewing and Processing Large-Scale 3D Medical Volume Reconstruction on Mobile Internet

    Directory of Open Access Journals (Sweden)

    Liang Qiao

    2017-01-01

    Full Text Available This study aimed to propose a pure web-based solution to serve users to access large-scale 3D medical volume anywhere with good user experience and complete details. A novel solution of the Master-Slave interaction mode was proposed, which absorbed advantages of remote volume rendering and surface rendering. On server side, we designed a message-responding mechanism to listen to interactive requests from clients (Slave model and to guide Master volume rendering. On client side, we used HTML5 to normalize user-interactive behaviors on Slave model and enhance the accuracy of behavior request and user-friendly experience. The results showed that more than four independent tasks (each with a data size of 249.4 MB could be simultaneously carried out with a 100-KBps client bandwidth (extreme test; the first loading time was <12 s, and the response time of each behavior request for final high quality image remained at approximately 1 s, while the peak value of bandwidth was <50-KBps. Meanwhile, the FPS value for each client was ≥40. This solution could serve the users by rapidly accessing the application via one URL hyperlink without special software and hardware requirement in a diversified network environment and could be easily integrated into other telemedical systems seamlessly.

  14. Role of digital tomosynthesis and dual energy subtraction digital radiography in detection of parenchymal lesions in active pulmonary tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Madhurima, E-mail: madhurimashrm88@gmail.com [Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh 160012 (India); Sandhu, Manavjit Singh, E-mail: manavjitsandhu@yahoo.com [Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh 160012 (India); Gorsi, Ujjwal, E-mail: ujjwalgorsi@gmail.com [Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh 160012 (India); Gupta, Dheeraj, E-mail: dheeraj1910@gmail.com [Department of Pulmonary Medicine, PGIMER, Chandigarh 160012 (India); Khandelwal, Niranjan, E-mail: khandelwaln@hotmail.com [Department of Radiodiagnosis and Imaging, PGIMER, Chandigarh 160012 (India)

    2015-09-15

    Highlights: • Digital tomosynthesis and dual energy subtraction digital radiography are modifications of digital radiography. • These modalities perform better than digital radiography in detection of parenchymal lesions in active pulmonary tuberculosis. • Digital tomosynthesis has a sensitivity of 100% in detection of cavities. • Centrilobular nodules seen on CT in active pulmonary tuberculosis, were also demonstrated on digital tomosynthesis in our study. • Digital tomosynthesis can be used for diagnosis and follow up of patients in pulmonary tuberculosis, thereby reducing the number of CT examinations. - Abstract: Objective: To assess the role of digital tomosynthesis (DTS) and dual energy subtraction digital radiography (DES-DR) in detection of parenchymal lesions in active pulmonary tuberculosis (TB) and to compare them with digital radiography (DR). Materials and methods: This prospective study was approved by our institutional review committee. DTS and DES-DR were performed in 62 patients with active pulmonary TB within one week of multidetector computed tomography (MDCT) study. Findings of active pulmonary TB, that is consolidation, cavitation and nodules were noted on digital radiography (DR), DTS and DES-DR in all patients. Sensitivity, specificity, positive and negative predictive values of all 3 modalities was calculated with MDCT as reference standard. In addition presence of centrilobular nodules was also noted on DTS. Results: Our study comprised of 62 patients (33 males, 29 females with age range 18–82 years). Sensitivity and specificity of DTS for detection of nodules and cavitation was better than DR and DES-DR. Sensitivity and specificity of DTS for detection of consolidation was comparable to DR and DES-DR. DES-DR performed better than DR in detection of nodules and cavitation. DTS was also able to detect centrilobular nodules with sensitivity and specificity of 57.4% and 86.5% respectively. Conclusion: DTS and DES-DR perform better

  15. Iterative initial condition reconstruction

    Science.gov (United States)

    Schmittfull, Marcel; Baldauf, Tobias; Zaldarriaga, Matias

    2017-07-01

    Motivated by recent developments in perturbative calculations of the nonlinear evolution of large-scale structure, we present an iterative algorithm to reconstruct the initial conditions in a given volume starting from the dark matter distribution in real space. In our algorithm, objects are first moved back iteratively along estimated potential gradients, with a progressively reduced smoothing scale, until a nearly uniform catalog is obtained. The linear initial density is then estimated as the divergence of the cumulative displacement, with an optional second-order correction. This algorithm should undo nonlinear effects up to one-loop order, including the higher-order infrared resummation piece. We test the method using dark matter simulations in real space. At redshift z =0 , we find that after eight iterations the reconstructed density is more than 95% correlated with the initial density at k ≤0.35 h Mpc-1 . The reconstruction also reduces the power in the difference between reconstructed and initial fields by more than 2 orders of magnitude at k ≤0.2 h Mpc-1 , and it extends the range of scales where the full broadband shape of the power spectrum matches linear theory by a factor of 2-3. As a specific application, we consider measurements of the baryonic acoustic oscillation (BAO) scale that can be improved by reducing the degradation effects of large-scale flows. In our idealized dark matter simulations, the method improves the BAO signal-to-noise ratio by a factor of 2.7 at z =0 and by a factor of 2.5 at z =0.6 , improving standard BAO reconstruction by 70% at z =0 and 30% at z =0.6 , and matching the optimal BAO signal and signal-to-noise ratio of the linear density in the same volume. For BAO, the iterative nature of the reconstruction is the most important aspect.

  16. Penile reconstruction

    Institute of Scientific and Technical Information of China (English)

    Giulio Garaffa; Salvatore Sansalone; David J Ralph

    2013-01-01

    During the most recent years,a variety of new techniques of penile reconstruction have been described in the literature.This paper focuses on the most recent advances in male genital reconstruction after trauma,excision of benign and malignant disease,in gender reassignment surgery and aphallia with emphasis on surgical technique,cosmetic and functional outcome.

  17. 3D Reconstruction Technique for Tomographic PIV

    Institute of Scientific and Technical Information of China (English)

    姜楠; 包全; 杨绍琼

    2015-01-01

    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  18. Mass transport of low density lipoprotein in reconstructed hemodynamic environments of human carotid arteries: the role of volume and solute flux through the endothelium.

    Science.gov (United States)

    Kim, Sungho; Giddens, Don P

    2015-04-01

    The accumulation of low density lipoprotein (LDL) in the arterial intima is a critical step in the initiation and progression of atheromatous lesions. In this study we examine subject-specific LDL transport into the intima of carotid bifurcations in three human subjects using a three-pore model for LDL mass transfer. Subject-specific carotid artery computational models were derived using magnetic resonance imaging (MRI) to obtain the geometry and phase-contract MRI (PC-MRI) to acquire pulsatile inflow and outflow boundary conditions for each subject. The subjects were selected to represent a wide range of anatomical configurations and different stages of atherosclerotic development from mild to moderate intimal thickening. A fluid-solid interaction (FSI) model was implemented in the computational fluid dynamics (CFD) approach in order to consider the effects of a compliant vessel on wall shear stress (WSS). The WSS-dependent response of the endothelium to LDL mass transfer was modeled by multiple pathways to include the contributions of leaky junctions, normal junctions, and transcytosis to LDL solute and plasma volume flux from the lumen into the intima. Time averaged WSS (TAWSS) over the cardiac cycle was computed to represent the spatial WSS distribution, and wall thickness (WTH) was determined from black blood MRI (BBMRI) so as to visualize intimal thickening patterns in the bifurcations. The regions which are exposed to low TAWSS correspond to elevated WTH and higher mass and volume flux via the leaky junctions. In all subjects, the maximum LDL solute flux was observed to be immediately downstream of the stenosis, supporting observations that existing atherosclerotic lesions tend to progress in the downstream direction of the stenosis.

  19. Ligament reconstruction.

    Science.gov (United States)

    Glickel, Steven Z; Gupta, Salil

    2006-05-01

    Volar ligament reconstruction is an effective technique for treating symptomatic laxity of the CMC joint of the thumb. The laxity may bea manifestation of generalized ligament laxity,post-traumatic, or metabolic (Ehler-Danlos). There construction reduces the shear forces on the joint that contribute to the development and persistence of inflammation. Although there have been only a few reports of the results of volar ligament reconstruction, the use of the procedure to treat Stage I and Stage II disease gives good to excellent results consistently. More advanced stages of disease are best treated by trapeziectomy, with or without ligament reconstruction.

  20. Characterizing X-ray detectors for prototype digital breast tomosynthesis systems

    Science.gov (United States)

    Kim, Y.-s.; Park, H.-s.; Park, S.-J.; Choi, S.; Lee, H.; Lee, D.; Choi, Y.-W.; Kim, H.-J.

    2016-03-01

    The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R2>0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types of x

  1. SU-E-P-31: Quantifying the Amount of Missing Tissue in a Digital Breast Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, D [George Washington University, Washington, DC (United States); Olafsdottir, H; Olafsson, I; Fredriksson, J; Kristinsson, S; Oskarsdottir, G; Kristbjornsson, A [Raforninn Ehf., Reykjavik, Gullbringusysla (Iceland); Mallozzi, R; Healy, A; Levy, J [The Phantom Laboratory, Salem, NY (United States)

    2015-06-15

    Purpose: To automatically quantify the amount of missing tissue in a digital breast tomosynthesis system using four stair-stepped chest wall missing tissue gauges in the Tomophan™ from the Phantom Laboratory and image processing from Image Owl. Methods: The Tomophan™ phantom incorporates four stair-stepped missing tissue gauges by the chest wall, allowing measurement of missing chest wall in two different locations along the chest wall at two different heights. Each of the four gauges has 12 steps in 0.5 mm increments rising from the chest wall. An image processing algorithm was developed by Image Owl that first finds the two slices containing the steps then finds the signal through the highest step in all four gauges. Using the signal drop at the beginning of each gauge the distance to the end of the image gives the length of the missing tissue gauge in millimeters. Results: The Tomophan™ was imaged in digital breast tomosynthesis (DBT) systems from various vendors resulting in 46 cases used for testing. The results showed that on average 1.9 mm of 6 mm of the gauges are visible. A small focus group was asked to count the number of visible steps for each case which resulted in a good agreement between observer counts and computed data. Conclusion: First, the results indicate that the amount of missing chest wall can differ between vendors. Secondly it was shown that an automated method to estimate the amount of missing chest wall gauges agreed well with observer assessments. This finding indicates that consistency testing may be simplified using the Tomophan™ phantom and analysis by an automated image processing named Tomo QA. In general the reason for missing chest wall may be due to a function of the beam profile at the chest wall as DBT projects through the angular sampling. Research supported by Image Owl, Inc., The Phantom Laboratory, Inc. and Raforninn ehf; Mallozzi and Healy employed by The Phantom Laboratory, Inc.; Goodenough is a consultant to The

  2. Second generation stationary digital breast tomosynthesis system with faster scan time and wider angular span.

    Science.gov (United States)

    Calliste, Jabari; Wu, Gongting; Laganis, Philip E; Spronk, Derrek; Jafari, Houman; Olson, Kyle; Gao, Bo; Lee, Yueh Z; Zhou, Otto; Lu, Jianping

    2017-09-01

    The aim of this study was to characterize a new generation stationary digital breast tomosynthesis system with higher tube flux and increased angular span over a first generation system. The linear CNT x-ray source was designed, built, and evaluated to determine its performance parameters. The second generation system was then constructed using the CNT x-ray source and a Hologic gantry. Upon construction, test objects and phantoms were used to characterize system resolution as measured by the modulation transfer function (MTF), and artifact spread function (ASF). The results indicated that the linear CNT x-ray source was capable of stable operation at a tube potential of 49 kVp, and measured focal spot sizes showed source-to-source consistency with a nominal focal spot size of 1.1 mm. After construction, the second generation (Gen 2) system exhibited entrance surface air kerma rates two times greater the previous s-DBT system. System in-plane resolution as measured by the MTF is 7.7 cycles/mm, compared to 6.7 cycles/mm for the Gen 1 system. As expected, an increase in the z-axis depth resolution was observed, with a decrease in the ASF from 4.30 mm to 2.35 mm moving from the Gen 1 system to the Gen 2 system as result of an increased angular span. The results indicate that the Gen 2 stationary digital breast tomosynthesis system, which has a larger angular span, increased entrance surface air kerma, and faster image acquisition time over the Gen 1 s-DBT system, results in higher resolution images. With the detector operating at full resolution, the Gen 2 s-DBT system can achieve an in-plane resolution of 7.7 cycles per mm, which is better than the current commercial DBT systems today, and may potentially result in better patient diagnosis. © 2017 American Association of Physicists in Medicine.

  3. Breast Tomosynthesis

    Science.gov (United States)

    ... shades of gray and air appears black. Until recently, x-ray images were maintained on large film ... evaluation with additional views or a special imaging technique. A follow-up examination may also be necessary ...

  4. Breast Tomosynthesis

    Science.gov (United States)

    ... passes through the body, recording an image on photographic film or a special detector. Different parts of ... on large film sheets (much like a large photographic negative). Today, most images are digital files that ...

  5. Blob-enhanced reconstruction technique

    Science.gov (United States)

    Castrillo, Giusy; Cafiero, Gioacchino; Discetti, Stefano; Astarita, Tommaso

    2016-09-01

    A method to enhance the quality of the tomographic reconstruction and, consequently, the 3D velocity measurement accuracy, is presented. The technique is based on integrating information on the objects to be reconstructed within the algebraic reconstruction process. A first guess intensity distribution is produced with a standard algebraic method, then the distribution is rebuilt as a sum of Gaussian blobs, based on location, intensity and size of agglomerates of light intensity surrounding local maxima. The blobs substitution regularizes the particle shape allowing a reduction of the particles discretization errors and of their elongation in the depth direction. The performances of the blob-enhanced reconstruction technique (BERT) are assessed with a 3D synthetic experiment. The results have been compared with those obtained by applying the standard camera simultaneous multiplicative reconstruction technique (CSMART) to the same volume. Several blob-enhanced reconstruction processes, both substituting the blobs at the end of the CSMART algorithm and during the iterations (i.e. using the blob-enhanced reconstruction as predictor for the following iterations), have been tested. The results confirm the enhancement in the velocity measurements accuracy, demonstrating a reduction of the bias error due to the ghost particles. The improvement is more remarkable at the largest tested seeding densities. Additionally, using the blobs distributions as a predictor enables further improvement of the convergence of the reconstruction algorithm, with the improvement being more considerable when substituting the blobs more than once during the process. The BERT process is also applied to multi resolution (MR) CSMART reconstructions, permitting simultaneously to achieve remarkable improvements in the flow field measurements and to benefit from the reduction in computational time due to the MR approach. Finally, BERT is also tested on experimental data, obtaining an increase of the

  6. Breast Reconstruction

    Science.gov (United States)

    ... senos Preguntas Para el Médico Datos Para la Vida Komen El cuidado de sus senos:Consejos útiles ... can help . Cost Federal law requires most insurance plans cover the cost of breast reconstruction. Learn more ...

  7. Climate Reconstructions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Paleoclimatology Program archives reconstructions of past climatic conditions derived from paleoclimate proxies, in addition to the Program's large holdings...

  8. AngleⅡ类错患者髁突表面积与体积三维重建测量%Three-dimensional reconstruction study of condyle volume and surface area in Angle′s class II malocclusion patients

    Institute of Scientific and Technical Information of China (English)

    杨珊; 何科; 任嫒姝; 戴红卫

    2012-01-01

    目的 运用锥束CT(CBCT)测量AngleⅡ类错患者髁突的表面积和体积,探讨AngleⅡ类错患者髁突形态大小的特点.方法 选择该院正畸科就诊患者中年龄为20~28岁的AngleⅡ类错患者66例(男33例,女33例)进行CBCT检查,运用Mimics10.0软件对左、右两侧髁突进行三维重建,测量其表面积与体积,计算髁突形态指数.并与AngleⅠ类错患者髁突大小进行比较.结果 AngleⅡ类错患者男性的髁突体积与表面积均大于女性(P0.05).结论 AngleⅡ类错患者的髁突大小与性别和髁突位置有关.且AngleⅡ类错患者髁突小于AngleⅠ类错患者.%Objective To measure the condyle volume and surface area in the patients with Angle s class Ⅱ malocclusion by cone beam CT(CBCT) and to study the characteristics of mandibular condylar size. Methods 66 young patients with Angle's class Ⅱ malocclusion were chosen from our hospital(aged 20 - 28 years;33 males and 33 females). All patients received CBCT examina tion,the CT slice used the Mimics 10. 0 software for three dimensional reconstruction of the condyle to measure the condyle vol ume,surface area and shape index(ratio of volume and surface area). The comparison between class Ⅱ malocclusion patients and class Ⅰ malocclusion patients was performed. Results The condyle volume and surface area in male patients with class Ⅱ maloc elusion were significantly greater than those in female patients(P0. 05). Conclusion The condyle volume is related to the genders and condyle position. The size of man dibular condyle in class Ⅱ malocclusion patients is smaller than class Ⅰ malocclusion patients.

  9. Fat-suppressed volume isotropic turbo spin echo acquisition (VISTA) MR imaging in evaluating radial and root tears of the meniscus: Focusing on reader-defined axial reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Daekeon; Lee, Young Han; Kim, Sungjun; Song, Ho-Taek; Suh, Jin-Suck, E-mail: jss@yuhs.ac

    2013-12-01

    Objective: To assess the diagnostic value of fat-suppressed (FS) three-dimensional (3D) volume isotropic turbo spin echo acquisition (VISTA) imaging in detecting radial and root tears of the meniscus, including the reader-defined reformatted axial (RDA) plane. Materials and methods: Twenty-three patients with arthroscopically confirmed radial or root tears of the meniscus underwent magnetic resonance imaging (MRI) with 2D and FS 3D VISTA sequences. MRIs were reviewed independently by two musculoskeletal radiologists blinded to the arthroscopic findings. Sensitivity, specificity, accuracy, and interobserver agreement were calculated for radial and root tears. Both radiologists reported confidence scale for the presence of meniscal tears in 2D axial imaging, 3D axial imaging, and RDA imaging, based on a five-point scale. Wilcoxon's signed rank test was used to compare confidence scale. Results: The sensitivity, specificity, and accuracy of FS 3D VISTA MR imaging versus 2D MR imaging were as follows: 96%, 96%, and 96% versus 91%, 91%, and 91%, respectively in reader 1, and 96%, 96%, and 96% versus 83%, 91%, and 87%, respectively, in reader 2. Interobserver agreement for detecting meniscal tears was excellent (κ = 1) with FS 3D VISTA. The confidence scale was significantly higher for 3D axial images than 2D imaging (p = 0.03) and significantly higher in RDA images than 3D axial image in detecting radial and root tears. Conclusions: FS 3D VISTA had a better diagnostic performance in evaluating radial and root tears of the meniscus. The reader-defined reformatted axial plane obtained from FS 3D VISTA MR imaging is useful in detecting radial and root tears of the meniscus.

  10. Research in digital mammography and tomosynthesis at the University of Toronto.

    Science.gov (United States)

    Yaffe, Martin J

    2014-07-01

    There have been major advances in the field of breast cancer imaging since the early 1970s, both in technological improvements and in the use of the methods of medical physics and image analysis to optimize image quality. The introduction of digital mammography in 2000 provided a marked improvement in imaging of dense breasts. In addition, it became possible to produce tomographic and functional images on modified digital mammography systems. Digital imaging also greatly facilitated the extraction of quantitative information from images. My laboratory has been fortunate in being able to participate in some of these exciting developments. I will highlight some of the areas of our research interest which include modeling of the image formation process, development of high-resolution X-ray detectors for digital mammography and investigating new methods for analyzing image quality. I will also describe our more recent work on developing new applications of digital mammography including tomosynthesis, contrast-enhanced mammography, and measurement of breast density. Finally, I will point to a new area for our research--the application of the techniques of medical imaging to making pathology more quantitative to contribute to use of biomarkers for better characterizing breast cancer and directing therapeutic decisions.

  11. Application of a computed tomography based cystic fibrosis scoring system to chest tomosynthesis

    Science.gov (United States)

    Söderman, Christina; Johnsson, Åse; Vikgren, Jenny; Rystedt, Hans; Ivarsson, Jonas; Rossi Norrlund, Rauni; Nyberg Andersson, Lena; Bâth, Magnus

    2013-03-01

    In the monitoring of progression of lung disease in patients with cystic fibrosis (CF), recurrent computed tomography (CT) examinations are often used. The relatively new imaging technique chest tomosynthesis (CTS) may be an interesting alternative in the follow-up of these patients due to its visualization of the chest in slices at radiation doses and costs significantly lower than is the case with CT. A first step towards introducing CTS imaging in the diagnostics of CF patients is to establish a scoring system appropriate for evaluating the severity of CF pulmonary disease based on findings in CTS images. Previously, several such CF scoring systems based on CT imaging have been published. The purpose of the present study was to develop a CF scoring system for CTS, by starting from an existing scoring system dedicated for CT images and making modifications regarded necessary to make it appropriate for use with CTS images. In order to determine any necessary changes, three thoracic radiologists independently used a scoring system dedicated for CT on both CT and CTS images from CF patients. The results of the scoring were jointly evaluated by all the observers, which lead to suggestions for changes to the scoring system. Suggested modifications include excluding the scoring of air trapping and doing the scoring of the findings in quadrants of the image instead of in each lung lobe.

  12. Towards Visual-Search Model Observers for Mass Detection in Breast Tomosynthesis.

    Science.gov (United States)

    Lau, Beverly A; Das, Mini; Gifford, Howard C

    2013-03-21

    We are investigating human-observer models that perform clinically realistic detection and localization tasks as a means of making reliable assessments of digital breast tomosynthesis images. The channelized non-prewhitening (CNPW) observer uses the background known exactly task for localization and detection. Visual-search observer models attempt to replicate the search patterns of trained radiologists. The visual-search observer described in this paper utilizes a two-phase approach, with an initial holistic search followed by directed analysis and decision making. Gradient template matching is used for the holistic search, and the CNPW observer is used for analysis and decision making. Spherical masses were embedded into anthropomorphic breast phantoms, and simulated projections were made using ray-tracing and a serial cascade model. A localization ROC study was performed on these images using the visual-search model observer and the CNPW observer. Observer performance from the two computer observers was compared to human observer performance. The visual-search observer was able to produce area under the LROC curve values similar to those from human observers; however, more research is needed to increase the robustness of the algorithm.

  13. Cancer risk estimation in Digital Breast Tomosynthesis using GEANT4 Monte Carlo simulations and voxel phantoms.

    Science.gov (United States)

    Ferreira, P; Baptista, M; Di Maria, S; Vaz, P

    2016-05-01

    The aim of this work was to estimate the risk of radiation induced cancer following the Portuguese breast screening recommendations for Digital Mammography (DM) when applied to Digital Breast Tomosynthesis (DBT) and to evaluate how the risk to induce cancer could influence the energy used in breast diagnostic exams. The organ doses were calculated by Monte Carlo simulations using a female voxel phantom and considering the acquisition of 25 projection images. Single organ cancer incidence risks were calculated in order to assess the total effective radiation induced cancer risk. The screening strategy techniques considered were: DBT in Cranio-Caudal (CC) view and two-view DM (CC and Mediolateral Oblique (MLO)). The risk of cancer incidence following the Portuguese screening guidelines (screening every two years in the age range of 50-80years) was calculated by assuming a single CC DBT acquisition view as standalone screening strategy and compared with two-view DM. The difference in the total effective risk between DBT and DM is quite low. Nevertheless in DBT an increase of risk for the lung is observed with respect to DM. The lung is also the organ that is mainly affected when non-optimal beam energy (in terms of image quality and absorbed dose) is used instead of an optimal one. The use of non-optimal energies could increase the risk of lung cancer incidence by a factor of about 2.

  14. Evaluation of effective dose with chest digital tomosynthesis system using Monte Carlo simulation

    Science.gov (United States)

    Kim, Dohyeon; Jo, Byungdu; Lee, Youngjin; Park, Su-Jin; Lee, Dong-Hoon; Kim, Hee-Joung

    2015-03-01

    Chest digital tomosynthesis (CDT) system has recently been introduced and studied. This system offers the potential to be a substantial improvement over conventional chest radiography for the lung nodule detection and reduces the radiation dose with limited angles. PC-based Monte Carlo program (PCXMC) simulation toolkit (STUK, Helsinki, Finland) is widely used to evaluate radiation dose in CDT system. However, this toolkit has two significant limits. Although PCXMC is not possible to describe a model for every individual patient and does not describe the accurate X-ray beam spectrum, Geant4 Application for Tomographic Emission (GATE) simulation describes the various size of phantom for individual patient and proper X-ray spectrum. However, few studies have been conducted to evaluate effective dose in CDT system with the Monte Carlo simulation toolkit using GATE. The purpose of this study was to evaluate effective dose in virtual infant chest phantom of posterior-anterior (PA) view in CDT system using GATE simulation. We obtained the effective dose at different tube angles by applying dose actor function in GATE simulation which was commonly used to obtain the medical radiation dosimetry. The results indicated that GATE simulation was useful to estimate distribution of absorbed dose. Consequently, we obtained the acceptable distribution of effective dose at each projection. These results indicated that GATE simulation can be alternative method of calculating effective dose in CDT applications.

  15. Comparison of image quality and effective dose by additional filtration on digital chest tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kye Sun [Dept. of Dignostic Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Sung Chul [Dept. of Radiological Science, Gachon University, Sungnam (Korea, Republic of)

    2015-12-15

    The purpose of this study is to suggest proper additional filtration by comparisons patient dose and image quality among additional filters in digital chest tomosynthesis (DTS). We measured the effective dose, dose area product (DAP) by changing thickness of Cu, Al and Ni filter to compare image quality by CD curve and SNR, CNR. Cu, Al and Ni exposure dose were similar thickness 0.3 mm, 3 mm and 0.3 mm respectively. The exposure dose using filter was decreased average about 33.1% than non filter. The DAP value of 0.3 mm Ni were decreased 72.9% compared to non filter and the lowest dose among 3 filter. The effective dose of 0.3 mm Ni were decreased 48% compared to 0.102 mSv effective dose of non filter. At the result of comparison of image quality through CD curve there were similar aspect graph among Cu, Al and Ni. SNR was decreased average 19.07%, CNR was average decreased 18.17% using 3 filters. In conclusion, Ni filtration was considered to be most suitable when considered comprehensive thickness, character, sort of filter, dose reduction and image quality evaluation in DTS.

  16. Suggestion of the manual exposure condition guideline for reducing patient dose in digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Eun Ae [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Lee, In Ja [Dept. of Radiologic Technology, Dongnam Health University, Suwon (Korea, Republic of)

    2016-12-15

    The conditions after exposure to digital mammography and digital breast tomosynthesis were analyzed. The examinations for the ACR phantom were done using manual exposure, not auto exposure, to examine image discrimination and patient dose. As a result, the following results were derived: In the CC exposure , the kVp was 2kVp higher while mAs decreased to 58.6% for the 3D tomography. Such result showed an approximate decrease of 60mAs. At that time, the patients Average Glandular Dose (AGD) was 1.65mGy in 2D and 1.87mGy in 3D; thus, AGD of 3D was shown to have about 1.13 times higher. The result of the manual exposure revealed a reduced mAs of up to 80%; there was no effect in the assessment standard in terms of image discrimination, resulting in more than 10 points. When mAs was reduced to 80% in the manual exposure for ACR phantom, AGD was decreased to 0.66mGy. The diagnostic values of images were maintained and patients dose was reduced in the manual exposure in the AEC condition for 3D. Since the use of 3D has recently increased, using the manual exposure has been recommended in this study to improve the diagnostic value, while, simultaneously reducing patients dose.

  17. Feasibility of Amorphous Selenium Based Photon Counting Detectors for Digital Breast Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; O' Connor, P.; Lehnert, J., De Geronimo, G., Dolazza, E., Tousignant, O., Laperriere, L., Greenspan, J., Zhao, W.

    2009-02-27

    Amorphous selenium (a-Se) has been incorporated successfully in direct conversion flat panel x-ray detectors, and has demonstrated superior image quality in screening mammography and digital breast tomosynthesis (DBT) under energy integration mode. The present work explores the potential of a-Se for photon counting detectors in DBT. We investigated major factors contributing to the variation in the charge collected by a pixel upon absorption of each x-ray photon. These factors included x-ray photon interaction, detector geometry, charge transport, and the pulse shaping and noise properties of the photon counting readout circuit. Experimental measurements were performed on a linear array test structure constructed by evaporating an a-Se layer onto an array of 100 {mu}m pitch strip electrodes, which are connected to a 32 channel low noise photon counting integrated circuit. The measured pulse height spectrum (PHS) under polychromatic xray exposure was interpreted quantitatively using the factors identified. Based on the understanding of a-Se photon counting performance, design parameters were proposed for a 2D detector with high quantum efficiency and count rate that could meet the requirements of photon counting detector for DBT.

  18. Breast tissue classification in digital tomosynthesis images based on global gradient minimization and texture features

    Science.gov (United States)

    Qin, Xulei; Lu, Guolan; Sechopoulos, Ioannis; Fei, Baowei

    2014-03-01

    Digital breast tomosynthesis (DBT) is a pseudo-three-dimensional x-ray imaging modality proposed to decrease the effect of tissue superposition present in mammography, potentially resulting in an increase in clinical performance for the detection and diagnosis of breast cancer. Tissue classification in DBT images can be useful in risk assessment, computer-aided detection and radiation dosimetry, among other aspects. However, classifying breast tissue in DBT is a challenging problem because DBT images include complicated structures, image noise, and out-of-plane artifacts due to limited angular tomographic sampling. In this project, we propose an automatic method to classify fatty and glandular tissue in DBT images. First, the DBT images are pre-processed to enhance the tissue structures and to decrease image noise and artifacts. Second, a global smooth filter based on L0 gradient minimization is applied to eliminate detailed structures and enhance large-scale ones. Third, the similar structure regions are extracted and labeled by fuzzy C-means (FCM) classification. At the same time, the texture features are also calculated. Finally, each region is classified into different tissue types based on both intensity and texture features. The proposed method is validated using five patient DBT images using manual segmentation as the gold standard. The Dice scores and the confusion matrix are utilized to evaluate the classified results. The evaluation results demonstrated the feasibility of the proposed method for classifying breast glandular and fat tissue on DBT images.

  19. Segmentation methods for breast vasculature in dual-energy contrast-enhanced digital breast tomosynthesis

    Science.gov (United States)

    Lau, Kristen C.; Lee, Hyo Min; Singh, Tanushriya; Maidment, Andrew D. A.

    2015-03-01

    Dual-energy contrast-enhanced digital breast tomosynthesis (DE CE-DBT) uses an iodinated contrast agent to image the three-dimensional breast vasculature. The University of Pennsylvania has an ongoing DE CE-DBT clinical study in patients with known breast cancers. The breast is compressed continuously and imaged at four time points (1 pre-contrast; 3 post-contrast). DE images are obtained by a weighted logarithmic subtraction of the high-energy (HE) and low-energy (LE) image pairs. Temporal subtraction of the post-contrast DE images from the pre-contrast DE image is performed to analyze iodine uptake. Our previous work investigated image registration methods to correct for patient motion, enhancing the evaluation of vascular kinetics. In this project we investigate a segmentation algorithm which identifies blood vessels in the breast from our temporal DE subtraction images. Anisotropic diffusion filtering, Gabor filtering, and morphological filtering are used for the enhancement of vessel features. Vessel labeling methods are then used to distinguish vessel and background features successfully. Statistical and clinical evaluations of segmentation accuracy in DE-CBT images are ongoing.

  20. Feasibility study of the diagnosis and monitoring of cystic fibrosis in pediatric patients using stationary digital chest tomosynthesis

    Science.gov (United States)

    Potuzko, Marci; Shan, Jing; Pearce, Caleb; Lee, Yueh Z.; Lu, Jianping; Zhou, Otto

    2015-03-01

    Digital chest tomosynthesis (DCT) is a 3D imaging modality which has been shown to approach the diagnostic capability of CT, but uses only one-tenth the radiation dose of CT. One limitation of current commercial DCT is the mechanical motion of the x-ray source which prolongs image acquisition time and introduces motion blurring in images. By using a carbon nanotube (CNT) x-ray source array, we have developed a stationary digital chest tomosynthesis (s- DCT) system which can acquire tomosynthesis images without mechanical motion, thus enhancing the image quality. The low dose and high quality 3D image makes the s-DCT system a viable imaging tool for monitoring cystic fibrosis (CF) patients. The low dose is especially important in pediatric patients who are both more radiosensitive and have a longer lifespan for radiation symptoms to develop. The purpose of this research is to evaluate the feasibility of using s-DCT as a faster, lower dose means for diagnosis and monitoring of CF in pediatric patients. We have created an imaging phantom by injecting a gelatinous mucus substitute into porcine lungs and imaging the lungs from within an anthropomorphic hollow chest phantom in order to mimic the human conditions of a CF patient in the laboratory setting. We have found that our s-DCT images show evidence of mucus plugging in the lungs and provide a clear picture of the airways in the lung, allowing for the possibility of using s- DCT to supplement or replace CT as the imaging modality for CF patients.

  1. Dual-source CT with multiplanar reconstruction and volume rendering three-dimensional reconstruction in the evaluation of rib fractures%双源CT结合多平面重建与容积再现三维重建技术评价肋骨骨折

    Institute of Scientific and Technical Information of China (English)

    钱斌; 邹新农; 姚选军; 陶广宇; 王凯; 陈宏伟

    2011-01-01

    背景:依靠胸部摄片诊断肋骨骨折常导致误诊和漏诊.目的:分析双源CT 结合三维重建技术在肋骨骨折中的应用价值.方法:使用双源CT 对65 例肋骨骨折患者进行薄层扫描,将数据发送至工作站行多平面重建、容积再现技术,得到肋骨骨折高清晰度的三维图像后,从不同角度观察骨折线走行、骨折移位及成角情况.结果与结论:双源CT 结合三维重建图像清晰显示65 例患者286 根骨折,其中52 例保守治疗,其余13 例行切开复位、内固定治疗.制定手术方案时均参考了三维重建图像,所显示的骨折部位、移位、成角等情况与术中所见一致.提示双源CT 能明确诊断肋骨骨折,多平面重建和容积再现技术互相补充对诊断肋骨骨折及指导治疗方案有明显的优势.%BACKGROUND: Diagnosis of rib fractures relying on the chest radiograph diagnosis often leads to misdiagnos is. OBJECTIVE: To investigate the application of dual-source CT with three-dimensional reconstruction in rib fractures. METHODS: Sixty-five patients with rib fractures were scanned with dual-source CT. The data were sent to the workstation line of multi-planar reconstruction using volume rendering technique, to obtain high-resolution three-dimersion al images of rib fractures, and to observe the fracture line courses, fracture displacement and angulation of the situation from different angles. RESULTS AND CONCLUSION: The combination of dual-source CT and three-dimensional reconstruction images clearly showed 286 fractures in 65 patients, including 52 cases of consenrvative treatment, and the remaining 13 cases of surgery. The surgery programs in all patients were developed with reference to three- dimensional reoonstruction images showing the fracture position, displacement, angulation. Etc., consistent with the intraoperative findings. Dual-source CT can confirm the diagnose of rib fractures, and multi-planar reconstruction and volume

  2. Prospective trial comparing full-field digital mammography (FFDM) versus combined FFDM and tomosynthesis in a population-based screening programme using independent double reading with arbitration.

    Science.gov (United States)

    Skaane, Per; Bandos, Andriy I; Gullien, Randi; Eben, Ellen B; Ekseth, Ulrika; Haakenaasen, Unni; Izadi, Mina; Jebsen, Ingvild N; Jahr, Gunnar; Krager, Mona; Hofvind, Solveig

    2013-08-01

    To compare double readings when interpreting full field digital mammography (2D) and tomosynthesis (3D) during mammographic screening. A prospective, Ethical Committee approved screening study is underway. During the first year 12,621 consenting women underwent both 2D and 3D imaging. Each examination was independently interpreted by four radiologists under four reading modes: Arm A-2D; Arm B-2D + CAD; Arm C-2D + 3D; Arm D-synthesised 2D + 3D. Examinations with a positive score by at least one reader were discussed at an arbitration meeting before a final management decision. Paired double reading of 2D (Arm A + B) and 2D + 3D (Arm C + D) were analysed. Performance measures were compared using generalised linear mixed models, accounting for inter-reader performance heterogeneity (P reading radiologists detected 27 additional invasive cancers (P reading of 2D + 3D significantly improves the cancer detection rate in mammography screening. • Tomosynthesis-based screening was successfully implemented in a large prospective screening trial. • Double reading of tomosynthesis-based examinations significantly reduced false-positive interpretations. • Double reading of tomosynthesis significantly increased the detection of invasive cancers.

  3. Nonlinear Reconstruction

    CERN Document Server

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran

    2016-01-01

    We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.

  4. Iterative reconstruction of a region of interest for transmission tomography.

    Science.gov (United States)

    Ziegler, Andy; Nielsen, Tim; Grass, Michael

    2008-04-01

    It was shown that images reconstructed for transmission tomography with iterative maximum likelihood (ML) algorithms exhibit a higher signal-to-noise ratio than images reconstructed with filtered back-projection type algorithms. However, a drawback of ML reconstruction in particular and iterative reconstruction in general is the requirement that the reconstructed field of view (FOV) has to cover the whole volume that contributes to the absorption. In the case of a high resolution reconstruction, this demands a huge number of voxels. This article shows how an iterative ML reconstruction can be limited to a region of interest (ROI) without losing the advantages of a ML reconstruction. Compared with a full FOV ML reconstruction, the reconstruction speed is mainly increased by reducing the number of voxels which are necessary for a ROI reconstruction. In addition, the speed of convergence is increased.

  5. ACL reconstruction - discharge

    Science.gov (United States)

    Anterior cruciate ligament reconstruction - discharge; ACL reconstruction - discharge ... had surgery to reconstruct your anterior cruciate ligament (ACL). The surgeon drilled holes in the bones of ...

  6. Pipeline for effective denoising of digital mammography and digital breast tomosynthesis

    Science.gov (United States)

    Borges, Lucas R.; Bakic, Predrag R.; Foi, Alessandro; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2017-03-01

    Denoising can be used as a tool to enhance image quality and enforce low radiation doses in X-ray medical imaging. The effectiveness of denoising techniques relies on the validity of the underlying noise model. In full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT), calibration steps like the detector offset and flat-fielding can affect some assumptions made by most denoising techniques. Furthermore, quantum noise found in X-ray images is signal-dependent and can only be treated by specific filters. In this work we propose a pipeline for FFDM and DBT image denoising that considers the calibration steps and simplifies the modeling of the noise statistics through variance-stabilizing transformations (VST). The performance of a state-of-the-art denoising method was tested with and without the proposed pipeline. To evaluate the method, objective metrics such as the normalized root mean square error (N-RMSE), noise power spectrum, modulation transfer function (MTF) and the frequency signal-to-noise ratio (SNR) were analyzed. Preliminary tests show that the pipeline improves denoising. When the pipeline is not used, bright pixels of the denoised image are under-filtered and dark pixels are over-smoothed due to the assumption of a signal-independent Gaussian model. The pipeline improved denoising up to 20% in terms of spatial N-RMSE and up to 15% in terms of frequency SNR. Besides improving the denoising, the pipeline does not increase signal smoothing significantly, as shown by the MTF. Thus, the proposed pipeline can be used with state-of-the-art denoising techniques to improve the quality of DBT and FFDM images.

  7. Comparison of computer-aided detection of clustered microcalcifications in digital mammography and digital breast tomosynthesis

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir; Wei, Jun; Helvie, Mark

    2015-03-01

    Digital breast tomosynthesis (DBT) has the potential to replace digital mammography (DM) for breast cancer screening. An effective computer-aided detection (CAD) system for microcalcification clusters (MCs) on DBT will facilitate the transition. In this study, we collected a data set with corresponding DBT and DM for the same breasts. DBT was acquired with IRB approval and informed consent using a GE GEN2 DBT prototype system. The DM acquired with a GE Essential system for the patient's clinical care was collected retrospectively from patient files. DM-based CAD (CADDM) and DBT-based CAD (CADDBT) were previously developed by our group. The major differences between the CAD systems include: (a) CADDBT uses two parallel processes whereas CADDM uses a single process for enhancing MCs and removing the structured background, (b) CADDBT has additional processing steps to reduce the false positives (FPs), including ranking of candidates of cluster seeds and cluster members and the use of adaptive CNR and size thresholds at clustering and FP reduction, (c) CADDM uses convolution neural network (CNN) and linear discriminant analysis (LDA) to differentiate true microcalcifications from FPs based on their morphological and CNN features. The performance difference is assessed by FROC analysis using test set (100 views with MCs and 74 views without MCs) independent of their respective training sets. At sensitivities of 70% and 80%, CADDBT achieved FP rates of 0.78 and 1.57 per view compared to 0.66 and 2.10 per image for the CADDM. JAFROC showed no significant difference between MC detection on DM and DBT by the two CAD systems.

  8. Detection of mammographically occult architectural distortion on digital breast tomosynthesis screening: initial clinical experience.

    Science.gov (United States)

    Partyka, Luke; Lourenco, Ana P; Mainiero, Martha B

    2014-07-01

    Digital breast tomosynthesis (DBT) has been shown to improve the sensitivity of screening mammography. DBT may have the most potential impact in cases of subtle mammographic findings such as architectural distortion (AD). The objective of our study was to determine whether DBT provides better visualization of AD than digital mammography (DM) and whether sensitivity for cancer detection is increased by the addition of DBT as it relates to cases of mammographically occult AD. Retrospective review of BI-RADS category 0 reports from 9982 screening DM examinations with adjunct DBT were searched for the term "architectural distortion" and were reviewed in consensus by three radiologists. ADs were classified by whether they were seen better on DM or DBT, were seen equally well on both, or were occult on either modality. The electronic medical record was reviewed to identify additional imaging studies, biopsy results, and surgical excision pathology results. Review identified 26 cases of AD, 19 (73%) of which were seen only on the DBT images. Of the remaining seven ADs, six were seen better on DBT than DM. On diagnostic workup, nine lesions were assigned to BI-RADS category 4 or 5. Surgical pathology revealed two invasive carcinomas, two ductal carcinoma in situ lesions, three radial scars, and two lesions showing atypia. The cancer detection rate of DBT in mammographically occult AD was 21% (4/19). The positive predictive value of biopsy was 44%. DBT provides better visualization of AD than DM and identifies a subset of ADs that are occult on DM. Identification of additional ADs on DBT increases the cancer detection rate.

  9. Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics

    Science.gov (United States)

    King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.

    2011-03-01

    The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.

  10. Estimating breast tomosynthesis performance in detection tasks with variable-background phantoms

    Science.gov (United States)

    Young, Stefano; Park, Subok; Anderson, S. Kyle; Badano, Aldo; Myers, Kyle J.; Bakic, Predrag

    2009-02-01

    Digital breast tomosynthesis (DBT) shows potential for improving breast cancer detection. However, this technique has not yet been fully characterized with consideration of the various uncertainties in the imaging chain and optimized with respect to system acquisition parameters. To obtain maximum diagnostic information in DBT, system optimization needs to be performed across a range of patients and acquisition parameters to quantify their impact on tumor detection performance. In addition, a balance must be achieved between x-ray dose and image quality to minimize risk to the patient while maximizing the system's detection performance. To date, researchers have applied a task-based approach to the optimization of DBT with use of mathematical observers for tasks in the signal-known-exactly background-known-exactly (SKE/BKE) and signal-known-exactly background-known statistically (SKE/BKS) paradigms1-3. However, previous observer models provided insufficient treatment of the spatial correlations between multi-angle DBT projections, so we incorporated this correlation information into the modeling methodology. We developed a computational approach that includes three-dimensional variable background phantoms for incorporating background variability, accurate ray-tracing and Poisson distributions for generating noise-free and noisy projections of the phantoms, and a channelized-Hotelling observer4 (CHO) for estimating performance in DBT. We demonstrated our method for a DBT acquisition geometry and calculated the performance of the CHO with Laguerre-Gauss channels as a function of the angular span of the system. Preliminary results indicate that the implementation of a CHO model that incorporates correlations between multi-angle projections gives different performance predictions than a CHO model that ignores multi-angle correlations. With improvement of the observer design, we anticipate more accurate investigations into the impact of multi-angle correlations and

  11. Indirect-detection single-photon-counting x-ray detector for breast tomosynthesis

    Science.gov (United States)

    Jiang, Hao; Kaercher, Joerg; Durst, Roger

    2016-03-01

    X-ray mammography is a crucial screening tool for early identification of breast cancer. However, the overlap of anatomical features present in projection images often complicates the task of correctly identifying suspicious masses. As a result, there has been increasing interest in acquisition of volumetric information through digital breast tomosynthesis (DBT) which, compared to mammography, offers the advantage of depth information. Since DBT requires acquisition of many projection images, it is desirable that the noise in each projection image be dominated by the statistical noise of the incident x-ray quanta and not by the additive noise of the imaging system (referred to as quantum-limited imaging) and that the cumulative dose be as low as possible (e.g., no more than for a mammogram). Unfortunately, the electronic noise (~2000 electrons) present in current DBT systems based on active matrix, flat-panel imagers (AMFPIs) is still relatively high compared with modest x-ray gain of the a-Se and CsI:Tl x-ray converters often used. To overcome the modest signal-to-noise ratio (SNR) limitations of current DBT systems, we have developed a large-area x-ray imaging detector with the combination of an extremely low noise (~20 electrons) active-pixel CMOS and a specially designed high resolution scintillator. The high sensitivity and low noise of such system provides better SNR by at least an order of magnitude than current state-of-art AMFPI systems and enables x-ray indirect-detection single photon counting (SPC) at mammographic energies with the potential of dose reduction.

  12. Digital tomosynthesis for evaluating metastatic lung nodules: Nodule visibility, learning curves, and reading times

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hee; Goo, Jin Mo; Lee, Sang Min; Park, Chang Min; Bahn, Young Eun; Kim, Hyung Jin; Song, Yong Sub; Hwang, Eui Jin [Dept. of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of)

    2015-04-15

    To evaluate nodule visibility, learning curves, and reading times for digital tomosynthesis (DT). We included 80 patients who underwent computed tomography (CT) and DT before pulmonary metastasectomy. One experienced chest radiologist annotated all visible nodules on thin-section CT scans using computer-aided detection software. Two radiologists used CT as the reference standard and retrospectively graded the visibility of nodules on DT. Nodule detection performance was evaluated in four sessions of 20 cases each by six readers. After each session, readers were unblinded to the DT images by revealing the true-positive markings and were instructed to self-analyze their own misreads. Receiver-operating-characteristic curves were determined. Among 414 nodules on CT, 53.3% (221/414) were visible on DT. The main reason for not seeing a nodule on DT was small size (93.3%, < or = 5 mm). DT revealed a substantial number of malignant nodules (84.1%, 143/170). The proportion of malignant nodules among visible nodules on DT was significantly higher (64.7%, 143/221) than that on CT (41.1%, 170/414) (p < 0.001). Area under the curve (AUC) values at the initial session were > 0.8, and the average detection rate for malignant nodules was 85% (210/246). The inter-session analysis of the AUC showed no significant differences among the readers, and the detection rate for malignant nodules did not differ across sessions. A slight improvement in reading times was observed. Most malignant nodules > 5 mm were visible on DT. As nodule detection performance was high from the initial session, DT may be readily applicable for radiology residents and board-certified radiologists.

  13. Recall rate reduction with tomosynthesis during baseline screening examinations – an assessment from a prospective trial

    Science.gov (United States)

    Sumkin, Jules H.; Ganott, Marie A.; Chough, Denise M.; Catullo, Victor J.; Zuley, Margarita L.; Shinde, Dilip D.; Hakim, Christiane M.; Bandos, Andriy I.; Gur, David

    2015-01-01

    Rational and Objectives Assess results of a prospective, single site clinical study evaluating digital breast tomosynthesis (DBT) during baseline screening mammography. Materials and Methods Under an institutional review board approved HIPAA compliant protocol, consenting women between ages 34 and 56 scheduled for their initial/baseline screening mammogram underwent both Full Field Digital Mammography (FFDM) and DBT. The FFDM and the FFDM plus DBT images were interpreted independently in a reader by mode balanced approach by two of 14 participating radiologists. A woman was recalled for a diagnostic workup if either radiologist recommended a recall. We report overall recall rates and related diagnostic outcome from the 1080 participants. Proportion of recommended recalls (BIRADS 0) were compared using a generalized linear mixed model (SAS 9.3) with a significance level of p=0.0294. Results The fraction of women without breast cancer recommended for recall using FFDM alone and FFDM plus DBT were 412/1074 (38.4%) and 274/1074 (25.5%), respectively (p<0.001). Large inter-reader variability in terms of recall reduction was observed among the 14 readers; however, 11 out of 14 readers recalled fewer women using FFDM plus DBT (5 with p-values <0.015). Six cancers (4 DCIS and 2 IDC) were detected. One IDC was detected only on DBT and one DCIS cancer was detected only on FFDM, while the remaining cancers were detected on both modalities. Conclusion The use of FFDM plus DBT resulted in a significant decrease in recall rates during baseline screening mammography with no reduction in sensitivity. PMID:26391857

  14. Characterization of invisible breast cancers in digital mammography and tomosynthesis: radio-pathological correlation.

    Science.gov (United States)

    Aguilar Angulo, P M; Romero Castellano, C; Ruiz Martín, J; Sánchez-Camacho González-Carrato, M P; Cruz Hernández, L M

    2017-09-21

    To review the radio-pathologic features of symptomatic breast cancers not detected at digital mammography (DM) and digital breast tomosynthesis (DBT). Retrospective analysis of 169 lesions from symptomatic patients with breast cancer that were studied with DM, DBT, ultrasound (US) and magnetic resonance (MR). We identified occult lesions (true false negatives) in DM and DBT. Clinical data, density, US and MR findings were analyzed as well as histopathological results. We identified seven occult lesions in DM and DBT. 57% (4/7) of the lesions were identified in high-density breasts (type c and d), and the rest of them in breasts of density type b. Six carcinomas were identified at US and MR (BI-RADS 4 masses); the remaining lesion was only identified at MR. The tumor size was larger than 3cm at MRI in 57% of the lesions. All tumors were ductal infiltrating carcinomas, six of them with high stromal proportion. According to molecular classification, we found only one triple-negative breast cancer, the other lesions were luminal-type. We analyzed the tumor margins of two resected carcinomas that were not treated with neoadjuvant chemotherapy, both lesions presented margins that displaced the adjacent parenchyma without infiltrating it. Occult breast carcinomas in DM and DBT accounted for 4% of lesions detected in patients with symptoms. They were mostly masses, all of them presented the diagnosis of infiltrating ductal carcinoma (with predominance of the luminal immunophenotype) and were detected in breasts of density type b, c and d. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Additional findings at preoperative breast MRI: the value of second-look digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Clauser, Paola; Pancot, Martina; Girometti, Rossano; Bazzocchi, Massimo; Zuiani, Chiara [University of Udine, Azienda Ospedaliero-Universitaria, ' ' S.Maria della Misericordia' ' , Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, Udine (Italy); Carbonaro, Luca A. [IRCCS Policlinico San Donato, Unit of Radiology, Milan (Italy); Sardanelli, Francesco [IRCCS Policlinico San Donato, Unit of Radiology, Milan (Italy); Universita degli Studi di Milano, Department of Biomedical Sciences of Health, Milan (Italy)

    2015-10-15

    To evaluate second-look digital breast tomosynthesis (SL-DBT) for additional findings (AFs) at preoperative MRI compared with second-look ultrasound (SL-US). We included 135 patients with breast cancer who underwent digital mammography (DM), DBT, US, and MRI at two centres. MR images were retrospectively evaluated to find AFs, described as focus, mass, or non-mass; ≤10 mm or >10 mm in size; BI-RADS 3, 4, or 5. DM and DBT exams were reviewed looking for MRI AFs; data on SL-US were collected. Reference standard was histopathology or ≥12-month negative follow-up. Fisher exact test and McNemar test were used. Eighty-four AFs were detected in 53/135 patients (39 %, 95 %CI 31-48 %). A correlate was found for 44/84 (52 %, 95 %CI 41-63 %) at SL-US, for 20/84 (24 %, 95 %CI 11-28 %) at SL-DM, for 42/84 (50 %, 95 %CI 39-61 %) at SL-DBT, for 63/84 (75 %, 95 %CI 64-84 %) at SL-DBT, and/or SL-US, the last rate being higher than for SL-US only, overall (p < 0.001), for mass or non-mass, ≤ or >10 mm, BI-RADS 4 or 5, or malignant lesions (p < 0.031). Of 21 AFs occult at both SLs, 17 were malignant (81 %, 95 %CI 58-94 %). When adding SL-DBT to SL-US, AFs detection increased from 52 % to 75 %. MR-guided biopsy is needed for the remaining 25 %. (orig.)

  16. Pathologic Outcomes of Architectural Distortion on Digital 2D Versus Tomosynthesis Mammography.

    Science.gov (United States)

    Bahl, Manisha; Lamb, Leslie R; Lehman, Constance D

    2017-08-23

    The purpose of this study is to compare the risk of malignancy associated with architectural distortion detected on 2D digital mammography (DM) versus digital breast tomosynthesis (DBT). We performed a retrospective review of architectural distortion cases recommended for biopsy from September 2007 to February 2011, the period before DBT integration (hereafter known as the DM group), and from January 2013 to June 2016, the period after DBT integration (hereafter known as the DBT group). Medical records were reviewed for imaging findings and pathology results. Architectural distortion was more commonly detected in the DBT group than the DM group (0.14% [274/202,438 examinations] vs 0.07% [121/166,661 examinations]; p < 0.001). The positive predictive value of architectural distortion for malignancy was significantly lower in the DBT group than the DM group (50.7% [139/274 cases] vs 73.6% [89/121 cases]; p < 0.001). Radial scar was the most common nonmalignant finding in both groups, but it was more common in the DBT group (33.2% [91/274] vs 11.6% [14/121]; p < 0.001). In the DBT group, architectural distortion without correlative findings on ultrasound was less likely to represent malignancy than was architectural distortion with correlative findings on ultrasound (29.2% [31/106] vs 66.5% [105/158]; p < 0.001). Architectural distortion is more commonly detected on DBT than DM and is less likely to represent malignancy on DBT. Architectural distortion on DBT is less likely to represent malignancy if there is no sonographic correlate; however, biopsy is warranted even in the absence of a sonographic correlate, given the nearly 30% risk of malignancy in this setting.

  17. Digital tomosynthesis for evaluating metastatic lung nodules: nodule visibility, learning curves, and reading times.

    Science.gov (United States)

    Lee, Kyung Hee; Goo, Jin Mo; Lee, Sang Min; Park, Chang Min; Bahn, Young Eun; Kim, Hyungjin; Song, Yong Sub; Hwang, Eui Jin

    2015-01-01

    To evaluate nodule visibility, learning curves, and reading times for digital tomosynthesis (DT). We included 80 patients who underwent computed tomography (CT) and DT before pulmonary metastasectomy. One experienced chest radiologist annotated all visible nodules on thin-section CT scans using computer-aided detection software. Two radiologists used CT as the reference standard and retrospectively graded the visibility of nodules on DT. Nodule detection performance was evaluated in four sessions of 20 cases each by six readers. After each session, readers were unblinded to the DT images by revealing the true-positive markings and were instructed to self-analyze their own misreads. Receiver-operating-characteristic curves were determined. Among 414 nodules on CT, 53.3% (221/414) were visible on DT. The main reason for not seeing a nodule on DT was small size (93.3%, ≤ 5 mm). DT revealed a substantial number of malignant nodules (84.1%, 143/170). The proportion of malignant nodules among visible nodules on DT was significantly higher (64.7%, 143/221) than that on CT (41.1%, 170/414) (p 0.8, and the average detection rate for malignant nodules was 85% (210/246). The inter-session analysis of the AUC showed no significant differences among the readers, and the detection rate for malignant nodules did not differ across sessions. A slight improvement in reading times was observed. Most malignant nodules > 5 mm were visible on DT. As nodule detection performance was high from the initial session, DT may be readily applicable for radiology residents and board-certified radiologists.

  18. Impact of prior mammograms on combined reading of digital mammography and digital breast tomosynthesis.

    Science.gov (United States)

    Kim, Won Hwa; Chang, Jung Min; Koo, Hye Ryoung; Seo, Mirinae; Bae, Min Sun; Lee, Joongyub; Moon, Woo Kyung

    2017-02-01

    Background Although digital breast tomosynthesis (DBT) is an emerging technique yielding higher sensitivity and specificity compared to digital mammography (DM) alone, relative contribution of prior mammograms on the interpretation of DBT combined with DM has not been investigated. Purpose To retrospectively compare the diagnostic performances of DM, DM + DBT, and DM + DBT with prior mammograms. Material and Methods Three breast radiologists independently reviewed images of 116 patients with 24 cancers in the sequential order of DM, DM + DBT, and DM + DBT with prior mammograms using Breast Imaging Reporting and Data System (BI-RADS) assessment categories. Results The average areas under the receiver operating characteristic curve (AUC) of DM, DM + DBT, and DM + DBT with prior mammograms were 0.712, 0.777, and 0.816, respectively. Adding prior mammograms did not significantly affect the AUC of DM + DBT ( P = 0.108), whereas adding DBT significantly increased the AUC of DM ( P = 0.009). Sensitivity for DM, DM + DBT, and DM + DBT with prior mammograms was 58.3%, 69.4%, and 69.4%, and specificities were 84.1%, 85.9%, and 93.8%, respectively. Addition of DBT significantly increased the sensitivity ( P = 0.0090) of DM. Prior mammograms significantly improved the specificity of DM + DBT ( P = 0.0004), whereas adding prior mammogram did not affect sensitivity of DM + DBT ( P = 1.000). Conclusion DBT significantly increases the overall sensitivity and diagnostic performance of DM. Prior mammograms significantly increase the specificity of DM + DBT but have no significant effect on sensitivity and overall diagnostic performance.

  19. Digital Breast Tomosynthesis Practice Patterns Following 2011 FDA Approval: A Survey of Breast Imaging Radiologists.

    Science.gov (United States)

    Gao, Yiming; Babb, James S; Toth, Hildegard K; Moy, Linda; Heller, Samantha L

    2017-08-01

    To evaluate uptake, patterns of use, and perception of digital breast tomosynthesis (DBT) among practicing breast radiologists. Institutional Review Board exemption was obtained for this Health Insurance Portability and Accountability Act-compliant electronic survey, sent to 7023 breast radiologists identified via the Radiological Society of North America database. Respondents were asked of their geographic location and practice type. DBT users reported length of use, selection criteria, interpretive sequences, recall rate, and reading time. Radiologist satisfaction with DBT as a diagnostic tool was assessed (1-5 scale). There were 1156 (16.5%) responders, 65.8% from the United States and 34.2% from abroad. Of these, 749 (68.6%) use DBT; 22.6% in academia, 56.5% private, and 21% other. Participants are equally likely to report use of DBT if they worked in academics versus in private practice (78.2% [169 of 216] vs 71% [423 of 596]) (odds ratio, 1.10; 95% confidence interval: 0.87-1.40; P = 1.000). Of nonusers, 43% (147 of 343) plan to adopt DBT. No US regional differences in uptake were observed (P = 1.000). Although 59.3% (416 of 702) of DBT users include synthetic 2D (s2D) for interpretation, only 24.2% (170 of 702) use s2D alone. Majority (66%; 441 of 672) do not perform DBT-guided procedures. Radiologist (76.6%) (544 of 710) satisfaction with DBT as a diagnostic tool is high (score ≥ 4/5). DBT is being adopted worldwide across all practice types, yet variations in examination indication, patient selection, utilization of s2D images, and access to DBT-guided procedures persist, highlighting the need for consensus and standardization. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  20. Breast tomosynthesis with monochromatic beams: a feasibility study using Monte Carlo simulations

    Science.gov (United States)

    Malliori, A.; Bliznakova, K.; Sechopoulos, I.; Kamarianakis, Z.; Fei, B.; Pallikarakis, N.

    2014-08-01

    The aim of this study is to investigate the impact on image quality of using monochromatic beams for lower dose breast tomosynthesis (BT). For this purpose, modeling and simulation of BT and mammography imaging processes have been performed using two x-ray beams: one at 28 kVp and a monochromatic one at 19 keV at different entrance surface air kerma ranging between 0.16 and 5.5 mGy. Two 4 cm thick computational breast models, in a compressed state, were used: one simple homogeneous and one heterogeneous based on CT breast images, with compositions of 50% glandular-50% adipose and 40% glandular-60% adipose tissues by weight, respectively. Modeled lesions, representing masses and calcifications, were inserted within these breast phantoms. X-ray transport in the breast models was simulated with previously developed and validated Monte Carlo application. Results showed that, for the same incident photon fluence, the use of the monochromatic beam in BT resulted in higher image quality compared to the one using polychromatic acquisition, especially in terms of contrast. For the homogenous phantom, the improvement ranged between 15% and 22% for calcifications and masses, respectively, while for the heterogeneous one this improvement was in the order of 33% for the masses and 17% for the calcifications. For different exposures, comparable image quality in terms of signal-difference-to-noise ratio and higher contrast for all features was obtained when using a monochromatic 19 keV beam at a lower mean glandular dose, compared to the polychromatic one. Monochromatic images also provide better detail and, in combination with BT, can lead to substantial improvement in visualization of features, and particularly better edge detection of low-contrast masses.

  1. Digital Tomosynthesis for PNS Evaluation: Comparisons of Patient Exposure and Image Quality with Plain Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung Jin; Choi, Boram; Jung, Hye Na; Koo, Ji Hyun; Bae, Young A; Jeon, Kyeong Nam; Byun, Hong Sik; Lee, Kyung Soo [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Yoo, Jin Young [Bundang Jesaeng General Hospital, Sungnam (Korea, Republic of)

    2012-03-15

    We investigated low dose digital tomosynthesis (DT) for the evaluation of the paranasal sinus (PNS), and compared its diagnostic accuracy with a PNS radiography series (XR). We enrolled 43 patients for whom XR, PNS DT, and OMU CT were performed. We measured effective doses (EDs) of XR, DT, and OMU CT using Monte Carlo simulation software. Two radiologists performed independent observation of both XR and DT. For seven PNSs, they scored anatomic conspicuity of sinuses and confidence on the presence of sinusitis using nine point scales. OMU CT was observed by the third radiologist and the findings were regarded as reference standard. We compared scores for conspicuity and sinusitis confidence between XR and DT. Mean EDs were 29 {+-} 6 {mu}Sv, 48 {+-} 10 {mu}Sv, and 980 {+-} 250 {mu}Sv, respectively, for XR, DT, and CT. Mean scores for conspicuity were 6.3 and 7.4, respectively, for XR and DT. Sensitivity per patient basis for sinusitis detection were 52% and 96%, respectively, for XR and DT in observer 1 (p = 0.001) and 80% and 92% for observer 2 (p = 0.25). Specificities for sinusitis exclusion were 100% for both XR and DT for observer 1 and 89% and 100% for observer 2 (p = 0.50). Accuracies for sinusitis diagnosis were 72% and 98%, respectively, for XR and DT for observer 1 (p = 0.001) and 84% and 95% for observer 2 (p = 0.125). Patient radiation dose from low dose DT is comparable with that of PNS XR. Diagnostic sensitivity of DT for sinusitis was superior to PNS XR.

  2. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    2016-01-01

    We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. When only measurements subject to noise...... of surface tensors are available for reconstruction, we recommend to use certain values of the surface tensors, namely harmonic intrinsic volumes instead of the surface tensors evaluated at the standard basis. The second algorithm we present is based on harmonic intrinsic volumes and allows for noisy...

  3. Breast Reconstruction Alternatives

    Science.gov (United States)

    ... Breast Reconstruction Surgery Breast Cancer Breast Reconstruction Surgery Breast Reconstruction Alternatives Some women who have had a ... chest. What if I choose not to get breast reconstruction? Some women decide not to have any ...

  4. Smooth Reconstruction

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Eighty percent of the reconstruction projects in Sichuan Province will be completed by the end of the year Despite ruins still seen everywhere in the earthquake-hit areas in Sichuan (Province, new buildings have been completed, and many people have moved into new houses. Through cameras of the media, the faces, once painful and melancholy after last year’s earthquake, now look confident and firm, gratifying people all over the

  5. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. The second algorithm uses harmonic intrinsic...... volumes which are certain values of the surface tensors and allows for noisy measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based...

  6. Saturated Reconstruction of a Volume of Neocortex

    Science.gov (United States)

    2015-07-30

    redundancies in the synaptic connections andwanted to know if these were acci- dental . For all these reasons, we have attempted to analyze the connectivity...motion and its adhesiveness cause the caught sections to lie flat on the tape’s surface (Figure 1A, inset). To generate the cerebral cortex image

  7. Maxillary reconstruction

    Directory of Open Access Journals (Sweden)

    Brown James

    2007-12-01

    Full Text Available This article aims to discuss the various defects that occur with maxillectomy with a full review of the literature and discussion of the advantages and disadvantages of the various techniques described. Reconstruction of the maxilla can be relatively simple for the standard low maxillectomy that does not involve the orbital floor (Class 2. In this situation the structure of the face is less damaged and the there are multiple reconstructive options for the restoration of the maxilla and dental alveolus. If the maxillectomy includes the orbit (Class 4 then problems involving the eye (enopthalmos, orbital dystopia, ectropion and diplopia are avoided which simplifies the reconstruction. Most controversy is associated with the maxillectomy that involves the orbital floor and dental alveolus (Class 3. A case is made for the use of the iliac crest with internal oblique as an ideal option but there are other methods, which may provide a similar result. A multidisciplinary approach to these patients is emphasised which should include a prosthodontist with a special expertise for these defects.

  8. Afghanistan Reconstruction

    Institute of Scientific and Technical Information of China (English)

    Fu Xiaoqiang

    2006-01-01

    @@ The Karzai regime has made some progress over the past four years and a half in the post-war reconstruction.However, Taliban's destruction and drug economy are still having serious impacts on the security and stability of Afghanistan.Hence the settlement of the two problems has become a crux of affecting the country' s future.Moreover, the Karzai regime is yet to handle a series of hot potatoes in the fields of central government' s authority, military and police building-up and foreign relations as well.

  9. A survey on the visualization and reconstruction of vasculatures

    Science.gov (United States)

    Hong, Qingqi

    2014-01-01

    Visualization and reconstruction of blood vessel from standard medical datasets play an important role in many clinical situations. This paper presents a survey on the visualization and reconstruction of vascular structures. Firstly, the visualization techniques of vasculatures are introduced, which includes volume rendering and surface rendering of vasculatures. Then, we focus on the reconstruction techniques of vascular structures, which can be classified into two categories: explicit reconstruction and implicit reconstruction of vascular structures. With reconstructed vascular geometry, it is quite easy to produce smooth visualization of vessel surfaces. In addition, finding the accurate geometric representation of vascular structures is crucial in developing computer aided vascular surgery systems.

  10. Research on vertex variables reconstruction for cell-centered finite volume method%格心型有限体积法格点变量重构方法研究

    Institute of Scientific and Technical Information of China (English)

    张帆; 刘君; 陈飙松; 钟万勰

    2015-01-01

    A commonly-used gradient reconstruction procedure for the second-order cell-centered finite volume method is to calculate the element gradient by its vertex variables.The key issue of this method is to construct the local linearly distributed vertex variables by their adj acent elements' cell-centered variables. Using weighted least squares method for vertex variables reconstruction, considering the fact that the cell-centered variables are non-linear distribution,inversely distance weight is applied to estimate the different influences of the elements in various positions.In order to deal with the over-estimation of vertex variables on perturbed or curved grids,a new clipping method is implemented.Test cases use high-aspect-ratio,perturbed or curved grids which are commonly applied to the boundary layer flow simulations with high Reynolds number.The presented method is compared with weighted averaging method and pseudo-Laplacian method.Numerical results show that better accuracy is attained by presented inversely distance weighted least squares method,and the over-estimation of vertex variables on perturbed or curved grids is eliminated by the clipping method suggested here.%根据网格格点变量计算单元变量梯度是二阶空间精度格心型有限体积法梯度重构的常用方法,该方法的关键是根据格点的邻接单元格心变量构造满足局部线性分布的格点变量。采用加权最小二乘法进行格点变量重构,考虑实际格心变量的非线性分布,提出采用距离反比加权体现不同位置单元对格点变量的影响程度差异;针对扰动或弯曲网格中的格点变量重构出现极值的现象,采用了新的限制方法。采用高雷诺数边界层流动计算中常见的大长宽比、扰动/弯曲网格进行测试,将提出的方法与通常采用的加权平均方法和拟拉普拉斯方法进行对比。算例结果显示距离反比加权的最小二乘法重构精度较好,提出

  11. Breast reconstruction following amputation for cancer

    Directory of Open Access Journals (Sweden)

    Višnjić Milan

    2009-01-01

    Full Text Available Background/Aim. Today, breast reconstruction is a widely accepted method in the treatment of breast cancer after modified radical mastectomy. Reconstruction methods are associated with an acceptable number of complications and reconstruction favorably impacts quality of life. The aim of the study was to present our experience in breast reconstruction. Methods. We presented here a four-year experience with 84 patients with breast reconstruction after modified radical mastectomy. Results. Implant reconstructions were most common, 44 (52.3%, with primary reconstruction in 31(70.4% and secondary in 13 (29.5% women. Lattisimus dorsi flap (LDF and implant were utilized in 32 (38% of the patients, with primary reconstruction in 24 (75% and secondary in 8 (25% women. Transversal rectus abdominis myocutaneous (TRAM flap was rarely used - just in 8 (9.5% patients and only for secondary breast reconstruction. Postoperatively, some early complications such as hematoma, seroma, infections and partial flap necrosis were observed in 10 (11.9% patients. Late complications, such as implant rejection, hypertrophic scarring and hernias at the flap elevation site, were noted in 10 (11.9% cases. Implant loss occurred in 5 (5.9% cases. All the complications were successfully managed, and patients rated their reconstruction as follows: excellent, 49 (59% cases; very good, 20 (24%, and good, 14 (16.8%. In one case, disease progression was observed 6 months after the primary breast reconstruction. Conclusion. Breast reconstruction is an acceptable method in the treatment of breast cancer in patients in the need for or with already performed mastectomy. The choice of reconstruction approach depends on the breast volume, patient's wish and experience of surgical team. Our results suggest the advantage of breast reconstruction with LDF with implant, since the technique is safe, complications relatively rare and easily manageable, and the results are excellent or very good

  12. Precision Muon Reconstruction in Double Chooz

    CERN Document Server

    Abe, Y; Barriere, J C; Baussan, E; Bekman, I; Bergevin, M; Bezerra, T J C; Bezrukov, L; Blucher, E; Buck, C; Busenitz, J; Cabrera, A; Caden, E; Camilleri, L; Carr, R; Cerrada, M; Chang, P -J; Chauveau, E; Chimenti, P; Collin, A P; Conover, E; Conrad, J M; Crespo-Anadón, J I; Crum, K; Cucoanes, A; Damon, E; Dawson, J V; Dietrich, D; Djurcic, Z; Dracos, M; Elnimr, M; Etenko, A; Fallot, M; von Feilitzsch, F; Felde, J; Fernandes, S M; Fischer, V; Franco, D; Franke, M; Furuta, H; Gil-Botella, I; Giot, L; Göger-Neff, M; Gonzalez, L F G; Goodenough, L; Goodman, M C; Grant, C; Haag, N; Hara, T; Haser, J; Hofmann, M; Horton-Smith, G A; Hourlier, A; Ishitsuka, M; Jochum, J; Jollet, C; Kaether, F; Kalousis, L N; Kamyshkov, Y; Kaplan, D M; Kawasaki, T; Kemp, E; de Kerret, H; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C E; Lasserre, T; Letourneau, A; Lhuillier, D; Lima, H P; Lindner, M; no, J M López-Casta; LoSecco, J M; Lubsandorzhiev, B; Lucht, S; Maeda, J; Mariani, C; Maricic, J; Martino, J; Matsubara, T; Mention, G; Meregaglia, A; Miletic, T; Milincic, R; Minotti, A; Nagasaka, Y; Nikitenko, Y; Novella, P; Obolensky, M; Oberauer, L; Onillon, A; Osborn, A; Palomares, C; Pepe, I M; Perasso, S; Pfahler, P; Porta, A; Pronost, G; Reichenbacher, J; Reinhold, B; Röhling, M; Roncin, R; Roth, S; Rybolt, B; Sakamoto, Y; Santorelli, R; Schilithz, A C; Schönert, S; Schoppmann, S; Shaevitz, M H; Sharankova, R; Shimojima, S; Sibille, V; Sinev, V; Skorokhvatov, M; Smith, E; Spitz, J; Stahl, A; Stancu, I; Stokes, L F F; Strait, M; Stüken, A; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Svoboda, R; Terao, K; Tonazzo, A; Thi, H H Trinh; Valdiviesso, G; Vassilopoulos, N; Veyssiere, C; Vivier, M; Wagner, S; Watanabe, H; Wiebusch, C; Winslow, L; Wurm, M; Yang, G; Yermia, F; Zimmer, V

    2014-01-01

    We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a through-going muon intersecting the center of the detector, the resolution is ~40 mm in each transverse dimension. High quality muon reconstruction is an important tool for reducing the impact of the cosmogenic isotope background in Double Chooz.

  13. Precision muon reconstruction in Double Chooz

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Y. [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Anjos, J.C. dos [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ 22290-180 (Brazil); Barriere, J.C. [Commissariat à l' Energie Atomique et aux Energies Alternatives, Centre de Saclay, IRFU, 91191 Gif-sur-Yvette (France); Baussan, E. [IPHC, Université de Strasbourg, CNRS/IN2P3, 67037 Strasbourg (France); Bekman, I. [III. Physikalisches Institut, RWTH Aachen University, 52056 Aachen (Germany); Bergevin, M. [University of California, Davis, CA 95616 (United States); Bezerra, T.J.C. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Bezrukov, L. [Institute of Nuclear Research of the Russian Academy of Sciences, Moscow 117312 (Russian Federation); Blucher, E. [The Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States); Buck, C. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Busenitz, J. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Cabrera, A. [AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, 75205 Paris Cedex 13 (France); Caden, E. [Department of Physics, Drexel University, Philadelphia, PA 19104 (United States); Camilleri, L.; Carr, R. [Columbia University, New York, NY 10027 (United States); Cerrada, M. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, 28040 Madrid (Spain); Chang, P.-J. [Department of Physics, Kansas State University, Manhattan, KS 66506 (United States); Chauveau, E. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); and others

    2014-11-11

    We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of the liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a through-going muon intersecting the center of the detector, the resolution is ∼40mm in each transverse dimension. High quality muon reconstruction is an important tool for reducing the impact of the cosmogenic isotope background in Double Chooz.

  14. Breast Reconstruction with Implants

    Science.gov (United States)

    Breast reconstruction with implants Overview By Mayo Clinic Staff Breast reconstruction is a surgical procedure that restores shape to ... treat or prevent breast cancer. One type of breast reconstruction uses breast implants — silicone devices filled with silicone ...

  15. Reconstructive Urology

    Directory of Open Access Journals (Sweden)

    Fikret Fatih Önol

    2014-11-01

    Full Text Available In the treatment of urethral stricture, Buccal Mucosa Graft (BMG and reconstruction is applied with different patch techniques. Recently often prefered, this approach is, in bulber urethra strictures of BMG’s; by “ventral onley”, in pendulous urethra because of thinner spingiosis body, which provides support and nutrition of graft; by means of “dorsal inley” being anastomosis. In the research that Cordon et al. did, they compared conventional BMJ “onley” urethroplast and “pseudo-spongioplasty” which base on periurethral vascular tissues to be nourished by closing onto graft. In repairment of front urethras that spongiosis supportive tissue is insufficient, this method is defined as peripheral dartos [çevre dartos?] and buck’s fascia being mobilized and being combined on BMG patch. Between the years 2007 and 2012, assessment of 56 patients with conventional “ventral onley” BMG urethroplast and 46 patients with “pseudo-spongioplasty” were reported to have similar success rates (80% to 84% in 3.5 year follow-up on average. While 74% of the patients that were applied pseudo-spongioplasty had disease present at distal urethra (pendulous, bulbopendulous, 82% of the patients which were applied conventional onley urethroplast had stricture at proximal (bulber urethra yet. Also lenght of the stricture at the pseudo-spongioplasty group was longer in a statistically significant way (5.8 cm to 4.7 cm on average, p=0.028. This study which Cordon et al. did, shows that conditions in which conventional sponjiyoplasti is not possible, periurethral vascular tissues are adequate to nourish BMG. Even it is an important technique in terms of bringing a new point of view to today’s practice, data especially about complications that may show up after pseudo-spongioplasty usage on long distal strictures (e.g. appearance of urethral diverticulum is not reported. Along with this we think that, providing an oppurtinity to patch directly

  16. Anterior Cruciate Ligament Reconstruction: A 2015 global perspective of the Magellan Society

    Directory of Open Access Journals (Sweden)

    Yee Han Dave Lee

    2015-10-01

    Conclusion: Based on the survey, hamstring transportal anatomic single-bundle ACL reconstruction with meniscus preservation is the preferred ACL reconstruction technique of high-volume fellowship-trained sports surgeons.

  17. Topological Active Volumes

    Directory of Open Access Journals (Sweden)

    Barreira N

    2005-01-01

    Full Text Available The topological active volumes (TAVs model is a general model for 3D image segmentation. It is based on deformable models and integrates features of region-based and boundary-based segmentation techniques. Besides segmentation, it can also be used for surface reconstruction and topological analysis of the inside of detected objects. The TAV structure is flexible and allows topological changes in order to improve the adjustment to object's local characteristics, find several objects in the scene, and identify and delimit holes in detected structures. This paper describes the main features of the TAV model and shows its ability to segment volumes in an automated manner.

  18. Computer-aided detection of microcalcifications in digital breast tomosynthesis (DBT): a multichannel signal detection approach on projection views

    Science.gov (United States)

    Wei, Jun; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Zhou, Chuan; Lu, Yao

    2012-03-01

    DBT is one of the promising imaging modalities that may improve the sensitivity and specificity for breast cancer detection. We are developing a computer-aided detection (CADe) system for clustered microcalcifications (MC) in DBT. A data set of two-view DBTs from 42 breasts was collected with a GE prototype system. We investigated a 2D approach to MC detection using projection view (PV) images rather than reconstructed 3D DBT volume. Our 2D approach consisted of two major stages: 1) detecting individual MC candidates on each PV, and 2) correlating the MC candidates from the different PVs and detecting clusters in the breast volume. With the MC candidates detected by prescreening on PVs, a trained multi-channel (MCH) filter bank was used to extract signal response from each MC candidate. A ray-tracing process was performed to fuse the MCH responses and localize the MC candidates in 3D using the geometrical information of the DBT system. Potential MC clusters were then identified by dynamic clustering of the MCs in 3D. A two-fold cross-validation method was used to train and test the CADe system. The detection performance of clustered MCs was assessed by free receiver operating characteristic (FROC) analysis. It was found that the CADe system achieved a case-based sensitivity of 90% at an average false positive rate of 2.1 clusters per DBT volume. Our study demonstrated that the CADe system using 2D MCH filter bank is promising for detection of clustered MCs in DBT.

  19. The value of digital tomosynthesis of the chest as a problem-solving tool for suspected pulmonary nodules and hilar lesions detected on chest radiography

    Energy Technology Data Exchange (ETDEWEB)

    Galea, Angela, E-mail: galeaangie@gmail.com [Peninsula Radiology Academy, William Prance Road, Plymouth PL65WR (United Kingdom); Dubbins, Paul, E-mail: Paul.dubbins@nhs.net [Plymouth Hospital NHS Trust, Plymouth PL68DH (United Kingdom); Riordan, Richard, E-mail: richardriordan@nhs.net [Plymouth Hospital NHS Trust, Plymouth PL68DH (United Kingdom); Adlan, Tarig, E-mail: tarig.adlan@nhs.net [Plymouth Hospital NHS Trust, Plymouth PL68DH (United Kingdom); Roobottom, Carl, E-mail: carl.roobotoom@nhs.net [Plymouth Hospital NHS Trust, Plymouth PL68DH (United Kingdom); Gay, David, E-mail: davegay@nhs.net [Plymouth Hospital NHS Trust, Plymouth PL68DH (United Kingdom)

    2015-05-15

    Graphical abstract: When compared to CXR, DTS has: • Superior resolution • Better assessment of location in the AP dimension (better at locating a pleural or intrapulmonary lesion) • Better characterisation (better at distinguishing between calcified plaque and soft tissue) • Removes composite artefact caused by overlying anatomical structures (such as the ribs or pulmonary vessels) DTS has improved sensitivity, specificity and accuracy when compared to CXR. - Highlights: • DTS is a type of limited angle tomography. Sixty coronal reconstructed images of the chest are produced that combine the superior resolution of radiography with the tomographic benefits of computed tomography. • The sensitivity for detecting a suspected lung lesions is 0.65 with CXR and 0.91 for DTS. • The high specificity of DTS (1) and the high negative predictive value (0.94) are similar to CT and suggest that if the DTS is normal patients do not need further assessment with CT with significant potential dose savings. • 50% of suspected lesions were resolved with CXR, this improved to 96% with DTS. - Abstract: Objectives: To assess the capability of digital tomosynthesis (DTS) of the chest compared to a postero-anterior (PA) and lateral chest radiograph (CXR) in the diagnosis of suspected but unconfirmed pulmonary nodules and hilar lesions detected on a CXR. Computed tomography (CT) was used as the reference standard. Materials and method: 78 patients with suspected non-calcified pulmonary nodules or hilar lesions on their CXR were included in the study. Two radiologists, blinded to the history and CT, prospectively analysed the CXR (PA and lateral) and the DTS images using a picture archiving and communication workstation and were asked to designate one of two outcomes: true intrapulmonary lesion or false intrapulmonary lesion. A CT of the chest performed within 4 weeks of the CXR was used as the reference standard. Inter-observer agreement and time to report the modalities

  20. Performance of a carbon nanotube field emission X-ray source array for stationary digital breast tomosynthesis

    Science.gov (United States)

    Gidcumb, Emily Morgan

    This work describes the performance of a stationary digital breast tomosynthesis (s-DBT) X-ray tube based on carbon nanotube (CNT) cathodes, and the imaging system developed around it. The s-DBT system has the potential to improve the detection and diagnosis of breast cancer over commercially available digital breast tomosynthesis (DBT) systems. DBT is growing in popularity in the United States, and around the world, as a potential replacement for traditional 2D mammography. The main advantage of DBT over 2D mammography lies in the pseudo-3D nature of the technique allowing the removal of overlapping breast tissue within the image. s-DBT builds on this advantage by removing blur from focal spot motion. Introductions to breast imaging techniques and the DBT modality are given, followed by an introduction to carbon nanotube field emission, the foundation of the s-DBT technology. Details of the s-DBT X-ray tube design and system integration are discussed including specific design parameters, system requirements, and the development process. Also included are summaries of the X-ray tube and system performance over time, and results from characterization measurements. Specific focus is given to the development and completion of a fabrication procedure for tungsten gate mesh, characterization of the CNT cathodes, and improving the system's spatial resolution with use of the focusing electrodes. The tungsten gate mesh is an essential component for extracting electrons from CNTs. A successful deep reactive ion etching fabrication procedure was developed, and the improved gate mesh allowed for higher cathode current and longer pulse widths to be employed in the s-DBT system. Characterization of the CNT cathodes revealed their high-current capacity and the ability to produce relatively long pulse widths, mimicking a 2D imaging modality. This work confirmed that the cathodes are well suited for the task of breast imaging, and explored possible improvements. Lastly, it was

  1. Value analysis of digital breast tomosynthesis for breast cancer screening in a commercially-insured US population

    Directory of Open Access Journals (Sweden)

    Bonafede MM

    2015-01-01

    Full Text Available Machaon M Bonafede,1 Vivek B Kalra,2 Jeffrey D Miller,1 Laurie L Fajardo3 1Truven Health Analytics, Cambridge, MA, 2Yale University School of Medicine, New Haven, CT, 3Department of Radiology, University of Iowa College of Medicine, Iowa City, IA, USA Purpose: The objective of this study was to conduct a value analysis of digital breast tomosynthesis (DBT for breast cancer screening among women enrolled in US commercial health insurance plans to assess the potential budget impact associated with the clinical benefits of DBT. Methods: An economic model was developed to estimate the system-wide financial impact of DBT as a breast cancer screening modality within a hypothetical US managed care plan with one million members. Two scenarios were considered for women in the health plan who undergo annual screening mammography, ie, full field digital mammography (FFDM and combined FFDM + DBT. The model focused on two main drivers of DBT value, ie, the capacity for DBT to reduce the number of women recalled for additional follow-up imaging and diagnostic services and the capacity of DBT to facilitate earlier diagnosis of cancer at less invasive stages where treatment costs are lower. Model inputs were derived from published sources and from analyses of the Truven Health MarketScan® Research Databases (2010–2012. Comparative clinical and economic outcomes were simulated for one year following screening and compared on an incremental basis. Results: Base-case analysis results show that 4,523 women in the hypothetical million member health plan who are screened using DBT avoid the use of follow-up services. The overall benefit of DBT was calculated at $78.53 per woman screened. Adjusting for a hypothetical $50 incremental cost of the DBT examination, this translates to $28.53 savings per woman screened, or $0.20 savings per member per month across the plan population and an overall cost savings to the plan of $2.4 million per year. Conclusion: The

  2. Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV

    Science.gov (United States)

    Fahringer, Timothy W.; Thurow, Brian S.

    2016-09-01

    A new algorithm for reconstruction of 3D particle fields from plenoptic image data is presented. The algorithm is based on the technique of computational refocusing with the addition of a post reconstruction filter to remove the out of focus particles. This new algorithm is tested in terms of reconstruction quality on synthetic particle fields as well as a synthetically generated 3D Gaussian ring vortex. Preliminary results indicate that the new algorithm performs as well as the MART algorithm (used in previous work) in terms of the reconstructed particle position accuracy, but produces more elongated particles. The major advantage to the new algorithm is the dramatic reduction in the computational cost required to reconstruct a volume. It is shown that the new algorithm takes 1/9th the time to reconstruct the same volume as MART while using minimal resources. Experimental results are presented in the form of the wake behind a cylinder at a Reynolds number of 185.

  3. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    OpenAIRE

    Nelson, Geoff; Yoon, Sungwon; Krishna, Ganesh; Wilfley, Brian; Fahrig, Rebecca

    2013-01-01

    Purpose: An improved method of image guidance for lung tumor biopsies could help reduce the high rate of false negatives. The aim of this work is to optimize the geometry of the scanning-beam digital tomography system (SBDX) for providing real-time 3D tomographic reconstructions for target verification. The unique geometry of the system requires trade-offs between patient dose, imaging field of view (FOV), and tomographic angle.

  4. Iterative reconstruction of volumetric particle distribution

    Science.gov (United States)

    Wieneke, Bernhard

    2013-02-01

    For tracking the motion of illuminated particles in space and time several volumetric flow measurement techniques are available like 3D-particle tracking velocimetry (3D-PTV) recording images from typically three to four viewing directions. For higher seeding densities and the same experimental setup, tomographic PIV (Tomo-PIV) reconstructs voxel intensities using an iterative tomographic reconstruction algorithm (e.g. multiplicative algebraic reconstruction technique, MART) followed by cross-correlation of sub-volumes computing instantaneous 3D flow fields on a regular grid. A novel hybrid algorithm is proposed here that similar to MART iteratively reconstructs 3D-particle locations by comparing the recorded images with the projections calculated from the particle distribution in the volume. But like 3D-PTV, particles are represented by 3D-positions instead of voxel-based intensity blobs as in MART. Detailed knowledge of the optical transfer function and the particle image shape is mandatory, which may differ for different positions in the volume and for each camera. Using synthetic data it is shown that this method is capable of reconstructing densely seeded flows up to about 0.05 ppp with similar accuracy as Tomo-PIV. Finally the method is validated with experimental data.

  5. Neuromagnetic source reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, P.S.; Mosher, J.C. [Los Alamos National Lab., NM (United States); Leahy, R.M. [University of Southern California, Los Angeles, CA (United States)

    1994-12-31

    In neuromagnetic source reconstruction, a functional map of neural activity is constructed from noninvasive magnetoencephalographic (MEG) measurements. The overall reconstruction problem is under-determined, so some form of source modeling must be applied. We review the two main classes of reconstruction techniques-parametric current dipole models and nonparametric distributed source reconstructions. Current dipole reconstructions use a physically plausible source model, but are limited to cases in which the neural currents are expected to be highly sparse and localized. Distributed source reconstructions can be applied to a wider variety of cases, but must incorporate an implicit source, model in order to arrive at a single reconstruction. We examine distributed source reconstruction in a Bayesian framework to highlight the implicit nonphysical Gaussian assumptions of minimum norm based reconstruction algorithms. We conclude with a brief discussion of alternative non-Gaussian approachs.

  6. Neuromagnetic source reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, P.S.; Mosher, J.C. [Los Alamos National Lab., NM (United States); Leahy, R.M. [University of Southern California, Los Angeles, CA (United States)

    1994-12-31

    In neuromagnetic source reconstruction, a functional map of neural activity is constructed from noninvasive magnetoencephalographic (MEG) measurements. The overall reconstruction problem is under-determined, so some form of source modeling must be applied. We review the two main classes of reconstruction techniques-parametric current dipole models and nonparametric distributed source reconstructions. Current dipole reconstructions use a physically plausible source model, but are limited to cases in which the neural currents are expected to be highly sparse and localized. Distributed source reconstructions can be applied to a wider variety of cases, but must incorporate an implicit source, model in order to arrive at a single reconstruction. We examine distributed source reconstruction in a Bayesian framework to highlight the implicit nonphysical Gaussian assumptions of minimum norm based reconstruction algorithms. We conclude with a brief discussion of alternative non-Gaussian approachs.

  7. Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis

    NARCIS (Netherlands)

    Bennink, Edwin; Oosterbroek, Jaap; Horsch, Alexander D.; Dankbaar, Jan Willem; Velthuis, BK; Viergever, Max A.; de Jong, Hugo W. A. M.

    2015-01-01

    Objectives Although CT scanners generally allow dynamic acquisition of thin slices (1 mm), thick slice (>= 5 mm) reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP) reconstruction may suffer less from partial volume effec

  8. A mathematical framework for including various sources of variability in a task-based assessment of digital breast tomosynthesis

    Science.gov (United States)

    Park, Subok; Badal, Andreu; Young, Stefano; Myers, Kyle J.

    2012-03-01

    For a rigorous x-ray imaging system optimization and evaluation, the need for exploring a large space of many different system parameters is immense. However, due to the high dimensionality of the problem, it is often infeasible to evaluate many system parameters in a laboratory setting. Therefore, it is useful to utilize computer simulation tools and analytical methods to narrow down to a much smaller space of system parameters and then validate the chosen optimal parameters by laboratory measurements. One great advantage of using the simulation and analytical methods is that the impact of various sources of variability on the system's diagnostic performance can be studied separately and collectively. Previously, we have demonstrated how to separate and analyze noise sources using covariance decomposition in a task-based approach to the assessment of digital breast tomosynthesis (DBT) systems in the absence of x-ray scatter and detector blur.1, 2 In this work, we analytically extend the previous work to include x-ray scatter and detector blur. With use of computer simulation, we also investigate the use of the convolution method for approximating the scatter images of structured phantoms in comparison to those computed via Monte Carlo. The extended method is comprehensive and can be used both for exploring a large parameter space in simulation and for validating optimal parameters, chosen from a simulation study, with laboratory measurements.

  9. Latent feature representation with depth directional long-term recurrent learning for breast masses in digital breast tomosynthesis

    Science.gov (United States)

    Kim, Dae Hoe; Kim, Seong Tae; Chang, Jung Min; Ro, Yong Man

    2017-02-01

    Characterization of masses in computer-aided detection systems for digital breast tomosynthesis (DBT) is an important step to reduce false positive (FP) rates. To effectively differentiate masses from FPs in DBT, discriminative mass feature representation is required. In this paper, we propose a new latent feature representation boosted by depth directional long-term recurrent learning for characterizing malignant masses. The proposed network is designed to encode mass characteristics in two parts. First, 2D spatial image characteristics of DBT slices are encoded as a slice feature representation by convolutional neural network (CNN). Then, depth directional characteristics of masses among the slice feature representations are encoded by the proposed depth directional long-term recurrent learning. In addition, to further improve the class discriminability of latent feature representation, we have devised three objective functions aiming to (a) minimize classification error, (b) minimize intra-class variation within the same class, and (c) preserve feature representation consistency in a central slice. Experimental results have demonstrated that the proposed latent feature representation achieves a higher level of classification performance in terms of receiver operating characteristic (ROC) curves and the area under the ROC curve values compared to performance with feature representation learned by conventional CNN and hand-crafted features.

  10. Assembly and evaluation of a training module and dataset with feedback for improved interpretation of digital breast tomosynthesis examinations

    Science.gov (United States)

    Gur, David; Zuley, Margarita L.; Sumkin, Jules H.; Hakim, Christiane M.; Chough, Denise M.; Lovy, Linda; Sobran, Cynthia; Logue, Durwin; Zheng, Bin; Klym, Amy H.

    2012-02-01

    The FDA recently approved Digital Breast Tomosynthesis (DBT) for use in screening for the early detection of breast cancer. However, MQSA qualification for interpreting DBT through training was noted as important. Performance issues related to training are largely unknown. Therefore, we assembled a unique computerized training module to assess radiologists' performances before and after using the training module. Seventy-one actual baseline mammograms (no priors) with FFDM and DBT images were assembled to be read before and after training with the developed module. Fifty examinations of FFDM and DBT images enriched with positive findings were assembled for the training module. Depicted findings were carefully reviewed, summarized, and entered into a specially designed training database where findings were identified by case number and synchronized to the display of the related FFDM plus DBT examinations on a clinical workstation. Readers reported any findings using screening BIRADS (0, 1, or 2) followed by instantaneous feedback of the verified truth. Six radiologists participated in the study and reader average sensitivity and specificity were compared before and after training. Average sensitivity improved and specificity remained relatively the same after training. Performance changes may be affected by disease prevalence in the training set.

  11. Analysis of the impact of digital tomosynthesis on the radiological investigation of patients with suspected pulmonary lesions on chest radiography

    Energy Technology Data Exchange (ETDEWEB)

    Quaia, Emilio; Baratella, Elisa; Cernic, Stefano; Lorusso, Arianna; Casagrande, Federica; Cioffi, Vincenzo; Cova, Maria Assunta [University of Trieste (Italy), Department of Radiology, Cattinara Hospital, Trieste (Italy)

    2012-09-15

    To assess the impact of digital tomosynthesis (DTS) on the radiological investigation of patients with suspected pulmonary lesions on chest radiography (CXR). Three hundred thirty-nine patients (200 male; age, 71.19 {+-} 11.9 years) with suspected pulmonary lesion(s) on CXR underwent DTS. Two readers prospectively analysed CXR and DTS images, and recorded their diagnostic confidence: 1 or 2 = definite or probable benign lesion or pseudolesion deserving no further diagnostic workup; 3 = indeterminate; 4 or 5 = probable or definite pulmonary lesion deserving further diagnostic workup by computed tomography (CT). Imaging follow-up by CT (n = 76 patients), CXR (n = 256) or histology (n = 7) was the reference standard. DTS resolved doubtful CXR findings in 256/339 (76 %) patients, while 83/339 (24 %) patients proceeded to CT. The mean interpretation time for DTS (mean {+-} SD, 220 {+-} 40 s) was higher (P < 0.05; Wilcoxon test) than for CXR (110 {+-} 30 s), but lower than CT (600 {+-} 150 s). Mean effective dose was 0.06 mSv (range 0.03-0.1 mSv) for CXR, 0.107 mSv (range 0.094-0.12 mSv) for DTS, and 3 mSv (range 2-4 mSv) for CT. DTS avoided the need for CT in about three-quarters of patients with a slight increase in the interpretation time and effective dose compared to CXR. (orig.)

  12. Changes in frequency of recall recommendations of examinations depicting cancer with the availability of either priors or digital breast tomosynthesis

    Science.gov (United States)

    Hakim, Christiane M.; Bandos, Andriy I.; Ganott, Marie A.; Catullo, Victor J.; Chough, Denise M.; Kelly, Amy E.; Shinde, Dilip D.; Sumkin, Jules H.; Wallace, Luisa P.; Nishikawa, Robert M.; Gur, David

    2016-03-01

    Performance changes in a binary environment when using additional information is affected only when changes in recommendations are made due to the additional information in question. In a recent study, we have shown that, contrary to general expectation, introducing prior examinations improved recall rates, but not sensitivity. In this study, we assessed cancer detection differences when prior examinations and/or digital breast tomosynthesis (DBT) were made available to the radiologist. We identified a subset of 21 cancer cases with differences in the number of radiologists who recalled these cases after reviewing either a prior examination or DBT. For the cases with differences in recommendations after viewing either priors or DBT, separately, we evaluated the total number of readers that changed their recommendations, regardless of the specific radiologist in question. Confidence intervals for the number of readers and a test for the hypothesis of no difference was performed using the non-parameteric bootstrap approach addressing both case and reader-related sources of variability by resampling cases and readers. With the addition of priors, there were 14 cancer cases (out of 15) where the number of "recalling radiologists" decreased. With the addition of DBT, the number of "recalling radiologists" decreased in only five cases (out of 15) while increasing in the remaining 9 cases. Unlike most new approaches to breast imaging DBT seems to improve both recall rates and cancer detection rates. Changes in recommendations were noted by all radiologists for all cancers by type, size, and breast density.

  13. Experimental investigation for determination of optimal X-ray beam tube voltages in a newly developed digital breast tomosynthesis system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Suk, E-mail: radiosugar@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Kim, Ye-Seul, E-mail: radiohesugar@gmail.com [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Choi, Young-Wook, E-mail: ywchoi@keri.re.kr [Korea Electrotechnology Research Institute (KERI), Ansan, Geongki 426-170 (Korea, Republic of); Choi, JaeGu, E-mail: jgchoi88@paran.com [Korea Electrotechnology Research Institute (KERI), Ansan, Geongki 426-170 (Korea, Republic of); Rhee, Yong-Chun, E-mail: ycrhee@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of)

    2014-11-01

    Our purpose was to investigate optimal tube voltages (kVp) for a newly developed digital breast tomosynthesis (DBT) process and to determine tube current–exposure time products (mA s) for the average glandular dose (AGD), which is similar to that of the two views in conventional mammography (CM). In addition, the optimal acquisition parameters for this system were compared with those of CM. The analysis was based on the contrast-to-noise ratio (CNR) from the simulated micro-calcifications on homogeneous phantoms, and the figure of merit (FOM) was retrieved from the CNR and AGD at X-ray tube voltages ranging from 24 to 40 kVp at intervals of 2 kV. The optimal kVp increased more than 2 kV with increasing glandularity for thicker (≥50 mm) breast phantoms. The optimal kVp for DBT was found to be 4–7 kV higher than that calculated for CM with breast phantoms thicker than 50 mm. This is likely due to the greater effect of noise and dose reduction by kVp increment when using the lower dose per projection in DBT. It is important to determine optimum acquisition conditions for a maximally effective DBT system. The results of our study provide useful information to further improve DBT for high quality imaging.

  14. Latent feature representation with depth directional long-term recurrent learning for breast masses in digital breast tomosynthesis.

    Science.gov (United States)

    Kim, Dae Hoe; Kim, Seong Tae; Chang, Jung Min; Ro, Yong Man

    2017-02-07

    Characterization of masses in computer-aided detection systems for digital breast tomosynthesis (DBT) is an important step to reduce false positive (FP) rates. To effectively differentiate masses from FPs in DBT, discriminative mass feature representation is required. In this paper, we propose a new latent feature representation boosted by depth directional long-term recurrent learning for characterizing malignant masses. The proposed network is designed to encode mass characteristics in two parts. First, 2D spatial image characteristics of DBT slices are encoded as a slice feature representation by convolutional neural network (CNN). Then, depth directional characteristics of masses among the slice feature representations are encoded by the proposed depth directional long-term recurrent learning. In addition, to further improve the class discriminability of latent feature representation, we have devised three objective functions aiming to (a) minimize classification error, (b) minimize intra-class variation within the same class, and (c) preserve feature representation consistency in a central slice. Experimental results have demonstrated that the proposed latent feature representation achieves a higher level of classification performance in terms of receiver operating characteristic (ROC) curves and the area under the ROC curve values compared to performance with feature representation learned by conventional CNN and hand-crafted features.

  15. Analysis of computer-aided detection techniques and signal characteristics for clustered microcalcifications on digital mammography and digital breast tomosynthesis

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.

    2016-10-01

    With IRB approval, digital breast tomosynthesis (DBT) images of human subjects were collected using a GE GEN2 DBT prototype system. Corresponding digital mammograms (DMs) of the same subjects were collected retrospectively from patient files. The data set contained a total of 237 views of DBT and equal number of DM views from 120 human subjects, each included 163 views with microcalcification clusters (MCs) and 74 views without MCs. The data set was separated into training and independent test sets. The pre-processing, object prescreening and segmentation, false positive reduction and clustering strategies for MC detection by three computer-aided detection (CADe) systems designed for DM, DBT, and a planar projection image generated from DBT were analyzed. Receiver operating characteristic (ROC) curves based on features extracted from microcalcifications and free-response ROC (FROC) curves based on scores from MCs were used to quantify the performance of the systems. Jackknife FROC (JAFROC) and non-parametric analysis methods were used to determine the statistical difference between the FROC curves. The difference between the CADDM and CADDBT systems when the false positive rate was estimated from cases without MCs did not reach statistical significance. The study indicates that the large search space in DBT may not be a limiting factor for CADe to achieve similar performance as that observed in DM.

  16. Identification of error making patterns in lesion detection on digital breast tomosynthesis using computer-extracted image features

    Science.gov (United States)

    Wang, Mengyu; Zhang, Jing; Grimm, Lars J.; Ghate, Sujata V.; Walsh, Ruth; Johnson, Karen S.; Lo, Joseph Y.; Mazurowski, Maciej A.

    2016-03-01

    Digital breast tomosynthesis (DBT) can improve lesion visibility by eliminating the issue of overlapping breast tissue present in mammography. However, this new modality likely requires new approaches to training. The issue of training in DBT is not well explored. We propose a computer-aided educational approach for DBT training. Our hypothesis is that the trainees' educational outcomes will improve if they are presented with cases individually selected to address their weaknesses. In this study, we focus on the question of how to select such cases. Specifically, we propose an algorithm that based on previously acquired reading data predicts which lesions will be missed by the trainee for future cases (i.e., we focus on false negative error). A logistic regression classifier was used to predict the likelihood of trainee error and computer-extracted features were used as the predictors. Reader data from 3 expert breast imagers was used to establish the ground truth and reader data from 5 radiology trainees was used to evaluate the algorithm performance with repeated holdout cross validation. Receiver operating characteristic (ROC) analysis was applied to measure the performance of the proposed individual trainee models. The preliminary experimental results for 5 trainees showed the individual trainee models were able to distinguish the lesions that would be detected from those that would be missed with the average area under the ROC curve of 0.639 (95% CI, 0.580-0.698). The proposed algorithm can be used to identify difficult cases for individual trainees.

  17. Nested Dissection Interface Reconstruction in Pececillo

    Energy Technology Data Exchange (ETDEWEB)

    Jibben, Zechariah Joel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    A nested dissection method for interface reconstruction in a volume tracking framework has been implemented in Pececillo. This method provides a significant improvement over the traditional onion-skin method, which does not appropriately handle T-shaped multimaterial intersections and dynamic contact lines present in additive manufacturing simulations. The resulting implementation lays the groundwork for further re- search in numerical contact angle estimates.

  18. Simultaneous Reconstruction and Segmentation with Class-Specific Priors

    DEFF Research Database (Denmark)

    Romanov, Mikhail

    for regularizing the reconstruction process. The thesis provides models and algorithms for simultaneous reconstruction and segmentation and their performance is empirically validated. Two method of simultaneous reconstruction and segmentation are described in the thesis. Also, a method for parameter selection......Studying the interior of objects using tomography often require an image segmentation, such that different material properties can be quantified. This can for example be volume or surface area. Segmentation is typically done as an image analysis step after the image has been reconstructed....... This thesis investigates computing the reconstruction and segmentation simultaneously. The advantage of this is that because the reconstruction and segmentation are computed jointly, reconstruction errors are not propagated to the segmentation step. Furthermore the segmentation procedure can be used...

  19. Autologous Fat Grafting for Whole Breast Reconstruction

    Directory of Open Access Journals (Sweden)

    Benjamin H. L. Howes, MBBS

    2014-03-01

    Full Text Available Summary: This is the first reported case of a patient who had a single-stage large-volume breast reconstruction with autologous fat grafting, following rotation flap approach (RoFA mastectomy. The purpose of this case study was to evaluate the viability of reconstruction of the breast by autologous fat grafting alone, in the context of RoFA mastectomy. The hypothesis was that there would be minimal interval loss of autologous fat on the whole breast reconstruction side. Right RoFA mastectomy was used for resection of an invasive primary breast cancer and resulted in the right breast skin envelope. Eleven months later, the patient underwent grafting of 400 ml of autologous fat into the skin envelope and underlying pectoralis major muscle. Outcome was assessed by using a validated 3D laser scan technique for quantitative breast volume measurement. Other outcome measures included the BREAST-Q questionnaire and 2D clinical photography. At 12-month follow-up, the patient was observed to have maintenance of volume of the reconstructed breast. Her BREAST-Q scores were markedly improved compared with before fat grafting, and there was observable improvement in shape, contour, and symmetry on 2D clinical photography. The 2 new techniques, RoFA mastectomy and large-volume single-stage autologous fat grafting, were used in combination to achieve a satisfactory postmastectomy breast reconstruction. Novel tools for measurement of outcome were the 3D whole-body laser scanner and BREAST-Q questionnaire. This case demonstrates the potential for the use of fat grafting for reconstruction. Outcomes in a larger patient populations are needed to confirm these findings.

  20. Volume Entropy

    CERN Document Server

    Astuti, Valerio; Rovelli, Carlo

    2016-01-01

    Building on a technical result by Brunnemann and Rideout on the spectrum of the Volume operator in Loop Quantum Gravity, we show that the dimension of the space of the quadrivalent states --with finite-volume individual nodes-- describing a region with total volume smaller than $V$, has \\emph{finite} dimension, bounded by $V \\log V$. This allows us to introduce the notion of "volume entropy": the von Neumann entropy associated to the measurement of volume.

  1. DD4hep Based Event Reconstruction

    CERN Document Server

    AUTHOR|(SzGeCERN)683529; Frank, Markus; Gaede, Frank-Dieter; Hynds, Daniel; Lu, Shaojun; Nikiforou, Nikiforos; Petric, Marko; Simoniello, Rosa; Voutsinas, Georgios Gerasimos

    The DD4HEP detector description toolkit offers a flexible and easy-to-use solution for the consistent and complete description of particle physics detectors in a single system. The sub-component DDREC provides a dedicated interface to the detector geometry as needed for event reconstruction. With DDREC there is no need to define an additional, separate reconstruction geometry as is often done in HEP, but one can transparently extend the existing detailed simulation model to be also used for the reconstruction. Based on the extension mechanism of DD4HEP, DDREC allows one to attach user defined data structures to detector elements at all levels of the geometry hierarchy. These data structures define a high level view onto the detectors describing their physical properties, such as measurement layers, point resolutions, and cell sizes. For the purpose of charged particle track reconstruction, dedicated surface objects can be attached to every volume in the detector geometry. These surfaces provide the measuremen...

  2. DD4hep Based Event Reconstruction

    CERN Document Server

    Sailer, Andre; Gaede, Frank-Dieter; Hynds, Daniel; Lu, Shaojun; Nikiforou, Nikiforos; Petric, Marko; Simoniello, Rosa; Voutsinas, Georgios Gerasimos

    The DD4HEP detector description toolkit offers a flexible and easy-to-use solution for the consistent and complete description of particle physics detectors in a single system. The sub-component DDREC provides a dedicated interface to the detector geometry as needed for event reconstruction. With DDREC there is no need to define an additional, separate reconstruction geometry as is often done in HEP, but one can transparently extend the existing detailed simulation model to be also used for the reconstruction. Based on the extension mechanism of DD4HEP, DDREC allows one to attach user defined data structures to detector elements at all levels of the geometry hierarchy. These data structures define a high level view onto the detectors describing their physical properties, such as measurement layers, point resolutions, and cell sizes. For the purpose of charged particle track reconstruction, dedicated surface objects can be attached to every volume in the detector geometry. These surfaces provide the measuremen...

  3. Economics of abdominal wall reconstruction.

    Science.gov (United States)

    Bower, Curtis; Roth, J Scott

    2013-10-01

    The economic aspects of abdominal wall reconstruction are frequently overlooked, although understandings of the financial implications are essential in providing cost-efficient health care. Ventral hernia repairs are frequently performed surgical procedures with significant economic ramifications for employers, insurers, providers, and patients because of the volume of procedures, complication rates, the significant rate of recurrence, and escalating costs. Because biological mesh materials add significant expense to the costs of treating complex abdominal wall hernias, the role of such costly materials needs to be better defined to ensure the most cost-efficient and effective treatments for ventral abdominal wall hernias.

  4. Breast reconstruction after mastectomy

    Directory of Open Access Journals (Sweden)

    Daniel eSchmauss

    2016-01-01

    Full Text Available Breast cancer is the leading cause of cancer death in women worldwide. Its surgical approach has become less and less mutilating in the last decades. However, the overall number of breast reconstructions has significantly increased lately. Nowadays breast reconstruction should be individualized at its best, first of all taking into consideration oncological aspects of the tumor, neo-/adjuvant treatment and genetic predisposition, but also its timing (immediate versus delayed breast reconstruction, as well as the patient’s condition and wish. This article gives an overview over the various possibilities of breast reconstruction, including implant- and expander-based reconstruction, flap-based reconstruction (vascularized autologous tissue, the combination of implant and flap, reconstruction using non-vascularized autologous fat, as well as refinement surgery after breast reconstruction.

  5. Inverse problem approaches for digital hologram reconstruction

    Science.gov (United States)

    Fournier, Corinne; Denis, Loic; Thiebaut, Eric; Fournel, Thierry; Seifi, Mozhdeh

    2011-06-01

    Digital holography (DH) is being increasingly used for its time-resolved three-dimensional (3-D) imaging capabilities. A 3-D volume can be numerically reconstructed from a single 2-D hologram. Applications of DH range from experimental mechanics, biology, and fluid dynamics. Improvement and characterization of the 3-D reconstruction algorithms is a current issue. Over the past decade, numerous algorithms for the analysis of holograms have been proposed. They are mostly based on a common approach to hologram processing: digital reconstruction based on the simulation of hologram diffraction. They suffer from artifacts intrinsic to holography: twin-image contamination of the reconstructed images, image distortions for objects located close to the hologram borders. The analysis of the reconstructed planes is therefore limited by these defects. In contrast to this approach, the inverse problems perspective does not transform the hologram but performs object detection and location by matching a model of the hologram. Information is thus extracted from the hologram in an optimal way, leading to two essential results: an improvement of the axial accuracy and the capability to extend the reconstructed field beyond the physical limit of the sensor size (out-of-field reconstruction). These improvements come at the cost of an increase of the computational load compared to (typically non iterative) classical approaches.

  6. Reoperative midface reconstruction.

    Science.gov (United States)

    Acero, Julio; García, Eloy

    2011-02-01

    Reoperative reconstruction of the midface is a challenging issue because of the complexity of this region and the severity of the aesthetic and functional sequela related to the absence or failure of a primary reconstruction. The different situations that can lead to the indication of a reoperative reconstructive procedure after previous oncologic ablative procedures in the midface are reviewed. Surgical techniques, anatomic problems, and limitations affecting the reoperative reconstruction in this region of the head and neck are discussed.

  7. Surfaces, Digitisations and Reconstructions

    DEFF Research Database (Denmark)

    2015-01-01

    We present a new digital reconstruction of r-regular sets in three-dimensional Euclidean space. We introduce a vector field and analyse the relation between the topologies of the boundaries of the r-regular set and its reconstruction. This reconstruction can be carried out faster than prior models...... based on the same digitisation, making it attractive for computing....

  8. Facial Reconstruction and Rehabilitation.

    Science.gov (United States)

    Guntinas-Lichius, Orlando; Genther, Dane J; Byrne, Patrick J

    2016-01-01

    Extracranial infiltration of the facial nerve by salivary gland tumors is the most frequent cause of facial palsy secondary to malignancy. Nevertheless, facial palsy related to salivary gland cancer is uncommon. Therefore, reconstructive facial reanimation surgery is not a routine undertaking for most head and neck surgeons. The primary aims of facial reanimation are to restore tone, symmetry, and movement to the paralyzed face. Such restoration should improve the patient's objective motor function and subjective quality of life. The surgical procedures for facial reanimation rely heavily on long-established techniques, but many advances and improvements have been made in recent years. In the past, published experiences on strategies for optimizing functional outcomes in facial paralysis patients were primarily based on small case series and described a wide variety of surgical techniques. However, in the recent years, larger series have been published from high-volume centers with significant and specialized experience in surgical and nonsurgical reanimation of the paralyzed face that have informed modern treatment. This chapter reviews the most important diagnostic methods used for the evaluation of facial paralysis to optimize the planning of each individual's treatment and discusses surgical and nonsurgical techniques for facial rehabilitation based on the contemporary literature.

  9. Should I Have Breast Reconstruction?

    Science.gov (United States)

    ... Reconstruction Surgery Breast Cancer Breast Reconstruction Surgery Should I Get Breast Reconstruction Surgery? Women who have surgery ... It usually responds well to treatment. What if I choose not to have breast reconstruction? Many women ...

  10. Fully Automatic 3D Reconstruction of Histological Images

    CERN Document Server

    Bagci, Ulas

    2009-01-01

    In this paper, we propose a computational framework for 3D volume reconstruction from 2D histological slices using registration algorithms in feature space. To improve the quality of reconstructed 3D volume, first, intensity variations in images are corrected by an intensity standardization process which maps image intensity scale to a standard scale where similar intensities correspond to similar tissues. Second, a subvolume approach is proposed for 3D reconstruction by dividing standardized slices into groups. Third, in order to improve the quality of the reconstruction process, an automatic best reference slice selection algorithm is developed based on an iterative assessment of image entropy and mean square error of the registration process. Finally, we demonstrate that the choice of the reference slice has a significant impact on registration quality and subsequent 3D reconstruction.

  11. [Breast reconstruction after mastectomy].

    Science.gov (United States)

    Ho Quoc, C; Delay, E

    2013-02-01

    The mutilating surgery for breast cancer causes deep somatic and psychological sequelae. Breast reconstruction can mitigate these effects and permit the patient to help rebuild their lives. The purpose of this paper is to focus on breast reconstruction techniques and on factors involved in breast reconstruction. The methods of breast reconstruction are presented: objectives, indications, different techniques, operative risks, and long-term monitoring. Many different techniques can now allow breast reconstruction in most patients. Clinical cases are also presented in order to understand the results we expect from a breast reconstruction. Breast reconstruction provides many benefits for patients in terms of rehabilitation, wellness, and quality of life. In our mind, breast reconstruction should be considered more as an opportunity and a positive choice (the patient can decide to do it), than as an obligation (that the patient would suffer). The consultation with the surgeon who will perform the reconstruction is an important step to give all necessary informations. It is really important that the patient could speak again with him before undergoing reconstruction, if she has any doubt. The quality of information given by medical doctors is essential to the success of psychological intervention. This article was written in a simple, and understandable way to help gynecologists giving the best information to their patients. It is maybe also possible to let them a copy of this article, which would enable them to have a written support and would facilitate future consultation with the surgeon who will perform the reconstruction.

  12. Task-Based Modeling of a 5k Ultra-High-Resolution Medical Imaging System for Digital Breast Tomosynthesis.

    Science.gov (United States)

    Zhao, Chumin; Kanicki, Jerzy

    2017-09-01

    High-resolution, low-noise X-ray detectors based on CMOS active pixel sensor (APS) technology have demonstrated superior imaging performance for digital breast tomosynthesis (DBT). This paper presents a task-based model for a high-resolution medical imaging system to evaluate its ability to detect simulated microcalcifications and masses as lesions for breast cancer. A 3-D cascaded system analysis for a 50- [Formula: see text] pixel pitch CMOS APS X-ray detector was integrated with an object task function, a medical imaging display model, and the human eye contrast sensitivity function to calculate the detectability index and area under the ROC curve (AUC). It was demonstrated that the display pixel pitch and zoom factor should be optimized to improve the AUC for detecting small microcalcifications. In addition, detector electronic noise of smaller than 300 e(-) and a high display maximum luminance (>1000 cd/cm (2)) are desirable to distinguish microcalcifications of [Formula: see text] in size. For low contrast mass detection, a medical imaging display with a minimum of 12-bit gray levels is recommended to realize accurate luminance levels. A wide projection angle range of greater than ±30° in combination with the image gray level magnification could improve the mass detectability especially when the anatomical background noise is high. On the other hand, a narrower projection angle range below ±20° can improve the small, high contrast object detection. Due to the low mass contrast and luminance, the ambient luminance should be controlled below 5 cd/ [Formula: see text]. Task-based modeling provides important firsthand imaging performance of the high-resolution CMOS-based medical imaging system that is still at early stage development for DBT. The modeling results could guide the prototype design and clinical studies in the future.

  13. Digital tomosynthesis as a new diagnostic tool for evaluation of spine damage in patients with ankylosing spondylitis.

    Science.gov (United States)

    Joo, Young Bin; Kim, Tae-Hwan; Park, Jina; Joo, Kyung Bin; Song, Yoonah; Lee, Seunghun

    2017-02-01

    We aimed to compare digital tomosynthesis (DTS) with radiographs for the assessment of spinal bone damage in patients with ankylosing spondylitis (AS). The study comprised 68 patients with AS who underwent both DTS and radiographs of the cervical and lumbar spine on the same day. Spinal bone damage was assessed using the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS) and the presence of facet joint damage. The Wilcoxon signed-rank test and McNemar's test were used to compare spinal bone damage between the two modalities. In 68 AS patients with mean 4.5 years of disease duration, the mean mSASSS was 11.7 ± 11.3 with radiographs and 13.1 ± 11.5 with DTS (p = 0.001). A grade 1 (erosion, sclerosis, or squaring) score in the mSASSS system was higher with DTS than with radiographs (p = 0.001), but grade 2 (syndesmophyte) and grade 3 (bridge) scores (p > 0.005 each) were not. In particular, the grade 1 score was higher with DTS than with radiographs at the cervicothoracic (p < 0.001) and thoracolumbar (p = 0.003) junctions. With regard to facet joint damage, erosion/sclerosis of facet joints was better depicted by DTS than by radiographs in the cervical (54.4 vs. 22.1%, p < 0.001) and lumbar spine (72.1 vs. 11.8%, p < 0.001). DTS depicted more subtle damage of spinal vertebrae in patients with AS than radiographs did. Moreover, erosion/sclerosis of facet joints was better detected with DTS than with radiographs.

  14. Design and characterization of a low profile NaI(Tl) gamma camera for dedicated molecular breast tomosynthesis

    Science.gov (United States)

    Polemi, Andrew M.; Niestroy, Justin; Stolin, Alexander; Jaliparthi, Gangadhar; Wojcik, Randy; Majewski, Stan; Williams, Mark B.

    2016-10-01

    A new low profile gamma camera is being developed for use in a dual modality (x-ray transmission and gamma-ray emission) tomosynthesis system. Compared to the system's current gamma camera, the new camera has a larger field of view ( 20x25 cm) to better match the system's x-ray detector ( 23x29 cm), and is thinner (7.3 cm instead of 10.3 cm) permitting easier camera positioning near the top surface of the breast. It contains a pixelated NaI(Tl) array with a crystal pitch of 2.2 mm, which is optically coupled to a 4x5 array of Hamamatsu H8500C position sensitive photomultiplier tubes (PSPMTs). The manufacturer-provided connector board of each PSPMT was replaced with a custom designed board that a) reduces the 64 channel readout of the 8x8 electrode anode of the H8500C to 16 channels (8X and 8Y), b) performs gain non-uniformity correction, and c) reduces the height of the PSPMT-base assembly, 37.7 mm to 27.87 mm. The X and Y outputs of each module are connected in a lattice framework, and at two edges of this lattice, the X and Y outputs (32Y by 40X) are coupled to an amplifier/output board whose signals are fed via shielded ribbon cables to external ADCs. The camera uses parallel hole collimation. We describe the measured camera imaging performance, including intrinsic and extrinsic spatial resolution, detection sensitivity, uniformity of response, energy resolution for 140 keV gamma rays, and geometric linearity.

  15. Cosmic Tidal Reconstruction

    CERN Document Server

    Zhu, Hong-Ming; Yu, Yu; Er, Xinzhong; Chen, Xuelei

    2015-01-01

    The gravitational coupling of a long wavelength tidal field with small scale density fluctuations leads to anisotropic distortions of the locally measured small scale matter correlation function. Since the local correlation function is statistically isotropic in the absence of such tidal interactions, the tidal distortions can be used to reconstruct the long wavelength tidal field and large scale density field in analogy with the cosmic microwave background lensing reconstruction. In this paper we present in detail a formalism for the cosmic tidal reconstruction and test the reconstruction in numerical simulations. We find that the density field on large scales can be reconstructed with good accuracy and the cross correlation coefficient between the reconstructed density field and the original density field is greater than 0.9 on large scales ($k\\lesssim0.1h/\\mathrm{Mpc}$). This is useful in the 21cm intensity mapping survey, where the long wavelength radial modes are lost due to foreground subtraction proces...

  16. Ptychographic ultrafast pulse reconstruction

    CERN Document Server

    Spangenberg, D; Brügmann, M H; Feurer, T

    2014-01-01

    We demonstrate a new ultrafast pulse reconstruction modality which is somewhat reminiscent of frequency resolved optical gating but uses a modified setup and a conceptually different reconstruction algorithm that is derived from ptychography. Even though it is a second order correlation scheme it shows no time ambiguity. Moreover, the number of spectra to record is considerably smaller than in most other related schemes which, together with a robust algorithm, leads to extremely fast convergence of the reconstruction.

  17. Comparison between 3D-CTA with volume reconstruction and 3D-DSA in diagnosis of acute rupture of minute cerebral aneurysms%容积重建成像3D-CTA与3D-DSA在诊断急性破裂性颅内微小动脉瘤的研究

    Institute of Scientific and Technical Information of China (English)

    曾少建; 舒航; 陈光忠; 李昭杰; 詹升全; 林晓风; 周东

    2010-01-01

    Objective To evaluate the diagnostic value of three dimensional computed tomographic angiog-raphy (3D-CTA) with volume reconstruction (VR) and 3D digital subtraction angiography (3D-DSA) in diagnosis of minimal cerebral aneurysms. Method A total of 174 patients in Guangdong General Hospital, May 2007 to November 2008, of subarachnoid hemorrhage were checked upon the original imaging obtained by GE' s Light Speed Plus 64 volume spiral CT scanner at first, and then by the means of using Volume rendering (VR) three dimen-sional reconstruction and assisting the use of multiple planar reconstruction (MPR) to complete the 3D-DSA imag-ing at last. The volume rendering (VR) was assessed. Results Eleven very small cerebral aneurysms in 174 pa-tients with subarachnoid hemorrhage were diagnosed by CTA and 10 of them by 3D-DSA. Finally, all of 11 patients were confirmed by intracranial operations. The 3D-CTA (VR) clearly showed the shape and size of the intracranial aneurysms and their relationship to adjacent structures as well. There was no significant difference in the diagnosis of very small cerebral aneurysms between 3D-DSA and 3D-CTA(VR). Conclusions The 3D-CTA (VR) is a re-liable and rapid non-invasive diagnostic device for very small intracranial aneurysms. For the emergency operation,3D-CTA (VR) can provide more detailed imaging information to help the development of treatment strategy.%目的 对比研究容积重建成像三维CT血管造影与三维DSA(3D-DSA)在颅内微小动脉瘤诊疗中的临床应用价值.方法 对广东省人民医院2007年5月至2008年11月收治的174例蛛网膜下腔出血患者首先采用采用GE公司的Light Speed Plus 64排容积螺旋CT机获得原始图像,采用容积重建成像技术(VR)进行三维重建.并辅助运用多轴面重建(MPR),然后再行全脑血管造影术,并行3D-DSA成像.结果 本组174例蛛网膜下腔出血患者诊断为颅内微小动脉瘤11例,均经开颅手术证实;其中CTA诊断11例,3D

  18. Bayesian Cosmic Web Reconstruction: BARCODE for Clusters

    CERN Document Server

    Bos, E G Patrick; Kitaura, Francisco; Cautun, Marius

    2016-01-01

    We describe the Bayesian BARCODE formalism that has been designed towards the reconstruction of the Cosmic Web in a given volume on the basis of the sampled galaxy cluster distribution. Based on the realization that the massive compact clusters are responsible for the major share of the large scale tidal force field shaping the anisotropic and in particular filamentary features in the Cosmic Web. Given the nonlinearity of the constraints imposed by the cluster configurations, we resort to a state-of-the-art constrained reconstruction technique to find a proper statistically sampled realization of the original initial density and velocity field in the same cosmic region. Ultimately, the subsequent gravitational evolution of these initial conditions towards the implied Cosmic Web configuration can be followed on the basis of a proper analytical model or an N-body computer simulation. The BARCODE formalism includes an implicit treatment for redshift space distortions. This enables a direct reconstruction on the ...

  19. Breast reconstruction with the denervated latissimus dorsi musculocutaneous flap.

    Science.gov (United States)

    Szychta, Pawel; Butterworth, Mark; Dixon, Mike; Kulkarni, Dhananjay; Stewart, Ken; Raine, Cameron

    2013-10-01

    To analyze clinical implications of the thoracodorsal nerve division in the latissimus dorsi musculocutaneous flap breast reconstruction. Prospective cohort study was conducted on 29 patients. Breast reconstruction with latissimus dorsi musculocutaneous flap was performed unilaterally in 20 patients or bilaterally in 9 women (38 breasts). Thoracodorsal nerve was divided during reconstruction of 20 breasts (group 1) and was preserved for 18 breasts (group 2). Height, width, projection, area of the covering skin and volume of the reconstructed and healthy breasts were measured on the 3D images of the anterior chest wall, taken 6 weeks and 6 months postoperatively with the Di3D 3D camera. Data regarding tissue consistency, painfulness and animation of the reconstructed breast, symmetry of both breasts and overall satisfaction after the surgery were collected at 6 months. The reconstructed and healthy breasts decreased in volume in group 1 (-45.85 cm(3) ± 48.41 cm(3), p = 0.0004; -29.13 cm(3) ± 14.98 cm(3), p = 0.0009) and in group 2 (-31.5 cm(3) ± 25.35 cm(3), p = 0.0001; -15.4 cm(3) ± 21.96 cm(3), p = 0.0537). There were no differences in decrease in volume between groups 1 and 2 (p > 0.05). Respondents in group 1 in comparison to group 2 showed similar satisfaction of the tissue consistency of the reconstructed breast (p > 0.05) and the level of symmetry between both breasts (p > 0.05), gave lower scores for painfulness (p reconstructed breast (p = 0.0001). We suggest that division of the thoracodorsal nerve during latissimus dorsi musculocutaneous flap breast reconstruction is a useful undertaking to minimize unnatural animation of the reconstructed breast. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Multidimensional seismic data reconstruction using tensor analysis

    Science.gov (United States)

    Kreimer, Nadia

    Exploration seismology utilizes the seismic wavefield for prospecting oil and gas. The seismic reflection experiment consists on deploying sources and receivers in the surface of an area of interest. When the sources are activated, the receivers measure the wavefield that is reflected from different subsurface interfaces and store the information as time-series called traces or seismograms. The seismic data depend on two source coordinates, two receiver coordinates and time (a 5D volume). Obstacles in the field, logistical and economical factors constrain seismic data acquisition. Therefore, the wavefield sampling is incomplete in the four spatial dimensions. Seismic data undergoes different processes. In particular, the reconstruction process is responsible for correcting sampling irregularities of the seismic wavefield. This thesis focuses on the development of new methodologies for the reconstruction of multidimensional seismic data. This thesis examines techniques based on tensor algebra and proposes three methods that exploit the tensor nature of the seismic data. The fully sampled volume is low-rank in the frequency-space domain. The rank increases when we have missing traces and/or noise. The methods proposed perform rank reduction on frequency slices of the 4D spatial volume. The first method employs the Higher-Order Singular Value Decomposition (HOSVD) immersed in an iterative algorithm that reinserts weighted observations. The second method uses a sequential truncated SVD on the unfoldings of the tensor slices (SEQ-SVD). The third method formulates the rank reduction problem as a convex optimization problem. The measure of the rank is replaced by the nuclear norm of the tensor and the alternating direction method of multipliers (ADMM) minimizes the cost function. All three methods have the interesting property that they are robust to curvature of the reflections, unlike many reconstruction methods. Finally, we present a comparison between the methods

  1. Delayed breast implant reconstruction

    DEFF Research Database (Denmark)

    Hvilsom, Gitte B.; Hölmich, Lisbet R.; Steding-Jessen, Marianne;

    2012-01-01

    We evaluated the association between radiation therapy and severe capsular contracture or reoperation after 717 delayed breast implant reconstruction procedures (288 1- and 429 2-stage procedures) identified in the prospective database of the Danish Registry for Plastic Surgery of the Breast during...... reconstruction approaches other than implants should be seriously considered among women who have received radiation therapy....

  2. Breast reconstruction - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100156.htm Breast reconstruction - series—Indication, part 1 To use the sharing ... A.M. Editorial team. Related MedlinePlus Health Topics Breast Reconstruction A.D.A.M., Inc. is accredited by ...

  3. CLARA: CLAS12 Reconstruction and Analysis Framework

    Science.gov (United States)

    Gyurgyan, V.; Mancilla, S.; Oyarzún, R.

    2016-10-01

    In this paper we present SOA based CLAS12 event Reconstruction and Analyses (CLARA) framework. CLARA design focus is on two main traits: real-time data stream processing, and service-oriented architecture (SOA) in a flow based programming (FBP) paradigm. Data driven and data centric architecture of CLARA presents an environment for developing agile, elastic, multilingual data processing applications. The CLARA framework presents solutions capable of processing large volumes of data interactively and substantially faster than batch systems.

  4. CLARA: CLAS12 Reconstruction and Analysis Framework

    Energy Technology Data Exchange (ETDEWEB)

    Gyurjyan, Vardan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Matta, Sebastian Mancilla [Santa Maria U., Valparaiso, Chile; Oyarzun, Ricardo [Santa Maria U., Valparaiso, Chile

    2016-11-01

    In this paper we present SOA based CLAS12 event Reconstruction and Analyses (CLARA) framework. CLARA design focus is on two main traits: real-time data stream processing, and service-oriented architecture (SOA) in a flow based programming (FBP) paradigm. Data driven and data centric architecture of CLARA presents an environment for developing agile, elastic, multilingual data processing applications. The CLARA framework presents solutions capable of processing large volumes of data interactively and substantially faster than batch systems.

  5. Nested Dissection Interface Reconstruction in Pececillo

    Energy Technology Data Exchange (ETDEWEB)

    Jibben, Zechariah Joel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Carlson, Neil N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Francois, Marianne M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division

    2016-09-13

    A nested dissection method for interface reconstruction in a volume tracking framework has been implemented in Pececillo, a mini-app for Truchas, which is the ASC code for casting and additive manufacturing. This method provides a significant improvement over the traditional onion-skin method, which does not appropriately handle T-shaped multimaterial intersections and dynamic contact lines present in additive manufacturing simulations. The resulting implementation lays the groundwork for further research in contact angle estimates and surface tension calculations.

  6. Accuracy of Digital Breast Tomosynthesis for Depicting Breast Cancer Subgroups in a UK Retrospective Reading Study (TOMMY Trial).

    Science.gov (United States)

    Gilbert, Fiona J; Tucker, Lorraine; Gillan, Maureen G C; Willsher, Paula; Cooke, Julie; Duncan, Karen A; Michell, Michael J; Dobson, Hilary M; Lim, Yit Yoong; Suaris, Tamara; Astley, Susan M; Morrish, Oliver; Young, Kenneth C; Duffy, Stephen W

    2015-12-01

    To compare the diagnostic performance of two-dimensional (2D) mammography, 2D mammography plus digital breast tomosynthesis (DBT), and synthetic 2D mammography plus DBT in depicting malignant radiographic features. In this multicenter, multireader, retrospective reading study (the TOMMY trial), after written informed consent was obtained, 8869 women (age range, 29-85 years; mean, 56 years) were recruited from July 2011 to March 2013 in an ethically approved study. From these women, a reading dataset of 7060 cases was randomly allocated for independent blinded review of (a) 2D mammography images, (b) 2D mammography plus DBT images, and (c) synthetic 2D mammography plus DBT images. Reviewers had no access to results of previous examinations. Overall sensitivities and specificities were calculated for younger women and those with dense breasts. Overall sensitivity was 87% for 2D mammography, 89% for 2D mammography plus DBT, and 88% for synthetic 2D mammography plus DBT. The addition of DBT was associated with a 34% increase in the odds of depicting cancer (odds ratio [OR] = 1.34, P = .06); however, this level did not achieve significance. For patients aged 50-59 years old, sensitivity was significantly higher (P = .01) for 2D mammography plus DBT than it was for 2D mammography. For those with breast density of 50% or more, sensitivity was 86% for 2D mammography compared with 93% for 2D mammography plus DBT (P = .03). Specificity was 57% for 2D mammography, 70% for 2D mammography plus DBT, and 72% for synthetic 2D mammography plusmDBT. Specificity was significantly higher than 2D mammography (P < .001in both cases) and was observed for all subgroups (P < .001 for all cases). The addition of DBT increased the sensitivity of 2D mammography in patients with dense breasts and the specificity of 2D mammography for all subgroups. The use of synthetic 2D DBT demonstrated performance similar to that of standard 2D mammography with DBT. DBT is of potential benefit to screening

  7. Design and application of a structured phantom for detection performance comparison between breast tomosynthesis and digital mammography

    Science.gov (United States)

    Cockmartin, L.; Marshall, N. W.; Zhang, G.; Lemmens, K.; Shaheen, E.; Van Ongeval, C.; Fredenberg, E.; Dance, D. R.; Salvagnini, E.; Michielsen, K.; Bosmans, H.

    2017-02-01

    This paper introduces and applies a structured phantom with inserted target objects for the comparison of detection performance of digital breast tomosynthesis (DBT) against 2D full field digital mammography (FFDM). The phantom consists of a 48 mm thick breast-shaped polymethyl methacrylate (PMMA) container filled with water and PMMA spheres of different diameters. Three-dimensionally (3D) printed spiculated masses (diameter range: 3.8-9.7 mm) and non-spiculated masses (1.6-6.2 mm) along with microcalcifications (90-250 µm) were inserted as targets. Reproducibility of the phantom application was studied on a single system using 30 acquisitions. Next, the phantom was evaluated on five different combined FFDM & DBT systems and target detection was compared for FFDM and DBT modes. Ten phantom images in both FFDM and DBT modes were acquired on these 5 systems using automatic exposure control. Five readers evaluated target detectability. Images were read with the four-alternative forced-choice (4-AFC) paradigm, with always one segment including a target and 3 normal background segments. The percentage of correct responses (PC) was assessed based on 10 trials of each reader for each object type, size and imaging modality. Additionally, detection threshold diameters at 62.5 PC were assessed via non-linear regression fitting of the psychometric curve. The reproducibility study showed no significant differences in PC values. Evaluation of target detection in FFDM showed that microcalcification detection thresholds ranged between 110 and 118 µm and were similar compared to the detection in DBT (range of 106-158 µm). In DBT, detection of both mass types increased significantly (p  =  0.0001 and p  =  0.0002 for non-spiculated and spiculated masses respectively) compared to FFDM, achieving almost 100% detection for all spiculated mass diameters. In conclusion, a structured phantom with inserted targets was able to show evidence for detectability

  8. Organ volume estimation using SPECT

    CERN Document Server

    Zaidi, H

    1996-01-01

    Knowledge of in vivo thyroid volume has both diagnostic and therapeutic importance and could lead to a more precise quantification of absolute activity contained in the thyroid gland. In order to improve single-photon emission computed tomography (SPECT) quantitation, attenuation correction was performed according to Chang's algorithm. The dual-window method was used for scatter subtraction. We used a Monte Carlo simulation of the SPECT system to accurately determine the scatter multiplier factor k. Volume estimation using SPECT was performed by summing up the volume elements (voxels) lying within the contour of the object, determined by a fixed threshold and the gray level histogram (GLH) method. Thyroid phantom and patient studies were performed and the influence of 1) fixed thresholding, 2) automatic thresholding, 3) attenuation, 4) scatter, and 5) reconstruction filter were investigated. This study shows that accurate volume estimation of the thyroid gland is feasible when accurate corrections are perform...

  9. Comparison of effects between MRI imaging and Archimedes method for measurement of breast volume on immediate implant breast reconstruction%磁共振成像与阿基米德法测量乳房体积在即刻假体乳房再造中的效果比较

    Institute of Scientific and Technical Information of China (English)

    牛兆河; 徐凤磊; 王海波

    2015-01-01

    Objective To conduct the comparative study of the measurement of breast volume by MRI imaging and Archimedes method in immediate implant breast reconstruction.Methods A total of 44 patients who were diagnosed as breast cancer and undergone immediate implant breast reconstruction were selected from March 2011 to March 2013.22 cases were guided to select suitable breast implants by measuring the breast volume and correlative radial line based on MRI imaging.Control group containing 22 cases were guided to select breast implants by traditional Archimedes method and clinical experience.3 breast surgeons and plastic surgeons who did not participate in the operation were selected to judge the postoperative breast shape.Data of two groups were analyzed by using chisquare test.Results All the patients recovered smoothly after operation without infection,and the wound healed well.The breast shape was evaluated.21 cases (95.5 %) were good in test group and 1 case (4.5%) was poor;16 cases (72.7%) were good in control group and 6 cases (27.3) were poor.The comparison between the test group and control group had statistical significance (P<0.05).Conclusions The method to measure the breast volume and correlative radial line based on MRI imaging has important values for selecting breast implants in immediate implant breast reconstruction.It could be extensively used in clinical practice.%目的 探讨磁共振成像(MRI)与阿基米德法测量乳房体积在即刻假体乳房再造中的临床效果.方法 选择青岛大学附属医院乳腺中心2011年3月至2013年3月行即刻假体乳房再造的乳腺癌患者44例.其中试验组22例,采用基于MRI的乳房体积及相关径线测量方法,指导选择合适的乳房假体;对照组22例,采用传统的阿基米德法及临床经验来选择乳房假体.选择3名未参与手术的乳腺外科及整形外科医师对两组患者术后乳房形态进行评价.结果 44例患者术后恢复均顺利,无1例并

  10. A reconstruction method of porous media integrating soft data with hard data

    Institute of Scientific and Technical Information of China (English)

    LU DeTang; ZHANG Ting; YANG JiaQing; LI DaoLun; KONG XiangYan

    2009-01-01

    The three-dimensional reconstruction of porous media is of great significance to the research of mechanisms of fluid flow. The real three-dimensional structural data of porous media are helpful to describe the irregular topologic structures in porous media. The reconstruction of porous media will be inaccurate while only hard data or no conditional data are available. Reconstructed results can be more accurate, using soft data during reconstruction. Integrating soft data with hard data, a method based on multiple-point geostatistics (MPS) is proposed to reconstruct three-dimensional structures of porous media. The variogram curves and permeability, computed by lattice Boltzmann method (LBM), of the reconstructed images and the target image obtained from real volume data were compared, showing that the structural characteristics of reconstructed porous media using both soft data and hard data as conditional data are most similar to those of real volume data.

  11. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables

    CERN Document Server

    Zanotti, Olindo

    2015-01-01

    We present a new version of conservative ADER-WENO finite volume schemes, in which both the high order spatial reconstruction as well as the time evolution of the reconstruction polynomials in the local space-time predictor stage are performed in primitive variables, rather than in conserved ones. Since the underlying finite volume scheme is still written in terms of cell averages of the conserved quantities, our new approach performs the spatial WENO reconstruction twice: the first WENO reconstruction is carried out on the known cell averages of the conservative variables. The WENO polynomials are then used at the cell centers to compute point values of the conserved variables, which are converted into point values of the primitive variables. A second WENO reconstruction is performed on the point values of the primitive variables to obtain piecewise high order reconstruction polynomials of the primitive variables. The reconstruction polynomials are subsequently evolved in time with a novel space-time finite ...

  12. Estimation of the reconstruction parameters for Atom Probe Tomography

    CERN Document Server

    Gault, Baptiste; Stephenson, Leigh T; Moody, Michael P; Muddle, Barry C; Ringer, Simon P

    2015-01-01

    The application of wide field-of-view detection systems to atom probe experiments emphasizes the importance of careful parameter selection in the tomographic reconstruction of the analysed volume, as the sensitivity to errors rises steeply with increases in analysis dimensions. In this paper, a self-consistent method is presented for the systematic determination of the main reconstruction parameters. In the proposed approach, the compression factor and the field factor are determined using geometrical projections from the desorption images. A 3D Fourier transform is then applied to a series of reconstructions and, comparing to the known material crystallography, the efficiency of the detector is estimated. The final results demonstrate a significant improvement in the accuracy of the reconstructed volumes.

  13. Breast Reconstruction with Flap Surgery

    Science.gov (United States)

    Breast reconstruction with flap surgery Overview By Mayo Clinic Staff Breast reconstruction is a surgical procedure that restores shape to ... breast tissue to treat or prevent breast cancer. Breast reconstruction with flap surgery is a type of breast ...

  14. Breast cancers detected in only one of two arms of a tomosynthesis (3D-mammography) population screening trial (STORM-2).

    Science.gov (United States)

    Bernardi, Daniela; Houssami, Nehmat

    2017-04-01

    The prospective 'screening with tomosynthesis or standard mammography-2 (STORM-2)' trial compared mammography screen-reading strategies and showed that each of integrated 2D/3D-mammography or 2Dsynthetic/3D-mammography detected significantly more breast cancers than 2D-mammography alone. This short report describes 13 (from 90) cancers detected in only one of two parallel double-reading arms implemented in STORM-2. Amongst this subset of cases, the majority was invasive cancer ≤16 mm, mostly depicted as irregular masses or distortions. Furthermore, most were detected at 3D-mammography only and predominantly by one reader from double-reading pairs, highlighting that 3D-mammography may enable detection of cancers that are challenging to perceive at routine screening.

  15. Hermite variational implicit surface reconstruction

    Institute of Scientific and Technical Information of China (English)

    PAN RongJiang; MENG XiangXu; WHANGBO TaegKeun

    2009-01-01

    We propose a new technique for reconstructing surfaces from a large set of unorganized 3D data points and their associated normal vectors. The surface is represented as the zero level set of an implicit vol-ume model which fits the data points and normal constraints. Compared with variational implicit sur-faces, we make use of surface normal vectors at data points directly in the implicit model and avoid of introducing manufactured off-surface points. Given n surface point/normal pairs, the proposed method only needs to solve an n×n positive definite linear system. It allows fitting large datasets effectively and robustly. We demonstrate the performance of the proposed method with both globally supported and compactly supported radial basis functions on several datasets.

  16. Multimode C-arm fluoroscopy, tomosynthesis, and cone-beam CT for image-guided interventions: from proof of principle to patient protocols

    Science.gov (United States)

    Siewerdsen, J. H.; Daly, M. J.; Bachar, G.; Moseley, D. J.; Bootsma, G.; Brock, K. K.; Ansell, S.; Wilson, G. A.; Chhabra, S.; Jaffray, D. A.; Irish, J. C.

    2007-03-01

    High-performance intraoperative imaging is essential to an ever-expanding scope of therapeutic procedures ranging from tumor surgery to interventional radiology. The need for precise visualization of bony and soft-tissue structures with minimal obstruction to the therapy setup presents challenges and opportunities in the development of novel imaging technologies specifically for image-guided procedures. Over the past ~5 years, a mobile C-arm has been modified in collaboration with Siemens Medical Solutions for 3D imaging. Based upon a Siemens PowerMobil, the device includes: a flat-panel detector (Varian PaxScan 4030CB); a motorized orbit; a system for geometric calibration; integration with real-time tracking and navigation (NDI Polaris); and a computer control system for multi-mode fluoroscopy, tomosynthesis, and cone-beam CT. Investigation of 3D imaging performance (noise-equivalent quanta), image quality (human observer studies), and image artifacts (scatter, truncation, and cone-beam artifacts) has driven the development of imaging techniques appropriate to a host of image-guided interventions. Multi-mode functionality presents a valuable spectrum of acquisition techniques: i.) fluoroscopy for real-time 2D guidance; ii.) limited-angle tomosynthesis for fast 3D imaging (e.g., ~10 sec acquisition of coronal slices containing the surgical target); and iii.) fully 3D cone-beam CT (e.g., ~30-60 sec acquisition providing bony and soft-tissue visualization across the field of view). Phantom and cadaver studies clearly indicate the potential for improved surgical performance - up to a factor of 2 increase in challenging surgical target excisions. The C-arm system is currently being deployed in patient protocols ranging from brachytherapy to chest, breast, spine, and head and neck surgery.

  17. Characterization of prototype full-field breast tomosynthesis by using a CMOS array coupled with a columnar CsI(Tl) scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Gu; Choi, Young-Wook; Ham, Tae-Hee [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Park, Hye-Suk; Kim, Ye-Seul; Kim, Hee-Joung [Yonsei University, Wonju (Korea, Republic of)

    2012-02-15

    We have developed a prototype full-field digital breast tomosynthesis (DBT) system by using a complementary-metal-oxide semiconductive (CMOS) array coupled with a columnar CsI(Tl) scintillator. The imaging system consists of a matrix with an active detector area of 3072 x 3888 pixels and a pixel pitch of 74.8 μm. For tomosynthesis imaging, the X-ray tube is automatically rotated in 3 .deg. increments in the shoot mode to acquire projection images at 15 different angles over a ±21 .deg. angular range in less than 10 s. The digital detector is stationary during image acquisition. In this research, we also carried out evaluation studies to characterize the performance of the system in different operational modes designed for the DBT system, e.g., binning mode and the range of view angles, in terms of the modulation transfer function (MTF), the normalized noise power spectra (NNPS), and the detective quantum efficiency (DQE): The MTF value measured at the Nyquist frequency was 18.49%, the NNPS value at zero frequency was about 1.93 x 10{sup -5} (mm{sup 2}), and the maximum value of DQE was about 47.09% for the full resolution. For the pixel binning mode, the MTF decreased more than it did for the full resolution mode due to the increased effective pixel size. However, the full resolution mode was more sensitive to noise than the pixel binning mode. For the scan angle of the DBT system, oblique incidence of X-rays on a detector caused blurring that reduced resolution. These results seem to be promising for the use of the DBT system in potential clinical applications and will provide important information when comparisons with other DBT systems are made.

  18. Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis.

    Directory of Open Access Journals (Sweden)

    Edwin Bennink

    Full Text Available Although CT scanners generally allow dynamic acquisition of thin slices (1 mm, thick slice (≥5 mm reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP reconstruction may suffer less from partial volume effects, and thus yield more accurate quantitative results with increased resolution. Before thin slice protocols are to be introduced clinically, it needs to be ensured that this does not affect overall CTP constancy. We studied the influence of thin slice reconstruction on average perfusion values by comparing it with standard thick slice reconstruction.From 50 patient studies, absolute and relative hemisphere averaged estimates of cerebral blood volume (CBV, cerebral blood flow (CBF, mean transit time (MTT, and permeability-surface area product (PS were analyzed using 0.8, 2.4, 4.8, and 9.6 mm slice reconstructions. Specifically, the influence of Gaussian and bilateral filtering, the arterial input function (AIF, and motion correction on the perfusion values was investigated.Bilateral filtering gave noise levels comparable to isotropic Gaussian filtering, with less partial volume effects. Absolute CBF, CBV and PS were 22%, 14% and 46% lower with 0.8 mm than with 4.8 mm slices. If the AIF and motion correction were based on thin slices prior to reconstruction of thicker slices, these differences reduced to 3%, 4% and 3%. The effect of slice thickness on relative values was very small.This study shows that thin slice reconstruction for CTP with unaltered acquisition protocol gives relative perfusion values without clinically relevant bias. It does however affect absolute perfusion values, of which CBF and CBV are most sensitive. Partial volume effects in large arteries and veins lead to overestimation of these values. The effects of reconstruction slice thickness should be taken into account when absolute perfusion values are used for clinical decision making.

  19. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Geoff; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Yoon, Sungwon [Varian Medical Systems, Palo Alto, California 94304 (United States); Krishna, Ganesh [Palo Alto Medical Foundation, Mountain View, California 94040 (United States); Wilfley, Brian [Triple Ring Technologies, Inc., Newark, California 94560 (United States)

    2013-11-15

    Purpose: An improved method of image guidance for lung tumor biopsies could help reduce the high rate of false negatives. The aim of this work is to optimize the geometry of the scanning-beam digital tomography system (SBDX) for providing real-time 3D tomographic reconstructions for target verification. The unique geometry of the system requires trade-offs between patient dose, imaging field of view (FOV), and tomographic angle.Methods: Tomosynthetic angle as a function of tumor-to-detector distance was calculated. Monte Carlo Software (PCXMC) was used to calculate organ doses and effective dose for source-to-detector distances (SDDs) from 90 to 150 cm, patient locations with the tumor at 20 cm from the source to 20 cm from the detector, and FOVs centered on left lung and right lung as well as medial and distal peripheries of the lungs. These calculations were done for two systems, a SBDX system and a GE OEC-9800 C-arm fluoroscopic unit. To evaluate the dose effect of the system geometry, results from PCXMC were calculated using a scan of 300 mAs for both SBDX and fluoroscopy. The Rose Criterion was used to find the fluence required for a tumor SNR of 5, factoring in scatter, air-gap, system geometry, and patient position for all models generated with PCXMC. Using the calculated fluence for constant tumor SNR, the results from PCXMC were used to compare the patient dose for a given SNR between SBDX and fluoroscopy.Results: Tomographic angle changes with SDD only in the region near the detector. Due to their geometry, the source array and detector have a peak tomographic angle for any given SDD at a source to tumor distance that is 69.7% of the SDD assuming constant source and detector size. Changing the patient location in order to increase tomographic angle has a significant effect on organ dose distribution due to geometrical considerations. With SBDX and fluoroscopy geometries, the dose to organs typically changes in an opposing manner with changing patient

  20. Investigation of optimal parameters for penalized maximum-likelihood reconstruction applied to iodinated contrast-enhanced breast CT

    Science.gov (United States)

    Makeev, Andrey; Ikejimba, Lynda; Lo, Joseph Y.; Glick, Stephen J.

    2016-03-01

    Although digital mammography has reduced breast cancer mortality by approximately 30%, sensitivity and specificity are still far from perfect. In particular, the performance of mammography is especially limited for women with dense breast tissue. Two out of every three biopsies performed in the U.S. are unnecessary, thereby resulting in increased patient anxiety, pain, and possible complications. One promising tomographic breast imaging method that has recently been approved by the FDA is dedicated breast computed tomography (BCT). However, visualizing lesions with BCT can still be challenging for women with dense breast tissue due to the minimal contrast for lesions surrounded by fibroglandular tissue. In recent years there has been renewed interest in improving lesion conspicuity in x-ray breast imaging by administration of an iodinated contrast agent. Due to the fully 3-D imaging nature of BCT, as well as sub-optimal contrast enhancement while the breast is under compression with mammography and breast tomosynthesis, dedicated BCT of the uncompressed breast is likely to offer the best solution for injected contrast-enhanced x-ray breast imaging. It is well known that use of statistically-based iterative reconstruction in CT results in improved image quality at lower radiation dose. Here we investigate possible improvements in image reconstruction for BCT, by optimizing free regularization parameter in method of maximum likelihood and comparing its performance with clinical cone-beam filtered backprojection (FBP) algorithm.

  1. Reconstructing Step by Step

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    On May 22,10 days after the Wenchuan earthquake in Sichuan Province,the State Council formed the Post-earthquake Reconstruction Planning Group,deciding to work out a general recon- struction plan within a period of three months. Sichuan was the worst-hit area of China,so reconstruction work there will have a direct influence on how plans proceed in other areas.On July 18,Beijing Review reporter Feng Jianhua interviewed Wang Guangsi,Vice Director of the Sichuan Development and Reform Commission,about Sichuan’s reconstruction plan.

  2. Multiresolution maximum intensity volume rendering by morphological adjunction pyramids

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.

    We describe a multiresolution extension to maximum intensity projection (MIP) volume rendering, allowing progressive refinement and perfect reconstruction. The method makes use of morphological adjunction pyramids. The pyramidal analysis and synthesis operators are composed of morphological 3-D

  3. Multiresolution Maximum Intensity Volume Rendering by Morphological Adjunction Pyramids

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.

    2001-01-01

    We describe a multiresolution extension to maximum intensity projection (MIP) volume rendering, allowing progressive refinement and perfect reconstruction. The method makes use of morphological adjunction pyramids. The pyramidal analysis and synthesis operators are composed of morphological 3-D

  4. Comparison of Morphological Pyramids for Multiresolution MIP Volume Rendering

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.

    2002-01-01

    We recently proposed a multiresolution representation for maximum intensity projection (MIP) volume rendering based on morphological adjunction pyramids which allow progressive refinement and have the property of perfect reconstruction. In this algorithm the pyramidal analysis and synthesis

  5. Comparative study of patient doses calculated with two methods for breast digital tomosynthesis; Estudio de los valores de dosis a pacientes en examenes de tomosintesis de mama estimados con dos metodos distintos

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, M.; Chevalier, M.; Calzado, A.; Garayo, J.; Valverde, J.

    2015-07-01

    In this study, the average glandular doses (DG) delivered in breast tomosynthesis examinations were estimated over a sample of 150 patients using two different methods. In method 1, the conversion factors air-kerma to DG used were those tabulated by Dance et al. and in method 2 were the ones from Feng et al. The protocol for the examination followed in the unit of this study consists in two views per breast, each view composed by a 2D acquisition and a tomosynthesis scan (3D). The resulting DG values from both methods present statistically significant differences (p=0.02) for the 2D modality and were similar for the 3D scan (p=0.22). The estimated median value of DG for the most frequent breasts (thicknesses between 50 and 60 mm) delivered in a single 3D acquisition is 1.7 mGy (36% and 17% higher than the value for the 2D mode estimated with each method) which lies far below the tolerances established by the Spanish Protocol Quality Control in Radiodiagnostic (2011). The total DG for a tomosynthesis examination (6.0 mGy) is a factor 2.4 higher than the dose delivered in a 2D examination with two views (method 1). (Author)

  6. An efficient simultaneous reconstruction technique for tomographic particle image velocimetry

    Science.gov (United States)

    Atkinson, Callum; Soria, Julio

    2009-10-01

    To date, Tomo-PIV has involved the use of the multiplicative algebraic reconstruction technique (MART), where the intensity of each 3D voxel is iteratively corrected to satisfy one recorded projection, or pixel intensity, at a time. This results in reconstruction times of multiple hours for each velocity field and requires considerable computer memory in order to store the associated weighting coefficients and intensity values for each point in the volume. In this paper, a rapid and less memory intensive reconstruction algorithm is presented based on a multiplicative line-of-sight (MLOS) estimation that determines possible particle locations in the volume, followed by simultaneous iterative correction. Reconstructions of simulated images are presented for two simultaneous algorithms (SART and SMART) as well as the now standard MART algorithm, which indicate that the same accuracy as MART can be achieved 5.5 times faster or 77 times faster with 15 times less memory if the processing and storage of the weighting matrix is considered. Application of MLOS-SMART and MART to a turbulent boundary layer at Re θ = 2200 using a 4 camera Tomo-PIV system with a volume of 1,000 × 1,000 × 160 voxels is discussed. Results indicate improvements in reconstruction speed of 15 times that of MART with precalculated weighting matrix, or 65 times if calculation of the weighting matrix is considered. Furthermore the memory needed to store a large weighting matrix and volume intensity is reduced by almost 40 times in this case.

  7. The TOMMY trial: a comparison of TOMosynthesis with digital MammographY in the UK NHS Breast Screening Programme--a multicentre retrospective reading study comparing the diagnostic performance of digital breast tomosynthesis and digital mammography with digital mammography alone.

    Science.gov (United States)

    Gilbert, Fiona J; Tucker, Lorraine; Gillan, Maureen Gc; Willsher, Paula; Cooke, Julie; Duncan, Karen A; Michell, Michael J; Dobson, Hilary M; Lim, Yit Yoong; Purushothaman, Hema; Strudley, Celia; Astley, Susan M; Morrish, Oliver; Young, Kenneth C; Duffy, Stephen W

    2015-01-01

    Digital breast tomosynthesis (DBT) is a three-dimensional mammography technique with the potential to improve accuracy by improving differentiation between malignant and non-malignant lesions. The objectives of the study were to compare the diagnostic accuracy of DBT in conjunction with two-dimensional (2D) mammography or synthetic 2D mammography, against standard 2D mammography and to determine if DBT improves the accuracy of detection of different types of lesions. Women (aged 47-73 years) recalled for further assessment after routine breast screening and women (aged 40-49 years) with moderate/high of risk of developing breast cancer attending annual mammography screening were recruited after giving written informed consent. All participants underwent a two-view 2D mammography of both breasts and two-view DBT imaging. Image-processing software generated a synthetic 2D mammogram from the DBT data sets. In an independent blinded retrospective study, readers reviewed (1) 2D or (2) 2D + DBT or (3) synthetic 2D + DBT images for each case without access to original screening mammograms or prior examinations. Sensitivities and specificities were calculated for each reading arm and by subgroup analyses. Data were available for 7060 subjects comprising 6020 (1158 cancers) assessment cases and 1040 (two cancers) family history screening cases. Overall sensitivity was 87% [95% confidence interval (CI) 85% to 89%] for 2D only, 89% (95% CI 87% to 91%) for 2D + DBT and 88% (95% CI 86% to 90%) for synthetic 2D + DBT. The difference in sensitivity between 2D and 2D + DBT was of borderline significance (p = 0.07) and for synthetic 2D + DBT there was no significant difference (p = 0.6). Specificity was 58% (95% CI 56% to 60%) for 2D, 69% (95% CI 67% to 71%) for 2D + DBT and 71% (95% CI 69% to 73%) for synthetic 2D + DBT. Specificity was significantly higher in both DBT reading arms for all subgroups of age, density and dominant radiological

  8. Breast Reconstruction After Mastectomy

    Science.gov (United States)

    ... It also does not involve cutting of the abdominal muscle and is a free flap. This type of ... NCI fact sheet Mammograms . What are some new developments in breast reconstruction after mastectomy? Oncoplastic surgery. In ...

  9. Prairie Reconstruction Initiative

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Prairie Reconstruction Initiative Advisory Team (PRIAT) is to identify and take steps to resolve uncertainties in the process of prairie...

  10. Head and face reconstruction

    Science.gov (United States)

    ... work together. Head and neck surgeons also perform craniofacial reconstruction operations. The surgery is done while you are deep asleep and pain-free (under general anesthesia ). The surgery may take ...

  11. Reconstructions of eyelid defects

    Directory of Open Access Journals (Sweden)

    Nirmala Subramanian

    2011-01-01

    Full Text Available Eyelids are the protective mechanism of the eyes. The upper and lower eyelids have been formed for their specific functions by Nature. The eyelid defects are encountered in congenital anomalies, trauma, and postexcision for neoplasm. The reconstructions should be based on both functional and cosmetic aspects. The knowledge of the basic anatomy of the lids is a must. There are different techniques for reconstructing the upper eyelid, lower eyelid, and medial and lateral canthal areas. Many a times, the defects involve more than one area. For the reconstruction of the lid, the lining should be similar to the conjunctiva, a cover by skin and the middle layer to give firmness and support. It is important to understand the availability of various tissues for reconstruction. One layer should have the vascularity to support the other layer which can be a graft. A proper plan and execution of it is very important.

  12. On TPC cluster reconstruction

    CERN Document Server

    Dydak, F; Nefedov, Y; Wotschack, J; Zhemchugov, A

    2004-01-01

    For a bias-free momentum measurement of TPC tracks, the correct determination of cluster positions is mandatory. We argue in particular that (i) the reconstruction of the entire longitudinal signal shape in view of longitudinal diffusion, electronic pulse shaping, and track inclination is important both for the polar angle reconstruction and for optimum r phi resolution; and that (ii) self-crosstalk of pad signals calls for special measures for the reconstruction of the z coordinate. The problem of 'shadow clusters' is resolved. Algorithms are presented for accepting clusters as 'good' clusters, and for the reconstruction of the r phi and z cluster coordinates, including provisions for 'bad' pads and pads next to sector boundaries, respectively.

  13. Prairie Reconstruction Initiative Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Prairie Reconstruction Initiative Advisory Team (PRIAT) is to identify and take steps to resolve uncertainties in the process of prairie...

  14. Permutationally invariant state reconstruction

    DEFF Research Database (Denmark)

    Moroder, Tobias; Hyllus, Philipp; Tóth, Géza;

    2012-01-01

    Feasible tomography schemes for large particle numbers must possess, besides an appropriate data acquisition protocol, an efficient way to reconstruct the density operator from the observed finite data set. Since state reconstruction typically requires the solution of a nonlinear large-scale opti......Feasible tomography schemes for large particle numbers must possess, besides an appropriate data acquisition protocol, an efficient way to reconstruct the density operator from the observed finite data set. Since state reconstruction typically requires the solution of a nonlinear large...... likelihood and least squares methods, which are the preferred choices in today's experiments. This high efficiency is achieved by greatly reducing the dimensionality of the problem employing a particular representation of permutationally invariant states known from spin coupling combined with convex...

  15. Permutationally invariant state reconstruction

    CERN Document Server

    Moroder, Tobias; Toth, Geza; Schwemmer, Christian; Niggebaum, Alexander; Gaile, Stefanie; Gühne, Otfried; Weinfurter, Harald

    2012-01-01

    Feasible tomography schemes for large particle numbers must possess, besides an appropriate data acquisition protocol, also an efficient way to reconstruct the density operator from the observed finite data set. Since state reconstruction typically requires the solution of a non-linear large-scale optimization problem, this is a major challenge in the design of scalable tomography schemes. Here we present an efficient state reconstruction scheme for permutationally invariant quantum state tomography. It works for all common state-of-the-art reconstruction principles, including, in particular, maximum likelihood and least squares methods, which are the preferred choices in today's experiments. This high efficiency is achieved by greatly reducing the dimensionality of the problem employing a particular representation of permutationally invariant states known from spin coupling combined with convex optimization, which has clear advantages regarding speed, control and accuracy in comparison to commonly employed n...

  16. The evolving breast reconstruction

    DEFF Research Database (Denmark)

    Thomsen, Jørn Bo; Gunnarsson, Gudjon Leifur

    2014-01-01

    The aim of this editorial is to give an update on the use of the propeller thoracodorsal artery perforator flap (TAP/TDAP-flap) within the field of breast reconstruction. The TAP-flap can be dissected by a combined use of a monopolar cautery and a scalpel. Microsurgical instruments are generally...... not needed. The propeller TAP-flap can be designed in different ways, three of these have been published: (I) an oblique upwards design; (II) a horizontal design; (III) an oblique downward design. The latissimus dorsi-flap is a good and reliable option for breast reconstruction, but has been criticized...... for oncoplastic and reconstructive breast surgery and will certainly become an invaluable addition to breast reconstructive methods....

  17. Recent work on material interface reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Mosso, S.J.; Swartz, B.K. [Los Alamos National Lab., NM (United States)

    1997-12-31

    For the last 15 years, many Eulerian codes have relied on a series of piecewise linear interface reconstruction algorithms developed by David Youngs. In a typical Youngs` method, the material interfaces were reconstructed based upon nearly cell values of volume fractions of each material. The interfaces were locally represented by linear segments in two dimensions and by pieces of planes in three dimensions. The first step in such reconstruction was to locally approximate an interface normal. In Youngs` 3D method, a local gradient of a cell-volume-fraction function was estimated and taken to be the local interface normal. A linear interface was moved perpendicular to the now known normal until the mass behind it matched the material volume fraction for the cell in question. But for distorted or nonorthogonal meshes, the gradient normal estimate didn`t accurately match that of linear material interfaces. Moreover, curved material interfaces were also poorly represented. The authors will present some recent work in the computation of more accurate interface normals, without necessarily increasing stencil size. Their estimate of the normal is made using an iterative process that, given mass fractions for nearby cells of known but arbitrary variable density, converges in 3 or 4 passes in practice (and quadratically--like Newton`s method--in principle). The method reproduces a linear interface in both orthogonal and nonorthogonal meshes. The local linear approximation is generally 2nd-order accurate, with a 1st-order accurate normal for curved interfaces in both two and three dimensional polyhedral meshes. Recent work demonstrating the interface reconstruction for curved surfaces will /be discussed.

  18. Reconstruction Setting Out

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The earthquake-hit Yushu shifts its focus from rescuing survivors to post-quake reconstruction The first phase of earthquake relief, in which rescuing lives was the priority, finished 12 days after a 7.1-magnitude earthquake struck the Tibetan Autonomous Prefecture of Yushu in northwest China’s Qinghai Province on April 14, and reconstruction of the area is now ready to begin.

  19. Free tissue transfer for head and neck reconstruction: a contemporary review.

    Science.gov (United States)

    Cannady, Steven B; Rosenthal, Eben L; Knott, P Daniel; Fritz, Michael; Wax, Mark K

    2014-01-01

    Microvascular free tissue transfer is used for complex composite tissue defects in previously treated fields, in particular after treatment of malignant disease. The increasing incidence of skin cancer in the general population has increased the number of patients with massive tumors that require the expertise of the free flap reconstructive surgeon. We herein examine a number of the recent advances in the field that use free tissue transfer for orbitomaxillary and scalp reconstruction, including maxillary reconstruction, virtual surgical planning in head and neck reconstruction, and scalp reconstruction. Advanced computer algorithms allow planning of these procedures at a savings of time and cost. Free tissue transfer is a reconstructive modality that is often at the top of the reconstructive ladder and, in some instances, is the reconstructive method of choice. The ability to harvest composite tissue that matches the tissue defect in composition, surface area, and volume makes free tissue transfer a versatile modality.

  20. Bayesian reconstruction strategy of fluorescence-mediated tomography using an integrated SPECT-CT-OT system

    Science.gov (United States)

    Cao, Liji; Peter, Jörg

    2010-05-01

    Following the assembly of a triple-modality SPECT-CT-OT small animal imaging system providing intrinsically co-registered projection data of all three submodalities and under the assumption and investigation of dual-labeled probes consisting of both fluorophores and radionuclides, a novel multi-modal reconstruction strategy is presented in this paper aimed at improving fluorescence-mediated tomography (FMT). The following reconstruction procedure is proposed: firstly, standard x-ray CT image reconstruction is performed employing the FDK algorithm. Secondly, standard SPECT image reconstruction is performed using OSEM. Thirdly, from the reconstructed CT volume data the surface boundary of the imaged object is extracted for finite element definition. Finally, the reconstructed SPECT data are used as a priori information within a Bayesian reconstruction framework for optical (FMT) reconstruction. We provide results of this multi-modal approach using phantom experimental data and illustrate that this strategy does suppress artifacts and facilitates quantitative analysis for optical imaging studies.

  1. Reconstruction methods for acoustic particle detection in the deep sea using clusters of hydrophones

    CERN Document Server

    Richardt, C; Graf, K; Hoessl, J; Kappes, A; Katz, U; Lahmann, R; Naumann, Ch; Neff, M; Schoeck, F; 10.1016/j.astropartphys.2008.11.003

    2009-01-01

    This article focuses on techniques for acoustic noise reduction, signal filters and source reconstruction. For noise reduction, bandpass filters and cross correlations are found to be efficient and fast ways to improve the signal to noise ratio and identify a possible neutrino-induced acoustic signal. The reconstruction of the position of an acoustic point source in the sea is performed by using small-volume clusters of hydrophones (about 1 cubic meter) for direction reconstruction by a beamforming algorithm. The directional information from a number of such clusters allows for position reconstruction. The algorithms for data filtering, direction and position reconstruction are explained and demonstrated using simulated data.

  2. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu [Solid-State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Konstantinidis, Anastasios C. [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Diagnostic Radiology and Radiation Protection, Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX (United Kingdom); Patel, Tushita [Department of Physics, University of Virginia, Charlottesville, Virginia 22908 (United States)

    2015-11-15

    Purpose: Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50–300 e{sup −}) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). Methods: In this study, imaging performance of a large area (29 × 23 cm{sup 2}) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165–400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. Results: The LFW mode shows better DQE at low air kerma (K{sub a} < 10 μGy) and should be used for DBT. At current DBT applications, air kerma (K{sub a} ∼ 10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165–400 μm in size can be resolved using a MGD range of 0.3–1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at

  3. Dosimetric characterization and organ dose assessment in digital breast tomosynthesis: Measurements and Monte Carlo simulations using voxel phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Mariana, E-mail: marianabaptista@ctn.ist.utl.pt; Di Maria, Salvatore; Barros, Sílvia; Vaz, Pedro [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139,7, Bobadela LRS 2695-066 (Portugal); Figueira, Catarina [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN (United Kingdom); Sarmento, Marta; Orvalho, Lurdes [Serviço de Imagiologia, Hospital da Luz, Avenida Lusíada, 100, Lisboa 1500-650 (Portugal)

    2015-07-15

    Purpose: Due to its capability to more accurately detect deep lesions inside the breast by removing the effect of overlying anatomy, digital breast tomosynthesis (DBT) has the potential to replace the standard mammography technique in clinical screening exams. However, the European Guidelines for DBT dosimetry are still a work in progress and there are little data available on organ doses other than to the breast. It is, therefore, of great importance to assess the dosimetric performance of DBT with respect to the one obtained with standard digital mammography (DM) systems. The aim of this work is twofold: (i) to study the dosimetric properties of a combined DBT/DM system (MAMMOMAT Inspiration Siemens{sup ®}) for a tungsten/rhodium (W/Rh) anode/filter combination and (ii) to evaluate organs doses during a DBT examination. Methods: For the first task, measurements were performed in manual and automatic exposure control (AEC) modes, using two homogeneous breast phantoms: a PMMA slab phantom and a 4 cm thick breast-shaped rigid phantom, with 50% of glandular tissue in its composition. Monte Carlo (MC) simulations were performed using Monte Carlo N-Particle eXtended v.2.7.0. A MC model was implemented to mimic DM and DBT acquisitions for a wide range of x-ray spectra (24 –34 kV). This was used to calculate mean glandular dose (MGD) and to compute series of backscatter factors (BSFs) that could be inserted into the DBT dosimetric formalism proposed by Dance et al. Regarding the second aim of the study, the implemented MC model of the clinical equipment, together with a female voxel phantom (“Laura”), was used to calculate organ doses considering a typical DBT acquisition. Results were compared with a standard two-view mammography craniocaudal (CC) acquisition. Results: Considering the AEC mode, the acquisition of a single CC view results in a MGD ranging from 0.53 ± 0.07 mGy to 2.41 ± 0.31 mGy in DM mode and from 0.77 ± 0.11 mGy to 2.28 ± 0.32 mGy in DBT mode

  4. Reconstruction of Anacostia wetlands: success?

    Science.gov (United States)

    Hammerschlag, R.S.; Perry, M.C.

    2002-01-01

    Historically, the tidal Anacostia River in Washington, D.C. had been an extensive system of freshwater tidal marshes replete with a full array of wetland vegetation dominated by wild rice. The local Nacochtank Indians had found the abundant fish and wildlife sufficient to sustain their daily lives. White man's intrusion upon the landscape gradually brought about deterioration of the natural (and associated cultural) system. Total demise followed mid-20th century dredge and fill channelization, which was conducted from the confluence of the Anacostia with the Potomac near the heart of Washington, D.C. to the terminus of the tidal regime at Bladensburg, Maryland. The National Park Service (NPS) became the manager for much of the land along the Anacostia, particularly the eastern bank. As part of its planning effort, the NPS envisioned returning portions of the Anacostia under its control to a natural system as a vignette. The concept was based on bringing back as comprehensive a collection of vegetation and wildlife as possible through the reestablishment of tidal marshes at Kenilworth and Kingman. The resultant wetlands were to be made accessible to the public both logistically and through a well designed interpretative program. In fact, this vision has been realized due to an impressive cooperative effort among a number of Federal and local agencies and organizations. In 1993, 32 acres of freshwater tidal marsh were reconstructed at Kenilworth. Based upon the 5-year monitoring program that has been in place since reconstruction, several generalizations may be made concerning the degree of success of the marsh reconstruction. Water quality in the marsh system and nearby tidal waters has not been noticeably improved. The poor quality may be clue to the overwhelmingly high loads (e.g., sediment, nutrients, etc.) brought in on the twice daily tidal cycle from the Anacostia and to the relatively small volume of water which actually interacts with the emergent marsh

  5. Age estimation from canine volumes.

    Science.gov (United States)

    De Angelis, Danilo; Gaudio, Daniel; Guercini, Nicola; Cipriani, Filippo; Gibelli, Daniele; Caputi, Sergio; Cattaneo, Cristina

    2015-08-01

    Techniques for estimation of biological age are constantly evolving and are finding daily application in the forensic radiology field in cases concerning the estimation of the chronological age of a corpse in order to reconstruct the biological profile, or of a living subject, for example in cases of immigration of people without identity papers from a civil registry. The deposition of teeth secondary dentine and consequent decrease of pulp chamber in size are well known as aging phenomena, and they have been applied to the forensic context by the development of age estimation procedures, such as Kvaal-Solheim and Cameriere methods. The present study takes into consideration canines pulp chamber volume related to the entire teeth volume, with the aim of proposing new regression formulae for age estimation using 91 cone beam computerized scans and a freeware open-source software, in order to permit affordable reproducibility of volumes calculation.

  6. Primordial density and BAO reconstruction

    CERN Document Server

    Zhu, Hong-Ming; Chen, Xuelei

    2016-01-01

    We present a new method to reconstruct the primordial (linear) density field using the estimated nonlinear displacement field. The divergence of the displacement field gives the reconstructed density field. We solve the nonlinear displacement field in the 1D cosmology and show the reconstruction results. The new reconstruction algorithm recovers a lot of linear modes and reduces the nonlinear damping scale significantly. The successful 1D reconstruction results imply the new algorithm should also be a promising technique in the 3D case.

  7. A COMPARISON OF EXISTING ALGORITHMS FOR 3D TREE RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    E. Bournez

    2017-02-01

    Full Text Available 3D models of tree geometry are important for numerous studies, such as for urban planning or agricultural studies. In climatology, tree models can be necessary for simulating the cooling effect of trees by estimating their evapotranspiration. The literature shows that the more accurate the 3D structure of a tree is, the more accurate microclimate models are. This is the reason why, since 2013, we have been developing an algorithm for the reconstruction of trees from terrestrial laser scanner (TLS data, which we call TreeArchitecture. Meanwhile, new promising algorithms dedicated to tree reconstruction have emerged in the literature. In this paper, we assess the capacity of our algorithm and of two others -PlantScan3D and SimpleTree- to reconstruct the 3D structure of trees. The aim of this reconstruction is to be able to characterize the geometric complexity of trees, with different heights, sizes and shapes of branches. Based on a specific surveying workflow with a TLS, we have acquired dense point clouds of six different urban trees, with specific architectures, before reconstructing them with each algorithm. Finally, qualitative and quantitative assessments of the models are performed using reference tree reconstructions and field measurements. Based on this assessment, the advantages and the limits of every reconstruction algorithm are highlighted. Anyway, very satisfying results can be reached for 3D reconstructions of tree topology as well as of tree volume.

  8. Augmented Likelihood Image Reconstruction.

    Science.gov (United States)

    Stille, Maik; Kleine, Matthias; Hägele, Julian; Barkhausen, Jörg; Buzug, Thorsten M

    2016-01-01

    The presence of high-density objects remains an open problem in medical CT imaging. Data of projections passing through objects of high density, such as metal implants, are dominated by noise and are highly affected by beam hardening and scatter. Reconstructed images become less diagnostically conclusive because of pronounced artifacts that manifest as dark and bright streaks. A new reconstruction algorithm is proposed with the aim to reduce these artifacts by incorporating information about shape and known attenuation coefficients of a metal implant. Image reconstruction is considered as a variational optimization problem. The afore-mentioned prior knowledge is introduced in terms of equality constraints. An augmented Lagrangian approach is adapted in order to minimize the associated log-likelihood function for transmission CT. During iterations, temporally appearing artifacts are reduced with a bilateral filter and new projection values are calculated, which are used later on for the reconstruction. A detailed evaluation in cooperation with radiologists is performed on software and hardware phantoms, as well as on clinically relevant patient data of subjects with various metal implants. Results show that the proposed reconstruction algorithm is able to outperform contemporary metal artifact reduction methods such as normalized metal artifact reduction.

  9. Renormalized Volume

    Science.gov (United States)

    Gover, A. Rod; Waldron, Andrew

    2017-09-01

    We develop a universal distributional calculus for regulated volumes of metrics that are suitably singular along hypersurfaces. When the hypersurface is a conformal infinity we give simple integrated distribution expressions for the divergences and anomaly of the regulated volume functional valid for any choice of regulator. For closed hypersurfaces or conformally compact geometries, methods from a previously developed boundary calculus for conformally compact manifolds can be applied to give explicit holographic formulæ for the divergences and anomaly expressed as hypersurface integrals over local quantities (the method also extends to non-closed hypersurfaces). The resulting anomaly does not depend on any particular choice of regulator, while the regulator dependence of the divergences is precisely captured by these formulæ. Conformal hypersurface invariants can be studied by demanding that the singular metric obey, smoothly and formally to a suitable order, a Yamabe type problem with boundary data along the conformal infinity. We prove that the volume anomaly for these singular Yamabe solutions is a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. Recently, Graham proved that the first variation of the volume anomaly recovers the density obstructing smooth solutions to this singular Yamabe problem; we give a new proof of this result employing our boundary calculus. Physical applications of our results include studies of quantum corrections to entanglement entropies.

  10. Importancia de la reconstrucción volumétrica y del pliegue glúteo en los parapléjicos con úlceras isquiáticas Enis Sarmiento IV Importance of volume and gluteal fold reconstruction in paraplegic patients with ischial ulcers type Enis Sarmiento IV

    Directory of Open Access Journals (Sweden)

    E. Revelo Jirón

    2011-06-01

    Full Text Available Los parapléjicos rehabilitados son propensos a sufrir úlceras isquiáticas como complicación más frecuente. Cuando estas úlceras tienen compromiso óseo, su tratamiento solo puede ser quirúrgico. Bajo estas condiciones los colgajos miocutáneos locales son parte de la solución. En el artículo presentamos una serie personal de 10 pacientes parapléjicos rehabilitados con úlceras isquiáticas reconstruidas utilizando un colgajo miocutáneo en isla de la porción inferior del glúteo mayor transferido a través de un túnel subcutáneo. Ninguno de los pacientes de nuestro grupo de estudio sufrió recidiva y todos han tenido una buena evolución a largo plazo. La aportación principal del presente trabajo es hacer hincapié en respetar en estos casos 3 principios utilizados en Cirugía Estética: las incisiones quirúrgicas deben efectuarse en los pliegues naturales para evitar secuelas estético-funcionales; debemos dejar mínimas cicatrices y obtener una restauración volumétrica corporal. En ese sentido pensamos que el diseño de los colgajos debe respetar rigurosamente la orientación del pliegue glúteo y aportar un buen almohadillado para reconstruir el capital volumétrico de la zona glútea; además es primordial dejar pocas cicatrices para no aumentar los riesgos locales debido a la falta de trofismo de la piel. De esta manera, creemos que se evitan las recidivas y las complicaciones.Paraplegic patients, during their rehabilitation period, usually develop ischial ulcers as the most common complication. When there is bone involvement only the surgical approach can be successful. Myocutaneous flaps are part of this approach. We present a sample of 10 paraplegic patients under rehabilitation suffering ischial ulcers that were handled with myocutaneous island flaps obtained from the lower bundles of gluteus maximus and transferred though a subcutaneous tunnel. All these patients have had a long term good evolution with no recurrences

  11. Upper Eyelid Reconstruction.

    Science.gov (United States)

    Espinoza, Gabriela Mabel; Prost, Angela Michelle

    2016-05-01

    Reconstruction of the upper eyelid is complicated because the eyelid must retain mobility, flexibility, function, and a suitable mucosal surface over the delicate cornea. Defects of the upper eyelid may be due to congenital defects or traumatic injury or follow oncologic resection. This article focuses on reconstruction due to loss of tissue. Multiple surgeries may be needed to reach the desired results, addressing loss of tissue and then loss of function. Each defect is unique and the laxity and availability of surrounding tissue vary. Knowing the most common techniques for repair assists surgeons in the multifaceted planning that takes place.

  12. Vertex Reconstruction in CMS

    CERN Document Server

    Chabanat, E; D'Hondt, J; Vanlaer, P; Prokofiev, K; Speer, T; Frühwirth, R; Waltenberger, W

    2005-01-01

    Because of the high track multiplicity in the final states expected in proton collisions at the LHC experiments, novel vertex reconstruction algorithms are required. The vertex reconstruction problem can be decomposed into a pattern recognition problem ("vertex finding") and an estimation problem ("vertex fitting"). Starting from least-square methods, ways to render the classical algorithms more robust are discussed and the statistical properties of the novel methods are shown. A whole set of different approaches for the vertex finding problem is presented and compared in relevant physics channels.

  13. Reconstruction of inflation models

    Energy Technology Data Exchange (ETDEWEB)

    Myrzakulov, Ratbay; Sebastiani, Lorenzo [Eurasian National University, Department of General and Theoretical Physics and Eurasian Center for Theoretical Physics, Astana (Kazakhstan); Zerbini, Sergio [Universita di Trento, Dipartimento di Fisica, Trento (Italy); TIFPA, Istituto Nazionale di Fisica Nucleare, Trento (Italy)

    2015-05-15

    In this paper, we reconstruct viable inflationary models by starting from spectral index and tensor-to-scalar ratio from Planck observations. We analyze three different kinds of models: scalar field theories, fluid cosmology, and f(R)-modified gravity. We recover the well-known R{sup 2} inflation in Jordan-frame and Einstein-frame representation, the massive scalar inflaton models and two models of inhomogeneous fluid. A model of R{sup 2} correction to Einstein's gravity plus a ''cosmological constant'' with an exact solution for early-time acceleration is reconstructed. (orig.)

  14. A Statistical Approach to Motion Compensated Cone Beam Reconstruction

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Hansen, Mads Fogtmann; Larsen, Rasmus

    2010-01-01

    One of the problems arising in radiotherapy planning is the quality of CT planning data. In the following attention is giving to the cone-beam scanning geometry where reconstruction of a 3D volume based on 2D projections, using the classic Feldkamp-Davis-Kress (FDK) algorithm requires a large...

  15. Standard and reduced radiation dose liver CT images: adaptive statistical iterative reconstruction versus model-based iterative reconstruction-comparison of findings and image quality.

    Science.gov (United States)

    Shuman, William P; Chan, Keith T; Busey, Janet M; Mitsumori, Lee M; Choi, Eunice; Koprowicz, Kent M; Kanal, Kalpana M

    2014-12-01

    To investigate whether reduced radiation dose liver computed tomography (CT) images reconstructed with model-based iterative reconstruction ( MBIR model-based iterative reconstruction ) might compromise depiction of clinically relevant findings or might have decreased image quality when compared with clinical standard radiation dose CT images reconstructed with adaptive statistical iterative reconstruction ( ASIR adaptive statistical iterative reconstruction ). With institutional review board approval, informed consent, and HIPAA compliance, 50 patients (39 men, 11 women) were prospectively included who underwent liver CT. After a portal venous pass with ASIR adaptive statistical iterative reconstruction images, a 60% reduced radiation dose pass was added with MBIR model-based iterative reconstruction images. One reviewer scored ASIR adaptive statistical iterative reconstruction image quality and marked findings. Two additional independent reviewers noted whether marked findings were present on MBIR model-based iterative reconstruction images and assigned scores for relative conspicuity, spatial resolution, image noise, and image quality. Liver and aorta Hounsfield units and image noise were measured. Volume CT dose index and size-specific dose estimate ( SSDE size-specific dose estimate ) were recorded. Qualitative reviewer scores were summarized. Formal statistical inference for signal-to-noise ratio ( SNR signal-to-noise ratio ), contrast-to-noise ratio ( CNR contrast-to-noise ratio ), volume CT dose index, and SSDE size-specific dose estimate was made (paired t tests), with Bonferroni adjustment. Two independent reviewers identified all 136 ASIR adaptive statistical iterative reconstruction image findings (n = 272) on MBIR model-based iterative reconstruction images, scoring them as equal or better for conspicuity, spatial resolution, and image noise in 94.1% (256 of 272), 96.7% (263 of 272), and 99.3% (270 of 272), respectively. In 50 image sets, two reviewers

  16. A multiscale/multiframe approach to 3D PET data reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Luis; Ferreira, Nuno [Coimbra Univ. (Portugal). Inst. de Biofisica/Biomatematica; ICNAS - Instituto de Ciencias Nucleares Aplicadas a Saude, Coimbra (Portugal); Comtat, Claude [CEA/DSV/12BM, Orsay (France). Service Hospitalier Frederic Joliot

    2011-07-01

    A multiscale/multiframe 3D reconstruction scheme for Positron Emission Tomography is presented. Usually the dimensions of the reconstructed volume or the projection space binning do not change during the image reconstruction process. In this paper we introduce the concept of time frame to the multiscale reconstruction proposed by Raheja et al. This approach can be used for the generation of images reconstructed in near real time using a suitable scale, taking full advantage of list mode reconstruction techniques. When compared with the Maximum Likelihood - Expectation Maximization algorithm (single scale ML-EM), the Multiscale/Multiframe proposed in this work improves the convergence speed in particular in cold regions, as well as performing a fast reconstruction. The generation of different image sequences at different spatial scales and times may be useful to optimize the acquisition clinical protocols on the fly. (orig.)

  17. Urogenital Reconstructive Surgery

    DEFF Research Database (Denmark)

    Jakobsen, Lotte Kaasgaard

    Urogenital reconstructive surgery Lotte Kaasgaard Jakobsen1 Professor Henning Olsen1 Overlæge Gitte Hvistendahl1 Professor Karl-Erik Andersson2 1 – Dept. of Urology, Aarhus University Hospital 2 – Dept. of Gynecology and Obstetrics, Aarhus University hospital Background: Congenital obstruction...

  18. Reconstruction Setting Out

    Institute of Scientific and Technical Information of China (English)

    YIN PUMIN

    2010-01-01

    @@ The first phase of earthquake relief,in which rescuing lives was the priority,finished 12 days after a 7.1-magnitude earthquake struck the Tibetan Autonomous Prefecture of Yushu in northwest China's Qinghai Province on April 14,and reconstruction of the area is now ready to begin.

  19. Pangloss: Reconstructing lensing mass

    Science.gov (United States)

    Collett, Thomas E.; Marshall, Philip J.; Mason, Charlotte

    2015-11-01

    Pangloss reconstructs all the mass within a light cone through the Universe. Understanding complex mass distributions like this is important for accurate time delay lens cosmography, and also for accurate lens magnification estimation. It aspires to use all available data in an attempt to make the best of all mass maps.

  20. Online reconstruction of 3D magnetic particle imaging data

    Science.gov (United States)

    Knopp, T.; Hofmann, M.

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s-1. However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time.

  1. Three-dimensions Volume Reconstruction of Grayscale Serial Slice Images

    Institute of Scientific and Technical Information of China (English)

    Wu Jianming(吴建明); Shi Pengfei; Zhang Luoming

    2004-01-01

    This paper focuses on basic geometric and topological access methods, and computational operations implemented by various data objects. It covers such methods as inter-slices point matching, stream slices, sorting of octree blocks, cell operations and experimental results. At first, this paper discusses in detail the feature points matching of inter-slices. Then it introduces stream slices eigenfields and octree data structures theories. Next, it discusses cell operations and its data structure. Finally, it shows an experimental result. The innovations in the paper is the data structure of slices feature and cell feature, and the feature matching methods owns the properties both quickly and exactly.

  2. Breast reconstruction: Correlation between different procedures, reconstruction timing and complications

    Directory of Open Access Journals (Sweden)

    Anđelkov Katarina

    2011-01-01

    Full Text Available Introduction. Improved psychophysical condition after breast reconstruction in women has been well documented Objective. To determine the most optimal technique with minimal morbidity, the authors examined their results and complications based on reconstruction timing (immediate and delayed reconstruction and three reconstruction methods: TRAM flap, latissimus dorsi flap and reconstruction with tissue expanders and implants. Methods. Reconstruction was performed in 60 women of mean age 51.1 years. We analyzed risk factors: age, body mass index (BMI, smoking history and radiation therapy in correlation with timing and method of reconstruction. Complications of all three methods of reconstruction were under 1.5-2-year follow-up after the reconstruction. All data were statistically analyzed. Results. Only radiation had significant influence on the occurrence of complications both before and after the reconstruction, while age, smoking and BMI had no considerable influence of the development of complications. There were no statistically significant correlation between the incidence of complications, time and method of reconstruction. Conclusion. Any of the aforementioned breast reconstruction techniques can yield good results and a low rate of re-operations. To choose the best method, the patient needs to be as well informed as possible about the options including the risks and benefits of each method.

  3. Preparing for Breast Reconstruction Surgery

    Science.gov (United States)

    ... Cancer Breast Reconstruction Surgery Preparing for Breast Reconstruction Surgery Your surgeon can help you know what to ... The plan for follow-up Costs Understanding your surgery costs Health insurance policies often cover most or ...

  4. Improvement in fast particle track reconstruction with robust statistics

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G. [School of Chemistry and Physics, University of Adelaide, Adelaide 5005, SA (Australia); Abbasi, R. [Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Abdou, Y. [Department of Physics and Astronomy, University of Gent, B-9000 Gent (Belgium); Ackermann, M. [DESY, D-15735 Zeuthen (Germany); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A. [Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211Genève (Switzerland); Ahlers, M. [Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Altmann, D. [Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin (Germany); Auffenberg, J. [Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Bai, X. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Baker, M. [Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Barwick, S.W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Bay, R. [Department of Physics, University of California, Berkeley, CA 94720 (United States); and others

    2014-02-01

    The IceCube project has transformed 1 km{sup 3} of deep natural Antarctic ice into a Cherenkov detector. Muon neutrinos are detected and their direction is inferred by mapping the light produced by the secondary muon track inside the volume instrumented with photomultipliers. Reconstructing the muon track from the observed light is challenging due to noise, light scattering in the ice medium, and the possibility of simultaneously having multiple muons inside the detector, resulting from the large flux of cosmic ray muons. This paper describes work on two problems: (1) the track reconstruction problem, in which, given a set of observations, the goal is to recover the track of a muon; and (2) the coincident event problem, which is to determine how many muons are active in the detector during a time window. Rather than solving these problems by developing more complex physical models that are applied at later stages of the analysis, our approach is to augment the detector's early reconstruction with data filters and robust statistical techniques. These can be implemented at the level of on-line reconstruction and, therefore, improve all subsequent reconstructions. Using the metric of median angular resolution, a standard metric for track reconstruction, we improve the accuracy in the initial reconstruction direction by 13%. We also present improvements in measuring the number of muons in coincident events: we can accurately determine the number of muons 98% of the time.

  5. Non-rigid Reconstruction of Casting Process with Temperature Feature

    Science.gov (United States)

    Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Ying; Wang, Lu

    2017-09-01

    Off-line reconstruction of rigid scene has made a great progress in the past decade. However, the on-line reconstruction of non-rigid scene is still a very challenging task. The casting process is a non-rigid reconstruction problem, it is a high-dynamic molding process lacking of geometric features. In order to reconstruct the casting process robustly, an on-line fusion strategy is proposed for dynamic reconstruction of casting process. Firstly, the geometric and flowing feature of casting are parameterized in manner of TSDF (truncated signed distance field) which is a volumetric block, parameterized casting guarantees real-time tracking and optimal deformation of casting process. Secondly, data structure of the volume grid is extended to have temperature value, the temperature interpolation function is build to generate the temperature of each voxel. This data structure allows for dynamic tracking of temperature of casting during deformation stages. Then, the sparse RGB features is extracted from casting scene to search correspondence between geometric representation and depth constraint. The extracted color data guarantees robust tracking of flowing motion of casting. Finally, the optimal deformation of the target space is transformed into a nonlinear regular variational optimization problem. This optimization step achieves smooth and optimal deformation of casting process. The experimental results show that the proposed method can reconstruct the casting process robustly and reduce drift in the process of non-rigid reconstruction of casting.

  6. A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Shawn Q.; Branlund, Eric; Kesthelyi, Bettina; Braunfeld, Michael B.; Cheng, Yifan; Sedat, John W. [The Howard Hughes Medical Institute and the W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, 600, 16th Street, Room S412D, CA 94158-2517 (United States); Agard, David A., E-mail: agard@msg.ucsf.edu [The Howard Hughes Medical Institute and the W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, 600, 16th Street, Room S412D, CA 94158-2517 (United States)

    2011-07-15

    Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096{sup 2}x512 voxels from an input tilt series containing 122 projection images of 4096{sup 2} pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024{sup 2}x256 voxels from 122 1024{sup 2} pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment. -- Highlights: {yields} A distributed multi-GPU system has been developed for electron microscopic tomography (EMT). {yields} This system allows for rapid constrained, iterative reconstruction of very large volumes. {yields} This system can be easily expanded to generate superior computing power for large-scale iterative EMT realignment.

  7. Spatial methods for event reconstruction in CLEAN

    CERN Document Server

    Coakley, K J; Coakley, Kevin J.; Kinsey, Daniel N. Mc

    2004-01-01

    In CLEAN (Cryogenic Low Energy Astrophysics with Noble gases), a proposed neutrino and dark matter detector, background discrimination is possible if one can determine the location of an ionizing radiation event with high accuracy. We simulate ionizing radiation events that produce multiple scintillation photons within a spherical detection volume filled with liquid neon. We estimate the radial location of a particular ionizing radiation event based on the observed count data corresponding to that event. The count data are collected by detectors mounted at the spherical boundary of the detection volume. We neglect absorption, but account for Rayleigh scattering. To account for wavelength-shifting of the scintillation light, we assume that photons are absorbed and re-emitted at the detectors. Here, we develop spatial Maximum Likelihood methods for event reconstruction, and study their performance in computer simulation experiments. We also study a method based on the centroid of the observed count data. We cal...

  8. Breast tomosynthesis and digital mammography: a comparison of breast cancer visibility and BIRADS classification in a population of cancers with subtle mammographic findings.

    Science.gov (United States)

    Andersson, Ingvar; Ikeda, Debra M; Zackrisson, Sophia; Ruschin, Mark; Svahn, Tony; Timberg, Pontus; Tingberg, Anders

    2008-12-01

    The main purpose was to compare breast cancer visibility in one-view breast tomosynthesis (BT) to cancer visibility in one- or two-view digital mammography (DM). Thirty-six patients were selected on the basis of subtle signs of breast cancer on DM. One-view BT was performed with the same compression angle as the DM image in which the finding was least/not visible. On BT, 25 projections images were acquired over an angular range of 50 degrees, with double the dose of one-view DM. Two expert breast imagers classified one- and two-view DM, and BT findings for cancer visibility and BIRADS cancer probability in a non-blinded consensus study. Forty breast cancers were found in 37 breasts. The cancers were rated more visible on BT compared to one-view and two-view DM in 22 and 11 cases, respectively, (p BIRADS classification (p BIRADS classification (p < 0.01). The results indicate that the cancer visibility on BT is superior to DM, which suggests that BT may have a higher sensitivity for breast cancer detection.

  9. Breast tomosynthesis and digital mammography: a comparison of breast cancer visibility and BIRADS classification in a population of cancers with subtle mammographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Ingvar; Zackrisson, Sophia [Malmoe University Hospital, Diagnostic Centre of Imaging and Functional Medicine, Malmoe (Sweden); Ikeda, Debra M. [Stanford University, Stanford Advanced Medicine Center, Department of Radiology, Stanford, CA (United States); Ruschin, Mark [Lund University, Malmoe University Hospital, Department of Medical Radiation Physics, Malmoe (Sweden); University Health Network/Princess Margaret Hospital, Department of Radiation Physics, Toronto, ON (Canada); Svahn, Tony; Timberg, Pontus; Tingberg, Anders [Lund University, Malmoe University Hospital, Department of Medical Radiation Physics, Malmoe (Sweden)