Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics
Güntürkün, Ulaş
2010-07-01
This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.
An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics.
Nakamura, Makoto; Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki
2014-05-14
We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields.
Minvielle, Marie; Cassou, Christophe; Terray, Laurent; Najac, Julien [CERFACS/CNRS, Climate Modelling and Global Change Team, Toulouse (France); Bourdalle-Badie, Romain [CERFACS/CNRS, Climate Modelling and Global Change Team, Toulouse (France); MERCATOR Parc Technologique du Canal, Ramonville St Agne (France)
2011-02-15
A novel statistical-dynamical scheme has been developed to reconstruct the sea surface atmospheric variables necessary to force an ocean model. Multiple linear regressions are first built over a so-called learning period and over the entire Atlantic basin from the observed relationship between the surface wind conditions, or predictands, and the anomalous large scale atmospheric circulations, or predictors. The latter are estimated in the extratropics by 500 hPa geopotential height weather regimes and in the tropics by low-level wind classes. The transfer function further combined to an analog step is then used to reconstruct all the surface variables fields over 1958-2002. We show that the proposed hybrid scheme is very skillful in reproducing the mean state, the seasonal cycle and the temporal evolution of all the surface ocean variables at interannual timescale. Deficiencies are found in the level of variance especially in the tropics. It is underestimated for 2-m temperature and humidity as well as for surface radiative fluxes in the interannual frequency band while it is slightly overestimated at higher frequency. Decomposition in empirical orthogonal function (EOF) shows that the spatial and temporal coherence of the forcing fields is however very well captured by the reconstruction method. For dynamical downscaling purposes, reconstructed fields are then interpolated and used to carry out a high-resolution oceanic simulation using the NATL4 (1/4 ) model integrated over 1979-2001. This simulation is compared to a reference experiment where the original observed forcing fields are prescribed instead. Mean states between the two experiments are virtually undistinguishable both in terms of surface fluxes and ocean dynamics estimated by the barotropic and the meridional overturning streamfunctions. The 3-dimensional variance of the simulated ocean is well preserved at interannual timescale both for temperature and salinity except in the tropics where it is
Reconstructing the distributed force on an atomic force microscope cantilever
Wagner, Ryan; Killgore, Jason
2017-03-01
A methodology is developed to reconstruct the force applied to an atomic force microscopy (AFM) cantilever given the shape in which it vibrates. This is accomplished by rewriting Bernoulli–Euler beam theory such that the force on the cantilever is approximated as a linear superposition of the theoretical cantilever eigenmodes. The weighting factors in this summation are calculated from the amplitude and phase measured along the length of the cantilever. The accuracy of the force reconstruction is shown to depend on the frequency at which the measurement is performed, the number of discrete points measured along the length of the cantilever, and the signal-to-noise ratio of the measured signal. In contrast to other AFM force reconstruction techniques, this method can reconstruct the distribution of force applied over the length of the AFM cantilever. However, this method performs poorly for localized forces applied to the cantilever, such as is typical of most tip–sample interaction forces. Proof of concept experiments are performed on an electrostatically excited cantilever and the expected force distribution is recovered. This force reconstruction technique offers previously unavailable insight into the distributed forces experienced by an AFM cantilever.
Reconstructing Volcanic Forcing of Climate: Past, Present and Future
Toohey, M.; Timmreck, C.; Sigl, M.
2015-12-01
Radiative forcing resulting from major volcanic eruptions has been a dominant driver of climate variability during Earth's history. Including volcanic forcing in climate model simulations is therefore essential to recreate past climate variability, and provides the opportunity to test the ability of models to respond accurately to external forcing. Ice cores provide estimates of the volcanic sulfate loadings from past eruptions, from which radiative forcing can be reconstructed, with associated uncertainties. Using prior reconstructions, climate models have reproduced the gross features of global mean temperature variability reconstructed from climate proxies, although some significant differences between model results and reconstructions remain. There is much less confidence in the accuracy of the dynamical responses to volcanic forcing produced by climate models, and thus the regional aspects of post-volcanic climate anomalies are much more uncertain—a result which mirrors uncertainties in the dynamical responses to future climate change. Improvements in model's response to volcanic forcing may be possible through improving the accuracy of the forcing data. Recent advances on multiple fronts have motivated the development of a next-generation volcanic forcing timeseries for use in climate models, based on (1) improved dating and precision of ice core records, (2) better understanding of the atmospheric transport and microphysical evolution of volcanic aerosol, including its size distribution, and (3) improved representations of the spatiotemporal structure of volcanic radiative forcing. A new volcanic forcing data set, covering the past 2500 years, will be introduced and compared with prior reconstructions. Preliminary results of climate model simulations using the new forcing will also be shown, and current and future applications of the forcing set discussed.
Olive, Marie-Marie; Grosbois, Vladimir; Tran, Annelise; Nomenjanahary, Lalaina Arivony; Rakotoarinoro, Mihaja; Andriamandimby, Soa-Fy; Rogier, Christophe; Heraud, Jean-Michel; Chevalier, Veronique
2017-01-01
The force of infection (FOI) is one of the key parameters describing the dynamics of transmission of vector-borne diseases. Following the occurrence of two major outbreaks of Rift Valley fever (RVF) in Madagascar in 1990–91 and 2008–09, recent studies suggest that the pattern of RVF virus (RVFV) transmission differed among the four main eco-regions (East, Highlands, North-West and South-West). Using Bayesian hierarchical models fitted to serological data from cattle of known age collected during two surveys (2008 and 2014), we estimated RVF FOI and described its variations over time and space in Madagascar. We show that the patterns of RVFV transmission strongly differed among the eco-regions. In the North-West and Highlands regions, these patterns were synchronous with a high intensity in mid-2007/mid-2008. In the East and South-West, the peaks of transmission were later, between mid-2008 and mid-2010. In the warm and humid northwestern eco-region favorable to mosquito populations, RVFV is probably transmitted all year-long at low-level during inter-epizootic period allowing its maintenance and being regularly introduced in the Highlands through ruminant trade. The RVF surveillance of animals of the northwestern region could be used as an early warning indicator of an increased risk of RVF outbreak in Madagascar. PMID:28051125
Nonlinear Dynamic Force Spectroscopy
Björnham, Oscar
2016-01-01
Dynamic force spectroscopy (DFS) is an experimental technique that is commonly used to assess information of the strength, energy landscape, and lifetime of noncovalent bio-molecular interactions. DFS traditionally requires an applied force that increases linearly with time so that the bio-complex under investigation is exposed to a constant loading rate. However, tethers or polymers can modulate the applied force in a nonlinear regime. For example, bacterial adhesion pili and polymers with worm-like chain properties are examples of structures that show nonlinear force responses. In these situations, the theory for traditional DFS cannot be readily applied. In this work we expand the theory for DFS to also include nonlinear external forces while still maintaining compatibility with the linear DFS theory. To validate the theory we modeled a bio-complex expressed on a stiff, an elastic and a worm-like chain polymer, using Monte Carlo methods, and assessed the corresponding rupture force spectra. It was found th...
A multiplicative regularization for force reconstruction
Aucejo, M.; De Smet, O.
2017-02-01
Additive regularizations, such as Tikhonov-like approaches, are certainly the most popular methods for reconstructing forces acting on a structure. These approaches require, however, the knowledge of a regularization parameter, that can be numerically computed using specific procedures. Unfortunately, these procedures are generally computationally intensive. For this particular reason, it could be of primary interest to propose a method able to proceed without defining any regularization parameter beforehand. In this paper, a multiplicative regularization is introduced for this purpose. By construction, the regularized solution has to be calculated in an iterative manner. In doing so, the amount of regularization is automatically adjusted throughout the resolution process. Validations using synthetic and experimental data highlight the ability of the proposed approach in providing consistent reconstructions.
Force Dynamics of Verb Complementation
Jacek Woźny
2015-12-01
Full Text Available Force Dynamics of Verb Complementation The concepts of motion and force are both extensively discussed in cognitive linguistics literature. But they are discussed separately. The first usually in the context of ‘motion situations’ (Talmy, Slobin, Zlatev, the other as part of the Force Dynamics framework, which was developed by Talmy. The aim of this paper is twofold: first, to argue that the concepts of force and motion should not be isolated but considered as two inseparable parts of force-motion events. The second goal is to prove that the modified Force Dynamics (force-motion framework can be used for precise characterization of the verb complementation patterns. To this end, a random sample of 50 sentences containing the verb ‘went’ is analyzed, demonstrating the differences between the categories of intensive and intransitive complementation with respect to the linguistically coded parameters of force and motion.
Comparison of Force Reconstruction Methods for a Lumped Mass Beam
Vesta I. Bateman
1997-01-01
Full Text Available Two extensions of the force reconstruction method, the sum of weighted accelerations technique (SWAT, are presented in this article. SWAT requires the use of the structure’s elastic mode shapes for reconstruction of the applied force. Although based on the same theory, the two new techniques do not rely on mode shapes to reconstruct the applied force and may be applied to structures whose mode shapes are not available. One technique uses the measured force and acceleration responses with the rigid body mode shapes to calculate the scalar weighting vector, so the technique is called SWAT-CAL (SWAT using a calibrated force input. The second technique uses the free-decay time response of the structure with the rigid body mode shapes to calculate the scalar weighting vector and is called SWAT-TEEM (SWAT using time eliminated elastic modes. All three methods are used to reconstruct forces for a simple structure.
Exploring the topology of dynamical reconstructions
Garland, Joshua; Bradley, Elizabeth; Meiss, James D.
2016-11-01
Computing the state-space topology of a dynamical system from scalar data requires accurate reconstruction of those dynamics and construction of an appropriate simplicial complex from the results. The reconstruction process involves a number of free parameters and the computation of homology for a large number of simplices can be expensive. This paper is a study of how to compute the homology efficiently and effectively without a full (diffeomorphic) reconstruction. Using trajectories from the classic Lorenz system, we reconstruct the dynamics using the method of delays, then build a simplicial complex whose vertices are a small subset of the data: the "witness complex". Surprisingly, we find that the witness complex correctly resolves the homology of the underlying invariant set from noisy samples of that set even if the reconstruction dimension is well below the thresholds for assuring topological conjugacy between the true and reconstructed dynamics that are specified in the embedding theorems. We conjecture that this is because the requirements for reconstructing homology are less stringent: a homeomorphism is sufficient-as opposed to a diffeomorphism, as is necessary for the full dynamics. We provide preliminary evidence that a homeomorphism, in the form of a delay-coordinate reconstruction map, may exist at a lower dimension than that required to achieve an embedding.
Reconstruction of Undersampled Atomic Force Microscopy Images
Jensen, Tobias Lindstrøm; Arildsen, Thomas; Østergaard, Jan
2013-01-01
. Moreover, it is often required to take several images before a relevant observation region is identified. In this paper we show how to significantly reduce the image acquisition time by undersampling. The reconstruction of an undersampled AFM image can be viewed as an inpainting, interpolating problem...
Reconstructing geomorphic patterns and forcing factors from Alpine Lake Sediment
Arnaud, Fabien; Poulenard, Jérôme; Giguet-Covex, Charline; Wilhelm, Bruno; Révillon, Sidonie; Jenny, Jean-Philippe; Revel, Marie; Enters, Dirk; Bajard, Manon; Fouinat, Laurent; Doyen, Elise; Simonneau, Anaëlle; Pignol, Cécile; Chapron, Emmanuel; Vannière, Boris; Sabatier, Pierre
2017-04-01
In this paper we review the scientific efforts that were led over the last decades to reconstruct geomorphic patterns from continuous alpine lake sediment records. Whereas our results point a growing importance of humans as erosion forcing factors, we will focus here on climate-related processes. Our main dataset is made of a regional approach which was led without any a priori regarding erosion forcing factors. We hence integrated a set of sediment sequences from various environment along an altitudinal gradient from 200 up to 2400m asl in Northern French Alps. Altogether our data point climate change as one of the main factor of erosion variability. In particular, the last two cold spells that occurred during the early middle age (Dark Age) and between the 14th and the 20th century AD (Little Ice Age) appear to be outstanding compared to any other periods of enhanced erosion along the Holocene. The climatic forcing of those erosion phases is supported by an increase in the contribution of glacier-eroded material at a regional scale. At local scales, our data also point the growing importance, since at least the mid Bronze Age (ca. 3500 cal. BP) of human activities as a major erosion factor. This influence peaked during the late Iron Age and Antiquity periods (200 BC - 400 AD) when we record a regional generalised period of enhanced erosion in response to the development of pasturing activities. Thanks to provenance and weathering markers, we evidenced a strong relationship between the changes in ecosystems, soil development and erosion patterns. We hence showed the vegetal colonisation of bared soil led to a period of intense weathering while new soils were under formation between 11,000 and 8,000 cal. BP. Soils then knew an optimum until the onset of the Neoglacial at ca. 4,500 cal. BP prior to decline under both climate and human pressures. Altogether our data point the complexity of processes that affected the Earth critical zone along the Holocene. However
Dynamical networks reconstructed from time series
Levnajić, Zoran
2012-01-01
Novel method of reconstructing dynamical networks from empirically measured time series is proposed. By statistically examining the correlations between motions displayed by network nodes, we derive a simple equation that directly yields the adjacency matrix, assuming the intra-network interaction functions to be known. We illustrate the method's implementation on a simple example and discuss the dependence of the reconstruction precision on the properties of time series. Our method is applicable to any network, allowing for reconstruction precision to be maximized, and errors to be estimated.
Reconstruction of piano hammer force from string velocity.
Chaigne, Antoine
2016-11-01
A method is presented for reconstructing piano hammer forces through appropriate filtering of the measured string velocity. The filter design is based on the analysis of the pulses generated by the hammer blow and propagating along the string. In the five lowest octaves, the hammer force is reconstructed by considering two waves only: the incoming wave from the hammer and its first reflection at the front end. For the higher notes, four- or eight-wave schemes must be considered. The theory is validated on simulated string velocities by comparing imposed and reconstructed forces. The simulations are based on a nonlinear damped stiff string model previously developed by Chabassier, Chaigne, and Joly [J. Acoust. Soc. Am. 134(1), 648-665 (2013)]. The influence of absorption, dispersion, and amplitude of the string waves on the quality of the reconstruction is discussed. Finally, the method is applied to real piano strings. The measured string velocity is compared to the simulated velocity excited by the reconstructed force, showing a high degree of accuracy. A number of simulations are compared to simulated strings excited by a force derived from measurements of mass and acceleration of the hammer head. One application to an historic piano is also presented.
Reconstruction of cellular forces in fibrous biopolymer network
Zhang, Yunsong; Heizler, Shay; Levine, Herbert
2016-01-01
How cells move through 3d extracellular matrix (ECM) is of increasing interest in attempts to understand important biological processes such as cancer metastasis. Just as in motion on 2d surfaces, it is expected that experimental measurements of cell-generated forces will provide valuable information for uncovering the mechanisms of cell migration. Here, we use a lattice-based mechanical model of ECM to study the cellular force reconstruction issue. We conceptually propose an efficient computational scheme to reconstruct cellular forces from the deformation and explore the performance of our scheme in presence of noise, varying marker bead distribution, varying bond stiffnesses and changing cell morphology. Our results show that micromechanical information, rather than merely the bulk rheology of the biopolymer networks, is essential for a precise recovery of cellular forces.
Image reconstruction with acoustic radiation force induced shear waves
McAleavey, Stephen A.; Nightingale, Kathryn R.; Stutz, Deborah L.; Hsu, Stephen J.; Trahey, Gregg E.
2003-05-01
Acoustic radiation force may be used to induce localized displacements within tissue. This phenomenon is used in Acoustic Radiation Force Impulse Imaging (ARFI), where short bursts of ultrasound deliver an impulsive force to a small region. The application of this transient force launches shear waves which propagate normally to the ultrasound beam axis. Measurements of the displacements induced by the propagating shear wave allow reconstruction of the local shear modulus, by wave tracking and inversion techniques. Here we present in vitro, ex vivo and in vivo measurements and images of shear modulus. Data were obtained with a single transducer, a conventional ultrasound scanner and specialized pulse sequences. Young's modulus values of 4 kPa, 13 kPa and 14 kPa were observed for fat, breast fibroadenoma, and skin. Shear modulus anisotropy in beef muscle was observed.
A dynamic 3D foot reconstruction system.
Thabet, Ali K; Trucco, Emanuele; Salvi, Joaquim; Wang, Weijie; Abboud, Rami J
2011-01-01
Foot problems are varied and range from simple disorders through to complex diseases and joint deformities. Wherever possible, the use of insoles, or orthoses, is preferred over surgery. Current insole design techniques are based on static measurements of the foot, despite the fact that orthoses are prevalently used in dynamic conditions while walking or running. This paper presents the design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion, and its use to show that foot measurements in dynamic conditions differ significantly from their static counterparts. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Engineering and clinical tests were carried out for the validation of the system. The accuracy of the system was found to be 0.34 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.44 mm (static case) and 2.81 mm (dynamic case). Furthermore, a study was performed to compare the effective length of the foot between static and dynamic reconstructions using the 4D system. Results showed an average increase of 9 mm for the dynamic case. This increase is substantial for orthotics design, cannot be captured by a static system, and its subject-specific measurement is crucial for the design of effective foot orthoses.
Forces affecting orbital floor reconstruction materials--a cadaver study.
Birkenfeld, Falk; Steiner, Martin; Kern, Matthias; Wiltfang, Jörg; Möller, Björn; Lucius, Ralph; Becker, Stephan Thomas
2013-01-01
The objectives of this study were: (i) to evaluate the applied force and the displacement of the orbital contents after orbital floor reconstruction using artificially aged reconstruction materials in fresh frozen human heads and (ii) to analyze the puncture strength of the materials. Six fresh frozen human heads were used, and orbital floor defects in the right and left orbit were created by 3.0 J direct impacts on the globe and infraorbital rim. The orbital floor defect sizes and displacements were evaluated after a Le-Fort-I osteotomy. The orbital floor defect sizes were 208.3(SD, 33.4) mm(2) for the globe impacts and 221.8(SD, 53.1) mm(2) for the infraorbital impacts. The forces on the incorporated materials were approximately 0.003 N and 0.03 N for the PDS-foil and collagen membrane, respectively. The displacements of the materials were +0.9 mm and +0.7 mm for the PDS-foil and collagen membrane, respectively. The puncture strengths of the PDS-foil and collagen membrane decreased from approximately 70 N and 12 N at week 1 to approximately 5 N and 1.5 N at week 8 of artificial aging. The force applied to the orbital content is minimal, and the puncture strengths of the artificially aged materials are more than sufficient for the measured forces. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Dynamical numerical model for nematic order reconstruction
Lombardo, G.; Ayeb, H.; Barberi, R.
2008-05-01
In highly frustrated calamitic nematic liquid crystals, a strong elastic distortion can be confined on a few nanometers. The classical elastic theory fails to describe such systems and a more complete description based on the tensor order parameter Q is required. A finite element method is used to implement the Q dynamics by a variational principle and it is shown that a uniaxial nematic configuration can evolve passing through transient biaxial states. This solution, which connects two competing uniaxial nematic textures, is known as “nematic order reconstruction.”
Dynamics of forced biopolymer translocation
Lehtola, V V; Kaski, K; 10.1209/0295-5075/85/58006
2009-01-01
We present results from our simulations of biopolymer translocation in a solvent which explain the main experimental findings. The forced translocation can be described by simple force balance arguments for the relevant range of pore potentials in experiments and biological systems. Scaling of translocation time with polymer length varies with pore force and friction. Hydrodynamics affects this scaling and significantly reduces translocation times.
Reconstruction of Fine Scale Auroral Dynamics
Hirsch, Michael; Zettergren, Matthew; Dahlgren, Hanna; Goenka, Chhavi; Akbari, Hassanali
2015-01-01
We present a feasibility study for a high frame rate, short baseline auroral tomographic imaging system useful for estimating parametric variations in the precipitating electron number flux spectrum of dynamic auroral events. Of particular interest are auroral substorms, characterized by spatial variations of order 100 m and temporal variations of order 10 ms. These scales are thought to be produced by dispersive Alfv\\'en waves in the near-Earth magnetosphere. The auroral tomography system characterized in this paper reconstructs the auroral volume emission rate to estimate the characteristic energy and location in the direction perpendicular to the geomagnetic field of peak electron precipitation flux using a distributed network of precisely synchronized ground-based cameras. As the observing baseline decreases, the tomographic inverse problem becomes highly ill-conditioned; as the sampling rate increases, the signal-to-noise ratio degrades and synchronization requirements become increasingly critical. Our a...
Chang, Joshua C; Chou, Tom
2015-01-01
Quantifying the forces between and within macromolecules is a necessary first step in understanding the mechanics of molecular structure, protein folding, and enzyme function and performance. In such macromolecular settings, dynamic single-molecule force spectroscopy (DFS) has been used to distort bonds. The resulting responses, in the form of rupture forces, work applied, and trajectories of displacements, have been used to reconstruct bond potentials. Such approaches often rely on simple parameterizations of one-dimensional bond potentials, assumptions on equilibrium starting states, and/or large amounts of trajectory data. Parametric approaches typically fail at inferring complex-shaped bond potentials with multiple minima, while piecewise estimation may not guarantee smooth results with the appropriate behavior at large distances. Existing techniques, particularly those based on work theorems, also do not address spatial variations in the diffusivity that may arise from spatially inhomogeneous coupling to...
Reconstructing complex networks with binary-state dynamics
Li, Jingwen; Lai, Ying-Cheng; Grebogi, Celso
2015-01-01
The prerequisite for our understanding of many complex networked systems lies in the reconstruction of network structure from measurable data. Although binary-state dynamics occurring in a broad class of complex networked systems in nature and society and has been intensively investigated, a general framework for reconstructing complex networks from binary states, the inverse problem, is lacking. Here we offer a general solution to the reconstruction problem by developing a data-based linearization approach for binary-state dynamics with linear, nonlinear, discrete and stochastic switching functions. The linearization allows us to convert the network reconstruction problem into a sparse signal reconstruction problem that can be resolved efficiently and credibly by convex optimization based on compressed sensing. The completely data-based linearization method and the sparse signal reconstruction constitutes a general framework for reconstructing complex networks without any knowledge of the binary-state dynami...
Undulator with dynamic compensation of magnetic forces
Gluskin, Efim; Trakhtenberg, Emil; Xu, Joseph Z.
2016-05-31
A method and apparatus for implementing dynamic compensation of magnetic forces for undulators are provided. An undulator includes a respective set of magnet arrays, each attached to a strongback, and placed on horizontal slides and positioned parallel relative to each other with a predetermined gap. Magnetic forces are compensated by a set of compensation springs placed along the strongback. The compensation springs are conical springs having exponential-force characteristics that substantially match undulator magnetic forces independently of the predetermined gap. The conical springs are positioned along the length of the magnets.
Undulator with dynamic compensation of magnetic forces
Gluskin, Efim; Trakhtenberg, Emil; Xu, Joseph Z.
2016-05-31
A method and apparatus for implementing dynamic compensation of magnetic forces for undulators are provided. An undulator includes a respective set of magnet arrays, each attached to a strongback, and placed on horizontal slides and positioned parallel relative to each other with a predetermined gap. Magnetic forces are compensated by a set of compensation springs placed along the strongback. The compensation springs are conical springs having exponential-force characteristics that substantially match undulator magnetic forces independently of the predetermined gap. The conical springs are positioned along the length of the magnets.
Estimation of the shear force in transverse dynamic force microscopy using a sliding mode observer
Thang Nguyen
2015-09-01
Full Text Available In this paper, the problem of estimating the shear force affecting the tip of the cantilever in a Transverse Dynamic Force Microscope (TDFM using a real-time implementable sliding mode observer is addressed. The behaviour of a vertically oriented oscillated cantilever, in close proximity to a specimen surface, facilitates the imaging of the specimen at nano-metre scale. Distance changes between the cantilever tip and the specimen can be inferred from the oscillation amplitudes, but also from the shear force acting at the tip. Thus, the problem of accurately estimating the shear force is of significance when specimen images and mechanical properties need to be obtained at submolecular precision. A low order dynamic model of the cantilever is derived using the method of lines, for the purpose of estimating the shear force. Based on this model, an estimator using sliding mode techniques is presented to reconstruct the unknown shear force, from only tip position measurements and knowledge of the excitation signal applied to the top of the cantilever. Comparisons to methods assuming a quasi-static harmonic balance are made.
Asymptotic approximation method of force reconstruction: Proof of concept
Sanchez, J.; Benaroya, H.
2017-08-01
An important problem in engineering is the determination of the system input based on the system response. This type of problem is difficult to solve as it is often ill-defined, and produces inaccurate or non-unique results. Current reconstruction techniques typically involve the employment of optimization methods or additional constraints to regularize the problem, but these methods are not without their flaws as they may be sub-optimally applied and produce inadequate results. An alternative approach is developed that draws upon concepts from control systems theory, the equilibrium analysis of linear dynamical systems with time-dependent inputs, and asymptotic approximation analysis. This paper presents the theoretical development of the proposed method. A simple application of the method is presented to demonstrate the procedure. A more complex application to a continuous system is performed to demonstrate the applicability of the method.
Force dynamics in fixed-ratio schedules.
Pinkston, Jonathan W; McBee, Lindsey N
2014-03-01
Fixed-ratio schedules are widely used in behavioral research. Although fixed-ratio schedules often conjure up relationships to work and effort, little is known about effort-related measures in these schedules. Early research had shown that force and effort of operant behavior vary systematically during the execution of ratio schedules, and the goal of the present study was to revisit early research on force dynamics in fixed-ratio schedules. Four rats earned sucrose by pressing an isometric force transducer. Presses produced sucrose after ten or twenty responses. In general, the force of responses increased then decreased systematically across the ratio. The possibility that decreases in force during ratio execution was due to a trade-off with the differential reinforcement of short inter-response times (IRT) was investigated in an additional condition where sucrose was made available according to a tandem fixed-ratio 19 inter-response (IRT)> t schedule. The tandem IRT requirement did not eliminate decreasing trends in force across the ratio; unexpectedly, the tandem requirement did eliminate increases in force early in the ratio, which may reflect sequence-level organization operating in the control of force dynamics.
Sparse deconvolution for the large-scale ill-posed inverse problem of impact force reconstruction
Qiao, Baijie; Zhang, Xingwu; Gao, Jiawei; Liu, Ruonan; Chen, Xuefeng
2017-01-01
Most previous regularization methods for solving the inverse problem of force reconstruction are to minimize the l2-norm of the desired force. However, these traditional regularization methods such as Tikhonov regularization and truncated singular value decomposition, commonly fail to solve the large-scale ill-posed inverse problem in moderate computational cost. In this paper, taking into account the sparse characteristic of impact force, the idea of sparse deconvolution is first introduced to the field of impact force reconstruction and a general sparse deconvolution model of impact force is constructed. Second, a novel impact force reconstruction method based on the primal-dual interior point method (PDIPM) is proposed to solve such a large-scale sparse deconvolution model, where minimizing the l2-norm is replaced by minimizing the l1-norm. Meanwhile, the preconditioned conjugate gradient algorithm is used to compute the search direction of PDIPM with high computational efficiency. Finally, two experiments including the small-scale or medium-scale single impact force reconstruction and the relatively large-scale consecutive impact force reconstruction are conducted on a composite wind turbine blade and a shell structure to illustrate the advantage of PDIPM. Compared with Tikhonov regularization, PDIPM is more efficient, accurate and robust whether in the single impact force reconstruction or in the consecutive impact force reconstruction.
Tensor-based dictionary learning for dynamic tomographic reconstruction
Tan, Shengqi; Zhang, Yanbo; Wang, Ge; Mou, Xuanqin; Cao, Guohua; Wu, Zhifang; Yu, Hengyong
2015-04-01
In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction.
Handling of impact forces in inverse dynamics
Bisseling, Rob W.; Hof, At L.
2006-01-01
In the standard inverse dynamic method, joint moments are assessed from ground reaction force data and position data, where segmental accelerations are calculated by numerical differentiation of position data after low-pass filtering. This method falls short in analyzing the impact phase, e.g.
Contact force models for multibody dynamics
Flores, Paulo
2016-01-01
This book analyzes several compliant contact force models within the context of multibody dynamics, while also revisiting the main issues associated with fundamental contact mechanics. In particular, it presents various contact force models, from linear to nonlinear, from purely elastic to dissipative, and describes their parameters. Addressing the different numerical methods and algorithms for contact problems in multibody systems, the book describes the gross motion of multibody systems by using a two-dimensional formulation based on the absolute coordinates and employs different contact models to represent contact-impact events. Results for selected planar multibody mechanical systems are presented and utilized to discuss the main assumptions and procedures adopted throughout this work. The material provided here indicates that the prediction of the dynamic behavior of mechanical systems involving contact-impact strongly depends on the choice of contact force model. In short, the book provides a comprehens...
Rahmim, Arman; Tang, Jing; Zaidi, Habib
2009-08-01
In this article, the authors review novel techniques in the emerging field of spatiotemporal four-dimensional (4D) positron emission tomography (PET) image reconstruction. The conventional approach to dynamic PET imaging, involving independent reconstruction of individual PET frames, can suffer from limited temporal resolution, high noise (especially when higher frame sampling is introduced to better capture fast dynamics), as well as complex reconstructed image noise distributions that can be very difficult and time consuming to model in kinetic parameter estimation tasks. Various approaches that seek to address some or all of these limitations are described, including techniques that utilize (a) iterative temporal smoothing, (b) advanced temporal basis functions, (c) principal components transformation of the dynamic data, (d) wavelet-based techniques, as well as (e) direct kinetic parameter estimation methods. Future opportunities and challenges with regards to the adoption of 4D and higher dimensional image reconstruction techniques are also outlined.
Forced synchronization of autonomous dynamical Boolean networks
Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx [División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Col. Lomas 4 Sección, C.P. 78216, San Luis Potosí, S.L.P. (Mexico); Campos-Cantón, I. [Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, C.P. 78000, San Luis Potosí, S.L.P. (Mexico); Gauthier, Daniel J. [Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Box 90305, Durham, North Carolina 27708 (United States)
2015-08-15
We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.
Forced synchronization of autonomous dynamical Boolean networks.
Rivera-Durón, R R; Campos-Cantón, E; Campos-Cantón, I; Gauthier, Daniel J
2015-08-01
We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.
Identification of dynamic forces using group-sparsity in frequency domain
Rezayat, A.; Nassiri, V.; De Pauw, B.; Ertveldt, J.; Vanlanduit, S.; Guillaume, P.
2016-03-01
The knowledge of acting dynamic forces is required for the design of structures. Given the structural model, inverse techniques offer the possibility to reconstruct the system's input forces from vibration data. The inverse problem is highly sensitive to measurement noise, and the classical pseudo-inverse method generally fails to find the correct loads. In this paper we propose a new penalty function that combines the advantages of the ℓp-norm properties, together with a modified iterative optimization technique. The new algorithm (G-FISTA) is used to localize and reconstruct dynamic point-forces on a beam structure, with no prior knowledge on the force locations. The algorithm is validated by means of several simulations and experiments. The strain data is measured using Fiber Bragg Gratings (FBG) attached to the beam. The obtained results show that the location and time history of point forces are better estimated using the proposed technique.
Adaptive control of force microscope cantilever dynamics
Jensen, S. E.; Dougherty, W. M.; Garbini, J. L.; Sidles, J. A.
2007-09-01
Magnetic resonance force microscopy (MRFM) and other emerging scanning probe microscopies entail the detection of attonewton-scale forces. Requisite force sensitivities are achieved through the use of soft force microscope cantilevers as high resonant-Q micromechanical oscillators. In practice, the dynamics of these oscillators are greatly improved by the application of force feedback control computed in real time by a digital signal processor (DSP). Improvements include increased sensitive bandwidth, reduced oscillator ring up/down time, and reduced cantilever thermal vibration amplitude. However, when the cantilever tip and the sample are in close proximity, electrostatic and Casimir tip-sample force gradients can significantly alter the cantilever resonance frequency, foiling fixed-gain narrow-band control schemes. We report an improved, adaptive control algorithm that uses a Hilbert transform technique to continuously measure the vibration frequency of the thermally-excited cantilever and seamlessly adjust the DSP program coefficients. The closed-loop vibration amplitude is typically 0.05 nm. This adaptive algorithm enables narrow-band formally-optimal control over a wide range of resonance frequencies, and preserves the thermally-limited signal to noise ratio (SNR).
Reconstructing the Nonlinear Dynamical Systems by Evolutionary Computation Techniques
LIU Minzhong; KANG Lishan
2006-01-01
We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The convergence of the algorithm is discussed. We make the numerical experiments and test our model using the two famous chaotic systems (mainly the Lorenz and Chen systems ). The results show the relatively accurate reconstruction of these chaotic systems based on observational data can be obtained. Therefore we may conclude that there are broad prospects using our method to model the nonlinear dynamical systems.
Force field dependence of riboswitch dynamics.
Hanke, Christian A; Gohlke, Holger
2015-01-01
Riboswitches are noncoding regulatory elements that control gene expression in response to the presence of metabolites, which bind to the aptamer domain. Metabolite binding appears to occur through a combination of conformational selection and induced fit mechanism. This demands to characterize the structural dynamics of the apo state of aptamer domains. In principle, molecular dynamics (MD) simulations can give insights at the atomistic level into the dynamics of the aptamer domain. However, it is unclear to what extent contemporary force fields can bias such insights. Here, we show that the Amber force field ff99 yields the best agreement with detailed experimental observations on differences in the structural dynamics of wild type and mutant aptamer domains of the guanine-sensing riboswitch (Gsw), including a pronounced influence of Mg2+. In contrast, applying ff99 with parmbsc0 and parmχOL modifications (denoted ff10) results in strongly damped motions and overly stable tertiary loop-loop interactions. These results are based on 58 MD simulations with an aggregate simulation time>11 μs, careful modeling of Mg2+ ions, and thorough statistical testing. Our results suggest that the moderate stabilization of the χ-anti region in ff10 can have an unwanted damping effect on functionally relevant structural dynamics of marginally stable RNA systems. This suggestion is supported by crystal structure analyses of Gsw aptamer domains that reveal χ torsions with high-anti values in the most mobile regions. We expect that future RNA force field development will benefit from considering marginally stable RNA systems and optimization toward good representations of dynamics in addition to structural characteristics.
Dynamical friction force exerted on spherical bodies
Esquivel, O
2007-01-01
We present a rigorous calculation of the dynamical friction force exerted on a spherical massive perturber moving through an infinite homogenous system of field stars. By calculating the shape and mass of the polarization cloud induced by the perturber in the background system, which decelerates the motion of the perturber, we recover Chandrasekhar's drag force law with a modified Coulomb logarithm. As concrete examples we calculate the drag force exerted on a Plummer sphere or a sphere with the density distribution of a Hernquist profile. It is shown that the shape of the perturber affects only the exact form of the Coulomb logarithm. The latter converges on small scales, because encounters of the test and field stars with impact parameters less than the size of the massive perturber become inefficient. We confirm this way earlier results based on the impulse approximation of small angle scatterings.
Dynamic characteristics of an NC table with phase space reconstruction
Linhong WANG; Bo WU; Runsheng DU; Shuzi YANG
2009-01-01
The dynamic properties of a numerical control (NC) table directly interfere with the accuracy and surface quality of work pieces machined by a computer numerical control (CNC) machine. Phase space reconstruction is an effective approach for researching dynamic behaviors of a system with measured time series. Based on the theory and method for phase space reconstruction, the correlation dimension, maximum Lyapunov exponent, and dynamic time series measured from the NC table were analyzed. The characteristic quantities such as the power spectrum, phase trajectories, correlation dimension, and maximum Lyapunov exponent are extracted from the measured time series. The chaotic characteristic of the dynamic properties of the NC table is revealed via various approaches.Therefore, an NC table is a nonlinear dynamic system. This research establishes a basis for dynamic system discrimi-nation of a CNC machine.
Dynamic reconstruction of heterogeneous materials and microstructure evolution.
Chen, Shaohua; Li, Hechao; Jiao, Yang
2015-08-01
Reconstructing heterogeneous materials from limited structural information has been a topic that attracts extensive research efforts and still poses many challenges. The Yeong-Torquato procedure is one of the most popular reconstruction techniques, in which the material reconstruction problem based on a set of spatial correlation functions is formulated as a constrained energy minimization (optimization) problem and solved using simulated annealing [Yeong and Torquato, Phys. Rev. E 57, 495 (1998)]. The standard two-point correlation function S2 has been widely used in reconstructions, but can also lead to large structural degeneracy for certain nearly percolating systems. To improve reconstruction accuracy and reduce structural degeneracy, one can successively incorporate additional morphological information (e.g., nonconventional or higher-order correlation functions), which amounts to reshaping the energy landscape to create a deep (local) energy minimum. In this paper, we present a dynamic reconstruction procedure that allows one to use a series of auxiliary S2 to achieve the same level of accuracy as those incorporating additional nonconventional correlation functions. In particular, instead of randomly sampling the microstructure space as in the simulated annealing scheme, our procedure utilizes a series of auxiliary microstructures that mimic a physical structural evolution process (e.g., grain growth). This amounts to constructing a series auxiliary energy landscapes that bias the convergence of the reconstruction to a favored (local) energy minimum. Moreover, our dynamic procedure can be naturally applied to reconstruct an actual microstructure evolution process. In contrast to commonly used evolution reconstruction approaches that separately generate individual static configurations, our procedure continuously evolves a single microstructure according to a time-dependent correlation function. The utility of our procedure is illustrated by successfully
Oxvig, Christian Schou; Pedersen, Patrick Steffen; Arildsen, Thomas
2014-01-01
provides researchers in compressed sensing with a selection of algorithms for reconstructing undersampled general images, and offers a consistent and rigorous way to efficiently evaluate the researchers own developed reconstruction algorithms in terms of phase transitions. The package also serves......Magni is an open source Python package that embraces compressed sensing and Atomic Force Microscopy (AFM) imaging techniques. It provides AFM-specific functionality for undersampling and reconstructing images from AFM equipment and thereby accelerating the acquisition of AFM images. Magni also...
Debye Entropic Force and Modified Newtonian Dynamics*
LI Xin; CHANG Zhe
2011-01-01
Verlinde has suggested that the gravity has an entropic origin, and a gravitational system could be regarded as a thermodynamical system.It is well-known that the equipartition law of energy is invalid at very low temperature.Therefore, entropic force should be modified while the temperature of the holographic screen is very low.It is shown that the modified entropic force is proportional to the square of the acceleration, while the temperature of the holographic screen is much lower than the Debye temperature TD.The modified entropic force returns to the Newton's law of gravitation while the temperature of the holographic screen is much higher than the Debye temperature.The modified entropic force is connected with modified Newtonian dynamics (MOND).The constant ao involved in MOND is linear in the Debye frequency ωD, which can be regarded as the largest frequency of the bits in screen.We find that there do have a strong connection between MOND and cosmology in the framework of Verlinde's entropic force, if the holographic screen is taken to be bound of the Universe.The Debye frequency is linear in the Hubble constant Ho.
Temperature response to external forcing in simulations and reconstructions of the last millennium
L. Fernández-Donado
2012-08-01
Full Text Available The understanding of natural climate variability and its driving factors is crucial to assess future climate change. Therefore, comparing proxy-based climate reconstructions with forcing factors as well as comparing these with paleoclimate model simulations is key to gain insights into the relative roles of internal versus forced variability. A review of the state of modeling of the last millennium climate previous to the CMIP5-PMIP3 coordinated effort is presented and compared to the available temperature reconstructions. Simulations and reconstructions broadly agree on reproducing the major temperature changes and suggest an overall linear response to external forcing on multidecadal or longer timescales. Internal variability is found to have an important influence at hemispheric and global scales. The spatial distribution of simulated temperature changes during the transition of the Medieval Climate Anomaly to the Little Ice Age disagrees with that found in the reconstructions, thus advocating for internal variability as a possible major player in shaping temperature changes through the millennium.
A paleo transient climate response (PTCR is defined to provide a quantitative framework for analysing the consistency between simulated and reconstructed climate. Beyond an overall agreement between simulated and reconstructed PTCR ranges, this analysis is able to single out specific discrepancies between some reconstructions and the ensemble of simulations. The disagreement is found in the cases where the reconstructions show reduced covariability with external forcings or when they present high rates of temperature change.
Zeile, Christian, E-mail: christian.zeile@kit.edu; Maione, Ivan A.
2015-10-15
Highlights: • An in operation force measurement system for the ITER EU HCPB TBM has been developed. • The force reconstruction methods are based on strain measurements on the attachment system. • An experimental setup and a corresponding mock-up have been built. • A set of test cases representing ITER relevant excitations has been used for validation. • The influence of modeling errors on the force reconstruction has been investigated. - Abstract: In order to reconstruct forces on the test blanket modules in ITER, two force reconstruction methods, the augmented Kalman filter and a model predictive controller, have been selected and developed to estimate the forces based on strain measurements on the attachment system. A dedicated experimental setup with a corresponding mock-up has been designed and built to validate these methods. A set of test cases has been defined to represent possible excitation of the system. It has been shown that the errors in the estimated forces mainly depend on the accuracy of the identified model used by the algorithms. Furthermore, it has been found that a minimum of 10 strain gauges is necessary to allow for a low error in the reconstructed forces.
A Total Variation-Based Reconstruction Method for Dynamic MRI
Germana Landi
2008-01-01
Full Text Available In recent years, total variation (TV regularization has become a popular and powerful tool for image restoration and enhancement. In this work, we apply TV minimization to improve the quality of dynamic magnetic resonance images. Dynamic magnetic resonance imaging is an increasingly popular clinical technique used to monitor spatio-temporal changes in tissue structure. Fast data acquisition is necessary in order to capture the dynamic process. Most commonly, the requirement of high temporal resolution is fulfilled by sacrificing spatial resolution. Therefore, the numerical methods have to address the issue of images reconstruction from limited Fourier data. One of the most successful techniques for dynamic imaging applications is the reduced-encoded imaging by generalized-series reconstruction method of Liang and Lauterbur. However, even if this method utilizes a priori data for optimal image reconstruction, the produced dynamic images are degraded by truncation artifacts, most notably Gibbs ringing, due to the spatial low resolution of the data. We use a TV regularization strategy in order to reduce these truncation artifacts in the dynamic images. The resulting TV minimization problem is solved by the fixed point iteration method of Vogel and Oman. The results of test problems with simulated and real data are presented to illustrate the effectiveness of the proposed approach in reducing the truncation artifacts of the reconstructed images.
Reconstruction dynamics of recorded holograms in photochromic glass
Mihailescu, Mona; Pavel, Eugen; Nicolae, Vasile B.
2011-06-20
We have investigated the dynamics of the record-erase process of holograms in photochromic glass using continuum Nd:YVO{sub 4} laser radiation ({lambda}=532 nm). A bidimensional microgrid pattern was formed and visualized in photochromic glass, and its diffraction efficiency decay versus time (during reconstruction step) gave us information (D, {Delta}n) about the diffusion process inside the material. The recording and reconstruction processes were carried out in an off-axis setup, and the images of the reconstructed object were recorded by a CCD camera. Measurements realized on reconstructed object images using holograms recorded at a different incident power laser have shown a two-stage process involved in silver atom kinetics.
Eulerian Dynamics with a Commutator Forcing
2017-01-09
not. The results below are stated over the torus, Ω = T1, for the purely technical reason of securing a uniform lower bound of the density away from...2.1. L∞-bound of the velocity. We assume that L satisfies the following monotonicity condition. Let x+ = arg max x g(x) and x− = arg min x g(x). Then...special case of the monotonicity condition (2.1) with (f, g) = (1, ρ) implies L(ρ)(x−) > L(1(x−))ρ− = 0. EULERIAN DYNAMICS WITH A COMMUTATOR FORCING 9 Here
Relativistic Newtonian Dynamics under a central force
Friedman, Yaakov
2016-10-01
Planck's formula and General Relativity indicate that potential energy influences spacetime. Using Einstein's Equivalence Principle and an extension of his Clock Hypothesis, an explicit description of this influence is derived. We present a new relativity model by incorporating the influence of the potential energy on spacetime in Newton's dynamics for motion under a central force. This model extends the model used by Friedman and Steiner (EPL, 113 (2016) 39001) to obtain the exact precession of Mercury without curving spacetime. We also present a solution of this model for a hydrogen-like atom, which explains the reason for a probabilistic description.
Industrial dynamic tomographic reconstruction; Reconstrucao tomografica dinamica industrial
Oliveira, Eric Ferreira de
2016-07-01
The state of the art methods applied to industrial processes is currently based on the principles of classical tomographic reconstructions developed for tomographic patterns of static distributions, or is limited to cases of low variability of the density distribution function of the tomographed object. Noise and motion artifacts are the main problems caused by a mismatch in the data from views acquired in different instants. All of these add to the known fact that using a limited amount of data can result in the presence of noise, artifacts and some inconsistencies with the distribution under study. One of the objectives of the present work is to discuss the difficulties that arise from implementing reconstruction algorithms in dynamic tomography that were originally developed for static distributions. Another objective is to propose solutions that aim at reducing a temporal type of information loss caused by employing regular acquisition systems to dynamic processes. With respect to dynamic image reconstruction it was conducted a comparison between different static reconstruction methods, like MART and FBP, when used for dynamic scenarios. This comparison was based on a MCNPx simulation as well as an analytical setup of an aluminum cylinder that moves along the section of a riser during the process of acquisition, and also based on cross section images from CFD techniques. As for the adaptation of current tomographic acquisition systems for dynamic processes, this work established a sequence of tomographic views in a just-in-time fashion for visualization purposes, a form of visually disposing density information as soon as it becomes amenable to image reconstruction. A third contribution was to take advantage of the triple color channel necessary to display colored images in most displays, so that, by appropriately scaling the acquired values of each view in the linear system of the reconstruction, it was possible to imprint a temporal trace into the regularly
Dynamic Data Updating Algorithm for Image Superresolution Reconstruction
TAN Bing; XU Qing; ZHANG Yan; XING Shuai
2006-01-01
A dynamic data updating algorithm for image superesolution is proposed. On the basis of Delaunay triangulation and its local updating property, this algorithm can update the changed region directly under the circumstances that only a part of the source images has been changed. For its high efficiency and adaptability, this algorithm can serve as a fast algorithm for image superesolution reconstruction.
Irreversible energy flow in forced Vlasov dynamics
Plunk, Gabriel G.
2014-10-01
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag. The recent paper of Plunk [G.G. Plunk, Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.
Impact-force sparse reconstruction from highly incomplete and inaccurate measurements
Qiao, Baijie; Zhang, Xingwu; Gao, Jiawei; Chen, Xuefeng
2016-08-01
The classical l2-norm-based regularization methods applied for force reconstruction inverse problem require that the number of measurements should not be less than the number of unknown sources. Taking into account the sparse nature of impact-force in time domain, we develop a general sparse methodology based on minimizing l1-norm for solving the highly underdetermined model of impact-force reconstruction. A monotonic two-step iterative shrinkage/thresholding (MTWIST) algorithm is proposed to find the sparse solution to such an underdetermined model from highly incomplete and inaccurate measurements, which can be problematic with Tikhonov regularization. MTWIST is highly efficient for large-scale ill-posed problems since it mainly involves matrix-vector multiplies without matrix factorization. In sparsity frame, the proposed sparse regularization method can not only determine the actual impact location from many candidate sources but also simultaneously reconstruct the time history of impact-force. Simulation and experiment including single-source and two-source impact-force reconstruction are conducted on a simply supported rectangular plate and a shell structure to illustrate the effectiveness and applicability of MTWIST, respectively. Both the locations and force time histories of the single-source and two-source cases are accurately reconstructed from a single accelerometer, where the high noise level is considered in simulation and the primary noise in experiment is supposed to be colored noise. Meanwhile, the consecutive impact-forces reconstruction in a large-scale (greater than 104) sparse frame illustrates that MTWIST has advantages of computational efficiency and identification accuracy over Tikhonov regularization.
Forced and internal variability in temperature simulations and reconstructions of the Common Era
Fernández-Donado, Laura; Fidel González-Rouco, J.; Garcia-Bustamante, Elena; Smerdon, Jason S.; Luterbacher, Juerg; Raible, Christoph C.
2016-04-01
The relatively short ranges of external forcing variability within the CE represent a challenge in as much as the consistency between simulations and reconstructions can be affected by the large uncertainties in their respective responses to the external forcings. One of the core questions within this work relates therefore the extent to which a straight response to the external forcing can be identified during the period under study and whether this signal is common to simulated and reconstructed temperature. This study is based on an exhaustive compilation, analysis and intercomparison of the available hemispherical and global temperature reconstructions as well as a complete ensemble of simulations including both PMIP3/CMIP5 and non-PMIP3 model experiments. In addition, the various external forcing configurations applied to the models are characterized and a Total External Forcing, including all the individual forcing contributors, is developed for each experiment. Based on the linear relationship found at multidecadal and longer timescales during the last millennium between the temperature and the total external forcing, a quantitative metric of the ratio of response, the so-called Last Millennium Transient Climate Response (LMTCR), is obtained and compared for simulations and reconstructions. Within the LMTCR context, a significant quantitative consistency between the simulations and reconstructions is addressed. This work also offers a discussion about the impact that a range of generally accepted methodological approaches might have on the reconstructed ensemble uncertainties and their influences on model-data comparison exercises. A segregation among the various existing spatial targets within the NH, based on the different level of temperatura variability observed in the series, suggests a lower level of model-data consistency during the MCA than previously reported.
Influence of surfactants in forced dynamic dewetting.
Henrich, Franziska; Fell, Daniela; Truszkowska, Dorota; Weirich, Marcel; Anyfantakis, Manos; Nguyen, Thi-Huong; Wagner, Manfred; Auernhammer, Günter K; Butt, Hans-Jürgen
2016-09-20
In this work we show that the forced dynamic dewetting of surfactant solutions depends sensitively on the surfactant concentration. To measure this effect, a hydrophobic rotating cylinder was horizontally half immersed in aqueous surfactant solutions. Dynamic contact angles were measured optically by extrapolating the contour of the meniscus to the contact line. Anionic (sodium 1-decanesulfonate, S-1DeS), cationic (cetyl trimethylammonium bromide, CTAB) and nonionic surfactants (C4E1, C8E3 and C12E5) with critical micelle concentrations (CMCs) spanning four orders of magnitude were used. The receding contact angle in water decreased with increasing velocity. This decrease was strongly enhanced when adding surfactant, even at surfactant concentrations of 10% of the critical micelle concentration. Plots of the receding contact angle-versus-velocity almost superimpose when being plotted at the same relative concentration (concentration/CMC). Thus the rescaled concentration is the dominating property for dynamic dewetting. The charge of the surfactants did not play a role, thus excluding electrostatic effects. The change in contact angle can be interpreted by local surface tension gradients, i.e. Marangoni stresses, close to the three-phase contact line. The decrease of dynamic contact angles with velocity follows two regimes. Despite the existence of Marangoni stresses close to the contact line, for a dewetting velocity above 1-10 mm s(-1) the hydrodynamic theory is able to describe the experimental results for all surfactant concentrations. At slower velocities an additional steep decrease of the contact angle with velocity was observed. Particle tracking velocimetry showed that the flow profiles do not differ with and without surfactant on a scales >100 μm.
A molecular dynamics investigation of surface reconstruction on magnetite (001)
Rustad, J. R.; Wasserman, E.; Felmy, A. R.
1999-07-01
Molecular dynamics calculations using analytical potential functions with polarizable oxygen ions have been used to identify a novel mode of reconstruction on the half-occupied tetrahedral layer termination of the magnetite (Fe 3O 4) (001) surface. In the proposed reconstruction, the twofold coordinated iron ion in the top monolayer rotates downward to occupy a vacant half-octahedral site in the plane of the second-layer iron ions. At the same time, half of the tetrahedral iron ions in the third iron layer are pushed upward to occupy an adjacent octahedral vacancy at the level of the second-layer iron ions. The other half of the third-layer iron ions remain roughly in their original positions. The proposed reconstruction is consistent with recent low-energy electron diffraction and X-ray photoelectron spectroscopy results. It also provides a compelling interpretation for the arrangement of atoms suggested by high-resolution scanning-tunneling microscopy studies.
Dynamic force microscopy imaging of native membranes
Kienberger, Ferry; Stroh, Cordula; Kada, Gerald; Moser, Rosita; Baumgartner, Werner; Pastushenko, Vassili; Rankl, Christian; Schmidt, Ute; Mueller, Harald; Orlova, Elena; LeGrimellec, Christian; Drenckhahn, Detlev; Blaas, Dieter; Hinterdorfer, Peter
2003-10-15
We employed magnetic ACmode atomic force microscopy (MACmode AFM) as a novel dynamic force microscopy method to image surfaces of biological membranes in their native environments. The lateral resolution achieved under optimized imaging conditions was in the nanometer range, even when the sample was only weakly attached to the support. Purple membranes (PM) from Halobacterium salinarum were used as a test standard for topographical imaging. The hexagonal arrangement of the bacteriorhodopsin trimers on the cytoplasmic side of PM was resolved with 1.5 nm lateral accuracy, a resolution similar to images obtained in contact and tapping-mode AFM. Human rhinovirus 2 (HRV2) particles were attached to mica surfaces via nonspecific interactions. The capsid structure and 2 nm sized protein loops of HRV2 were routinely obtained without any displacement of the virus. Globular and filamentous structures on living and fixed endothelial cells were observed with a resolution of 5-20 nm. These examples show that MACmode AFM is a favorable method in studying the topography of soft and weakly attached biological samples with high resolution under physiological conditions.
Christian Schou Oxvig
2014-10-01
Full Text Available Magni is an open source Python package that embraces compressed sensing and Atomic Force Microscopy (AFM imaging techniques. It provides AFM-specific functionality for undersampling and reconstructing images from AFM equipment and thereby accelerating the acquisition of AFM images. Magni also provides researchers in compressed sensing with a selection of algorithms for reconstructing undersampled general images, and offers a consistent and rigorous way to efficiently evaluate the researchers own developed reconstruction algorithms in terms of phase transitions. The package also serves as a convenient platform for researchers in compressed sensing aiming at obtaining a high degree of reproducibility of their research.
Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0
G. A. Schmidt
2011-01-01
Full Text Available Simulations of climate over the Last Millennium (850–1850 CE have been incorporated into the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3. The drivers of climate over this period are chiefly orbital, solar, volcanic, changes in land use/land cover and some variation in greenhouse gas levels. While some of these effects can be easily defined, the reconstructions of solar, volcanic and land use-related forcing are more uncertain. We describe here the approach taken in defining the scenarios used in PMIP3, document the forcing reconstructions and discuss likely implications.
Jacob J Setterbo
Full Text Available BACKGROUND: Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior. OBJECTIVE: To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties. METHODS: Track-testing device (TTD impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression. RESULTS: Most dynamic surface property setting differences (racetrack-laboratory were small relative to surface material type differences (dirt-synthetic. Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces. CONCLUSIONS: Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof
Hydrodynamic Boundary Conditions and Dynamic Forces between Bubbles and Surfaces
Manor, Ofer; Vakarelski, Ivan U.; Tang, Xiaosong; O'Shea, Sean J.; Stevens, Geoffrey W.; Grieser, Franz; Dagastine, Raymond R.; Chan, Derek Y. C.
2008-07-01
Dynamic forces between a 50μm radius bubble driven towards and from a mica plate using an atomic force microscope in electrolyte and in surfactant exhibit different hydrodynamic boundary conditions at the bubble surface. In added surfactant, the forces are consistent with the no-slip boundary condition at the mica and bubble surfaces. With no surfactant, a new boundary condition that accounts for the transport of trace surface impurities explains variations of dynamic forces at different speeds and provides a direct connection between dynamic forces and surface transport effects at the air-water interface.
WRIST FORCE SENSOR'S DYNAMIC PERFORMANCE CALIBRATION BASED ON NEGATIVE STEP RESPONSE
ZHENG Hongmei
2008-01-01
Negative step response experimental method is used in wrist force sensor's dynamic performance calibration. The exciting manner of negative step response method is the same as wrist force sensor's load in working. This experimental method needn't special experiment equipments. Experiment's dynamic repeatability is good. So wrist force sensor's dynamic performance is suitable to be calibrated by negative step response method. A new correlation wavelet transfer method is studied. By wavelet transfer method, the signal is decomposed into two dimensional spaces of time-frequency. So the problem of negative step exciting energy concentrating in the low frequency band is solved. Correlation wavelet transfer doesn't require that wavelet primary function be orthogonal and needn't wavelet reconstruction. So analyzing efficiency is high. An experimental bench is designed and manufactured to load the wrist force sensor orthogonal excitation force/moment. A piezoelectric force sensor is used to setup soft trigger and calculate the value of negative step excitation. A wrist force sensor is calibrated. The pulse response function is calculated after negative step excitation and step response have been transformed to positive step excitation and step response. The pulse response function is transferred to frequency response function. The wrist force sensor's dynamic characteristics are identified by the frequency response function.
Yang, Jian; Cong, Weijian; Chen, Yang; Fan, Jingfan; Liu, Yue; Wang, Yongtian
2014-02-21
The clinical value of the 3D reconstruction of a coronary artery is important for the diagnosis and intervention of cardiovascular diseases. This work proposes a method based on a deformable model for reconstructing coronary arteries from two monoplane angiographic images acquired from different angles. First, an external force back-projective composition model is developed to determine the external force, for which the force distributions in different views are back-projected to the 3D space and composited in the same coordinate system based on the perspective projection principle of x-ray imaging. The elasticity and bending forces are composited as an internal force to maintain the smoothness of the deformable curve. Second, the deformable curve evolves rapidly toward the true vascular centerlines in 3D space and angiographic images under the combination of internal and external forces. Third, densely matched correspondence among vessel centerlines is constructed using a curve alignment method. The bundle adjustment method is then utilized for the global optimization of the projection parameters and the 3D structures. The proposed method is validated on phantom data and routine angiographic images with consideration for space and re-projection image errors. Experimental results demonstrate the effectiveness and robustness of the proposed method for the reconstruction of coronary arteries from two monoplane angiographic images. The proposed method can achieve a mean space error of 0.564 mm and a mean re-projection error of 0.349 mm.
Tensor-based dynamic reconstruction method for electrical capacitance tomography
Lei, J.; Mu, H. P.; Liu, Q. B.; Li, Z. H.; Liu, S.; Wang, X. Y.
2017-03-01
Electrical capacitance tomography (ECT) is an attractive visualization measurement method, in which the acquisition of high-quality images is beneficial for the understanding of the underlying physical or chemical mechanisms of the dynamic behaviors of the measurement objects. In real-world measurement environments, imaging objects are often in a dynamic process, and the exploitation of the spatial-temporal correlations related to the dynamic nature will contribute to improving the imaging quality. Different from existing imaging methods that are often used in ECT measurements, in this paper a dynamic image sequence is stacked into a third-order tensor that consists of a low rank tensor and a sparse tensor within the framework of the multiple measurement vectors model and the multi-way data analysis method. The low rank tensor models the similar spatial distribution information among frames, which is slowly changing over time, and the sparse tensor captures the perturbations or differences introduced in each frame, which is rapidly changing over time. With the assistance of the Tikhonov regularization theory and the tensor-based multi-way data analysis method, a new cost function, with the considerations of the multi-frames measurement data, the dynamic evolution information of a time-varying imaging object and the characteristics of the low rank tensor and the sparse tensor, is proposed to convert the imaging task in the ECT measurement into a reconstruction problem of a third-order image tensor. An effective algorithm is developed to search for the optimal solution of the proposed cost function, and the images are reconstructed via a batching pattern. The feasibility and effectiveness of the developed reconstruction method are numerically validated.
Baumgart, Christian; Schubert, Markus; Hoppe, Matthias W.; Gokeler, Alli; Freiwald, Juergen
The aims of the study were (1) to evaluate the leg asymmetry assessed with ground reaction forces (GRFs) during unilateral and bilateral movements of different knee loads in anterior cruciate ligament (ACL) reconstructed patients and (2) to investigate differences in leg asymmetry depending on the
Reconstruction of Holocene carbon dynamics in a large boreal peatland complex, southern Finland
Mathijssen, Paul J. H.; Väliranta, Minna; Korrensalo, Aino; Alekseychik, Pavel; Vesala, Timo; Rinne, Janne; Tuittila, Eeva-Stiina
2016-06-01
Holocene peatland development and associated carbon (C) dynamics were reconstructed for a southern boreal Finnish peatland complex with fen and bog areas. In order to assess the role of local factors and long-term allogenic climate forcing in peatland development patterns, we studied a total of 18 peat cores and reconstructed vertical peat growth and lateral peat area expansion rates, the C accumulation rate (CAR), past vegetation composition and past methane (CH4) fluxes. We combined fossil plant data with measured contemporary CH4 flux - vegetation relationship data to reconstruct CH4 fluxes over time. When these reconstructions were added to the CAR estimations, a more complete picture of Holocene-scale C dynamics was achieved. Basal peat ages showed that expansion of the peat area was rapid between 11,000 and 8000 cal. BP, but decreased during the dry mid-Holocene and is probably currently limited by basal topography. A similar pattern was observed for peat growth and CAR in the fen core, whereas in the bog core CAR increased after ombrotrophication, i.e. after 4400 cal. BP. The effect of fire on vegetation and CAR was more conspicuous at the bog site than at the fen site. The CH4 flux reconstructions showed that during the Holocene CH4 emissions at the fen site decreased from 19 ± 15 to 16 ± 8 g CH4 m-2 yr-1 and at the bog site from 20 ± 15 to 14 ± 8 g CH4 m-2 yr-1. Our results suggest that a combination of changing climate, fire events and local conditions have modified the autogenic peatland development and C dynamics.
Low dose dynamic myocardial CT perfusion using advanced iterative reconstruction
Eck, Brendan L.; Fahmi, Rachid; Fuqua, Christopher; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.
2015-03-01
Dynamic myocardial CT perfusion (CTP) can provide quantitative functional information for the assessment of coronary artery disease. However, x-ray dose in dynamic CTP is high, typically from 10mSv to >20mSv. We compared the dose reduction potential of advanced iterative reconstruction, Iterative Model Reconstruction (IMR, Philips Healthcare, Cleveland, Ohio) to hybrid iterative reconstruction (iDose4) and filtered back projection (FBP). Dynamic CTP scans were obtained using a porcine model with balloon-induced ischemia in the left anterior descending coronary artery to prescribed fractional flow reserve values. High dose dynamic CTP scans were acquired at 100kVp/100mAs with effective dose of 23mSv. Low dose scans at 75mAs, 50mAs, and 25mAs were simulated by adding x-ray quantum noise and detector electronic noise to the projection space data. Images were reconstructed with FBP, iDose4, and IMR at each dose level. Image quality in static CTP images was assessed by SNR and CNR. Blood flow was obtained using a dynamic CTP analysis pipeline and blood flow image quality was assessed using flow-SNR and flow-CNR. IMR showed highest static image quality according to SNR and CNR. Blood flow in FBP was increasingly over-estimated at reduced dose. Flow was more consistent for iDose4 from 100mAs to 50mAs, but was over-estimated at 25mAs. IMR was most consistent from 100mAs to 25mAs. Static images and flow maps for 100mAs FBP, 50mAs iDose4, and 25mAs IMR showed comparable, clear ischemia, CNR, and flow-CNR values. These results suggest that IMR can enable dynamic CTP at significantly reduced dose, at 5.8mSv or 25% of the comparable 23mSv FBP protocol.
A temporal interpolation approach for dynamic reconstruction in perfusion CT.
Montes, Pau; Lauritsch, Günter
2007-07-01
This article presents a dynamic CT reconstruction algorithm for objects with time dependent attenuation coefficient. Projection data acquired over several rotations are interpreted as samples of a continuous signal. Based on this idea, a temporal interpolation approach is proposed which provides the maximum temporal resolution for a given rotational speed of the CT scanner. Interpolation is performed using polynomial splines. The algorithm can be adapted to slow signals, reducing the amount of data acquired and the computational cost. A theoretical analysis of the approximations made by the algorithm is provided. In simulation studies, the temporal interpolation approach is compared with three other dynamic reconstruction algorithms based on linear regression, linear interpolation, and generalized Parker weighting. The presented algorithm exhibits the highest temporal resolution for a given sampling interval. Hence, our approach needs less input data to achieve a certain quality in the reconstruction than the other algorithms discussed or, equivalently, less x-ray exposure and computational complexity. The proposed algorithm additionally allows the possibility of using slow rotating scanners for perfusion imaging purposes.
Simultaneous reconstruction and segmentation for dynamic SPECT imaging
Burger, Martin; Rossmanith, Carolin; Zhang, Xiaoqun
2016-10-01
This work deals with the reconstruction of dynamic images that incorporate characteristic dynamics in certain subregions, as arising for the kinetics of many tracers in emission tomography (SPECT, PET). We make use of a basis function approach for the unknown tracer concentration by assuming that the region of interest can be divided into subregions with spatially constant concentration curves. Applying a regularised variational framework reminiscent of the Chan-Vese model for image segmentation we simultaneously reconstruct both the labelling functions of the subregions as well as the subconcentrations within each region. Our particular focus is on applications in SPECT with the Poisson noise model, resulting in a Kullback-Leibler data fidelity in the variational approach. We present a detailed analysis of the proposed variational model and prove existence of minimisers as well as error estimates. The latter apply to a more general class of problems and generalise existing results in literature since we deal with a nonlinear forward operator and a nonquadratic data fidelity. A computational algorithm based on alternating minimisation and splitting techniques is developed for the solution of the problem and tested on appropriately designed synthetic data sets. For those we compare the results to those of standard EM reconstructions and investigate the effects of Poisson noise in the data.
Dynamic balancing with rotating radial electromagnetic force
李勇; 陆永平
2004-01-01
A method of producing rotating radial electromagnetic force with a separable structure is proposed,and an experimental model was designed on which open loop vibration control experiments were carried out. Experimental results prove that the electromagnetic force designed has a constant magnitude and an uniform speed,and the idea of using an electromagnetic force as an active control in automatic balancing is correct in principle,and practicable in engineering.
Dynamic force patterns of an undulatory microswimmer.
Schulman, Rafael D; Backholm, Matilda; Ryu, William S; Dalnoki-Veress, Kari
2014-05-01
We probe the viscous forces involved in the undulatory swimming of the model organism C. elegans. Using micropipette deflection, we attain direct measurements of lateral and propulsive forces produced in response to the motion of the worm. We observe excellent agreement of the results with resistive force theory, through which we determine the drag coefficients of this organism. The drag coefficients are in accordance with theoretical predictions. Using a simple scaling argument, we obtain a relationship between the size of the worm and the forces that we measure, which well describes our data.
Experiments of reconstructing discrete atmospheric dynamic models from data (I)
Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang
1995-03-01
In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.
Dimensional characterization of anesthesia dynamic in reconstructed embedding space.
Gifani, P; Rabiee, H R; Hashemi, M; Ghanbari, M
2007-01-01
The depth of anesthesia quantification has been one of the most research interests in the field of EEG signal processing and nonlinear dynamical analysis has emerged as a novel method for the study of complex systems in the past few decades. In this investigation we use the concept of nonlinear time series analysis techniques to reconstruct the attractor of anesthesia from EEG signal which have been obtained from different hypnotic states during surgery to give a characterization of the dimensional complexity of EEG by Correlation Dimension estimation. The dimension of the anesthesia strange attractor can be thought of as a measure of the degrees of freedom or the ;complexity' of the dynamics at different hypnotic levels. The results imply that for awaked state the correlation dimension is high, On the other hand, for light, moderate and deep hypnotic states these values decrease respectively; which means for anesthetized situation we expect lower correlation dimension.
Dynamic force spectroscopy on multiple bonds: experiments and model
Erdmann, T; Nassoy, P; Schwarz, U S
2007-01-01
We probe the dynamic strength of multiple biotin-streptavidin adhesion bonds under linear loading using the biomembrane force probe setup for dynamic force spectroscopy. Measured rupture force histograms are compared to results from a master equation model for the stochastic dynamics of bond rupture under load. This allows us to extract the distribution of the number of initially closed bonds. We also extract the molecular parameters of the adhesion bonds, in good agreement with earlier results from single bond experiments. Our analysis shows that the peaks in the measured histograms are not simple multiples of the single bond values, but follow from a superposition procedure which generates different peak positions.
Malegori, Giovanna; Ferrini, Gabriele, E-mail: gabriele@dmf.unicatt.it [Dipartimento di Matematica e Fisica, Universita Cattolica, I-25121 Brescia (Italy)
2011-05-13
The use of wavelet transforms in thermally excited dynamic force spectroscopy allows us to gain insight into the fundamental thermodynamical properties of a cantilever's Brownian motion as well as giving a meaningful and intuitive representation of the cantilever dynamics in time and frequency caused by the interaction with long- and short-range forces. The possibility of carrying out measurements across the jump-to-contact transition without interruption, providing information on both van der Waals forces and short-range adhesion surface forces, is remarkable.
Force Factor Modulation in Electro Dynamic Loudspeakers
Risbo, Lars; Agerkvist, Finn T.; Tinggaard, Carsten
2016-01-01
The relationship between the non-linear phenomenon of ’reluctance force’ and the position dependency of the voice coil inductance was established in 1949 by Cunningham, who called it ’magnetic attraction force’. This paper revisits Cunningham’s analysis and expands it into a generalised form...... that includes the frequency dependency and applies to coils with non-inductive (lossy) blocked impedance. The paper also demonstrates that Cunningham’s force can be explained physically as a modulation of the force factor which again is directly linked to modulation of the flux of the coil. A verification based...... on both experiments and simulations is presented along discussions of the impact of force factor modulation for various motor topologies. Finally, it is shown that the popular L2R2 coil impedance model does not correctly predict the force unless the new analysis is applied....
Force Factor Modulation in Electro Dynamic Loudspeakers
Risbo, Lars; Agerkvist, Finn T.; Tinggaard, Carsten
2016-01-01
The relationship between the non-linear phenomenon of ’reluctance force’ and the position dependency of the voice coil inductance was established in 1949 by Cunningham, who called it ’magnetic attraction force’. This paper revisits Cunningham’s analysis and expands it into a generalised form that...... on both experiments and simulations is presented along discussions of the impact of force factor modulation for various motor topologies. Finally, it is shown that the popular L2R2 coil impedance model does not correctly predict the force unless the new analysis is applied....... that includes the frequency dependency and applies to coils with non-inductive (lossy) blocked impedance. The paper also demonstrates that Cunningham’s force can be explained physically as a modulation of the force factor which again is directly linked to modulation of the flux of the coil. A verification based...
Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy.
Pyne, Alice; Thompson, Ruth; Leung, Carl; Roy, Debdulal; Hoogenboom, Bart W
2014-08-27
Based on soft-touch atomic force microscopy, a method is described to reconstruct the secondary structure of single extended biomolecules, without the need for crystallization. The method is tested by accurately reproducing the dimensions of the B-DNA crystal structure. Importantly, intramolecular variations in groove depth of the DNA double helix are resolved, which would be inaccessible for methods that rely on ensemble-averaging.
Bifurcation, chaos, and scan instability in dynamic atomic force microscopy
Cantrell, John H., E-mail: john.h.cantrell@nasa.gov [Research Directorate, NASA Langley Research Center, Hampton, Virginia 23681 (United States); Cantrell, Sean A., E-mail: scantrell@nlsanalytics.com [NLS Analytics, LLC, 375 Dundee Road, Glencoe, Illinois 60022 (United States)
2016-03-28
The dynamical motion at any point on the cantilever of an atomic force microscope can be expressed quite generally as a superposition of simple harmonic oscillators corresponding to the vibrational modes allowed by the cantilever shape. Central to the dynamical equations is the representation of the cantilever-sample interaction force as a polynomial expansion with coefficients that account for the interaction force “stiffness,” the cantilever-to-sample energy transfer, and the displacement amplitude of cantilever oscillation. Renormalization of the cantilever beam model shows that for a given cantilever drive frequency cantilever dynamics can be accurately represented by a single nonlinear mass-spring model with frequency-dependent stiffness and damping coefficients [S. A. Cantrell and J. H. Cantrell, J. Appl. Phys. 110, 094314 (2011)]. Application of the Melnikov method to the renormalized dynamical equation is shown to predict a cascade of period doubling bifurcations with increasing cantilever drive force that terminates in chaos. The threshold value of the drive force necessary to initiate bifurcation is shown to depend strongly on the cantilever setpoint and drive frequency, effective damping coefficient, nonlinearity of the cantilever-sample interaction force, and the displacement amplitude of cantilever oscillation. The model predicts the experimentally observed interruptions of the bifurcation cascade for cantilevers of sufficiently large stiffness. Operational factors leading to the loss of image quality in dynamic atomic force microscopy are addressed, and guidelines for optimizing scan stability are proposed using a quantitative analysis based on system dynamical parameters and choice of feedback loop parameter.
Corticomuscular synchronization with small and large dynamic force output
Witte Matthias
2007-11-01
Full Text Available Abstract Background Over the last few years much research has been devoted to investigating the synchronization between cortical motor and muscular activity as measured by EEG/MEG-EMG coherence. The main focus so far has been on corticomuscular coherence (CMC during static force condition, for which coherence in beta-range has been described. In contrast, we showed in a recent study 1 that dynamic force condition is accompanied by gamma-range CMC. The modulation of the CMC by various dynamic force amplitudes, however, remained uninvestigated. The present study addresses this question. We examined eight healthy human subjects. EEG and surface EMG were recorded simultaneously. The visuomotor task consisted in isometric compensation for 3 forces (static, small and large dynamic generated by a manipulandum. The CMC, the cortical EEG spectral power (SP, the EMG SP and the errors in motor performance (as the difference between target and exerted force were analyzed. Results For the static force condition we found the well-documented, significant beta-range CMC (15–30 Hz over the contralateral sensorimotor cortex. Gamma-band CMC (30–45 Hz occurred in both small and large dynamic force conditions without any significant difference between both conditions. Although in some subjects beta-range CMC was observed during both dynamic force conditions no significant difference between conditions could be detected. With respect to the motor performance, the lowest errors were obtained in the static force condition and the highest ones in the dynamic condition with large amplitude. However, when we normalized the magnitude of the errors to the amplitude of the applied force (relative errors no significant difference between both dynamic conditions was observed. Conclusion These findings confirm that during dynamic force output the corticomuscular network oscillates at gamma frequencies. Moreover, we show that amplitude modulation of dynamic force has no
Corticomuscular synchronization with small and large dynamic force output.
Andrykiewicz, Agnieszka; Patino, Luis; Naranjo, Jose Raul; Witte, Matthias; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana
2007-11-27
Over the last few years much research has been devoted to investigating the synchronization between cortical motor and muscular activity as measured by EEG/MEG-EMG coherence. The main focus so far has been on corticomuscular coherence (CMC) during static force condition, for which coherence in beta-range has been described. In contrast, we showed in a recent study 1 that dynamic force condition is accompanied by gamma-range CMC. The modulation of the CMC by various dynamic force amplitudes, however, remained uninvestigated. The present study addresses this question. We examined eight healthy human subjects. EEG and surface EMG were recorded simultaneously. The visuomotor task consisted in isometric compensation for 3 forces (static, small and large dynamic) generated by a manipulandum. The CMC, the cortical EEG spectral power (SP), the EMG SP and the errors in motor performance (as the difference between target and exerted force) were analyzed. For the static force condition we found the well-documented, significant beta-range CMC (15-30 Hz) over the contralateral sensorimotor cortex. Gamma-band CMC (30-45 Hz) occurred in both small and large dynamic force conditions without any significant difference between both conditions. Although in some subjects beta-range CMC was observed during both dynamic force conditions no significant difference between conditions could be detected. With respect to the motor performance, the lowest errors were obtained in the static force condition and the highest ones in the dynamic condition with large amplitude. However, when we normalized the magnitude of the errors to the amplitude of the applied force (relative errors) no significant difference between both dynamic conditions was observed. These findings confirm that during dynamic force output the corticomuscular network oscillates at gamma frequencies. Moreover, we show that amplitude modulation of dynamic force has no effect on the gamma CMC in the low force range investigated
Force reconstruction using the sum of weighted accelerations technique -- Max-Flat procedure
Carne, T.G.; Mayes, R.L.; Bateman, V.I.
1993-12-31
Force reconstruction is a procedure in which the externally applied force is inferred from measured structural response rather than directly measured. In a recently developed technique, the response acceleration time-histories are multiplied by scalar weights and summed to produce the reconstructed force. This reconstruction is called the Sum of Weighted Accelerations Technique (SWAT). One step in the application of this technique is the calculation of the appropriate scalar weights. In this paper a new method of estimating the weights, using measured frequency response function data, is developed and contrasted with the traditional SWAT method of inverting the mode-shape matrix. The technique uses frequency response function data, but is not based on deconvolution. An application that will be discussed as part of this paper is the impact into a rigid barrier of a weapon system with an energy-absorbing nose. The nose had been designed to absorb the energy of impact and to mitigate the shock to the interior components.
Traceable dynamic calibration of force transducers by primary means
Vlajic, Nicholas; Chijioke, Ako
2016-08-01
We describe an apparatus for traceable, dynamic calibration of force transducers using harmonic excitation, and report calibration measurements of force transducers using this apparatus. In this system, the force applied to the transducer is produced by the acceleration of an attached mass, and is determined according to Newton’s second law, F = ma. The acceleration is measured by primary means, using laser interferometry. The capabilities of this system are demonstrated by performing dynamic calibrations of two shear-web-type force transducers up to a frequency of 2 kHz, with an expanded uncertainty below 1.2%. We give an account of all significant sources of uncertainty, including a detailed consideration of the effects of dynamic tilting (rocking), which is a leading source of uncertainty in such harmonic force calibration systems.
Dynamic Data-Driven Event Reconstruction for Atmospheric Releases
Kosovic, B; Belles, R; Chow, F K; Monache, L D; Dyer, K; Glascoe, L; Hanley, W; Johannesson, G; Larsen, S; Loosmore, G; Lundquist, J K; Mirin, A; Neuman, S; Nitao, J; Serban, R; Sugiyama, G; Aines, R
2007-02-22
Accidental or terrorist releases of hazardous materials into the atmosphere can impact large populations and cause significant loss of life or property damage. Plume predictions have been shown to be extremely valuable in guiding an effective and timely response. The two greatest sources of uncertainty in the prediction of the consequences of hazardous atmospheric releases result from poorly characterized source terms and lack of knowledge about the state of the atmosphere as reflected in the available meteorological data. In this report, we discuss the development of a new event reconstruction methodology that provides probabilistic source term estimates from field measurement data for both accidental and clandestine releases. Accurate plume dispersion prediction requires the following questions to be answered: What was released? When was it released? How much material was released? Where was it released? We have developed a dynamic data-driven event reconstruction capability which couples data and predictive models through Bayesian inference to obtain a solution to this inverse problem. The solution consists of a probability distribution of unknown source term parameters. For consequence assessment, we then use this probability distribution to construct a ''''composite'' forward plume prediction which accounts for the uncertainties in the source term. Since in most cases of practical significance it is impossible to find a closed form solution, Bayesian inference is accomplished by utilizing stochastic sampling methods. This approach takes into consideration both measurement and forward model errors and thus incorporates all the sources of uncertainty in the solution to the inverse problem. Stochastic sampling methods have the additional advantage of being suitable for problems characterized by a non-Gaussian distribution of source term parameters and for cases in which the underlying dynamical system is non-linear. We initially
EMG-force relation in dynamically contracting cat plantaris muscle.
Herzog, W; Sokolosky, J; Zhang, Y T; Guimarães, A C
1998-06-01
The purpose of this study was to revisit the electromyographical (EMG)-force relationship of dynamically contracting muscles using direct measurements of EMG and force in cat hindlimb muscles during locomotion. EMG signals were recorded from the plantaris muscle using bipolar indwelling wire electrodes, and the corresponding forces were measured using a tendon force transducer. Force-time histories of cat plantaris muscle were predicted by estimating selected force parameters from EMG and timing parameters, and then constructing two smoothly fitting quintic spline functions from the estimated force parameters. The force predictions did not contain information on force-length or force-velocity properties of the cat plantaris and did not use instantaneous contractile conditions as input. It was found that two smoothly fitting quintic spline functions provided the required properties to approximate plantaris force-time histories accurately, and approximations of the force-time histories using EMG and timing parameters as input for the quintic splines were good. The root mean square errors (RMS) of the predicted compared to the actual plantaris forces were smaller than corresponding results reported in the literature, even though the prediction model did not require the force-length-velocity properties or the instantaneous contractile conditions of the target muscles as input. From the results obtained in this study, it appears that force-time histories of the cat plantaris muscle during locomotion can be predicted adequately from information obtained using EMG and video records, without information on either the force-length and force-velocity properties, or the instantaneous contractile conditions of the muscle.
Dynamic Correction Algorithm of Rolling Force in Plate Rolling
QIU Hong-lei; WANG Jun; HU Xian-lei; WANG Zhao-dong; WANG Guo-dong
2005-01-01
Based on the Shougang plat mill project, an on-line dynamic correction algorithm was analyzed. This algorithm can adjust model coefficients better because the reasonable correction is based on the measured and calculated rolling force. The results of application on site show that this on-line dynamic correction algorithm is effective.
Effects of nonlinear forces on dynamic mode atomic force microscopy and spectroscopy.
Das, Soma; Sreeram, P A; Raychaudhuri, A K
2007-06-01
In this paper, we describe the effects of nonlinear tip-sample forces on dynamic mode atomic force microscopy and spectroscopy. The jumps and hysteresis observed in the vibration amplitude (A) versus tip-sample distance (h) curves have been traced to bistability in the resonance curve. A numerical analysis of the basic dynamic equation was used to explain the hysteresis in the experimental curve. It has been found that the location of the hysteresis in the A-h curve depends on the frequency of the forced oscillation relative to the natural frequency of the cantilever.
Dynamic Error Analysis Method for Vibration Shape Reconstruction of Smart FBG Plate Structure
Hesheng Zhang
2016-01-01
Full Text Available Shape reconstruction of aerospace plate structure is an important issue for safe operation of aerospace vehicles. One way to achieve such reconstruction is by constructing smart fiber Bragg grating (FBG plate structure with discrete distributed FBG sensor arrays using reconstruction algorithms in which error analysis of reconstruction algorithm is a key link. Considering that traditional error analysis methods can only deal with static data, a new dynamic data error analysis method are proposed based on LMS algorithm for shape reconstruction of smart FBG plate structure. Firstly, smart FBG structure and orthogonal curved network based reconstruction method is introduced. Then, a dynamic error analysis model is proposed for dynamic reconstruction error analysis. Thirdly, the parameter identification is done for the proposed dynamic error analysis model based on least mean square (LMS algorithm. Finally, an experimental verification platform is constructed and experimental dynamic reconstruction analysis is done. Experimental results show that the dynamic characteristics of the reconstruction performance for plate structure can be obtained accurately based on the proposed dynamic error analysis method. The proposed method can also be used for other data acquisition systems and data processing systems as a general error analysis method.
MD1405: Demonstration of forced dynamic aperture measurements at injection
Carlier, Felix Simon; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department
2017-01-01
Accurate measurements of dynamic aperture become more important for the LHC as it advances into increasingly nonlinear regimes of operations, as well as for the High Luminosity LHC where machine nonlinearities will have a significantly larger impact. Direct dynamic aperture measurements at top energy in the LHC are challenging, and conventional single kick methods are not viable. Dynamic aperture measurements under forced oscillation of AC dipoles have been proposed as s possible alternative observable. A first demonstration of forced DA measurements at injections energy is presented.
Dynamic Analysis of Axial Magnetic Forces for DVD Spindle Motors
2000-01-01
The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to analyze the dynamic characteristics for a DVD spindle motor. The axial magnetic force is designed to provide an axial stiffness and govern the natural frequency of the dynamic performance. According to the simulation results and experimental measurements, the dynamic behaviors are significantly improved with a variation of relative height of rotor magnet and stator slotted on a DVD spindle motor.
Simplistic Coulomb Forces in Molecular Dynamics
Hansen, Jesper Schmidt; Schrøder, Thomas; Dyre, J. C.
2012-01-01
salt model the SF approximation overall reproduces the structural and dynamical properties as accurately as does the Wolf method. It is shown that the optimal Wolf damping parameter depends on the property in focus and that neither the potential energy nor the radial distribution function are useful...
Merlin, Cesar
2014-01-01
We present a first numerical implementation of a new scheme by Pound et al. that enables the calculation of the gravitational self-force in Kerr spacetime from a reconstructed metric-perturbation in a radiation gauge. The numerical task of the metric reconstruction essentially reduces to solving the fully separable Teukolsky equation, rather than having to tackle the linearized Einstein's equations themselves. The method offers significant computational saving compared to existing methods in the Lorenz gauge, and we expect it to become a main workhorse for precision self-force calculations in the future. Here we implement the method for circular orbits on a Schwarzschild background, in order to illustrate its efficacy and accuracy. We use two independent methods for solving the Teukolsky equation, one based on a direct numerical integration, and the other on the analytical approach of Mano, Suzuki, and Takasugi. The relative accuracy of the output self-force is at least $10^{-7}$ using the first method, and a...
An automated algorithm for the generation of dynamically reconstructed trajectories
Komalapriya, C.; Romano, M. C.; Thiel, M.; Marwan, N.; Kurths, J.; Kiss, I. Z.; Hudson, J. L.
2010-03-01
The lack of long enough data sets is a major problem in the study of many real world systems. As it has been recently shown [C. Komalapriya, M. Thiel, M. C. Romano, N. Marwan, U. Schwarz, and J. Kurths, Phys. Rev. E 78, 066217 (2008)], this problem can be overcome in the case of ergodic systems if an ensemble of short trajectories is available, from which dynamically reconstructed trajectories can be generated. However, this method has some disadvantages which hinder its applicability, such as the need for estimation of optimal parameters. Here, we propose a substantially improved algorithm that overcomes the problems encountered by the former one, allowing its automatic application. Furthermore, we show that the new algorithm not only reproduces the short term but also the long term dynamics of the system under study, in contrast to the former algorithm. To exemplify the potential of the new algorithm, we apply it to experimental data from electrochemical oscillators and also to analyze the well-known problem of transient chaotic trajectories.
NONLINEAR DYNAMICS OF CARBON NANOTUBES UNDER LARGE ELECTROSTATIC FORCE
Xu, Tiantian
2015-06-01
Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.
Software for Correcting the Dynamic Error of Force Transducers
Naoki Miyashita
2014-07-01
Full Text Available Software which corrects the dynamic error of force transducers in impact force measurements using their own output signal has been developed. The software corrects the output waveform of the transducers using the output waveform itself, estimates its uncertainty and displays the results. In the experiment, the dynamic error of three transducers of the same model are evaluated using the Levitation Mass Method (LMM, in which the impact forces applied to the transducers are accurately determined as the inertial force of the moving part of the aerostatic linear bearing. The parameters for correcting the dynamic error are determined from the results of one set of impact measurements of one transducer. Then, the validity of the obtained parameters is evaluated using the results of the other sets of measurements of all the three transducers. The uncertainties in the uncorrected force and those in the corrected force are also estimated. If manufacturers determine the correction parameters for each model using the proposed method, and provide the software with the parameters corresponding to each model, then users can obtain the waveform corrected against dynamic error and its uncertainty. The present status and the future prospects of the developed software are discussed in this paper.
Dynamics of gecko locomotion: a force-measuring array to measure 3D reaction forces.
Dai, Zhendong; Wang, Zhouyi; Ji, Aihong
2011-03-01
Measuring the interaction between each foot of an animal and the substrate is one of the most effective ways to understand the dynamics of legged locomotion. Here, a new facility - the force-measuring array (FMA) - was developed and applied to measure 3D reaction forces of geckos on different slope surfaces. The FMA consists of 16 3D sensors with resolution to the mN level. At the same time the locomotion behaviour of geckos freely moving on the FMA was recorded by high speed camera. The reaction forces acting on the gecko's individual feet measured by the FMA and correlated with locomotion behaviour provided enough information to reveal the mechanical and dynamic secrets of gecko locomotion. Moreover, dynamic forces were also measured by a force platform and correlated with locomotion behaviour. The difference between the forces measured by the two methods is discussed. From the results we conclude that FMA is the best way to obtain true reaction forces acting on the gecko's individual feet.
Spin motive force driven by skyrmion dynamics in magnetic nanodisks
Shimada, Yuhki; Ohe, Jun-ichiro
2015-05-01
The spin motive force driven by the dynamics of the skyrmion structure formed in a nanomagnetic disk is numerically investigated. Due to the existence of the magnetic structure along the disk edge, the collective mode of the magnetization is modified from that of the bulk skyrmion lattice obtained by using the periodic boundary condition. For a single-skyrmion disk, the dynamics of the skyrmion core and the edge magnetization induce the spin motive force, and a measurable AC voltage is obtained by two probes on the disk. For a multi-skyrmions disk, the phase-locked collective mode of skyrmions is found in the lowest resonant frequency where the amplitude of the AC voltage is enhanced by the cascade effect of the spin motive force. We also investigate the effect of the Rashba spin-orbit coupling on the spin motive force.
Static and dynamic buckling of reconstructions at triple steps on Si(111) surfaces
Zhachuk, R.; Teys, S.; Coutinho, J.; Rayson, M. J.; Briddon, P. R.
2014-10-01
Triple steps on Si(111) surfaces are popular building blocks for bottom-up nanostructure assembly, conferring size uniformity and precise positioning of growing nanostructures. In this work, we employ the Si(7 7 10) regular stepped surface as model system to study the triple steps by scanning tunneling microscopy (STM) and large-scale first-principles calculations. We find a surprising cohabitation of reconstruction elements at the step edge that either buckles statically or dynamically at room temperature. The driving force for the observed sequence of buckling patterns is traced back to Coulomb interactions involving charged adatoms and rest-atoms lying on a mini-terrace. These results reconcile the Si(111) triple step model with the experimental STM data.
Static and dynamic buckling of reconstructions at triple steps on Si(111) surfaces
Zhachuk, R., E-mail: zhachuk@gmail.com; Teys, S. [Institute of Semiconductor Physics, pr. Lavrentyeva 13, Novosibirsk 630090 (Russian Federation); Coutinho, J. [Department of Physics and I3N, University of Aveiro, Campus Santiago, 3810-193 Aveiro (Portugal); Rayson, M. J. [Department of Chemistry, University of Surrey, Guildford GU2 7XH (United Kingdom); Briddon, P. R. [School of Electrical, Electronic and Computer Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom)
2014-10-27
Triple steps on Si(111) surfaces are popular building blocks for bottom-up nanostructure assembly, conferring size uniformity and precise positioning of growing nanostructures. In this work, we employ the Si(7 7 10) regular stepped surface as model system to study the triple steps by scanning tunneling microscopy (STM) and large-scale first-principles calculations. We find a surprising cohabitation of reconstruction elements at the step edge that either buckles statically or dynamically at room temperature. The driving force for the observed sequence of buckling patterns is traced back to Coulomb interactions involving charged adatoms and rest-atoms lying on a mini-terrace. These results reconcile the Si(111) triple step model with the experimental STM data.
Studying Climate Response to Forcing by the Nonlinear Dynamical Mode Decomposition
Mukhin, Dmitry; Gavrilov, Andrey; Loskutov, Evgeny; Feigin, Alexander
2017-04-01
An analysis of global climate response to external forcing, both anthropogenic (mainly, CO2 and aerosol) and natural (solar and volcanic), is needed for adequate predictions of global climate change. Being complex dynamical system, the climate reacts to external perturbations exciting feedbacks (both positive and negative) making the response non-trivial and poorly predictable. Thus an extraction of internal modes of climate system, investigation of their interaction with external forcings and further modeling and forecast of their dynamics, are all the problems providing the success of climate modeling. In the report the new method for principal mode extraction from climate data is presented. The method is based on the Nonlinear Dynamical Mode (NDM) expansion [1,2], but takes into account a number of external forcings applied to the system. Each NDM is represented by hidden time series governing the observed variability, which, together with external forcing time series, are mapped onto data space. While forcing time series are considered to be known, the hidden unknown signals underlying the internal climate dynamics are extracted from observed data by the suggested method. In particular, it gives us an opportunity to study the evolution of principal system's mode structure in changing external conditions and separate the internal climate variability from trends forced by external perturbations. Furthermore, the modes so obtained can be extrapolated beyond the observational time series, and long-term prognosis of modes' structure including characteristics of interconnections and responses to external perturbations, can be carried out. In this work the method is used for reconstructing and studying the principal modes of climate variability on inter-annual and decadal time scales accounting the external forcings such as anthropogenic emissions, variations of the solar activity and volcanic activity. The structure of the obtained modes as well as their response to
Jamming transitions in force-based models for pedestrian dynamics
Chraibi, Mohcine; Tordeux, Antoine; Nishinari, Katsuhiro; Schadschneider, Andreas; Seyfried, Armin
2015-01-01
Force-based models describe pedestrian dynamics in analogy to classical mechanics by a system of second order ordinary differential equations. By investigating the linear stability of two main classes of forces, parameter regions with unstable homogeneous states are identified. In this unstable regime it is then checked whether phase transitions or stop-and-go waves occur. Results based on numerical simulations show, however, that the investigated models lead to unrealistic behavior in form of backwards moving pedestrians and overlapping. This is one reason why stop-and-go waves have not been observed in these models. The unrealistic behavior is not related to the numerical treatment of the dynamic equations but rather indicates an intrinsic problem of this model class. Identifying the underlying generic problems gives indications how to define models that do not show such unrealistic behavior. As an example we introduce a new force-based model which produces realistic jam dynamics without the appearance of u...
Identifying the Stern-Gerlach force of classical electron dynamics
Wen, Meng; Bauke, Heiko; Keitel, Christoph H.
2016-08-01
Different classical theories are commonly applied in various branches of physics to describe the relativistic dynamics of electrons by coupled equations for the orbital motion and spin precession. Exemplarily, we benchmark the Frenkel model and the classical Foldy-Wouthuysen model with spin-dependent forces (Stern-Gerlach forces) to the quantum dynamics as predicted by the Dirac equation. Both classical theories can lead to different or even contradicting predictions how the Stern-Gerlach forces modify the electron’s orbital motion, when the electron moves in strong electromagnetic field configurations of emerging high-intensity laser facilities. In this way, one may evaluate the validity and identify the limits of these classical theories via a comparison with possible experiments to provide a proper description of spin-induced dynamics. Our results indicate that the Foldy-Wouthuysen model is qualitatively in better agreement with the Dirac theory than the widely used Frenkel model.
Dynamic forces between bubbles and surfaces and hydrodynamic boundary conditions.
Manor, Ofer; Vakarelski, Ivan U; Stevens, Geoffrey W; Grieser, Franz; Dagastine, Raymond R; Chan, Derek Y C
2008-10-21
A bubble attached to the end of an atomic force microscope cantilever and driven toward or away from a flat mica surface across an aqueous film is used to characterize the dynamic force that arises from hydrodynamic drainage and electrical double layer interactions across the nanometer thick intervening aqueous film. The hydrodynamic response of the air/water interface can range from a classical fully immobile, no-slip surface in the presence of added surfactants to a partially mobile interface in an electrolyte solution without added surfactants. A model that includes the convection and diffusion of trace surface contaminants can account for the observed behavior presented. This model predicts quantitatively different interfacial dynamics to the Navier slip model that can also be used to fit dynamic force data with a post hoc choice of a slip length.
[The Northeast: fertility and recent dynamics of the labor force].
De Oliveira, L A
1985-01-01
Data from the 1970 and 1980 censuses of Brazil are analyzed to examine the economic growth of the Notheast, changes in the region's population dynamics, and changes in fertility. Consideration is given to the segmentation of the urban labor market, the income of the economically active population, children in the labor force, female education versus fertility, and family income versus female participation in the work force.
Ross, Michael; Cap, Jerome S.; Starr, Michael J.; Urbina, Angel; Brink, Adam Ray
2015-12-01
One of the more severe environments for a store on an aircraft is during the ejection of the store. During this environment it is not possible to instrument all component responses, and it is also likely that some instruments may fail during the environment testing. This work provides a method for developing these responses from failed gages and uninstrumented locations. First, the forces observed by the store during the environment are reconstructed. A simple sampling method is used to reconstruct these forces given various parameters. Then, these forces are applied to a model to generate the component responses. Validation is performed on this methodology.
Ares I-X First Stage Separation Loads and Dynamics Reconstruction
Demory, Lee; Rooker, BIll; Jarmulowicz, Marc; Glaese, John
2011-01-01
The Ares I-X flight test provided NASA with the opportunity to test hardware and gather critical data to ensure the success of future Ares I flights. One of the primary test flight objectives was to evaluate the environment during First Stage separation to better understand the conditions that the J-2X second stage engine will experience at ignition [1]. A secondary objective was to evaluate the effectiveness of the stage separation motors. The Ares I-X flight test vehicle was successfully launched on October 29, 2009, achieving most of its primary and secondary test objectives. Ground based video camera recordings of the separation event appeared to show recontact of the First Stage and the Upper Stage Simulator followed by an unconventional tumbling of the Upper Stage Simulator. Closer inspection of the videos and flight test data showed that recontact did not occur. Also, the motion during staging was as predicted through CFD analysis performed during the Ares I-X development. This paper describes the efforts to reconstruct the vehicle dynamics and loads through the staging event by means of a time integrated simulation developed in TREETOPS, a multi-body dynamics software tool developed at NASA [2]. The simulation was built around vehicle mass and geometry properties at the time of staging and thrust profiles for the first stage solid rocket motor as well as for the booster deceleration motors and booster tumble motors. Aerodynamic forces were determined by models created from a combination of wind tunnel testing and CFD. The initial conditions such as position, velocity, and attitude were obtained from the Best Estimated Trajectory (BET), which is compiled from multiple ground based and vehicle mounted instruments. Dynamic loads were calculated by subtracting the inertial forces from the applied forces. The simulation results were compared to the Best Estimated Trajectory, accelerometer flight data, and to ground based video.
Dynamics of a Parametrically Excited System with Two Forcing Terms
Anastasia Sofroniou
2014-09-01
Full Text Available Motivated by the dynamics of a trimaran, an investigation of the dynamic behaviour of a double forcing parametrically excited system is carried out. Initially, we provide an outline of the stability regions, both numerically and analytically, for the undamped linear, extended version of the Mathieu equation. This paper then examines the anticipated form of response of our proposed nonlinear damped double forcing system, where periodic and quasiperiodic routes to chaos are graphically demonstrated and compared with the case of the single vertically-driven pendulum.
Approximate photochemical dynamics of azobenzene with reactive force fields
Li, Yan; Hartke, Bernd
2013-12-01
We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).
Approximate photochemical dynamics of azobenzene with reactive force fields.
Li, Yan; Hartke, Bernd
2013-12-14
We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).
Gamma-range corticomuscular coherence during dynamic force output.
Omlor, Wolfgang; Patino, Luis; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana
2007-02-01
The beta-range synchronization between cortical motor and muscular activity as revealed by EEG/MEG-EMG coherence has been extensively investigated for steady-state motor output. However, there is a lack of information on the modulation of the corticomuscular coherence in conjunction with dynamic force output. We addressed this question comparing the EEG-EMG coherence and the cortical motor spectral power in eight healthy subjects in a visuomotor task, in which the subjects exerted a steady-state or periodically modulated dynamic isometric force output with their right-index finger to keep a visual cursor within a target zone. In the static condition, significant coherence was confined to the beta-range. In the dynamic condition, the most distinct coherence occurred in the gamma-range and the significant beta-range coherence was strikingly reduced. The cortical motor power in the beta-range during dynamic force output was decreased, whereas the power in the gamma-range remained without significant change. We conclude that during dynamic force the corticospinal oscillation mode of the sensorimotor system shifts towards higher (principally gamma) frequencies for the rapid integration of the visual and somatosensory information required to produce the appropriate motor command.
Lan, Fei; Jiang, Minlin; Tao, Quan; Wei, Fanan; Li, Guangyong
2017-03-01
A Kelvin probe force microscopy (KPFM) image is sometimes difficult to interpret because it is a blurred representation of the true surface potential (SP) distribution of the materials under test. The reason for the blurring is that KPFM relies on the detection of electrostatic force, which is a long-range force compared to other surface forces. Usually, KPFM imaging model is described as the convolution of the true SP distribution of the sample with an intrinsic point spread function (PSF) of the measurement system. To restore the true SP signals from the blurred ones, the intrinsic PSF of the system is needed. In this work, we present a way to experimentally calibrate the PSF of the KPFM system. Taking the actual probe shape and experimental parameters into consideration, this calibration method leads to a more accurate PSF than the ones obtained from simulations. Moreover, a nonlinear reconstruction algorithm based on total variation (TV) regularization is applied to KPFM measurement to reverse the blurring caused by PSF during KPFM imaging process; as a result, noises are reduced and the fidelity of SP signals is improved.
Dynamic steering beams for efficient force measurement in optical manipulation
Xiaocong Yuan; Yuquan Zhang; Rui Cao; Xing Zhao; Jing Bu; Siwei Zhu
2011-01-01
@@ An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported.Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium.The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force.The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead.The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.%An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported. Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium. The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force. The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead. The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.
Switched Dynamical Latent Force Models for Modelling Transcriptional Regulation
López-Lopera, Andrés F
2015-01-01
In order to develop statistical approaches for transcription networks, statistical community has proposed several methods to infer activity levels of proteins, from time-series measurements of targets' expression levels. A few number of approaches have been proposed in order to outperform the representation of fast switching time instants, but computational overheads are significant due to complex inference algorithms. Using the theory related to latent force models (LFM), the development of this project provide a switched dynamical hybrid model based on Gaussian processes (GPs). To deal with discontinuities in dynamical systems (or latent driving force), an extension of the single input motif approach is introduced, that switches between different protein concentrations, and different dynamical systems. This creates a versatile representation for transcription networks that can capture discrete changes and non-linearities in the dynamics. The proposed method is evaluated on both simulated data and real data,...
Dynamic relaxation in algebraic reconstruction technique (ART) for breast tomosynthesis imaging.
Oliveira, N; Mota, A M; Matela, N; Janeiro, L; Almeida, P
2016-08-01
A major challenge in Digital Breast Tomosynthesis (DBT) is handling image noise since the 3D reconstructed images are obtained from low dose projections and limited angular range. The use of the iterative reconstruction algorithm Algebraic Reconstruction Technique (ART) in clinical context depends on two key factors: the number of iterations needed (time consuming) and the image noise after iterations. Both factors depend highly on a relaxation coefficient (λ), which may give rise to slow or noisy reconstructions, when a single λ value is considered for the entire iterative process. The aim of this work is to present a new implementation for the ART that takes into account a dynamic mode to calculate λ in DBT image reconstruction. A set of initial reconstructions of real phantom data was done using constant λ values. The results were used to choose, for each iteration, the suitable λ value, taking into account the image noise level and the convergence speed. A methodology to optimize λ automatically during the image reconstruction was proposed. Results showed we can dynamically choose λ values in such a way that the time needed to reconstruct the images can be significantly reduced (up to 70%) while achieving similar image quality. These results were confirmed with one clinical dataset. With simple methodology we were able to dynamically choose λ in DBT image reconstruction with ART, allowing a shorter image reconstruction time without increasing image noise. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Nonergodic dynamics of force-free granular gases
Bodrova, Anna; Chechkin, Aleksei V.; Cherstvy, Andrey G.; Metzler, Ralf
2015-01-01
We study analytically and by event-driven molecular dynamics simulations the nonergodic and aging properties of force-free cooling granular gases with both constant and velocity-dependent (viscoelastic) restitution coefficient $\\varepsilon$ for particle pair collisions. We compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behavior of the ensembl...
Model based control of dynamic atomic force microscope
Lee, Chibum [Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Salapaka, Srinivasa M., E-mail: salapaka@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)
2015-04-15
A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H{sub ∞} control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.
Model based control of dynamic atomic force microscope.
Lee, Chibum; Salapaka, Srinivasa M
2015-04-01
A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H(∞) control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.
Monitoring dynamic loads on wind tunnel force balances
Ferris, Alice T.; White, William C.
1989-01-01
Two devices have been developed at NASA Langley to monitor the dynamic loads incurred during wind-tunnel testing. The Balance Dynamic Display Unit (BDDU), displays and monitors the combined static and dynamic forces and moments in the orthogonal axes. The Balance Critical Point Analyzer scales and sums each normalized signal from the BDDU to obtain combined dynamic and static signals that represent the dynamic loads at predefined high-stress points. The display of each instrument is a multiplex of six analog signals in a way that each channel is displayed sequentially as one-sixth of the horizontal axis on a single oscilloscope trace. Thus this display format permits the operator to quickly and easily monitor the combined static and dynamic level of up to six channels at the same time.
Dynamic Stability of Euler Beams under Axial Unsteady Wind Force
You-Qin Huang
2014-01-01
Full Text Available Dynamic instability of beams in complex structures caused by unsteady wind load has occurred more frequently. However, studies on the parametric resonance of beams are generally limited to harmonic loads, while arbitrary dynamic load is rarely involved. The critical frequency equation for simply supported Euler beams with uniform section under arbitrary axial dynamic forces is firstly derived in this paper based on the Mathieu-Hill equation. Dynamic instability regions with high precision are then calculated by a presented eigenvalue method. Further, the dynamically unstable state of beams under the wind force with any mean or fluctuating component is determined by load normalization, and the wind-induced parametric resonant response is computed by the Runge-Kutta approach. Finally, a measured wind load time-history is input into the dynamic system to indicate that the proposed methods are effective. This study presents a new method to determine the wind-induced dynamic stability of Euler beams. The beam would become dynamically unstable provided that the parametric point, denoting the relation between load properties and structural frequency, is located in the instability region, no matter whether the wind load component is large or not.
Relationships between Isometric Force-Time Characteristics and Dynamic Performance
Thomas Dos’Santos
2017-09-01
Full Text Available The purpose of this study was to explore the relationships between isometric mid-thigh pull (IMTP force-time characteristics (peak force and time-specific force vales (100–250 ms and dynamic performance and compare dynamic performance between stronger and weaker athletes. Forty-three athletes from different sports (rowing, soccer, bicycle motocross, and hockey performed three trials of the squat jump (SJ, countermovement jump (CMJ, and IMTP, and performed a one repetition maximum power clean (PC. Reactive strength index modified (RSImod was also calculated from the CMJ. Statistically significant large correlations between IMTP force-time characteristics and PC (ρ = 0.569–0.674, p < 0.001, and moderate correlations between IMTP force-time characteristics (excluding force at 100 ms and RSImod (ρ = 0.389–0.449, p = 0.013–0.050 were observed. Only force at 250 ms demonstrated a statistically significant moderate correlation with CMJ height (ρ = 0.346, p = 0.016 and no statistically significant associations were observed between IMTP force-time characteristics and SJ height. Stronger athletes (top 10 demonstrated statistically significantly greater CMJ heights, RSImods, and PCs (p ≤ 0.004, g = 1.32–1.89 compared to weaker (bottom 10 athletes, but no differences in SJ height were observed (p = 0.871, g = 0.06. These findings highlight that the ability to apply rapidly high levels of force in short time intervals is integral for PC, CMJ height, and reactive strength.
Force-dynamic cultural models in a scalar adjectival construction
Jensen, Kim Ebensgaard
'm in a certain group that's almost too old to hire. (COCA 2011 NEWS Denver) (6) Mr. Turman insisted he was too busy to meet at any other time. (COCA 2011 NEWS NYTimes) In all instances, semantic relations of force-dynamics are set up between the adjective and verb positions, such that the adjective describes...
Vertically polarizing undulator with dynamic compensation of magnetic forces
Strelnikov, N; Vasserman, I; Xu, J; Jensen, D; Schmidt, O; Trakhtenberg, E; Suthar, K; Moog, E. R; Pile, G; Gluskin, E
2017-01-01
As part of the R&D program of the LCLS-II project, a novel 3.4-meter-long undulator prototype with horizontal magnetic field and dynamic force compensation has recently been developed at the Advanced Photon Source (APS...
Forced Fluid Dynamics from Blackfolds in General Supergravity Backgrounds
Armas, Jay; Niarchos, Vasilis; Obers, Niels A; Pedersen, Andreas Vigand
2016-01-01
We present a general treatment of the leading order dynamics of the collective modes of charged dilatonic $p$-brane solutions of (super)gravity theories in arbitrary backgrounds. To this end we employ the general strategy of the blackfold approach which is based on a long-wavelength derivative expansion around an exact or approximate solution of the (super)gravity equations of motion. The resulting collective mode equations are formulated as forced hydrodynamic equations on dynamically embedded hypersurfaces. We derive them in full generality (including all possible asymptotic fluxes and dilaton profiles) in a far-zone analysis of the (super)gravity equations and in representative examples in a near-zone analysis. An independent treatment based on the study of external couplings in hydrostatic partition functions is also presented. Special emphasis is given to the forced collective mode equations that arise in type IIA/B and eleven-dimensional supergravities, where besides the standard Lorentz force couplings...
Universal data-based method for reconstructing complex networks with binary-state dynamics
Li, Jingwen; Shen, Zhesi; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng
2017-03-01
To understand, predict, and control complex networked systems, a prerequisite is to reconstruct the network structure from observable data. Despite recent progress in network reconstruction, binary-state dynamics that are ubiquitous in nature, technology, and society still present an outstanding challenge in this field. Here we offer a framework for reconstructing complex networks with binary-state dynamics by developing a universal data-based linearization approach that is applicable to systems with linear, nonlinear, discontinuous, or stochastic dynamics governed by monotonic functions. The linearization procedure enables us to convert the network reconstruction into a sparse signal reconstruction problem that can be resolved through convex optimization. We demonstrate generally high reconstruction accuracy for a number of complex networks associated with distinct binary-state dynamics from using binary data contaminated by noise and missing data. Our framework is completely data driven, efficient, and robust, and does not require any a priori knowledge about the detailed dynamical process on the network. The framework represents a general paradigm for reconstructing, understanding, and exploiting complex networked systems with binary-state dynamics.
Modeling of Dynamic Fluid Forces in Fast Switching Valves
Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen;
2015-01-01
Switching valves experience opposing fluid forces due to movement of the moving member itself, as the surrounding fluid volume must move to accommodate the movement. This movement-induced fluid force may be divided into three main components; the added mass term, the viscous term and the socalled...... history term. For general valve geometries there are no simple solution to either of these terms. During development and design of such switching valves, it is therefore, common practice to use simple models to describe the opposing fluid forces, neglecting all but the viscous term which is determined...... based on shearing areas and venting channels. For fast acting valves the opposing fluid force may retard the valve performance significantly, if appropriate measures are not taken during the valve design. Unsteady Computational Fluid Dynamics (CFD) simulations are available to simulate the total fluid...
Galabov, Vasko; Kortcheva, Anna
2013-01-01
The present article is a study of the applicability of different sources of meteorological forcing for the coastal wave and storm surge models, which provide the operational marine forecasts for the coastal early warning systems (EWS) and are used for reconstructions of historical storms. The reconstruction of historical storms is one of the approaches to the natural coastal hazard vulnerability assessment. We evaluate the importance of the input meteorological information for the mentioned t...
Rood, A.; Hannink, G.; Lenting, A.; Groenen, K.; Koeter, S.; Verdonschot, N.J.; Kampen, A. van
2015-01-01
BACKGROUND: Reconstructing the medial patellofemoral ligament (MPFL) has become a key procedure for stabilizing the patella. Different techniques to reconstruct the MPFL have been described: static techniques in which the graft is fixed rigidly to the bone or dynamic techniques with soft tissue fixa
Rood, A.; Hannink, G.; Lenting, A.; Groenen, K.; Koëter, S.; Verdonschot, N.J.J.; Kampen, van A.
2015-01-01
Background: Reconstructing the medial patellofemoral ligament (MPFL) has become a key procedure for stabilizing the patella. Different techniques to reconstruct the MPFL have been described: static techniques in which the graft is fixed rigidly to the bone or dynamic techniques with soft tissue fixa
Dynamics of living phytoplankton: Implications for paleoenvironmental reconstructions
Barbosa, A B [Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)], E-mail: abarbosa@ualg.pt
2009-01-01
Phytoplankton is the dominant primary producer in aquatic ecosystems and is considered a gauge of ecological condition and change. Some phytoplankton groups, namely diatoms, dinoflagellates, and coccolithophores, produce morphological or chemical fossils that can be used for paleoenvironmental reconstruction. This study aims to review the processes that regulate dynamics in living phytoplankton and to highlight how this knowledge is used in paleoecological studies. The distribution patterns of phytoplankton in present-day aquatic ecosystems are shaped by the interplay between processes that regulate cell growth and cell death. Cell growth and cell death are regulated by the internal environment of phytoplankton (e.g., specific environmental tolerances, resource uptake properties, cell size, density and morphology, alternative nutritional strategies such as mixotrophy or N{sub 2} uptake, motility, intracellular storage capacities, grazing resistance properties), and by its external environment. The external environment includes variables dependent on the availability of resources (e.g., light intensity, concentration of CO{sub 2} and dissolved inorganic macronutrients and micronutrients, availability of living prey in case of mixotrophs) and variables independent of resources (e.g., temperature, salinity, turbulence, ultraviolet radiation, bioactive compounds, activity of grazers, viruses, and eukaryotic parasites). The importance of recently described loss processes, such as grazing by phagotrophic protists, viral lyses, and programmed cell death, is discussed in the context of its potential impact upon phytoplankton vertical fluxes. Examples of the use of different phytoplankton metrics (e.g. abundance, species composition, species morphology, and elemental composition) to infer contemporaneous as well as past environmental and ecological conditions are critically evaluated.
High-Resolution Force Balance Analyses of Tidewater Glacier Dynamics
Enderlin, E. M.; Hamilton, G. S.; O'Neel, S.
2015-12-01
Changes in glacier velocity, thickness, and terminus position have been used to infer the dynamic response of tidewater glaciers to environmental perturbations, yet few analyses have attempted to quantify the associated variations in the glacier force balance. Where repeat high-resolution ice thickness and velocity estimates are available, force balance time series can be constructed to investigate the redistribution of driving and resistive forces associated with changes in terminus position. Comparative force balance analyses may, therefore, help us understand the variable dynamic response observed for glaciers in close proximity to each other. Here we construct force balance time series for Helheim Glacier, SE Greenland, and Columbia Glacier, SE Alaska, to investigate differences in dynamic sensitivity to terminus position change. The analysis relies on in situ and remotely sensed observations of ice thickness, velocity, and terminus position. Ice thickness time series are obtained from stereo satellite image-derived surface elevation and continuity-derived bed elevations that are constrained by airborne radar observations. Surface velocity time series are obtained from interferometric synthetic aperture radar (InSAR) observations. Approximately daily terminus positions are from a combination of satellite images and terrestrial time-lapse photographs. Helheim and Columbia glaciers are two of the best-studied Arctic tidewater glaciers with comprehensive high-resolution observational time series, yet we find that bed elevation uncertainties and poorly-constrained stress-coupling length estimates still hinder the analysis of spatial and temporal force balance variations. Here we use a new observationally-based method to estimate the stress-coupling length which successfully reduces noise in the derived force balance but preserves spatial variations that can be over-smoothed when estimating the stress-coupling length as a scalar function of the ice thickness
Lai, Pik-Yin
2017-02-01
Reconstructing network connection topology and interaction strengths solely from measurement of the dynamics of the nodes is a challenging inverse problem of broad applicability in various areas of science and engineering. For a discrete-time step network under noises whose noise-free dynamics is stationary, we derive general analytic results relating the weighted connection matrix of the network to the correlation functions obtained from time-series measurements of the nodes for networks with one-dimensional intrinsic node dynamics. Information about the intrinsic node dynamics and the noise strengths acting on the nodes can also be obtained. Based on these results, we develop a scheme that can reconstruct the above information of the network using only the time-series measurements of node dynamics as input. Reconstruction formulas for higher-dimensional node dynamics are also derived and illustrated with a two-dimensional node dynamics network system. Furthermore, we extend our results and obtain a reconstruction scheme even for the cases when the noise-free dynamics is periodic. We demonstrate that our method can give accurate reconstruction results for weighted directed networks with linear or nonlinear node dynamics of various connection topologies, and with linear or nonlinear couplings.
Dynamic PET Image reconstruction for parametric imaging using the HYPR kernel method
Spencer, Benjamin; Qi, Jinyi; Badawi, Ramsey D.; Wang, Guobao
2017-03-01
Dynamic PET image reconstruction is a challenging problem because of the ill-conditioned nature of PET and the lowcounting statistics resulted from short time-frames in dynamic imaging. The kernel method for image reconstruction has been developed to improve image reconstruction of low-count PET data by incorporating prior information derived from high-count composite data. In contrast to most of the existing regularization-based methods, the kernel method embeds image prior information in the forward projection model and does not require an explicit regularization term in the reconstruction formula. Inspired by the existing highly constrained back-projection (HYPR) algorithm for dynamic PET image denoising, we propose in this work a new type of kernel that is simpler to implement and further improves the kernel-based dynamic PET image reconstruction. Our evaluation study using a physical phantom scan with synthetic FDG tracer kinetics has demonstrated that the new HYPR kernel-based reconstruction can achieve a better region-of-interest (ROI) bias versus standard deviation trade-off for dynamic PET parametric imaging than the post-reconstruction HYPR denoising method and the previously used nonlocal-means kernel.
Andrea Sánchez-Saldías; Richard A. Fariña
2014-01-01
Current palaeoclimatic reconstructions for the Río de la Plata region during the latest Pleistocene (30,000 e10,000 yr BP) propose dry conditions, with rainfall at the Last Glacial Maximum amounting to one-third of today’s precipitation. Despite the consequential low primary productivity inferred, an impressive megafauna existed in the area at that time. Here we explore the influence of the flooding from a huge extinct system of water bodies in the Andean Altiplano as a likely source for wet regimes that might have increased the primary productivity and, hence, the vast number of megaherbivores. The system was reconstructed using specifically combined software resources, including Insola, Global Mapper v13, Surfer and Matlab. Changes in water volume and area covered were related to climatic change, assessed through a model of astronomical forcing that describes the changes in insolation at the top of the at-mosphere in the last 50,000 yr BP. The model was validated by comparing its results with several proxies (CH4, CO2, D, 18O) from dated cores taken from the ice covering Antarctic lakes Vostok and EPICA Dome C. It is concluded that the Altiplano Lake system drained towards the southeast in the rainy seasons and that it must have been a major source of water for the Paraná-Plata Basin, consequently enhancing primary productivity within it.
Andrea Sánchez-Saldías
2014-03-01
Full Text Available Current palaeoclimatic reconstructions for the Río de la Plata region during the latest Pleistocene (30,000–10,000 yr BP propose dry conditions, with rainfall at the Last Glacial Maximum amounting to one-third of today's precipitation. Despite the consequential low primary productivity inferred, an impressive megafauna existed in the area at that time. Here we explore the influence of the flooding from a huge extinct system of water bodies in the Andean Altiplano as a likely source for wet regimes that might have increased the primary productivity and, hence, the vast number of megaherbivores. The system was reconstructed using specifically combined software resources, including Insola, Global Mapper v13, Surfer and Matlab. Changes in water volume and area covered were related to climatic change, assessed through a model of astronomical forcing that describes the changes in insolation at the top of the atmosphere in the last 50,000 yr BP. The model was validated by comparing its results with several proxies (CH4, CO2, D, 18O from dated cores taken from the ice covering Antarctic lakes Vostok and EPICA Dome C. It is concluded that the Altiplano Lake system drained towards the southeast in the rainy seasons and that it must have been a major source of water for the Paraná-Plata Basin, consequently enhancing primary productivity within it.
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.
Novosad, Philip; Reader, Andrew J
2016-06-21
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions
Novosad, Philip; Reader, Andrew J.
2016-06-01
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral
Inflationary Dynamics Reconstruction via Inverse-Scattering Theory
Mastache, Jorge; Kosowsky, Arthur
2016-01-01
The evolution of inflationary fluctuations can be recast as an inverse scattering problem. In this context, we employ the Gel'fand-Levitan method from inverse-scattering theory to reconstruct the evolution of both the inflaton field freeze-out horizon and the Hubble parameter during inflation. We demonstrate this reconstruction procedure numerically for a scenario of slow-roll inflation, as well as for a scenario which temporarily departs from slow-roll. The field freeze-out horizon is reconstructed from the accessible primordial scalar power spectrum alone, while the reconstruction of the Hubble parameter requires additional information from the tensor power spectrum. We briefly discuss the application of this technique to more realistic cases incorporating estimates of the primordial power spectra over limited ranges of scales and with specified uncertainties.
Reconstructing Links in Directed Networks from Noisy Dynamics
Ching, Emily S C
2016-01-01
In this Letter, we address the longstanding challenge of how to reconstruct links in directed networks from measurements, and present a general method that makes use of a noise-induced relation between network structure and both the time-lagged covariance of measurements taken at two different times and the covariance of measurements taken at the same time. For coupling functions that have additional properties, we can further reconstruct the weights of the links.
Dynamic stability of repulsive-force maglev suspension systems
Cai, Y.; Rote, D.M.; Mulcahy, T.M.; Wang, Z. [and others
1996-11-01
This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also documents both measured and calculated magnetic-force data. Because dynamic instability is not acceptable for any commercial maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments on maglev systems and compares the results with predictions calculated by a nonlinear-dynamics computer code. Instabilities of an electrodynamic-suspension system type vehicle model were obtained by experimental observation and computer simulation of a five-degree-of-freedom maglev vehicle moving on a guideway that consists of a pair of L-shaped aluminum conductors attached to a rotating wheel. The experimental and theoretical analyses developed in this study identify basic stability characteristics and future research needs of maglev systems.
[Tension force in dynamic splints made of neoprene].
Punsola-Izard, V; Rouzaud, J C; Thomas, D; Lluch; Garcia-Elias
2001-06-01
Dynamic splints are the most difficult ortheses to make. Unrestricted finger joint mobility is usually prevented by the size of their components. Ortheses made out of neoprene material have the advantage of being pliable and at the same time can be constructed as dynamic splints. Neoprene material elasticity allows conforming it into a tube that can be fitted over a finger, spreading uniform pressure. A traction slip can be cemented to the neoprene finger tube. With neoprene splints, lever arms are more efficient. Their tubular design applies and spreads traction and countertraction forces in all directions. Neoprene material's elasticity contributes in reducing edema formation as well as distributes forces applied to the finger over a large area. The risk of excessive pressure is the only drawback of an elastic tubular design, it may cause pain and tissue ischemia. A meticulous tailoring prevents this potential risk.
Forced dynamic position control of PMSM with DTC utilization
Malek, Michal
2012-11-01
Almost one and a half century after the publication of Maxwell’s On Governors, feedback theory with PID controllers in cascade structure is still an essential part of control structures of most controlled electric drives. There are a few control strategies which are “ready” to replace it but they usually miss one of the essential fundamentals of every successful approach - simplicity hand in hand with lucidity. But there is one close relative which is simple and powerful at the same time, is not excessively abstract and without complicated mathematics. The name of this technique is Forced Dynamic Control. In this paper forced dynamic control is presented together with direct torque controlled PMSM drive as unique combination of simple algorithms for inner and outer loop of cascade structure.
Monitoring RNA release from human rhinovirus by dynamic force microscopy.
Kienberger, Ferry; Zhu, Rong; Moser, Rosita; Blaas, Dieter; Hinterdorfer, Peter
2004-04-01
Human rhinoviruses were imaged under physiological conditions by dynamic force microscopy. Topographical images revealed various polygonal areas on the surfaces of the 30-nm viral particles. RNA release was initiated by exposure to a low-pH buffer. The lengths of the RNAs that were released but still connected to the virus capsid varied between 40 and 330 nm, whereas RNA molecules that were completely released from the virus were observed with lengths up to 1 micro m. Fork-like structure elements with 30-nm extensions were sometimes resolved at one end of the RNA molecules. They possibly correspond to the characteristic multi-stem-loop conformation, the internal ribosomal entry site, located at the 5' region of the genome. This study demonstrates that dynamic force microscopy can be used to study viral RNA release in situ under physiological conditions.
Evaluation of the sensing block method for dynamic force measurement
Zhang, Qinghui; Chen, Hao; Li, Wenzhao; Song, Li
2017-01-01
Sensing block method was proposed for the dynamic force measurement by Tanimura et al. in 1994. Comparing with the Split Hopkinson pressure bar (SHPB) technique, it can provide a much longer measuring time for the dynamic properties test of materials. However, the signals recorded by sensing block are always accompanied with additional oscillations. Tanimura et al. discussed the effect of force rising edge on the test results, whereas more research is still needed. In this paper, some more dominant factors have been extracted through dimensional analysis. The finite element simulation has been performed to assess these factors. Base on the analysis and simulation, some valuable results are obtained and some criterions proposed in this paper can be applied in design or selection of the sensing block.
Dynamic force microscopy for imaging of viruses under physiological conditions
Kienberger Ferry
2004-01-01
Full Text Available Dynamic force microscopy (DFM allows imaging of the structure and the assessment of the function of biological specimens in their physiological environment. In DFM, the cantilever is oscillated at a given frequency and touches the sample only at the end of its downward movement. Accordingly, the problem of lateral forces displacing or even destroying bio-molecules is virtually inexistent as the contact time and friction forces are reduced. Here, we describe the use of DFM in studies of human rhinovirus serotype 2 (HRV2 weakly adhering to mica surfaces. The capsid of HRV2 was reproducibly imaged without any displacement of the virus. Release of the genomic RNA from the virions was initiated by exposure to low pH buffer and snapshots of the extrusion process were obtained. In the following, the technical details of previous DFM investigations of HRV2 are summarized.
Liu Jie; Shi Shu-Ting; Zhao Jun-Chan
2013-01-01
The three most widely used methods for reconstructing the underlying time series via the recurrence plots (RPs) of a dynamical system are compared with each other in this paper.We aim to reconstruct a toy series,a periodical series,a random series,and a chaotic series to compare the effectiveness of the most widely used typical methods in terms of signal correlation analysis.The application of the most effective algorithm to the typical chaotic Lorenz system verifies the correctness of such an effective algorithm.It is verified that,based on the unthresholded RPs,one can reconstruct the original attractor by choosing different RP thresholds based on the Hirata algorithm.It is shown that,in real applications,it is possible to reconstruct the underlying dynamics by using quite little information from observations of real dynamical systems.Moreover,rules of the threshold chosen in the algorithm are also suggested.
An improved technique for the reconstruction of former glacier mass-balance and dynamics
Carr, Simon; Coleman, Christopher
2007-11-01
The recognition of past glacier extent and dynamics is a fundamental aspect of investigations of the climatic sensitivity of glaciers, especially when examining short-lived climate events such as the Younger Dryas or Little Ice Age. Existing approaches to the reconstruction of glacier form and dynamics depend on speculative reasoning of key glacier dynamic parameters, including the role of basal slip and subglacial deformation in glacier mass-transfer. This study reviews approaches to glacier reconstruction, derivation of former glacier equilibrium line altitudes (ELA's) and estimation of mass-balance and dynamics, concluding that most reconstructions of glacier mass-balance are compromised by a lack of glaciological considerations. An alternative approach to glacier reconstruction is presented, demonstrated and discussed, by which an empirical relationship between ablation gradient and mass loss at the ELA is used to derive mass-balance, mass-flux through the ELA and average balance velocity at the ELA. This 'glaciological' approach is applied to four reconstructed glaciers to test previous interpretations that each reflects Younger Dryas glaciation in the UK. The study concludes that this approach provides a more robust technique for reconstructing former glacier dynamics, and may be applied to test geomorphological interpretations of former mountain glaciation.
Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy
Cantrell, John H.; Cantrell, Sean A.
2015-01-01
The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.
Satellite Dynamic Damping via Active Force Control Augmentation
Varatharajoo, Renuganth
2012-07-01
An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC
Keyvani, Aliasghar; Sadeghian, Hamed; Tamer, Mehmet Selman; Goosen, Johannes Frans Loodewijk; van Keulen, Fred
2017-06-01
Due to the harmonic motion of the cantilever in Tapping Mode Atomic Force Microscopy, it is seemingly impossible to estimate the tip-sample interactions from the motion of the cantilever. Not directly observing the interaction force, it is possible to damage the surface or the tip by applying an excessive mechanical load. The tip-sample interactions scale with the effective stiffness of the probe. Thus, the reduction of the mechanical load is usually limited by the manufacturability of low stiffness probes. However, the one-to-one relationship between spring constant and applied force only holds when higher modes of the cantilever are not excited. In this paper, it is shown that, by passively tuning higher modes of the cantilever, it is possible to reduce the peak repulsive force. These tuned probes can be dynamically more compliant than conventional probes with the same static spring constant. Both theoretical and experimental results show that a proper tuning of dynamic modes of cantilevers reduces the contact load and increases the sensitivity considerably. Moreover, due to the contribution of higher modes, the tuned cantilevers provide more information on the tip-sample interaction. This extra information from the higher harmonics can be used for mapping and possibly identification of material properties of samples.
Dynamic force spectroscopy of parallel individual mucin1-antibody bonds
Sulchek, T A; Friddle, R W; Langry, K; Lau, E; Albrecht, H; Ratto, T; DeNardo, S; Colvin, M E; Noy, A
2005-05-02
We used atomic force microscopy (AFM) to measure the binding forces between Mucin1 (MUC1) peptide and a single chain antibody fragment (scFv) selected from a scFv library screened against MUC1. This binding interaction is central to the design of the molecules for targeted delivery of radioimmunotherapeutic agents for prostate and breast cancer treatment. Our experiments separated the specific binding interaction from non-specific interactions by tethering the antibody and MUC1 molecules to the AFM tip and sample surface with flexible polymer spacers. Rupture force magnitude and elastic characteristics of the spacers allowed identification of the bond rupture events corresponding to different number of interacting proteins. We used dynamic force spectroscopy to estimate the intermolecular potential widths and equivalent thermodynamic off rates for mono-, bi-, and tri-valent interactions. Measured interaction potential parameters agree with the results of molecular docking simulation. Our results demonstrate that an increase of the interaction valency leads to a precipitous decline in the dissociation rate. Binding forces measured for mono and multivalent interactions match the predictions of a Markovian model for the strength of multiple uncorrelated bonds in parallel configuration. Our approach is promising for comparison of the specific effects of molecular modifications as well as for determination of the best configuration of antibody-based multivalent targeting agents.
Frequency adaptation for enhanced radiation force amplitude in dynamic elastography.
Ouared, Abderrahmane; Montagnon, Emmanuel; Kazemirad, Siavash; Gaboury, Louis; Robidoux, André; Cloutier, Guy
2015-08-01
In remote dynamic elastography, the amplitude of the generated displacement field is directly related to the amplitude of the radiation force. Therefore, displacement improvement for better tissue characterization requires the optimization of the radiation force amplitude by increasing the push duration and/or the excitation amplitude applied on the transducer. The main problem of these approaches is that the Food and Drug Administration (FDA) thresholds for medical applications and transducer limitations may be easily exceeded. In the present study, the effect of the frequency used for the generation of the radiation force on the amplitude of the displacement field was investigated. We found that amplitudes of displacements generated by adapted radiation force sequences were greater than those generated by standard nonadapted ones (i.e., single push acoustic radiation force impulse and supersonic shear imaging). Gains in magnitude were between 20 to 158% for in vitro measurements on agar-gelatin phantoms, and 170 to 336% for ex vivo measurements on a human breast sample, depending on focus depths and attenuations of tested samples. The signal-to-noise ratio was also improved more than 4-fold with adapted sequences. We conclude that frequency adaptation is a complementary technique that is efficient for the optimization of displacement amplitudes. This technique can be used safely to optimize the deposited local acoustic energy without increasing the risk of damaging tissues and transducer elements.
Forced versus coupled dynamics in Earth system modelling and prediction
B. Knopf
2005-01-01
Full Text Available We compare coupled nonlinear climate models and their simplified forced counterparts with respect to predictability and phase space topology. Various types of uncertainty plague climate change simulation, which is, in turn, a crucial element of Earth System modelling. Since the currently preferred strategy for simulating the climate system, or the Earth System at large, is the coupling of sub-system modules (representing, e.g. atmosphere, oceans, global vegetation, this paper explicitly addresses the errors and indeterminacies generated by the coupling procedure. The focus is on a comparison of forced dynamics as opposed to fully, i.e. intrinsically, coupled dynamics. The former represents a particular type of simulation, where the time behaviour of one complex systems component is prescribed by data or some other external information source. Such a simplifying technique is often employed in Earth System models in order to save computing resources, in particular when massive model inter-comparisons need to be carried out. Our contribution to the debate is based on the investigation of two representative model examples, namely (i a low-dimensional coupled atmosphere-ocean simulator, and (ii a replica-like simulator embracing corresponding components.Whereas in general the forced version (ii is able to mimic its fully coupled counterpart (i, we show in this paper that for a considerable fraction of parameter- and state-space, the two approaches qualitatively differ. Here we take up a phenomenon concerning the predictability of coupled versus forced models that was reported earlier in this journal: the observation that the time series of the forced version display artificial predictive skill. We present an explanation in terms of nonlinear dynamical theory. In particular we observe an intermittent version of artificial predictive skill, which we call on-off synchronization, and trace it back to the appearance of unstable periodic orbits. We also
Guided crowd dynamics via modified social force model
Yang, Xiaoxia; Dong, Hairong; Wang, Qianling; Chen, Yao; Hu, Xiaoming
2014-10-01
Pedestrian dynamics is of great theoretical significance for strategy design of emergency evacuation. Modification of pedestrian dynamics based on the social force model is presented to better reflect pedestrians' behavioral characteristics in emergency. Specifically, the modified model can be used for guided crowd dynamics in large-scale public places such as subway stations and stadiums. This guided crowd model is validated by explicitly comparing its density-speed and density-flow diagrams with fundamental diagrams. Some social phenomena such as gathering, balance and conflicts are clearly observed in simulation, which further illustrate the effectiveness of the proposed modeling method. Also, time delay for pedestrians with time-dependent desired velocities is observed and explained using the established model in this paper. Furthermore, this guided crowd model is applied to the simulation system of Beijing South Railway Station for predictive evacuation experiments.
Davtyan, Aram; Voth, Gregory A.; Andersen, Hans C.
2016-12-01
We recently developed a dynamic force matching technique for converting a coarse-grained (CG) model of a molecular system, with a CG potential energy function, into a dynamic CG model with realistic dynamics [A. Davtyan et al., J. Chem. Phys. 142, 154104 (2015)]. This is done by supplementing the model with additional degrees of freedom, called "fictitious particles." In that paper, we tested the method on CG models in which each molecule is coarse-grained into one CG point particle, with very satisfactory results. When the method was applied to a CG model of methanol that has two CG point particles per molecule, the results were encouraging but clearly required improvement. In this paper, we introduce a new type (called type-3) of fictitious particle that exerts forces on the center of mass of two CG sites. A CG model constructed using type-3 fictitious particles (as well as type-2 particles previously used) gives a much more satisfactory dynamic model for liquid methanol. In particular, we were able to construct a CG model that has the same self-diffusion coefficient and the same rotational relaxation time as an all-atom model of liquid methanol. Type-3 particles and generalizations of it are likely to be useful in converting more complicated CG models into dynamic CG models.
Dynamic knee joint mechanics after anterior cruciate ligament reconstruction.
Clarke, Sarah B; Kenny, Ian C; Harrison, Andrew J
2015-01-01
There is scarcity of information on the long-term adaptations in lower limb biomechanics during game-specific movements after anterior cruciate ligament (ACL) reconstruction. Particularly, variables such as knee abduction moments and transverse plane knee motion have not been studied during a game-specific landing and cutting task after ACL reconstruction. The purpose of this study was to compare the hip and knee mechanics between the ACL-reconstructed (ACLr) group and a healthy control group. Thirty-eight reconstructed athletes (18 ACLr, 18 control) participated in the study. Three-dimensional hip, knee, and ankle angles were calculated during a maximal drop jump land from a 0.30-m box and unanticipated cutting task at 45°. During the landing phase, ACLr participants had increased hip flexion (P knee range of motion (P = 0.027). During the cutting phase, the ACLr participant's previously injured limb had increased internal knee abduction moment compared with that of the control group (P = 0.032). No significant differences were reported between the previously injured and contralateral uninjured limb. Previously injured participants demonstrated higher knee abduction moment and transverse plane range of motion when compared with those of control participants during a game-specific landing and cutting task.
Forced fluid dynamics from blackfolds in general supergravity backgrounds
Armas, Jay; Gath, Jakob; Niarchos, Vasilis; Obers, Niels A.; Pedersen, Andreas Vigand
2016-10-01
We present a general treatment of the leading order dynamics of the collective modes of charged dilatonic p-brane solutions of (super) gravity theories in arbitrary backgrounds. To this end we employ the general strategy of the blackfold approach which is based on a long-wavelength derivative expansion around an exact or approximate solution of the (super)gravity equations of motion. The resulting collective mode equations are formulated as forced hydrodynamic equations on dynamically embedded hypersurfaces. We derive them in full generality (including all possible asymptotic fluxes and dilaton profiles) in a far-zone analysis of the (super)gravity equations and in representative examples in a near-zone analysis. An independent treatment based on the study of external couplings in hydrostatic partition functions is also presented. Special emphasis is given to the forced collective mode equations that arise in type IIA/B and eleven-dimensional supergravities, where besides the standard Lorentz force couplings our analysis reveals additional couplings to the background, including terms that arise from Chern-Simons interactions. We also present a general overview of the blackfold approach and some of the key conceptual issues that arise when applied to arbitrary backgrounds.
Forced fluid dynamics from blackfolds in general supergravity backgrounds
Armas, Jay [Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Gath, Jakob [Centre de Physique Théorique, École Polytechnique,CNRS UMR 7644, Université Paris-Saclay,F-91128 Palaiseau (France); Niarchos, Vasilis [Crete Center for Theoretical Physics, Institute of Theoretical and Computational Physics,Crete Center for Quantum Complexity and Nanotechnology,Department of Physics, University of Crete,Heraklion, 71303 (Greece); Obers, Niels A.; Pedersen, Andreas Vigand [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)
2016-10-27
We present a general treatment of the leading order dynamics of the collective modes of charged dilatonic p-brane solutions of (super)gravity theories in arbitrary backgrounds. To this end we employ the general strategy of the blackfold approach which is based on a long-wavelength derivative expansion around an exact or approximate solution of the (super)gravity equations of motion. The resulting collective mode equations are formulated as forced hydrodynamic equations on dynamically embedded hypersurfaces. We derive them in full generality (including all possible asymptotic fluxes and dilaton profiles) in a far-zone analysis of the (super)gravity equations and in representative examples in a near-zone analysis. An independent treatment based on the study of external couplings in hydrostatic partition functions is also presented. Special emphasis is given to the forced collective mode equations that arise in type IIA/B and eleven-dimensional supergravities, where besides the standard Lorentz force couplings our analysis reveals additional couplings to the background, including terms that arise from Chern-Simons interactions. We also present a general overview of the blackfold approach and some of the key conceptual issues that arise when applied to arbitrary backgrounds.
Stefano Zurrida
2011-01-01
Full Text Available Breast cancer is the most common cancer in women. Primary treatment is surgery, with mastectomy as the main treatment for most of the twentieth century. However, over that time, the extent of the procedure varied, and less extensive mastectomies are employed today compared to those used in the past, as excessively mutilating procedures did not improve survival. Today, many women receive breast-conserving surgery, usually with radiotherapy to the residual breast, instead of mastectomy, as it has been shown to be as effective as mastectomy in early disease. The relatively new skin-sparing mastectomy, often with immediate breast reconstruction, improves aesthetic outcomes and is oncologically safe. Nipple-sparing mastectomy is newer and used increasingly, with better acceptance by patients, and again appears to be oncologically safe. Breast reconstruction is an important adjunct to mastectomy, as it has a positive psychological impact on the patient, contributing to improved quality of life.
A modified social force model for crowd dynamics
Hassan, Ummi Nurmasyitah; Zainuddin, Zarita; Abu-Sulyman, Ibtesam M.
2017-08-01
The Social Force Model (SFM) is one of the most successful models in microscopic pedestrian studies that is used to study the movement of pedestrians. Many modifications have been done to improvise the SFM by earlier researchers such as the incorporation of a constant respect factor into the self-stopping mechanism. Before the new mechanism is introduced, the researchers found out that a pedestrian will immediately come to a halt if other pedestrians are near to him, which seems to be an unrealistic behavior. Therefore, researchers introduce a self-slowing mechanism to gradually stop a pedestrian when he is approaching other pedestrians. Subsequently, the dynamic respect factor is introduced into the self-slowing mechanism based on the density of the pedestrians to make the model even more realistic. In real life situations, the respect factor of the pedestrians should be dynamic values instead of a constant value. However, when we reproduce the simulation of the dynamic respect factor, we found that the movement of the pedestrians are unrealistic because the pedestrians are lacking perception of the pedestrians in front of him. In this paper, we adopted both dynamic respect factor and dynamic angular parameter, called modified dynamic respect factor, which is dependent on the density of the pedestrians. Simulations are performed in a normal unidirectional walkway to compare the simulated pedestrians' movements produced by both models. The results obtained showed that the modified dynamic respect factor produces more realistic movement of the pedestrians which conform to the real situation. Moreover, we also found that the simulations endow the pedestrian with a self-slowing mechanism and a perception of other pedestrians in front of him.
A stochastic boundary forcing for dissipative particle dynamics
Altenhoff, Adrian M.; Walther, Jens H.; Koumoutsakos, Petros
2007-07-01
The method of dissipative particle dynamics (DPD) is an effective, coarse grained model of the hydrodynamics of complex fluids. DPD simulations of wall-bounded flows are however often associated with spurious fluctuations of the fluid properties near the wall. We present a novel stochastic boundary forcing for DPD simulations of wall-bounded flows, based on the identification of fluctuations in simulations of the corresponding homogeneous system at equilibrium. The present method is shown to enforce accurately the no-slip boundary condition, while minimizing spurious fluctuations of material properties, in a number of benchmark problems.
3.5D dynamic PET image reconstruction incorporating kinetics-based clusters.
Lu, Lijun; Karakatsanis, Nicolas A; Tang, Jing; Chen, Wufan; Rahmim, Arman
2012-08-07
Standard 3D dynamic positron emission tomographic (PET) imaging consists of independent image reconstructions of individual frames followed by application of appropriate kinetic model to the time activity curves at the voxel or region-of-interest (ROI). The emerging field of 4D PET reconstruction, by contrast, seeks to move beyond this scheme and incorporate information from multiple frames within the image reconstruction task. Here we propose a novel reconstruction framework aiming to enhance quantitative accuracy of parametric images via introduction of priors based on voxel kinetics, as generated via clustering of preliminary reconstructed dynamic images to define clustered neighborhoods of voxels with similar kinetics. This is then followed by straightforward maximum a posteriori (MAP) 3D PET reconstruction as applied to individual frames; and as such the method is labeled '3.5D' image reconstruction. The use of cluster-based priors has the advantage of further enhancing quantitative performance in dynamic PET imaging, because: (a) there are typically more voxels in clusters than in conventional local neighborhoods, and (b) neighboring voxels with distinct kinetics are less likely to be clustered together. Using realistic simulated (11)C-raclopride dynamic PET data, the quantitative performance of the proposed method was investigated. Parametric distribution-volume (DV) and DV ratio (DVR) images were estimated from dynamic image reconstructions using (a) maximum-likelihood expectation maximization (MLEM), and MAP reconstructions using (b) the quadratic prior (QP-MAP), (c) the Green prior (GP-MAP) and (d, e) two proposed cluster-based priors (CP-U-MAP and CP-W-MAP), followed by graphical modeling, and were qualitatively and quantitatively compared for 11 ROIs. Overall, the proposed dynamic PET reconstruction methodology resulted in substantial visual as well as quantitative accuracy improvements (in terms of noise versus bias performance) for parametric DV and
Dynamic three-dimensional reconstruction of the heart by transesophageal echocardiography
Veiga Maria de Fátima
1999-01-01
Full Text Available OBJECTIVE: To evaluate echocardiography accuracy in performing and obtaining images for dynamical three-dimensional (3D reconstruction. METHODS: Three-dimensional (3D image reconstruction was obtained in 20 consecutive patients who underwent transesophageal echocardiography. A multiplanar 5 MHz transducer was used for 3D reconstruction. RESULTS: Twenty patients were studied consecutively. The following cardiac diseases were present: valvar prostheses-6 (2 mitral, 2 aortic and 2 mitral and aortic; mitral valve prolapse- 3; mitral and aortic disease - 2; aortic valve disease- 5; congenital heart disease- 3 (2 atrial septal defect- ASD - and 1 transposition of the great arteries -TGA; arteriovenous fistula- 1. In 7 patients, color Doppler was also obtained and used for 3D flow reconstruction. Twenty five cardiac structures were acquired and 60 reconstructions generated (28 of mitral valves, 14 of aortic valves, 4 of mitral prostheses, 7 of aortic prostheses and 7 of the ASD. Fifty five of 60 (91.6% reconstructions were considered of good quality by 2 independent observers. The 11 reconstructed mitral valves/prostheses and the 2 reconstructed ASDs provided more anatomical information than two dimensional echocardiography (2DE alone. CONCLUSION: 3D echocardiography using a transesophageal transducer is a feasible technique, which improves detection of anatomical details of cardiac structures, particularly of the mitral valve and atrial septum.
The Dynamics and Driving Force of Farmland Ecosystem Productivity
ZHONG Liang-ping; SHAO Ming-an; LI Yu-shan
2005-01-01
Based on the experimental data of crop yield, soil water and fertility of a dryland farming ecosystem in northwest China, a systematic analysis is carried out to study the dynamics of dryland farming ecosystem productivity and its limiting factors. This paper also discusses which of the two limiting factors, i.e., soil water or fertility, is the primary factor and their dynamics. The result shows that fertility is the primary limiting factor when the productivity is rather low. As chemical fertilizer input increases and the productivity promotes, water gradually becomes the primary limiting factor. Chemical fertilizers and plastic film mulching are the two major driving forces that determine the crop productivity and its stability in these areas.
Kubík, M.; Macháček, O.; Strecker, Z.; Roupec, J.; Mazůrek, I.
2017-04-01
The paper deals with design, simulation and experimental testing of a magnetorheological (MR) valve with short response time. The short response time is achieved by a suitable design of an active zone in combination with use of a ferrite material for magnetic circuit. The magneto-static model and the simplified hydraulic model of the MR valve are examined and experimentally verified. The development the MR valve achieves an average response time 4.1 ms and the maximum dynamic force range of eight.
Research on the Earth system multi-body force system dynamical model
CHEN; Xiaofei; BI; Siwen; WU; Fei; DONG; Qianlin
2006-01-01
This paper presents an overview of the binding force and freedom force of Earth system, and describes force moment to point and line and force system in the Earth system. It introduces the force theory of the Earth system multi-body force system from special or equivalent force system of Earth system mechanics, general force and no-power force of Earth system. Finally it describes the force and moment of nodes of Earth system and provides basic model for the research of the Earth system multi-body dynamics.
Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St
2004-07-01
Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)
Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St
2004-07-01
Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)
Mulligan, Jeffrey A; Bordeleau, François; Reinhart-King, Cynthia A; Adie, Steven G
2017-02-01
Traction force microscopy (TFM) is a method used to study the forces exerted by cells as they sense and interact with their environment. Cell forces play a role in processes that take place over a wide range of spatiotemporal scales, and so it is desirable that TFM makes use of imaging modalities that can effectively capture the dynamics associated with these processes. To date, confocal microscopy has been the imaging modality of choice to perform TFM in 3D settings, although multiple factors limit its spatiotemporal coverage. We propose traction force optical coherence microscopy (TF-OCM) as a novel technique that may offer enhanced spatial coverage and temporal sampling compared to current methods used for volumetric TFM studies. Reconstructed volumetric OCM data sets were used to compute time-lapse extracellular matrix deformations resulting from cell forces in 3D culture. These matrix deformations revealed clear differences that can be attributed to the dynamic forces exerted by normal versus contractility-inhibited NIH-3T3 fibroblasts embedded within 3D Matrigel matrices. Our results are the first step toward the realization of 3D TF-OCM, and they highlight the potential use of OCM as a platform for advancing cell mechanics research.
Gupta, Amar Nath; Vincent, Abhilash; Neupane, Krishna; Yu, Hao; Wang, Feng; Woodside, Michael T.
2011-08-01
Free-energy-landscape formalisms provide the fundamental conceptual framework for physical descriptions of how proteins and nucleic acids fold into specific three-dimensional structures. Although folding landscapes are difficult to measure experimentally, recent theoretical work by Hummer and Szabo has shown that landscape profiles can be reconstructed from non-equilibrium single-molecule force spectroscopy measurements using an extension of the Jarzynski equality. This method has been applied to simulations and experiments but never validated experimentally. We tested it using force-extension measurements on DNA hairpins with distinct, sequence-dependent folding landscapes. Quantitative agreement was found between the landscape profiles obtained from the non-equilibrium reconstruction and those from equilibrium probability distributions. We also tested the method on a riboswitch aptamer with three partially folded intermediate states, successfully reconstructing the landscape but finding some states difficult to resolve owing to low occupancy or overlap of the potential wells. These measurements validate the landscape-reconstruction method and provide a new test of non-equilibrium work relations.
N. Keshta
2008-06-01
Full Text Available The mining of oil sands in northern Alberta, Canada, involves the stripping and salvage of surface soil layers to gain access to the oil mines. The oil sands industry has committed to reconstructing these disturbed watersheds to replicate the performance of the natural soil horizons and to reproduce the various functions of natural watersheds. The selection of the texture and thickness of the reconstructed soil cover layers is based primarily on the concept that all covers must have sufficient moisture for vegetation over the growing season. Assessment of the hydrological performance of the reconstructed soil covers is crucial to select the best cover alternative. A generic system dynamics watershed (GSDW model is developed, based on the existing site-specific SDW model, and applied to five reconstructed watersheds located in the Athabasca mining basin, Alberta, Canada; and one natural watershed (boreal forest located in Saskatchewan, Canada; to simulate the various hydrological processes; in particular, soil moisture patterns and actual evapotranspiration, in reconstructed and natural watersheds. The model is capable of capturing the dynamics of the water balance components in both reconstructed and natural watersheds. The developed GSDW model provides a vital tool, which enables the investigation of the utility of different soil cover alternative designs and evaluation of their performance. Moreover, the model can be used to conduct short- and long- term predictions under different climate scenarios.
Shapiro, A I; Rozanov, E; Schoell, M; Haberreiter, M; Shapiro, A V; Nyeki, S
2011-01-01
The variable Sun is the most likely candidate for natural forcing of past climate change on time scales of 50 to 1000 years. Evidence for this understanding is that the terrestrial climate correlates positively with solar activity. During the past 10,000 years, the Sun has experienced substantial variations in activity and there have been numerous attempts to reconstruct solar irradiance. While there is general agreement on how solar forcing varied during the last several hundred years --- all reconstructions are proportional to the solar activity --- there is scientific controversy on the magnitude of solar forcing. We present a reconstruction of the Total and Spectral Solar Irradiance covering 130 nm--10 $\\mu$m from 1610 to the present with annual resolution and for the Holocene with 22-year resolution. We assume that the minimum state of the quiet Sun in time corresponds to the observed quietest area on the present Sun. Then we use available long-term proxies of the solar activity, which are $^{10}$Be isot...
HYPR: constrained reconstruction for enhanced SNR in dynamic medical imaging
Mistretta, C.; Wieben, O.; Velikina, J.; Wu, Y.; Johnson, K.; Korosec, F.; Unal, O.; Chen, G.; Fain, S.; Christian, B.; Nalcioglu, O.; Kruger, R. A.; Block, W.; Samsonov, A.; Speidel, M.; Van Lysel, M.; Rowley, H.; Supanich, M.; Turski, P.; Wu, Yan; Holmes, J.; Kecskemeti, S.; Moran, C.; O'Halloran, R.; Keith, L.; Alexander, A.; Brodsky, E.; Lee, J. E.; Hall, T.; Zagzebski, J.
2008-03-01
During the last eight years our group has developed radial acquisitions with angular undersampling factors of several hundred that accelerate MRI in selected applications. As with all previous acceleration techniques, SNR typically falls as least as fast as the inverse square root of the undersampling factor. This limits the SNR available to support the small voxels that these methods can image over short time intervals in applications like time-resolved contrast-enhanced MR angiography (CE-MRA). Instead of processing each time interval independently, we have developed constrained reconstruction methods that exploit the significant correlation between temporal sampling points. A broad class of methods, termed HighlY Constrained Back PRojection (HYPR), generalizes this concept to other modalities and sampling dimensions.
Tremblay, Benoit; Vincent, Alain
2017-01-01
We present a generalization of the resistive minimum-energy fit (MEF-R: Tremblay and Vincent, Solar Phys. 290, 437, 2015) for non-force-free (NFF) magnetic fields. In MEF-R, an extremum principle is used to infer two-dimensional maps of plasma motions [boldsymbol{v}(x,y)] and magnetic eddy diffusivity [η _{eddy}(x,y)] at the photosphere. These reconstructions could be used as boundary conditions in data-driven simulations or in data assimilation. The algorithm is validated using the analytical model of a resistive expanding spheromak by Rakowski, Laming, and Lyutikov ( Astrophys. J. 730, 30, 2011). We study the flaring Active Region AR 12158 using a series of magnetograms and Dopplergrams provided by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). The results are discussed for a non-force-free magnetic-field reconstruction [boldsymbol{B}_{NFF}] (Hu and Dasgupta in Solar Phys. 247, 87, 2008). We found that the vertical plasma velocities [vz(x,y)] inferred using MEF-R are very similar to the observed Doppler velocities [vr(x,y)]. Finally, we study the potential spatial correlation between microturbulent velocities and significant values of η_{eddy}(x,y).
Adaptive Pulsed Laser Line Extraction for Terrain Reconstruction using a Dynamic Vision Sensor
Christian eBrandli
2014-01-01
Full Text Available Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor’s ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500Hz were achieved using a line laser of 3mW at a distance of 45cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2mm.
Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies
Petibon, Yoann; Rakvongthai, Yothin; El Fakhri, Georges; Ouyang, Jinsong
2017-05-01
Dynamic PET myocardial perfusion imaging (MPI) used in conjunction with tracer kinetic modeling enables the quantification of absolute myocardial blood flow (MBF). However, MBF maps computed using the traditional indirect method (i.e. post-reconstruction voxel-wise fitting of kinetic model to PET time-activity-curves-TACs) suffer from poor signal-to-noise ratio (SNR). Direct reconstruction of kinetic parameters from raw PET projection data has been shown to offer parametric images with higher SNR compared to the indirect method. The aim of this study was to extend and evaluate the performance of a direct parametric reconstruction method using in vivo dynamic PET MPI data for the purpose of quantifying MBF. Dynamic PET MPI studies were performed on two healthy pigs using a Siemens Biograph mMR scanner. List-mode PET data for each animal were acquired following a bolus injection of ~7-8 mCi of 18F-flurpiridaz, a myocardial perfusion agent. Fully-3D dynamic PET sinograms were obtained by sorting the coincidence events into 16 temporal frames covering ~5 min after radiotracer administration. Additionally, eight independent noise realizations of both scans—each containing 1/8th of the total number of events—were generated from the original list-mode data. Dynamic sinograms were then used to compute parametric maps using the conventional indirect method and the proposed direct method. For both methods, a one-tissue compartment model accounting for spillover from the left and right ventricle blood-pools was used to describe the kinetics of 18F-flurpiridaz. An image-derived arterial input function obtained from a TAC taken in the left ventricle cavity was used for tracer kinetic analysis. For the indirect method, frame-by-frame images were estimated using two fully-3D reconstruction techniques: the standard ordered subset expectation maximization (OSEM) reconstruction algorithm on one side, and the one-step late maximum a posteriori (OSL-MAP) algorithm on the other
Niu, Xiaofeng; Yang, Yongyi; King, Michael A.
2012-09-01
Temporal regularization plays a critical role in cardiac gated dynamic SPECT reconstruction, of which the goal is to obtain an image sequence from a single acquisition which simultaneously shows both cardiac motion and tracer distribution change over the course of imaging (termed 5D). In our recent work, we explored two different approaches for temporal regularization of the dynamic activities in gated dynamic reconstruction without the use of fast camera rotation: one is the dynamic EM (dEM) approach which is imposed on the temporal trend of the time activity of each voxel, and the other is a B-spline modeling approach in which the time activity is regulated by a set of B-spline basis functions. In this work, we extend the B-spline approach to fully 5D reconstruction and conduct a thorough quantitative comparison with the dEM approach. In the evaluation of the reconstruction results, we apply a number of quantitative measures on two major aspects of the reconstructed dynamic images: (1) the accuracy of the reconstructed activity distribution in the myocardium and (2) the ability of the reconstructed dynamic activities to differentiate perfusion defects from normal myocardial wall uptake. These measures include the mean square error (MSE), bias-variance analysis, accuracy of time-activity curves (TAC), contrast-to-noise ratio of a defect, composite kinetic map of the left ventricle wall and perfusion defect detectability with channelized Hotelling observer. In experiments, we simulated cardiac gated imaging with the NURBS-based cardiac-torso phantom and Tc99m-Teboroxime as the imaging agent, where acquisition with the equivalent of only three full camera rotations was used during the imaging period. The results show that both dEM and B-spline 5D could achieve similar overall accuracy in the myocardium in terms of MSE. However, compared to dEM 5D, the B-spline approach could achieve a more accurate reconstruction of the voxel TACs; in particular, B-spline 5D could
Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction.
Zhao, Li; Fielden, Samuel W; Feng, Xue; Wintermark, Max; Mugler, John P; Meyer, Craig H
2015-11-01
Dynamic arterial spin labeling (ASL) MRI measures the perfusion bolus at multiple observation times and yields accurate estimates of cerebral blood flow in the presence of variations in arterial transit time. ASL has intrinsically low signal-to-noise ratio (SNR) and is sensitive to motion, so that extensive signal averaging is typically required, leading to long scan times for dynamic ASL. The goal of this study was to develop an accelerated dynamic ASL method with improved SNR and robustness to motion using a model-based image reconstruction that exploits the inherent sparsity of dynamic ASL data. The first component of this method is a single-shot 3D turbo spin echo spiral pulse sequence accelerated using a combination of parallel imaging and compressed sensing. This pulse sequence was then incorporated into a dynamic pseudo continuous ASL acquisition acquired at multiple observation times, and the resulting images were jointly reconstructed enforcing a model of potential perfusion time courses. Performance of the technique was verified using a numerical phantom and it was validated on normal volunteers on a 3-Tesla scanner. In simulation, a spatial sparsity constraint improved SNR and reduced estimation errors. Combined with a model-based sparsity constraint, the proposed method further improved SNR, reduced estimation error and suppressed motion artifacts. Experimentally, the proposed method resulted in significant improvements, with scan times as short as 20s per time point. These results suggest that the model-based image reconstruction enables rapid dynamic ASL with improved accuracy and robustness.
Vertically polarizing undulator with dynamic compensation of magnetic forces
Strelnikov, N.; Vasserman, I.; Xu, J.; Jensen, D.; Schmidt, O.; Trakhtenberg, E.; Suthar, K.; Moog, E. R.; Pile, G.; Gluskin, E.
2017-01-01
As part of the R&D program of the LCLS-II project, a novel 3.4-meter-long undulator prototype with horizontal magnetic field and dynamic force compensation has recently been developed at the Advanced Photon Source (APS). Previous steps in this development were the shorter 0.8-meter-long and 2.8-meter-long prototypes. Extensive mechanical and magnetic testing were carried out for each prototype, and each prototype was magnetically tuned using magnetic shims. The resulting performance of the 3.4-meter-long undulator prototype meets all requirements for the LCLS-II insertion device, including limits on the field integrals, phase errors, higher-order magnetic moments, and electron-beam trajectory for all operational gaps, as well as the reproducibility and accuracy of the gap settings.
Molecular dynamics simulation of amplitude modulation atomic force microscopy.
Hu, Xiaoli; Egberts, Philip; Dong, Yalin; Martini, Ashlie
2015-06-12
Molecular dynamics (MD) simulations were used to model amplitude modulation atomic force microscopy (AM-AFM). In this novel simulation, the model AFM tip responds to both tip-substrate interactions and to a sinusoidal excitation signal. The amplitude and phase shift of the tip oscillation observed in the simulation and their variation with tip-sample distance were found to be consistent with previously reported trends from experiments and theory. These simulation results were also fit to an expression enabling estimation of the energy dissipation, which was found to be smaller than that in a corresponding experiment. The difference was analyzed in terms of the effects of tip size and substrate thickness. Development of this model is the first step toward using MD to gain insight into the atomic-scale phenomena that occur during an AM-AFM measurement.
Vertically Polarizing Undulator with Dynamic Compensation of Magnetic Forces
Strelnikov, N.; Vasserman, I.; Xu, J.; Jensen, D.; Schmidt, O.; Trakhtenberg, E.; Suthar, K.; Moog, E. R.; Pile, G.; Gluskin, E.
2017-01-20
As part of the R&D program of the LCLS-II project, a novel 3.4-meter-long undulator prototype with horizontal magnetic field and dynamic force compensation has recently been developed at the Advanced Photon Source (APS). Previous steps in this development were the shorter 0.8-meter-long and 2.8-meter-long prototypes. Extensive mechanical and magnetic testing was carried out for each prototype, and each prototype was magnetically tuned using magnetic shims. The resulting performance of the 3.4-meter-long undulator prototype meets all requirements for the LCLS-II insertion device, including limits on the field integrals, phase errors, higher-order magnetic moments, and electron-beam trajectory for all operational gaps, as well as the reproducibility and accuracy of the gap settings.
Yu-Shu Lai
Full Text Available Surgical reconstruction is generally recommended for posterior cruciate ligament (PCL injuries; however, the use of grafts is still a controversial problem. In this study, a three-dimensional finite element model of the human tibiofemoral joint with articular cartilage layers, menisci, and four main ligaments was constructed to investigate the effects of graft strengths on knee kinematics and in-situ forces of PCL grafts. Nine different graft strengths with stiffness ranging from 0% (PCL rupture to 200%, in increments of 25%, of an intact PCL's strength were used to simulate the PCL reconstruction. A 100 N posterior tibial drawer load was applied to the knee joint at full extension. Results revealed that the maximum posterior translation of the PCL rupture model (0% stiffness was 6.77 mm in the medial compartment, which resulted in tibial internal rotation of about 3.01°. After PCL reconstruction with any graft strength, the laxity of the medial tibial compartment was noticeably improved. Tibial translation and rotation were similar to the intact knee after PCL reconstruction with graft strengths ranging from 75% to 125% of an intact PCL. When the graft's strength surpassed 150%, the medial tibia moved forward and external tibial rotation greatly increased. The in-situ forces generated in the PCL grafts ranged from 13.15 N to 75.82 N, depending on the stiffness. In conclusion, the strength of PCL grafts have has a noticeable effect on anterior-posterior translation of the medial tibial compartment and its in-situ force. Similar kinematic response may happen in the models when the PCL graft's strength lies between 75% and 125% of an intact PCL.
eVolv2k: A new ice core-based volcanic forcing reconstruction for the past 2000 years
Toohey, Matthew; Sigl, Michael
2016-04-01
Radiative forcing resulting from stratospheric aerosols produced by major volcanic eruptions is a dominant driver of climate variability in the Earth's past. The ability of climate model simulations to accurately recreate past climate is tied directly to the accuracy of the volcanic forcing timeseries used in the simulations. We present here a new volcanic forcing reconstruction, based on newly updated ice core composites from Antarctica and Greenland. Ice core records are translated into stratospheric aerosol properties for use in climate models through the Easy Volcanic Aerosol (EVA) module, which provides an analytic representation of volcanic stratospheric aerosol forcing based on available observations and aerosol model results, prescribing the aerosol's radiative properties and primary modes of spatial and temporal variability. The evolv2k volcanic forcing dataset covers the past 2000 years, and has been provided for use in the Paleo-Modeling Intercomparison Project (PMIP), and VolMIP experiments within CMIP6. Here, we describe the construction of the eVolv2k data set, compare with prior forcing sets, and show initial simulation results.
High-Dynamic-Range CT Reconstruction Based on Varying Tube-Voltage Imaging
2015-01-01
For complicated structural components characterized by wide X-ray attenuation ranges, the conventional computed tomography (CT) imaging using a single tube-voltage at each rotation angle cannot obtain all structural information. This limitation results in a shortage of CT information, because the effective thickness of the components along the direction of X-ray penetration exceeds the limitation of the dynamic range of the X-ray imaging system. To address this problem, high-dynamic-range CT (HDR-CT) reconstruction is proposed. For this new method, the tube’s voltage is adjusted several times to match the corresponding effective thickness about the local information from an object. Then, HDR fusion and HDR-CT are applied to obtain the full reconstruction information. An accompanying experiment demonstrates that this new technology can extend the dynamic range of X-ray imaging systems and provide the complete internal structures of complicated structural components. PMID:26544723
High-Dynamic-Range CT Reconstruction Based on Varying Tube-Voltage Imaging.
Ping Chen
Full Text Available For complicated structural components characterized by wide X-ray attenuation ranges, the conventional computed tomography (CT imaging using a single tube-voltage at each rotation angle cannot obtain all structural information. This limitation results in a shortage of CT information, because the effective thickness of the components along the direction of X-ray penetration exceeds the limitation of the dynamic range of the X-ray imaging system. To address this problem, high-dynamic-range CT (HDR-CT reconstruction is proposed. For this new method, the tube's voltage is adjusted several times to match the corresponding effective thickness about the local information from an object. Then, HDR fusion and HDR-CT are applied to obtain the full reconstruction information. An accompanying experiment demonstrates that this new technology can extend the dynamic range of X-ray imaging systems and provide the complete internal structures of complicated structural components.
Dynamic Force Identification for Beamlike Structures Using an Improved Dynamic Stiffness Method
S.L. Chen
1996-01-01
Full Text Available In this study a procedure of dynamic force identification for beamlike structures is developed based on an improved dynamic stiffness method. In this procedure, the entire structure is first divided into substructures according to the excitation locations and the measured response sites. Each substructure is then represented by an equivalent element. The resulting model only retains the degree of freedom (DOF associated with the excitations and the measured responses and the DOF corresponding to the boundaries of the structures. Because the technique partly bypasses the processes of modal parameter extraction, global matrix inversion, and model reduction, it can eliminate many of the approximations and errors that may be introduced during these processes. The principle of the method is described in detail and its efficiency is demonstrated via numerical simulations of three different structures. The sensitivity of the estimated force to random noise is discussed and the limitation of the technique is pointed out.
Blending geological observations and convection models to reconstruct mantle dynamics
Coltice, Nicolas; Bocher, Marie; Fournier, Alexandre; Tackley, Paul
2015-04-01
Knowledge of the state of the Earth mantle and its temporal evolution is fundamental to a variety of disciplines in Earth Sciences, from the internal dynamics to its many expressions in the geological record (postglacial rebound, sea level change, ore deposit, tectonics or geomagnetic reversals). Mantle convection theory is the centerpiece to unravel the present and past state of the mantle. For the past 40 years considerable efforts have been made to improve the quality of numerical models of mantle convection. However, they are still sparsely used to estimate the convective history of the solid Earth, in comparison to ocean or atmospheric models for weather and climate prediction. The main shortcoming is their inability to successfully produce Earth-like seafloor spreading and continental drift self-consistently. Recent convection models have begun to successfully predict these processes. Such breakthrough opens the opportunity to retrieve the recent dynamics of the Earth's mantle by blending convection models together with advanced geological datasets. A proof of concept will be presented, consisting in a synthetic test based on a sequential data assimilation methodology.
Davtyan, Aram; Dama, James F.; Voth, Gregory A. [Department of Chemistry, The James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Andersen, Hans C., E-mail: hca@stanford.edu [Department of Chemistry, Stanford University, Stanford, California 94305 (United States)
2015-04-21
Coarse-grained (CG) models of molecular systems, with fewer mechanical degrees of freedom than an all-atom model, are used extensively in chemical physics. It is generally accepted that a coarse-grained model that accurately describes equilibrium structural properties (as a result of having a well constructed CG potential energy function) does not necessarily exhibit appropriate dynamical behavior when simulated using conservative Hamiltonian dynamics for the CG degrees of freedom on the CG potential energy surface. Attempts to develop accurate CG dynamic models usually focus on replacing Hamiltonian motion by stochastic but Markovian dynamics on that surface, such as Langevin or Brownian dynamics. However, depending on the nature of the system and the extent of the coarse-graining, a Markovian dynamics for the CG degrees of freedom may not be appropriate. In this paper, we consider the problem of constructing dynamic CG models within the context of the Multi-Scale Coarse-graining (MS-CG) method of Voth and coworkers. We propose a method of converting a MS-CG model into a dynamic CG model by adding degrees of freedom to it in the form of a small number of fictitious particles that interact with the CG degrees of freedom in simple ways and that are subject to Langevin forces. The dynamic models are members of a class of nonlinear systems interacting with special heat baths that were studied by Zwanzig [J. Stat. Phys. 9, 215 (1973)]. The properties of the fictitious particles can be inferred from analysis of the dynamics of all-atom simulations of the system of interest. This is analogous to the fact that the MS-CG method generates the CG potential from analysis of equilibrium structures observed in all-atom simulation data. The dynamic models generate a non-Markovian dynamics for the CG degrees of freedom, but they can be easily simulated using standard molecular dynamics programs. We present tests of this method on a series of simple examples that demonstrate that
Reconstructing source-sink dynamics in a population with a pelagic dispersal phase.
Kun Chen
Full Text Available For many organisms, the reconstruction of source-sink dynamics is hampered by limited knowledge of the spatial assemblage of either the source or sink components or lack of information on the strength of the linkage for any source-sink pair. In the case of marine species with a pelagic dispersal phase, these problems may be mitigated through the use of particle drift simulations based on an ocean circulation model. However, when simulated particle trajectories do not intersect sampling sites, the corroboration of model drift simulations with field data is hampered. Here, we apply a new statistical approach for reconstructing source-sink dynamics that overcomes the aforementioned problems. Our research is motivated by the need for understanding observed changes in jellyfish distributions in the eastern Bering Sea since 1990. By contrasting the source-sink dynamics reconstructed with data from the pre-1990 period with that from the post-1990 period, it appears that changes in jellyfish distribution resulted from the combined effects of higher jellyfish productivity and longer dispersal of jellyfish resulting from a shift in the ocean circulation starting in 1991. A sensitivity analysis suggests that the source-sink reconstruction is robust to typical systematic and random errors in the ocean circulation model driving the particle drift simulations. The jellyfish analysis illustrates that new insights can be gained by studying structural changes in source-sink dynamics. The proposed approach is applicable for the spatial source-sink reconstruction of other species and even abiotic processes, such as sediment transport.
Galabov, Vasko
2013-01-01
The present article is a study of the applicability of different sources of meteorological forcing for the coastal wave and storm surge models, which provide the operational marine forecasts for the coastal early warning systems (EWS) and are used for reconstructions of historical storms. The reconstruction of historical storms is one of the approaches to the natural coastal hazard vulnerability assessment. We evaluate the importance of the input meteorological information for the mentioned types of coastal models. For two well documented historical storms, that caused significant damages along the Bulgarian coast we simulate the significant wave heights and sea level change, using SWAN wave model and a storm surge model. The wind and mean sea level pressure fields, which are used in the present study, are extracted from the ERA Interim reanalysis of the European Center for Medium range Forecasts (ECMWF) and from the output of the high resolution limited area numerical weather prediction model ALADIN. The ove...
Chen, Maomao; Zhang, Jiulou; Cai, Chuangjian; Gao, Yang; Luo, Jianwen
2016-06-01
Dynamic fluorescence molecular tomography (DFMT) is a valuable method to evaluate the metabolic process of contrast agents in different organs in vivo, and direct reconstruction methods can improve the temporal resolution of DFMT. However, challenges still remain due to the large time consumption of the direct reconstruction methods. An acceleration strategy using graphics processing units (GPU) is presented. The procedure of conjugate gradient optimization in the direct reconstruction method is programmed using the compute unified device architecture and then accelerated on GPU. Numerical simulations and in vivo experiments are performed to validate the feasibility of the strategy. The results demonstrate that, compared with the traditional method, the proposed strategy can reduce the time consumption by ˜90% without a degradation of quality.
Lacustrine 87Sr/86Sr as a tracer to reconstruct Milankovitch forcing of the Eocene hydrologic cycle
Baddouh, M'bark; Meyers, Stephen R.; Carroll, Alan R.; Beard, Brian L.; Johnson, Clark M.
2016-08-01
The Green River Formation (GRF) provides one of the premier paleoclimate archives of the Early Eocene Climatic Optimum (∼50 Ma), representing the apex of the early Cenozoic greenhouse climate. Rhythmic lake-level variability expressed in the GRF has inspired numerous hypotheses for the behavior of the Eocene hydrologic cycle, including its linkage to astronomical forcing, solar variability, and the El Niño Southern Oscillation (ENSO). However, the lack of sufficient proxy data to document atmospheric water-mass transport and the geographic pattern of evaporation/precipitation/runoff has made it difficult to discriminate between different models for astronomical forcing. Variable 87Sr/86Sr ratios of bedrock that encompass the GRF provide an opportunity to reconstruct the spatial expression of the Eocene hydrologic cycle and its linkage to lake level. Here Sr isotope data from the Wilkins Peak Member, a rhythmic succession that has been demonstrated to record Milankovitch forcing of lake levels, indicate that high lake levels reflect an increased proportion of runoff from less radiogenic rocks west of the basin, eliminating a number of the existing astronomical-forcing hypotheses. The 87Sr/86Sr variability is consistent with a change in mean ENSO state, which is predicted by climate models to be linked to orbital-insolation. Thus, the 87Sr/86Sr data reveal a coupling of high frequency (ENSO) and low frequency (astronomical) climate variability, and also predict the existence of sizable astronomically-forced alpine snowpack during the last greenhouse climate. More broadly, this study demonstrates the utility of 87Sr/86Sr as a powerful tool for reconstructing the deep-time hydrologic cycle.
Reconstructing the intermittent dynamics of the torque in wind turbines
Lind, Pedro G.; Wächter, Matthias; Peinke, Joachim
2014-06-01
We apply a framework introduced in the late nineties to analyze load measurements in off-shore wind energy converters (WEC). The framework is borrowed from statistical physics and properly adapted to the analysis of multivariate data comprising wind velocity, power production and torque measurements, taken at one single WEC. In particular, we assume that wind statistics drives the fluctuations of the torque produced in the wind turbine and show how to extract an evolution equation of the Langevin type for the torque driven by the wind velocity. It is known that the intermittent nature of the atmosphere, i.e. of the wind field, is transferred to the power production of a wind energy converter and consequently to the shaft torque. We show that the derived stochastic differential equation quantifies the dynamical coupling of the measured fluctuating properties as well as it reproduces the intermittency observed in the data. Finally, we discuss our approach in the light of turbine monitoring, a particular important issue in off-shore wind farms.
Reconstructing the intermittent dynamics of the torque in wind turbines
Lind, Pedro G; Peinke, Joachim
2014-01-01
We apply a framework introduced in the late nineties to analyze load measurements in off-shore wind energy converters (WEC). The framework is borrowed from statistical physics and properly adapted to the analysis of multivariate data comprising wind velocity, power production and torque measurements, taken at one single WEC. In particular, we assume that wind statistics drives the fluctuations of the torque produced in the wind turbine and show how to extract an evolution equation of the Langevin type for the torque driven by the wind velocity. It is known that the intermittent nature of the atmosphere, i.e. of the wind field, is transferred to the power production of a wind energy converter and consequently to the shaft torque. We show that the derived stochastic differential equation quantifies the dynamical coupling of the measured fluctuating properties as well as it reproduces the intermittency observed in the data. Finally, we discuss our approach in the light of turbine monitoring, a particular importa...
Shapiro, A. I.; Schmutz, W.; Rozanov, E.; Schoell, M.; Haberreiter, M.; Shapiro, A. V.; Nyeki, S.
2011-05-01
Context. The variable Sun is the most likely candidate for the natural forcing of past climate changes on time scales of 50 to 1000 years. Evidence for this understanding is that the terrestrial climate correlates positively with the solar activity. During the past 10 000 years, the Sun has experienced the substantial variations in activity and there have been numerous attempts to reconstruct solar irradiance. While there is general agreement on how solar forcing varied during the last several hundred years - all reconstructions are proportional to the solar activity - there is scientific controversy on the magnitude of solar forcing. Aims: We present a reconstruction of the total and spectral solar irradiance covering 130 nm-10 μm from 1610 to the present with an annual resolution and for the Holocene with a 22-year resolution. Methods: We assume that the minimum state of the quiet Sun in time corresponds to the observed quietest area on the present Sun. Then we use available long-term proxies of the solar activity, which are 10Be isotope concentrations in ice cores and 22-year smoothed neutron monitor data, to interpolate between the present quiet Sun and the minimum state of the quiet Sun. This determines the long-term trend in the solar variability, which is then superposed with the 11-year activity cycle calculated from the sunspot number. The time-dependent solar spectral irradiance from about 7000 BC to the present is then derived using a state-of-the-art radiation code. Results: We derive a total and spectral solar irradiance that was substantially lower during the Maunder minimum than the one observed today. The difference is remarkably larger than other estimations published in the recent literature. The magnitude of the solar UV variability, which indirectly affects the climate, is also found to exceed previous estimates.We discuss in detail the assumptions that lead us to this conclusion. Appendix is only available in electronic form at http://www.aanda.org
Reconstruction of distributed force characteristics in case of non punctual objects impacting beams
Liman A.
2012-07-01
Full Text Available The inverse formulation considered to reconstruct the characteristics of an impact uses in general a technique of minimizing the root mean square error between the measured and the calculated responses. The problem takes like this the form of parametric identification. To perform this in practice, a large number of sensors or an excessive computing time are required. In this work, the characteristics of impact in case of an elastic beam with the impacting object not necessarily punctual are reconstructed. We use first the reciprocity theorem in order to decouple the localization problem from the identification problem. We solve then the localization problem by means of a particle swarm algorithm.
Liu, Xin; Wang, Hongkai; Yan, Zhuangzhi
2016-11-01
Dynamic fluorescence molecular tomography (FMT) plays an important role in drug delivery research. However, the majority of current reconstruction methods focus on solving the stationary FMT problems. If the stationary reconstruction methods are applied to the time-varying fluorescence measurements, the reconstructed results may suffer from a high level of artifacts. In addition, based on the stationary methods, only one tomographic image can be obtained after scanning one circle projection data. As a result, the movement of fluorophore in imaged object may not be detected due to the relative long data acquisition time (typically >1 min). In this paper, we apply extended kalman filter (EKF) technique to solve the non-stationary fluorescence tomography problem. Especially, to improve the EKF reconstruction performance, the generalized inverse of kalman gain is calculated by a second-order iterative method. The numerical simulation, phantom, and in vivo experiments are performed to evaluate the performance of the method. The experimental results indicate that by using the proposed EKF-based second-order iterative (EKF-SOI) method, we cannot only clearly resolve the time-varying distributions of fluorophore within imaged object, but also greatly improve the reconstruction time resolution (~2.5 sec/frame) which makes it possible to detect the movement of fluorophore during the imaging processes.
Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data.
Jiao, Jieqing; Bousse, Alexandre; Thielemans, Kris; Burgos, Ninon; Weston, Philip S J; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Markiewicz, Pawel; Ourselin, Sebastien
2017-01-01
Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [(11)C]raclopride data using the Zubal brain phantom and real clinical [(18)F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.
Solar forcing and atmospheric control of paleoflood dynamics in the Bernese Alps, Switzerland
Schulte, Lothar; Peña, Juan Carlos; Burjachs, Francesc; Carvalho, Filipe; Llorca, Jaime; Julià, Ramon; Lomax, Johanna; Schmidt, Thomas; Rubio, Patricio; Losada, Justino; Veit, Heinz
2014-05-01
A multidisciplinary approach provides data from natural, historical, and instrumental time series, for the study of potential effects of climatic changes on alpine floods outside the known range of extreme events. The research focuses on the densely populated Bernese Alps, which are a true "hot spot" of hydrological risk. For the reconstruction of climate variability and floods, interdecadal-resolution alluvial delta plain records were examined. The multi-proxy approach affords insight into alpine flood dynamics of mid-scale catchments during the last three millennia. Spectral analysis of the geochemical and pollen time series records and climate proxies (δ14C, δ18O isotopes from the Greenland ice, NAO) evidence similar periodicities of 60, 85, 105 and 200 yrs. Thus, the mechanisms of the flood processes are strongly influenced by the North Atlantic dynamics and solar activity. The proxies indicate that cooler climate pulses and transitions from cool to warm climate pulses were an important external driving force of floods. This hypothesis is supported by the reconstructed floods of the Aare and Lütschine rivers from local documentary sources during the last 500 yrs. Flood periods inferred from sedimentary archives (flood layers, geochemical proxies and shifts of river channel) were calibrated by local documentary flood records and compared with the pattern of settlement on flood prone landforms. The generated data series shows also a good correlation with climate proxies, such as the annual temperatures of Europe (Luterbacher et al., 2004), tree ring based summer temperatures of Central Europe (Büntgen et al., 2011) and total solar irradiance according to the model of Steinhilber et al. (2009). With regard to the last two centuries flood magnitude and frequencies (exact dating) as well as driving mechanisms were reconstructed with more precision. Furthermore, a summer flood index of Switzerland (INU) based on damages recorded from 1800 to 2008 AD was performed
Traction force dynamics predict gap formation in activated endothelium.
Valent, Erik T; van Nieuw Amerongen, Geerten P; van Hinsbergh, Victor W M; Hordijk, Peter L
2016-09-10
In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneous distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. Copyright © 2016 Elsevier Inc. All rights reserved.
无
2007-01-01
Based on the 500-hPa geopotential height field series of T106 numerical forecast products, by empirical orthogonal function (EOF) time-space separation, and on the hypotheses of EOF space-models being stable, the EOF time coefficient series were taken as dynamical statistic model variables. The dynamic system reconstruction idea and genetic algorithm were introduced to make the dynamical model parameters optimized, and a nonlinear dynamic statistic model of EOF separating time coefficient series was established. By the model time integral and EOF time-space reconstruction, a medium/long-range forecast of subtropical high was carried out. The results show that the dynamical model forecast and T106 numerical forecast were approximately similar in the short-range forecast (≤5 days), but in the medium/long-range forecast (≥5 days), the forecast results of dynamical model was superior to that of T106 numerical products. A new method and idea were presented for diagnosing and forecasting complicated weathers such as subtropical high, and showed a better application outlook.
Implementation of force distribution analysis for molecular dynamics simulations
Seifert Christian
2011-04-01
Full Text Available Abstract Background The way mechanical stress is distributed inside and propagated by proteins and other biopolymers largely defines their function. Yet, determining the network of interactions propagating internal strain remains a challenge for both, experiment and theory. Based on molecular dynamics simulations, we developed force distribution analysis (FDA, a method that allows visualizing strain propagation in macromolecules. Results To be immediately applicable to a wide range of systems, FDA was implemented as an extension to Gromacs, a commonly used package for molecular simulations. The FDA code comes with an easy-to-use command line interface and can directly be applied to every system built using Gromacs. We provide an additional R-package providing functions for advanced statistical analysis and presentation of the FDA data. Conclusions Using FDA, we were able to explain the origin of mechanical robustness in immunoglobulin domains and silk fibers. By elucidating propagation of internal strain upon ligand binding, we previously also successfully revealed the functionality of a stiff allosteric protein. FDA thus has the potential to be a valuable tool in the investigation and rational design of mechanical properties in proteins and nano-materials.
Sinisa Pajevic
2009-01-01
Full Text Available Cascading activity is commonly found in complex systems with directed interactions such as metabolic networks, neuronal networks, or disease spreading in social networks. Substantial insight into a system's organization can be obtained by reconstructing the underlying functional network architecture from the observed activity cascades. Here we focus on Bayesian approaches and reduce their computational demands by introducing the Iterative Bayesian (IB and Posterior Weighted Averaging (PWA methods. We introduce a special case of PWA, cast in nonparametric form, which we call the normalized count (NC algorithm. NC efficiently reconstructs random and small-world functional network topologies and architectures from subcritical, critical, and supercritical cascading dynamics and yields significant improvements over commonly used correlation methods. With experimental data, NC identified a functional and structural small-world topology and its corresponding traffic in cortical networks with neuronal avalanche dynamics.
Modeling of Dynamic Fluid Forces in Fast Switching Valves
Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen;
2015-01-01
force, but these models are computationally expensive and are not suitable for evaluating large numbers of different operation conditions or even design optimization. In the present paper, an effort is done to describe these fluid forces and their origin. An example of the total opposing fluid force...
A nonlinear correlation function for selecting the delay time in dynamical reconstructions
Aguirre, Luis Antonio
1995-02-01
Numerical results discussed in this paper suggest that a function which detects nonlinear correlations in time series usually indicates shorter correlation times than the linear autocorrelation function which is often used for this purpose. The nonlinear correlation function can also detect changes in the data which cannot be distinguished by the linear counterpart. This affects a number of approaches for the selection of the delay time used in the reconstruction of nonlinear dynamics from a single time series based on time delay coordinates.
Baer, Donald R.
2003-08-20
Every now and then, reading a specific paper stimulates--in my mind at least--a variety of associations and connections that highlight advances that have been made and suggests links between areas that I may not have previously connected. The recent series of papers by McCarty and Bartelt (and co-workers) using low energy electron microscopy (LEEM) to study the dynamics of surface reconstruction of TiO2 , and NiAl sent my thinking in a variety loosely connected directions. Paraphrasing the response of one of my colleagues - the work causes us to think dynamically where we have often thought statically about what happens when surfaces reconstruct. The measurements also highlight the importance of newer techniques to help us visualize and understand phenomena that may have puzzled us for years. The dynamic interactions between surface structure and both the defect structure (and history) of the substrate and the nature of the environment of the specimen highlight an aspect of phenomena that drive surface reconstruction not normally considered and suggests additional and delightful challenges we face in understanding the bulk stability and surface structures of nano-sized objects. Since the physical arrangement of the atoms controls every aspect of the physics and chemistry of a surface or interface, the atomic geometry is a fundamental defining characteristic of a surface. , Details of the structure of a surface, including altered atomic positions, the presence of steps and various types of defects can significantly change the chemistry of a surface and impact processes ranging from the formation of interfaces in electronic components to the efficiency of a catalyst. Because of its importance there has been considerable effort devoted to understanding and predicting surface structures. However, dynamical aspects of surface reconstruction and the significance of material defects in the process have not been part of the standard picture.
SHA Feng-huan; ZHAO Long-mao; YANG Gui-tong
2005-01-01
The dynamic response of a double-walled carbon nanotube embedded in elastic medium subjected to periodic disturbing forces is investigated. Investigation of the dynamic buckling of a double-walled carbon nanotube develops continuum model. The effect of the van der Waals forces between two tubes and the surrounding elastic medium for axial dynamic buckling are considered. The buckling model subjected to periodic disturbing forces and the critical axial strain and the critical frequencies are given. It is found that the critical axial strain of the embedded multi-walled carbon nanotube due to the intertube van der Waals forces is lower than that of an embedded single-walled carbon nanotube. The van der Waals forces and the surrounding elastic medium affect region of dynamic instability. The van der Waals forces increase the critical frequencies of a double-walled carbon nanotube. The effect of the surrounding elastic medium for the critical frequencies is small.
Horacio V. Guzman
2015-02-01
Full Text Available We present a simulation environment, dForce, which can be used for a better understanding of dynamic force microscopy experiments. The simulator presents the cantilever–tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM. It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters relevant in those modes, for example, the instantaneous deflection and tip–surface force, velocity, virial, dissipated energy, sample deformation and peak force as a function of time or distance. The simulator includes a variety of interactions and contact mechanics models to describe AFM experiments including: van der Waals, Hertz, DMT, JKR, bottom effect cone correction, linear viscoelastic forces or the standard linear solid viscoelastic model. We have compared two numerical integration methods to select the one that offers optimal accuracy and speed. The graphical user interface has been designed to facilitate the navigation of non-experts in simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last 18 years.
Guzman, Horacio V; Garcia, Pablo D; Garcia, Ricardo
2015-01-01
We present a simulation environment, dForce, which can be used for a better understanding of dynamic force microscopy experiments. The simulator presents the cantilever-tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM. It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters relevant in those modes, for example, the instantaneous deflection and tip-surface force, velocity, virial, dissipated energy, sample deformation and peak force as a function of time or distance. The simulator includes a variety of interactions and contact mechanics models to describe AFM experiments including: van der Waals, Hertz, DMT, JKR, bottom effect cone correction, linear viscoelastic forces or the standard linear solid viscoelastic model. We have compared two numerical integration methods to select the one that offers optimal accuracy and speed. The graphical user interface has been designed to facilitate the navigation of non-experts in simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last 18 years.
Modeling Robot Dynamic Performance for Endpoint Force Control
1988-08-01
Task Dynamics 55 2.5.1 The Dynamic Workpiece Model 55 2.5.2 Adding Robot Dynamics 56 2.5.3 Adding Actuator Dynamics 56 Tabie I o iiau 6 2.6 Grip...motion control system. Robot dynamics couple with the task dynamics in a very complex way. When the robot makes contact with the environment, the impact...robot flexibility or actuator dynamics. 2.5.2 Adding Robot Dynamics Figure 2.29 shows the robot now represented by two lumped masses, as in the robot
Kyamusugulwa, P.M.; Hilhorst, D.
2015-01-01
One of the challenges of participatory development and reconstruction programs is how and where to engage with power holders. This paper analyses the dynamics of power relations within a community-driven reconstruction program in the Democratic Republic of Congo. It shows that, in some circumstances
Accelerating Steered Molecular Dynamics: Toward Smaller Velocities in Forced Unfolding Simulations.
Mücksch, Christian; Urbassek, Herbert M
2016-03-08
The simulation of forced unfolding experiments, in which proteins are pulled apart, is conventionally done using steered molecular dynamics. We present here a hybrid scheme in which accelerated molecular dynamics is used together with steered molecular dynamics. We show that the new scheme changes the force-distance curves mainly in the region around the force maximum and thus demonstrate that the improved equilibration of the protein-solvent system brought about by using accelerated molecular dynamics makes the simulation more comparable to experimental data.
Rank-sparsity constrained, spectro-temporal reconstruction for retrospectively gated, dynamic CT
Clark, D. P.; Lee, C. L.; Kirsch, D. G.; Badea, C. T.
2015-03-01
Relative to prospective projection gating, retrospective projection gating for dynamic CT applications allows fast imaging times, minimizing the potential for physiological and anatomic variability. Preclinically, fast imaging is attractive due to the rapid clearance of low molecular weight contrast agents and the rapid heart rate of rodents. Clinically, retrospective gating is relevant for intraoperative C-arm CT. More generally, retrospective sampling provides an opportunity for significant reduction in x-ray dose within the framework of compressive sensing theory and sparsity-constrained iterative reconstruction. Even so, CT reconstruction from projections with random temporal sampling is a very poorly conditioned inverse problem, requiring high fidelity regularization to minimize variability in the reconstructed results. Here, we introduce a highly novel data acquisition and regularization strategy for spectro-temporal (5D) CT reconstruction from retrospectively gated projections. We show that by taking advantage of the rank-sparse structure and separability of the temporal and spectral reconstruction sub-problems, being able to solve each sub-problem independently effectively guarantees that we can solve both problems together. In this paper, we show 4D simulation results (2D + 2 energies + time) using the proposed technique and compare them with two competing techniques— spatio-temporal total variation minimization and prior image constrained compressed sensing. We also show in vivo, 5D (3D + 2 energies + time) myocardial injury data acquired in a mouse, reconstructing 20 data sets (10 phases, 2 energies) and performing material decomposition from data acquired over a single rotation (360°, dose: ~60 mGy).
Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1
G. A. Schmidt
2011-09-01
Full Text Available We update the forcings for the PMIP3 experiments for the Last Millennium to include a new assessment of historical land use changes and discuss new suggestions for calibrating solar activity proxies to total solar irradiance.
Forcing of stratospheric chemistry and dynamics during the Dalton Minimum
J. G. Anet
2013-06-01
Full Text Available The response of atmospheric chemistry and climate to volcanic eruptions and a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere-ocean-chemistry general circulation model SOCOL-MPIOM covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i reduced solar ultra-violet (UV irradiance, (ii reduced solar visible and near infrared irradiance, (iii enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric climate in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15% causes global ozone decrease below the stratopause reaching 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2 °C in the midstratosphere and to 6 °C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere allowing more water vapor to enter the tropical stratosphere, which, via HOx reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NOx leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation when all forcing factors are applied during the DM – this effect is especially well visible for NOx/NOy. Thus, this study highlights the non-linear behavior of the coupled chemistry-climate system. Finally, we
Liu, Zhenyu; Tan, Jianrong; Duan, Guifang; Fu, Yun
2015-01-01
Most existing force feedback methods are still difficult to meet the requirements of real-time force calculation in virtual assembly and operation with complex objects. In addition, there is often an assumption that the controlled objects are completely free and the target object is only completely fixed or free, thus, the dynamics of the kinematic chain where the controlled objects are located are neglected during the physical simulation of the product manipulation with force feedback interaction. This paper proposes a physical simulation method of product assembly and operation manipulation based on statistically learned contact force prediction model and the coupling of force feedback and dynamics. In the proposed method, based on hidden Markov model (HMM) and local weighting learning (LWL), contact force prediction model is constructed, which can estimate the contact force in real time during interaction. Based on computational load balance model, the computing resources are dynamically assigned and the dynamics integral step is optimized. In addition, smoothing process is performed to the force feedback on the synchronization points. Consequently, we can solve the coupling and synchronization problems of high-frequency feedback force servo, low-frequency dynamics solver servo and scene rendering servo, and realize highly stable and accurate force feedback in the physical simulation of product assembly and operation manipulation. This research proposes a physical simulation method of product assembly and operation manipulation.
Kobayashi, Kazuya; Liang, Yunfeng; Amano, Ken-ichi; Murata, Sumihiko; Matsuoka, Toshifumi; Takahashi, Satoru; Nishi, Naoya; Sakka, Tetsuo
2016-04-19
With the development of atomic force microscopy (AFM), it is now possible to detect the buried liquid-solid interfacial structure in three dimensions at the atomic scale. One of the model surfaces used for AFM is the muscovite surface because it is atomically flat after cleavage along the basal plane. Although it is considered that force profiles obtained by AFM reflect the interfacial structures (e.g., muscovite surface and water structure), the force profiles are not straightforward because of the lack of a quantitative relationship between the force and the interfacial structure. In the present study, molecular dynamics simulations were performed to investigate the relationship between the muscovite-water interfacial structure and the measured AFM force using a capped carbon nanotube (CNT) AFM tip. We provide divided force profiles, where the force contributions from each water layer at the interface are shown. They reveal that the first hydration layer is dominant in the total force from water even after destruction of the layer. Moreover, the lateral structure of the first hydration layer transcribes the muscovite surface structure. It resembles the experimentally resolved surface structure of muscovite in previous AFM studies. The local density profile of water between the tip and the surface provides further insight into the relationship between the water structure and the detected force structure. The detected force structure reflects the basic features of the atomic structure for the local hydration layers. However, details including the peak-peak distance in the force profile (force-distance curve) differ from those in the density profile (density-distance curve) because of disturbance by the tip.
YU Zheng-yang; ZHENG Shu-sen; CHEN Lei-ting; HE Xiao-qian; WANG Jian-jun
2005-01-01
This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body intemal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before.3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.
Yu, Zheng-yang; Zheng, Shu-sen; Chen, Lei-ting; He, Xiao-qian; Wang, Jian-jun
2005-01-01
This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging. PMID:15973760
Sankaran, Shrikrishnan; Jaatinen, Leena; Brinkmann, Jenny; Zambelli, Tomaso; Vörös, Janos; Jonkheijm, Pascal
2017-04-25
Biomimetic and stimuli-responsive cell-material interfaces are actively being developed to study and control various cell-dynamics phenomena. Since cells naturally reside in the highly dynamic and complex environment of the extracellular matrix, attempts are being made to replicate these conditions in synthetic biomaterials. Supramolecular chemistry, dealing with noncovalent interactions, has recently provided possibilities to incorporate such dynamicity and responsiveness in various types of architectures. Using a cucurbit[8]uril-based host-guest system, we have successfully established a dynamic and electrochemically responsive interface for the display of the integrin-specific ligand, Arg-Gly-Asp (RGD), to promote cell adhesion. Due to the weak nature of the noncovalent forces by which the components at the interface are held together, we expected that cell adhesion would also be weaker in comparison to traditional interfaces where ligands are usually immobilized by covalent linkages. To assess the stability and limitations of our noncovalent interfaces, we performed single-cell force spectroscopy studies using fluid force microscopy. This technique enabled us to measure rupture forces of multiple cells that were allowed to adhere for several hours on individual substrates. We found that the rupture forces of cells adhered to both the noncovalent and covalent interfaces were nearly identical for up to several hours. We have analyzed and elucidated the reasons behind this result as a combination of factors including the weak rupture force between linear Arg-Gly-Asp and integrin, high surface density of the ligand, and increase in effective concentration of the supramolecular components under spread cells. These characteristics enable the construction of highly dynamic biointerfaces without compromising cell-adhesive properties.
The force synergy of human digits in static and dynamic cylindrical grasps.
Li-Chieh Kuo
Full Text Available This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions.
Liu, Fei; Ou-Yang, Zhong-Can
2006-11-01
Recent experiments found that some adhesive receptor-ligand complexes have counterintuitive catch-slip transition behaviors: the mean lifetimes of these complexes first increase (catch) with initial application of a small external force, and then decrease (slip) when the force is beyond some threshold. In this work we suggest that the forced dissociation of these complexes might be a typical rate process with dynamic disorder. The one-dimensional force modulating Agmon-Hopfield model is used to describe the transitions in the single-bond P-selectin glycoprotein ligand 1-P-selectin forced dissociation experiments, which were respectively performed in the constant force [Marshall , Nature (Landon) 423, 190 (2003)] and the ramping force [Evans , Proc. Natl. Acad. Sci. U.S.A 98, 11281 (2004)] modes. We find that, an external force can not only accelerate the bond dissociation, but also modulate the complex from the lower-energy barrier to the higher one; the catch-slip bond transition can arise from a particular energy barrier shape. The agreement between our calculation and the experimental data is satisfactory.
Irvali, Nil; Ninnemann, Ulysses S.; Kleiven, Helga (Kikki) F.; Haflidason, Haflidi; Mjell, Tor L.
2017-04-01
Multidecadal changes in North Atlantic climate (e.g., AMO/AMV) have been attributed to changes in the Atlantic Meridional Overturning Circulation (AMOC) and suggested as a driver of overturning changes. While simulations find an in-phase relationship when AMOC modulates basin-wide climate, AMOC lags when basin scale climate is forced externally (e.g., volcanoes and solar). Unfortunately the observational records are too short to assess these multi-decadal scale dynamics. The surface climate reconstructions, based on annually resolved archives, have excellent time control raising the possibility for precise determination of phasing with other well dated records. Yet, all currently available reconstructions of deep ocean circulation have radiometric based age models; with inherent errors (±30-50 years minimum) preventing the determination of the absolute phasing between deep ocean circulation changes and AMO/AMV. In order to reduce these uncertainties we use stratigraphical appearance, abundance and geochemical composition of tephra grains from a high sedimentation rate site off the Gardar Drift, south of Iceland (GS06-144-09MC-D; 60˚ 19'N, 23˚ 58'W, 2081 m water depth). Identifying tephra layers (and their association) in the core and fingerprinting with known volcanic eruptions on Iceland provides absolute age markers. Combining these age markers with 210Pb and 14C AMS dates within the same core, we have built a new chronology for the core GS06-144-09MC-D. Changes in surface ocean hydrography and climate are further portrayed using planktonic foraminiferal δ18O, assemblage counts, modern analog technique derived sea surface temperatures and Mg/Ca paleothermometry. Records of Iceland Scotland Overflow Water (ISOW) vigor (Sortable Silt mean grain size; Mjell et al., 2016) and benthic carbon isotopes from the same core allow us to determine the absolute phasing between changes in basin-wide climate, deep ocean circulation, and deep water carbon chemistry spanning
Membrane tube formation by motor proteins : forces and dynamics
Koster, Gerbrand
2005-01-01
Membrane tubes are ubiquitous within cells. They have a diameter of approximately 50 nanometers, and are formed when a sufficiently large localized force is exerted on a membrane. Important generators of this force are the motor proteins that can move along cytoskeletal filaments. We studied
Synchronous monitoring of muscle dynamics and muscle force for maximum isometric tetanus
Zakir Hossain, M.; Grill, Wolfgang
2010-03-01
Skeletal muscle is a classic example of a biological soft matter . At both macro and microscopic levels, skeletal muscle is exquisitely oriented for force generation and movement. In addition to the dynamics of contracting and relaxing muscle which can be monitored with ultrasound, variations in the muscle force are also expected to be monitored. To observe such force and sideways expansion variations synchronously for the skeletal muscle a novel detection scheme has been developed. As already introduced for the detection of sideways expansion variations of the muscle, ultrasonic transducers are mounted sideways on opposing positions of the monitored muscle. To detect variations of the muscle force, angle of pull of the monitored muscle has been restricted by the mechanical pull of the sonic force sensor. Under this condition, any variation in the time-of-flight (TOF) of the transmitted ultrasonic signals can be introduced by the variation of the path length between the transducers. The observed variations of the TOF are compared to the signals obtained by ultrasound monitoring for the muscle dynamics. The general behavior of the muscle dynamics and muscle force shows almost an identical concept. Since muscle force also relates the psychological boosting-up effects, the influence of boosting-up on muscle force and muscle dynamics can also be quantified form this study. Length-tension or force-length and force-velocity relationship can also be derived quantitatively with such monitoring.
Chen, Shuhang; Liu, Huafeng; Hu, Zhenghui; Zhang, Heye; Shi, Pengcheng; Chen, Yunmei
2015-07-01
Although of great clinical value, accurate and robust reconstruction and segmentation of dynamic positron emission tomography (PET) images are great challenges due to low spatial resolution and high noise. In this paper, we propose a unified framework that exploits temporal correlations and variations within image sequences based on low-rank and sparse matrix decomposition. Thus, the two separate inverse problems, PET image reconstruction and segmentation, are accomplished in a simultaneous fashion. Considering low signal to noise ratio and piece-wise constant assumption of PET images, we also propose to regularize low-rank and sparse matrices with vectorial total variation norm. The resulting optimization problem is solved by augmented Lagrangian multiplier method with variable splitting. The effectiveness of proposed approach is validated on realistic Monte Carlo simulation datasets and the real patient data.
Reconstruction of an inn fire scene using the Fire Dynamics Simulator (FDS) program.
Chi, Jen-Hao
2013-01-01
An inn fire occurring in the middle of the night usually causes a great deal more injuries and deaths. This article examines the case study of an inn fire accident that resulted in the most serious casualties in Taiwan's history. Data based on the official fire investigation report and NFPA921 regulations are used, and the fire scenes are reconstructed using the latest Fire Dynamics Simulator (FDS) program from NIST. The personnel evacuation time and time variants for various fire hazard factors of reconstructive analysis clarify the reason for such a high number of casualties. It reveals that the FDS program has come to play an essential role in fire investigation. The close comparison between simulation result and the actual fire scene also provides fire prevention engineers, a possible utilization of FDS to examine the effects of improved schemes for fire safety of buildings.
Dynamic SPECT reconstruction from few projections: a sparsity enforced matrix factorization approach
Ding, Qiaoqiao; Zan, Yunlong; Huang, Qiu; Zhang, Xiaoqun
2015-02-01
The reconstruction of dynamic images from few projection data is a challenging problem, especially when noise is present and when the dynamic images are vary fast. In this paper, we propose a variational model, sparsity enforced matrix factorization (SEMF), based on low rank matrix factorization of unknown images and enforced sparsity constraints for representing both coefficients and bases. The proposed model is solved via an alternating iterative scheme for which each subproblem is convex and involves the efficient alternating direction method of multipliers (ADMM). The convergence of the overall alternating scheme for the nonconvex problem relies upon the Kurdyka-Łojasiewicz property, recently studied by Attouch et al (2010 Math. Oper. Res. 35 438) and Attouch et al (2013 Math. Program. 137 91). Finally our proof-of-concept simulation on 2D dynamic images shows the advantage of the proposed method compared to conventional methods.
Role of attractive forces in determining the equilibrium structure and dynamics of simple liquids
Toxværd, Søren
2015-01-01
condensed fluids, even the attractive forces outside the FCS play a role. The changes in the distribution caused by neglecting the attractive forces, lead to a too high pressure. The weak long-range attractions damp the dynamics and the diffusion of the particles in gas-, super critical fluid- and in liquid......Molecular Dynamics simulations of a Lennard-Jones system with different range of attraction show that the attractive forces modify the radial distribution of the particles. For condensed liquids only, the forces within the the first coordination shell (FCS) are important, but for gases and moderate...
Role of attractive forces in determining the equilibrium structure and dynamics of simple liquids
Toxværd, Søren
2015-01-01
Molecular Dynamics simulations of a Lennard-Jones system with different range of attraction show that the attractive forces modify the radial distribution of the particles. For condensed liquids only, the forces within the the first coordination shell (FCS) are important, but for gases and moderate...... condensed fluids, even the attractive forces outside the FCS play a role. The changes in the distribution caused by neglecting the attractive forces, lead to a too high pressure. The weak long-range attractions damp the dynamics and the diffusion of the particles in gas-, super critical fluid- and in liquid...
Reconstruction of the Tambora forcing with global aerosol models : Challenges and limitations
Khodri, Myriam; Zanchettin, Davide; Timmreck, Claudia
2016-04-01
It is now generally recognised that volcanic eruptions have an important effect on climate variability from inter-annual to decadal timescales. For the largest tropical volcanic eruptions of the last millennium, simulated volcanic surface cooling derived from climate models often disagrees with the cooling seen in tree-ring-based proxies. Furthermore, cooling estimates from simulations show large uncertainties. Such disagreement can be related to several sources, including inconsistency of the currently available volcanic forcing datasets, unrealistic modelled volcanic forcing, insufficient representation of relevant climate processes, and different background climate states simulated at the time of the eruption. In particular, for eruptions that occurred before the observational period forcing characteristics related to the eruption magnitude and stratospheric aerosol properties are deduced from indirect evidences. So, while climatically relevant forcing properties for recent volcanic eruptions are relatively well constrained by direct observations, large uncertainties remain regarding processes of aerosol formation and evolution in the stratosphere after large tropical eruptions of the remote past. Several coordinated modelling assessments have been defined to frame future modeling activities and constrain the above-mentioned uncertainties. Among these, the sixth phase of the Coupled Model Intercomparison Project (CMIP6) has endorsed a multi-model assessment focused on the climatic response to strong volcanic eruptions (VolMIP). VolMIP defines a protocol for idealized volcanic-perturbation experiments to improve comparability among climate model results. Identification of a consensual volcanic forcing dataset for the 1815 Tambora eruption is a key step of VolMIP, as it is the largest-magnitude volcanic eruption of the past five centuries and reference for the VolMIP core experiments. Therefore, as a first key step, five current/state-of-the-art global aerosol
Analysis of dynamic foot pressure distribution and ground reaction forces
Ong, F. R.; Wong, T. S.
2005-04-01
The purpose of this study was to assess the relationship between forces derived from in-shoe pressure distribution and GRFs during normal gait. The relationship served to demonstrate the accuracy and reliability of the in-shoe pressure sensor. The in-shoe pressure distribution from Tekscan F-Scan system outputs vertical forces and Centre of Force (COF), while the Kistler force plate gives ground reaction forces (GRFs) in terms of Fz, Fx and Fy, as well as vertical torque, Tz. The two systems were synchronized for pressure and GRFs measurements. Data was collected from four volunteers through three trials for both left and right foot under barefoot condition with the in-shoe sensor. The forces derived from pressure distribution correlated well with the vertical GRFs, and the correlation coefficient (r2) was in the range of 0.93 to 0.99. This is a result of extended calibration, which improves pressure measurement to give better accuracy and reliability. The COF from in-shoe sensor generally matched well with the force plate COP. As for the maximum vertical torque at the forefoot during toe-off, there was no relationship with the pressure distribution. However, the maximum torque was shown to give an indication of the rotational angle of the foot.
Haddad, Seyyed M. H.; Drangova, Maria; White, James A.; Samani, Abbas
2015-03-01
It is clinically vital to devise a technique to evaluate regional functionality of the myocardium in order to determine the extent and intensity of local damage to the cardiac tissue caused by ischemic injuries. Such a technique can potentially enable cardiologists to discriminate between reversible and irreversible ischemic injuries and to devise appropriate revascularization therapy in case of reversible lesions. The technique is founded on the premise that sufficient contraction force generated by the cardiac tissue can be regarded as a direct and reliable criterion for regional analysis of tissue healthy functionality. To this end, a number of imaging techniques have been developed and, to our knowledge, none of them assess regional cardiac functionality based on a straightforward mechanical measure such as local cardiac contraction forces. . As such, a novel imaging technique is being developed on the basis of quantification and visualisation of local myocardial contraction forces. In this technique, cardiac contraction force distribution is attained through solving an inverse problem within an optimization framework which uses iterative forward mechanical modelling of the myocardium. Hence, a forward mechanical model of the myocardium which is computationally efficient, robust, and adaptable to diverse pathophysiological conditions is necessary for this development. As such, this paper is geared towards developing a novel mechanical model of the healthy and pathological myocardium which considers all aspects of the myocardial mechanics including hyperelasticity, anisotropy, and active contraction force. In this investigation, two major parts, including background tissue and reinforcement bars (fibers) have been considered for modelling the myocardium. The model was implemented using finite element (FE) approach and demonstrated very good performance in simulating normal and infarcted left ventricle (LV) contractile function.
Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method
Tao, Yinghua [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Chen, Guang-Hong [Department of Medical Physics and Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Hacker, Timothy A.; Raval, Amish N. [Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Van Lysel, Michael S.; Speidel, Michael A., E-mail: speidel@wisc.edu [Department of Medical Physics and Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)
2014-07-15
Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937
Modeling of Dynamic Fluid Forces in Fast Switching Valves
Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen
2015-01-01
Switching valves experience opposing fluid forces due to movement of the moving member itself, as the surrounding fluid volume must move to accommodate the movement. This movement-induced fluid force may be divided into three main components; the added mass term, the viscous term and the socalled...... is given using an analytically solvable example, showing the explicit form of the force terms and highlighting the significance of the added mass and history term in certain fast switching valve applications. A general approximate model for arbitrary valve geometries is then proposed with offset...
ZHOU Yang,ZHENG Zhe; WU Siliang
2015-01-01
This paper presents a large-range, high-precision and continuously variable delay reconstruction method for wideband and arbitrary bandlimited signal, which combines dynamic index technique with complex-coefficient Lagrange interpolation technique. The method samples time-continuous bandlimited signal and stores samples in sequence. It manages to obtain the high-precision delay parameters of every sampling period from desired delay to compute the so-called index position variable and interpolator parameters. It dynamically in-dexes and chooses a set of samples to implement piecewise complex-coefficient Lagrange interpolation for reconstruct-ing the delayed sequences. The time-continuous delay re-construction signal can be simply accomplished through digital-to-analog conversion. The mathematical model of the method and its transformed form is given, and the arithmetic of dynamic index and complex-coefficient La-grange interpolation is derived. Simulation and test results show the validity and performance of the method.
Unified Model of Dynamic Forced Barrier Crossing in Single Molecules
Friddle, R W
2007-06-21
Thermally activated barrier crossing in the presence of an increasing load can reveal kinetic rate constants and energy barrier parameters when repeated over a range of loading rates. Here we derive a model of the mean escape force for all relevant loading rates--the complete force spectrum. Two well-known approximations emerge as limiting cases; one of which confirms predictions that single-barrier spectra should converge to a phenomenological description in the slow loading limit.
Pauline Vitry[1; Eric BouriUot[1; Cedric Plassard[1; Yvon Lacroute[1; Eric Calkins[2,3; Laurene Tetard[2,3; Eric Lesniewska[1
2015-01-01
Challenges in nanoscale characterization call for non-invasive, yet sensitive subsurface characterization of low-density materials such as polymers. In this work, we present new evidence that mode-synthesizing atomic force microscopy can be used to detect minute changes in low-density materials, such as those engendered in electro-sensitive polymers during electron beam lithography, surpassing all common nanoscale mechanical techniques. Moreover, we propose 3D reconstruction of the exposed polymer regions using successive high-resolution frames acquired at incremental depths inside the sample. In addition, the results clearly show the influence of increasing dwell time on the depth profile of the nano-sized exposed regions. Hence, the simple approach described here can be used for achieving sensitive nanoscale tomography of soft materials with promising applications in material sciences and biology.
Wagner, Sebastian; Widmann, Martin; Jones, Julie [Institute for Coastal Research, GKSS Research Centre, Geesthacht (Germany); Haberzettl, Torsten; Ohlendorf, Christian; Zolitschka, Bernd [University of Bremen, Institute of Geography, Bremen (Germany); Luecke, Andreas; Mayr, Christoph [Research Centre Juelich, Institute of Chemistry and Dynamics of the Geosphere V, Juelich (Germany); Schaebitz, Frank [University of Cologne, Seminar for Geography and its Didactics, Cologne (Germany)
2007-09-15
This study investigates the atmospheric circulation in transient climate simulations with a coupled atmosphere-ocean general circulation model (GCM) for the mid-Holocene (MH) period 7-4.5 ka BP driven with combinations of orbital, solar and greenhouse gas forcings. The focus is on southern South America. Statistical downscaling models are derived from observational data and applied to the simulations to estimate precipitation in south-eastern Patagonia during the MH. These estimates are compared with lake level estimates for Laguna Potrok Aike (LPA) from sediments. Relative to pre-industrial conditions (i.e. 1550-1850), which show extraordinarily high lake levels, the proxy-based reconstructed lake levels during the MH are lower. The downscaled simulated circulation differences indicate higher LPA precipitation during the MH from March to August, higher annual means, and reduced precipitation from September to February. Thus the reconstructed lower LPA lake levels can not be explained solely by the simulated precipitation changes. Possible reasons for this discrepancy are discussed. Based on proxy data from southern South America hypotheses have also been proposed on the latitudinal position of the southern hemispheric westerlies (SHWs). In agreement with some of these hypotheses our simulations show an increased seasonal cycle of the latitudinal position of the SHWs during the MH, which can be explained by the orbital forcing. The simulations also show stronger SHWs over southern Patagonia during austral summer and weaker SHWs during winter. The downscaling model associates weaker SHWs with increased precipitation in the LPA region. However, this relationship is only moderate, and therefore the downscaling model does not support the assumption of a strong link between mean SHWs and precipitation over south-eastern Patagonia, which is the basis of many proxy-based hypotheses about the SHWs. (orig.)
Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions
Nguyen, Nhan T.; Tuzcu, Ilhan
2009-01-01
This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.
Bai, Fengjun; Chew, Chee-Meng
2013-01-01
Human muscle force estimation is important in biomechanics studies, sports and assistive devices fields. Therefore, it is essential to develop an efficient algorithm to estimate force exerted by muscles. The purpose of this study is to predict force/torque exerted by muscles under dynamic muscle contractions based on continuous wavelet transform (CWT) and artificial neural networks (ANN) approaches. Mean frequency (MF) of the surface electromyography (EMG) signals power spectrum was calculated from CWT. ANN models were trained to derive the MF-force relationships from the subset of EMG signals and the measured forces. Then we use the networks to predict the individual muscle forces for different muscle groups. Fourteen healthy subjects (10 males and 4 females) were voluntarily recruited in this study. EMG signals were collected from the biceps brachii, triceps, hamstring and quadriceps femoris muscles to evaluate the proposed method. Root mean square errors (RMSE) and correlation coefficients between the predicted forces and measured actual forces were calculated.
Ghanti, Dipanwita
2016-01-01
Application of pulling force, under force-clamp conditions, to kinetochore-microtubule attachments {\\it in-vitro} revealed a catch-bond-like behavior. In an earlier paper ({\\it Sharma et al. Phys. Biol. (2014)} the physical origin of this apparently counter-intuitive phenomenon was traced to the nature of the force-dependence of the (de-)polymerization kinetics of the microtubules. In this brief communication that work is extended to situations where the external forced is ramped up till the attachment gets ruptured. In spite of the fundamental differences in the underlying mechanisms, the trend of variation of the rupture force distribution observed in our model kinetochore-microtubule attachment with the increasing loading rate is qualitatively similar to that displayed by the catch bonds formed in some other ligand-receptor systems. Our theoretical predictions can be tested experimentally by a straightforward modification of the protocol for controlling the force in the optical trap set up that was used in...
Analysis of limit forces on the vehicle wheels using an algorithm of Dynamic Square Method
Brukalski, M.
2016-09-01
This article presents a method named as Dynamic Square Method (DSM) used for dynamic analysis of a vehicle equipped with a four wheel drive system. This method allows determination of maximum (limit) forces acting on the wheels. Here, the maximum longitudinal forces acting on the wheels are assumed and then used to predict whether they can be achieved by a specific dynamic motion or whether the actual friction forces under a given wheel is large enough to transfer lateral forces. For the analysis of DSM a four wheel vehicle model is used. On the basis of this characteristic it is possible to determine the maximum longitudinal force acting on the wheels of the given axle depending on the lateral acceleration of the vehicle. The results of this analysis may be useful in the development of a control algorithm used for example in active differentials.
Dynamics of bow-tie shaped bursting: Forced pendulum with dynamic feedback
Hongray, Thotreithem; Balakrishnan, Janaki
2016-12-01
A detailed study is performed on the parameter space of the mechanical system of a driven pendulum with damping and constant torque under feedback control. We report an interesting bow-tie shaped bursting oscillatory behaviour, which is exhibited for small driving frequencies, in a certain parameter regime, which has not been reported earlier in this forced system with dynamic feedback. We show that the bursting oscillations are caused because of a transition of the quiescent state to the spiking state by a saddle-focus bifurcation, and because of another saddle-focus bifurcation, which leads to cessation of spiking, bringing the system back to the quiescent state. The resting period between two successive bursts (Trest) is estimated analytically.
WearDY: Wearable dynamics. A prototype for human whole-body force and motion estimation
Latella, Claudia; Kuppuswamy, Naveen; Nori, Francesco
2016-06-01
Motion capture is a powerful tool used in a large range of applications towards human movement analysis. Although it is a well-established technique, its main limitation is the lack of dynamic information such as forces and torques during the motion capture. In this paper, we present a novel approach for human wearable dynamic (WearDY) motion capture for the simultaneous estimation of whole-body forces along with the motion. Our conceptual framework encompasses traditional passive markers based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational framework for estimating dynamic quantities originally proposed in the domain of humanoid robot control. We present preliminary experimental analysis of our framework on subjects performing a two Degrees-of-Freedom bowing task and we estimate the motion and dynamic quantities. We discuss the implication of our proposal towards the design of a novel wearable force and motion capture suit and its applications.
Refolding dynamics of stretched biopolymers upon force quench
Hyeon, Changbong; Pincus, David L; Thirumalai, D
2009-01-01
Single molecule force spectroscopy methods can be used to generate folding trajectories of biopolymers from arbitrary regions of the folding landscape. We illustrate the complexity of the folding kinetics and generic aspects of the collapse of RNA and proteins upon force quench, using simulations of an RNA hairpin and theory based on the de Gennes model for homopolymer collapse. The folding time, $\\tau_F$, depends asymmetrically on $\\delta f_S = f_S - f_m$ and $\\delta f_Q = f_m - f_Q$ where $f_S$ ($f_Q$) is the stretch (quench) force, and $f_m$ is the transition mid-force of the RNA hairpin. In accord with experiments, the relaxation kinetics of the molecular extension, $R(t)$, occurs in three stages: a rapid initial decrease in the extension is followed by a plateau, and finally an abrupt reduction in $R(t)$ that occurs as the native state is approached. The duration of the plateau increases as $\\lambda =\\tau_Q/\\tau_F$ decreases (where $\\tau_Q$ is the time in which the force is reduced from $f_S$ to $f_Q$). ...
Forcing-dependent dynamics and emergence of helicity in rotating turbulence
Dallas, Vassilios
2016-01-01
The effects of large scale mechanical forcing on the dynamics of rotating turbulent flows are studied by means of numerical simulations, varying systematically the nature of the mechanical force in time. We demonstrate that the statistically stationary solutions of these flows depend on the nature of the forcing mechanism. Rapidly enough rotating flows with a forcing that has a persistent direction relatively to the axis of rotation bifurcate from a non-helical state to a helical state despite the fact that the forcing is non-helical. We find that the nature of the mechanical force in time and the emergence of helicity have direct implications on the cascade dynamics of these flows, determining the anisotropy in the flow, the energy condensation at large scales and the power-law energy spectra that are consistent with previous findings and phenomenologies under strong and weak-wave turbulent conditions.
Graybill, George
2007-01-01
Forces are at work all around us. Discover what a force is, and different kinds of forces that work on contact and at a distance. We use simple language and vocabulary to make this invisible world easy for students to ""see"" and understand. Examine how forces ""add up"" to create the total force on an object, and reinforce concepts and extend learning with sample problems.
Attitude dynamics and control of spacecraft using geomagnetic Lorentz force
Abdel-Aziz, Yehia A
2014-01-01
The attitude stabilization of a charged rigid spacecraft in Low Earth Orbit (LEO) using torques due to Lorentz force in pitch and roll directions is considered. A spacecraft that generates an electrostatic charge on its surface in the Earth magnetic field will be subject to perturbations from Lorentz force. The Lorentz force acting on an electrostatically charged spacecraft may provide a useful thrust for controlling a spacecraft's orientation. We assume that the spacecraft is moving in the Earth's magnetic field in an elliptical orbit under the effects of the gravitational, geomagnetic and Lorentz torques. The magnetic field of the Earth is modeled as a non-tilted dipole. A model incorporating all Lorentz torques as a function of orbital elements has been developed on the basis of electric and magnetic fields. The stability of the spacecraft orientation is investigated both analytically and numerically. The existence and stability of equilibrium positions is investigated for different values of the charge to...
Earth's Inner Core dynamics induced by the Lorentz force
Lasbleis, M; Cardin, P; Labrosse, S
2015-01-01
Seismic studies indicate that the Earth's inner core has a complex structure and exhibits a strong elastic anisotropy with a cylindrical symmetry. Among the various models which have been proposed to explain this anisotropy, one class of models considers the effect of the Lorentz force associated with the magnetic field diffused within the inner core. In this paper we extend previous studies and use analytical calculations and numerical simulations to predict the geometry and strength of the flow induced by the poloidal component of the Lorentz force in a neutrally or stably stratified growing inner core, exploring also the effect of different types of boundary conditions at the inner core boundary (ICB). Unlike previous studies, we show that the boundary condition that is most likely to produce a significant deformation and seismic anisotropy is impermeable, with negligible radial flow through the boundary. Exact analytical solutions are found in the case of a negligible effect of buoyancy forces in the inne...
A Bimorph Moment/Force Actuator for Dynamic Testing
Hou Xiaoyan
2009-09-01
Full Text Available This paper focuses on a novel bimorph actuator which can produce pure moment or pure force to structures under testing. Due to its unique construction, this actuator is only sensitive to one translational and one rotational degree of freedom (DOF, which can be further decoupled from each other through controlling the phase of the excitation voltage supplied to the actuator. To correlate the input electrical voltage with the output moment (or force, angular velocity, linear velocity, rotational (or translational conversion functions are defined and then numerically determined. Compared with conventional twin-shaker setup to generate moment, the bimorph actuator is simple, compact, light-weight, effective and cheap. When generating moment, the usually-existing unwanted force excitation is avoided. The working frequency range of the actuator is much wider and the loading effect is greatly reduced.
Morrow, Melissa M.; Rankin, Jeffery W.; Neptune, Richard R.; Kaufman, Kenton R.
2014-01-01
The primary purpose of this study was to compare static and dynamic optimization muscle force and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim forces. The forward dynamics simulation minimized differences between simulated and experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For direct comparison between models, the s...
Refolding dynamics of stretched biopolymers upon force quench
Hyeon, Changbong; Morrison, Greg; Pincus, David L.; Thirumalai, D.
2009-01-01
Single-molecule force spectroscopy methods can be used to generate folding trajectories of biopolymers from arbitrary regions of the folding landscape. We illustrate the complexity of the folding kinetics and generic aspects of the collapse of RNA and proteins upon force quench by using simulations of an RNA hairpin and theory based on the de Gennes model for homopolymer collapse. The folding time, τF, depends asymmetrically on δfS = f S − f m and δf Q = f m − f Q where f S (f Q) is the stretch (quench) force and f m is the transition midforce of the RNA hairpin. In accord with experiments, the relaxation kinetics of the molecular extension, R(t), occurs in three stages: A rapid initial decrease in the extension is followed by a plateau and finally, an abrupt reduction in R(t) occurs as the native state is approached. The duration of the plateau increases as λ = τ Q/τ F decreases (where τ Q is the time in which the force is reduced from f S to f Q). Variations in the mechanisms of force-quench relaxation as λ is altered are reflected in the experimentally measurable time-dependent entropy, which is computed directly from the folding trajectories. An analytical solution of the de Gennes model under tension reproduces the multistage stage kinetics in R(t). The prediction that the initial stages of collapse should also be a generic feature of polymers is validated by simulation of the kinetics of toroid (globule) formation in semiflexible (flexible) homopolymers in poor solvents upon quenching the force from a fully stretched state. Our findings give a unified explanation for multiple disparate experimental observations of protein folding. PMID:19915145
无
2007-01-01
The chaotic dynamics of a Duffing oscillator with a parametric force is investigated. By using the direct perturbation technique, we analytically obtain the general solution of the 1st-order equation. Through the boundedness condition of the general solution we get the famous Melnikov function predicting the onset of chaos. When the parametric and external forces are strong, numerical simulations show that increasing the amplitude of the parametric or external force can lead the system into chaos via period doubling.
Villa, Alessandra; Fan, Hao; Wassenaar, Tsjerk; Mark, Alan E.
2007-01-01
The sensitivity of molecular dynamics simulations to variations in the force field has been examined in relation to a set of 36 structures corresponding to 31 proteins simulated by using different versions of the GROMOS force field. The three parameter sets used (43a1, 53a5, and 53a6) differ signifi
Influence of materials' optical response on actuation dynamics by Casimir forces
Sedighi Ghozotkhar, Mehdi; Broer, W. H.; Van der Veeke, S.; Svetovoy, V. B.; Palasantzas, G.
2015-01-01
The dependence of the Casimir force on the frequency-dependent dielectric functions of interacting materials makes it possible to tailor the actuation dynamics of microactuators. The Casimir force is largest for metallic interacting systems due to the high absorption of conduction electrons in the f
Dynamic Image Forces Near a Metal Surface and the Point-Charge Motion
Gabovich, A. M.; Voitenko, A. I.
2012-01-01
The problem of charge motion governed by image force attraction near a plane metal surface is considered and solved self-consistently. The temporal dispersion of metal dielectric permittivity makes the image forces dynamic and, hence, finite, contrary to the results of the conventional approach. Therefore, the maximal attainable velocity turns out…
Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy
Balke, Nina; Jesse, Stephen; Carmichael, Ben; Baris Okatan, M.; Kravchenko, Ivan I.; Kalinin, Sergei V.; Tselev, Alexander
2017-02-01
Atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm-1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.
Reconstructing the dynamics of HIV evolution within hosts from serial deep sequence data.
Art F Y Poon
Full Text Available At the early stage of infection, human immunodeficiency virus (HIV-1 predominantly uses the CCR5 coreceptor for host cell entry. The subsequent emergence of HIV variants that use the CXCR4 coreceptor in roughly half of all infections is associated with an accelerated decline of CD4+ T-cells and rate of progression to AIDS. The presence of a 'fitness valley' separating CCR5- and CXCR4-using genotypes is postulated to be a biological determinant of whether the HIV coreceptor switch occurs. Using phylogenetic methods to reconstruct the evolutionary dynamics of HIV within hosts enables us to discriminate between competing models of this process. We have developed a phylogenetic pipeline for the molecular clock analysis, ancestral reconstruction, and visualization of deep sequence data. These data were generated by next-generation sequencing of HIV RNA extracted from longitudinal serum samples (median 7 time points from 8 untreated subjects with chronic HIV infections (Amsterdam Cohort Studies on HIV-1 infection and AIDS. We used the known dates of sampling to directly estimate rates of evolution and to map ancestral mutations to a reconstructed timeline in units of days. HIV coreceptor usage was predicted from reconstructed ancestral sequences using the geno2pheno algorithm. We determined that the first mutations contributing to CXCR4 use emerged about 16 (per subject range 4 to 30 months before the earliest predicted CXCR4-using ancestor, which preceded the first positive cell-based assay of CXCR4 usage by 10 (range 5 to 25 months. CXCR4 usage arose in multiple lineages within 5 of 8 subjects, and ancestral lineages following alternate mutational pathways before going extinct were common. We observed highly patient-specific distributions and time-scales of mutation accumulation, implying that the role of a fitness valley is contingent on the genotype of the transmitted variant.
Reconstructing the dynamics of HIV evolution within hosts from serial deep sequence data.
Poon, Art F Y; Swenson, Luke C; Bunnik, Evelien M; Edo-Matas, Diana; Schuitemaker, Hanneke; van 't Wout, Angélique B; Harrigan, P Richard
2012-01-01
At the early stage of infection, human immunodeficiency virus (HIV)-1 predominantly uses the CCR5 coreceptor for host cell entry. The subsequent emergence of HIV variants that use the CXCR4 coreceptor in roughly half of all infections is associated with an accelerated decline of CD4+ T-cells and rate of progression to AIDS. The presence of a 'fitness valley' separating CCR5- and CXCR4-using genotypes is postulated to be a biological determinant of whether the HIV coreceptor switch occurs. Using phylogenetic methods to reconstruct the evolutionary dynamics of HIV within hosts enables us to discriminate between competing models of this process. We have developed a phylogenetic pipeline for the molecular clock analysis, ancestral reconstruction, and visualization of deep sequence data. These data were generated by next-generation sequencing of HIV RNA extracted from longitudinal serum samples (median 7 time points) from 8 untreated subjects with chronic HIV infections (Amsterdam Cohort Studies on HIV-1 infection and AIDS). We used the known dates of sampling to directly estimate rates of evolution and to map ancestral mutations to a reconstructed timeline in units of days. HIV coreceptor usage was predicted from reconstructed ancestral sequences using the geno2pheno algorithm. We determined that the first mutations contributing to CXCR4 use emerged about 16 (per subject range 4 to 30) months before the earliest predicted CXCR4-using ancestor, which preceded the first positive cell-based assay of CXCR4 usage by 10 (range 5 to 25) months. CXCR4 usage arose in multiple lineages within 5 of 8 subjects, and ancestral lineages following alternate mutational pathways before going extinct were common. We observed highly patient-specific distributions and time-scales of mutation accumulation, implying that the role of a fitness valley is contingent on the genotype of the transmitted variant.
Stochastic model for aerodynamic force dynamics on wind turbine blades in unsteady wind inflow
Luhur, Muhammad Ramzan; Kühn, Martin; Wächter, Matthias
2015-01-01
The paper presents a stochastic approach to estimate the aerodynamic forces with local dynamics on wind turbine blades in unsteady wind inflow. This is done by integrating a stochastic model of lift and drag dynamics for an airfoil into the aerodynamic simulation software AeroDyn. The model is added as an alternative to the static table lookup approach in blade element momentum (BEM) wake model used by AeroDyn. The stochastic forces are obtained for a rotor blade element using full field turbulence simulated wind data input and compared with the classical BEM and dynamic stall models for identical conditions. The comparison shows that the stochastic model generates additional extended dynamic response in terms of local force fluctuations. Further, the comparison of statistics between the classical BEM, dynamic stall and stochastic models' results in terms of their increment probability density functions gives consistent results.
Atomic Force Microscopy of dynamic protein DNA interactions
Noort, van Simon Johannes Theodorus
1999-01-01
In this thesis a dedicated Atomic Force Microscopy (AFM) setup is used for imaging biochemical reactions with molecular resolution. The basis for the high resolution of AFM is the combination of a small probe, close proximity to the sample and a short-range interaction between the probe and the samp
Application of dynamic impedance spectroscopy to atomic force microscopy
Kazimierz Darowicki, Artur Zieliński and Krzysztof J Kurzydłowski
2008-01-01
Full Text Available Atomic force microscopy (AFM is a universal imaging technique, while impedance spectroscopy is a fundamental method of determining the electrical properties of materials. It is useful to combine those techniques to obtain the spatial distribution of an impedance vector. This paper proposes a new combining approach utilizing multifrequency scanning and simultaneous AFM scanning of an investigated surface.
Soliton ratchetlike dynamics by ac forces with harmonic mixing
Salerno, Mario; Zolotaryuk, Yaroslav
2002-01-01
The possibility of unidirectional motion of a kink (topological soliton) of a dissipative sine-Gordon equation in the presence of ac forces with harmonic mixing (at least biharmonic) and of zero mean, is presented. The dependence of the kink mean velocity on system parameters is investigated...
Reconstruction of an input function from a dynamic PET water image using multiple tissue curves
Kudomi, Nobuyuki; Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro
2016-08-01
Quantification of cerebral blood flow (CBF) is important for the understanding of normal and pathologic brain physiology. When CBF is assessed using PET with {{\\text{H}}2} 15O or C15O2, its calculation requires an arterial input function, which generally requires invasive arterial blood sampling. The aim of the present study was to develop a new technique to reconstruct an image derived input function (IDIF) from a dynamic {{\\text{H}}2} 15O PET image as a completely non-invasive approach. Our technique consisted of using a formula to express the input using tissue curve with rate constant parameter. For multiple tissue curves extracted from the dynamic image, the rate constants were estimated so as to minimize the sum of the differences of the reproduced inputs expressed by the extracted tissue curves. The estimated rates were used to express the inputs and the mean of the estimated inputs was used as an IDIF. The method was tested in human subjects (n = 29) and was compared to the blood sampling method. Simulation studies were performed to examine the magnitude of potential biases in CBF and to optimize the number of multiple tissue curves used for the input reconstruction. In the PET study, the estimated IDIFs were well reproduced against the measured ones. The difference between the calculated CBF values obtained using the two methods was small as around <8% and the calculated CBF values showed a tight correlation (r = 0.97). The simulation showed that errors associated with the assumed parameters were <10%, and that the optimal number of tissue curves to be used was around 500. Our results demonstrate that IDIF can be reconstructed directly from tissue curves obtained through {{\\text{H}}2} 15O PET imaging. This suggests the possibility of using a completely non-invasive technique to assess CBF in patho-physiological studies.
Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori
2009-01-01
The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.
Clifton, Ben E; Whitfield, Jason H; Sanchez-Romero, Inmaculada; Herde, Michel K; Henneberger, Christian; Janovjak, Harald; Jackson, Colin J
2017-01-01
Small molecule biosensors based on Förster resonance energy transfer (FRET) enable small molecule signaling to be monitored with high spatial and temporal resolution in complex cellular environments. FRET sensors can be constructed by fusing a pair of fluorescent proteins to a suitable recognition domain, such as a member of the solute-binding protein (SBP) superfamily. However, naturally occurring SBPs may be unsuitable for incorporation into FRET sensors due to their low thermostability, which may preclude imaging under physiological conditions, or because the positions of their N- and C-termini may be suboptimal for fusion of fluorescent proteins, which may limit the dynamic range of the resulting sensors. Here, we show how these problems can be overcome using ancestral protein reconstruction and circular permutation. Ancestral protein reconstruction, used as a protein engineering strategy, leverages phylogenetic information to improve the thermostability of proteins, while circular permutation enables the termini of an SBP to be repositioned to maximize the dynamic range of the resulting FRET sensor. We also provide a protocol for cloning the engineered SBPs into FRET sensor constructs using Golden Gate assembly and discuss considerations for in situ characterization of the FRET sensors.
Structure and Dynamics of Dinucleosomes Assessed by Atomic Force Microscopy
Nina A. Filenko
2012-01-01
Full Text Available Dynamics of nucleosomes and their interactions are important for understanding the mechanism of chromatin assembly. Internucleosomal interaction is required for the formation of higher-order chromatin structures. Although H1 histone is critically involved in the process of chromatin assembly, direct internucleosomal interactions contribute to this process as well. To characterize the interactions of nucleosomes within the nucleosome array, we designed a dinucleosome and performed direct AFM imaging. The analysis of the AFM data showed dinucleosomes are very dynamic systems, enabling the nucleosomes to move in a broad range along the DNA template. Di-nucleosomes in close proximity were observed, but their population was low. The use of the zwitterionic detergent, CHAPS, increased the dynamic range of the di-nucleosome, facilitating the formation of tight di-nucleosomes. The role of CHAPS and similar natural products in chromatin structure and dynamics is also discussed.
Exploring the Contribution of Collective Motions to the Dynamics of Forced-Unfolding in Tubulin
Joshi, Harshad; Momin, Farhana; Haines, Kelly E.; Dima, Ruxandra I.
2010-01-01
Abstract Decomposition of the intrinsic dynamics of proteins into collective motions among distant regions of the protein structure provides a physically appealing approach that couples the dynamics of the system with its functional role. The cellular functions of microtubules (an essential component of the cytoskeleton in all eukaryotic cells) depend on their dynamic instability, which is altered by various factors among which applied forces are central. To shed light on the coupling between forces and the dynamic instability of microtubules, we focus on the investigation of the response of the microtubule subunits (tubulin) to applied forces. We address this point by adapting an approach designed to survey correlations for the equilibrium dynamics of proteins to the case of correlations for proteins forced-dynamics. The resulting collective motions in tubulin have a number of functional implications, such as the identification of long-range couplings with a role in blocking the dynamic instability of microtubules. A fundamental implication of our study for the life of a cell is that, to increase the likelihood of unraveling of large cytoskeletal filaments under physiological forces, molecular motors must use a combination of pulling and torsion rather than just pulling. PMID:20159162
The Role of Forcing and Internal Dynamics in explaining the 'Medieval Climate Anomaly'
Goossee, Hugues; Crespin, Elisabeth; Dubinkina, Svetlana; Loutre, Marie-France; Mann, Michael E.; Renssen, Hans; Shindell, Drew
2012-01-01
Proxy reconstructions suggest that peak global temperature during the past warm interval known as the Medieval Climate Anomaly (MCA, roughly 950-1250 AD) has been exceeded only during the most recent decades. To better understand the origin of this warm period, we use model simulations constrained by data assimilation establishing the spatial pattern of temperature changes that is most consistent with forcing estimates, model physics and the empirical information contained in paleoclimate proxy records. These numerical experiments demonstrate that the reconstructed spatial temperature pattern of the MCA can be explained by a simple thermodynamical response of the climate system to relatively weak changes in radiative forcing combined with a modification of the atmospheric circulation, displaying some similarities with the positive phase of the so-called Arctic Oscillation, and with northward shifts in the position of the Gulf Stream and Kuroshio currents. The mechanisms underlying the MCA are thus quite different from anthropogenic mechanisms responsible for modern global warming.
Force on Force Modeling with Formal Task Structures and Dynamic Geometry
2017-03-24
shared metrics and an executable integration architecture. • Generate a formal top-down mission specification for sample operating force organizations...in a simulation environment. The mission specification team applied best military judgement to specify required capability for collective tasks by
Ting, Samuel T.
The research presented in this work seeks to develop, validate, and deploy practical techniques for improving diagnosis of cardiovascular disease. In the philosophy of biomedical engineering, we seek to identify an existing medical problem having significant societal and economic effects and address this problem using engineering approaches. Cardiovascular disease is the leading cause of mortality in the United States, accounting for more deaths than any other major cause of death in every year since 1900 with the exception of the year 1918. Cardiovascular disease is estimated to account for almost one-third of all deaths in the United States, with more than 2150 deaths each day, or roughly 1 death every 40 seconds. In the past several decades, a growing array of imaging modalities have proven useful in aiding the diagnosis and evaluation of cardiovascular disease, including computed tomography, single photon emission computed tomography, and echocardiography. In particular, cardiac magnetic resonance imaging is an excellent diagnostic tool that can provide within a single exam a high quality evaluation of cardiac function, blood flow, perfusion, viability, and edema without the use of ionizing radiation. The scope of this work focuses on the application of engineering techniques for improving imaging using cardiac magnetic resonance with the goal of improving the utility of this powerful imaging modality. Dynamic cine imaging, or the capturing of movies of a single slice or volume within the heart or great vessel region, is used in nearly every cardiac magnetic resonance imaging exam, and adequate evaluation of cardiac function and morphology for diagnosis and evaluation of cardiovascular disease depends heavily on both the spatial and temporal resolution as well as the image quality of the reconstruction cine images. This work focuses primarily on image reconstruction techniques utilized in cine imaging; however, the techniques discussed are also relevant to
Absence of gamma-range corticomuscular coherence during dynamic force in a deafferented patient.
Patino, Luis; Omlor, Wolfgang; Chakarov, Vihren; Hepp-Reymond, Marie-Claude; Kristeva, Rumyana
2008-04-01
Recently, we studied corticomuscular coherence (CMC) in a visuomotor task and showed for the first time gamma-range (30-45 Hz) CMC during isometric compensation of a periodically modulated dynamic force. We speculated that for the control of such forces, the sensorimotor system resonates at gamma-range frequencies to rapidly integrate the visual and proprioceptive information and produce the appropriate motor command. In this study, we tested the role of the proprioceptive afferent feedback on gamma-range CMC by comparing the deafferented patient GL to six age- and sex-matched subjects during the performance of a visuomotor force task consisting of isometric compensation of static and dynamic forces applied on the finger. Patient GL presented no significant gamma-band CMC during dynamic force. Instead, she had only beta-range CMC as in the static force condition; concurrently, her performance was significantly worse than that of the controls in both conditions. This gives support to the conclusions of our previous paper and suggests that proprioceptive information is mandatory in the genesis of gamma-band CMC during the generation and control of dynamic forces.
Attitude dynamics and control of spacecraft using geomagnetic Lorentz force
Abdel-Aziz, Yehia A.; Shoaib, Muhammad
2015-01-01
Attitude stabilization of a charged rigid spacecraft in Low Earth Orbit using torques due to Lorentz force in pitch and roll directions is considered. A spacecraft that generates an electrostatic charge on its surface in the Earth's magnetic field will be subject to perturbations from the Lorentz force. The Lorentz force acting on an electrostatically charged spacecraft may provide a useful thrust for controlling a spacecraft's orientation. We assume that the spacecraft is moving in the Earth's magnetic field in an elliptical orbit under the effects of gravitational, geomagnetic and Lorentz torques. The magnetic field of the Earth is modeled as a non-tilted dipole. A model incorporating all Lorentz torques as a function of orbital elements has been developed on the basis of electric and magnetic fields. The stability of the spacecraft orientation is investigated both analytically and numerically. The existence and stability of equilibrium positions is investigated for different values of the charge to mass ratio (α*). Stable orbits are identified for various values of α*. The main parameters for stabilization of the spacecraft are α* and the difference between the components of the moment of inertia for the spacecraft.
Static and Dynamic Performance Simulation of Direct-Acting Force Motor Valve
Ye, Xinghai; Ding, Jianjun; Zheng, Gang; Jiang, Kunpeng; Chen, Dongdong
2017-07-01
This work focuses on static and dynamic characteristics of direct-acting force motor valve. First, we analyzed the structure features and operating principle of the Mitsubishi-Hitachi force motor valve (FMV) and the operating principle of its internal permanent-magnet moving-coil force motor magnetic circuit, determined the transfer function of the FMV force motor system, and established a mathematical model for the system. Secondly, we established a static performance analysis model using the AMESIM software and utilized the model in combination with experimental results to analyze the effects of electro-hydraulic servo valve structural parameters on static characteristics. Lastly, we deduced the trajectory equation of the system, established the relationship between dynamic characteristic indexes and structural parameters, and analyzed the effects of different parameter values on the dynamic characteristics of the system. This research can provide a theoretical guidance for designing and manufacturing the FMV body.
Interacting trophic forcing and the population dynamics of herring
Lindegren, Martin; Ostman, Orjan; Gardmark, Anna
2011-01-01
Small pelagic fish occupy a central position in marine ecosystems worldwide, largely by determining the energy transfer from lower trophic levels to predators at the top of the food web, including humans. Population dynamics of small pelagic fish may therefore be regulated neither strictly bottom......-up nor top-down, but rather through multiple external and internal drivers. While in many studies single drivers have been identified, potential synergies of multiple factors, as well as their relative importance in regulating population dynamics of small pelagic fish, is a largely unresolved issue....... Using a statistical, age-structured modeling approach, we demonstrate the relative importance and influence of bottom-up (e.g., climate, zooplankton availability) and top-down (i.e., fishing and predation) factors on the population dynamics of Bothnian Sea herring (Clupea harengus) throughout its life...
Investigation of Multiscale Non-equilibrium Flow Dynamics Under External Force Field
Xiao, Tianbai
2016-01-01
The multiple scale non-equilibrium gaseous flow behavior under external force field is investigated. Both theoretical analysis based on the kinetic model equation and numerical study are presented to demonstrate the dynamic effect of external force on the flow evolution, especially on the non-equilibrium heat flux. The current numerical experiment is based on the well-balanced unified gas-kinetic scheme (UGKS), which presents accurate solutions in the whole flow regime from the continuum Navier-Stokes solution to the transition and free molecular ones. The heat conduction in the non-equilibrium regime due to the external forcing term is quantitatively investigated. In the lid-driven cavity flow study, due to the external force field the density distribution inside cavity gets stratified and a multiscale non-equilibrium flow transport appears in a single gas dynamic system. With the increment of external forcing term, the flow topological structure changes dramatically, and the temperature gradient, shearing s...
A discrete force allocation algorithm for modelling wind turbines in computational fluid dynamics
Réthoré, Pierre-Elouan; Sørensen, Niels N.
2012-01-01
This paper describes an algorithm for allocating discrete forces in computational fluid dynamics (CFD). Discrete forces are useful in wind energy CFD. They are used as an approximation of the wind turbine blades’ action on the wind (actuator disc/line), to model forests and to model turbulent......, this algorithm does not address the specific cases where discrete forces are present. The velocities and pressure exhibit some significant numerical fluctuations at the position where the body forces are applied. While this issue is limited in space, it is usually critical to accurately estimate the velocity...
BIFURCATION AND DYNAMICS OF THIN SLIPPING FILMS UNDER THE INFLUENCE OF INTERMOLECULAR FORCES
HU Guo-hui
2006-01-01
The effects of the Born repulsive force on the stability and dynamics of ultra-thin slipping films under the influences of intermolecular forces are investigated with bifurcation theory and numerical simulation. Results show that the repulsive force has a stabilizing effect on the development of perturbations, and can suppress the rupture process induced by the van der Waals attractive force. Although slippage will enhance the growth of disturbances, it does not have influence on the linear cutoff wave number and the final shape of the film thickness as time approaches to infinity.
Zimmerman, William B
2005-10-05
The hypothesis that frequency and amplitude response can be used in a complicated metabolic pathway kinetics model for optimal parameter estimation, as speculated by its successful prior usage for a mechanical oscillator and a heterogeneous chemical system, is tested here. Given the complexity of the glycolysis model of yeast chosen, this question is limited to three kinetics parameters of the 87 in the in vitro model developed in the literature. The direct application of the approach, used with the uninformed selection of operating conditions for the oscillation of external glucose concentration, led to miring the data assimilation process in local minima. Application of linear systems theory, however, identified two natural resonant frequencies that, when excited by external forced oscillations of the same frequency, result in the expression of many harmonics in the Fourier spectra, that is, information-rich experiments. A single such information-rich experiment at one of the resonant frequencies was sufficient to break away from the local minima to find the optimum kinetics parameter estimates. The resonant frequencies themselves represent oscillation modes in glycolysis akin to those previously observed. Furthermore, operation of the bioreactor with large amplitude oscillations of glucose feed (25%) leads to enhanced ethanol average yield by 1.6% at the resonant frequency.
Morrow, Melissa M; Rankin, Jeffery W; Neptune, Richard R; Kaufman, Kenton R
2014-11-07
The primary purpose of this study was to compare static and dynamic optimization muscle force and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim forces. The forward dynamics simulation minimized differences between simulated and experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For direct comparison between models, the shoulder and elbow muscle moment arms and net joint moments from the dynamic optimization were used as inputs into the static optimization routine. RMS errors between model predictions were calculated to quantify model agreement. There was a wide range of individual muscle force agreement that spanned from poor (26.4% Fmax error in the middle deltoid) to good (6.4% Fmax error in the anterior deltoid) in the prime movers of the shoulder. The predicted muscle forces from the static optimization were sufficient to create the appropriate motion and joint moments at the shoulder for the push phase of wheelchair propulsion, but showed deviations in the elbow moment, pronation-supination motion and hand rim forces. These results suggest the static approach does not produce results similar enough to be a replacement for forward dynamics simulations, and care should be taken in choosing the appropriate method for a specific task and set of constraints. Dynamic optimization modeling approaches may be required for motions that are greatly influenced by muscle activation dynamics or that require significant co-contraction.
Morrow, Melissa M.; Rankin, Jeffery W.; Neptune, Richard R.; Kaufman, Kenton R.
2014-01-01
The primary purpose of this study was to compare static and dynamic optimization muscle force and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim forces. The forward dynamics simulation minimized differences between simulated and experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For direct comparison between models, the shoulder and elbow muscle moment arms and net joint moments from the dynamic optimization were used as inputs into the static optimization routine. RMS errors between model predictions were calculated to quantify model agreement. There was a wide range of individual muscle force agreement that spanned from poor (26.4 % Fmax error in the middle deltoid) to good (6.4 % Fmax error in the anterior deltoid) in the prime movers of the shoulder. The predicted muscle forces from the static optimization were sufficient to create the appropriate motion and joint moments at the shoulder for the push phase of wheelchair propulsion, but showed deviations in the elbow moment, pronation-supination motion and hand rim forces. These results suggest the static approach does not produce results similar enough to be a replacement for forward dynamics simulations, and care should be taken in choosing the appropriate method for a specific task and set of constraints. Dynamic optimization modeling approaches may be required for motions that are greatly influenced by muscle activation dynamics or that require significant co-contraction. PMID:25282075
Dynamical Fluctuating Charge Force Fields Application to Liquid Water
Rick, S W; Berne, B J; Rick, Steven W.; Stuart, Steven J.
1994-01-01
A new molecular dynamics model in which the point charges on atomic sites are allowed to fluctuate in response to the environment is developed and applied to water. The idea for treating charges as variables is based on the concept of electronegativity equalization according to which: (a) The electronegativity of an atomic site is dependent on the atom's type and charge and is perturbed by the electrostatic potential it experiences from its neighbors and (b) Charge is transferred between atomic sites in such a way that electronegativities are equalized. The charges are treated as dynamical variables using an extended Lagrangian method in which the charges are given a fictitious mass, velocities and kinetic energy and then propagated according to Newtonian mechanics along with the atomic degrees of freedom. Models for water with fluctuating charges are developed using the geometries of two common fixed-charge water potentials: the simple point charge (SPC) and the 4-point transferable intermolecular potential ...
Integrated dynamic and static tactile sensor: focus on static force sensing
Wettels, Nicholas; Pletner, Baruch
2012-04-01
Object grasping by robotic hands in unstructured environments demands a sensor that is durable, compliant, and responsive to static and dynamic force conditions. In order for a tactile sensor to be useful for grasp control in these, it should have the following properties: tri-axial force sensing (two shear plus normal component), dynamic event sensing across slip frequencies, compliant surface for grip, wide dynamic range (depending on application), insensitivity to environmental conditions, ability to withstand abuse and good sensing behavior (e.g. low hysteresis, high repeatability). These features can be combined in a novel multimodal tactile sensor. This sensor combines commercial-off-the-shelf MEMS technology with two proprietary force sensors: a high bandwidth device based on PZT technology and low bandwidth device based on elastomers and optics. In this study, we focus on the latter transduction mechanism and the proposed architecture of the completed device. In this study, an embedded LED was utilized to produce a constant light source throughout a layer of silicon rubber which covered a plastic mandrel containing a set of sensitive phototransistors. Features about the contacted object such as center of pressure and force vectors can be extracted from the information in the changing patterns of light. The voltage versus force relationship obtained with this molded humanlike finger had a wide dynamic range that coincided with forces relevant for most human grip tasks.
Comparison of parametric FBP and OS-EM reconstruction algorithm images for PET dynamic study
Oda, Keiichi; Uemura, Koji; Kimura, Yuichi; Senda, Michio [Tokyo Metropolitan Inst. of Gerontology (Japan). Positron Medical Center; Toyama, Hinako; Ikoma, Yoko
2001-10-01
An ordered subsets expectation maximization (OS-EM) algorithm is used for image reconstruction to suppress image noise and to make non-negative value images. We have applied OS-EM to a digital brain phantom and to human brain {sup 18}F-FDG PET kinetic studies to generate parametric images. A 45 min dynamic scan was performed starting injection of FDG with a 2D PET scanner. The images were reconstructed with OS-EM (6 iterations, 16 subsets) and with filtered backprojection (FBP), and K1, k2 and k3 images were created by the Marquardt non-linear least squares method based on the 3-parameter kinetic model. Although the OS-EM activity images correlated fairly well with those obtained by FBP, the pixel correlations were poor for the k2 and k3 parametric images, but the plots were scattered along the line of identity and the mean values for K1, k2 and k3 obtained by OS-EM were almost equal to those by FBP. The kinetic fitting error for OS-EM was no smaller than that for FBP. The results suggest that OS-EM is not necessarily superior to FBP for creating parametric images. (author)
Population genetic dynamics of an invasion reconstructed from the sediment egg bank.
Möst, Markus; Oexle, Sarah; Marková, Silvia; Aidukaite, Dalia; Baumgartner, Livia; Stich, Hans-Bernd; Wessels, Martin; Martin-Creuzburg, Dominik; Spaak, Piet
2015-08-01
Biological invasions are a global issue with far-reaching consequences for single species, communities and whole ecosystems. Our understanding of modes and mechanisms of biological invasions requires knowledge of the genetic processes associated with successful invasions. In many instances, this information is particularly difficult to obtain as the initial phases of the invasion process often pass unnoticed and we rely on inferences from contemporary population genetic data. Here, we combined historic information with the genetic analysis of resting eggs to reconstruct the invasion of Daphnia pulicaria into Lower Lake Constance (LLC) in the 1970s from the resting egg bank in the sediments. We identified the invader as 'European D. pulicaria' originating from meso- and eutrophic lowland lakes and ponds in Central Europe. The founding population was characterized by extremely low genetic variation in the resting egg bank that increased considerably over time. Furthermore, strong evidence for selfing and/or biparental inbreeding was found during the initial phase of the invasion, followed by a drop of selfing rate to low levels in subsequent decades. Moreover, the increase in genetic variation was most pronounced during early stages of the invasion, suggesting additional introductions during this period. Our study highlights that genetic data covering the entire invasion process from its beginning can be crucial to accurately reconstruct the invasion history of a species. We show that propagule banks can preserve such information enabling the study of population genetic dynamics and sources of genetic variation in successful invasive populations. © 2015 John Wiley & Sons Ltd.
Korotkii, Alexander; Kovtunov, Dmitry; Ismail-Zadeh, Alik; Tsepelev, Igor; Melnik, Oleg
2016-06-01
We study a model of lava flow to determine its thermal and dynamic characteristics from thermal measurements of the lava at its surface. Mathematically this problem is reduced to solving an inverse boundary problem. Namely, using known conditions at one part of the model boundary we determine the missing condition at the remaining part of the boundary. We develop a numerical approach to the mathematical problem in the case of steady-state flow. Assuming that the temperature and the heat flow are prescribed at the upper surface of the model domain, we determine the flow characteristics in the entire model domain using a variational (adjoint) method. We have performed computations of model examples and showed that in the case of smooth input data the lava temperature and the flow velocity can be reconstructed with a high accuracy. As expected, a noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level. Also we analyse the influence of optimization methods on the solution convergence rate. The proposed method for reconstruction of physical parameters of lava flows can also be applied to other problems in geophysical fluid flows.
The acute effects of dynamic and ballistic stretching on vertical jump height, force, and power.
Jaggers, Jason R; Swank, Ann M; Frost, Karen L; Lee, Chong D
2008-11-01
Stretching before performance is a common practice among athletes in hopes of increasing performance and reducing the risk of injury. However, cumulative results indicate a negative impact of static stretching and proprioceptive neuromuscular facilitation (PNF) on performance; thus, there is a need for evaluating other stretching strategies for effective warm-up. The purpose of this study was to compare the differences between two sets of ballistic stretching and two sets of a dynamic stretching routine on vertical jump performance. Twenty healthy male and female college students between the ages of 22 and 34 (24.8 +/- 3 years) volunteered to participate in this study. All subjects completed three individual testing sessions on three nonconsecutive days. On each day, the subjects completed one of three treatments (no stretch, ballistic stretch, and dynamic stretch). Intraclass reliability was determined using the data obtained from each subject. A paired samples t-test revealed no significant difference in jump height, force, or power when comparing no stretch with ballistic stretch. A significant difference was found on jump power when comparing no stretch with dynamic stretch, but no significant difference was found for jump height or force. Statistics showed a very high reliability when measuring jump height, force, and power using the Kistler Quattro Jump force plate. It seems that neither dynamic stretching nor ballistic stretching will result in an increase in vertical jump height or force. However, dynamic stretching elicited gains in jump power poststretch.
Impact of External Forcing on Glacier Dynamics at Jakobshavn Isbræ during 1840-2012
Muresan, I. S.; Khan, S. A.; Aschwanden, A.; Khroulev, C.; Bjork, A. A.; Box, J. E.
2014-12-01
Greenland's main outlet glaciers have more than doubled their contribution to global sea-level rise over the past decade through acceleration of ice discharge. One of the triggering mechanisms is a reduction in resistance (buttressing) at the marine based glacier front (i.e. through reduced thickness or retreat of the floating tongue of a glacier) caused by enhanced calving or a longer-term thinning due to a mass deficit of the ice sheet. Recent findings indicate the reduced buttressing at the marine terminus is responsible for the recent dynamic changes observed in Greenland, but the controlling processes and triggering mechanisms are still unclear. Furthermore, our current understanding is almost entirely based on observations from a short-term record spanning only from a year to a decade, and is characterized by short-term fluctuations and therefore not representative for longer-term trends of several decade time scales. Here, we study the mechanisms controlling dynamic changes at the terminus of Jakobshavn Isbræ over a period of 172 years. The recent glacier acceleration began in late 1990s but there is evidence for glacier retreat of comparable magnitude in 1930s, when a similarly warm period occurred. To control the acceleration and retreat based on observed front positions during 1840-2012, we use an ocean model modifier that implements forcing at the ocean boundary using melange back pressure offsets. The mean temperature anomaly in west Greenland, the North Atlantic oscillation (NAO) winter index and the Atlantic multidecadal oscillation (AMO) index anomalies for the period 1900-2012 sustain our modelling results. The modelled surface elevation changes near the front are considered and compared with observed surface elevation changes for the period 1880-2012. Furthermore, the modelled mass loss signal between 1997-2012 is validated based on ice mass change observations which we estimate using altimeter surveys from NASA's ATM flights during 1997
Mirkov, Dragan M; Knezevic, Olivera M; Maffiuletti, Nicola A; Kadija, Marko; Nedeljkovic, Aleksandar; Jaric, Slobodan
2017-03-01
The aim of this study was to assess the effect of a unilateral anterior cruciate ligament reconstruction (ACLR) on maximum voluntary contraction (MVC) and explosive strength of both the involved limb and the uninvolved limb. Nineteen male athletes completed a standard isometric testing protocol 4 months post-ACLR, while 16 healthy participants served as a control group (CG). The explosive strength of the knee extensors and flexors was assessed as RFD obtained from the slope of the force-time curves over various time intervals. Both muscle groups of the involved limb had significantly lower MVC compared to the uninvolved. The involved limb also had significantly lower RFD in the late phase of contraction (140-250 ms) for both knee extensors and flexors (P < 0.05). There was no difference in MVC between the uninvolved limb and the CG. However, RFD of the uninvolved limb was lower compared to CG for both knee extensors (0-180 ms; P < 0.01) and flexors (0-150 ms; P < 0.05). ACLR leads to lower MVC and explosive strength of the involved limb. As a consequence of potential crossover (presumably neural-mediated) effects, explosive strength deficits could be bilateral, particularly in the early phase of the contraction (<100 ms).
Dynamics of sessile drops. Part 3. Theory of forced oscillations
Bostwick, Joshua B
2016-01-01
A partially-wetting sessile drop is driven by a sinusoidal pressure field that produces capillary waves on the liquid/gas interface. The analysis presented in Part 1 of this series (Bostwick & Steen 2014) is extended by computing response diagrams and phase shifts for the viscous droplet, whose three phase contact-line moves with contact-angle that is a smooth function of the contact line speed. Viscous dissipation is incorporated through the viscous potential flow approximation and the critical Ohnesorge number bounding regions beyond which a given mode becomes over-damped is computed. Davis dissipation originating from the contact-line speed condition leads to damped oscillations for drops with finite contact-line mobility, even for inviscid fluids. The critical mobility and associated driving frequency to generate the largest Davis dissipation is computed. Lastly, regions of modal coexistence where two modes can be simultaneously excited by a single forcing frequency are identified. Predictions compare...
Foot force models of crowd dynamics on a wobbly bridge
Belykh, Igor; Belykh, Vladamir
2016-01-01
Modern pedestrian and suspension bridges are designed using industry-standard packages, yet disastrous resonant vibrations are observed, necessitating multi-million dollar repairs. Recent examples include pedestrian induced vibrations during the openings of the Solf\\'erino Bridge in Paris in 1999 and the increased bouncing of the Squibb Park Bridge in Brooklyn in 2014. The most prominent example of an unstable lively bridge is the London Millennium Bridge which started wobbling as a result of pedestrian-bridge interactions. Pedestrian phase-locking due to footstep phase adjustment, is suspected to be the main cause of its large lateral vibrations; however, its role in the initiation of wobbling was debated. In this paper, we develop foot force models of pedestrians' response to bridge motion and detailed, yet analytically tractable models of crowd phase-locking. We use bio-mechanically inspired models of crowd lateral movement to investigate to what degree pedestrian synchrony must be present for a bridge to ...
Calibrating the Local and Platoon Dynamics of Car-following Models on the Reconstructed NGSIM Data
Kurtc, Valentina
2016-01-01
The NGSIM trajectory data are used to calibrate two car-following models - the IDM and the FVDM. We used the I80 dataset which has already been reconstructed to eliminate outliers, unphysical data, and internal and platoon inconsistencies contained in the original data.We extract from the data leader-follower pairs and platoons of up to five consecutive vehicles thereby eliminating all trajectories that are too short or contain lane changes. Four error measures based on speed and gap deviations are considered. Furthermore, we apply three calibration methods: local or direct calibration, global calibration, and platoon calibration. The last approach means that a platoon of several vehicles following a data-driven leader is simulated and compared to the observed dynamics.
A Bayesian nonparametric approach to reconstruction and prediction of random dynamical systems
Merkatas, Christos; Kaloudis, Konstantinos; Hatjispyros, Spyridon J.
2017-06-01
We propose a Bayesian nonparametric mixture model for the reconstruction and prediction from observed time series data, of discretized stochastic dynamical systems, based on Markov Chain Monte Carlo methods. Our results can be used by researchers in physical modeling interested in a fast and accurate estimation of low dimensional stochastic models when the size of the observed time series is small and the noise process (perhaps) is non-Gaussian. The inference procedure is demonstrated specifically in the case of polynomial maps of an arbitrary degree and when a Geometric Stick Breaking mixture process prior over the space of densities, is applied to the additive errors. Our method is parsimonious compared to Bayesian nonparametric techniques based on Dirichlet process mixtures, flexible and general. Simulations based on synthetic time series are presented.
Dynamic Reconstruction-Based Fuzzy Neural Network Method for Fault Detection in Chaotic System
YANG Hongying; YE Hao; WANG Guizeng
2008-01-01
This paper presents a method for detecting weak fault signals in chaotic systems based on the chaotic dynamics reconstruction technique and the fuzzy neural system (FNS). The Grassberger-Procaccia algorithm and least squares regression were used to calculate the correlation dimension for the model order estimate. Based on the model order, an appropriately structured FNS model was designed to predict system faults. Through reasonable analysis of predicted errors, the disturbed signal can be extracted efficiently and correctly from the chaotic background. Satisfactory results were obtained by using several kinds of simula-tive faults which were extracted from the practical chaotic fault systems. Experimental results demonstra tethat the proposed approach has good prediction accuracy and can deal with data having a -40 dB signal to noise ratio (SNR). The low SNR requirement makes the approach a powerful tool for early fault detection.
Recording the dynamic endocytosis of single gold nanoparticles by AFM-based force tracing
Ding, Bohua; Tian, Yongmei; Pan, Yangang; Shan, Yuping; Cai, Mingjun; Xu, Haijiao; Sun, Yingchun; Wang, Hongda
2015-04-01
We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly.We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly. Electronic supplementary information (ESI) available: Details of the experimental procedures and the results of the control experiments. See DOI: 10.1039/c5nr01020a
Dynamical forcing of sub-seasonal variability in the tropical Brewer-Dobson circulation
Abalos, Marta; Randel, William; Serrano, Encarna
2014-05-01
Upwelling across the tropical tropopause exhibits strong sub-seasonal variability superimposed on the well-known annual cycle, and these variations directly affect temperature and tracers in the tropical lower stratosphere. The dynamical forcing of tropical upwelling on sub-seasonal timescales is investigated using the ERA-Interim reanalysis for 1979-2011. Momentum balance diagnostics reveal that transience is linked to the effects of extratropical wave forcing, with centers of action in the extratropical winter stratosphere and in the subtropical upper troposphere of both hemispheres. From a diagnostic point of view, the zonal-mean wind transient response is important for communicating the remote wave forcing to the tropical stratosphere. Dynamical patterns reflect distinctive forcing of the shallow versus deep branches of the Brewer-Dobson circulation.
Research on Dynamic Tension for Belt Conveyor with Constant Force Automatic Take-Up Assembly
MENG Guo-ying; CHEN Jing-li; LI Yu-jin
2003-01-01
The article Provides a dynamic model for belt conveyor. Based on the drive-force of conveyor, take-up tension of take-up assembly, gravity of conveyor belt and material, and friction between belt and idlers, it gives a viscoelastic dynamic equation for conveyor belt. It presents a calculation method of analytic solution to both viscoelastic dynamic equation and geometric dynamic equation when automatic take-up assembly is applied to belt conveyor. The article also makes a study of design method of limiting and eliminating the conveyor belt's elastic vibration.
Fan, Zheyong; Siro, Topi; Harju, Ari
2012-01-01
In this paper, we develop a highly efficient molecular dynamics code fully implemented on graphics processing units for thermal conductivity calculations using the Green-Kubo formula. We compare two different schemes for force evaluation, a previously used thread-scheme where a single thread is used for one particle and each thread calculates the total force for the corresponding particle, and a new block-scheme where a whole block is used for one particle and each thread in the block calcula...
Dynamics of the Dermatologic Microbiome in U.S. Air Force Basic Training
2017-04-05
DEPARTMENT OF THE AIR FORCE 59TH MEDICAL WING (AETC) JOINT BASE SAN ANTONIO - LACKLAND TEXAS MEMORANDUMFORSGTf ATfN: CAPT ANDREW PATfERSON FROM...59 MDW/SGVU SUBJECT: Professional Presentation Approval 7 APR 20 17 1. Your paper, entitled Dvnamics of the Dermatologic Microbiome in U.S. Air ...PUBLISHED OR PRESENTED: Dynamics of the dennatologic microbiome in U.S. Air Force Basic Training 7. FUNDING RECEIVED FOR THIS STUDY? r8J YES 0 NO
2017-03-03
1 Instrumented Footwear Inserts: A New Tool For Measuring Forces and Biomechanical State Changes During Dynamic Movements Joe Lacirignola1...bones and joints are repeatedly subjected to aggressive movements and high forces. The ability to measure these elements during training would be a...critical enabler for prevention of injury and development of more quantitative training procedures that focus on ambulatory mobility and agility. It
DYNAMIC COMPACTION OF PURE COPPER POWDER USING PULSED MAGNETIC FORCE
无
2007-01-01
The compaction of pure Cu powder was carried out through a series of experiments using dynamic magnetic pulse compaction, and the effects of process parameters, such as discharge energy and compacting direction, on the homogeneity and the compaction density of compacted specimens were presented and discussed. The results indicated that the compaction density of specimens increased with the augment of discharge voltage and time. During unidirectional compaction, there was a density gradient along the loading direction in the compacted specimen, and the minimum compaction density was localized to the center of the bottom of the specimen. The larger the aspect ratio of a powder body, the higher the compaction density of the compacted specimen. And high conductivity drivers were beneficial to the increase of the compaction density. The iterative and the double direction compaction were efficient means to manufacture the homogeneous and high-density powder parts.
Galactic Dynamics Using 1/r Force Without Dark Matter
Lo, Martin Wen-Yu
2013-01-01
Dark matter, a conjectured substance not directly observable but which has tremendous mass, was proposed to explain why galaxies hold together and rotate faster at their edges than predicted by Newton's Inverse Square (1/r2) Law of Gravity. Here we propose an alternative, an Inverse Law (1/r), which explains galactic morphology and rotation without dark matter. By varying initial conditions, the Inverse Law can systematically and easily generate realistic galactic formations including spirals, cartwheels (extremely difficult under Newtonian gravity), bars, rings, and spokes. This model can also produce filaments and void structures reminiscent of the large-scale structure of the universe. Newtonian gravity cannot do all this without dark matter. Occam's Razor suggests that at galactic scales, gravity should be 1/r and dark matter is unnecessary. This simple model with its self-organizing emergent properties, combined with dynamical systems theory, has broader implications. It may help us understand more compl...
WE-G-18C-08: Real Time Tumor Imaging Using a Novel Dynamic Keyhole MRI Reconstruction Technique
Lee, D; Pollock, S; Whelan, B; Keall, P [The University of Sydney, Camperdown, NSW (Australia); Greer, P [Newcastle Mater Hospital, Newcastle, NSW (Australia); The University of Newcastle, Newcastle, NSW (Australia); Kim, T [The University of Sydney, Camperdown, NSW (Australia); University of Virginia Health System, Charlottesville, VA (United States)
2014-06-15
Purpose: To test the hypothesis that the novel Dynamic Keyhole MRI reconstruction technique can accelerate image acquisition whilst maintaining high image quality for lung cancer patients. Methods: 18 MRI datasets from 5 lung cancer patients were acquired using a 3T MRI scanner. These datasets were retrospectively reconstructed using (A) The novel Dynamic Keyhole technique, (B) The conventional keyhole technique and (C) the conventional zero filling technique. The dynamic keyhole technique in MRI refers to techniques in which previously acquired k-space data is used to supplement under sampled data obtained in real time. The novel Dynamic Keyhole technique utilizes a previously acquired a library of kspace datasets in conjunction with central k-space datasets acquired in realtime. A simultaneously acquired respiratory signal is utilized to sort, match and combine the two k-space streams with respect to respiratory displacement. Reconstruction performance was quantified by (1) comparing the keyhole size (which corresponds to imaging speed) required to achieve the same image quality, and (2) maintaining a constant keyhole size across the three reconstruction methods to compare the resulting image quality to the ground truth image. Results: (1) The dynamic keyhole method required a mean keyhole size which was 48% smaller than the conventional keyhole technique and 60% smaller than the zero filling technique to achieve the same image quality. This directly corresponds to faster imaging. (2) When a constant keyhole size was utilized, the Dynamic Keyhole technique resulted in the smallest difference of the tumor region compared to the ground truth. Conclusion: The dynamic keyhole is a simple and adaptable technique for clinical applications requiring real-time imaging and tumor monitoring such as MRI guided radiotherapy. Based on the results from this study, the dynamic keyhole method could increase the imaging frequency by a factor of five compared with full k
Haptic perception of force magnitude and its relation to postural arm dynamics in 3D.
van Beek, Femke E; Bergmann Tiest, Wouter M; Mugge, Winfred; Kappers, Astrid M L
2015-12-08
In a previous study, we found the perception of force magnitude to be anisotropic in the horizontal plane. In the current study, we investigated this anisotropy in three dimensional space. In addition, we tested our previous hypothesis that the perceptual anisotropy was directly related to anisotropies in arm dynamics. In experiment 1, static force magnitude perception was studied using a free magnitude estimation paradigm. This experiment revealed a significant and consistent anisotropy in force magnitude perception, with forces exerted perpendicular to the line between hand and shoulder being perceived as 50% larger than forces exerted along this line. In experiment 2, postural arm dynamics were measured using stochastic position perturbations exerted by a haptic device and quantified through system identification. By fitting a mass-damper-spring model to the data, the stiffness, damping and inertia parameters could be characterized in all the directions in which perception was also measured. These results show that none of the arm dynamics parameters were oriented either exactly perpendicular or parallel to the perceptual anisotropy. This means that endpoint stiffness, damping or inertia alone cannot explain the consistent anisotropy in force magnitude perception.
Traceable calibration and demonstration of a portable dynamic force transfer standard
Vlajic, Nicholas; Chijioke, Ako
2017-08-01
In general, the dynamic sensitivity of a force transducer depends upon the mechanical system in which it is used. This dependence serves as motivation to develop a dynamic force transfer standard, which can be used to calibrate an application transducer in situ. In this work, we SI-traceably calibrate a hand-held force transducer, namely an impact hammer, by using a mass suspended from a thin line which is cut to produce a known dynamic force in the form of a step function. We show that this instrument is a promising candidate as a transfer standard, since its dynamic response has small variance between different users. This calibrated transfer standard is then used to calibrate a secondary force transducer in an example application setting. The combined standard uncertainty (k = 2) in the calibration of the transfer standard was determined to be 2.1% or less, up to a bandwidth of 5 kHz. The combined standard uncertainty (k = 2) in the performed transfer calibration was less than 4%, up to 3 kHz. An advantage of the transfer calibration framework presented here, is that the transfer standard can be used to transfer SI-traceable calibrations without the use of any SI-traceable voltage metrology instrumentation.
van der Werf, N R; Willemink, M J; Willems, T P; Greuter, M J W; Leiner, T
2017-01-01
To evaluate the influence of dose reduction in combination with iterative reconstruction (IR) on coronary calcium scores (CCS) in a dynamic phantom on state-of-the-art CT systems from different manufacturers. Calcified inserts in an anthropomorphic chest phantom were translated at 20 mm/s correspond
Effect of three-body forces on the lattice dynamics of noble metals
P R Vyas; C V Pandya; T C Pandya; V B Gohel
2001-04-01
A simple method to generate an effective electron–ion interaction pseudopotential from the energy wave number characteristic obtained by ﬁrst principles calculations has been suggested. This effective potential has been used, in third order perturbation, to study the effect of three-body forces on the lattice dynamics of noble metals. It is found that three-body forces, in these metals, do play an important role. The inclusion of such three-body forces appreciably improves the agreement between the experimental and theoretical phonon dispersion curves.
Precision Measurement of the Casimir Force for Au Using a Dynamic Afm
Chang, C.-C.; Banishev, A. A.; Castillo-Garza, R.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.
2012-07-01
The gradient of the Casimir force between carefully cleaned Au surfaces of a sphere and a plate is measured using a dynamic atomic force microscope in the frequency modulation regime in high vacuum. The electrostatic calibration of the setup did not reveal any effect of patches or surface contaminants. The experimental data for the force gradient are found to be consistent with theory using the plasma model approach over the entire measurement range. The Drude model approach is excluded by the data at separations from 235 to 400 nm at a 67% confidence level.
Influence of materials' optical response on actuation dynamics by Casimir forces
Sedighi, M.; Broer, W. H.; Van der Veeke, S.; Svetovoy, V. B.; Palasantzas, G.
2015-06-01
The dependence of the Casimir force on the frequency-dependent dielectric functions of interacting materials makes it possible to tailor the actuation dynamics of microactuators. The Casimir force is largest for metallic interacting systems due to the high absorption of conduction electrons in the far-infrared range. For less conductive systems, such as phase change materials or conductive silicon carbide, the reduced force offers the advantage of increased stable operation of MEMS devices against pull-in instabilities that lead to unwanted stiction. Bifurcation analysis with phase portraits has been used to compare the sensitivity of a model actuator when the optical properties are altered.
Dynamics of drag and force distributions for projectile impact in a granular medium
Ciamarra, M P; Lee, A T; Goldman, D I; Swinney, H L; Ciamarra, Massimo Pica; Lara, Antonio H.; Lee, Andrew T.; Goldman, Daniel I.; Swinney, Harry L.
2003-01-01
Our experiments and molecular dynamics simulations on a projectile penetrating a two-dimensional granular medium reveal that the mean deceleration of the projectile is constant and proportional to the impact velocity. Thus, the time taken for a projectile to decelerate to a stop is independent of its impact velocity. The simulations show that the probability distribution function of forces on grains is time-independent during a projectile's penetration of the medium. At all times the force distribution function decreases exponentially for large forces.
Cross talk between matrix elasticity and mechanical force regulates myoblast traction dynamics
Al-Rekabi, Zeinab; Pelling, Andrew E.
2013-12-01
Growing evidence suggests that critical cellular processes are profoundly influenced by the cross talk between extracellular nanomechanical forces and the material properties of the cellular microenvironment. Although many studies have examined either the effect of nanomechanical forces or the material properties of the microenvironment on biological processes, few have investigated the influence of both. Here, we performed simultaneous atomic force microscopy and traction force microscopy to demonstrate that muscle precursor cells (myoblasts) rapidly generate a significant increase in traction when stimulated with a local 10 nN force. Cells were cultured and nanomechanically stimulated on hydrogel substrates with controllable local elastic moduli varying from ˜16-89 kPa, as confirmed with atomic force microscopy. Importantly, cellular traction dynamics in response to nanomechanical stimulation only occurred on substrates that were similar to the elasticity of working muscle tissue (˜64-89 kPa) as opposed to substrates mimicking resting tissue (˜16-51 kPa). The traction response was also transient, occurring within 30 s, and dissipating by 60 s, during constant nanomechanical stimulation. The observed biophysical dynamics are very much dependent on rho-kinase and myosin-II activity and likely contribute to the physiology of these cells. Our results demonstrate the fundamental ability of cells to integrate nanoscale information in the cellular microenvironment, such as nanomechanical forces and substrate mechanics, during the process of mechanotransduction.
Force Responses and Sarcomere Dynamics of Cardiac Myofibrils Induced by Rapid Changes in [Pi].
Stehle, Robert
2017-01-24
The second phase of the biphasic force decay upon release of phosphate from caged phosphate was previously interpreted as a signature of kinetics of the force-generating step in the cross-bridge cycle. To test this hypothesis without using caged compounds, force responses and individual sarcomere dynamics upon rapid increases or decreases in concentration of inorganic phosphate [Pi] were investigated in calcium-activated cardiac myofibrils. Rapid increases in [Pi] induced a biphasic force decay with an initial slow decline (phase 1) and a subsequent 3-5-fold faster major decay (phase 2). Phase 2 started with the distinct elongation of a single sarcomere, the so-called sarcomere "give". "Give" then propagated from sarcomere to sarcomere along the myofibril. Propagation speed and rate constant of phase 2 (k+Pi(2)) had a similar [Pi]-dependence, indicating that the kinetics of the major force decay (phase 2) upon rapid increase in [Pi] is determined by sarcomere dynamics. In contrast, no "give" was observed during phase 1 after rapid [Pi]-increase (rate constant k+Pi(1)) and during the single-exponential force rise (rate constant k-Pi) after rapid [Pi]-decrease. The values of k+Pi(1) and k-Pi were similar to the rate constant of mechanically induced force redevelopment (kTR) and Ca(2+)-induced force development (kACT) measured at same [Pi]. These results indicate that the major phase 2 of force decay upon a Pi-jump does not reflect kinetics of the force-generating step but results from sarcomere "give". The other phases of Pi-induced force kinetics that occur in the absence of "give" yield the same information as mechanically and Ca(2+)-induced force kinetics (k+Pi(1) ∼ k-Pi ∼ kTR ∼ kACT). Model simulations indicate that Pi-induced force kinetics neither enable the separation of Pi-release from the rate-limiting transition f into force states nor differentiate whether the "force-generating step" occurs before, along, or after the Pi-release.
Kohler, Sophie; Far, Aïcha Beya; Hirsch, Ernest
2007-01-01
This paper presents an original approach for the optimal 3D reconstruction of manufactured workpieces based on a priori planification of the task, enhanced on-line through dynamic adjustment of the lighting conditions, and built around a cognitive intelligent sensory system using so-called Situation Graph Trees. The system takes explicitely structural knowledge related to image acquisition conditions, type of illumination sources, contents of the scene (e. g., CAD models and tolerance information), etc. into account. The principle of the approach relies on two steps. First, a socalled initialization phase, leading to the a priori task plan, collects this structural knowledge. This knowledge is conveniently encoded, as a sub-part, in the Situation Graph Tree building the backbone of the planning system specifying exhaustively the behavior of the application. Second, the image is iteratively evaluated under the control of this Situation Graph Tree. The information describing the quality of the piece to analyze is thus extracted and further exploited for, e. g., inspection tasks. Lastly, the approach enables dynamic adjustment of the Situation Graph Tree, enabling the system to adjust itself to the actual application run-time conditions, thus providing the system with a self-learning capability.
Wei Kong
2014-01-01
Full Text Available Alzheimer’s disease (AD is the most common form of dementia and leads to irreversible neurodegenerative damage of the brain. Finding the dynamic responses of genes, signaling proteins, transcription factor (TF activities, and regulatory networks of the progressively deteriorative progress of AD would represent a significant advance in discovering the pathogenesis of AD. However, the high throughput technologies of measuring TF activities are not yet available on a genome-wide scale. In this study, based on DNA microarray gene expression data and a priori information of TFs, network component analysis (NCA algorithm is applied to determining the TF activities and regulatory influences on TGs of incipient, moderate, and severe AD. Based on that, the dynamical gene regulatory networks of the deteriorative courses of AD were reconstructed. To select significant genes which are differentially expressed in different courses of AD, independent component analysis (ICA, which is better than the traditional clustering methods and can successfully group one gene in different meaningful biological processes, was used. The molecular biological analysis showed that the changes of TF activities and interactions of signaling proteins in mitosis, cell cycle, immune response, and inflammation play an important role in the deterioration of AD.
Su, Zhi-Yuan; Wu, Tzuyin; Yang, Po-Hua; Wang, Yeng-Tseng
2008-04-01
The heartbeat rate signal provides an invaluable means of assessing the sympathetic-parasympathetic balance of the human autonomic nervous system and thus represents an ideal diagnostic mechanism for detecting a variety of disorders such as epilepsy, cardiac disease and so forth. The current study analyses the dynamics of the heartbeat rate signal of known epilepsy sufferers in order to obtain a detailed understanding of the heart rate pattern during a seizure event. In the proposed approach, the ECG signals are converted into heartbeat rate signals and the embedology theorem is then used to construct the corresponding multidimensional phase space. The dynamics of the heartbeat rate signal are then analyzed before, during and after an epileptic seizure by examining the maximum Lyapunov exponent and the correlation dimension of the attractors in the reconstructed phase space. In general, the results reveal that the heartbeat rate signal transits from an aperiodic, highly-complex behaviour before an epileptic seizure to a low dimensional chaotic motion during the seizure event. Following the seizure, the signal trajectories return to a highly-complex state, and the complex signal patterns associated with normal physiological conditions reappear.
Quantifying non-ergodic dynamics of force-free granular gases
Bodrova, Anna; Chechkin, Aleksei V.; Cherstvy, Andrey G.; Metzler, Ralf
2015-01-01
Brownianmotion is ergodic in the Boltzmann–Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a...
Li, Jizhou; Zhou, Yongjin; Zheng, Yong-Ping; Li, Guanglin
2015-08-01
Muscle force output is an essential index in rehabilitation assessment or physical exams, and could provide considerable insights for various applications such as load monitoring and muscle assessment in sports science or rehabilitation therapy. Besides direct measurement of force output using a dynamometer, electromyography has earlier been used in several studies to quantify muscle force as an indirect means. However, its spatial resolution is easily compromised as a summation of the action potentials from neighboring motor units of electrode site. To explore an alternative method to indirectly estimate the muscle force output, and with better muscle specificity, we started with an investigation on the relationship between architecture dynamics and force output of triceps surae. The muscular architecture dynamics is captured in ultrasonography sequences and estimated using a previously reported motion estimation method. Then an indicator named as the dorsoventrally averaged motion profile (DAMP) is employed. The performance of force output is represented by an instantaneous version of the rate of force development (RFD), namely I-RFD. From experimental results on ten normal subjects, there were significant correlations between the I-RFD and DAMP for triceps surae, both normalized between 0 and 1, with the sum of squares error at 0.0516±0.0224, R-square at 0.7929±0.0931 and root mean squared error at 0.0159±0.0033. The statistical significance results were less than 0.01. The present study suggested that muscle architecture dynamics extracted from ultrasonography during contraction is well correlated to the I-RFD and it can be a promising option for indirect estimation of muscle force output.
Richoz, Anne-Raphaëlle; Jack, Rachael E; Garrod, Oliver G B; Schyns, Philippe G; Caldara, Roberto
2015-04-01
The human face transmits a wealth of signals that readily provide crucial information for social interactions, such as facial identity and emotional expression. Yet, a fundamental question remains unresolved: does the face information for identity and emotional expression categorization tap into common or distinct representational systems? To address this question we tested PS, a pure case of acquired prosopagnosia with bilateral occipitotemporal lesions anatomically sparing the regions that are assumed to contribute to facial expression (de)coding (i.e., the amygdala, the insula and the posterior superior temporal sulcus--pSTS). We previously demonstrated that PS does not use information from the eye region to identify faces, but relies on the suboptimal mouth region. PS's abnormal information use for identity, coupled with her neural dissociation, provides a unique opportunity to probe the existence of a dichotomy in the face representational system. To reconstruct the mental models of the six basic facial expressions of emotion in PS and age-matched healthy observers, we used a novel reverse correlation technique tracking information use on dynamic faces. PS was comparable to controls, using all facial features to (de)code facial expressions with the exception of fear. PS's normal (de)coding of dynamic facial expressions suggests that the face system relies either on distinct representational systems for identity and expression, or dissociable cortical pathways to access them. Interestingly, PS showed a selective impairment for categorizing many static facial expressions, which could be accounted for by her lesion in the right inferior occipital gyrus. PS's advantage for dynamic facial expressions might instead relate to a functionally distinct and sufficient cortical pathway directly connecting the early visual cortex to the spared pSTS. Altogether, our data provide critical insights on the healthy and impaired face systems, question evidence of deficits
Velazquez, Hector A; Hamelberg, Donald
2015-02-21
Cis-trans isomerization of peptidyl-prolyl bonds of the protein backbone plays an important role in numerous biological processes. Cis-trans isomerization can be the rate-limiting step due its extremely slow dynamics, compared to the millisecond time scale of many processes, and is catalyzed by a widely studied family of peptidyl-prolyl cis-trans isomerase enzymes. Also, mechanical forces along the peptide chain can speed up the rate of isomerization, resulting in "mechanical catalysis," and have been used to study peptidyl-prolyl cis-trans isomerization and other mechanical properties of proteins. Here, we use constant force molecular dynamics simulations to study the dynamical effects of phosphorylation on serine/threonine-proline protein motifs that are involved in the function of many proteins and have been implicated in many aberrant biological processes. We show that the rate of cis-trans isomerization is slowed down by phosphorylation, in excellent agreement with experiments. We use a well-grounded theory to describe the force dependent rate of isomerization. The calculated rates at zero force are also in excellent agreement with experimentally measured rates, providing additional validation of the models and force field parameters. Our results suggest that the slowdown in the rate upon phosphorylation is mainly due to an increase in the friction along the peptidyl-prolyl bond angle during isomerization. Our results provide a microscopic description of the dynamical effects of post-translational phosphorylation on cis-trans isomerization and insights into the properties of proteins under tension.
Coridan, Robert H.; Schmidt, Nathan W.; Lai, Ghee Hwee; Abbamonte, Peter; Wong, Gerard C. L.
2012-03-01
Nanoconfined water and surface-structured water impacts a broad range of fields. For water confined between hydrophilic surfaces, measurements and simulations have shown conflicting results ranging from “liquidlike” to “solidlike” behavior, from bulklike water viscosity to viscosity orders of magnitude higher. Here, we investigate how a homogeneous fluid behaves under nanoconfinement using its bulk response function: The Green's function of water extracted from a library of S(q,ω) inelastic x-ray scattering data is used to make femtosecond movies of nanoconfined water. Between two confining surfaces, the structure undergoes drastic changes as a function of surface separation. For surface separations of ≈9 Å, although the surface-associated hydration layers are highly deformed, they are separated by a layer of bulklike water. For separations of ≈6 Å, the two surface-associated hydration layers are forced to reconstruct into a single layer that modulates between localized “frozen’ and delocalized “melted” structures due to interference of density fields. These results potentially reconcile recent conflicting experiments. Importantly, we find a different delocalized wetting regime for nanoconfined water between surfaces with high spatial frequency charge densities, where water is organized into delocalized hydration layers instead of localized hydration shells, and are strongly resistant to `freezing' down to molecular distances (<6 Å).
Bailey, Geoffrey N.; King, Geoffrey C. P.
2011-06-01
Studies of the impact of physical environment on human evolution usually focus on climate as the main external forcing agent of evolutionary and cultural change. In this paper we focus on changes in the physical character of the landscape driven by geophysical processes as an equally potent factor. Most of the landscapes where finds of early human fossils and artefacts are concentrated are ones that have been subjected to high levels of geological instability, either because of especially active tectonic processes associated with faulting and volcanic activity or because of proximity to coastlines subject to dramatic changes of geographical position and physical character by changes of relative sea level. These processes can have both beneficial effects, creating ecologically attractive conditions for human settlement, and deleterious or disruptive ones, creating barriers to movement, disruption of ecological conditions, or hazards to survival. Both positive and negative factors can have powerful selective effects on human behaviour and patterns of settlement and dispersal. We consider both these aspects of the interaction, develop a framework for the reconstruction and comparison of landscapes and landscape change at a variety of scales, and illustrate this with selected examples drawn from Africa and Arabia.
Relationship between jaw opening force and hyoid bone dynamics in healthy elderly subjects.
Shinozaki, Hiromichi; Tohara, Haruka; Matsubara, Mariko; Inokuchi, Nobuhiro; Yamazaki, Yasuhiro; Nakane, Ayako; Wakasugi, Yoko; Minakuchi, Shunsuke
2017-01-01
This study aimed to examine the relationship between jaw opening force and hyoid bone dynamics and resting position in elderly individuals based on gender. Subjects were 36 healthy elderly individuals aged ≥65 years without dysphagia (16 men and 20 women; mean age 75.5 years, range 65-88 years). Videofluorographic images during the swallowing of 10 mL of 40% (w/v) barium sulfate were obtained and the degrees of anterior, superior, and hypotenuse displacements of the hyoid bone and maximum/resting hyoid position were evaluated. Jaw opening force was measured three times using a jaw opening force sthenometer; the mean of these three measurements was used for analysis. In men, there was a positive correlation between jaw opening force and resting hyoid position and negative correlations among all the degrees of anterior, superior, and hypotenuse displacements of the hyoid bone. In women, there was no statistically significant correlation between jaw opening force and any of the measurement items. There was no statistically significant correlation between jaw opening force and maximum hyoid position in either men or women. Our findings suggest that low jaw opening force leads to low resting hyoid position only in elderly men, and a lower hyoid position in healthy elderly men results in a larger total amount of hyoid displacement during swallowing. Moreover, a maximum hyoid position in healthy individuals of either gender does not differ depending on their jaw opening force.
Ryan Wen Liu
2017-03-01
Full Text Available Dynamic magnetic resonance imaging (MRI has been extensively utilized for enhancing medical living environment visualization, however, in clinical practice it often suffers from long data acquisition times. Dynamic imaging essentially reconstructs the visual image from raw (k,t-space measurements, commonly referred to as big data. The purpose of this work is to accelerate big medical data acquisition in dynamic MRI by developing a non-convex minimization framework. In particular, to overcome the inherent speed limitation, both non-convex low-rank and sparsity constraints were combined to accelerate the dynamic imaging. However, the non-convex constraints make the dynamic reconstruction problem difficult to directly solve through the commonly-used numerical methods. To guarantee solution efficiency and stability, a numerical algorithm based on Alternating Direction Method of Multipliers (ADMM is proposed to solve the resulting non-convex optimization problem. ADMM decomposes the original complex optimization problem into several simple sub-problems. Each sub-problem has a closed-form solution or could be efficiently solved using existing numerical methods. It has been proven that the quality of images reconstructed from fewer measurements can be significantly improved using non-convex minimization. Numerous experiments have been conducted on two in vivo cardiac datasets to compare the proposed method with several state-of-the-art imaging methods. Experimental results illustrated that the proposed method could guarantee the superior imaging performance in terms of quantitative and visual image quality assessments.
Liu, Ryan Wen; Shi, Lin; Yu, Simon Chun Ho; Xiong, Naixue; Wang, Defeng
2017-01-01
Dynamic magnetic resonance imaging (MRI) has been extensively utilized for enhancing medical living environment visualization, however, in clinical practice it often suffers from long data acquisition times. Dynamic imaging essentially reconstructs the visual image from raw (k,t)-space measurements, commonly referred to as big data. The purpose of this work is to accelerate big medical data acquisition in dynamic MRI by developing a non-convex minimization framework. In particular, to overcome the inherent speed limitation, both non-convex low-rank and sparsity constraints were combined to accelerate the dynamic imaging. However, the non-convex constraints make the dynamic reconstruction problem difficult to directly solve through the commonly-used numerical methods. To guarantee solution efficiency and stability, a numerical algorithm based on Alternating Direction Method of Multipliers (ADMM) is proposed to solve the resulting non-convex optimization problem. ADMM decomposes the original complex optimization problem into several simple sub-problems. Each sub-problem has a closed-form solution or could be efficiently solved using existing numerical methods. It has been proven that the quality of images reconstructed from fewer measurements can be significantly improved using non-convex minimization. Numerous experiments have been conducted on two in vivo cardiac datasets to compare the proposed method with several state-of-the-art imaging methods. Experimental results illustrated that the proposed method could guarantee the superior imaging performance in terms of quantitative and visual image quality assessments. PMID:28273827
Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy
Cantrell, John H.; Cantrell, Sean A.
2010-01-01
The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.
Madanu, Sushma Bala
Transverse vibrations of an electrostatically actuated thin flexible cantilever perturbed by low-speed air flow is studied using both experiments and numerical modeling. In the experiments the dynamic characteristics of the cantilever are studied by supplying a DC voltage with an AC component for electrostatic forcing and a constant uniform air flow around the cantilever system for aerodynamic forcing. The maximum voltage applied varies from 1 - 9 kV and air flow speeds range from 0.224 - 3.58 m/s (0.5 - 8 mile/hr). The Reynolds numbers for these speeds lie in the range of 1000 - 20000. A range of control parameters leading to stable vibrations are established using the Strouhal number as the operating parameter whose inverse values change from 100 - 2500. The Numerical results are validated with experimental results. Assuming the amplitude of vibrations are small, then a non-linear dynamic Euler-Bernoulli beam equation with viscous damping and gravitational effects is used to model the vibrations of the dynamical system. Aerodynamic forcing is modeled as a temporally sinusoidal and uniform force acting perpendicular to the beam length. The forcing amplitude is found to be proportional to square of air flow velocity by obtaining relationship between the experimental amplitude of vibrations and air flow velocity. Numerical results strongly agree with those of experiments predicting accurate vibration amplitudes, displacement frequency and quasi-periodic displacements of the cantilever tip.
American Society for Testing and Materials. Philadelphia
2008-01-01
1.1 This practice covers procedures for the dynamic verification of cyclic force amplitude control or measurement accuracy during constant amplitude testing in an axial fatigue testing system. It is based on the premise that force verification can be done with the use of a strain gaged elastic element. Use of this practice gives assurance that the accuracies of forces applied by the machine or dynamic force readings from the test machine, at the time of the test, after any user applied correction factors, fall within the limits recommended in Section 9. It does not address static accuracy which must first be addressed using Practices E 4 or equivalent. 1.2 Verification is specific to a particular test machine configuration and specimen. This standard is recommended to be used for each configuration of testing machine and specimen. Where dynamic correction factors are to be applied to test machine force readings in order to meet the accuracy recommended in Section 9, the verification is also specific to the c...
Modeling the desired direction in a force-based model for pedestrian dynamics
Chraibi, Mohcine; Schadschneider, Andreas; Seyfried, Armin
2012-01-01
We introduce an enhanced model based on the generalized centrifugal force model. Furthermore, the desired direction of pedestrians is investigated. A new approach leaning on the well-known concept of static and dynamic floor-fields in cellular automata is presented. Numerical results of the model are presented and compared with empirical data.
Dynamics of a Disturbed Sessile Drop Measured by Atomic Force Microscopy (AFM)
McGuiggan, Patricia M.; Grave, Daniel A.; Wallace, Jay S.; Cheng, Shengfeng; Prosperetti, Andrea; Robbins, Mark O.
2011-01-01
A new method for studying the dynamics of a sessile drop by atomic force microscopy (AFM) is demonstrated. A hydrophobic microsphere (radius, r 20–30 μm) is brought into contact with a small sessile water drop resting on a polytetrafluoroethylene (PTFE) surface. When the microsphere touches the liq
Dynamical ordering of non-Birkhoff periodic orbits in a forced pendulum
Yamaguchi, Yoshihiro [Teikyo Heisei Univ., Ichihara, Chiba (Japan); Tanikawa, Kiyotaka [National Astronomical Observatory, Mitaka, Tokyo (Japan)
2001-12-01
Forced pendulums induce reversible non-monotone twist mappings. Non-Birkhoff periodic orbits (NBO) are found in these mappings, and hence in the pendulums. The existence of an NBO is equivalent to the non-integrability of the system. Two types of dynamical ordering for NBOs are obtained. (author)
Dynamical Ordering of Non-Birkhoff Periodic Orbits in a Forced Pendulum
Yamaguchi, Y.; Tanikawa, K.
2001-12-01
Forced pendulums induce reversible non-monotone twist mappings. Non-Birkhoff periodic orbits (NBO) are found in these mappings, and hence in the pendulums. The existence of an NBO is equivalent to the non-integrability of the system. Two types of dynamical ordering for NBOs are obtained.
Boundedness and vanishing of solutions for a forced delay dynamic equation
Anderson Douglas R
2006-01-01
Full Text Available We give conditions under which all solutions of a time-scale first-order nonlinear variable-delay dynamic equation with forcing term are bounded and vanish at infinity, for arbitrary time scales that are unbounded above. A nontrivial example illustrating an application of the results is provided.
Molecular dynamics simulation study of friction force and torque on a rough spherical particle.
Kohale, Swapnil C; Khare, Rajesh
2010-06-21
Recent developments in techniques of micro- and nanofluidics have led to an increased interest in nanoscale hydrodynamics in confined geometries. In our previous study [S. C. Kohale and R. Khare, J. Chem. Phys. 129, 164706 (2008)], we analyzed the friction force experienced by a smooth spherical particle that is translating in a fluid confined between parallel plates. The magnitude of three effects--velocity slip at particle surface, the presence of confining surfaces, and the cooperative hydrodynamic interactions between periodic images of the moving particle--that determine the friction force was quantified in that work using molecular dynamics simulations. In this work, we have studied the motion of a rough spherical particle in a confined geometry. Specifically, the friction force experienced by a translating particle and the torque experienced by a rotating particle are studied using molecular dynamics simulations. Our results demonstrate that the surface roughness of the particle significantly reduces the slip at the particle surface, thus leading to higher values of the friction force and hence a better agreement with the continuum predictions. The particle size dependence of the friction force and the torque values is shown to be consistent with the expectations from the continuum theory. As was observed for the smooth sphere, the cooperative hydrodynamic interactions between the images of the sphere have a significant effect on the value of the friction force experienced by the translating sphere. On the other hand, the torque experienced by a spherical particle that is rotating at the channel center is insensitive to this effect.
Spatial and Temporal Dynamics in the Ionic Driving Force for GABAA Receptors
R. Wright
2011-01-01
Full Text Available It is becoming increasingly apparent that the strength of GABAergic synaptic transmission is dynamic. One parameter that can establish differences in the actions of GABAergic synapses is the ionic driving force for the chloride-permeable GABAA receptor (GABAAR. Here we review some of the sophisticated ways in which this ionic driving force can vary within neuronal circuits. This driving force for GABAARs is subject to tight spatial control, with the distribution of Cl− transporter proteins and channels generating regional variation in the strength of GABAAR signalling across a single neuron. GABAAR dynamics can result from short-term changes in their driving force, which involve the temporary accumulation or depletion of intracellular Cl−. In addition, activity-dependent changes in the expression and function of Cl− regulating proteins can result in long-term shifts in the driving force for GABAARs. The multifaceted regulation of the ionic driving force for GABAARs has wide ranging implications for mature brain function, neural circuit development, and disease.
Rapp, Michael V; Donaldson, Stephen H; Gebbie, Matthew A; Das, Saurabh; Kaufman, Yair; Gizaw, Yonas; Koenig, Peter; Roiter, Yuri; Israelachvili, Jacob N
2015-05-06
Surfactant self-assembly on surfaces is an effective way to tailor the complex forces at and between hydrophobic-water interfaces. Here, the range of structures and forces that are possible at surfactant-adsorbed hydrophobic surfaces are demonstrated: certain long-chain bolaform surfactants-containing a polydimethylsiloxane (PDMS) mid-block domain and two cationic α, ω-quarternary ammonium end-groups-readily adsorb onto thin PDMS films and form dynamically fluctuating nanostructures. Through measurements with the surface forces apparatus (SFA), it is found that these soft protruding nanostructures display polymer-like exploration behavior at the PDMS surface and give rise to a long-ranged, temperature- and rate-dependent attractive bridging force (not due to viscous forces) on approach to a hydrophilic bare mica surface. Coulombic interactions between the cationic surfactant end-groups and negatively-charged mica result in a rate-dependent polymer bridging force during separation as the hydrophobic surfactant mid-blocks are pulled out from the PDMS interface, yielding strong adhesion energies. Thus, (i) the versatile array of surfactant structures that may form at hydrophobic surfaces is highlighted, (ii) the need to consider the interaction dynamics of such self-assembled polymer layers is emphasized, and (iii) it is shown that long-chain surfactants can promote robust adhesion in aqueous solutions.
Dynamics of the Bogie of Maglev Train with Distributed Magnetic Forces
Yaozong Liu
2015-01-01
Full Text Available A dynamic model of the bogie of maglev train with distributed magnetic forces and four identical levitating controllers is formulated. The vertical, pitching, and rolling degree of freedom of the electromagnet modules and their coupling are considered. The frequency responses of the bogie to track irregularity are investigated with numerical simulation. The results tell us that there are resonances related to the first electromagnetic suspension whose frequencies are determined by the control parameters. A comparative analysis has been carried out between the models with distributed or concentrated magnetic forces. The comparison indicates that simplifying the distributed magnetic force to concentrated one degenerates the dynamic behavior of the maglev bogie, especially resulting in overestimated resonances of the first electromagnetic suspension of maglev trains. The results also indicate that those resonances only occur on specific wavelengths of irregularity that relate to the length of the electromagnets.
Wang, R.; Williams, C. C., E-mail: clayton@physics.utah.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 (United States)
2015-09-15
Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.
Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).
Dynamics and Optimal Feet Force Distributions of a Realistic Four-legged Robot
Saurav Agarwal
2012-08-01
Full Text Available This paper presents a detailed dynamic modeling of realistic four-legged robot. The direct and inverse kinematic analysis for each leg has been considered in order to develop an overall kinematic model of the robot, when it follows a straight path. This study also aims to estimate optimal feet force distributions of the said robot, which is necessary for its real-time control. Three different approaches namely, minimization of norm of feet forces (approach 1, minimization of norm of joint torques (approach 2 and minimization of norm of joint power (approach 3 have been developed. Simulation result shows that approach 3 is more energy efficient foot force formulation than other two approaches. Lagrange-Euler formulation has been utilized to determine the joint torques. The developed dynamic models have been examined through computer simulation of continuous gait of the four-legged robot.
Naumov, Vladimir S; Ignatov, Stanislav K
2017-08-01
The GROMOS 56ACARBO force field for the description of carbohydrates was modified for calculations of chitosan (poly-1,4-(N-acetyl)-β-D-glucopyranosamine-2) with protonated and non-protonated amino groups and its derivatives. Additional parameterization was developed on the basis of quantum chemical calculations. The modified force field (56ACARBO_CHT) allows performing the molecular dynamic calculations of chitosans with different degrees of protonation corresponding to various acidity of medium. Test calculations of the conformational transitions in the chitosan rings and polymeric chains as well as the chitosan nanocrystal dissolution demonstrate good agreement with experimental data. Graphical abstract The GROMOS 56ACARBO_CHT force field allows performing the molecular dynamic calculations of chitosans with different types of amio-group: free, protonated, substituted.
D. O. Kavanagh
2012-01-01
Full Text Available A 72-year-old female presented with a six-month history of increased frequency of defecation, rectal bleeding, and severe rectal pain. Digital rectal examination and endoscopy revealed a low rectal lesion lying anteriorly. This was confirmed histologically as adenocarcinoma. Radiological staging was consistent with a T3N2 rectal tumour. Following long-course chemoradiotherapy repeat staging did not identify any metastatic disease. She underwent a laparoscopic cylindrical abdominoperineal excision with en bloc resection of the coccyx and posterior wall of the vagina with a negative circumferential resection margin. The perineal defect was reconstructed with Permacol (biological implant, Covidien mesh. She had no clinical evidence of a perineal hernia at serial followup. Dynamic MRI images of the pelvic floor obtained during valsalva at 10 months revealed an intact pelvic floor. A control case that had undergone a conventional abdominoperineal excision with primary perineal closure without clinical evidence of herniation was also imaged. This confirmed subclinical perineal herniation with significant downward migration of the bowel and bladder below the pubococcygeal line. We eagerly await further evidence supporting a role for dynamic MR imaging in assessing the integrity of a reconstructed pelvic floor following cylindrical abdominoperineal excision.
Ting-Jung Chen
Full Text Available Cytoskeleton plays important roles in intracellular force equilibrium and extracellular force transmission from/to attaching substrate through focal adhesions (FAs. Numerical simulations of intracellular force distribution to describe dynamic cell behaviors are still limited. The tensegrity structure comprises tension-supporting cables and compression-supporting struts that represent the actin filament and microtubule respectively, and has many features consistent with living cells. To simulate the dynamics of intracellular force distribution and total stored energy during cell spreading, the present study employed different complexities of the tensegrity structures by using octahedron tensegrity (OT and cuboctahedron tensegrity (COT. The spreading was simulated by assigning specific connection nodes for radial displacement and attachment to substrate to form FAs. The traction force on each FA was estimated by summarizing the force carried in sounding cytoskeletal elements. The OT structure consisted of 24 cables and 6 struts and had limitations soon after the beginning of spreading by declining energy stored in struts indicating the abolishment of compression in microtubules. The COT structure, double the amount of cables and struts than the OT structure, provided sufficient spreading area and expressed similar features with documented cell behaviors. The traction force pointed inward on peripheral FAs in the spread out COT structure. The complex structure in COT provided further investigation of various FA number during different spreading stages. Before the middle phase of spreading (half of maximum spreading area, cell attachment with 8 FAs obtained minimized cytoskeletal energy. The maximum number of 12 FAs in the COT structure was required to achieve further spreading. The stored energy in actin filaments increased as cells spread out, while the energy stored in microtubules increased at initial spreading, peaked in middle phase, and then
Flexible Piezoelectric Tactile Sensor Array for Dynamic Three-Axis Force Measurement.
Yu, Ping; Liu, Weiting; Gu, Chunxin; Cheng, Xiaoying; Fu, Xin
2016-06-03
A new flexible piezoelectric tactile sensor array based on polyvinylidene fluoride (PVDF) film is proposed for measuring three-axis dynamic contact force distribution. The array consists of six tactile units arranged as a 3 × 2 matrix with spacing 8 mm between neighbor units. In each unit, a PVDF film is sandwiched between four square-shaped upper electrodes and one square-shaped lower electrode, forming four piezoelectric capacitors. A truncated pyramid bump is located above the four piezoelectric capacitors to improve force transmission. A three-axis contact force transmitted from the top of the bump will lead to the four piezoelectric capacitors underneath undergoing different charge changes, from which the normal and shear components of the force can be calculated. A series of dynamic tests have been carried out by exerting sinusoidal forces with amplitudes ranging from 0 to 0.5 N in the x-axis, 0 to 0.5 N in the y-axis, and 0 to 1.5 N in the z-axis, separately. The tactile units show good sensitivities with 14.93, 14.92, and 6.62 pC/N in the x-, y-, and z-axes, respectively. They can work with good linearity, relatively low coupling effect, high repeatability, and acceptable frequency response in the range of 5-400 Hz to both normal and shear load. In addition, dynamic three-axis force measurement has been conducted for all of the tactile units. The average errors between the applied and calculated forces are 10.68% ± 6.84%. Furthermore, the sensor array can be easily integrated onto a curved surface, such as robotic and prosthetic hands, due to its excellent flexibility.
Mori-Zwanzig theory for dissipative forces in coarse-grained dynamics in the Markov limit
Izvekov, Sergei
2017-01-01
We derive alternative Markov approximations for the projected (stochastic) force and memory function in the coarse-grained (CG) generalized Langevin equation, which describes the time evolution of the center-of-mass coordinates of clusters of particles in the microscopic ensemble. This is done with the aid of the Mori-Zwanzig projection operator method based on the recently introduced projection operator [S. Izvekov, J. Chem. Phys. 138, 134106 (2013), 10.1063/1.4795091]. The derivation exploits the "generalized additive fluctuating force" representation to which the projected force reduces in the adopted projection operator formalism. For the projected force, we present a first-order time expansion which correctly extends the static fluctuating force ansatz with the terms necessary to maintain the required orthogonality of the projected dynamics in the Markov limit to the space of CG phase variables. The approximant of the memory function correctly accounts for the momentum dependence in the lowest (second) order and indicates that such a dependence may be important in the CG dynamics approaching the Markov limit. In the case of CG dynamics with a weak dependence of the memory effects on the particle momenta, the expression for the memory function presented in this work is applicable to non-Markov systems. The approximations are formulated in a propagator-free form allowing their efficient evaluation from the microscopic data sampled by standard molecular dynamics simulations. A numerical application is presented for a molecular liquid (nitromethane). With our formalism we do not observe the "plateau-value problem" if the friction tensors for dissipative particle dynamics (DPD) are computed using the Green-Kubo relation. Our formalism provides a consistent bottom-up route for hierarchical parametrization of DPD models from atomistic simulations.
Influence of the 3D inverse dynamic method on the joint forces and moments during gait.
Dumas, R; Nicol, E; Chèze, L
2007-10-01
The joint forces and moments are commonly used in gait analysis. They can be computed by four different 3D inverse dynamic methods proposed in the literature, either based on vectors and Euler angles, wrenches and quaternions, homogeneous matrices, or generalized coordinates and forces. In order to analyze the influence of the inverse dynamic method, the joint forces and moments were computed during gait on nine healthy subjects. A ratio was computed between the relative dispersions (due to the method) and the absolute amplitudes of the gait curves. The influence of the inverse dynamic method was negligible at the ankle (2%) but major at the knee and the hip joints (40%). This influence seems to be due to the dynamic computation rather than the kinematic computation. Compared to the influence of the joint center location, the body segment inertial parameter estimation, and more, the influence of the inverse dynamic method is at least of equivalent importance. This point should be confirmed with other subjects, possibly pathologic, and other movements.
Ariane Martins
2010-08-01
Full Text Available The relationship between force and balance show controversy results and has directimplications in exercise prescription practice. The objective was to investigate the relationshipbetween maximum dynamic force (MDF of inferior limbs and the static and dynamic balances.Participated in the study 60 individuals, with 18 to 24 years old, strength training apprentices.The MDF was available by mean the One Maximum Repetition (1MR in “leg press” and “kneeextension” and motor testes to available of static and dynamic balances. The correlation testsand multiple linear regression were applied. The force and balance variables showed correlationin females (p=0.038. The corporal mass and static balance showed correlation for the males(p=0.045. The explication capacity at MDF and practices time were small: 13% for staticbalance in males, 18% and 17%, respectively, for static and dynamic balance in females. Inconclusion: the MDF of inferior limbs showed low predictive capacity for performance in staticand dynamic balances, especially for males.
Gjorevski, Nikolce; S. Piotrowski, Alexandra; Varner, Victor D.; Nelson, Celeste M.
2015-01-01
Collective cell migration drives tissue remodeling during development, wound repair, and metastatic invasion. The physical mechanisms by which cells move cohesively through dense three-dimensional (3D) extracellular matrix (ECM) remain incompletely understood. Here, we show directly that migration of multicellular cohorts through collagenous matrices occurs via a dynamic pulling mechanism, the nature of which had only been inferred previously in 3D. Tensile forces increase at the invasive front of cohorts, serving a physical, propelling role as well as a regulatory one by conditioning the cells and matrix for further extension. These forces elicit mechanosensitive signaling within the leading edge and align the ECM, creating microtracks conducive to further migration. Moreover, cell movements are highly correlated and in phase with ECM deformations. Migrating cohorts use spatially localized, long-range forces and consequent matrix alignment to navigate through the ECM. These results suggest biophysical forces are critical for 3D collective migration. PMID:26165921
Frey, Manfred; Giovanoli, Pietro; Tzou, Chieh-Han John; Kropf, Nina; Friedl, Susanne
2004-09-15
For patients with facial palsy, lagophthalmus is often a more serious problem than the inability to smile. Dynamic reconstruction of eye closure by muscle transposition or by free functional muscle transplantation offers a good solution for regaining near-normal eye protection without the need for implants. This is the first quantitative study of three-dimensional preoperative and postoperative lid movements in patients treated for facial paralysis. Between February of 1998 and April of 2002, 44 patients were treated for facial palsy, including reconstruction of eye closure. Temporalis muscle transposition to the eye was used in 34 cases, and a regionally differentiated part of a free gracilis muscle transplant after double cross-face nerve grafting was used in 10 cases. Patients' facial movements were documented by a three-dimensional video analysis system preoperatively and 6, 12, 18, and 24 months postoperatively. For this comparative study, only the data of patients with preoperative and 12-month postoperative measurements were included. In the 27 patients with a final result after temporalis muscle transposition for eye closure, the distance between the upper and lower eyelid points during eye closing (as for sleep) was reduced from 10.33 +/- 2.43 mm (mean +/- SD) preoperatively to 5.84 +/- 4.34 mm postoperatively on the paralyzed side, compared with 0.0 +/- 0.0 mm preoperatively and postoperatively on the contralateral healthy side. In the resting position, preoperative values for the paralyzed side changed from 15.11 +/- 1.92 mm preoperatively to 13.46 +/- 1.94 mm postoperatively, compared with 12.17 +/- 2.02 mm preoperatively and 12.05 +/- 1.95 mm postoperatively on the healthy side. In the nine patients with a final result after surgery using a part of the free gracilis muscle transplant reinnervated by a zygomatic branch of the contralateral healthy side through a cross-face nerve graft, eyelid closure changed from 10.21 +/- 2.72 mm to 1.68 +/- 1.35 mm
Wheel-rail dynamic forces induced by random vertical track irregularities
Spiroiu, M. A.
2016-08-01
The present paper investigates the wheel-rail dynamic forces produced by railway vehicles in motion, which are an important issue especially for the high-speed rail transport from the point of view of traffic safety, ride quality and undesirable effects on vehicles, on track and on the land in the vicinity of railways. The research is carried out on a model which includes track system, vehicle unsprung mass, vehicle primary suspension and the bogie sprung mass. The wheel-rail dynamic overloads are evaluated assuming random vertical irregularities of the track. The estimation of wheel-rail dynamic forces is made for a range of vehicle speeds up to 300 km/h and the influence of track and vehicle various parameters is investigated.
Shidong Long
2015-05-01
Full Text Available This paper presents a study on stability monitoring for a radial symmetrical hexapod robot under dynamic conditions. The force-angle stability margin (FASM measure method has been chosen as the stability criterion. This is because it is suitable for the stability analysis, in terms of external forces or manipulator loads acting on the body. Considering that a radial symmetrical hexapod robot can tumble along the contact point besides tip-over axis, this paper proposes an improved FASM measure method. Furthermore, it provides the method for calculating the stability angle of contact point and simplifies the algorithm of FASM. To verify the improved FASM measure method, three potential dynamic situations have been simulated. The simulation results confirm that, under dynamic conditions, the improved FASM is efficient, simple in terms of calculation cost and sensitive to manipulator loads and external disturbances. This means it has practical value in on-line controllers.
The Dynamics of Voluntary Force Production in Afferented Muscle Influence Involuntary Tremor
Christopher M Laine
2016-08-01
Full Text Available Voluntary control of force is always marked by some degree of error and unsteadiness. Both neural and mechanical factors contribute to these fluctuations, but how they interact to produce them is poorly understood. In this study, we identify and characterize a previously undescribed neuromechanical interaction where the dynamics of voluntary force production suffice to generate involuntary tremor. Specifically, participants were asked to produce isometric force with the index finger and use visual feedback to track a sinusoidal target spanning 5 to 9 % of each individual’s maximal voluntary force level. Force fluctuations and EMG activity over the flexor digitorum superficialis (FDS muscle were recorded and their frequency content was analyzed as a function target phase. Force variability in either the 1 to 5 or 6 to 15 Hz frequency ranges tended to be largest at the peaks and valleys of the target sinusoid. In those same periods, FDS EMG activity was synchronized with force fluctuations. We then constructed a physiologically-realistic computer simulation in which a muscle-tendon complex was set inside of a feedback-driven control loop. Surprisingly, the model sufficed to produce phase-dependent modulation of tremor similar to that observed in humans. Further, the gain of afferent feedback from muscle spindles was critical for appropriately amplifying and shaping this tremor. We suggest that the experimentally-induced tremor may represent the response of a viscoelastic muscle-tendon system to dynamic drive, and therefore does not fall into known categories of tremor generation, such as tremorogenic descending drive, stretch-reflex loop oscillations, motor unit behavior, or mechanical resonance. Our findings motivate future efforts to understand tremor from a perspective that considers neuromechanical coupling within the context of closed-loop control. The strategy of combining experimental recordings with physiologically-sound simulations will
Forced extension of P-selectin construct using steered molecular dynamics
L(U) Shouqin; LONG Mian
2004-01-01
P-selectin, a 70-nm-long cellular adhesive molecule, possesses elastic and extensible properties when neutrophils roll over the activated endotheliam of blood vessel in inflammatory reaction. Transient formation and dissociation of P-selectin/ligand bond on applied force of blood flow induces the extension of P-selectin and relevant ligands. Steered molecular dynamics simulations were performed to stretch a single P-selectin construct consisting of a lectin (Lec) domain and an epithelial growth factor (EGF)-like domain, where P-selectin construct was forced to extend in water with pulling velocities of 0.005-0.05 nm/ps and with constant forces of 1000-2500 pN respectively. Resulting force-extension profiles exhibited a dual-peak pattern on vari- ous velocities, while both plateaus and shoulders appeared in the extension-time profiles on various forces. The force or extension profiles along stretching pathways were correlated to the conformational changes, suggesting that the structural collapses of P-selectin Lec/EGF domains were mainly attributed to the burst of hydrogen bonds within the major βsheet of EGF domain and the disruptions of two hydrophobic cores of Lec domain. This work furthers the understanding of forced dissociation of P-selectin/ligand bond.
Hyland, Callen; Mertz, Aaron F; Forscher, Paul; Dufresne, Eric
2014-05-14
Growth cones of elongating neurites exert force against the external environment, but little is known about the role of force in outgrowth or its relationship to the mechanical organization of neurons. We used traction force microscopy to examine patterns of force in growth cones of regenerating Aplysia bag cell neurons. We find that traction is highest in the peripheral actin-rich domain and internal stress reaches a plateau near the transition between peripheral and central microtubule-rich domains. Integrating stress over the area of the growth cone reveals that total scalar force increases with area but net tension on the neurite does not. Tensions fall within a limited range while a substantial fraction of the total force can be balanced locally within the growth cone. Although traction continuously redistributes during extension and retraction of the peripheral domain, tension is stable over time, suggesting that tension is a tightly regulated property of the neurite independent of growth cone dynamics. We observe that redistribution of traction in the peripheral domain can reorient the end of the neurite shaft. This suggests a role for off-axis force in growth cone turning and neuronal guidance.
The force generated by biological membranes on a polymer rod and its response: Statics and dynamics
Daniels, D. R.; Turner, M. S.
2004-10-01
We propose a theory for the force exerted by a fluctuating membrane on a polymer rod tip. Using statistical mechanical methods, the expression for the generated force is written in terms of the distance of the rod tip from the membrane "frame." We apply the theory in calculating the stall force and membrane displacement required to cease the growth of a growing fiber induced by membrane fluctuations, as well as the membrane force and membrane displacement required for rod/fiber buckling. We also consider the dynamics of a growing fiber tip under the influence of a fluctuation-induced membrane force. We discuss the importance of our results in various biological contexts. Finally, we present a method to simultaneously extract both the rigidity of the semiflexible rod and the force applied by, e.g., the membrane from the measurements of the bending fluctuations of the rod. Such a measurement of the force would give information about the thermodynamics of the rod polymerization that involves the usual Brownian ratchet mechanism.
Chandrasekhar Potluri,; Madhavi Anugolu; Marco P. Schoen; D. Subbaram Naidu
2013-08-01
In this work, an array of three surface Electrography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusionbased approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.
Hydrographical and dynamical reconstruction of the Warm Core Cyprus Eddy from gliders data
Bosse, Anthony; Testor, Pierre; Hayes, Dan; Ruiz, Simon; Mauri, Elena; Charantonis, Anastase; d'Ortenzio, Fabrizio; Mortier, Laurent
2016-04-01
In the 80s, the POEM (Physical Oceanography of the Eastern Mediterranean) cruises in the Levantine Basin first revealed the presence of a very pronounced dynamical structure off Cyprus: The Cyprus Warm Core Eddy. Since then, a large amount of data have been collected thanks to the use of autonomous oceanic gliders (+8000 profiles since 2009). Part of those profiles were carried out in the upper layers down to 200 m, and we take benefit of a novel approach named ITCOMP SOM that uses a statistical approach to extend them down to 1000 m (see [1] for more details). This dataset have a particularly good spatio-temporal coverage in 2009 for about a month, thanks to simultaneous deployments of several gliders (up to 6). In this study, we present a set of 3D reconstruction of the dynamical and hydrographical characteristics of the Warm Core Cyprus Eddy between 2009 and 2015. Moreover, chlorophyll-a fluorescence data measured by the gliders give evidence to strong vertical velocities at the edge of the eddy. We discuss possible mechanisms (frontogenesis, symmetric instability) that could generate such signals and provide an assessment of the role of this peculiar circulation feature on the circulation and biogeochemistry of the Levantine basin. Reference: [1] Charantonis, A., P. Testor, L. Mortier, F. D'Ortenzio, S. Thiria (2015): Completion of a sparse GLIDER database using multi-iterative Self-Organizing Maps (ITCOMP SOM), Procedia Computer Science, 51(1):2198-2206. DOI: 10.1016/j.procs.2015.05.496
EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.
Michael X Cohen
Full Text Available Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz, followed by a later alpha-band (8-12 Hz conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz, alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.
EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.
Cohen, Michael X; Ridderinkhof, K Richard
2013-01-01
Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.
Ouillon, G; Sornette, D; Ouillon, Guy; Ducorbier, Caroline; Sornette, Didier
2007-01-01
We propose a new pattern recognition method that is able to reconstruct the 3D structure of the active part of a fault network using the spatial location of earthquakes. The method is a generalization of the so-called dynamic clustering method, that originally partitions a set of datapoints into clusters, using a global minimization criterion over the spatial inertia of those clusters. The new method improves on it by taking into account the full spatial inertia tensor of each cluster, in order to partition the dataset into fault-like, anisotropic clusters. Given a catalog of seismic events, the output is the optimal set of plane segments that fits the spatial structure of the data. Each plane segment is fully characterized by its location, size and orientation. The main tunable parameter is the accuracy of the earthquake localizations, which fixes the resolution, i.e. the residual variance of the fit. The resolution determines the number of fault segments needed to describe the earthquake catalog, the better...
Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano; Di Sciuva, Marco; Tessler, Alexander
2011-01-01
A robust and efficient computational method for reconstructing the three-dimensional displacement field of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as shape sensing , this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving strain measures of Timoshenko theory for stretching, torsion, bending, and transverse shear. Two inverse-frame finite elements are derived using interdependent interpolations whose interior degrees-of-freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. As an example problem, a thin-walled, circular cross-section cantilevered beam subjected to harmonic excitations in the presence of structural damping is modeled using iFEM; where, to simulate strain-gauge values and to provide reference displacements, a high-fidelity MSC/NASTRAN shell finite element model is used. Examples of low and high-frequency dynamic motion are analyzed and the solution accuracy examined with respect to various levels of discretization and the number of strain gauges.
Ali Tavasoli
2012-01-01
Full Text Available Nonlinear vehicle control allocation is achieved through distributing the task of vehicle control among individual tire forces, which are constrained to nonlinear saturation conditions. A high-level sliding mode control with adaptive upper bounds is considered to assess the body yaw moment and lateral force for the vehicle motion. The proposed controller only requires the online adaptation of control gains without acquiring the knowledge of upper bounds on system uncertainties. Static and dynamic control allocation approaches have been formulated to distribute high-level control objectives among the system inputs. For static control allocation, the interior-point method is applied to solve the formulated nonlinear optimization problem. Based on the dynamic control allocation method, a dynamic update law is derived to allocate vehicle control to tire forces. The allocated tire forces are fed into a low-level control module, where the applied torque and active steering angle at each wheel are determined through a slip-ratio controller and an inverse tire model. Computer simulations are used to prove the significant effects of the proposed control allocation methods on improving the stability and handling performance. The advantages and limitations of each method have been discussed, and conclusions have been derived.
W. Xie
2013-11-01
Full Text Available Disaster damages have negative effects on economy, whereas reconstruction investments have positive effects. The aim of this study is to model economic causes of disasters and recovery involving positive effects of reconstruction activities. Computable general equilibrium (CGE model is a promising approach because it can incorporate these two kinds of shocks into a unified framework and further avoid double-counting problem. In order to factor both shocks in CGE model, direct loss is set as the amount of capital stock reduced on supply side of economy; A portion of investments restore the capital stock in existing period; An investment-driven dynamic model is formulated due to available reconstruction data, and the rest of a given country's saving is set as an endogenous variable. The 2008 Wenchuan Earthquake is selected as a case study to illustrate the model, and three scenarios are constructed: S0 (no disaster occurs, S1 (disaster occurs with reconstruction investment and S2 (disaster occurs without reconstruction investment. S0 is taken as business as usual, and the differences between S1 and S0 and that between S2 and S0 can be interpreted as economic losses including reconstruction and excluding reconstruction respectively. The study showed that output from S1 is found to be closer to real data than that from S2. S2 overestimates economic loss by roughly two times that under S1. The gap in economic aggregate between S1 and S0 is reduced to 3% in 2011, a level that should take another four years to achieve under S2.
Tadano, T; Gohda, Y; Tsuneyuki, S
2014-06-04
A systematic method to calculate anharmonic force constants of crystals is presented. The method employs the direct-method approach, where anharmonic force constants are extracted from the trajectory of first-principles molecular dynamics simulations at high temperature. The method is applied to Si where accurate cubic and quartic force constants are obtained. We observe that higher-order correction is crucial to obtain accurate force constants from the trajectory with large atomic displacements. The calculated harmonic and anharmonic force constants are, then, combined with the Boltzmann transport equation (BTE) and non-equilibrium molecular dynamics (NEMD) methods in calculating the thermal conductivity. The BTE approach successfully predicts the lattice thermal conductivity of bulk Si, whereas NEMD shows considerable underestimates. To evaluate the linear extrapolation method employed in NEMD to estimate bulk values, we analyze the size dependence in NEMD based on BTE calculations. We observe strong nonlinearity in the size dependence of NEMD in Si, which can be ascribed to acoustic phonons having long mean-free-paths and carrying considerable heat. Subsequently, we also apply the whole method to a thermoelectric material Mg2Si and demonstrate the reliability of the NEMD method for systems with low thermal conductivities.
Lucon, E.
2008-09-15
One of the key factors for obtaining reliable instrumented Charpy results is the calibration of the instrumented striker. An interesting alternative to the conventional static calibration recommended by the standards is the Dynamic Force Adjustment (DFA), in which forces and displacements are iteratively adjusted until equality is achieved between absorbed energies calculated under the test record (Wt) and measured by the machine encoder (KV). In this study, this procedure has been applied to the instrumented data obtained by 10 international laboratories using notched and precracked Charpy specimens, in the framework of a Coordinated Research Project (CRP8) of IAEA. DFA is extremely effective in reducing the between-laboratory scatter for both general yield and maximum forces. The effect is less significant for dynamic reference temperatures measured from precracked Charpy specimens using the Master Curve procedure, but a moderate reduction of the standard deviation is anyway observed. It is shown that striker calibration is a prominent contribution to the interlaboratory variability of instrumented impact forces, particularly in the case of maximum forces.
A many-body dissipative particle dynamics study of forced water-oil displacement in capillary.
Chen, Chen; Zhuang, Lin; Li, Xuefeng; Dong, Jinfeng; Lu, Juntao
2012-01-17
The forced water-oil displacement in capillary is a model that has important applications such as the groundwater remediation and the oil recovery. Whereas it is difficult for experimental studies to observe the displacement process in a capillary at nanoscale, the computational simulation is a unique approach in this regard. In the present work, the many-body dissipative particle dynamics (MDPD) method is employed to simulate the process of water-oil displacement in capillary with external force applied by a piston. As the property of all interfaces involved in this system can be manipulated independently, the dynamic displacement process is studied systematically under various conditions of distinct wettability of water in capillary and miscibility between water and oil as well as of different external forces. By analyzing the dependence of the starting force on the properties of water/capillary and water/oil interfaces, we find that there exist two different modes of the water-oil displacement. In the case of stronger water-oil interaction, the water particles cannot displace those oil particles sticking to the capillary wall, leaving a low oil recovery efficiency. To minimize the residual oil content in capillary, enhancing the wettability of water and reducing the external force will be beneficial. This simulation study provides microscopic insights into the water-oil displacement process in capillary and guiding information for relevant applications.
Heil, Patrick; Spatz, Joachim P, E-mail: spatz@mf.mpg.d [Department of New Materials and Biosystems, Max Planck Institute for Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Department of Biophysical Chemistry, University of Heidelberg, Heisenbergstrasse 3, D-70569 Stuttgart (Germany)
2010-05-19
Focal adhesions (FAs) are important adhesion sites between eukaryotic cells and the extracellular matrix, their size depending on the locally applied force. To quantitatively study the mechanosensitivity of FAs, we induce their growth and disassembly by varying the distribution of intracellular stress. We present a novel method for micromanipulation of living cells to explore the dynamics of focal adhesion (FA) assembly under force. Fibroblasts are sheared laterally to their adhesion surface with single PDMS micropillars in order to apply laterally stretch or compression to focal adhesions. This allows for measuring the shear force exerted by the micropillar and correlates it with FA length and growth velocity. Furthermore, we analyze the resulting dynamics of FA molecules (paxillin) and compare intensity profiles along FAs before and after the application of external force. The responses of stretched and relaxed FAs differ fundamentally: relaxed and compressed FAs disassemble isotropically and show no length variation while stretched FAs grow unisotropically in the direction of the applied force and show protein influx only at their front.
La Camera, Andrea; Antoniucci, Simone; Bertero, Mario; Boccacci, Patrizia; Lorenzetti, Dario; Nisini, Brunella
2012-07-01
We report the results of a simulation and reconstruction of observations of a young stellar object (YSO) jet with the LINC-NIRVANA (LN) interferometric instrument, which will be mounted on the Large Binocular Telescope (LBT). This simulation has been performed in order to investigate the ability of observing the weak diffuse jet line emission against the strong IR stellar continuum through narrow band images in the H and K atmospheric windows. In general, this simulation provides clues on the image quality that could be achieved in observations with a high dynamic range. In these cases, standard deconvolution methods, such as Richardson-Lucy, do not provide satisfactory results: we therefore propose here a new method of image reconstruction. It consists in considering the image to be reconstructed as the sum of two terms: one corresponding to the star (whose position is assumed to be known) and the other to the jet. A regularization term is introduced for this second component and the reconstruction is obtained with an iterative method alternating between the two components. An analysis of the results shows that the image quality obtainable with this method is significantly improved with respect to standard deconvolution methods, reducing the number of artifacts and allowing us to reconstruct the original jet intensity distribution with an error smaller than 10%.
A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants
James P. Ewen
2016-08-01
Full Text Available For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i accurately predict important properties of long-chain, linear molecules; and (ii reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n-hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP, allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n-hexadecane using equilibrium molecular dynamics (EMD simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-tom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n-hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are
A Database of Force-Field Parameters, Dynamics, and Properties of Antimicrobial Compounds
Giuliano Malloci
2015-08-01
Full Text Available We present an on-line database of all-atom force-field parameters and molecular properties of compounds with antimicrobial activity (mostly antibiotics and some beta-lactamase inhibitors. For each compound, we provide the General Amber Force Field parameters for the major species at physiological pH, together with an analysis of properties of interest as extracted from µs-long molecular dynamics simulations in explicit water solution. The properties include number and population of structural clusters, molecular flexibility, hydrophobic and hydrophilic molecular surfaces, the statistics of intraand inter-molecular H-bonds, as well as structural and dynamical properties of solvent molecules within first and second solvation shells. In addition, the database contains several key molecular parameters, such as energy of the frontier molecular orbitals, vibrational properties, rotational constants, atomic partial charges and electric dipole moment, computed by Density Functional Theory. The present database (to our knowledge the first extensive one including dynamical properties is part of a wider project aiming to build-up a database containing structural, physico-chemical and dynamical properties of medicinal compounds using different force-field parameters with increasing level of complexity and reliability. The database is freely accessible at http://www.dsf.unica.it/translocation/db/.
A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics
Morante, S., E-mail: morante@roma2.infn.it [Dipartimento di Fisica, Università di Roma, “ Tor Vergata ”, INFN, Sezione di Roma 2, Via della Ricerca Scientifica - 00133 Roma (Italy); Rossi, G.C., E-mail: rossig@roma2.infn.it [Dipartimento di Fisica, Università di Roma, “ Tor Vergata ”, INFN, Sezione di Roma 2, Via della Ricerca Scientifica - 00133 Roma (Italy); Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Compendio del Viminale, Piazza del Viminale 1, I-00184 Rome (Italy)
2017-02-15
We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg–Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann–Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.
A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics
Morante, S.; Rossi, G. C.
2017-02-01
We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg-Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann-Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.
Barcaro, Giovanni; Monti, Susanna; Sementa, Luca; Carravetta, Vincenzo
2017-08-08
A novel computational approach, based on classical reactive molecular dynamics simulations (RMD) and quantum chemistry (QC) global energy optimizations, is proposed for modeling large Si nanoparticles. The force field parameters, which can describe bond breaking and formation, are derived by reproducing energetic and structural properties of a set of Si clusters increasing in size. These reference models are obtained through a new protocol based on a joint high temperature RMD/low temperature Basin Hopping QC search. The different procedures of estimating optimal force field parameters and their performance are discussed in detail.
Static and dynamic stability of the guidance force in a side-suspended HTS maglev system
Zhou, Dajin; Cui, Chenyu; Zhao, Lifeng; Zhang, Yong; Wang, Xiqing; Zhao, Yong
2017-02-01
The static and dynamic stability of the guidance force in a side-suspended HTS-PMG (permanent magnetic guideway) system were studied theoretically and experimentally. It is found that there are two types of guidance force that exist in the HTS-PMG system, which are sensitive to the levitation gap and the arrangement of YBCO bulks around the central axis of the PMG. An optimized YBCO array was used to stabilize the system, which enabled a side-suspended HTS-PMG maglev vehicle to run stably at 102 km h-1 on a circular test track with 6.5 m in diameter.
Prioritized motion-force control of constrained fully-actuated robots: "Task Space Inverse Dynamics"
Del Prete, Andrea; Nori, Francesco; Metta, Giorgio; Natale, Lorenzo
2014-01-01
We present a new framework for prioritized multi-task motion-force control of fully-actuated robots. This work is established on a careful review and comparison of the state of the art. Some control frameworks are not optimal, that is they do not find the optimal solution for the secondary tasks. Other frameworks are optimal, but they tackle the control problem at kinematic level, hence they neglect the robot dynamics and they do not allow for force control. Still other frameworks are optimal...
Reconstructing the dynamics of the Greenland ice sheet during the last deglaciation
Keisling, Benjamin; DeConto, Robert
2016-04-01
Today, some outlet glaciers of the Greenland ice sheet (GrIS) are rapidly retreating and may mobilize large volumes of interior ice in the coming centuries. The last period that saw such dramatic, sustained retreat of the GrIS was the last deglaciation, when the ice sheet retreated from its Last Glacial Maximum (LGM) extent. Previous studies have used relative sea level observations to constrain changes in ice thickness and retreat timing during the deglaciation (e.g. Fleming and Lambert 2004, Simpson et al. 2009, Lecavalier et al. 2014). Here we build on these studies by isolating the drivers of ice-sheet retreat, and their spatial and temporal dynamics, during this period. Inclusion of ice-cliff failure and hydrofracturing parameterizations in our model has resulted in a better fit to paleodata for the Antarctic ice sheet, but this modeling approach has not been applied to the GrIS. Here we use a three-dimensional hybrid SSA/SIA ice-sheet model (Pollard et al. 2015) at 10km resolution over Greenland to simulate the last deglaciation. Boundary conditions for the last glacial maximum produce an LGM ice sheet with 3.81 meters sea level equivalent (m s.l.e.) of additional ice. The LGM ice sheet advances to the shelf-break in west, south, and east Greenland with an expansive ice shelf extending across Davis Strait. Applying modern atmospheric and oceanic forcing to the LGM ice sheet yields 1.25 and 1.09 m s.l.e. of melt, respectively, and 1.72 m s.l.e. for both. Ocean warming initially results in a higher rate and magnitude of retreat, but increased surface evaporation over open water results in additional accumulation that offsets losses in 10 kyr simulations. Here, we test the sensitivity of the magnitude of deglacial ice-sheet retreat to uncertainty in bedrock elevation and basal slding coefficients, the applied climate forcing, and the mass balance scheme (positive degree-day or energy balance). We also implement a deglacial climate forcing based on recently
Nie, H.-Y.; Walzak, M. J.; McIntyre, N. S.
2002-11-01
An atomic force microscopy (AFM) image of a surface is basically a convolution of the probe tip geometry and the surface features; it is important to know this tip effect to ensure that an image truly reflects the surface features. We have found that a biaxially oriented polypropylene (BOPP) film is suitable for checking tip performance and for cleaning contaminated tips, thus making it possible to collect images of the same area of a BOPP film surface before and after the tip was cleaned. Therefore, the difference between the two different images is solely due to the contamination of the tip. We took advantage of our ability to collect AFM images of the same area using the same tip, in one instance, contaminated and, in the other, after being cleaned. First we used blind reconstruction on the image collected using the contaminated tip. Blind tip reconstruction allows one to extract the geometry of the tip from a given image. Once we had estimated the geometry of the contaminated tip, we used it to simulate the tip effect using the image collected using the cleaned tip. By comparing the simulation result with the image collected using the contaminated tip we showed that the blind reconstruction routine works well. Prior to this, there was no de facto method for testing blind reconstruction algorithms.
Dynamic force response of spherical hydrostatic journal bearing for cryogenic applications
Sanandres, Luis
1994-01-01
Hydrostatic Journal Bearings (HJB's) are reliable and resilient fluid film rotor support elements ideal to replace roller bearings in cryogenic turbomachinery. HJB' will be used for primary space-power applications due to their long lifetime, low friction and wear, large load capacity, large direct stiffness, and damping force coefficients. An analysis for the performance characteristics of turbulent flow, orifice compensated, spherical hydrostatic journal bearings (HJB's) is presented. Spherical bearings allow tolerance for shaft misalignment without force performance degradation and have also the ability to support axial loads. The spherical HJB combines these advantages to provide a bearing design which could be used efficiently on high performance turbomachinery. The motion of a barotropic liquid on the thin film bearing lands is described by bulk-flow mass and momentum equations. These equations are solved numerically using an efficient CFD method. Numerical predictions of load capacity and force coefficients for a 6 recess, spherical HJB in a LO2 environment are presented. Fluid film axial forces and force coefficients of a magnitude about 20% of the radial load capacity are predicted for the case analyzed. Fluid inertia effects, advective and centrifugal, are found to affect greatly the static and dynamic force performance of the bearing studied.
Relative dynamics and control of spacecraft formations subject to lorentz force perturbations
Abdel-Aziz, Yehia; Shoaib, Muhammad
A spacecraft that generates an electrostatic charge on its surface in the Earth magnetic field will be subject to a perturbative Lorentz force. The Lorentz force acting on an electrostatically charged spacecraft may provide a useful thrust for controlling a spacecraft’s orbit. We develop Lorentz force as a function of the orbital elements. The orbital perturbations of a charged spacecraft by Lorentz force in the Earth’s magnetic field are investigated using the Gauss variation of the Lagrange planetary Equations. The Earth’s magnetic field is modeled as a tilted dipole. The perturbations in the orbital elements depend on the value of the charge to mass ratio (q/m). The dynamical model of relative motion developed leads to approximate analytical solutions for the motion of a charged spacecraft subject to Lorentz force. The chief spacecraft’s reference orbit is taken to be either circular or elliptical. The deputy spacecraft is capable of accumulating electrostatic charge. The numerical results show that Lorentz force can be used to change the in-track position and plane orbit of the spacecraft. The numerical analysis shows that the target trajectory of the Lorentz spacecraft can be reached by varying the ratio (q/m) in different Low Earth Orbits.
Glickel, Steven Z; Gupta, Salil
2006-05-01
Volar ligament reconstruction is an effective technique for treating symptomatic laxity of the CMC joint of the thumb. The laxity may bea manifestation of generalized ligament laxity,post-traumatic, or metabolic (Ehler-Danlos). There construction reduces the shear forces on the joint that contribute to the development and persistence of inflammation. Although there have been only a few reports of the results of volar ligament reconstruction, the use of the procedure to treat Stage I and Stage II disease gives good to excellent results consistently. More advanced stages of disease are best treated by trapeziectomy, with or without ligament reconstruction.
Nonlinear Dynamical Analysis for the Cable Excited with Parametric and Forced Excitation
C. Z. Qian
2014-01-01
Full Text Available Considering the deck vibration effect on the cable in cable-stayed bridge, using nonlinear structure dynamics theory, the nonlinear dynamical equation for the stayed cable excited with deck vibration is proposed. Research shows that the vertical vibration of the deck has a combined parametric and forced excitation effect on the cable when the angle of the cable is taken into consideration. Using multiscale method, the 1/2 principle parametric resonance is studied and the bifurcation equation is obtained. Despite the parameters analysis, the bifurcation characters of the dynamical system are studied. At last, by means of numerical method and software MATHMATIC, the effect rules of system parameters to the dynamical behavior of the system are studied, and some useful conclusions are obtained.
Multipolar Force Fields and Their Effects on Solvent Dynamics around Simple Solutes
Jakobsen, Sofie; Bereau, Tristan; Meuwly, Markus
2015-01-01
The performance of multipole (MTP) and point charge (PC) force fields in classical molecular dynamics (MD) simulations of condensed-phase systems for both equilibrium and dynamical quantities is compared. MTP electrostatics provides an improved description of the anisotropic electrostatic potential......, which is especially important to describe key, challenging interactions, such as lone pairs, π-interactions, and hydrogen bonds. These chemical environments are probed by focusing on the hydration properties of two molecules: N-methylacetamide and phenyl bromide. Both, equilibrium and dynamical......, quantities are affected by the quality of the electrostatic model. The alteration of the first solvation shell in MTP simulations is validated by comparing with lifetimes and correlation times of solute–solvent interactions from experiment. The improved dynamical behavior found in the MTP simulations...
A review of dynamic stability of repulsive-force maglev suspension systems
Cai, Y.; Rote, D.M.
1998-07-01
Vehicle dynamics and the need to satisfy ride quality requirements have long been recognized as crucial to the commercial success of passenger-carrying transportation systems. Design concepts for maglev systems are no exception. Early maglev investigators and designers were well aware of the importance of ride quality and took care to ensure that their designs would meet acceptable ride quality standards. In contrast, the dynamic stability of electrodynamic suspension (EDS) systems, which has obvious implications for system safety and cost as well as for ride quality, has not received nearly as much attention. Because of the well-known under-damped nature of EDS suspension systems and the observation of instabilities in laboratory-scale model systems, it is prudent to develop a better understanding of vehicle stability characteristics. The work reported in this was undertaken with the intention of summarizing information that has been accumulated worldwide and that is relevant to dynamic stability of repulsive-force maglev suspension systems, assimilating that information, and gaining an understanding of the factors that influence that stability. Included in the paper is a discussion and comparison of results acquired from some representative tests of large-scale vehicles on linear test tracks, together with analytical and laboratory-scale investigations of stability and dynamics of EDS systems. This paper will also summarize the R and D activities at Argonne National Laboratory (ANL) since 1991 to study the nature of the forces that are operative in an EDS system and the dynamic stability of such systems.
Jan Vittek
2004-01-01
Full Text Available Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters. Outer position control loop is closed via simple feedback with proportional gain. Simulations of the design control sysstem, including the drive with power electronic switching, predict the intended drive performance.
Jan Vittek
2003-01-01
Full Text Available The contribution presents an extension of indirect vector control of electric drives employing induction motors to 'Forced Dynamic Control'. This method of control offers an accurate realisation of dynamic response profiles, which can be selected by the user. The developed system can be integrated into a drive with a shaft position encoder or a shaft sensoriess drive, in which only the stator currents are measured. The applied stator voltages are determined by a computed inverter switching algorithm. Simulation results and preliminary experimental results for indirect vector control of an idle running induction motor indicate good agreement with the theoretical predictions.
Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method.
Corbetta, Alessandro; Muntean, Adrian; Vafayi, Kiamars
2015-04-01
Focusing on a specific crowd dynamics situation, including real life experiments and measurements, our paper targets a twofold aim: (1) we present a Bayesian probabilistic method to estimate the value and the uncertainty (in the form of a probability density function) of parameters in crowd dynamic models from the experimental data; and (2) we introduce a fitness measure for the models to classify a couple of model structures (forces) according to their fitness to the experimental data, preparing the stage for a more general model-selection and validation strategy inspired by probabilistic data analysis. Finally, we review the essential aspects of our experimental setup and measurement technique.
Orun, Bilal; Basdogan, Cagatay; Guvenc, Levent
2012-01-01
We adjust the transient dynamics of a piezo-actuated bimorph Atomic Force Microscopy (AFM) probe using a state feedback controller. This approach enables us to adjust the quality factor and the resonance frequency of the probe simultaneously. First, we first investigate the effect of feedback gains on dynamic response of the probe and then show that the time constant of the probe can be reduced by reducing its quality factor and/or increasing its resonance frequency to reduce the scan error in tapping mode AFM.
Greiner, Maximilian; Elts, Ekaterina; Schneider, Julian; Reuter, Karsten; Briesen, Heiko
2014-11-01
The CHARMM, general Amber and OPLS force fields are evaluated for their suitability in simulating the molecular dynamics of the dissolution of the hydrophobic, small-molecule active pharmaceutical ingredients aspirin, ibuprofen, and paracetamol in aqueous media. The force fields are evaluated by comparison with quantum chemical simulations or experimental references on the basis of the following capabilities: accurately representing intra- and intermolecular interactions, appropriately reproducing crystal lattice parameters, adequately describing thermodynamic properties, and the qualitative description of the dissolution behavior. To make this approach easily accessible for evaluating the dissolution properties of novel drug candidates in the early stage of drug development, the force field parameter files are generated using online resources such as the SWISS PARAM servers, and the software packages ACPYPE and Maestro. All force fields are found to reproduce the intermolecular interactions with a reasonable degree of accuracy, with the general Amber and CHARMM force fields showing the best agreement with quantum mechanical calculations. A stable crystal bulk structure is obtained for all model substances, except for ibuprofen, where the reproductions of the lattice parameters and observed crystal stability are considerably poor for all force fields. The heat of solution used to evaluate the solid-to-solution phase transitions is found to be in qualitative agreement with the experimental data for all combinations tested, with the results being quantitatively optimum for the general Amber and CHARMM force fields. For aspirin and paracetamol, stable crystal-water interfaces were obtained. The (100), (110), (011) and (001) interfaces of aspirin or paracetamol and water were simulated for each force field for 30 ns. Although generally expected as a rare event, in some of the simulations, dissolution is observed at 310 K and ambient pressure conditions.
Relationship between jaw opening force and hyoid bone dynamics in healthy elderly subjects
Shinozaki H
2017-04-01
Full Text Available Hiromichi Shinozaki, Haruka Tohara, Mariko Matsubara, Nobuhiro Inokuchi, Yasuhiro Yamazaki, Ayako Nakane, Yoko Wakasugi, Shunsuke Minakuchi Department of Gerodontology, Tokyo Medical and Dental University, Tokyo, Japan Purpose: This study aimed to examine the relationship between jaw opening force and hyoid bone dynamics and resting position in elderly individuals based on gender. Subjects and methods: Subjects were 36 healthy elderly individuals aged ≥65 years without dysphagia (16 men and 20 women; mean age 75.5 years, range 65–88 years. Videofluorographic images during the swallowing of 10 mL of 40% (w/v barium sulfate were obtained and the degrees of anterior, superior, and hypotenuse displacements of the hyoid bone and maximum/resting hyoid position were evaluated. Jaw opening force was measured three times using a jaw opening force sthenometer; the mean of these three measurements was used for analysis. Results: In men, there was a positive correlation between jaw opening force and resting hyoid position and negative correlations among all the degrees of anterior, superior, and hypotenuse displacements of the hyoid bone. In women, there was no statistically significant correlation between jaw opening force and any of the measurement items. There was no statistically significant correlation between jaw opening force and maximum hyoid position in either men or women. Conclusion: Our findings suggest that low jaw opening force leads to low resting hyoid position only in elderly men, and a lower hyoid position in healthy elderly men results in a larger total amount of hyoid displacement during swallowing. Moreover, a maximum hyoid position in healthy individuals of either gender does not differ depending on their jaw opening force. Keywords: aging, deglutition disorders, dysphasia, gender differences
Capillary climb dynamics in the limits of prevailing capillary and gravity force.
Bijeljic, B; Markicevic, B; Navaz, H K
2011-05-01
The dynamics of capillary climb of a wetting liquid into a porous medium that is opposed by gravity force is studied numerically. We use the capillary network model, in which an actual porous medium is represented as a network of pores and throats, each following a predefined size distribution function. The liquid potential in the pores along the liquid interface within the network is calculated as a result of capillary and gravity forces. The solution is general, and accounts for changes in the climbing height and climbing velocity. The numerical results for the capillary climb reveal that there are at least two distinct flow mechanisms. Initially, the flow is characterized by high climbing velocity, in which the capillary force is higher than the gravity force, and the flow is the viscous force dominated. For this single-phase flow, the Washburn equation can be used to predict the changes of climbing height over time. Later, for longer times and larger climbing height, the capillary and gravity forces become comparable, and one observes a slower increase in the climbing height as a function of time. Due to the two forces being comparable, the gas-liquid sharp interface transforms into flow front, where the multiphase flow develops. The numerical results from this study, expressed as the climbing height as a power law function of time, indicate that the two powers, which correspond to the two distinct mechanisms, differ significantly. The comparison of the powers with experimental data indicates good agreement. Furthermore, the power value from the Washburn solution is also analyzed, where it should be equal to 1/2 for purely viscous force driven flow. This is in contrast to the power value of ∼0.43 that is found experimentally. We show from the numerical solution that this discrepancy is due to the momentum dissipation on the liquid interface.
Force Relations and Dynamics of Cutting Knife in a Vertical Disc Mobile Wood Chipper
Segun R. BELLO
2011-06-01
Full Text Available The force relations and dynamics of cutting knife in a vertical disc wood chipper were investigated. The tool geometry determined include: rake angle (20 deg C; Shear angle, (fi= 52.15 deg C; the mean frictional angle, (t = 5.71 deg C. The analysis and comparison of the cutting forces has shown that the chips separated from the wood are being formed by off cutting, since normal applied force N is compressive in nature, the magnitude of the forces used by the knife on the wood is expected to increase as the cutting edge of the knife goes deeper into the wood until the value of the resisting force acting against the cut wood Ff is reached and exceeded. The evaluated forces acting on the knife and the chip are: F = 3.63Nmm^-1; N = 34.7 Nmm^-1; Fs= 27.45Nmm^-1; Fn =31.92 Nmm^-1; Ft = -8.46Nmm^-1; Fc = 33.85Nmm^-1. The resultant force acting on the tool face, Pr = 34.89Nmm^-1. The specific cutting pressure, Pc and cutting force needed to cut the timber, Fc, are 1.79 × 10^6 N/m2 and 644.84N respectively. The energy consumed in removing a unit volume of material is 69.96kJ/mm^-3 and the maximum power developed in cutting the chip is 3591.77W (4.82hp. The chipper efficiency (86.6% was evaluated by the highest percentage of accepted chip sizes.
A force-based model to reproduce stop-and-go waves in pedestrian dynamics
Chraibi, Mohcine; Schadschneider, Andreas
2015-01-01
Stop-and-go waves in single-file movement are a phenomenon that is ob- served empirically in pedestrian dynamics. It manifests itself by the co-existence of two phases: moving and stopping pedestrians. We show analytically based on a simplified one-dimensional scenario that under some conditions the system can have instable homogeneous solutions. Hence, oscillations in the trajectories and in- stabilities emerge during simulations. To our knowledge there exists no force-based model which is collision- and oscillation-free and meanwhile can reproduce phase separation. We develop a new force-based model for pedestrian dynamics able to reproduce qualitatively the phenomenon of phase separation. We investigate analytically the stability condition of the model and define regimes of parameter values where phase separation can be observed. We show by means of simulations that the predefined conditions lead in fact to the expected behavior and validate our model with respect to empirical findings.
Influence of forced respiration on nonlinear dynamics in heart rate variability
Kanters, J K; Højgaard, M V; Agner, E;
1997-01-01
of this study was to test whether the known nonlinear input from spontaneous respiration is a source for the nonlinearities in heart rate variability. Twelve healthy subjects were examined in supine position with 3-h electrocardiogram recordings during both spontaneous and forced respiration in accordance...... expressed as the nonlinear prediction error did not differ between spontaneous respiration, 32.3 +/- 3.4 ms, and forced respiration, 31.9 +/- 5.7. It is concluded that the origin of the nonlinear dynamics in heart rate variability is not a nonlinear input from the respiration into the cardiovascular...... oscillator. Additional studies are needed to elucidate the mechanisms behind the nonlinear dynamics in heart rate variability....
Empirical tight-binding force model for molecular-dynamics simulation of Si
Wang, C. Z.; Chan, C. T.; Ho, K. M.
1989-04-01
A scheme of molecular-dynamics simulation using the empirical tight-binding force model is proposed. The scheme allows the interatomic interactions involved in the molecular dynamics to be determined by first-principles total-energy and electronic-structure calculations without resorting to fitting experimental data. For a first application of the scheme we show that a very simple nearest-neighbor two-center empirical tight-binding force model is able to stabilize the diamond structure of Si within a reasonable temperature range. We also show that the scheme makes possible the quantitative calculation of the temperature dependence of various anharmonic effects such as lattice thermal expansion, temperature-dependent phonon linewidths, and phonon frequency shifts.
Variability and trends in dynamical forcing of tropical lower stratospheric temperatures
S. Fueglistaler
2014-05-01
Full Text Available We analyse the relation between tropical lower stratospheric temperatures and dynamical forcing over the period 1980–2011 using NCEP, MERRA and ERA-Interim reanalyses. The tropical mean thermodynamic energy equation with Newtonian cooling for radiation is forced with two dynamical predictors: (i the average eddy heat flux of both hemispheres; and (ii tropical upwelling estimated from momentum balance following Randel et al. (2002. The correlation (1995–2011 for deseasonalised tropical average temperatures at 70 hPa with the eddy heat flux based predictor is 0.84 for ERA-Interim (0.77 for the momentum balance calculation, and 0.87 for MERRA. The eddy heat flux based predictor indicates a dynamically forced cooling of the tropics of ∼−0.1 K decade−1 (∼−0.2 K decade−1 excluding volcanic periods for the period 1980–2011 in MERRA and ERA-Interim. ERA-Interim eddy heat fluxes drift slightly relative to MERRA in the 2000's, possibly due to onset of GPS temperature data assimilation. While NCEP gives a small warming trend, all 3 reanalyses show a similar seasonality, with strongest cooling in January/February (∼−0.4 K decade−1, from northern hemispheric forcing and October (∼−0.3 K decade−1, from southern hemispheric forcing. Months preceding and following the peaks in cooling trends show pronounced smaller, or even warming, trends. Consequently, the seasonality in the trends arises in part due to a temporal shift in eddy activity. Over all months, the Southern Hemisphere contributes more to the tropical cooling in both MERRA and ERA-Interim. The residual time series (observed minus estimate of dynamically forced temperature are well correlated between ERA-Interim and MERRA, with differences largely due to temperature differences. The residual time series is dominated by the modification of the radiative balance by volcanic aerosol following the eruption of El Chichon (maximum warming of ∼3 K at 70 hPa and Pinatubo
Miwadinou, C H; Monwanou, A V; Orou, J B Chabi
2013-01-01
This paper considers nonlinear dynamics of plasma oscillations modeled by a forced modified Van der Pol-Duffing oscillator. These plasma oscillations are described by a nonlinear differential equation of the form $ \\ddot{x}+ \\epsilon (1 +{x}^{2}){\\dot{x}} + x+ \\alpha \\epsilon{x}{\\dot{x}} + {\\beta}x^{2}+\\gamma x^{3}= F\\cos{\\Omega t}.$ The amplitudes of the forced harmonic, superharmonic and subharmonic oscillatory states are obtained using the harmonic balance technique and the multiple time scales methods. Bifurcation sequences displayed by the model for each type of oscillatory states are performed numerically through the fourth order Runge- Kutta scheme. The influences of the differents parameters and of amplitude of external forced have been found.
Wu, Stephen; Angelikopoulos, Panagiotis; Tauriello, Gerardo; Papadimitriou, Costas; Koumoutsakos, Petros
2016-12-28
We propose a hierarchical Bayesian framework to systematically integrate heterogeneous data for the calibration of force fields in Molecular Dynamics (MD) simulations. Our approach enables the fusion of diverse experimental data sets of the physico-chemical properties of a system at different thermodynamic conditions. We demonstrate the value of this framework for the robust calibration of MD force-fields for water using experimental data of its diffusivity, radial distribution function, and density. In order to address the high computational cost associated with the hierarchical Bayesian models, we develop a novel surrogate model based on the empirical interpolation method. Further computational savings are achieved by implementing a highly parallel transitional Markov chain Monte Carlo technique. The present method bypasses possible subjective weightings of the experimental data in identifying MD force-field parameters.
Molecular Dynamics Simulations of a Linear Nanomotor Driven by Thermophoretic Forces
Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.
,7,8,9 Nanomotors are an attractive goal for nanotechnology.9-13 Such nano-scale structures capable of converting thermal energy into work will be needed in many types of nanodevices, including nanoconveyors14, memory devices15 and nano-encapsulated material delivery systems16,17. Moreover to design and manufacture...... future molecular machines a complete understanding of the friction forces involved on the transport process at the molecular level have to be addressed.18 In this work we perform Molecular Dynamics (MD) simulations using the MD package FASTTUBE19 to study a molecular linear motor consisting of coaxial...... of the capsule is driven by thermophoresis we perform additional simulations in order to study the friction and thermophoretic forces acting on the inner CNT. In these simulations, we constrain the velocity of center of mass of the inner CNT and extract from the simulations the external forces required to drive...
Tartakovsky, Alexandre M.; Panchenko, Alexander
2016-01-01
We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics Model (PF-SPH) and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the accuracy of the model under static and dynamic conditions. Finally, to demonstrate the capabilities and robustness of the model we use it to simulate flow of three fluids in a porous material.
Tartakovsky, Alexandre M.; Panchenko, Alexander
2016-01-01
We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.
Malkin, A J; Plomp, M; Leighton, T J; McPherson, A; Wheeler, K E
2005-04-12
Progress in structural biology very much depends upon the development of new high-resolution techniques and tools. Despite decades of study of viruses, bacteria and bacterial spores and their pressing importance in human medicine and biodefense, many of their structural properties are poorly understood. Thus, characterization and understanding of the architecture of protein surface and internal structures of pathogens is critical to elucidating mechanisms of disease, immune response, physicochemical properties, environmental resistance and development of countermeasures against bioterrorist agents. Furthermore, even though complete genome sequences are available for various pathogens, the structure-function relationships are not understood. Because of their lack of symmetry and heterogeneity, large human pathogens are often refractory to X-ray crystallographic analysis or reconstruction by cryo-electron microscopy (cryo-EM). An alternative high-resolution method to examine native structure of pathogens is atomic force microscopy (AFM), which allows direct visualization of macromolecular assemblies at near-molecular resolution. The capability to image single pathogen surfaces at nanometer scale in vitro would profoundly impact mechanistic and structural studies of pathogenesis, immunobiology, specific cellular processes, environmental dynamics and biotransformation.
Quantitative Verification of a Force-based Model for Pedestrian Dynamics
Chraibi, Mohcine; Schadschneider, Andreas; Mackens, Wolfgang
2009-01-01
This paper introduces a spatially continuous force-based model for simulating pedestrian dynamics. The main intention of this work is the quantitative description of pedestrian movement through bottlenecks and in corridors. Measurements of flow and density at bottlenecks will be presented and compared with empirical data. Furthermore the fundamental diagram for the movement in a corridor is reproduced. The results of the proposed model show a good agreement with empirical data.
Solvation structure and dynamics of Ni{sup 2+}(aq) from a polarizable force field
Mareš, Jiří, E-mail: jiri.mares@oulu.fi; Vaara, Juha
2014-10-31
Highlights: • We parameterize the Ni{sup 2+} ion within the AMOEBA polarizable forcefield. • Besides vdW parameters, we fit also polarizability, Thole damping and charge. • We use an empirical adjustment to account for the transition into condensed phase. • Very good structural and dynamical properties of Ni{sup 2+}(aq) are demonstrated. - Abstract: An aqueous solution of Ni{sup 2+} has often been used as a prototypic transition-metal system for experimental and theoretical studies in nuclear and electron-spin magnetic resonance (NMR and ESR). Molecular dynamics (MD) simulation of Ni{sup 2+}(aq) has been a part of many of these studies. As a transition metal complex, its MD simulation is particularly difficult using common force fields. In this work, we parameterize the Ni{sup 2+} ion for a simulation of the aqueous solution within the modern polarizable force field AMOEBA. We show that a successful parameterization is possible for this specific case when releasing the physical interpretation of the electrostatic and polarization parameters of the force field. In doing so, particularly the Thole damping parameter and also the ion charge and polarizability were used as fitting parameters. The resulting parameterizations give in a MD simulation good structural and dynamical properties of the [Ni(H{sub 2}O){sub 6}]{sup 2+} complex, along with the expected excellent performance of AMOEBA for the water solvent. The presented parameterization is appropriate for high-accuracy simulations of both structural and dynamic properties of Ni{sup 2+}(aq). This work documents possible approaches of parameterization of a transition metal within the AMOEBA force field.
Enhancing the accuracy of virtual screening: molecular dynamics with quantum-refined force fields.
Curioni, Alessandro; Mordasini, Tiziana; Andreoni, Wanda
2004-12-01
A methodology aimed at improving the accuracy of current docking-scoring procedures is proposed, and validated through detailed tests of its performance in predicting the activity of HIV-1 protease inhibitors. This methodology is based on molecular dynamics simulations using a force field whose effective charges are refined by means of a novel procedure that relies on quantum-mechanical calculations and preserves the internal consistency of the parameterization scheme.
Dynamics of the Bogie of Maglev Train with Distributed Magnetic Forces
2015-01-01
A dynamic model of the bogie of maglev train with distributed magnetic forces and four identical levitating controllers is formulated. The vertical, pitching, and rolling degree of freedom of the electromagnet modules and their coupling are considered. The frequency responses of the bogie to track irregularity are investigated with numerical simulation. The results tell us that there are resonances related to the first electromagnetic suspension whose frequencies are determined by the control...
2015-09-23
Round Robin Propellant Testing for Development of AOP-4717 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 0 Air Force Dynamic Mechanical Analysis of NATO Round Robin ...the clamps are tight at the coldest temperature. • Long tests such as the frequency sweep sequences prescribed in this round robin may be
Taylor, D E; Strawhecker, K E; Shanholtz, E R; Sorescu, D C; Sausa, R C
2014-07-10
The development of novel nanoenergetic materials with enhanced bulk properties requires an understanding of the intermolecular interactions occurring between molecular components. We investigate the surface interactions between 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and polyethylene (PE) crystals on the basis of combined use of molecular dynamics (MD) simulations and force-distance spectroscopy, in conjunction with Lifshitz macroscopic theory of van der Waals forces between continuous materials. The binding energy in the RDX-PE system depends both on the degree of PE crystallinity and on the RDX crystal face. Our MD simulations yield binding energies of approximately 132 and 120 mJ/m(2) for 100% amorphous and 100% crystalline PE on RDX (210), respectively. The average value is about 36% greater than our experimental value of 81 ± 15 mJ/m(2) for PE (∼48% amorphous) on RDX (210). By comparison, Liftshitz theory predicts a value of about 79 mJ/m(2) for PE interacting with RDX. Our MD simulations also predict larger binding energies for both amorphous and crystalline PE on RDX (210) compared to the RDX (001) surface. Analysis of the interaction potential indicates that about 60% of the binding energy in the PE-RDX system is due to attractive interactions between HPE-ORDX and CPE-NRDX pairs of atoms. Further, amorphous PE shows a much longer interaction distance than crystalline PE with the (210) and (001) RDX surfaces due to the possibility of larger polymer elongations in the case of amorphous PE as strain is applied. Also, we report estimates of the binding energies of energetic materials RDX and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) with PE, propylene, polystyrene, and several fluorine-containing polymers using Lifshitz theory and compare these with reported MD calculations.
A Piezoelectric PZT Ceramic Mulitlayer Stack for Energy Harvesting Under Dynamic Forces
Xu, Tian-Bing; Siochi, Emilie J.; Kang, Jin Ho; Zuo, Lei; Zhou, Wanlu; Tang, Xiudong; Jiang, Xiaoning
2011-01-01
Piezoelectric energy harvesting transducers (PEHTs) are commonly used in motion/vibration energy scavenging devices. To date, most researchers have focused on energy harvesting at narrow bandwidths around the mechanical resonance frequency, and most piezoelectric harvesting devices reported in the literature have very low effective piezoelectric coefficient (d(sub eff)) (piezoelectric coefficients of about 100 pC/N. The level of harvested electrical power for CBPEHTs is on the order of microW even at resonance mode. In order to harvest more electrical energy across broader bandwidth, high effective piezoelectric coefficient structures are needed. In this study, we investigate a "33" longitudinal mode, piezoelectric PZT ceramic multilayer stack (PZT-Stack) with high effective piezoelectric coefficient for high-performance PEHTs. The PZT-Stack is composed of 300 layers of 0.1 mm thick PZT plates, with overall dimensions of 32.4 mm X 7.0 mm X 7.0 mm. Experiments were carried out with dynamic forces in a broad bandwidth ranging from 0.5 Hz to 25 kHz. The measured results show that the effective piezoelectric coefficient of the PZT-stack is about 1 X 10(exp 5) pC/N at off-resonance frequencies and 1.39 X 10(exp 6) pC/N at resonance, which is order of magnitude larger than that of traditional PEHTs. The effective piezoelectric coefficients (d(sub eff)) do not change significantly with applied dynamic forces having root mean square (RMS) values ranging from 1 N to 40 N. In resonance mode, 231 mW of electrical power was harvested at 2479 Hz with a dynamic force of 11.6 N(sub rms), and 7.6 mW of electrical power was generated at a frequency of 2114 Hz with 1 N(sub rms) dynamic force. In off-resonance mode, an electrical power of 18.7 mW was obtained at 680 Hz with a 40 N(sub rms) dynamic force. A theoretical model of energy harvesting for the PZT-Stack is established. The modeled results matched well with experimental measurements. This study demonstrated that high
A Piezoelectric PZT Ceramic Mulitlayer Stack for Energy Harvesting Under Dynamic Forces
Xu, Tian-Bing; Siochi, Emilie J.; Kang, Jin Ho; Zuo, Lei; Zhou, Wanlu; Tang, Xiudong; Jiang, Xiaoning
2011-01-01
Piezoelectric energy harvesting transducers (PEHTs) are commonly used in motion/vibration energy scavenging devices. To date, most researchers have focused on energy harvesting at narrow bandwidths around the mechanical resonance frequency, and most piezoelectric harvesting devices reported in the literature have very low effective piezoelectric coefficient (d(sub eff)) (harvested electrical power for CBPEHTs is on the order of microW even at resonance mode. In order to harvest more electrical energy across broader bandwidth, high effective piezoelectric coefficient structures are needed. In this study, we investigate a "33" longitudinal mode, piezoelectric PZT ceramic multilayer stack (PZT-Stack) with high effective piezoelectric coefficient for high-performance PEHTs. The PZT-Stack is composed of 300 layers of 0.1 mm thick PZT plates, with overall dimensions of 32.4 mm X 7.0 mm X 7.0 mm. Experiments were carried out with dynamic forces in a broad bandwidth ranging from 0.5 Hz to 25 kHz. The measured results show that the effective piezoelectric coefficient of the PZT-stack is about 1 X 10(exp 5) pC/N at off-resonance frequencies and 1.39 X 10(exp 6) pC/N at resonance, which is order of magnitude larger than that of traditional PEHTs. The effective piezoelectric coefficients (d(sub eff)) do not change significantly with applied dynamic forces having root mean square (RMS) values ranging from 1 N to 40 N. In resonance mode, 231 mW of electrical power was harvested at 2479 Hz with a dynamic force of 11.6 N(sub rms), and 7.6 mW of electrical power was generated at a frequency of 2114 Hz with 1 N(sub rms) dynamic force. In off-resonance mode, an electrical power of 18.7 mW was obtained at 680 Hz with a 40 N(sub rms) dynamic force. A theoretical model of energy harvesting for the PZT-Stack is established. The modeled results matched well with experimental measurements. This study demonstrated that high effective piezoelectric coefficient structures enable PEHTs to
A Piezoelectric PZT Ceramic Mulitlayer Stack for Energy Harvesting Under Dynamic Forces
Xu, Tian-Bing; Siochi, Emilie J.; Kang, Jin Ho; Zuo, Lei; Zhou, Wanlu; Tang, Xiudong; Jiang, Xiaoning
2011-01-01
Piezoelectric energy harvesting transducers (PEHTs) are commonly used in motion/vibration energy scavenging devices. To date, most researchers have focused on energy harvesting at narrow bandwidths around the mechanical resonance frequency, and most piezoelectric harvesting devices reported in the literature have very low effective piezoelectric coefficient (d(sub eff)) (ceramic multilayer stack (PZT-Stack) with high effective piezoelectric coefficient for high-performance PEHTs. The PZT-Stack is composed of 300 layers of 0.1 mm thick PZT plates, with overall dimensions of 32.4 mm X 7.0 mm X 7.0 mm. Experiments were carried out with dynamic forces in a broad bandwidth ranging from 0.5 Hz to 25 kHz. The measured results show that the effective piezoelectric coefficient of the PZT-stack is about 1 X 10(exp 5) pC/N at off-resonance frequencies and 1.39 X 10(exp 6) pC/N at resonance, which is order of magnitude larger than that of traditional PEHTs. The effective piezoelectric coefficients (d(sub eff)) do not change significantly with applied dynamic forces having root mean square (RMS) values ranging from 1 N to 40 N. In resonance mode, 231 mW of electrical power was harvested at 2479 Hz with a dynamic force of 11.6 N(sub rms), and 7.6 mW of electrical power was generated at a frequency of 2114 Hz with 1 N(sub rms) dynamic force. In off-resonance mode, an electrical power of 18.7 mW was obtained at 680 Hz with a 40 N(sub rms) dynamic force. A theoretical model of energy harvesting for the PZT-Stack is established. The modeled results matched well with experimental measurements. This study demonstrated that high effective piezoelectric coefficient structures enable PEHTs to harvest more electrical energy from mechanical vibrations or motions, suggesting an effective design for high-performance low-footprint PEHTs with potential applications in military, aerospace, and portable electronics. In addition, this study provides a route for using piezoelectric multilayer
Lindert, Steffen; Bucher, Denis; Eastman, Peter; Pande, Vijay; McCammon, J Andrew
2013-11-12
The accelerated molecular dynamics (aMD) method has recently been shown to enhance the sampling of biomolecules in molecular dynamics (MD) simulations, often by several orders of magnitude. Here, we describe an implementation of the aMD method for the OpenMM application layer that takes full advantage of graphics processing units (GPUs) computing. The aMD method is shown to work in combination with the AMOEBA polarizable force field (AMOEBA-aMD), allowing the simulation of long time-scale events with a polarizable force field. Benchmarks are provided to show that the AMOEBA-aMD method is efficiently implemented and produces accurate results in its standard parametrization. For the BPTI protein, we demonstrate that the protein structure described with AMOEBA remains stable even on the extended time scales accessed at high levels of accelerations. For the DNA repair metalloenzyme endonuclease IV, we show that the use of the AMOEBA force field is a significant improvement over fixed charged models for describing the enzyme active-site. The new AMOEBA-aMD method is publicly available (http://wiki.simtk.org/openmm/VirtualRepository) and promises to be interesting for studying complex systems that can benefit from both the use of a polarizable force field and enhanced sampling.
Force and torque on spherical particles in micro-channel flows using computational fluid dynamics
Suo, Jin; Edwards, Erin E.; Anilkumar, Ananyaveena; Sulchek, Todd; Giddens, Don P.
2016-01-01
To delineate the influence of hemodynamic force on cell adhesion processes, model in vitro fluidic assays that mimic physiological conditions are commonly employed. Herein, we offer a framework for solution of the three-dimensional Navier–Stokes equations using computational fluid dynamics (CFD) to estimate the forces resulting from fluid flow near a plane acting on a sphere that is either stationary or in free flow, and we compare these results to a widely used theoretical model that assumes Stokes flow with a constant shear rate. We find that while the full three-dimensional solutions using a parabolic velocity profile in CFD simulations yield similar translational velocities to those predicted by the theoretical method, the CFD approach results in approximately 50% larger rotational velocities over the wall shear stress range of 0.1–5.0 dynes cm−2. This leads to an approximately 25% difference in force and torque calculations between the two methods. When compared with experimental measurements of translational and rotational velocities of microspheres or cells perfused in microfluidic channels, the CFD simulations yield significantly less error. We propose that CFD modelling can provide better estimations of hemodynamic force levels acting on perfused microspheres and cells in flow fields through microfluidic devices used for cell adhesion dynamics analysis. PMID:27493783
Force and torque on spherical particles in micro-channel flows using computational fluid dynamics.
Suo, Jin; Edwards, Erin E; Anilkumar, Ananyaveena; Sulchek, Todd; Giddens, Don P; Thomas, Susan N
2016-07-01
To delineate the influence of hemodynamic force on cell adhesion processes, model in vitro fluidic assays that mimic physiological conditions are commonly employed. Herein, we offer a framework for solution of the three-dimensional Navier-Stokes equations using computational fluid dynamics (CFD) to estimate the forces resulting from fluid flow near a plane acting on a sphere that is either stationary or in free flow, and we compare these results to a widely used theoretical model that assumes Stokes flow with a constant shear rate. We find that while the full three-dimensional solutions using a parabolic velocity profile in CFD simulations yield similar translational velocities to those predicted by the theoretical method, the CFD approach results in approximately 50% larger rotational velocities over the wall shear stress range of 0.1-5.0 dynes cm(-2). This leads to an approximately 25% difference in force and torque calculations between the two methods. When compared with experimental measurements of translational and rotational velocities of microspheres or cells perfused in microfluidic channels, the CFD simulations yield significantly less error. We propose that CFD modelling can provide better estimations of hemodynamic force levels acting on perfused microspheres and cells in flow fields through microfluidic devices used for cell adhesion dynamics analysis.
Dynamics of cell shape and forces on micropatterned substrates predicted by a cellular Potts model.
Albert, Philipp J; Schwarz, Ulrich S
2014-06-03
Micropatterned substrates are often used to standardize cell experiments and to quantitatively study the relation between cell shape and function. Moreover, they are increasingly used in combination with traction force microscopy on soft elastic substrates. To predict the dynamics and steady states of cell shape and forces without any a priori knowledge of how the cell will spread on a given micropattern, here we extend earlier formulations of the two-dimensional cellular Potts model. The third dimension is treated as an area reservoir for spreading. To account for local contour reinforcement by peripheral bundles, we augment the cellular Potts model by elements of the tension-elasticity model. We first parameterize our model and show that it accounts for momentum conservation. We then demonstrate that it is in good agreement with experimental data for shape, spreading dynamics, and traction force patterns of cells on micropatterned substrates. We finally predict shapes and forces for micropatterns that have not yet been experimentally studied. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Energetic dynamics of a rotating horizontal convection model of an ocean basin with wind forcing
Zemskova, Varvara; White, Brian; Scotti, Alberto
2016-11-01
We analyze the energetic dynamics in a rotating horizontal convection model, where flow is driven by a differential buoyancy forcing along a horizontal surface. This model is used to quantify the influence of surface heating and cooling and surface wind stress on the Meridional Overturning Circulation. We study a model of the Southern Ocean in a rectangular basin with surface cooling on one end (the South pole) and surface warming on the other end (mid-latitudes). Free-slip boundary conditions are imposed in the closed box, while zonally periodic boundary conditions are enforced in the reentrant channel. Wind stress and differential buoyancy forcing are applied at the top boundary. The problem is solved numerically using a 3D DNS model based on a finite-volume AMR solver for the Boussinesq Navier-Stokes equations with rotation. The overall dynamics, including large-scale overturning, baroclinic eddying, turbulent mixing, and resulting energy cascades are investigated using the local Available Potential Energy framework introduced in. We study the relative contributions of surface buoyancy and wind forcing along with the effects of bottom topography to the energetic balance of this dynamic model. This research is part of the Blue Waters sustained-petascale computing project, supported by the NSF (awards OCI-0725070, ACI-1238993 and ACI-14-44747) and the state of Illinois.
Assessment of dynamic finger forces in pianists: effects of training and expertise.
Parlitz, D; Peschel, T; Altenmüller, E
1998-11-01
Playing a musical instrument requires complex sensorimotor programming of hand and finger movements. During musical training motor programs are optimized to achieve highest accuracy with a minimum of effort. In the lack of handy measurement tools these rational assumptions of piano theorists did not undergo an experimental evaluation up to now. In the present pilot study we used a dynamic pressure measurement system with the pianoforte. Three finger exercises with increasing degrees of difficulty had to be performed by a group of musical amateurs and a group of expert players. From the dynamic force measurements we calculated (a) the mean pulse per touch and (b) the mean touch-duration for each exercise and each subject. To achieve the same tempo and the same loudness, amateurs applied significantly more and longer force to the keys, leading to higher mean pulses per touch. Pulse and duration values increased with higher demands on finger coordination in both, expert pianists and amateurs. The results show that dynamic force measurement systems can support music learners and teachers in training a relaxed piano technique and preventing musicians from overuse injuries.
Binaries traveling through a gaseous medium: Dynamical drag forces and internal torques
Sanchez-Salcedo, F J
2014-01-01
Using time-dependent linear theory, we investigate the morphology of the gravitational wake induced by a binary, whose center of mass moves at velocity Vcm against a uniform background of gas. For simplicity, we assume that the binary's components are on circular orbits about their common center of mass. The consequences of dynamical friction is twofold. First, gas dynamical friction may drag the binary's center of mass and cause the binary to migrate. Second, drag forces also induce a braking torque, which causes the orbits of the binary components to shrink. We compute the drag forces acting on one component of the binary due to the gravitational interaction with its own wake. We show that the dynamical friction force responsible to decelerate the binary's center of mass is smaller than it is in the point-mass case because of the loss of gravitational focusing. We show that the braking internal torque depends on the Mach numbers of each binary component about their center of mass, and also on the Mach numbe...
Dynamic allostery in the methionine repressor revealed by force distribution analysis.
Wolfram Stacklies
2009-11-01
Full Text Available Many fundamental cellular processes such as gene expression are tightly regulated by protein allostery. Allosteric signal propagation from the regulatory to the active site requires long-range communication, the molecular mechanism of which remains a matter of debate. A classical example for long-range allostery is the activation of the methionine repressor MetJ, a transcription factor. Binding of its co-repressor SAM increases its affinity for DNA several-fold, but has no visible conformational effect on its DNA binding interface. Our molecular dynamics simulations indicate correlated domain motions within MetJ, and quenching of these dynamics upon SAM binding entropically favors DNA binding. From monitoring conformational fluctuations alone, it is not obvious how the presence of SAM is communicated through the largely rigid core of MetJ and how SAM thereby is able to regulate MetJ dynamics. We here directly monitored the propagation of internal forces through the MetJ structure, instead of relying on conformational changes as conventionally done. Our force distribution analysis successfully revealed the molecular network for strain propagation, which connects collective domain motions through the protein core. Parts of the network are directly affected by SAM binding, giving rise to the observed quenching of fluctuations. Our results are in good agreement with experimental data. The force distribution analysis suggests itself as a valuable tool to gain insight into the molecular function of a whole class of allosteric proteins.
Force generation by a dynamic Z-ring in Escherichia coli cell division.
Allard, Jun F; Cytrynbaum, Eric N
2009-01-06
FtsZ, a bacterial homologue of tubulin, plays a central role in bacterial cell division. It is the first of many proteins recruited to the division site to form the Z-ring, a dynamic structure that recycles on the time scale of seconds and is required for division to proceed. FtsZ has been recently shown to form rings inside tubular liposomes and to constrict the liposome membrane without the presence of other proteins, particularly molecular motors that appear to be absent from the bacterial proteome. Here, we propose a mathematical model for the dynamic turnover of the Z-ring and for its ability to generate a constriction force. Force generation is assumed to derive from GTP hydrolysis, which is known to induce curvature in FtsZ filaments. We find that this transition to a curved state is capable of generating a sufficient force to drive cell-wall invagination in vivo and can also explain the constriction seen in the in vitro liposome experiments. Our observations resolve the question of how FtsZ might accomplish cell division despite the highly dynamic nature of the Z-ring and the lack of molecular motors.
Reconstruction of Rayleigh-Lamb dispersion spectrum based on noise obtained from an air-jet forcing
Larose, Eric; Campillo, Michel
2007-01-01
The time-domain cross-correlation of incoherent and random noise recorded by a series of passive sensors contains the impulse response of the medium between these sensors. By using noise generated by a can of compressed air sprayed on the surface of a plexiglass plate, we are able to reconstruct not only the time of flight but the whole waveforms between the sensors. From the reconstruction of the direct $A_0$ and $S_0$ waves, we derive the dispersion curves of the flexural waves, thus estimating the mechanical properties of the material without a conventional electromechanical source. The dense array of receivers employed here allow a precise frequency-wavenumber study of flexural waves, along with a thorough evaluation of the rate of convergence of the correlation with respect to the record length, the frequency, and the distance between the receivers. The reconstruction of the actual amplitude and attenuation of the impulse response is also addressed in this paper.
Marshall, Deborah A.; Burgos-Liz, Lina; IJzerman, Maarten Joost; Crown, William; Padula, William V.; Wong, Peter K.; Pasupathy, Kalyan S.; Higashi, Mitchell K.; Osgood, Nathaniel D.
2015-01-01
In a previous report, the ISPOR Task Force on Dynamic Simulation Modeling Applications in Health Care Delivery Research Emerging Good Practices introduced the fundamentals of dynamic simulation modeling and identified the types of health care delivery problems for which dynamic simulation modeling
Marshall, Deborah A.; Burgos-Liz, Lina; IJzerman, Maarten Joost; Crown, William; Padula, William V.; Wong, Peter K.; Pasupathy, Kalyan S.; Higashi, Mitchell K.; Osgood, Nathaniel D.
2015-01-01
In a previous report, the ISPOR Task Force on Dynamic Simulation Modeling Applications in Health Care Delivery Research Emerging Good Practices introduced the fundamentals of dynamic simulation modeling and identified the types of health care delivery problems for which dynamic simulation modeling c
Paramfit: automated optimization of force field parameters for molecular dynamics simulations.
Betz, Robin M; Walker, Ross C
2015-01-15
The generation of bond, angle, and torsion parameters for classical molecular dynamics force fields typically requires fitting parameters such that classical properties such as energies and gradients match precalculated quantum data for structures that scan the value of interest. We present a program, Paramfit, distributed as part of the AmberTools software package that automates and extends this fitting process, allowing for simplified parameter generation for applications ranging from single molecules to entire force fields. Paramfit implements a novel combination of a genetic and simplex algorithm to find the optimal set of parameters that replicate either quantum energy or force data. The program allows for the derivation of multiple parameters simultaneously using significantly fewer quantum calculations than previous methods, and can also fit parameters across multiple molecules with applications to force field development. Paramfit has been applied successfully to systems with a sparse number of structures, and has already proven crucial in the development of the Assisted Model Building with Energy Refinement Lipid14 force field.
Balke, Nina; Jesse, Stephen; Yu, Pu; Carmichael, Ben; Kalinin, Sergei V.; Tselev, Alexander
2016-10-01
Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ˜1-3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip-sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. This analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.
Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing †
Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco
2016-01-01
Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394
Tewari, Shivendra G; Bugenhagen, Scott M; Palmer, Bradley M; Beard, Daniel A
2016-07-01
Despite extensive study over the past six decades the coupling of chemical reaction and mechanical processes in muscle dynamics is not well understood. We lack a theoretical description of how chemical processes (metabolite binding, ATP hydrolysis) influence and are influenced by mechanical processes (deformation and force generation). To address this need, a mathematical model of the muscle cross-bridge (XB) cycle based on Huxley's sliding filament theory is developed that explicitly accounts for the chemical transformation events and the influence of strain on state transitions. The model is identified based on elastic and viscous moduli data from mouse and rat myocardial strips over a range of perturbation frequencies, and MgATP and inorganic phosphate (Pi) concentrations. Simulations of the identified model reproduce the observed effects of MgATP and MgADP on the rate of force development. Furthermore, simulations reveal that the rate of force re-development measured in slack-restretch experiments is not directly proportional to the rate of XB cycling. For these experiments, the model predicts that the observed increase in the rate of force generation with increased Pi concentration is due to inhibition of cycle turnover by Pi. Finally, the model captures the observed phenomena of force yielding suggesting that it is a result of rapid detachment of stretched attached myosin heads.
La Camera, Andrea; Bertero, Mario; Boccacci, Patrizia; Lorenzetti, Dario; Nisini, Brunella
2012-01-01
We report the results of a simulation and reconstruction of observations of a young stellar object (YSO) jet with the LINC-NIRVANA (LN) interferometric instrument, which will be mounted on the Large Binocular Telescope (LBT). This simulation has been performed in order to investigate the ability of observing the weak diffuse jet line emission against the strong IR stellar continuum through narrow band images in the H and K atmospheric windows. In general, this simulation provides clues on the image quality that could be achieved in observations with a high dynamic range. In these cases, standard deconvolution methods, such as Richardson-Lucy, do not provide satisfactory results: we therefore propose here a new method of image reconstruction. It consists in considering the image to be reconstructed as the sum of two terms: one corresponding to the star (whose position is assumed to be known) and the other to the jet. A regularization term is introduced for this second component and the reconstruction is obtain...
A feasibility study for experimentally determining dynamic force distribution in a lap joint
Mayes, Randall Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2013-11-01
Developing constitutive models of the physics in mechanical joints is currently stymied by inability to measure forces and displacements within the joint. The current state of the art estimates whole joint stiffness and energy loss per cycle from external measured force input and one or two acceleration responses. To validate constitutive models beyond this state requires a measurement of the distributed forces and displacements at the joint interface. Unfortunately, introducing measurement devices at the interface completely disrupts the desired physics. A feasibility study is presented for a non-intrusive method of solving for the interface dynamic forces from an inverse problem using full field measured responses. The responses come from the viewable surface of a beam. The noise levels associated with digital image correlation and continuous scanning laser Doppler velocimetry are evaluated from typical beam experiments. Two inverse problems are simulated. One utilizes the extended Sum of Weighted Accelerations Technique (SWAT). The second is a new approach dubbed the method of truncated orthogonal forces. These methods are much more robust if the contact patch geometry is well identified. Various approaches to identifying the contact patch are investigated, including ion marker tracking, Prussian blue and ultrasonic measurements. A typical experiment is conceived for a beam which has a lap joint at one end with a single bolt connecting it to another identical beam. In a virtual test using the beam finite element analysis, it appears that the SWAT inverse method requires evaluation of too many coefficients to adequately identify the force distribution to be viable. However, the method of truncated orthogonal forces appears viable with current digital image correlation (and probably other) imaging techniques.
Molecular dynamics study of the potential of mean force of SDS aggregates
Kawada, Shinji; Fujimoto, Kazushi; Yoshii, Noriyuki; Okazaki, Susumu
2017-08-01
In our previous study, all-atomistic molecular dynamics (MD) calculations have been carried out for the aggregation of ionic sodium dodecyl sulfate in water [S. Kawada et al., Chem. Phys. Lett. 646, 36 (2016)]. Aggregates of 20-30 dodecyl sulfate ions were formed within a short MD run for 10 ns. However, further aggregation did not occur despite a long MD calculation for more than 100 ns. This suggests that strong electrostatic repulsive interactions between the aggregates prevent the fusion of the aggregates. In the present study, mean force and potential of mean force acting between two aggregates with aggregation number N = 30 were evaluated as a function of their separation by MD calculations. The repulsive force becomes strong with decreasing distance between the two aggregates before they merge into one. An origin of the repulsive force is an electric double layer formed by the sulfate group and counter sodium ions. Strength of the repulsive force is in good agreement with the theoretical value given by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Once the aggregates establish contact, the force between them turns to be a large attractive force that can be explained by the interfacial tension. In order to form a single micelle from the two aggregates, it is necessary for them to climb over a free energy barrier of 23 kJ/mol. Once, the barrier is overcome, the micelle is stabilized by ˜200 kJ/mol. The time constant of aggregation evaluated from the calculated free energy barrier was about 28 μs at the concentration in our previous study.
Seppä, Jeremias; Reischl, Bernhard; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Raiteri, Paolo; Rohl, Andrew L.; Nordlund, Kai; Lassila, Antti
2017-03-01
Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20-60 %rh. Force-distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation.
Yusumi Nagahashi; John R.Grace; Kok-Seng Lim; Yutaka Asako
2008-01-01
The effects of tube bank configuration on forces and heat transfer were investigated for both two-dimensional and three-dimensional gas fluidized beds. Effective dynamic forces and heat transfer coefficients were measured for several tube bank configurations, and it was found that the average forces ate smaller than for a single tube. The heat transfer coefficient can be increased by providing sufficient space for particles to descend around both sides of the tube bank. The results provide useful guidelines for optimizing the configuration of tube banks to achieve high heat transfer coefficients while reducing tube erosion due to dynamic forces.
A NASSOUR
2016-09-01
In the present paper, an empirical embedded atom method (EAM) potential for gold–silicon (Au–Si) is developed by fitting to ab initio force (the ‘force matching’ method) and experimental data. The force database is generated within ab initio molecular dynamics (AIMD). The database includes liquid phase at various temperatures. Classical molecular dynamics simulations are performed to examine structural, coordination numbers, structure factors and dynamic properties of Au$_{81}$Si$_{19}$ alloy, with the interaction described via EAM model. The results are in good agreement with AIMD simulations and experimental data.
Stolk, J.; Verdonschot, N.J.J.; Huiskes, R.
2001-01-01
Using finite element analyses, we investigated which muscle groups acting around the hip-joint most prominently affected the load distributions in cemented total hip reconstructions with a bonded and debonded femoral stem. The purpose was to determine which muscle groups should be included in pre-cl
2010-06-11
recently visited three PRTs in Afghanistan: Panshir (US led), Bamiyan (New Zealand defense forces) and Mazar e Sharif (Sweden). She says that each PRT has...opportunity to visit and work with PRTs Bamiyan (led by New Zealand Defense Forces), Mazar e Sharif (Swedish Forces) and Herat (Italian Forces). During...relationships and the deficiencies at PRT level were really based, she says, upon the different environments in which the PRTs operated. She did find Bamiyan
Vega, M J; Gouttière, C; Seveno, D; Blake, T D; Voué, M; De Coninck, J; Clarke, A
2007-10-09
Forced wetting experiments with various liquids were conducted to study the dynamic wetting properties of nylon filament. The molecular-kinetic theory of wetting (MKT) was used to interpret the dynamic contact angle data and evaluate the contact-line friction zeta0 at the microscopic scale. By taking account of the viscosity of the liquid, zeta0 could be related exponentially to the reversible work of adhesion. This clearly establishes an experimental link between the static and dynamic wetting properties of the material. Moreover, statistical analysis of the equilibrium molecular displacement frequency K0 and the length of the displacements lambda reveals that these two fundamental parameters of the MKT are strongly correlated, not only in the linearized form of the theory (valid close to equilibrium) but also when the nonlinear form of the equations has to be considered at higher wetting speeds.
Xie, Jun Yu; Ding, Guang Hong; Karttunen, Mikko
2014-03-01
Membranes' response to lateral tension, and eventual rupture, remains poorly understood. In this study, pure dipalmitoylphosphatidylcholine (DPPC) lipid bilayers, under tension/pressure, were studied using molecular dynamics (MD) simulations. The irreversible membrane breakdown is demonstrated to depend on the amplitude of lateral tension, loading rate, and the size of the bilayer. In all of our simulations, -200bar lateral pressure was found to be enough to rupture lipid membrane regardless of the loading rate or the membrane size. Loading rate and membrane size had a significant impact on rupture. A variety of dynamic properties of lipid molecules, probability distribution of area per lipid particularly, have been determined, and found to be fundamental for describing membrane behavior in detail, thus providing the quantitative description for the requirement of membrane rupture.
Reconstruction of neuronal input through modeling single-neuron dynamics and computations
Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin, E-mail: dengbin@tju.edu.cn; Chan, Wai-lok [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)
2016-06-15
Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.
Reconstruction of neuronal input through modeling single-neuron dynamics and computations
Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok
2016-06-01
Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.
Craco, L.; Faria, J. L. B.; Leoni, S.
2017-03-01
We present a detailed study of correlation- and pressure-induced electronic reconstruction in hexagonal iron monosulfide, a system which is widely found in meteorites and one of the components of Earth’s core. Based on a perusal of experimental data, we stress the importance of multi-orbital electron-electron interactions in concert with first-principles band structure calculations for a consistent understanding of its intrinsic Mott–Hubbard insulating state. We explain the anomalous nature of pressure-induced insulator-metal-insulator transition seen in experiment, showing that it is driven by dynamical spectral weight transfer in response to changes in the crystal-field splittings under pressure. As a byproduct of this analysis, we confirm that the electronic transitions observed in pristine FeS at moderated pressures are triggered by changes in the spin state which causes orbital-selective Kondo quasiparticle electronic reconstruction at low energies.
Balyan, Minas K
2014-01-01
A numerical method of reconstruction of an object image using an X-ray dynamical diffraction Fraunhofer hologram is presented. Analytical approximation methods and numerical methods of iteration are discussed. An example of a reconstruction of an image of a cylindrical beryllium wire is considered. The results of analytical approximation and zero-order iteration coincide with exact values of the amplitude complex transmission coefficient of the object as predicted by the resolution limit of the scheme, except near the edges of the object. Calculations of the first- and second-order iterations improve the result at the edges of the object. This method can be applied for determination of the complex amplitude transmission coefficient of amplitude as well as phase objects. It can be used in X-ray microscopy.
Annalisa Calò
2015-03-01
Full Text Available There has been much interest in the past two decades to produce experimental force profiles characteristic of the interaction between nanoscale objects or a nanoscale object and a plane. Arguably, the advent of the atomic force microscope AFM was instrumental in driving such efforts because, in principle, force profiles could be recovered directly. Nevertheless, it has taken years before techniques have developed enough as to recover the attractive part of the force with relatively low noise and without missing information on critical ranges, particularly under ambient conditions where capillary interactions are believed to dominate. Thus a systematic study of the different profiles that may arise in such situations is still lacking. Here we employ the surfaces of CaF2, on which nanoscale water films form, to report on the range and force profiles that might originate by dynamic capillary interactions occurring between an AFM tip and nanoscale water patches. Three types of force profiles were observed under ambient conditions. One in which the force decay resembles the well-known inverse-square law typical of van der Waals interactions during the first 0.5–1 nm of decay, a second one in which the force decays almost linearly, in relatively good agreement with capillary force predicted by the constant chemical potential approximation, and a third one in which the attractive force is almost constant, i.e., forms a plateau, up to 3–4 nm above the surface when the formation of a capillary neck dominates the tip–sample interaction.
Molecular dynamics simulation of free and forced BSA adsorption on a hydrophobic graphite surface.
Mücksch, Christian; Urbassek, Herbert M
2011-11-01
The adsorption of bovine serum albumin (BSA) onto a hydrophobic graphite surface is studied using molecular-dynamics simulation. In addition to the free, that is, unsteered, adsorption, we also investigate forced adsorption, in which the action of an AFM tip pushing the protein with constant force to the surface is modeled. Using an implicit inviscid water model, the adsorption dynamics and energetics are monitored for two different initial protein orientations toward the surface. In all cases, we find that the protein partially unfolds and spreads on the surface. The spreading is in agreement with the well-known high biocompatibility of graphite-based implants. The denaturation is, however, greatly enhanced in the case of forced adsorption. We follow the position of the so-called lipid-binding pocket found in subdomain IIIA (Sudlow site II) during adsorption and find that it is tilted and moved toward the graphite surface in all cases, in agreement with its hydrophobic character. The relevance of our findings for the common measurement procedure of studying protein adhesion using AFM experiments is discussed.
Both contractile axial and lateral traction force dynamics drive amoeboid cell motility.
Bastounis, Effie; Meili, Ruedi; Álvarez-González, Begoña; Francois, Joshua; del Álamo, Juan C; Firtel, Richard A; Lasheras, Juan C
2014-03-17
Chemotaxing Dictyostelium discoideum cells adapt their morphology and migration speed in response to intrinsic and extrinsic cues. Using Fourier traction force microscopy, we measured the spatiotemporal evolution of shape and traction stresses and constructed traction tension kymographs to analyze cell motility as a function of the dynamics of the cell's mechanically active traction adhesions. We show that wild-type cells migrate in a step-wise fashion, mainly forming stationary traction adhesions along their anterior-posterior axes and exerting strong contractile axial forces. We demonstrate that lateral forces are also important for motility, especially for migration on highly adhesive substrates. Analysis of two mutant strains lacking distinct actin cross-linkers (mhcA(-) and abp120(-) cells) on normal and highly adhesive substrates supports a key role for lateral contractions in amoeboid cell motility, whereas the differences in their traction adhesion dynamics suggest that these two strains use distinct mechanisms to achieve migration. Finally, we provide evidence that the above patterns of migration may be conserved in mammalian amoeboid cells.
Qian, Jing-Guang; Rong, Ke; Qian, Zhenyun; Wen, Chen; Zhang, Songning
2015-11-01
[Purpose] The purpose of the study was to design and implement a multichannel dynamic functional electrical stimulation system and investigate acute effects of functional electrical stimulation of the tibialis anterior and rectus femoris on ankle and knee sagittal-plane kinematics and related muscle forces of hemiplegic gait. [Subjects and Methods] A multichannel dynamic electrical stimulation system was developed with 8-channel low frequency current generators. Eight male hemiplegic patients were trained for 4 weeks with electric stimulation of the tibia anterior and rectus femoris muscles during walking, which was coupled with active contraction. Kinematic data were collected, and muscle forces of the tibialis anterior and rectus femoris of the affected limbs were analyzed using a musculoskelatal modeling approach before and after training. A paired sample t-test was used to detect the differences between before and after training. [Results] The step length of the affected limb significantly increased after the stimulation was applied. The maximum dorsiflexion angle and maximum knee flexion angle of the affected limb were both increased significantly during stimulation. The maximum muscle forces of both the tibia anterior and rectus femoris increased significantly during stimulation compared with before functional electrical stimulation was applied. [Conclusion] This study established a functional electrical stimulation strategy based on hemiplegic gait analysis and musculoskeletal modeling. The multichannel functional electrical stimulation system successfully corrected foot drop and altered circumduction hemiplegic gait pattern.
Hamiltonian formulation of the conservative self-force dynamics in the Kerr geometry
Fujita, Ryuichi; Isoyama, Soichiro; Le Tiec, Alexandre; Nakano, Hiroyuki; Sago, Norichika; Tanaka, Takahiro
2017-07-01
We formulate a Hamiltonian description of the orbital motion of a point particle in Kerr spacetime for generic (eccentric, inclined) orbits, which accounts for the effects of the conservative part of the gravitational self-force. This formulation relies on a description of the particle’s motion as geodesic in a certain smooth effective spacetime, in terms of (generalized) action-angle variables. Clarifying the role played by the gauge freedom in the Hamiltonian dynamics, we extract the gauge-invariant information contained in the conservative self-force. We also propose a possible gauge choice for which the orbital dynamics can be described by an effective Hamiltonian, written solely in terms of the action variables. As an application of our Hamiltonian formulation in this gauge, we derive the conservative self-force correction to the orbital frequencies of Kerr innermost stable spherical (inclined or circular) orbits. This gauge choice also allows us to establish a ‘first law of mechanics’ for black-hole-particle binary systems, at leading order beyond the test-mass approximation.
Chandarana, Hersh; Feng, Li; Ream, Justin; Wang, Annie; Babb, James S; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo
2015-01-01
Purpose Demonstrate feasibility of free-breathing radial acquisition with respiratory motion-resolved compressed sensing (CS) reconstruction (XD-GRASP) for multiphase dynamic Gd-EOB-DTPA enhanced liver imaging, and compare image quality to CS reconstruction with respiratory motion-averaging (GRASP) and prior conventional breath-held Cartesian-sampled datasets (BH-VIBE) in same patients. Subjects and Methods In this HIPAA-compliant prospective study, 16 subjects underwent free-breathing continuous radial acquisition during Gd-EOB-DTPA injection, and had prior BH-VIBE exam available. Acquired data were reconstructed using motion-averaging GRASP approach, in which consecutive 84-spokes were grouped in each contrast-enhanced phase for a temporal resolution of ~14 seconds. Additionally, respiratory motion-resolved reconstruction was performed from the same k-space data, by sorting each contrast-enhanced phase into multiple respiratory motion states using compressed sensing algorithm named XD-GRASP, which exploits sparsity along both the contrast-enhancement and respiratory-state dimensions. Contrast-enhanced dynamic multi-phase XD-GRASP, GRASP, and BH-VIBE images were anonymized, pooled together in a random order and presented to two board-certified radiologists for independent evaluation of image quality, with higher score indicating more optimal exam. Results XD-GRASP reconstructions had significantly (all pXD-GRASP also had higher overall image quality score in portal venous phase which was significant for Reader 1 (4.44 ± 0.5 vs. 3.75 ± 0.8; p=0.002). In addition, XD-GRASP had higher overall image quality score compared to BH-VIBE for early (Reader 1: 4.3±0.6 vs. 3.88±0.6; Reader 2: 3.81±0.8 vs. 3.50±1.0) and late (Reader 1: 4.5±0.6 vs. 3.44±0.6; Reader 2: 3.56±0.5 vs. 2.94±0.9) arterial phases. Conclusion Free-breathing motion-resolved XD-GRASP reconstructions provide diagnostic high-quality multiphase images in patients undergoing Gd
Sutherland, I. A.
1973-01-01
The development is presented of a tooling system that makes a controlled sinusoidal oscillation simulating a dynamic chip removal condition. It also measures the machining forces in two mutually perpendicular directions without any cross sensitivity.
Park, Innim; Eto, Miho; Wakabayashi, Noriyuki; Hideshima, Masayuki; Ohyama, Takashi
2001-01-01
Purpose: The purpose of this study was to investigate the dynamic retentive force of a mandibular unilateral distal-extension partial denture framework with a back-action clasp that was designed in a buccally...
Lyon, Roger; Liu, Xue-Cheng; Hung, John; Kernozek, Thomas W
2011-04-28
The knee's passive movement is insufficient to determine function in patients following ACL reconstruction. We hypothesize that there are kinematic differences in the lower extremities (LE) during stair climbing and ground level walking following ACL surgery between the intact and reconstructed sides. This was a retrospective cohort study. Eleven patients with an average age of 15.3 years at the time of their ACL reconstructive surgery (BPTB autograft) participated in the study. Patients were followed for at least 2 years post surgery. The subjects underwent a non-weight bearing ability test to reproduce predetermined knee joint positions. Their LE's velocity and joint kinematics were then measured during level ground walking and on a set of custom designed stairs as they ascended and descended. During level ground walking the maximum internal rotation at the ankle during the swing phase on the reconstructed side increased significantly from 2.3º to 19.9 º compared to the unreconstructed limb (P=0.04). The leading reconstructed knee during stair ascent exhibited less knee flexion as compared to the unreconstructed knee for each step (1(st) step: 74.2º vs 81.5º; 2(nd) step:93.6º vs 97.6º; 3(rd) step: 48º vs 53.5º; 4(th) step: 72.5º vs 78.1º; pstairs.
Lee, M.W.; Meuwly, M.
2013-01-01
The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.
Modeling of stochastic dynamics of time-dependent flows under high-dimensional random forcing
Babaee, Hessam; Karniadakis, George
2016-11-01
In this numerical study the effect of high-dimensional stochastic forcing in time-dependent flows is investigated. To efficiently quantify the evolution of stochasticity in such a system, the dynamically orthogonal method is used. In this methodology, the solution is approximated by a generalized Karhunen-Loeve (KL) expansion in the form of u (x , t ω) = u ̲ (x , t) + ∑ i = 1 N yi (t ω)ui (x , t) , in which u ̲ (x , t) is the stochastic mean, the set of ui (x , t) 's is a deterministic orthogonal basis and yi (t ω) 's are the stochastic coefficients. Explicit evolution equations for u ̲ , ui and yi are formulated. The elements of the basis ui (x , t) 's remain orthogonal for all times and they evolve according to the system dynamics to capture the energetically dominant stochastic subspace. We consider two classical fluid dynamics problems: (1) flow over a cylinder, and (2) flow over an airfoil under up to one-hundred dimensional random forcing. We explore the interaction of intrinsic with extrinsic stochasticity in these flows. DARPA N66001-15-2-4055, Office of Naval Research N00014-14-1-0166.
Molecular dynamics simulations of forced unbending of integrin α(vβ₃.
Wei Chen
2011-02-01
Full Text Available Integrins may undergo large conformational changes during activation, but the dynamic processes and pathways remain poorly understood. We used molecular dynamics to simulate forced unbending of a complete integrin α(vβ₃ ectodomain in both unliganded and liganded forms. Pulling the head of the integrin readily induced changes in the integrin from a bent to an extended conformation. Pulling at a cyclic RGD ligand bound to the integrin head also extended the integrin, suggesting that force can activate integrins. Interactions at the interfaces between the hybrid and β tail domains and between the hybrid and epidermal growth factor 4 domains formed the major energy barrier along the unbending pathway, which could be overcome spontaneously in ~1 µs to yield a partially-extended conformation that tended to rebend. By comparison, a fully-extended conformation was stable. A newly-formed coordination between the α(v Asp457 and the α-genu metal ion might contribute to the stability of the fully-extended conformation. These results reveal the dynamic processes and pathways of integrin conformational changes with atomic details and provide new insights into the structural mechanisms of integrin activation.
Dynamical Inference from a Kinematic Snapshot: The Force Law in the Solar System
Bovy, Jo; Murray, Iain; Hogg, David W.
2010-03-01
If a dynamical system is long-lived and non-resonant (that is, if there is a set of tracers that have evolved independently through many orbital times), and if the system is observed at any non-special time, it is possible to infer the dynamical properties of the system (such as the gravitational force or acceleration law) from a snapshot of the positions and velocities of the tracer population at a single moment in time. In this paper, we describe a general inference technique that solves this problem while allowing (1) the unknown distribution function of the tracer population to be simultaneously inferred and marginalized over, and (2) prior information about the gravitational field and distribution function to be taken into account. As an example, we consider the simplest problem of this kind: we infer the force law in the solar system using only an instantaneous kinematic snapshot (valid at 2009 April 1.0) for the eight major planets. We consider purely radial acceleration laws of the form ar = -A [r/r 0]-α, where r is the distance from the Sun. Using a probabilistic inference technique, we infer 1.989 things, inference of Milky Way dynamics from Gaia-like observations.
Soleymaniha, Mohammadreza; Felts, Jonathan Robert; Anml Team
2016-11-01
Fluid spreading is a complex phenomenon driven strongly by intermolecular forces that requires nanometer scale microscopy to observe and understand. We present a technique for measuring molten polymer spreading dynamics with nanometer scale spatial resolution at elevated temperatures on sapphire, silicon oxide and mica using tapping-mode atomic force microscopy (AFM). The experimental setup is used to measure the spreading dynamics of polystyrene droplets with 2 μ m diameters at 115-175 C. Custom image processing algorithms realize the droplet height, radius, volume and contact angle of the droplet over time. The contact angle evolution followed a power law with time with experimental exponent values of -0.26, -0.08, and -0.2 for sapphire, silicon oxide, and mica, respectively at 115 C. The non-zero steady state contact angles result in a slower evolution of contact angle with time compared to Tanner's Law, as expected. We observe local crystallinity on the molten droplet surface, where crystalline structures appear to nucleate at the contact line and migrate toward the top of the droplet. Increasing the temperature from 115 C to 175 C reduced surface crystallinity from 35% to 12%, consistent with increasingly energetically favorable amorphous phase as the temperature approaches the melting temperature. This platform provides a way to measure spreading dynamics of extremely small volumes of heterogeneously complex fluids not possible through other means. Dr.Jonathan Felts is the principal investigator of the ANML research group in Mechanical Engineering Department of Texas A&M University.
Iliyana D. Dobreva
2017-06-01
Full Text Available Understanding climate-glacier dynamics in High Mountain Asia is of critical importance to address issues including water resources, sea-level rise, mountain geodynamics, natural hazards and ecosystem sustainability. The Karakoram Himalaya is arguably the least understood region, given its extreme topography, climate-system coupling, and advancing and surge-type glaciers that exhibit complex flow patterns. Glacier fluctuations in the Karakoram Himalaya are highly variable in space and time because of numerous controlling factors, including the westerlies, the Indian summer monsoon, various teleconnections, topographic effects, glacier debris-cover characteristics, glacier dynamics, and geological conditions. The influence of the integrative coupling of forcing factors, however, has not been adequately assessed for characterizing the glaciers in the Karakoram Himalaya. Given the scarcity of in-situ data and the difficulty of conducting fieldwork on these glaciers, recent research has focused on utilizing remote sensing, geospatial technologies, and scientific modeling to obtain baseline information about the state of glaciers in the region. This review summarizes our current knowledge of glaciers, climate-glacier interaction, and topographic forcing in the Karakoram Himalaya, and demonstrates the complexities in mountain geodynamics that influence climate-glacier dynamics. Innovative analysis is also presented in support of our review and discussion.
Translocation dynamics of a short polymer driven by an oscillating force.
Pizzolato, Nicola; Fiasconaro, Alessandro; Adorno, Dominique Persano; Spagnolo, Bernardo
2013-02-07
We study the translocation dynamics of a short polymer moving in a noisy environment and driven by an oscillating force. The dynamics is numerically investigated by solving a Langevin equation in a two-dimensional domain. We consider a phenomenological cubic potential with a metastable state to model the polymer-pore interaction and the entropic free energy barrier characterizing the translocation process. The mean first translocation time of the center of inertia of polymers shows a nonmonotonic behavior, with a minimum, as a function of the number of the monomers. The dependence of the mean translocation time on the polymer chain length shows a monotonically increasing behavior for high values of the number of monomers. Moreover, the translocation time shows a minimum as a function of the frequency of the oscillating forcing field for all the polymer lengths investigated. This finding represents the evidence of the resonant activation phenomenon in the dynamics of polymer translocation, whose occurrence is maintained for different values of the noise intensity.
Dynamics of dissipative self-assembly of particles interacting through oscillatory forces
Tagliazucchi, M. [Department of Biomedical Engineering; Department of Chemistry and Chemistry of Life Processes Institute; Northwestern University; Evanston, USA; INQUIMAE-CONICET; Szleifer, I. [Department of Biomedical Engineering; Department of Chemistry and Chemistry of Life Processes Institute; Northwestern University; Evanston, USA
2016-01-01
Dissipative self-assembly is the formation of ordered structures far from equilibrium, which continuously uptake energy and dissipate it into the environment. Due to its dynamical nature, dissipative self-assembly can lead to new phenomena and possibilities of self-organization that are unavailable to equilibrium systems. Understanding the dynamics of dissipative self-assembly is required in order to direct the assembly to structures of interest. In the present work, Brownian dynamics simulations and analytical theory were used to study the dynamics of self-assembly of a mixture of particles coated with weak acids and bases under continuous oscillations of the pH. The pH of the system modulates the charge of the particles and, therefore, the interparticle forces oscillate in time. This system produces a variety of self-assembled structures, including colloidal molecules, fibers and different types of crystalline lattices. The most important conclusions of our study are: (i) in the limit of fast oscillations, the whole dynamics (and not only those at the non-equilibrium steady state) of a system of particles interacting through time-oscillating interparticle forces can be described by an effective potential that is the time average of the time-dependent potential over one oscillation period; (ii) the oscillation period is critical to determine the order of the system. In some cases the order is favored by very fast oscillations while in others small oscillation frequencies increase the order. In the latter case, it is shown that slow oscillations remove kinetic traps and, thus, allow the system to evolve towards the most stable non-equilibrium steady state.
Cantilever tilt causing amplitude related convolution in dynamic mode atomic force microscopy.
Wang, Chunmei; Sun, Jielin; Itoh, Hiroshi; Shen, Dianhong; Hu, Jun
2011-01-01
It is well known that the topography in atomic force microscopy (AFM) is a convolution of the tip's shape and the sample's geometry. The classical convolution model was established in contact mode assuming a static probe, but it is no longer valid in dynamic mode AFM. It is still not well understood whether or how the vibration of the probe in dynamic mode affects the convolution. Such ignorance complicates the interpretation of the topography. Here we propose a convolution model for dynamic mode by taking into account the typical design of the cantilever tilt in AFMs, which leads to a different convolution from that in contact mode. Our model indicates that the cantilever tilt results in a dynamic convolution affected by the absolute value of the amplitude, especially in the case that corresponding contact convolution has sharp edges beyond certain angle. The effect was experimentally demonstrated by a perpendicular SiO(2)/Si super-lattice structure. Our model is useful for quantitative characterizations in dynamic mode, especially in probe characterization and critical dimension measurements.
Droplet spreading driven by van der Waals force: a molecular dynamics study
Wu Congmin [Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Qian Tiezheng [Department of Mathematics and Joint KAUST-HKUST Micro/Nanofluidics Laboratory, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Sheng Ping, E-mail: maqian@ust.h [Department of Physics and William Mong Institute of Nano Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)
2010-08-18
The dynamics of droplet spreading is investigated by molecular dynamics simulations for two immiscible fluids of equal density and viscosity. All the molecular interactions are modeled by truncated Lennard-Jones potentials and a long-range van der Waals force is introduced to act on the wetting fluid. By gradually increasing the coupling constant in the attractive van der Waals interaction between the wetting fluid and the substrate, we observe a transition in the initial stage of spreading. There exists a critical value of the coupling constant, above which the spreading is pioneered by a precursor film. In particular, the dynamically determined critical value quantitatively agrees with that determined by the energy criterion that the spreading coefficient equals zero. The latter separates partial wetting from complete wetting. In the regime of complete wetting, the radius of the spreading droplet varies with time as R(t){approx}{radical}t, a behavior also found in molecular dynamics simulations where the wetting dynamics is driven by the short-range Lennard-Jones interaction between liquid and solid.
Droplet spreading driven by van der Waals force: a molecular dynamics study
Wu, Congmin
2010-07-07
The dynamics of droplet spreading is investigated by molecular dynamics simulations for two immiscible fluids of equal density and viscosity. All the molecular interactions are modeled by truncated Lennard-Jones potentials and a long-range van der Waals force is introduced to act on the wetting fluid. By gradually increasing the coupling constant in the attractive van der Waals interaction between the wetting fluid and the substrate, we observe a transition in the initial stage of spreading. There exists a critical value of the coupling constant, above which the spreading is pioneered by a precursor film. In particular, the dynamically determined critical value quantitatively agrees with that determined by the energy criterion that the spreading coefficient equals zero. The latter separates partial wetting from complete wetting. In the regime of complete wetting, the radius of the spreading droplet varies with time as R(t) ∼ √t, a behavior also found in molecular dynamics simulations where the wetting dynamics is driven by the short-range Lennard-Jones interaction between liquid and solid. © 2010 IOP Publishing Ltd.
Vegetation Dynamics and Associated Driving Forces in Eastern China during 1999–2008
Jian Peng
2015-10-01
Full Text Available Vegetation is one of the most important components of the terrestrial ecosystem and, thus, monitoring the spatial and temporal dynamics of vegetation has become the key to exploring the basic process of the terrestrial ecosystem. Vegetation change studies have focused on the relationship between climatic factors and vegetation dynamics. However, correlations among the climatic factors always disturb the results. In addition, the impact of anthropogenic activities on vegetation dynamics was indeterminate. Here, vegetation dynamics in 14 provinces in Eastern China over a 10-year period was quantified to determine the driving mechanisms relating to climate and anthropogenic factors using partial correlation analysis. The results showed that from 1999 to 2008, the vegetation density increased in the whole, with spatial variations. The vegetation improvement was concentrated in the Yangtze River Delta, with the vegetation degradation concentrated in the other developed areas, such as Beijing-Tianjin-Hebei Region and the Pearl River Delta. The annual NDVI changes were mainly driven by temperature in Northeast China and the Pearl River Delta, and by precipitation in the Bohai Rim; while in the Yangtze River Delta, the driving forces of temperature and precipitation almost equaled each other. Furthermore, the impact of anthropogenic activities on vegetation dynamics had accumulative effects in the time series, and had a phase effect on the vegetation change trend.
Dynamics of a disturbed sessile drop measured by atomic force microscopy (AFM).
McGuiggan, Patricia M; Grave, Daniel A; Wallace, Jay S; Cheng, Shengfeng; Prosperetti, Andrea; Robbins, Mark O
2011-10-04
A new method for studying the dynamics of a sessile drop by atomic force microscopy (AFM) is demonstrated. A hydrophobic microsphere (radius, r ∼ 20-30 μm) is brought into contact with a small sessile water drop resting on a polytetrafluoroethylene (PTFE) surface. When the microsphere touches the liquid surface, the meniscus rises onto it because of capillary forces. Although the microsphere volume is 6 orders of magnitude smaller than the drop, it excites the normal resonance modes of the liquid interface. The sphere is pinned at the interface, whose small (drop volumes between 5 and 200 μL. The results for the two lowest normal modes are quantitatively consistent with continuum calculations for the natural frequency of hemispherical drops with no adjustable parameters. The method may enable sensitive measurements of volume, surface tension, and viscosity of small drops.
Guo, Huijuan; Li, Tao; Cao, Xiaotao; Xiong, Jin; Jie, Yang; Willander, Magnus; Cao, Xia; Wang, Ning; Wang, Zhong Lin
2017-01-24
Triboelectric nanogenerators (TENGs) offer great opportunities to deploy advanced wearable electronics that integrate a power generator and smart sensor, which eliminates the associated cost and sustainability concerns. Here, an embodiment of such integrated platforms has been presented in a graphene oxide (GO) based single-electrode TENG (S-TENG). The as-designed multifunctional device could not only harvest tiny bits of mechanical energy from ambient movements with a high power density of 3.13 W·m(-2) but also enable detecting dynamic force with an excellent sensitivity of about 388 μA·MPa(-1). Because of the two-dimensional nanostructure and excellent surface properties, the GO-based S-TENG shows sensitive force detection and sound antimicrobial activity in comparison with conventional poly(tetrafluoroethylene) (PTFE) electrodes. This technology offers great applicability prospects in portable/wearable electronics, micro/nanoelectromechanical devices, and self-powered sensors.
Das, Dipjyoti; Padinhateeri, Ranjith
2014-01-01
How cytoskeletal filaments collectively undergo growth and shrinkage is an intriguing question. Collective properties of multiple bio-filaments (actin or microtubules) undergoing hydrolysis, have not been studied extensively earlier, within simple theoretical frameworks. In this paper, we show that collective properties of multiple filaments under force are very distinct from the properties of a single filament under similar conditions -- these distinctions manifest as follows: (i) the collapse time during collective catastrophe for a multifilament system is much larger than that of a single filament with the same average length, (ii) force-dependence of the cap-size distribution of multiple filaments are quantitatively different from that of single filament, (iii) the diffusion constant associated with the system length fluctuations is distinct for multiple filaments, (iv) switching dynamics of multiple filaments between capped and uncapped states and the fluctuations therein are also distinct. We build a un...
A Fluid Dynamics Approach for the Computation of Non-linear Force-Free Magnetic Field
Jing-Qun Li; Jing-Xiu Wang; Feng-Si Wei
2003-01-01
Inspired by the analogy between the magnetic field and velocity fieldof incompressible fluid flow, we propose a fluid dynamics approach for comput-ing nonlinear force-free magnetic fields. This method has the advantage that thedivergence-free condition is automatically satisfied, which is a sticky issue for manyother algorithms, and we can take advantage of modern high resolution algorithmsto process the force-free magnetic field. Several tests have been made based on thewell-known analytic solution proposed by Low & Lou. The numerical results arein satisfactory agreement with the analytic ones. It is suggested that the newlyproposed method is promising in extrapolating the active region or the whole sunmagnetic fields in the solar atmosphere based on the observed vector magnetic fieldon the photosphere.
Dynamics and Complexity in a Time Delay Model of RNA Silencing with Periodic Forcing
Svetoslav Nikolov
2008-10-01
Full Text Available Simple periodic behavior and occurrence of complex oscillatory phenomena underlie of a large number of biochemical system models. In many cases the transition from stable to simple/complex oscillatory behavior can be connected with the appearance of abnormal process likes as cancer. In this paper we propose a time delay model of RNA silencing (also known as RNA interference with periodic forcing. In organisms with RNA silencing, each cell has a miniature "immune system" able to generate and amplify specific responses to a variety of gene transcripts. The consequences of a time delay on the dynamics of this model are analysed using Hopf's theorem. Our analytical calculations predict that time delay acts as a key bifurcation parameter. From the accomplished numerical results, it becomes clear that model has complexity oscillatory behavior when the amplitude of periodic force (i.e. the confusion in the target mRNA synthesis is large.
Bey, E; Paranque, A; Pharaboz, C; Cariou, J L
2001-02-01
The vascularized free fibular graft has been used in mandibular reconstructive surgery since 1975. This technique has been progressively developed, and it is now the procedure of choice for mandibular reconstruction although in certain postoperative circumstances it can be difficult if not impossible to monitor bone vitality. However, bone vascularization can be detected by dynamic magnetic resonance imaging (MRI), as this technique has been experimentally and clinically validated in the early diagnosis of osteonecrosis. The aim of this study was to evaluate the efficacy of MRI for the postoperative monitoring of vascularized free fibular grafts in human mandibular reconstruction. Dynamic contrast-enhanced MRI was used to study the variation in contrast over time following injection of gadolinium contrast medium, and to evaluate the degree of bone marrow perfusion of the fibular graft. This variation in signal intensity was visualized in the form of a curve, i.e., a perfusion curve for the bone marrow region. An examination was performed in three patients at different postoperative times and under different conditions. In one case, MRI confirmed the presence of fibula blood supply in spite of the necrosis of the adjacent fascio-adipose layer. In this article, the methodological difficulties have been discussed, particularly as regards data processing, and the present results have been compared with the findings in the literature. Dynamic MRI is a simple, reliable, non-invasive technique and its use in the postoperative monitoring of bone marrow perfusion and vascularized free fibular grafts permits a determination of the status of the latter following surgery, i.e., whether there is an adequate blood supply or not.
Spiral Wave Dynamics in a Response System Subjected to a Spiral Wave Forcing
LI Guang-Zhao; CHEN Yong-Qi; TANG Guo-Ning; LIU Jun-Xian
2011-01-01
@@ Unidirectional linear error feedback coupling of two excitable medium systems displaying spiral waves is considered.The spiral wave in the response system is thus subjected to a spiral wave forcing.We find that the unidirectional feedback coupling can lead to richer behaviour than the mutual coupling.The spiral wave dynamics in the response system depends on the coupling strength and frequency mismatch.When the coupling strength is small, the feedback coupling induces the drift or meander of the forced spiral wave.When the coupling strength is large enough, the feedback coupling may lead to the transition from spiral wave to anti-target or target-like wave.The generation of anti-target wave in coupled excitable media is observed for the first time.Furthermore, when the coupling strength is strong, the synchronization between two subsystems can be established.%Unidirectional linear error feedback coupling of two excitable medium systems displaying spiral waves is considered. The spiral wave in the response system is thus subjected to a spiral wave forcing. We find that the unidirectional feedback coupling can lead to richer behaviour than the mutual coupling. The spiral wave dynamics in the response system depends on the coupling strength and frequency mismatch. When the coupling strength is small, the feedback coupling induces the drift or meander of the forced spiral wave. When the coupling strength is large enough, the feedback coupling may lead to the transition from spiral wave to anti-target or target-like wave. The generation of anti-target wave in coupled excitable media is observed for the first time. Furthermore,when the coupling strength is strong, the synchronization between two subsystems can be established.
Yang, Hong-liu; Radons, Günter; Kantz, Holger
2012-12-14
The estimation of Lyapunov exponents from time series suffers from the appearance of spurious Lyapunov exponents due to the necessary embedding procedure. Separating true from spurious exponents poses a fundamental problem which is not yet solved satisfactorily. We show, in this Letter, analytically and numerically that covariant Lyapunov vectors associated with true exponents lie in the tangent space of the reconstructed attractor. Therefore, we use the angle between the covariant Lyapunov vectors and the tangent space of the reconstructed attractor to identify the true Lyapunov exponents. The usefulness of our method, also for noisy situations, is demonstrated by applications to data from model systems and a NMR laser experiment.
Inverse Force Determination on a Small Scale Launch Vehicle Model Using a Dynamic Balance
Ngo, Christina L.; Powell, Jessica M.; Ross, James C.
2017-01-01
A launch vehicle can experience large unsteady aerodynamic forces in the transonic regime that, while usually only lasting for tens of seconds during launch, could be devastating if structural components and electronic hardware are not designed to account for them. These aerodynamic loads are difficult to experimentally measure and even harder to computationally estimate. The current method for estimating buffet loads is through the use of a few hundred unsteady pressure transducers and wind tunnel test. Even with a large number of point measurements, the computed integrated load is not an accurate enough representation of the total load caused by buffeting. This paper discusses an attempt at using a dynamic balance to experimentally determine buffet loads on a generic scale hammer head launch vehicle model tested at NASA Ames Research Center's 11' x 11' transonic wind tunnel. To use a dynamic balance, the structural characteristics of the model needed to be identified so that the natural modal response could be and removed from the aerodynamic forces. A finite element model was created on a simplified version of the model to evaluate the natural modes of the balance flexures, assist in model design, and to compare to experimental data. Several modal tests were conducted on the model in two different configurations to check for non-linearity, and to estimate the dynamic characteristics of the model. The experimental results were used in an inverse force determination technique with a psuedo inverse frequency response function. Due to the non linearity, the model not being axisymmetric, and inconsistent data between the two shake tests from different mounting configuration, it was difficult to create a frequency response matrix that satisfied all input and output conditions for wind tunnel configuration to accurately predict unsteady aerodynamic loads.
Measurement and analysis of traction force dynamics in response to vasoactive agonists.
Yang, Michael T; Reich, Daniel H; Chen, Christopher S
2011-06-01
Mechanical traction forces exerted by adherent cells on their surroundings serve an important role in a multitude of cellular and physiological processes including cell motility and multicellular rearrangements. For endothelial cells, contraction also provides a means to disrupt cell-cell junctions during inflammation to increase permeability between blood and interstitial tissue compartments. The degree of contractility exhibited by endothelial cells is influenced by numerous soluble factors, such as thrombin, histamine, lysophosphatidic acid, sphingosine-1-phosphate, and vascular endothelial growth factor (VEGF). Upon binding to cell surface receptors, these agents trigger changes in cytoskeletal organization, adhesion and myosin II activity to varying degrees. While conventional antibody-based biochemical assays are suitable for detecting relatively large changes in biomarkers of contractility in an end-point format, they cannot resolve subtle or rapid changes in contractility and cannot do so noninvasively. To overcome these limitations, we developed an approach to measure the contractile response of single cells exposed to contractility agonists with high spatiotemporal resolution. A previously developed traction force sensor, comprised of dense arrays of elastomeric microposts on which cells are cultured, was combined with custom, semi-automated software developed here to extract strain energy measurements from thousands of time-lapse images of micropost arrays deformed by adherent cells. Using this approach we corroborated the differential effects of known agonists of contractility and characterized the dynamics of their effects. All of these agonists produced a characteristic first-order rise and plateau in forces, except VEGF, which stimulated an early transient spike in strain energy followed by a sustained increase. This novel, two-phase contractile response was present in a subpopulation of cells, was mediated through both VEGFR2 and ROCK activation
Elliott, Jonathan T.; Diop, Mamadou; Morrison, Laura B.; Lee, Ting-Yim; St. Lawrence, Keith
2013-03-01
We present a dynamic contrast-enhanced near-infrared (DCE-NIR) technique that is capable of non-invasive quantification of cerebral hemodynamics in adults. The challenge of removing extracerebral contamination is overcome through the use of multi-distance time-resolved DCE-NIR combined with the kinetic deconvolution optical reconstruction (KDOR) analytical method. As proof-of-principle, cerebral blood flow, cerebral blood volume and mean transit time recovered with DCE-NIR are compared with CT perfusion values in an adult pig during normocapnia, hypocapnia, and ischemia. Measurements of blood flow acquired with DCE-NIR were compared against concomitant measurements using CT Perfusion.
Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species
Kagan, Grigory; Daligault, Jerome
2016-01-01
The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. For the same coupling parameters, the dynamic friction coefficient is found to tend to unity. These results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.
Dynamics of ions in a water drop using the AMOEBA polarizable force field
Thaunay, Florian; Ohanessian, Gilles; Clavaguéra, Carine
2017-03-01
Various ions carrying a charge from -2 to +3 were confined in a drop of 100 water molecules as a way to model coordination properties inside the cluster and at the interface. The behavior of the ions has been followed by molecular dynamics with the AMOEBA polarizable force field. Multiply charged ions and small singly charged ions are found to lie inside the droplet, while bigger monovalent ions sit near the surface. The results provide a coherent picture of average structural properties as well as residence times for which a general trend is proposed, especially for the anions.
Is transcription the dominant force during dynamic changes in gene expression?
Turner, Martin
2011-01-01
Dynamic changes in gene expression punctuate lymphocyte development and are a characteristic of lymphocyte activation. A prevailing view has been that these changes are driven by DNA transcription factors, which are the dominant force in gene expression. Accumulating evidence is challenging this DNA centric view and has highlighted the prevalence and dynamic nature of RNA handling mechanisms. Alternative splicing and differential polyadenylation appear to be more widespread than first thought. Changes in mRNA decay rates also affect the abundance of transcripts and this mechanism may contribute significantly to gene expression. Additional RNA handling mechanisms that control the intracellular localization of mRNA and association with translating ribosomes are also important. Thus, gene expression is regulated through the coordination of transcriptional and post-transcriptional mechanisms. Developing a more "RNA centric" view of gene expression will allow a more systematic understanding of how gene expression and cell function are integrated.
Impact of External Forcing on Glacier Dynamics at Jakobshavn Isbræ during 1840-2012
Muresan, Ioana Stefania; Khan, Shfaqat Abbas; Aschwanden, Andy
thickness or retreat of the floating tongue of a glacier) caused by enhanced calving or a longer-term thinning due to a mass deficit of the ice sheet. Recent findings indicate the reduced buttressing at the marine terminus is responsible for the recent dynamic changes observed in Greenland......-term trends of several decade time scales. Here, we study the mechanisms controlling dynamic changes at the terminus of Jakobshavn Isbræ over a period of 172 years. The recent glacier acceleration began in late 1990s but there is evidence for glacier retreat of comparable magnitude in 1930s, when a similarly...... warm period occurred. To control the acceleration and retreat based on observed front positions during 1840-2012, we use an ocean model modifier that implements forcing at the ocean boundary using melange back pressure offsets. The mean temperature anomaly in west Greenland, the North Atlantic...
Invited Review Nanoscale devices fabricated by dynamic ploughing with an atomic force microscope
Kunze, Ulrich
2002-01-01
A review is given on the dynamic ploughing technique and its application on the fabrication of nanoscale semiconductor structures. The vibrating tip of an atomic force microscope is used to dynamically plough furrows into a polymer layer of a few nm thickness on top of the semiconductor surface. Wet-chemical etching transfers the desired line pattern. The resulting grooves of 50-100 nm width form an arrangement of barriers in the electron layer of a conventional modulation-doped GaAs/AlGaAs heterostructure. A new type of heterostructure with a compensating p-type doped cap layer shows an electron enhancement if the cap layer is selectively removed. Etching a groove in these structures enables one to induce a one-dimensional electron system. Both types of structures are used to fabricate various ballistic quantum devices and Coulomb-blockade structures.
BAL: A library for the brute-force analysis of dynamical systems
Linaro, Daniele; Storace, Marco
2016-04-01
This paper describes the functionality and usage of BAL, a C/C++ library with a Python front-end for the brute-force analysis of continuous-time dynamical systems described by ordinary differential equations (ODEs). BAL provides an easy-to-use wrapper for the efficient numerical integration of ODEs and, by detecting intersections of the trajectory with appropriate Poincaré sections, allows to classify the asymptotic trajectory of a dynamical system for bifurcation analysis. Some examples of application are discussed, concerning two-dimensional bifurcation diagrams, Lyapunov exponents and finite-time Lyapunov exponents, basins of attraction, simulation of switching ODE systems, and integration with AUTO, a software package for continuation analysis.
Correlation networks from flows. The case of forced and time-dependent advection-diffusion dynamics
Tupikina, Liubov; López, Cristóbal; Hernández-García, Emilio; Marwan, Norbert; Kurths, Jürgen
2016-01-01
Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our r...
Bhushan, Bharat; Wang, Yuliang; Maali, Abdelhamid
2009-07-21
Slip length has been measured using the dynamic atomic force microscopy (AFM) method. Unlike the contact AFM method, the sample surface approaches an oscillating sphere with a very low velocity in the dynamic AFM method. During this process, the amplitude and phase shift data are recorded to calculate the hydrodynamic damping coefficient, which is then used to obtain slip length. In this study, a glass sphere with a large radius was glued to the end of an AFM cantilever to measure the slip length on rough surfaces. Experimental results for hydrophilic, hydrophobic, and superhydrophobic surfaces show that the hydrodynamic damping coefficient decreases from the hydrophilic surface to the hydrophobic surface and from the hydrophobic one to the superhydrophobic one. The slip lengths obtained on the hydrophobic and superhydrophobic surfaces are 43 and 236 nm, respectively, which indicates increasing boundary slip from the hydrophobic surface to the superhydrophobic one.
EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing
Cohen, M.X.; Ridderinkhof, K.R.
2013-01-01
Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processin
Elizaveta eOkorokova
2015-10-01
Full Text Available In recent years, several assistive devices have been proposed to reconstruct arm and hand movements from electromyographic (EMG activity. Although simple to implement and potentially useful to augment many functions, such myoelectric devices still need improvement before they become practical. Here we considered the problem of reconstruction of handwriting from multichannel EMG activity. Previously, linear regression methods (e.g. the Wiener filter have been utilized for this purpose with some success. To improve reconstruction accuracy, we implemented the Kalman filter, which allows to fuse two information sources: the physical characteristics of handwriting and the activity of the leading hand muscles, registered by the EMG. Applying the Kalman filter, we were able to convert eight channels of EMG activity recorded from the forearm and the hand muscles into smooth reconstructions of handwritten traces. The filter operates in a causal manner and acts as a true predictor utilizing the EMGs from the past only, which makes the approach suitable for real-time operations. Our algorithm is appropriate for clinical neuroprosthetic applications and computer peripherals. Moreover, it is applicable to a broader class of tasks where predictive myoelectric control is needed.
Hohensinner, Severin; Sonnlechner, Christoph; Schmid, Martin; Winiwarter, Verena
As part of an interdisciplinary project on the environmental history of the Viennese Danube, the past river landscape was reconstructed. This article describes the different types of historical sources used for the GIS-based reconstruction, the underlying methodological approach and its limitations regarding reliability and information value. The reconstruction was based on three cornerstones: (1) the available historical sources; (2) knowledge about morphological processes typical for the Austrian Danube prior to regulation; and (3) the interpretation of past hydraulic measures with respect to their effectiveness and their impact on the river's behaviour. We compiled ten historical states of the riverscape step-by-step going backwards in time to the early 16th century. After one historical situation had been completed, we evaluated its relevance for the temporally younger situations and whether corrections would have to be made. Such a regressive-iterative approach allows for permanent critical revision of the reconstructed time segments already processed. The resulting maps of the Danube floodplain from 1529 to 2010 provide a solid basis for interpreting the environmental conditions for Vienna's urban development. They also help to localise certain riverine and urban landmarks (such as river arms or bridges) relevant for the history of Vienna. We conclude that the diversity of approaches and findings of the historical and natural sciences (river morphology, hydrology) provide key synergies.
Inertial forces affect fluid front displacement dynamics in a pore-throat network model.
Moebius, Franziska; Or, Dani
2014-08-01
The seemingly regular and continuous motion of fluid displacement fronts in porous media at the macroscopic scale is propelled by numerous (largely invisible) pore-scale abrupt interfacial jumps and pressure bursts. Fluid fronts in porous media are characterized by sharp phase discontinuities and by rapid pore-scale dynamics that underlie their motion; both attributes challenge standard continuum theories of these flow processes. Moreover, details of pore-scale dynamics affect front morphology and subsequent phase entrapment behind a front and thereby shape key macroscopic transport properties of the unsaturated zone. The study presents a pore-throat network model that focuses on quantifying interfacial dynamics and interactions along fluid displacement fronts. The porous medium is represented by a lattice of connected pore throats capable of detaining menisci and giving rise to fluid-fluid interfacial jumps (the study focuses on flow rate controlled drainage). For each meniscus along the displacement front we formulate a local inertial, capillary, viscous, and hydrostatic force balance that is then solved simultaneously for the entire front. The model enables systematic evaluation of the role of inertia and boundary conditions. Results show that while displacement patterns are affected by inertial forces mainly by invasion of throats with higher capillary resistance, phase entrapment (residual saturation) is largely unaffected by inertia, limiting inertial effects on hydrological properties behind a front. Interfacial jump velocities are often an order of magnitude larger than mean front velocity, are strongly dependent on geometrical throat dimensions, and become less predictable (more scattered) when inertia is considered. Model simulations of the distributions of capillary pressure fluctuations and waiting times between invasion events follow an exponential distribution and are in good agreement with experimental results. The modeling approach provides insights
The role of forcing and internal dynamics in explaining the ''Medieval Climate Anomaly''
Goosse, Hugues; Crespin, Elisabeth; Dubinkina, Svetlana; Loutre, Marie-France; Sallaz-Damaz, Yoann [Universite Catholique de Louvain, Earth and Life Institute, Georges Lemaitre Centre for Earth and Climate Research, Louvain-la-Neuve (Belgium); Mann, Michael E. [Pennsylvania State University, Department of Meteorology and Earth and Environmental Systems Institute, University Park, PA (United States); Renssen, Hans [Vrije Universiteit Amsterdam, Section Climate Change and Landscape Dynamics, Department of Earth Sciences, Amsterdam (Netherlands); Shindell, Drew [NASA Goddard Institute for Space Studies, New York City, NY (United States)
2012-12-15
Proxy reconstructions suggest that peak global temperature during the past warm interval known as the Medieval Climate Anomaly (MCA, roughly 950-1250 AD) has been exceeded only during the most recent decades. To better understand the origin of this warm period, we use model simulations constrained by data assimilation establishing the spatial pattern of temperature changes that is most consistent with forcing estimates, model physics and the empirical information contained in paleoclimate proxy records. These numerical experiments demonstrate that the reconstructed spatial temperature pattern of the MCA can be explained by a simple thermodynamical response of the climate system to relatively weak changes in radiative forcing combined with a modification of the atmospheric circulation, displaying some similarities with the positive phase of the so-called Arctic Oscillation, and with northward shifts in the position of the Gulf Stream and Kuroshio currents. The mechanisms underlying the MCA are thus quite different from anthropogenic mechanisms responsible for modern global warming. (orig.)
Nonlinear dynamics of tapping mode atomic force microscopy in the bistable phase
Bahrami, Arash; Nayfeh, Ali H.
2013-03-01
Nonlinear dynamics of amplitude modulation atomic force microscopy (AFM) is studied employing a reduced-order model based on a differential quadrature method (DQM). The AFM microcantilever is assumed to be operating in the dynamic contact or tapping mode while the microcantilever tip being initially located in the bistable region. We have found that the DQM is capable of precise prediction of the static bifurcation diagram and natural frequencies of the microcantilever. We have used the DQM to discretize the partial-differential equation governing the microcantilever motion and a finite difference method (FDM) to calculate limit-cycle responses of the AFM tip. It is shown that a combination of the DQM and FDM applied, respectively, to discretize the spatial and temporal derivatives provides an efficient, accurate procedure to address the complicated dynamic behavior exhibited by the AFM probe. The procedure was, therefore, utilized to study the response of the microcantilever to a base harmonic excitation through several numerical examples. We found that the dynamics of the AFM probe in the bistable region is totally different from those in the monostable region.
Monserrate, Aitor; Casado, Santiago; Flors, Cristina
2014-03-17
Hybrid microscopy: A correlative microscopy tool that combines in situ super-resolution fluorescence microscopy based on single-molecule localization and atomic force microscopy is presented. Direct comparison with high- resolution topography allows the authors to improve fluorescence labeling and image analysis in super-resolution imaging.
Schrader, Alex M.; Cheng, Chi-Yuan; Israelachvili, Jacob N.; Han, Songi
2016-07-01
Glycerol and dimethyl sulfoxide (DMSO) are commonly used cryoprotectants in cellular systems, but due to the challenges of measuring the properties of surface-bound solvent, fundamental questions remain regarding the concentration, interactions, and conformation of these solutes at lipid membrane surfaces. We measured the surface water diffusivity at gel-phase dipalmitoylphosphatidylcholine (DPPC) bilayer surfaces in aqueous solutions containing ≤7.5 mol. % of DMSO or glycerol using Overhauser dynamic nuclear polarization. We found that glycerol similarly affects the diffusivity of water near the bilayer surface and that in the bulk solution (within 20%), while DMSO substantially increases the diffusivity of surface water relative to bulk water. We compare these measurements of water dynamics with those of equilibrium forces between DPPC bilayers in the same solvent mixtures. DMSO greatly decreases the range and magnitude of the repulsive forces between the bilayers, whereas glycerol increases it. We propose that the differences in hydrogen bonding capability of the two solutes leads DMSO to dehydrate the lipid head groups, while glycerol affects surface hydration only as much as it affects the bulk water properties. The results suggest that the mechanism of the two most common cryoprotectants must be fundamentally different: in the case of DMSO by decoupling the solvent from the lipid surface, and in the case of glycerol by altering the hydrogen bond structure and intermolecular cohesion of the global solvent, as manifested by increased solvent viscosity.
Precipitation rate spectra as dependent on dynamic forcing: application to probabilistic forecasting
A. R. Ivanova
2007-04-01
Full Text Available Occurrence frequencies, OF, of 12-h precipitation amounts, P, at stations in the former European USSR are displayed as dependent on dynamic forcing of vertical motions. The dynamic forcing is described by a "frontal parameter", F (calculated in the points of objective analysis grid, which depends on the surface pressure field curvature and on the baroclinicity in the lower half of the troposphere. The precipitation rate spectra for 4 seasons, calculated from a large sample of data (7 years, about 650 000 values of P for one season, show a monotonous OF growth of all ranges of P>1 mm/12 h with F increase. The growth is especially significant for heavy precipitation. As a result, F is shown to be an informative predictor of P spectrum or of probability of any given range of P. As a next step, two-dimensional spectra of precipitation occurrence frequency, as a function of F and LNB, that is, OF (F, LNB, are calculated, LNB being the level of neutral buoyancy at the gridpoint, an estimate of grid-scale convective instability. On this basis, an approach to probabilistic forecasting is suggested.
Giehl Zanetti-Ramos, Betina [Laboratorio de Bioenergetica e Bioquimica de Macromoleculas, Departamento de Ciencias Farmaceuticas (Brazil)], E-mail: betinagzramos@pq.cnpq.br; Beddin Fritzen-Garcia, Mauricia [Laboratorio de Bioenergetica e Bioquimica de Macromoleculas, Departamento de Ciencias Farmaceuticas (Brazil); Schweitzer de Oliveira, Cristian; Avelino Pasa, Andre [Laboratorio de Filmes Finos e Superficie, Departamento de Fisica (Brazil); Soldi, Valdir [Grupo de Estudos em Materiais Polimericos, Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borsali, Redouane [Centre de Recherche sur les Macromolecules Vegetales CERMAV/CNRS, 38041 - Grenoble (France); Creczynski-Pasa, Tania Beatriz [Laboratorio de Bioenergetica e Bioquimica de Macromoleculas, Departamento de Ciencias Farmaceuticas (Brazil)
2009-03-01
Nanoparticles have applications in various industrial fields principally in drug delivery. Nowadays, there are several processes for manufacturing colloidal polymeric systems and methods of preparation as well as of characterization. In this work, Dynamic Light Scattering and Atomic Force Microscopy techniques were used to characterize polyurethane nanoparticles. The nanoparticles were prepared by miniemulsion technique. The lipophilic monomers, isophorone diisocyanate (IPDI) and natural triol, were emulsified in water containing surfactant. In some formulations the poly(ethylene glycol) was used as co-monomer to obtain the hydrophilic and pegylated nanoparticles. Polyurethane nanoparticles observed by atomic force microscopy (AFM) were spherical with diameter around 209 nm for nanoparticles prepared without PEG. From AFM imaging two populations of nanoparticles were observed in the formulation prepared with PEG (218 and 127 nm) while dynamic light scattering (DLS) measurements showed a monodisperse size distribution around 250 nm of diameters for both formulations. The polydispersity index of the formulations and the experimental procedures could influence the particle size determination with these techniques.
Chen, Chen; Arntsen, Christopher; Voth, Gregory A.
2017-10-01
Incorporation of quantum mechanical electronic structure data is necessary to properly capture the physics of many chemical processes. Proton hopping in water, which involves rearrangement of chemical and hydrogen bonds, is one such example of an inherently quantum mechanical process. Standard ab initio molecular dynamics (AIMD) methods, however, do not yet accurately predict the structure of water and are therefore less than optimal for developing force fields. We have instead utilized a recently developed method which minimally biases AIMD simulations to match limited experimental data to develop novel multiscale reactive molecular dynamics (MS-RMD) force fields by using relative entropy minimization. In this paper, we present two new MS-RMD models using such a parameterization: one which employs water with harmonic internal vibrations and another which uses anharmonic water. We show that the newly developed MS-RMD models very closely reproduce the solvation structure of the hydrated excess proton in the target AIMD data. We also find that the use of anharmonic water increases proton hopping, thereby increasing the proton diffusion constant.
Molecular recognition imaging using tuning fork-based transverse dynamic force microscopy
Hofer, Manuel; Adamsmaier, Stefan [University of Linz, Institute for Biophysics, Altenbergerstr. 69, 4040 Linz (Austria); Zanten, Thomas S. van [IBEC-Institute for Bioengineering of Catalonia and CIBER-Bbn, Baldiri i Reixac 15-21, Barcelona 08028 (Spain); Chtcheglova, Lilia A. [University of Linz, Institute for Biophysics, Altenbergerstr. 69, 4040 Linz (Austria); Manzo, Carlo [IBEC-Institute for Bioengineering of Catalonia and CIBER-Bbn, Baldiri i Reixac 15-21, Barcelona 08028 (Spain); Duman, Memed [University of Linz, Institute for Biophysics, Altenbergerstr. 69, 4040 Linz (Austria); Mayer, Barbara [Christian Doppler Laboratory for Nanoscopic Methods in Biophysics, Institute for Biophysics, University of Linz, Altenbergerstr. 69, 4040 Linz (Austria); Ebner, Andreas [University of Linz, Institute for Biophysics, Altenbergerstr. 69, 4040 Linz (Austria); Christian Doppler Laboratory for Nanoscopic Methods in Biophysics, Institute for Biophysics, University of Linz, Altenbergerstr. 69, 4040 Linz (Austria); Moertelmaier, Manuel; Kada, Gerald [Agilent Technologies Austria GmbH, Aubrunnerweg 11, 4040 Linz (Austria); Garcia-Parajo, Maria F. [IBEC-Institute for Bioengineering of Catalonia and CIBER-Bbn, Baldiri i Reixac 15-21, Barcelona 08028 (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona (Spain); Hinterdorfer, Peter, E-mail: peter.hinterdorfer@jku.at [University of Linz, Institute for Biophysics, Altenbergerstr. 69, 4040 Linz (Austria); Christian Doppler Laboratory for Nanoscopic Methods in Biophysics, Institute for Biophysics, University of Linz, Altenbergerstr. 69, 4040 Linz (Austria); Kienberger, Ferry [Agilent Technologies Austria GmbH, Aubrunnerweg 11, 4040 Linz (Austria)
2010-05-15
We demonstrate simultaneous transverse dynamic force microscopy and molecular recognition imaging using tuning forks as piezoelectric sensors. Tapered aluminum-coated glass fibers were chemically functionalized with biotin and anti-lysozyme molecules and attached to one of the prongs of a 32 kHz tuning fork. The lateral oscillation amplitude of the tuning fork was used as feedback signal for topographical imaging of avidin aggregates and lysozyme molecules on mica substrate. The phase difference between the excitation and detection signals of the tuning fork provided molecular recognition between avidin/biotin or lysozyme/anti-lysozyme. Aggregates of avidin and lysozyme molecules appeared as features with heights of 1-4 nm in the topographic images, consistent with single molecule atomic force microscopy imaging. Recognition events between avidin/biotin or lysozyme/anti-lysozyme were detected in the phase image at high signal-to-noise ratio with phase shifts of 1-2{sup o}. Because tapered glass fibers and shear-force microscopy based on tuning forks are commonly used for near-field scanning optical microscopy (NSOM), these results open the door to the exciting possibility of combining optical, topographic and biochemical recognition at the nanometer scale in a single measurement and in liquid conditions.
Mücksch, Christian; Urbassek, Herbert M
2016-08-18
We use molecular dynamics (MD) simulation to study the adsorption and desorption of two widely different proteins, bovine serum albumin (BSA) and lysozyme, on a graphite surface. The adsorption is modeled using accelerated MD to allow the proteins to find optimum conformations on the surface. Our results demonstrate that the "hard protein" lysozyme retains much of its secondary structure during adsorption, whereas BSA loses it almost completely. BSA has a considerably larger adsorption energy compared to that of lysozyme, which does not scale with chain length. Desorption simulations are carried out using classical steered MD. The BSA molecule becomes fully unzipped during pull-off, whereas several helices survive this process in lysozyme. The unzipping process shows up in the force-distance curve of BSA as a series of peaks, whereas only a single or few, depending on protein orientation, force peaks occur for lysozyme. The maximum desorption force is larger for BSA than for lysozyme, but only by a factor of about 2.3.
Dynamic control of aerodynamic forces on a moving platform using active flow control
Brzozowski, Daniel P.
The unsteady interaction between trailing edge aerodynamic flow control and airfoil motion in pitch and plunge is investigated in wind tunnel experiments using a two degree-of-freedom traverse which enables application of time-dependent external torque and forces by servo motors. The global aerodynamic forces and moments are regulated by controlling vorticity generation and accumulation near the trailing edge of the airfoil using hybrid synthetic jet actuators. The dynamic coupling between the actuation and the time-dependent flow field is characterized using simultaneous force and particle image velocimetry (PIV) measurements that are taken phase-locked to the commanded actuation waveform. The effect of the unsteady motion on the model-embedded flow control is assessed in both trajectory tracking and disturbance rejection maneuvers. The time-varying aerodynamic lift and pitching moment are estimated from a PIV wake survey using a reduced order model based on classical unsteady aerodynamic theory. These measurements suggest that the entire flow over the airfoil readjusts within 2--3 convective time scales, which is about two orders of magnitude shorter than the characteristic time associated with the controlled maneuver of the wind tunnel model. This illustrates that flow-control actuation can be typically effected on time scales that are commensurate with the flow's convective time scale, and that the maneuver response is primarily limited by the inertia of the platform.
High-resolution dynamic atomic force microscopy in liquids with different feedback architectures
John Melcher
2013-02-01
Full Text Available The recent achievement of atomic resolution with dynamic atomic force microscopy (dAFM [Fukuma et al., Appl. Phys. Lett. 2005, 87, 034101], where quality factors of the oscillating probe are inherently low, challenges some accepted beliefs concerning sensitivity and resolution in dAFM imaging modes. Through analysis and experiment we study the performance metrics for high-resolution imaging with dAFM in liquid media with amplitude modulation (AM, frequency modulation (FM and drive-amplitude modulation (DAM imaging modes. We find that while the quality factors of dAFM probes may deviate by several orders of magnitude between vacuum and liquid media, their sensitivity to tip–sample forces can be remarkable similar. Furthermore, the reduction in noncontact forces and quality factors in liquids diminishes the role of feedback control in achieving high-resolution images. The theoretical findings are supported by atomic-resolution images of mica in water acquired with AM, FM and DAM under similar operating conditions.
Okeke, George; Antony, S. Joseph; Hammond, Robert B.; Ahmed, Kamran
2017-07-01
Engineering nanowires to develop new products and processes is highly topical due to their ability to provide highly enhanced physical, chemical, mechanical, thermal and electrical properties. In this work, using molecular dynamics simulations, we report fundamental information, about the structural and thermodynamic properties of individual anatase titania (TiO2) nanowires with cross-sectional diameters between 2 and 6 nm, and aspect ratio (length to diameter) of 6:1 at temperatures ranging from 300 to 3000 K. Estimates of the melting transition temperature of the nanowires are between 2000 and 2500 K. The melting transition temperature predicted from the radial distribution functions (RDFs) shows strong agreement with those predicted from the total energy profiles. Overall, the transition temperature is in reasonable agreement with melting points predicted from experiments and simulations reported in the literature for spherical nanoparticles of similar sizes. Hence, the melting transition temperature of TiO2 nanowires modelled here can be considered as shape independent. Furthermore, for the first time based on MD simulations, interaction forces between two nanowires are reported at ambient temperature (300 K) for different orientations: parallel, perpendicular and end-to-end. It is observed that end-to-end orientations manifested the strongest attraction forces, while the parallel and perpendicular orientations displayed weaker attractions. The results reported here could form a foundation in future multiscale modelling studies of the structured titania nanowire assemblies, depending on the inter-wire interaction forces.
Dias, R A; Rapini, M; Costa, B V
2007-01-01
In this work we propose an extension to the analytical one-dimensional model proposed by E. Gnecco (Phys. Rev. Lett. 84:1172) to describe friction. Our model includes normal forces and the dependence with the angular direction of movement in which the object is dragged over a surface. The presence of the normal force in the model allow us to define judiciously the friction coefficient, instead of introducing it as an {\\sl a posteriori} concept. We compare the analytical results with molecular dynamics simulations. The simulated model corresponds to a tip sliding over a surface. The tip is simulated as a single particle interacting with a surface through a Lennard-Jones $(6-12)$ potential. The surface is considered as consisting of a regular BCC(001) arrangement of particles interacting with each other through a Lennard-Jones $(6-12)$ potential. We investigate the system under several conditions of velocity, temperature and normal forces. Our analytical results are in very good agreement with those obtained by...
van der Werf, N R; Willemink, M J; Willems, T P; Greuter, M J W; Leiner, T
2017-01-19
To evaluate the influence of dose reduction in combination with iterative reconstruction (IR) on coronary calcium scores (CCS) in a dynamic phantom on state-of-the-art CT systems from different manufacturers. Calcified inserts in an anthropomorphic chest phantom were translated at 20 mm/s corresponding to heart rates between 60 and 75 bpm. The inserts were scanned five times with routinely used CCS protocols at reference dose and 40 and 80% dose reduction on four high-end CT systems. Filtered back projection (FBP) and increasing levels of IR were applied. Noise levels were determined. CCS, quantified as Agatston and mass scores, were compared to physical mass and scores at FBP reference dose. For the reference dose in combination with FBP, noise level variation between CT systems was less than 18%. Decreasing dose almost always resulted in increased CCS, while at increased levels of IR, CCS decreased again. The influence of IR on CCS was smaller than the influence of dose reduction. At reference dose, physical mass was underestimated 3-30%. All CT systems showed similar CCS at 40% dose reduction in combinations with specific reconstructions. For some CT systems CCS was not affected at 80% dose reduction, in combination with IR. This multivendor study showed that radiation dose reductions of 40% did not influence CCS in a dynamic phantom using state-of-the-art CT systems in combination with specific reconstruction settings. Dose reduction resulted in increased noise and consequently increased CCS, whereas increased IR resulted in decreased CCS.
Fang, Suqin; Yan, Xiaolong; Liao, Hong
2009-12-01
Root architecture plays important roles in plant water and nutrient acquisition. However, accurate modeling of the root system that provides a realistic representation of roots in the soil is limited by a lack of appropriate tools for the non-destructive and precise measurement of the root system architecture in situ. Here we describe a root growth system in which the roots grow in a solid gel matrix that was used to reconstruct 3D root architecture in situ and dynamically simulate its changes under various nutrient conditions with a high degree of precision. A 3D laser scanner combined with a transparent gel-based growth system was used to capture 3D images of roots. The root system skeleton was extracted using a skeleton extraction method based on the Hough transformation, and mesh modeling using Ball-B spline was employed. We successfully used this system to reconstruct rice and soybean root architectures and determine their changes under various phosphorus (P) supply conditions. Our results showed that the 3D root architecture parameters that were dynamically calculated based on the skeletonization and simulation of root systems were significantly correlated with the biomass and P content of rice and soybean based on both the simulation system and previous reports. Therefore, this approach provides a novel technique for the study of crop root growth and its adaptive changes to various environmental conditions.