WorldWideScience

Sample records for recommended slab phantoms

  1. A comparative study on patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom

    Directory of Open Access Journals (Sweden)

    Om Prakash Gurjar

    2015-01-01

    Full Text Available Purpose: To compare the results of patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom. Methods: Fifteen intensity modulated radiotherapy (IMRT plans already planned on treatment planning system (TPS for head-and-neck cancer patients were exported on all three kinds of phantoms viz. slab phantom, acrylic body phantom and goat head phantom, and dose was calculated using anisotropic analytic algorithm (AAA. All the gantry angles were set to zero in case of slab phantom while set to as it is in actual plan in case of other two phantoms. All the plans were delivered by linear accelerator (LA and dose for each plan was measured by 0.13 cc ion chamber. The percentage (% variations between planned and measured doses were calculated and analyzed. Results: The mean % variations between planned and measured doses of all IMRT quality assurance (QA plans were as 0.65 (Standard deviation (SD: 0.38 with confidence limit (CL 1.39, 1.16 (SD: 0.61 with CL 2.36 and 2.40 (SD: 0.86 with CL 4.09 for slab phantom, acrylic head phantom and goat head phantom respectively. Conclusion: Higher dose variations found in case of real tissue phantom compare to results in case of slab and acrylic body phantoms. The algorithm AAA does not calculate doses in heterogeneous medium as accurate as it calculates in homogeneous medium. Therefore the patient specific absolute dosimetry should be done using heterogeneous phantom mimicking density wise as well as design wise to the actual human body.  

  2. A dosimetric study on slab-pinewood-slab phantom for developing the heterogeneous chest phantom mimicking actual human chest

    Directory of Open Access Journals (Sweden)

    Om Prakash Gurjar

    2017-01-01

    Full Text Available The aim is to study the density, isodose depths, and doses at different points in slab-pinewood-slab (SPS phantom, solid phantom SP34 (made up of polystyrene, and chest level of actual patient for developing heterogeneous chest phantom mimicking thoracic region of human body. A 6 MV photon beam of field size of 10 cm×10 cm was directed perpendicular to the surface of computed tomography (CT images of chest level of patient, SPS phantom, and SP34 phantom. Dose was calculated using anisotropic analytical algorithm. Hounsfield units were used to calculate the density of each medium. Isodose depths in all the three sets of CT images were measured. Variations between planned doses on treatment planning system (TPS and measured on linear accelerator (LA were calculated for three points, namely, near slab-pinewood interfaces (6 and 18 cm depths and 10 cm depth in SPS phantom and at the same depths in SP34 phantom. Density of pinewood, SP34 slabs, chest wall, lung, and soft tissue behind lung was measured as 0.329 ± 0.08, 0.999 ± 0.02, 0.898 ± 0.02, 0.291 ± 0.12, and 1.002 ± 0.03 g/cc, respectively. Depths of 100% and 90% isodose curves in all the three sets of CT images were found to be similar. Depths of 80%, 70%, 60%, 50%, and 40% isodose lines in SPS phantom images were found to be equivalent to that in chest images, while it was least in SP34 phantom images. Variations in doses calculated at 6, 10, and 18 cm depths on TPS and measured on LA were found to be 0.36%, 1.65%, and 2.23%, respectively, in case of SPS phantom, while 0.24%, 0.90%, and 0.93%, respectively, in case of SP34 slab phantom. SPS phantom seemed equivalent to the chest level of human body. Dosimetric results of this study indicate that patient-specific quality assurance can be done using chest phantom mimicking thoracic region of human body, which has been fabricated using polystyrene and pinewood.

  3. Influence of the phantom shape (slab, cylinder or Alderson) on the performance of an Hp(3) eye dosemeter.

    Science.gov (United States)

    Behrens, R; Hupe, O

    2016-03-01

    In the past, the operational quantity Hp(3) was defined for calibration purposes in a slab phantom. Recently, an additional phantom in the form of a cylinder has been suggested for eye lens dosimetry, as a cylinder much better approximates the shape of a human head. Therefore, this work investigates which of the two phantoms, slab or cylinder, is more suitable for calibrations and type tests of eye dosemeters. For that purpose, a typical Hp(3) eye dosemeter was irradiated on a slab, a cylinder and on a human-like Alderson phantom. It turned out that the response on the three phantoms is nearly equal for angles of radiation incidence up to 45° and deviates only at larger angles of incidence. Thus, calibrations (usually performed at 0° radiation incidence) are practically equivalent on both the slab and the cylinder phantoms. However, type tests (up to 75° or even 90° radiation incidence) should be carried out on a cylinder phantom, as also for large angles of incidence the response on the cylinder and the Alderson phantoms is rather similar, whereas the response on the slab significantly deviates from the one on the Alderson phantom. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Design recommendations for long span composite slabs with deep profiled steel sheets

    NARCIS (Netherlands)

    Brekelmans, J.W.P.M.; Daniels, B.J.; Hove, B.W.E.M. van; Koukkari, H.; Stark, J.W.B.; Schuurman, R.G.

    1997-01-01

    As part of the ECSC research project `Steel intensive shallow floor construction', design recommendations for long span composite slabs with deep profiled steel deck have been drafted. These deep profiled steel sheets have depths of at least 200 mm. Test results and design recommendations are

  5. RECOMMENDED SUB-SLAB DEPRESSURIZATION SYSTEMS DESIGN STANDARD OF THE FLORIDA RADON RESEARCH PROGRAM

    Science.gov (United States)

    The report recommends sub-slab depressurization systems design criteria to the State of Florida's Department of Community Affairs for their building code for radon resistant houses. Numerous details are set forth in the full report. Primary criteria include: (1) the operating soi...

  6. Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities.

    Science.gov (United States)

    Carrasco, P; Jornet, N; Duch, M A; Panettieri, V; Weber, L; Eudaldo, T; Ginjaume, M; Ribas, M

    2007-08-01

    To evaluate the dose values predicted by several calculation algorithms in two treatment planning systems, Monte Carlo (MC) simulations and measurements by means of various detectors were performed in heterogeneous layer phantoms with water- and bone-equivalent materials. Percentage depth doses (PDDs) were measured with thermoluminescent dosimeters (TLDs), metal-oxide semiconductor field-effect transistors (MOSFETs), plane parallel and cylindrical ionization chambers, and beam profiles with films. The MC code used for the simulations was the PENELOPE code. Three different field sizes (10 x 10, 5 x 5, and 2 x 2 cm2) were studied in two phantom configurations and a bone equivalent material. These two phantom configurations contained heterogeneities of 5 and 2 cm of bone, respectively. We analyzed the performance of four correction-based algorithms and one based on convolution superposition. The correction-based algorithms were the Batho, the Modified Batho, the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system (TPS), and the Helax-TMS Pencil Beam from the Helax-TMS (Nucletron) TPS. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. All the correction-based calculation algorithms underestimated the dose inside the bone-equivalent material for 18 MV compared to MC simulations. The maximum underestimation, in terms of root-mean-square (RMS), was about 15% for the Helax-TMS Pencil Beam (Helax-TMS PB) for a 2 x 2 cm2 field inside the bone-equivalent material. In contrast, the Collapsed Cone algorithm yielded values around 3%. A more complex behavior was found for 6 MV where the Collapsed Cone performed less well, overestimating the dose inside the heterogeneity in 3%-5%. The rebuildup in the interface bone-water and the penumbra shrinking in high-density media were not predicted by any of the calculation algorithms except the Collapsed Cone, and only the MC simulations matched the experimental values

  7. Evaluation of energy deposition and secondary particle production in proton therapy of brain using a slab head phantom.

    Science.gov (United States)

    Jia, Sayyed Bijan; Hadizadeh, Mohammad Hadi; Mowlavi, Ali Asghar; Loushab, Mahdy Ebrahimi

    2014-11-01

    Evaluation of energy deposition of protons in human brain and calculation of the secondary neutrons and photons produced by protons in proton therapy. Radiation therapy is one of the main methods of treating localized cancer tumors. The use of high energy proton beam in radiotherapy was proposed almost 60 years ago. In recent years, there has been a revival of interest in this subject in the context of radiation therapy. High energy protons suffer little angular deflection and have a well-defined penetration range, with a sharp increase in the energy loss at the end of their trajectories, namely the Bragg peak. A slab head phantom was used for the purpose of simulating proton therapy in brain tissue. In this study simulation was carried out using the Monte Carlo MCNPX code. By using mono energetic proton pencil beams, energy depositions in tissues, especially inside the brain, as well as estimating the neutron and photon production as a result of proton interactions in the body, together with their energy spectra, were calculated or obtained. The amount of energy escaped from the head by secondary neutrons and photons was determined. It was found that for high energy proton beams the amount of escaped energy by neutrons is almost 10 times larger than that by photons. We estimated that at 110 MeV beam energy, the overall proton energy "leaked" from the head by secondary photons and neutrons to be around 1%.

  8. Advanced bridge safety initiative : recommended practices for live load testing of existing flat-slab concrete bridges - task 5.

    Science.gov (United States)

    2012-12-01

    Current AASHTO provisions for load rating flat-slab concrete bridges use the equivalent strip : width method, which is regarded as overly conservative compared to more advanced analysis : methods and field live load testing. It has been shown that li...

  9. Slab track

    OpenAIRE

    Golob, Tina

    2014-01-01

    The last 160 years has been mostly used conventional track with ballasted bed, sleepers and steel rail. Ensuring the high speed rail traffic, increasing railway track capacities, providing comfortable and safe ride as well as high reliability and availability railway track, has led to development of innovative systems for railway track. The so-called slab track was first built in 1972 and since then, they have developed many different slab track systems around the world. Slab track was also b...

  10. INFLUENCE OF DIFFERENT TYPES OF PHANTOMS ON THE CALIBRATION OF DOSEMETERS FOR EYE LENS DOSIMETRY.

    Science.gov (United States)

    Yoshitomi, H; Kowatari, M

    2016-09-01

    Both a cylinder and a slab phantom have been recommended to be used as calibration phantoms for eye lens dosimetry in the International Atomic Energy Agency TECDOC. This study describes investigations on the influence of the type of phantom on the calibration of dosemeters. In order to fulfil the purpose, backscatter radiation from practically used water-filled phantoms was evaluated by calculations and experiments. For photons, the calculations showed that the cylinder phantom had 10 % lower backscattered effect at maximum than a slab phantom, and simulated well the backscattered effect of the human head or neck to within ±10 %. The irradiation results of non-filtered optically stimulated luminescence and radio-photoluminescence glass dosemeters indicated that the differences of the calibration factors between the two types of phantoms were up to 20 and 10 %, respectively, reflecting the response to backscattered photons. For electrons, no difference was found between the two types of phantoms. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. SUB-SLAB PROBE INSTALLATION

    Science.gov (United States)

    Sub-slab sampling has become an integral part of vapor intrusion investigations. It is now recommended in guidance documents developed by EPA and most states. A method for sub-slab probe installation was devised in 2002, presented at conferences through 2005, and finally docume...

  12. Evidence-based recommendations for musculoskeletal kinematic 4D-CT studies using wide area-detector scanners: a phantom study with cadaveric correlation

    Energy Technology Data Exchange (ETDEWEB)

    Gondim Teixeira, Pedro Augusto; Formery, Anne-Sophie; Blum, Alain [CHRU-Nancy Hopital Central, Service d' Imagerie Guilloz, Nancy (France); Hossu, Gabriela [Universite de Lorraine, IADI U947, Nancy (France); INSERM, CIC-IT 1433, Nancy (France); Winninger, Daniel [IDCmem, Nancy (France); Batch, Toufik [Hopital de Mercy, Service de Radiologie, Metz (France); Gervaise, Alban [Legouest Military Instruction Hospital, Medical Imaging Department, Metz (France)

    2017-02-15

    To establish evidence-based recommendations for musculoskeletal kinematic 4D-CT on wide area-detector CT. In order to assess factors influencing image quality in kinematic CT studies, a phantom consisting of a polymethylmethacrylate rotating disk with round wells of different sizes was imaged with various acquisition protocols. Cadaveric acquisitions were performed on the ankle joint during motion in two different axes and at different speeds to allow validation of phantom data. Images were acquired with a 320 detector-row CT scanner and were evaluated by two readers. Motion artefacts were significantly correlated with various parameters (movement axis, distance to centre, rotation speed and volume acquisition speed) (p < 0.0001). The relation between motion artefacts and distance to motion fulcrum was exponential (R{sup 2} 0.99). Half reconstruction led to a 23 % increase in image noise and a 40 % decrease in motion artefacts. Cadaveric acquisitions confirmed phantom data. Based on these findings, high tube rotation speed and half reconstruction are recommended for kinematic CT. The axis of motion significantly influences image artefacts and should be considered in patient training and evaluation of acquisition protocol suitability. This study provides evidence-based recommendations for musculoskeletal kinematic 4D-CT. (orig.)

  13. Slab reformer

    Science.gov (United States)

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  14. Diagnosis and treatment of pain in plexopathy, radiculopathy, peripheral neuropathy and phantom limb pain. Evidence and recommendations from the Italian Consensus Conference on Pain on Neurorehabilitation.

    Science.gov (United States)

    Ferraro, Francesco; Jacopetti, Marco; Spallone, Vincenza; Padua, Luca; Traballesi, Marco; Brunelli, Stefano; Cantarella, Cristina; Ciotti, Cristina; Coraci, Daniele; Dalla Toffola, Elena; Mandrini, Silvia; Morone, Giovanni; Pazzaglia, Costanza; Romano, Marcello; Schenone, Angelo; Togni, Rossella; Tamburin, Stefano

    2016-12-01

    Pain may affect all aspects of social life and reduce the quality of life. Neuropathic pain (NP) is common in patients affected by plexopathy, radiculopathy, mononeuropathy, peripheral neuropathy. Phantom limb pain (PLP) is a painful sensation that is common after amputation, and its pathophysiological mechanisms involve changes in the peripheral and central nervous system. Given the lack of conclusive evidence and specific guidelines on these topics, the aim of the Italian Consensus Conference on Pain on Neurorehabilitation (ICCPN) was to collect evidence and offer recommendations to answer currently open questions on the assessment and treatment of NP associated with the above conditions and PLP. When no evidence was available, recommendations were based on consensus between expert opinions. Current guidelines on the assessment and pharmacological treatment of NP can be applied to plexopathy, radiculopathy, mononeuropathy, peripheral neuropathy, while evidence for invasive treatments and physical therapy is generally poor because of the low quality of studies. Treatment of PLP is still unsatisfactory. Data on the functional outcome and impact of pain on neurorehabilitation outcome in these conditions are lacking. In most cases, a multidisciplinary approach is recommended to offer a better outcome and reduce side effects. High quality studies are requested to address the unmet needs in this field.

  15. Effect of the Scattering Radiation in Air and Two Type of Slap Phantom between PMMA and the ISO Water Phantom for Personal Dosimeters Calibration

    Science.gov (United States)

    Kamwang, N.; Rungseesumran, T.; Saengchantr, D.; Monthonwattana, S.; Pungkun, V.

    2017-06-01

    The calibration of personal dosimeter to determine the quantities of the personal dose equivalent, Hp(d), is required to be placed on a suitable phantom in order to provide a reasonable approximation to the radiation backscattering properties as equivalent as part of body. The dosimeter which is worn on the trunk usually calibrated with slap phantom which recommended in ICRU 47 with dimension of 30 cm (w) x 30 cm (h) x 15 cm (t) PMMA slab phantom to achieve uniformity in calibration procedures, on the other hand the International Organization for Standardization (ISO), ISO 4037-3, proposed the ISO water slap phantom, with PMMA walls, same dimension but different wall thickness (front wall 2.5 mm and other side wall 10 mm thick) and fill with water. However, some laboratories are still calibrating a personal dosimeter in air in term of ambient dose equivalent, H*(d). This research study the effect of the scattering radiation in two type of those slap phantoms and in air, to calibrate two type of OSL (XA and LA) and electronic personal dosimeters. The X-ray and Cs-137 radiation field with the energy range from 33 to 662 keV were used. The results of this study will be discussed.

  16. Slab profile encoding (PEN) for minimizing slab boundary artifact in three-dimensional diffusion-weighted multislab acquisition.

    Science.gov (United States)

    Van, Anh T; Aksoy, Murat; Holdsworth, Samantha J; Kopeinigg, Daniel; Vos, Sjoerd B; Bammer, Roland

    2015-02-01

    To propose a method for mitigating slab boundary artifacts in three-dimensional (3D) multislab diffusion imaging with no or minimal increases in scan time. The multislab acquisition was treated as parallel imaging acquisition where the slab profiles acted as the traditional receiver sensitivity profiles. All the slabs were then reconstructed simultaneously along the slab direction using Cartesian-based sensitivity encoding (SENSE) reconstruction. The slab profile estimation was performed using either a Bloch simulation or a calibration scan. Both phantom and in vivo results showed negligible slab boundary artifacts after reconstruction using the proposed method. The performance of the proposed method is comparable to the state-of-the-art slab combination method without the scan time penalty that depends on the number of acquired volumes. The obtained g-factor map of the SENSE reconstruction problem showed a maximum g-factor of 1.7 in the region of interest. We proposed a novel method for mitigating slab boundary artifacts in 3D diffusion imaging by treating the multislab acquisition as a parallel imaging acquisition and reconstructing all slabs simultaneously using Cartesian SENSE. Unlike existing methods, the scan time increase, if any, does not scale with the number of image volumes acquired. © 2014 Wiley Periodicals, Inc.

  17. Slab Profile Encoding (PEN) for Minimizing Slab Boundary Artifact in 3D Diffusion-Weighted Multislab Acquisition*

    Science.gov (United States)

    Van, Anh T; Aksoy, Murat; Holdsworth, Samantha J; Kopeinigg, Daniel; Vos, Sjoerd B; Bammer, Roland

    2014-01-01

    Purpose To propose a method for mitigating slab boundary artifacts in 3D multislab diffusion imaging with no or minimal increases in scan time. Methods The multislab acquisition was treated as parallel imaging acquisition where the slab profiles acted as the traditional receiver sensitivity profiles. All the slabs were then reconstructed simultaneously along the slab direction using Cartesian-based sensitivity encoding (SENSE) reconstruction. The slab profile estimation was performed using either a Bloch simulation or a calibration scan. Results Both phantom and in vivo results showed negligible slab boundary artifacts after reconstruction using the proposed method. The performance of the proposed method is comparable to the state-of-the-art slab combination method without the scan time penalty that depends on the number of acquired volumes. The obtained g-factor map of the SENSE reconstruction problem showed a maximum g-factor of 1.7 in the region of interest. Conclusion We proposed a novel method for mitigating slab boundary artifacts in 3D diffusion imaging by treating the multislab acquisition as a parallel imaging acquisition and reconstructing all slabs simultaneously using Cartesian SENSE. Unlike existing methods, the scan time increase, if any, does not scale with the number of image volumes acquired. PMID:24691843

  18. Human phantom

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    This human phantom has been received by CERN on loan from the State Committee of the USSR for the Utilization of Atomic Energy. It is used by the Health Physics Group to study personel radiation doses near the accelerators.

  19. Phantom Pain

    Science.gov (United States)

    ... 16, 2014. Phantom pain Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  20. Phantom thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, Pedro F. [Colina de los Chopos, Centro de Fisica ' Miguel A. Catalan' , Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)]. E-mail: p.gonzalezdiaz@imaff.cfmac.csic.es; Sigueenza, Carmen L. [Colina de los Chopos, Centro de Fisica ' Miguel A. Catalan' , Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)

    2004-10-04

    This paper deals with the thermodynamic properties of a phantom field in a flat Friedmann-Robertson-Walker universe. General expressions for the temperature and entropy of a general dark-energy field with equation of state p={omega}{rho} are derived from which we have deduced that, whereas the temperature of a cosmic phantom fluid ({omega}-1) is definite negative, its entropy is always positive. We interpret that result in terms of the intrinsic quantum nature of the phantom field and apply it to (i) attain a consistent explanation for some recent results concerning the evolution of black holes which,induced by accreting phantom energy, gradually loss their mass to finally vanish exactly at the big rip, and (ii) introduce the concept of cosmological information and its relation with life and the anthropic principle. Some quantum statistical-thermodynamic properties of the quantum field are also considered that include a generalized Wien law and the prediction of some novel phenomena such as the stimulated absorption of phantom energy and the anti-laser effect.

  1. Slab replacement maturity guidelines.

    Science.gov (United States)

    2014-04-01

    This study investigated the use of maturity method to determine early age strength of concrete in slab : replacement application. Specific objectives were (1) to evaluate effects of various factors on the compressive : maturity-strength relationship ...

  2. Alternate approach slab reinforcement.

    Science.gov (United States)

    2010-06-01

    The upper mat of reinforcing steel, in exposed concrete bridge approach slabs, is prone to corrosion damage. Chlorides applied to the highways : for winter maintenance can penetrate this concrete layer. Eventually chlorides reach the steel and begin ...

  3. Integral bridge abutment-to-approach slab connection.

    Science.gov (United States)

    2008-06-01

    The Iowa Department of Transportation has long recognized that approach slab pavements of integral abutment bridges are prone to settlement and cracking, which manifests as the "bump at the end of the bridge". A commonly recommended solution is to in...

  4. Reducing slab boundary artifacts in three-dimensional multislab diffusion MRI using nonlinear inversion for slab profile encoding (NPEN).

    Science.gov (United States)

    Wu, Wenchuan; Koopmans, Peter J; Frost, Robert; Miller, Karla L

    2016-10-01

    To propose a method to reduce the slab boundary artifacts in three-dimensional multislab diffusion MRI. Bloch simulation is used to investigate the effects of multiple factors on slab boundary artifacts, including characterization of residual errors on diffusion quantification. A nonlinear inversion method is proposed to simultaneously estimate the slab profile and the underlying (corrected) image. Correction results of numerical phantom and in vivo data demonstrate that the method can effectively remove slab boundary artifacts for diffusion data. Notably, the nonlinear inversion is also successful at short TR, a regimen where previously proposed methods (slab profile encoding and weighted average) retain residual artifacts in both diffusion-weighted images and diffusion metrics (mean diffusion coefficient and fractional anisotropy). The nonlinear inversion for removing slab boundary artifacts provides improvements over existing methods, particularly at the short TRs required to maximize SNR efficiency. Magn Reson Med 76:1183-1195, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  5. Reducing slab boundary artifacts in three‐dimensional multislab diffusion MRI using nonlinear inversion for slab profile encoding (NPEN)

    Science.gov (United States)

    Koopmans, Peter J.; Frost, Robert; Miller, Karla L.

    2015-01-01

    Purpose To propose a method to reduce the slab boundary artifacts in three‐dimensional multislab diffusion MRI. Methods Bloch simulation is used to investigate the effects of multiple factors on slab boundary artifacts, including characterization of residual errors on diffusion quantification. A nonlinear inversion method is proposed to simultaneously estimate the slab profile and the underlying (corrected) image. Results Correction results of numerical phantom and in vivo data demonstrate that the method can effectively remove slab boundary artifacts for diffusion data. Notably, the nonlinear inversion is also successful at short TR, a regimen where previously proposed methods (slab profile encoding and weighted average) retain residual artifacts in both diffusion‐weighted images and diffusion metrics (mean diffusion coefficient and fractional anisotropy). Conclusion The nonlinear inversion for removing slab boundary artifacts provides improvements over existing methods, particularly at the short TRs required to maximize SNR efficiency. Magn Reson Med 76:1183–1195, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26510172

  6. Reliability of Plastic Slabs

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    1989-01-01

    In the paper it is shown how upper and lower bounds for the reliability of plastic slabs can be determined. For the fundamental case it is shown that optimal bounds of a deterministic and a stochastic analysis are obtained on the basis of the same failure mechanisms and the same stress fields....

  7. Slab Leaf Bowls

    Science.gov (United States)

    Suitor, Cheryl

    2012-01-01

    In science class, fourth graders investigate the structure of plants and leaves from trees and how the process of photosynthesis turns sunlight into sugar proteins. In this article, the author fuses art and science for a creative and successful clay slab project in her elementary art classroom. (Contains 1 online resource.)

  8. Generating Atomistic Slab Surfaces with Adsorbates

    Science.gov (United States)

    2017-12-01

    allowed to be. It is recommended that the metastability not exceed 50 meV/atom for bulk compounds, as higher levels of instability are unlikely to not...adsorption energies, higher levels of accuracy should be considered. For slabs, an example INCAR is as follows: Example INCAR: ENCUT=500 EDIFF=1E-4...OTHER DEALINGS IN THE SOFTWARE. from six.moves import range import os import sys import math import copy import numpy as np from

  9. Tissue-like phantoms for quantitative birefringence imaging.

    Science.gov (United States)

    Liu, Xinyu; Beaudette, Kathy; Wang, Xianghong; Liu, Linbo; Bouma, Brett E; Villiger, Martin

    2017-10-01

    Birefringence imaging, including polarization sensitive optical coherence tomography (PS-OCT), can provide valuable insight into the microscopic structure and organization of many biological tissues. In this paper, we report on a method to fabricate tissue-like birefringence phantoms for such imaging modalities. We utilize the photo-elastic effect, wherein birefringence is induced by stretching a polymer sample after heating it above its glass-transition temperature. The cooled samples stably exhibit homogeneous birefringence, and were assembled into phantoms containing multiple well-defined regions of distinct birefringence. We present planar slab phantoms for microscopy applications and cylindrical phantoms for catheter-based imaging and demonstrate quantitative analysis of the birefringence within individual regions of interest. Birefringence phantoms enable testing, validating, calibrating, and improving PS-OCT acquisition systems and reconstruction strategies.

  10. Post-Tensioned Concrete Long-Span Slabs in Projects of Modern Building Construction

    Science.gov (United States)

    Szydlowski, Rafal; Labuzek, Barbara

    2017-10-01

    Nowadays, design of modern an architectural building structures requires the use of slender and free from numerous supports slabs. The most suitable solution for above requirements are the post-tensioned slabs with unbounded tendons. Slabs prestressed by unbounded tendons are successfully used worldwide for several decades. During that time many recommendations dealing with the forming of geometry and prestressing, dimensioning and erection technology were issued. During the recent years prestressed slabs characterized by span and slenderness substantially exceeding recommended limitations were designed and erected with success in Poland. During the slabs erection and in two years of their using, the deflection of three oversized slabs were monitoring. In spite of designed the slabs significantly larger and slenderer than the recommended maximum value of span and span to depth ratio, the deflection of the slabs is definitely far from the limit value. The paper shows the geometry, characteristic and deflection of erected slabs and conclusion. Description of a very large span slab (21.3m), that was designed regarded to the information obtained from the previous realisation, is presented in this paper.

  11. A new phantom for fast determination of the scatter response of a gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Beekman, F.J.; Frey, E.C.; Kamphuis, C.; Tsui, B.M.W.; Viergever, M.A. (Univ. of North Carolina, Chapel Hill, NC (United States))

    1994-08-01

    A triangular phantom is proposed which enables the determination and parameterization of the depth dependent scatter response function (SRF) in uniformly attenuating objects for Single Photon Emission Computed Tomography (SPECT) by means of a single line source measurement. This approach replaces a tedious measurement series with line sources at various depths in slab phantoms. The method is evaluated for [sup 99m]Tc. Monte Carlo simulations of SRFs and scatter-to-primary ratios (SPRs) of the triangular phantom are compared with those of slabs. It is found that both the SPRs and the shapes of the SRFs from the slab and triangular phantoms are in excellent agreement. In addition, the data obtained from a single measurement using the triangular phantom can be used in the parameterization of the slab phantom SRF and can be described by an analytical expression of the line source response function. This information can be combined with knowledge of the geometric detector response and the shape of the object to compute the full scatter response function in convex shaped objects. This method for estimating scatter can serve as the basis for accurate scatter compensation in SPECT.

  12. Long-life slab replacement concrete.

    Science.gov (United States)

    2015-03-01

    This research was initiated following reports of high incidence of cracking on FDOT concrete pavement replacement : slab projects. Field slabs were instrumented for data acquisition from high-early-strength concrete pavement : replacement slabs place...

  13. Topological susceptibility from slabs

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, Wolfgang [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Forcrand, Philippe de [Institute for Theoretical Physics, ETH Zürich,CH-8093 Zürich (Switzerland); CERN, Physics Department, TH Unit, CH-1211 Geneva 23 (Switzerland); Gerber, Urs [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Edificio C-3, Apdo. Postal 2-82, Morelia, Michoacán, C.P. 58040 (Mexico)

    2015-12-14

    In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility χ{sub t}. In principle it seems straightforward to measure χ{sub t} by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure χ{sub t} even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of χ{sub t}, as we demonstrate with numerical results for non-linear σ-models.

  14. Topological Susceptibility from Slabs

    CERN Document Server

    Bietenholz, Wolfgang; Gerber, Urs

    2015-01-01

    In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility chi_t. In principle it seems straightforward to measure chi_t by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure chi_t even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of chi_t, as we demonstrate with numerical results for non-linear sigma-models.

  15. A 2D ion chamber array audit of wedged and asymmetric fields in an inhomogeneous lung phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lye, Jessica; Dunn, Leon, E-mail: leon.dunn@arpansa.gov.au; Alves, Andrew [Australian Clinical Dosimetry Service, Yallambie, Victoria 3085 (Australia); Kenny, John [Australian Clinical Dosimetry Service, Yallambie, Victoria 3085, Australia and Radiation Oncology Queensland, Toowoomba, Queensland 4350 (Australia); Lehmann, Joerg; Williams, Ivan [Australian Clinical Dosimetry Service, Yallambie, Victoria 3085, Australia and School of Applied Science, RMIT University, Melbourne 3000 (Australia); Kron, Tomas [School of Applied Science, RMIT University, Melbourne 3000, Australia and Peter MacCallum Cancer Centre, Melbourne 3008 (Australia); Cole, Andrew [Australian Clinical Dosimetry Service, Yallambie, Victoria 3085, Australia and Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085 (Australia)

    2014-10-15

    Purpose: The Australian Clinical Dosimetry Service (ACDS) has implemented a new method of a nonreference condition Level II type dosimetric audit of radiotherapy services to increase measurement accuracy and patient safety within Australia. The aim of this work is to describe the methodology, tolerances, and outcomes from the new audit. Methods: The ACDS Level II audit measures the dose delivered in 2D planes using an ionization chamber based array positioned at multiple depths. Measurements are made in rectilinear homogeneous and inhomogeneous phantoms composed of slabs of solid water and lung. Computer generated computed tomography data sets of the rectilinear phantoms are supplied to the facility prior to audit for planning of a range of cases including reference fields, asymmetric fields, and wedged fields. The audit assesses 3D planning with 6 MV photons with a static (zero degree) gantry. Scoring is performed using local dose differences between the planned and measured dose within 80% of the field width. The overall audit result is determined by the maximum dose difference over all scoring points, cases, and planes. Pass (Optimal Level) is defined as maximum dose difference ≤3.3%, Pass (Action Level) is ≤5.0%, and Fail (Out of Tolerance) is >5.0%. Results: At close of 2013, the ACDS had performed 24 Level II audits. 63% of the audits passed, 33% failed, and the remaining audit was not assessable. Of the 15 audits that passed, 3 were at Pass (Action Level). The high fail rate is largely due to a systemic issue with modeling asymmetric 60° wedges which caused a delivered overdose of 5%–8%. Conclusions: The ACDS has implemented a nonreference condition Level II type audit, based on ion chamber 2D array measurements in an inhomogeneous slab phantom. The powerful diagnostic ability of this audit has allowed the ACDS to rigorously test the treatment planning systems implemented in Australian radiotherapy facilities. Recommendations from audits have led to

  16. Phantom Limb Pain: Mechanisms and Treatment Approaches

    Science.gov (United States)

    Subedi, Bishnu; Grossberg, George T.

    2011-01-01

    The vast amount of research over the past decades has significantly added to our knowledge of phantom limb pain. Multiple factors including site of amputation or presence of preamputation pain have been found to have a positive correlation with the development of phantom limb pain. The paradigms of proposed mechanisms have shifted over the past years from the psychogenic theory to peripheral and central neural changes involving cortical reorganization. More recently, the role of mirror neurons in the brain has been proposed in the generation of phantom pain. A wide variety of treatment approaches have been employed, but mechanism-based specific treatment guidelines are yet to evolve. Phantom limb pain is considered a neuropathic pain, and most treatment recommendations are based on recommendations for neuropathic pain syndromes. Mirror therapy, a relatively recently proposed therapy for phantom limb pain, has mixed results in randomized controlled trials. Most successful treatment outcomes include multidisciplinary measures. This paper attempts to review and summarize recent research relative to the proposed mechanisms of and treatments for phantom limb pain. PMID:22110933

  17. Phantom Limb Pain: Mechanisms and Treatment Approaches

    Directory of Open Access Journals (Sweden)

    Bishnu Subedi

    2011-01-01

    Full Text Available The vast amount of research over the past decades has significantly added to our knowledge of phantom limb pain. Multiple factors including site of amputation or presence of preamputation pain have been found to have a positive correlation with the development of phantom limb pain. The paradigms of proposed mechanisms have shifted over the past years from the psychogenic theory to peripheral and central neural changes involving cortical reorganization. More recently, the role of mirror neurons in the brain has been proposed in the generation of phantom pain. A wide variety of treatment approaches have been employed, but mechanism-based specific treatment guidelines are yet to evolve. Phantom limb pain is considered a neuropathic pain, and most treatment recommendations are based on recommendations for neuropathic pain syndromes. Mirror therapy, a relatively recently proposed therapy for phantom limb pain, has mixed results in randomized controlled trials. Most successful treatment outcomes include multidisciplinary measures. This paper attempts to review and summarize recent research relative to the proposed mechanisms of and treatments for phantom limb pain.

  18. Dose assessment in contrast enhanced digital mammography using simple phantoms simulating standard model breasts.

    Science.gov (United States)

    Bouwman, R W; van Engen, R E; Young, K C; Veldkamp, W J H; Dance, D R

    2015-01-07

    Slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE) slabs are used to simulate standard model breasts for the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT). These phantoms are optimized for the energy spectra used in DM and DBT, which normally have a lower average energy than used in contrast enhanced digital mammography (CEDM). In this study we have investigated whether these phantoms can be used for the evaluation of AGD with the high energy x-ray spectra used in CEDM. For this purpose the calculated values of the incident air kerma for dosimetry phantoms and standard model breasts were compared in a zero degree projection with the use of an anti scatter grid. It was found that the difference in incident air kerma compared to standard model breasts ranges between -10% to +4% for PMMA slabs and between 6% and 15% for PMMA-PE slabs. The estimated systematic error in the measured AGD for both sets of phantoms were considered to be sufficiently small for the evaluation of AGD in quality control procedures for CEDM. However, the systematic error can be substantial if AGD values from different phantoms are compared.

  19. Slab replacement maturity guidelines : [summary].

    Science.gov (United States)

    2014-04-01

    Concrete sets in hours at moderate temperatures, : but the bonds that make concrete strong continue : to mature over days to years. However, for : replacement concrete slabs on highways, it is : crucial that concrete develop enough strength : within ...

  20. New Packaging for Amplifier Slabs

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsness, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suratwala, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rogowski, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-18

    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  1. SLAB FORMWORK DESIGN

    Directory of Open Access Journals (Sweden)

    Octavian George Ilinoiu

    2006-01-01

    Full Text Available Note from the Editor: In Indonesia, although cost of formwork contributes significantly to the total reinforced concrete construction cost and formwork failure will result in a very complicated construction problem, formwork design is often neglected and left to the foreman to design. This paper presents slab formwork design practice in Romania, where formwork design is a requirement to obtain professional engineer certification. This paper is a continuation of previous paper ” Wall Formwork Design” by the same author published in Dimensi Teknik Sipil, Vol. 6, no. 2, September 2004. Abstract in Bahasa Indonesia : Catatan Redaksi: Perencanaan bekisting (form work di Indonesia sering kali dilalaikan dan diserahkan kepada pelaksana/ mandor, padahal kegagalan bekisting akan menimbulkan masalah yang sangat rumit. Bekisting juga merupakan komponen biaya pelaksanaan struktur beton bertulang yang cukup besar. Makalah ini memaparkan praktek perencanaan bekisting untuk lantai di Romania, dimana perencanaan bekisting merupakan salah satu syarat untuk mendapatkan sertifikasi insinyur professional. Makalah ini adalah kelanjutan dari makalah Wall Formwork Design, yang dimuat dalam Dimensi Teknik Sipil, Vol. 6, no.2, September 2004.

  2. Concrete mixtures with high-workability for ballastless slab tracks

    Directory of Open Access Journals (Sweden)

    Olga Smirnova

    2017-10-01

    Full Text Available The concrete track-supporting layer and the monolithic concrete slab of ballastless track systems are made in-situ. For this reason the concrete mixtures of high workability should be used. Influence of the sand kind, the quartz microfiller fineness and quantity as well as quantity of superplasticizer on workability of fresh concrete and durability of hardened concrete is shown. The compositions of the high-workability concrete mixtures with lower consumption of superplasticizer are developed. The results of the research can be recommended for high performance concrete of ballastless slab track.

  3. Developing a Verification and Training Phantom for Gynecological Brachytherapy System

    Directory of Open Access Journals (Sweden)

    Mahbobeh Nazarnejad

    2012-03-01

    Full Text Available Introduction Dosimetric accuracy is a major issue in the quality assurance (QA program for treatment planning systems (TPS. An important contribution to this process has been a proper dosimetry method to guarantee the accuracy of delivered dose to the tumor. In brachytherapy (BT of gynecological (Gyn cancer it is usual to insert a combination of tandem and ovoid applicators with a complicated geometry which makes their dosimetry verification difficult and important. Therefore, evaluation and verification of dose distribution is necessary for accurate dose delivery to the patients. Materials and Methods The solid phantom was made from Perspex slabs as a tool for intracavitary brachytherapy dosimetric QA. Film dosimetry (EDR2 was done for a combination of ovoid and tandem applicators introduced by Flexitron brachytherapy system. Treatment planning was also done with Flexiplan 3D-TPS to irradiate films sandwiched between phantom slabs. Isodose curves obtained from treatment planning system and the films were compared with each other in 2D and 3D manners. Results The brachytherapy solid phantom was constructed with slabs. It was possible to insert tandems and ovoids loaded with radioactive source of Ir-192 subsequently. Relative error was 3-8.6% and average relative error was 5.08% in comparison with the films and TPS isodose curves. Conclusion Our results showed that the difference between TPS and the measurements is well within the acceptable boundaries and below the action level according to AAPM TG.45. Our findings showed that this phantom after minor corrections can be used as a method of choice for inter-comparison analysis of TPS and to fill the existing gap for accurate QA program in intracavitary brachytherapy. The constructed phantom also showed that it can be a valuable tool for verification of accurate dose delivery to the patients as well as training for brachytherapy residents and physics students.

  4. Dosimetric comparison of tools for intensity modulated radiation therapy with gamma analysis: a phantom study

    Science.gov (United States)

    Akbas, Ugur; Okutan, Murat; Demir, Bayram; Koksal, Canan

    2015-07-01

    Dosimetry of the Intensity Modulated Radiation Therapy (IMRT) is very important because of the complex dose distributions. Diode arrays are the most common and practical measurement tools for clinical usage for IMRT. Phantom selection is critical for QA process. IMRT treatment plans are recalculated for the phantom irradiation in QA. Phantoms are made in different geometrical shapes to measure the doses of different types of irradiation techniques. Comparison of measured and calculated dose distributions for IMRT can be made by using gamma analysis. In this study, 10 head-and-neck IMRT QA plans were created with Varian Eclipse 8.9 treatment planning system. Water equivalent RW3-slab phantoms, Octavius-2 phantom and PTW Seven29 2D-array were used for QA measurements. Gantry, collimator and couch positions set to 00 and QA plans were delivered to RW3 and Octavius phantoms. Then the positions set to original angles and QA plans irradiated again. Measured and calculated fluence maps were evaluated with gamma analysis for different DD and DTA criteria. The effect of different set-up conditions for RW3 and Octavius phantoms in QA plan delivery evaluated by gamma analysis. Results of gamma analysis show that using RW3-slab phantoms with setting parameters to 00 is more appropriate for IMRT QA.

  5. Static Analysis of the Interaction Among Soil, Slab and Piles in Pile-Slab Structure

    National Research Council Canada - National Science Library

    Xiao Hong; Gong Xiaoping; Yang Song

    2013-01-01

    .... A three-dimensional finite element model including train, track and pile-slab structure is established so as to make a systemic mechanical analysis of the slab, piles and subgrade soil in pile-slab structure...

  6. 21. Phantom pain.

    NARCIS (Netherlands)

    Wolff, A.P.; Vanduynhoven, E.; Kleef, M. van; Huygen, F.; Pope, J.E.; Mekhail, N.

    2011-01-01

    Phantom pain is pain caused by elimination or interruption of sensory nerve impulses by destroying or injuring the sensory nerve fibers after amputation or deafferentation. The reported incidence of phantom limb pain after trauma, injury or peripheral vascular diseases is 60% to 80%. Over half the

  7. Realistic computerized human phantoms

    Science.gov (United States)

    Zankl, M.; Veit, R.; Petoussi, N.; Mannweiler, E.; Wittmann, A.; Drexler, G.

    1994-10-01

    To estimate the risk resulting from exposures to ionizing radiation, the organ and tissue doses should be assessed. A convenient method is the calculation of these doses using representations of the human body, called models or phantoms, together with computer codes simulating the transport of radiation in the body. Most commonly used are mathematical phantoms whose external and internal volumes are defined by simple geometric bodies. More recently, phantoms constructed from computed tomographic data of real persons were introduced as an improvement. These phantoms present advantages concerning the location and shape of the organs, in particular the hard bone and bone marrow, whose distribution can be assessed with high resolution. So far, three of these phantoms were constructed at the GSF, a fourth is under process. The construction technique is described, and some calculational results of organ doses due to external photon irradiation are presented.

  8. [Residual limb and phantom pain : Causes and therapeutic approaches].

    Science.gov (United States)

    Dwornik, G; Weiß, T; Hofmann, G O; Brückner, L

    2015-06-01

    Residual limb pain and phantom pain are severe complications following an amputation. Various reasons are responsible for these complaints. It must be distinguished between amputation stump pain, phantom sensations and phantom pain. In this paper we describe the most common reasons for stump pain and propose some non-operative therapeutic approaches. Furthermore path physiology and phantom pain therapy will be discussed. The recommendations offered in this paper are based on practical experience over three decades in a specialized out-patient department for patients with amputation injuries.

  9. Independent slab-phase modulation combined with parallel imaging in bilateral breast MRI.

    Science.gov (United States)

    Han, Misung; Beatty, Philip J; Daniel, Bruce L; Hargreaves, Brian A

    2009-11-01

    Independent slab-phase modulation allows three-dimensional imaging of multiple volumes without encoding the space between volumes, thus reducing scan time. Parallel imaging further accelerates data acquisition by exploiting coil sensitivity differences between volumes. This work compared bilateral breast image quality from self-calibrated parallel imaging reconstruction methods such as modified sensitivity encoding, generalized autocalibrating partially parallel acquisitions and autocalibrated reconstruction for Cartesian sampling (ARC) for data with and without slab-phase modulation. A study showed an improvement of image quality by incorporating slab-phase modulation. Geometry factors measured from phantom images were more homogenous and lower on average when slab-phase modulation was used for both mSENSE and GRAPPA reconstructions. The resulting improved signal-to-noise ratio (SNR) was validated for in vivo images as well using ARC instead of GRAPPA, illustrating average SNR efficiency increases in mSENSE by 5% and ARC by 8% based on region of interest analysis. Furthermore, aliasing artifacts from mSENSE reconstruction were reduced when slab-phase modulation was used. Overall, slab-phase modulation with parallel imaging improved image quality and efficiency for 3D bilateral breast imaging. (c) 2009 Wiley-Liss, Inc.

  10. How mantle slabs drive plate tectonics.

    Science.gov (United States)

    Conrad, Clinton P; Lithgow-Bertelloni, Carolina

    2002-10-04

    The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.

  11. ARC Code TI: SLAB Spatial Audio Renderer

    Data.gov (United States)

    National Aeronautics and Space Administration — SLAB is a software-based, real-time virtual acoustic environment rendering system being developed as a tool for the study of spatial hearing. SLAB is designed to...

  12. Long-life slab replacement concrete : [summary].

    Science.gov (United States)

    2015-04-01

    Concrete slab replacement projects in Florida have demonstrated a high incidence of : replacement slab cracking. Causes of cracking have not been reliably determined. University of South Florida researchers : sought to identify the factors or : param...

  13. Transient slab flattening beneath Colombia

    Science.gov (United States)

    Wagner, L. S.; Jaramillo, J. S.; Ramírez-Hoyos, L. F.; Monsalve, G.; Cardona, A.; Becker, T. W.

    2017-07-01

    Subduction of the Nazca and Caribbean Plates beneath northwestern Colombia is seen in two distinct Wadati Benioff Zones, one associated with a flat slab to the north and one associated with normal subduction south of 5.5°N. The normal subduction region is characterized by an active arc, whereas the flat slab region has no known Holocene volcanism. We analyze volcanic patterns over the past 14 Ma to show that in the mid-Miocene a continuous arc extended up to 7°N, indicating normal subduction of the Nazca Plate all along Colombia's Pacific margin. However, by 6 Ma, we find a complete cessation of this arc north of 3°N, indicating the presence of a far more laterally extensive flat slab than at present. Volcanism did not resume between 3°N and 6°N until after 4 Ma, consistent with lateral tearing and resteepening of the southern portion of the Colombian flat slab at that time.

  14. Dimensional stability of concrete slabs on grade.

    Science.gov (United States)

    2012-10-01

    Drying shrinkage is one of the major causes of cracking in concrete slabs on grade. The moisture : difference between the top and bottom surface of the slabs causes a dimensional or shrinkage gradient : to develop through the depth of the slabs...

  15. Spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2015-04-01

    TxDOT uses prestressed slab beam bridges for short-span bridges ranging from approximately 3050 ft in : length. These bridges have precast, pretensioned slab beams placed immediately adjacent to one another : with a cast-in-place slab made composi...

  16. Poster - Thur Eve - 48: An inexpensive and convenient phantom for quality assurance in image guidance based radiosurgery.

    Science.gov (United States)

    Soisson, E

    2012-07-01

    This work describes the design and use of an inexpensive phantom designed for precision measurements in radiosurgery quality assurance. The main features of this simple phantom include its solid water construction, interchangeable ion chamber holders and film registration system, thus allowing for measurement of small fields with several detectors using the same phantom. The entire phantom was constructed using one 30cm × 30cm × 3cm slab of solid water. The phantom contains a slot that allows for the placement of two small volume ion chambers (liquid and A1SL) via custom inserts near the center of the phantom. In addition, the plug can be filled for film measurements. The phantom can be split down the center to allow for the placement of a film. As opposed to registering film to room based markers, such as lasers, the phantom contains radio-opaque fiducials that puncture the film while also providing a method to register the film images to exported dose planes. In addition to the markers used for film registration, the phantom contains several external beebees that can be used to avoid ambiguity in image registration when using image guidance for setup. This simple phantom contains many features of other much more expensive phantoms designed for this purpose and has been found to be very useful clinically and in departmental research. The key elements of this phantom could be included in several other designs allowing it to be reproduced in other centers. © 2012 American Association of Physicists in Medicine.

  17. Method for Bubbledeck Concrete Slab with Gaps

    Directory of Open Access Journals (Sweden)

    Sergiu Călin

    2009-01-01

    Full Text Available The composite slabs are made of BubbleDeck type slab elements with spherical gaps, poured in place on transversal and longitudinal directions. By introducing the gaps leads to a 30...50\\% lighter slab which reduces the loads on the columns, walls and foundations, and of course of the entire building. BubbleDeck slab elements are plates with ribs on two directions made of reinforced concrete or precast concrete with spherical shaped bubbles. These slab elements have a bottom and an upper concrete part connected with vertical ribs that go around the gaps.

  18. Method for Bubbledeck Concrete Slab with Gaps

    OpenAIRE

    Sergiu Călin; Ciprian Asăvoaie

    2009-01-01

    The composite slabs are made of BubbleDeck type slab elements with spherical gaps, poured in place on transversal and longitudinal directions. By introducing the gaps leads to a 30...50\\% lighter slab which reduces the loads on the columns, walls and foundations, and of course of the entire building. BubbleDeck slab elements are plates with ribs on two directions made of reinforced concrete or precast concrete with spherical shaped bubbles. These slab elements have a bottom and an upper concr...

  19. Phantom Eye Syndrome: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Agda M. Andreotti

    2014-01-01

    Full Text Available The purpose of this literature review was to describe the main features of phantom eye syndrome in relation to their possible causes, symptoms, treatments, and influence of eye amputation on quality of life of anophthalmic patients. For this, a bibliographical research was performed in Pubmed database using the following terms: “eye amputation,” “eye trauma,” “phantom eye syndrome,” “phantom pain,” and “quality of life,” associated or not. Thirteen studies were selected, besides some relevant references contained in the selected manuscripts and other studies hallowed in the literature. Thus, 56 articles were included in this review. The phantom eye syndrome is defined as any sensation reported by the patient with anophthalmia, originated anophthalmic cavity. In phantom eye syndrome, at least one of these three symptoms has to be present: phantom vision, phantom pain, and phantom sensations. This syndrome has a direct influence on the quality of life of the patients, and psychological support is recommended before and after the amputation of the eyeball as well as aid in the treatment of the syndrome. Therefore, it is suggested that, for more effective treatment of phantom eye syndrome, drug therapy should be associated with psychological approach.

  20. Pharmacological interventions for phantom limb pain.

    Science.gov (United States)

    Fang, Jun; Lian, Yan-hong; Xie, Kang-jie; Cai, Shu-nü

    2013-02-01

    To review the mechanisms and current clinical application of pharmacological interventions for phantom limb pain. Both Chinese and English language literatures were searched using MEDLINE (1982 - 2011), Pubmed (1982 - 2011) and the Index of Chinese Language Literature (1982 - 2011). Data from published articles about pharmacological management of phantom limb pain in recent domestic and foreign literature were selected. Data extraction Data were mainly extracted from 96 articles which are listed in the reference section of this review. By reviewing the mechanisms and current clinical application of pharmacological interventions for phantom limb pain, including anticonvulsants, antidepressants, local anaesthetics, N-methyl-D-aspartate receptor antagonists, non-steroidal anti-inflammatory drugs, tramadol, opioids, calcitonin, capsaicin, beta-adrenergic blockers, clonidine, muscle relaxants, and emerging drugs, we examined the efficacy and safety of these medications, outlined the limitations and future directions. Although there is lack of evidence-based consensus guidelines for the pharmacological management of phantom limb pain, we recommend tricyclic antidepressants, gabapentin, tramadol, opioids, local anaesthetics and N-methyl-D-aspartate receptor antagonists as the rational options for the treatment of phantom limb pain.

  1. The phantom limb in dreams.

    Science.gov (United States)

    Brugger, Peter

    2008-12-01

    Mulder and colleagues [Mulder, T., Hochstenbach, J., Dijkstra, P. U., Geertzen, J. H. B. (2008). Born to adapt, but not in your dreams. Consciousness and Cognition, 17, 1266-1271.] report that a majority of amputees continue to experience a normally-limbed body during their night dreams. They interprete this observation as a failure of the body schema to adapt to the new body shape. The present note does not question this interpretation, but points to the already existing literature on the phenomenology of the phantom limb in dreams. A summary of published investigations is complemented by a note on phantom phenomena in the dreams of paraplegic patients and persons born without a limb. Integration of the available data allows the recommendation for prospective studies to consider dream content in more detail. For instance, "adaptation" to the loss of a limb can also manifest itself by seeing oneself surrounded by amputees. Such projective types of anosognosia ("transitivism") in nocturnal dreams should also be experimentally induced in normally-limbed individuals, and some relevant techniques are mentioned.

  2. Assembling of a phantom for quality control in pediatric radiodiagnosis; Desenvolvimento de um fantoma para controle de qualidade em radiodiagnostico pediatrico

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Silvana Carvalho de; Ghilardi Netto, Thomaz [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Fisolofia, Ciencias e Letras. dept. de Fisica e Matematica; Trad, Clovis Simao; Brochi, Marco Aurelio Corte; Rocha, Sergio Luis [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Centro de Diagnostico por Imagem e Fisica Medica

    1996-12-31

    The adaptation of an homogeneous phantom equivalent to an adult patient is presented for the valuation of pediatric radiologic images. The phantom consists basically of two plastic (methyl methacrylate) slabs, each 2.5 cm tick and two aluminium slabs, 0.5 and 1.0 mm thick. The system can simulate the chest, the skull or pelvis, and the extremities. The phantom also enables the equipment calibration, in order to reach the best radiographic image. After calibration of the equipment for several kVp and m As combinations, a phantom with known details and equivalent thickness was used to produce images. These radiographs allowed the choice of the best combination to be used. The entrance surface doses are presented for several combinations used with the pelvis and chest phantoms 3 refs., 2 tabs.

  3. Jamitons: Phantom Traffic Jams

    Science.gov (United States)

    Kowszun, Jorj

    2013-01-01

    Traffic on motorways can slow down for no apparent reason. Sudden changes in speed by one or two drivers can create a chain reaction that causes a traffic jam for the vehicles that are following. This kind of phantom traffic jam is called a "jamiton" and the article discusses some of the ways in which traffic engineers produce…

  4. The Phantom Menace

    DEFF Research Database (Denmark)

    Vium, Christian

    2013-01-01

    as a phantom menace, which asserts itself through a form of omnipresent fear, nurtured by an inherent opaqueness. As this fundamental fear progressively permeates the nomadic landscape, it engenders a recasting of mobile strategies among the nomadic pastoralist groups who inhabit the interstitial desert spaces....

  5. Slab melting versus slab dehydration in subduction-zone magmatism.

    Science.gov (United States)

    Mibe, Kenji; Kawamoto, Tatsuhiko; Matsukage, Kyoko N; Fei, Yingwei; Ono, Shigeaki

    2011-05-17

    The second critical endpoint in the basalt-H(2)O system was directly determined by a high-pressure and high-temperature X-ray radiography technique. We found that the second critical endpoint occurs at around 3.4 GPa and 770 °C (corresponding to a depth of approximately 100 km in a subducting slab), which is much shallower than the previously estimated conditions. Our results indicate that the melting temperature of the subducting oceanic crust can no longer be defined beyond this critical condition and that the fluid released from subducting oceanic crust at depths greater than 100 km under volcanic arcs is supercritical fluid rather than aqueous fluid and/or hydrous melts. The position of the second critical endpoint explains why there is a limitation to the slab depth at which adakitic magmas are produced, as well as the origin of across-arc geochemical variations of trace elements in volcanic rocks in subduction zones.

  6. Phantom pain after eye amputation

    DEFF Research Database (Denmark)

    Rasmussen, Marie L R; Prause, Jan U; Toft, Peter B

    2011-01-01

    Purpose: To characterize the quality of phantom pain, its intensity and frequency following eye amputation. Possible triggers and relievers of phantom pain are investigated. Methods: The hospital database was searched using surgery codes for patients who received ocular evisceration, enucleation,...... appears to be similar to the phantom pain suffered by limb amputees. Patients should be informed about this potential complication before surgery....

  7. Characterization of air temperature in modern ion chambers due to phantom geometry and ambient temperature changes.

    Science.gov (United States)

    Saenz, Daniel L; Kirby, Neil; Gutiérrez, Alonso N

    2016-07-01

    Temperature and pressure corrections are necessary to account for the varying mass of air in the sensitive volume of a vented ionization chamber (IC) when performing absolute dose measurements. Locations commonly used to measure the presumed IC air temperature may not accurately represent the chamber cavity air temperature, and phantoms undergoing temperature changes further compound the problem. Prior studies have characterized thermal equilibrium in separate phantoms for Farmer chambers alone. However, the purpose of this study was to characterize the cavity air temperature dependence on changes in the ambient temperature and phantom geometry configuration for a wider and more modern variety of chambers to determine if previously published wait times apply to these chambers as well. Thermal conduction properties were experimentally investigated by modifying a PTW 0.3 cm(3) Semiflex IC with a thermocouple replacing the central electrode. Air cavity temperature versus time was recorded in three phantom geometries characteristic of common absolute dose measurements. The phantoms were (15 ± 1) °C before measurement with an IC at the treatment vault temperature of (21 ± 1) °C. Simulations were conducted to provide a theoretical basis for the measurements and to simulate temperature response of a PTW PinPoint® and Farmer chamber. The simulation methods were first validated by comparison with measured Semiflex chamber thermal response curves before extension to the other chambers. Two thermal equilibria curves were recorded on different time scales. IC temperature initially dropped to the colder phantom temperature but subsequently increased as the phantom itself equilibrated with the warmer room temperature. In a large phantom of dimensions (25.5 × 25.5 × 23.4) cm(3), 3 min was required before the IC temperature reached within 0.5 °C of its equilibrium within the phantom. Similarly, wait times of 2 min were needed for 7.5 and 2 cm slab phantoms. Recording

  8. Tissue-like phantoms

    Science.gov (United States)

    Frangioni, John V.; De Grand, Alec M.

    2007-10-30

    The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.

  9. 0-6722 : spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2014-08-01

    The Texas Department of Transportation uses : precast prestressed concrete slab beam bridges for : shorter-span bridges of approximately 3050 ft in : length. Conventional slab beam bridges have slab : beams placed immediately adjacent to one anoth...

  10. Casimir force between topological insulator slabs

    Science.gov (United States)

    Nie, Wenjie; Zeng, Ran; Lan, Yueheng; Zhu, Shiyao

    2013-08-01

    The Casimir force between two finite-thick topological insulator slabs and its dependence on the gap size between the slabs are investigated in detail. Two typical substrate materials including semi-infinite vacuum and silicon are used in the study, in which the Casimir force can always change from attractive to repulsive when the gap size decreases. The gap width at transition is a function of the slab thickness and also depends strongly on the electric permittivity and topological magnetoelectric polarizability of the slabs. In particular, in the absence of a substrate, this width increases with decreasing slab thickness and for thin slabs with large internal and external topological magnetoelectric polarizability the Casimir force is always repulsive where the surface topological magnetoelectric effect of the slabs plays a dominant role. In the presence of a semi-infinite silicon substrate, however, the attractive role of the silicon substrate becomes increasingly important, and thus the transition gap decreases with decreasing thickness of the slab. The characteristic features of the Casimir force may be detected experimentally through exploring its gradient with a certain dynamical method.

  11. Shear assessment of reinforced concrete slab bridges

    NARCIS (Netherlands)

    Lantsoght, E.O.L.; Van der Veen, C.; Walraven, J.C.; De Boer, A.

    2013-01-01

    The capacity of reinforced concrete solid slab bridges in shear is assessed by comparing the design beam shear resistance to the design value of the applied shear force due to the permanent actions and live loads. Results from experiments on half-scale continuous slab bridges are used to develop a

  12. Photon transport in thin disordered slabs

    Indian Academy of Sciences (India)

    We examine using Monte Carlo simulations, photon transport in optically `thin' slabs whose thickness is only a few times the transport mean free path *, with particles of different scattering anisotropies. The confined geometry causes an auto-selection of only photons with looping paths to remain within the slab.

  13. Photon transport in thin disordered slabs

    Indian Academy of Sciences (India)

    Abstract. We examine using Monte Carlo simulations, photon transport in optically 'thin' slabs whose thickness Д is only a few times the transport mean free path РЈ, with particles of different scattering anisotropies. The confined geometry causes an auto-selection of only photons with looping paths to remain within the slab.

  14. Diode-side-pumped Alexandrite slab lasers.

    Science.gov (United States)

    Damzen, M J; Thomas, G M; Minassian, A

    2017-05-15

    We present the investigation of diode-side-pumping of Alexandrite slab lasers in a range of designs using linear cavity and grazing-incidence bounce cavity configurations. An Alexandrite slab laser cavity with double-pass side pumping produces 23.4 mJ free-running energy at 100 Hz rate with slope efficiency ~40% with respect to absorbed pump energy. In a slab laser with single-bounce geometry output power of 12.2 W is produced, and in a double-bounce configuration 6.5 W multimode and 4.5 W output in TEM 00 mode is produced. These first results of slab laser and amplifier designs in this paper highlight some of the potential strategies for power and energy scaling of Alexandrite using diode-side-pumped Alexandrite slab architectures with future availability of higher power red diode pumping.

  15. SU-C-209-07: Phantoms for Digital Breast Tomosynthesis Imaging System Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, D; Liu, Y [Medical College of Wisconsin, Milwaukee, WI (United States)

    2016-06-15

    Purpose: Digital Breast Tomosynthesis (DBT) is gaining importance in breast imaging. There is a need for phantoms that can be used for image evaluation and comparison. Existing commercially available phantoms for DBT are expensive and may lack clinically relevant test objects. The purpose of this study is to develop phantoms for DBT evaluation. Methods Four phantoms have been designed and constructed to assess the image quality (IQ) of two DBT systems. The first contains a spiral of 0.3 mm SiC beads in gelatin to measure the tomographic slice thickness profile and uniformity of coverage in a series of tomographic planes. The second contains simulated tumors inclined with respect to the phantom base to assess tomographic image quality. The third has a tilted array of discs with varying contrast and diameter. This phantom was imaged alone and in a stack of TE slabs giving 2 to 10 cm thickness. The fourth has a dual wedge of glandular and adipose simulating materials. One wedge contains discs with varying diameter and thickness; the other supports a mass with six simulated spicules of varying size and a cluster of simulated calcifications. The simulated glandular tissue material varies between 35 and 100% of the total thickness (5.5 cm). Results: All phantoms were scanned successfully. The best IQ comparison was achieved with the dual wedge phantom as demonstrated by the spiculated mass and calcifications. Images were evaluated by two radiologists and one physicist. The projection images and corresponding set of tomographic planes were comparable and the synthesized projection images were inferior to the projection images for both systems. Conclusion: Four phantoms were designed, constructed and imaged on two DBT systems. They successfully demonstrated performance differences between two systems, and between true and synthesized projection images. Future work will incorporate these designs into a single phantom.

  16. Walled Carotid Bifurcation Phantoms for Imaging Investigations of Vessel Wall Motion and Blood Flow Dynamics.

    Science.gov (United States)

    Chee, Adrian J Y; Ho, Chung Kit; Yiu, Billy Y S; Yu, Alfred C H

    2016-07-18

    As a major application domain of vascular ultrasound, the carotid artery has long been the subject of anthropomorphic phantom design. It is nevertheless not trivial to develop walled carotid phantoms that are compatible for use in integrative imaging of carotid wall motion and flow dynamics. In this paper, we present a novel phantom design protocol that can enable efficient fabrication of walled carotid bifurcation phantoms with: (i) high acoustic compatibility, (ii) artery-like vessel elasticity, and (iii) stenotic narrowing feature. Our protocol first involved direct fabrication of the vessel core and an outer mold using computer-aided design tools and 3-D printing technology; these built parts were then used to construct an elastic vessel tube through investment casting of a polyvinyl alcohol containing mixture, and an agar-gelatin tissue mimicking slab was formed around the vessel tube. For demonstration, we applied our protocol to develop a set of healthy and stenosed (25%, 50%, 75%) carotid bifurcation phantoms. Plane wave imaging experiments were performed on these phantoms using an ultrasound scanner with channel-level configurability. Results show that the wall motion dynamics of our phantoms agreed with pulse wave propagation in an elastic vessel (pulse wave velocity of 4.67±0.71 m/s measured at the common carotid artery), and their flow dynamics matched the expected ones in healthy and stenosed bifurcation (recirculation and flow jet formation observed). Integrative imaging of vessel wall motion and blood flow dynamics in our phantoms was also demonstrated, from which we observed fluid-structure interaction differences between healthy and diseased bifurcation phantoms. These findings show that the walled bifurcation phantoms developed with our new protocol are useful in vascular imaging studies that individually or jointly assess wall motion and flow dynamics.

  17. Phantom breast syndrome

    Directory of Open Access Journals (Sweden)

    Ramesh

    2009-01-01

    Full Text Available Phantom breast syndrome is a type of condition in which patients have a sensation of residual breast tissue and can include both non-painful sensations as well as phantom breast pain. The incidence varies in different studies, ranging from approximately 30% to as high as 80% of patients after mastectomy. It seriously affects quality of life through the combined impact of physical disability and emotional distress. The breast cancer incidence rate in India as well as Western countries has risen in recent years while survival rates have improved; this has effectively increased the number of women for whom post-treatment quality of life is important. In this context, chronic pain following treatment for breast cancer surgery is a significantly under-recognized and under-treated problem. Various types of chronic neuropathic pain may arise following breast cancer surgery due to surgical trauma. The cause of these syndromes is damage to various nerves during surgery. There are a number of assumed factors causing or perpetuating persistent neuropathic pain after breast cancer surgery. Most well-established risk factors for developing phantom breast pain and other related neuropathic pain syndromes are severe acute postoperative pain and greater postoperative use of analgesics. Based upon current evidence, the goals of prophylactic strategies could first target optimal peri-operative pain control and minimizing damage to nerves during surgery. There is some evidence that chronic pain and sensory abnormalities do decrease over time. The main group of oral medications studied includes anti-depressants, anticonvulsants, opioids, N-methyl-D-asparate receptor antagonists, mexilitine, topical lidocaine, cannabinoids, topical capsaicin and glysine antagonists. Neuromodulation techniques such as motor cortex stimulation, spinal cord stimulation, and intrathecal drug therapies have been used to treat various neuropathic pain syndromes.

  18. The Phantom of Liberty

    DEFF Research Database (Denmark)

    One of the few things we have in common in contemporary society is the future of our children. But it seems that even the “we” of childhood, of learning and free play, has turned into a common ground for instrumentalization and competition. Today, the pedagogical paradox—Kant’s meditation on the ......? These are some of the questions addressed by The Phantom of Liberty, which sets out to reestablish a social and aesthetic dialogue between visual art and psychology, philosophy, pedagogy, and critical journalism....

  19. Detecting slab structure beneath the Mediterranean

    Science.gov (United States)

    Miller, Meghan S.; Sun, Daoyuan; Piana Agostinetti, Nicola

    2013-04-01

    The presence of subducted slabs in the Mediterranean has been well documented with seismic tomography, however, these images, which are produced by smoothed, damped inversions, underestimate the sharpness of the structures. The position and extent of the slabs and the presence possible tears or gaps in the subducted lithosphere are still debated, yet the shape and location these structures are important for kinematic reconstructions and evolution of the entire subduction zone system. Extensive distribution of broadband seismic instrumentation in the Mediterranean (Italian National Seismic Network in Italy and the NSF-PICASSO project in Spain and Morocco) has allowed us to use alternative methodologies to detect the position of the slabs and slab tears beneath the Central and Western Mediterranean. Using S receiver functions we are able to identify S-to-p conversions from the bottom of the subducted slab and a lack of these signals where there are gaps or tears in the slab. We also analyze broadband waveforms for changes in P wave coda from deep (> 300 km depth) local earthquakes. The waveform records for stations in southern Italy and around the Betic-Rif show large amplitude, high frequency (f > 5 Hz) late arrivals with long coda after relatively low-frequency onset. High frequency arrivals are the strongest from events whose raypaths travel within the slab to the stations where they are recorded allowing for mapping of where the subducted material is located within the upper mantle. These two methods, along with inferring the slab position from fast P-wave velocity perturbations in tomography and intermediate depth seismicity, provide additional geophysical evidence to aid in interpretation of the complex, segmented slab structure beneath the Mediterranean.

  20. Multi-Modality Phantom Development

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Jennifer S.; Peng, Qiyu; Moses, William W.

    2009-03-20

    Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe both our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.

  1. Estimation of the Reliability of Plastic Slabs

    DEFF Research Database (Denmark)

    Pirzada, G. B. : Ph.D.

    In this thesis, work related to fundamental conditions has been extended to non-fundamental or the general case of probabilistic analysis. Finally, using the ss-unzipping technique a door has been opened to system reliability analysis of plastic slabs. An attempt has been made in this thesis...... to give a probabilistic treatment of plastic slabs which is parallel to the deterministic and systematic treatment of plastic slabs by Nielsen (3). The fundamental reason is that in Nielsen (3) the treatment is based on a deterministic modelling of the basic material properties for the reinforced...

  2. Dynamic eye phantom for retinal oximetry measurements

    Science.gov (United States)

    Lemaillet, Paul; Ramella-Roman, Jessica C.

    2009-11-01

    Measurements of oxygen saturation and flow in the retina can yield information about eye health and the onset of eye pathologies such as diabetic retinopathy. Recently, we developed a multiaperture camera that uses the division of the retinal image into several wavelength-sensitive subimages to compute retinal oxygen saturation. The calibration of such instruments is particularly difficult due to the layered structure of the eye and the lack of alternative measurement techniques. For this purpose, we realize an in vitro model of the human eye composed of a lens, the retina vessel, and three layers: the choroid, the retinal pigmented epithelium, and the sclera. The retinal vessel is modeled with a microtube connected to a micropump and a hemoglobin reservoir in a closed circulatory system. Hemoglobin oxygenation in the vessel could be altered using a reversible fuel cell. The sclera is represented by a Spectralon slab. The optical properties of the other layers are mimicked using titanium dioxide as a scatterer, ink as an absorber, and epoxy as a supporting structure. The optical thickness of each layer of the eye phantom is matched to each respective eye layer.

  3. Phononic crystal slabs: fundamentals and applications

    OpenAIRE

    Khelif, Abdelkrim

    2012-01-01

    International audience; We present in this paper theoretical and experimental studies of guided acoustic wave propagating in phononic crystal slabs. By the insertion of scatters or the deposition of pillars on slabs, we are able to built up these artificial crystals. With appropriate choice of the geometrical parameters, we show that these structures can display complete band gaps in silicone membrane based on a Bragg or a local resonance mechanism. Additionally, the introduction of defects i...

  4. Mantle wedge serpentinization effects on slab dips

    Directory of Open Access Journals (Sweden)

    Eh Tan

    2017-01-01

    Full Text Available The mechanical coupling between a subducting slab and the overlying mantle wedge is an important factor in controlling the subduction dip angle and the flow in mantel wedge. This paper investigates the role of the amount of mantle serpentinization on the subduction zone evolution. With numerical thermos-mechanical models with elasto-visco-plastic rheology, we vary the thickness and depth extent of mantle serpentinization in the mantle wedge to control the degree of coupling between the slab and mantle wedge. A thin serpentinized mantle layer is required for stable subduction. For models with stable subduction, we find that the slab dip is affected by the down-dip extent and the mantle serpentinization thickness. A critical down-dip extent exists in mantle serpentinization, determined by the thickness of the overriding lithosphere. If the down-dip extent does not exceed the critical depth, the slab is partially coupled to the overriding lithosphere and has a constant dip angle regardless of the mantle serpentinization thickness. However, if the down-dip extent exceeds the critical depth, the slab and the base of the overriding lithosphere would be separated and decoupled by a thick layer of serpentinized peridotite. This allows further slab bending and results in steeper slab dip. Increasing mantle serpentinization thickness will also result in larger slab dip. We also find that with weak mantle wedge, there is no material flowing from the asthenosphere into the serpentinized mantle wedge. All of these results indicate that serpentinization is an important ingredient when studying the subduction dynamics in the mantle wedge.

  5. Multimodal phantom of liver tissue.

    Directory of Open Access Journals (Sweden)

    Magdalena K Chmarra

    Full Text Available Medical imaging plays an important role in patients' care and is continuously being used in managing health and disease. To obtain the maximum benefit from this rapidly developing technology, further research is needed. Ideally, this research should be done in a patient-safe and environment-friendly manner; for example, on phantoms. The goal of this work was to develop a protocol and manufacture a multimodal liver phantom that is suitable for ultrasound, computed tomography, and magnetic resonance imaging modalities. The proposed phantom consists of three types of mimicked soft tissues: liver parenchyma, tumors, and portal veins, that are made of six ingredients: candle gel, sephadex®, agarose, glycerol, distilled water, and silicone string. The entire procedure is advantageous, since preparation of the phantom is simple, rather cost-effective, and reasonably quick - it takes around 2 days. Besides, most of the phantom's parts can be reused to manufacture a new phantom. Comparison of ultrasound images of real patient's liver and the developed phantom shows that the phantom's liver tissue and its structures are well simulated.

  6. Supernumerary phantom limb after stroke

    Science.gov (United States)

    Bakheit, A; Roundhill, S

    2005-01-01

    The perception of a phantom limb is commonly reported after amputations. However, only a few cases have been described after a stroke. This article presents a patient who reported a supernumerary phantom limb (pseudopolymelia) after spontaneous intracerebral haemorrhage and discusses the possible underlying mechanisms for this rare phenomenon. PMID:15749787

  7. Determination of equivalent breast phantoms for different age groups of Taiwanese women: An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shang-Lung; Chu, Tieh-Chi; Lin, Yung-Chien; Lan, Gong-Yau; Yeh, Yu-Hsiu; Chen, Sharon; Chuang, Keh-Shih [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Department of Radiology, Cheng Hsin General Hospital, 45 Cheng Hsin Street, Pai-Tou District, Taipei 11220, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2011-07-15

    Purpose: Polymethylmethacrylate (PMMA) slab is one of the mostly used phantoms for studying breast dosimetry in mammography. The purpose of this study was to evaluate the equivalence between exposure factors acquired from PMMA slabs and patient cases of different age groups of Taiwanese women in mammography. Methods: This study included 3910 craniocaudal screen/film mammograms on Taiwanese women acquired on one mammographic unit. The tube loading, compressed breast thickness (CBT), compression force, tube voltage, and target/filter combination for each mammogram were collected for all patients. The glandularity and the equivalent thickness of PMMA were determined for each breast using the exposure factors of the breast in combination with experimental measurements from breast-tissue-equivalent attenuation slabs. Equivalent thicknesses of PMMA to the breasts of Taiwanese women were then estimated. Results: The average {+-} standard deviation CBT and breast glandularity in this study were 4.2 {+-} 1.0 cm and 54% {+-} 23%, respectively. The average equivalent PMMA thickness was 4.0 {+-} 0.7 cm. PMMA slabs producing equivalent exposure factors as in the breasts of Taiwanese women were determined for the age groups 30-49 yr and 50-69 yr. For the 4-cm PMMA slab, the CBT and glandularity values of the equivalent breast were 4.1 cm and 65%, respectively, for the age group 30-49 yr and 4.4 cm and 44%, respectively, for the age group 50-69 yr. Conclusions: The average thickness of PMMA slabs producing the same exposure factors as observed in a large group of Taiwanese women is less than that reported for American women. The results from this study can provide useful information for determining a suitable thickness of PMMA for mammographic dose survey in Taiwan. The equivalence of PMMA slabs and the breasts of Taiwanese women is provided to allow average glandular dose assessment in clinical practice.

  8. Phantom limbs and neural plasticity.

    Science.gov (United States)

    Ramachandran, V S; Rogers-Ramachandran, D

    2000-03-01

    The study of phantom limbs has received tremendous impetus from recent studies linking changes in cortical topography with perceptual experience. Systematic psychophysical testing and functional imaging studies on patients with phantom limbs provide 2 unique opportunities. First, they allow us to demonstrate neural plasticity in the adult human brain. Second, by tracking perceptual changes (such as referred sensations) and changes in cortical topography in individual patients, we can begin to explore how the activity of sensory maps gives rise to conscious experience. Finally, phantom limbs also allow us to explore intersensory effects and the manner in which the brain constructs and updates a "body image" throughout life.

  9. CFRP strengthened openings in two-way concrete slabs

    DEFF Research Database (Denmark)

    Enochsson, O.; Lundqvist, J.; Täljsten, Björn

    2006-01-01

    Rehabilitation and strengthening of concrete structures with externally bonded fibre reinforced polymers (FRPs) has been a viable technique for at least a decade. An interesting and useful application is strengthening of slabs or walls where openings are introduced. In these situations, FRP sheets....... In this paper, laboratory tests on I I slabs with openings, loaded with a distributed load are presented together with analytical and numerical evaluations. Six slabs with openings have been strengthened with carbon fibre reinforced polymers (CFRPs) sheets. These slabs are compared with traditionally steel...... reinforced slabs, both with (four slabs) and without openings (one slab). The slabs are quadratic with a side length of 2.6 in and a thickness of 100 mm. Two different sizes of openings are used, 0.85 x 0.85 in and 1.2 x 1.2 m. The results from the tests show that slabs with openings can be strengthened...

  10. Accidents due to falls from roof slabs

    Directory of Open Access Journals (Sweden)

    Bruno Alves Rudelli

    Full Text Available CONTEXT AND OBJECTIVE Falls from the roof slabs of houses are accidents of high potential severity that occur in large Brazilian cities and often affect children and adolescents. The aims of this study were to characterize the factors that predispose towards this type of fall involving children and adolescents, quantify the severity of associated lesions and suggest preventive measures. DESIGN AND SETTING Descriptive observational prospective longitudinal study in two hospitals in the metropolitan region of São Paulo. METHODS Data were collected from 29 cases of falls from roof slabs involving children and adolescents between October 2008 and October 2009. RESULTS Cases involving males were more prevalent, accounting for 84%. The predominant age group was schoolchildren (7 to 12 years old; 44%. Leisure activities were most frequently being practiced on the roof slab at the time of the fall (86%, and flying a kite was the most prevalent game (37.9%. In 72% of the cases, the children were unaccompanied by an adult responsible for them. Severe conditions such as multiple trauma and traumatic brain injuries resulted from 79% of the accidents. CONCLUSION Falls from roof slabs are accidents of high potential severity, and preventive measures aimed towards informing parents and guardians about the dangers and risk factors associated with this type of accident are needed, along with physical protective measures, such as low walls around the slab and gates with locks to restrict free access to these places.

  11. Cattle cruelty and risks of meat contamination at Akinyele cattle market and slaughter slab in Oyo State, Nigeria.

    Science.gov (United States)

    Adeyemo, Olanike K; Adeyemi, Isaac G; Awosanya, Emmanuel J

    2009-12-01

    Cattle transported to the government-run cattle market and slaughter slab in Akinyele, Oyo State, Nigeria on their final voyage are facing a disturbingly cruel, filthy and unsafe environment that is also raising the risk of contamination of meat sold for human consumption. This report gives a picture of what the cattle have to go through before they are slaughtered. This study also reveals cattle awaiting slaughter in abysmal health conditions, cows pulled with extreme force towards lairage and slaughter slab. Equally disturbing is the filthy situation inside the abattoir where the risk of contamination of meat is significant. Also, poor meat handling, transportation and sales practices subject meat to contamination leading to poor quality and exposure of human consumers to health risk. Development of hygienic slaughter slab operations, improved transportation system for both livestock and meat is therefore recommended; not only for Akinyele, but all abattoirs and slaughter slabs in Nigeria.

  12. Influence of slab length on dynamic characteristics of subway train-steel spring floating slab track-tunnel coupled system

    Directory of Open Access Journals (Sweden)

    Qing-yuan Xu

    Full Text Available A subway train-steel spring floating slab track-tunnel coupling dynamic model, considering short and middle-long wavelength random track irregularities, and longitudinal connection between adjacent slabs of steel spring floating slab track, was developed. And the influence of slab length on dynamic characteristics of the system under different track conditions and train speeds are theoretically studied. The calculated results show: (1 In general, the acceleration of each component of the coupled system decreases with the increase of slab length under the perfectly smooth track condition; (2 Slab length has different influence laws on acceleration of each component of subway train-steel spring floating slab track-tunnel coupled system under random irregularity of track condition. The lower the dominant frequency distribution of vibration acceleration is, the higher influence slab length has; (3 With the increase of slab length, the force of rail, fastener and steel spring also decreases significantly, which helps to lengthen the service life of these components; (4 With the increase of slab length, the longitudinal bending moment of slab increases sharply at first, then it begins to drop slightly. When slab length exceeds the distance between two bogies of a vehicle, the longitudinal bending moment of slab changes little; (5 Slab length has significant influence on the dynamic force and displacement of the coupled system when train speed is higher.

  13. Novel Radon Sub-Slab Suctioning System

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    A new principle for radon protection is currently presented which makes use of a system of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground-floor slab. The function of this system is based on the principles of pressure reduction within...... the zone below the ground-floor construction. For this purpose a new system of prefabricated lightweight elements is introduced. The effectiveness of the system is demonstrated for the case of a ground-floor reinforced concrete slab situated on top of a rigid insulation layer (consisting of a thermal...... a grid of horizontal air ducts with low pressure which are able to remove air and radon from the ground. Results showed the system to be effective in preventing radon infiltrating from the ground through the ground-floor slab, avoiding high concentrations of radon being accumulated inside houses...

  14. Slab tears and intermediate-depth seismicity

    Science.gov (United States)

    Meighan, Hallie E.; ten Brink, Uri S.; Pulliam, Jay

    2013-01-01

    Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well-documented slab tears that are associated with high rates of intermediate-depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid-related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.

  15. Realistic analytical polyhedral MRI phantoms.

    Science.gov (United States)

    Ngo, Tri M; Fung, George S K; Han, Shuo; Chen, Min; Prince, Jerry L; Tsui, Benjamin M W; McVeigh, Elliot R; Herzka, Daniel A

    2016-08-01

    Analytical phantoms have closed form Fourier transform expressions and are used to simulate MRI acquisitions. Existing three-dimensional (3D) analytical phantoms are unable to accurately model shapes of biomedical interest. The goal of this study was to demonstrate that polyhedral analytical phantoms have closed form Fourier transform expressions and can accurately represent 3D biomedical shapes. The Fourier transform of a polyhedron was implemented and its accuracy in representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral brain and torso phantoms were constructed and their use in simulated 3D and two-dimensional (2D) MRI acquisitions was described. Using polyhedra, the Fourier transform of faceted shapes can be computed to within machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing the number of facets in the polyhedron; the additional accumulated numerical imprecision of the Fourier transform of polyhedra with many faces remained small. Simulations of 3D and 2D brain and 2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing compared with equivalent voxelized/rasterized phantoms. Analytical polyhedral phantoms are easy to construct and can accurately simulate shapes of biomedical interest. Magn Reson Med 76:663-678, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. The need and benefit of slab track: case of Lithuania

    OpenAIRE

    Gailienė, Inesa; Laurinavičius, Alfredas

    2017-01-01

    Slab track structures have been used in the world for several decades now. However, the ballasted track is still much more popular compared to slab track structures, which is primarily due to its lower price. This article reviews and analyses development of slab tracks, with their advantages and disadvantages. Based on conditions prevailing on Lithuanian railways, the paper also distinguishes cases in which slab track structures could be of benefit, both economically and technologically. The ...

  17. Reinforcement of the concrete base slab of the ATLAS cavern

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 02: UX15 cavern, preparation for concreting of base slab first lift. Photo 05: UX15 cavern, placing of reinforcement for base slab first lift. Photo 07: UX15 cavern, preparation for concreting of base slab first lift. Photo 09: UX15 cavern, placing of reinforcement for base slab first lift. Photo 10: UX15 cavern, view into PX14 shaft above. Photo 12: UX15 cavern, temporary access platform of RB16 tunnel. Photo 15: UJ17 chamber, invert excavation.

  18. Thin-slab casting–New possibilities

    Indian Academy of Sciences (India)

    The new installtion produce thin slabs (50-70 mm) that are directly rolled into strips without the need of an intermediate furnace for raising the stock temperature; the so-called tunnel furance prior to the rolling stands serving only to equalise stock temperatures. Additionally, what started as a step for reducing investment in ...

  19. Plastic design of continuous composite slabs

    NARCIS (Netherlands)

    Stark, J.W.B.; Brekelmans, J.W.P.M.

    1996-01-01

    Most current regulations for continuous composite slabs contain rules that limit the application of plastic analysis in the design process. In this paper, results of numerical studies for positive and negative bending and experimental results for negative bending are presented. From these

  20. All-polymer photonic crystal slab sensor

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Sørensen, Kristian Tølbøl; Vannahme, Christoph

    2015-01-01

    An all-polymer photonic crystal slab sensor is presented, and shown to exhibit narrow resonant reflection with a FWHM of less than 1 nm and a sensitivity of 31 nm/RIU when sensing media with refractive indices around that of water. This results in a detection limit of 4.5x10-6 RIU when measured...

  1. Lifetime Reliability Assessment of Concrete Slab Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    A procedure for lifetime assesment of the reliability of short concrete slab bridges is presented in the paper. Corrosion of the reinforcement is the deterioration mechanism used for estimating the reliability profiles for such bridges. The importance of using sensitivity measures is stressed...

  2. Longitudinal shear resistance of composite slabs

    NARCIS (Netherlands)

    Schuurman, R.G.; Stark, J.W.B.

    1996-01-01

    Verification methods for longitudinal shear. currently in use, are empirical. This applies for both the m-k method as the Partial Shear Connection method. Parameters and mechanisms determining the behaviour of the shear connection in composite slabs are not directly considered in these methods. A

  3. Development Length for Headed Bars in Slab-Column Joints of RC Slab Bridges

    Science.gov (United States)

    2015-12-04

    In accordance with the Caltrans Seismic Design Criteria, the superstructure in a slab bridge should remain essentially elastic and only the pile extensions/columns are permitted to develop inelastic deformations during a seismic event. Hence, the lon...

  4. Necessity of the Ridge for the Flat Slab Subduction: Insights from the Peruvian Flat Slab

    Science.gov (United States)

    Knezevic Antonijevic, S.; Wagner, L. S.; Beck, S. L.; Long, M. D.; Zandt, G.; Tavera, H.

    2014-12-01

    Flattening of the subducting plate has been linked to the formation of various geological features, including basement-cored uplifts, the cessation of arc volcanism, ignimbrite flare-ups, and the formation of high plateaus and ore deposits [Humphreys et al., 2003; Gutscher et al., 2000; Rosenbaum et al., 2005]. However, the mechanism responsible for the slab flattening is still poorly understood. Here we focus on the Peruvian flat slab, where the Nazca plate starts to bend at ~80 km depth and travels horizontally for several hundred kilometers, at which point steep subduction resumes. Based on a 1500 km long volcanic gap and intermediate depth seismicity patterns, the Peruvian flat slab appears to have the greatest along-strike extent and, therefore, has been suggested as a modern analogue to the putative flat slab during the Laramide orogeny in the western United States (~80-55 Ma). Combining 3D shear wave velocity structure and Rayleigh wave phase anisotropy between ~10° and 18° S, we find that the subducting Nazca plate is not uniformly flat along the entire region, but fails to the north of the subducting Nazca Ridge. Our results show that, in combination with trench retreat, rapid overriding plate motion, and/or presence of a thick cratonic root, the subduction of buoyant overthickened oceanic crust, such as the Nazca Ridge, is necessary for the formation and sustainability of flat slabs. This finding has important implications for the formation of flat slabs both past and present.

  5. Influence of slab length on dynamic characteristics of subway train-steel spring floating slab track-tunnel coupled system

    OpenAIRE

    Xu, Qing-yuan; Yan, Bin; Lou, Ping; Zhou, Xiao-lin

    2015-01-01

    A subway train-steel spring floating slab track-tunnel coupling dynamic model, considering short and middle-long wavelength random track irregularities, and longitudinal connection between adjacent slabs of steel spring floating slab track, was developed. And the influence of slab length on dynamic characteristics of the system under different track conditions and train speeds are theoretically studied. The calculated results show: (1) In general, the acceleration of each component of the cou...

  6. Efficacy of gabapentin for treatment of adults with phantom limb pain.

    Science.gov (United States)

    Abbass, Kim

    2012-12-01

    To evaluate the effectiveness of gabapentin in adults with phantom limb pain. A PubMed search (1966-September 2012) was conducted using the key words phantom limb pain and gabapentin. Search limits were English language, humans, adult, clinical trials, and randomized controlled trial. Randomized controlled trials that studied the effectiveness of gabapentin in adults with phantom limb pain were identified and selected. Primary outcomes were associated with pain. Pediatric population studies were excluded. Three studies, with a total of 89 patients, were reviewed. All studies employed a pain rating scale to determine the primary outcome. Results varied. One crossover study reported a significant difference in pain intensity at 6 weeks compared with baseline (p phantom limb pain. A strong recommendation for the effectiveness of gabapentin in phantom limb pain cannot be ascertained until more methodologically sound studies are executed in this population.

  7. Evidence of fire resistance of hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes...... is therefore going on in the Netherlands about the fire resistance of hollow-core slabs. In 2014 the producers of hollow-core slabs have published a report of a project called Holcofire containing a collection of 162 fire tests on hollow-core slabs giving for the first time an overview of the fire tests made....... The present paper analyses the evidence now available for assessment of the fire resistance of extruded hollow-core slabs. The 162 fire tests from the Holcofire report are compared against the requirements for testing from the product standard for hollow-core slabs EN1168 and knowledge about the possible...

  8. Anatomically correct deformable colon phantom

    Science.gov (United States)

    Norris, James A.; Barton, Michael D.; Davis, Brynmor J.; Bieszczad, Jerry; Meunier, Norm L.; Brown, Nathan W.; Kynor, David B.

    2011-03-01

    We describe a technique to build a soft-walled colon phantom that provides realistic lumen anatomy in computed tomography (CT) images. The technique begins with the geometry of a human colon measured during CT colonography (CTC). The three-dimensional air-filled colonic lumen is segmented and then replicated using stereolithography (SLA). The rigid SLA model includes large-scale features (e.g., haustral folds and tenia coli bands) down to small-scale features (e.g., a small pedunculated polyp). Since the rigid model represents the internal air-filled volume, a highly-pliable silicone polymer is painted onto the rigid model. This thin layer of silicone, when removed, becomes the colon wall. Small 3 mm diameter glass beads are affixed to the outer wall. These glass beads show up with high intensity in CT scans and provide a ground truth for evaluating performance of algorithms designed to register prone and supine CTC data sets. After curing, the silicone colon wall is peeled off the rigid model. The resulting colon phantom is filled with air and submerged in a water bath. CT images and intraluminal fly-through reconstructions from CTC scans of the colon phantom are compared against patient data to demonstrate the ability of the phantom to simulate a human colon.

  9. Phantom pain : A sensitivity analysis

    NARCIS (Netherlands)

    Borsje, Susanne; Bosmans, JC; Van der Schans, CP; Geertzen, JHB; Dijkstra, PU

    2004-01-01

    Purpose : To analyse how decisions to dichotomise the frequency and impediment of phantom pain into absent and present influence the outcome of studies by performing a sensitivity analysis on an existing database. Method : Five hundred and thirty-six subjects were recruited from the database of an

  10. Subduction zone earthquakes and stress in slabs

    Science.gov (United States)

    Vassiliou, M. S.; Hager, B. H.

    1988-01-01

    Simple viscous fluid models of subducting slabs are used to explain observations of the distribution of earthquakes as a function of depth and the orientation of stress axes of deep (greater than 300 km) and intermediate (70-300 km) earthquakes. Results suggest the following features in the distribution of earthquakes with depth: (1) an exponential decrease from shallow depths down to 250 to 300 km, (2) a minimum near 250 to 300 km, and (3) a deep peak below 300 km. Many shallow subducting slabs show only the first characteristic, while deeper extending regions tend to show all three features, with the deep peak varying in position and intensity. These data, combined with the results on the stress orientations of various-depth earthquakes, are consistent with the existence of a barrier of some sort at 670-km depth and a uniform viscosity mantle above this barrier.

  11. Tachyonic field interacting with scalar (phantom) field

    OpenAIRE

    Chattopadhyay, Surajit; Debnath, Ujjal

    2009-01-01

    In this letter, we have considered the universe is filled with the mixture of tachyonic field and scalar or phantom field. If the tachyonic field interacts with scalar or phantom field, the interaction term decays with time and the energy for scalar field is transferred to tachyonic field or the energy for phantom field is transferred to tachyonic field. The tachyonic field and scalar field potentials always decrease, but phantom field potential always increases.

  12. COMPRESSIVE MEMBRANE ACTION in BRIDGE DECK SLABS

    OpenAIRE

    JACKSON, PAUL AUSTIN

    1989-01-01

    Merged with duplicate record 10026.1/654 on 27.02.2017 by CS (TIS) An elastic analysis of restrained slab strips shows that membrane action enhances serviceability behaviour. However, the enhancement is not as great as for strength and serviceability is critical when membrane action is considered in design. A relatively simple form of non-linear finite element analysis is developed which is able to model bridge deck behaviour allowing for membrane action. This reduces som...

  13. Continental underplating after slab break-off

    Science.gov (United States)

    Magni, V.; Allen, M. B.; van Hunen, J.; Bouilhol, P.

    2017-09-01

    We present three-dimensional numerical models to investigate the dynamics of continental collision, and in particular what happens to the subducted continental lithosphere after oceanic slab break-off. We find that in some scenarios the subducting continental lithosphere underthrusts the overriding plate not immediately after it enters the trench, but after oceanic slab break-off. In this case, the continental plate first subducts with a steep angle and then, after the slab breaks off at depth, it rises back towards the surface and flattens below the overriding plate, forming a thick horizontal layer of continental crust that extends for about 200 km beyond the suture. This type of behaviour depends on the width of the oceanic plate marginal to the collision zone: wide oceanic margins promote continental underplating and marginal back-arc basins; narrow margins do not show such underplating unless a far field force is applied. Our models show that, as the subducted continental lithosphere rises, the mantle wedge progressively migrates away from the suture and the continental crust heats up, reaching temperatures >900 °C. This heating might lead to crustal melting, and resultant magmatism. We observe a sharp peak in the overriding plate rock uplift right after the occurrence of slab break-off. Afterwards, during underplating, the maximum rock uplift is smaller, but the affected area is much wider (up to 350 km). These results can be used to explain the dynamics that led to the present-day crustal configuration of the India-Eurasia collision zone and its consequences for the regional tectonic and magmatic evolution.

  14. Upstand Finite Element Analysis of Slab Bridges

    OpenAIRE

    O'Brien, Eugene J.; Keogh, D.L.

    1998-01-01

    For slab bridge decks with wide transverse edge cantilevers, the plane grillage analogy is shown to be an inaccurate method of linear elastic analysis due to variations in the vertical position of the neutral axis. The upstand grillage analogy is also shown to give inaccurate results, this time due to inappropriate modelling of in-plane distortions. An alternative method, known as upstand finite element analysis, is proposed which is sufficiently simple to be used on an everyday basis in the ...

  15. Phantom Recollection of Bridging and Elaborative Inferences

    Science.gov (United States)

    Singer, Murray; Spear, Jackie

    2015-01-01

    The phantom recollection model is a multiprocess analysis according to which memory judgments are collaboratively supported by one's recollection of an item in its context, a vaguer sense of stimulus familiarity, and the phantom recollection of the substance and even perceptual details of unstudied but related lures. Phantom recollection has…

  16. FABRICATION OF TISSUE-SIMULATIVE PHANTOMS AND CAPILLARIES AND THEIR INVESTIGATION BY OPTICAL COHERENCE TOMOGRAPHY TECHNIQUES

    Directory of Open Access Journals (Sweden)

    A. V. Bykov

    2013-03-01

    Full Text Available Methods of tissue-simulative phantoms and capillaries fabrication from PVC-plastisol and silicone for application as test-objects in optical coherence tomography (OCT and skin and capillary emulation are considered. Comparison characteristics of these materials and recommendations for their application are given. Examples of phantoms visualization by optical coherence tomography method are given. Possibility of information using from B-scans for refractive index evaluation is shown.

  17. Material-specific Conversion Factors for Different Solid Phantoms Used in the Dosimetry of Different Brachytherapy Sources

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2015-07-01

    Full Text Available Introduction Based on Task Group No. 43 (TG-43U1 recommendations, water phantom is proposed as a reference phantom for the dosimetry of brachytherapy sources. The experimental determination of TG-43 parameters is usually performed in water-equivalent solid phantoms. The purpose of this study was to determine the conversion factors for equalizing solid phantoms to water. Materials and Methods TG-43 parameters of low- and high-energy brachytherapy sources (i.e., Pd-103, I-125 and Cs-137 were obtained in different phantoms, using Monte Carlo simulations. The brachytherapy sources were simulated at the center of different phantoms including water, solid water, poly(methyl methacrylate, polystyrene and polyethylene. Dosimetric parameters such as dose rate constant, radial dose function and anisotropy function of each source were compared in different phantoms. Then, conversion factors were obtained to make phantom parameters equivalent to those of water. Results Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water. Conclusion Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water.

  18. Comparing Hp(3) evaluated from the conversion coefficients from air kerma to personal dose equivalent for eye lens dosimetry calibrated on a new cylindrical PMMA phantom

    Science.gov (United States)

    Esor, J.; Sudchai, W.; Monthonwattana, S.; Pungkun, V.; Intang, A.

    2017-06-01

    Based on a new occupational dose limit recommended by ICRP (2011), the annual dose limit for the lens of the eye for workers should be reduced from 150 mSv/y to 20 mSv/y averaged over 5 consecutive years in which no single year exceeding 50 mSv. This new dose limit directly affects radiologists and cardiologists whose work involves high radiation exposure over 20 mSv/y. Eye lens dosimetry (Hp(3)) has become increasingly important and should be evaluated directly based on dosimeters that are worn closely to the eye. Normally, Hp(3) dose algorithm was carried out by the combination of Hp(0.07) and Hp(10) values while dosimeters were calibrated on slab PMMA phantom. Recently, there were three reports from European Union that have shown the conversion coefficients from air kerma to Hp(3). These conversion coefficients carried out by ORAMED, PTB and CEA Saclay projects were performed by using a new cylindrical head phantom. In this study, various delivered doses were calculated using those three conversion coefficients while nanoDot, small OSL dosimeters, were used for Hp(3) measurement. These calibrations were performed with a standard X-ray generator at Secondary Standard Dosimetry Laboratory (SSDL). Delivered doses (Hp(3)) using those three conversion coefficients were compared with Hp(3) from nanoDot measurements. The results showed that percentage differences between delivered doses evaluated from the conversion coefficient of each project and Hp(3) doses evaluated from the nanoDots were found to be not exceeding -11.48 %, -8.85 % and -8.85 % for ORAMED, PTB and CEA Saclay project, respectively.

  19. Extensive decarbonation of continuously hydrated subducting slabs

    Science.gov (United States)

    Arzilli, Fabio; Burton, Mike; La Spina, Giuseppe; Macpherson, Colin G.

    2017-04-01

    CO2 release from subducting slabs is a key element of Earth's carbon cycle, consigning slab carbon either to mantle burial or recycling to the surface through arc volcanism, however, what controls subducted carbon's fate is poorly understood. Fluids mobilized by devolatilization of subducting slabs play a fundamental role in the melting of mantle wedges and in global geochemical cycles [1]. The effect of such fluids on decarbonation in subducting lithologies has been investigated recently [2-5], but several thermodynamic models [2-3], and experimental studies [6] suggest that carbon-bearing phases are stable at sub-arc depths (80-140 km; 2.6-4.5 GPa), implying that this carbon can be carried to mantle depths of >140 km. This is inconsistent with observations of voluminous CO2 release from arc volcanoes [7-10], located above slabs that are at 2.6-4.5 GPa pressure. The aim of this study is to re-evaluate the role of metamorphic decarbonation, showing if decarbonation reactions could be feasible at sub-arc depths combined with a continuous hydration scenario. We used the PerpleX software combined with a custom-designed algorithm to simulate a pervasive fluid infiltration characterized by "continuous hydration" combined with a distillation model, in which is possible to remove CO2 when decarbonation occurs, to obtain an open-system scenario. This is performed by repeatedly flushing the sediment with pure H2O at 0.5, 1.0 or 5 wt.% until no further decarbonation occurs. Here we show that continuous hydrated of sediment veneers on subducting slabs by H2O released from oceanic crust and serpentinised mantle lithosphere [11-13], produces extensive slab decarbonation over a narrow, sub-arc pressure range, even for low temperature subduction pathways. This explains the location of CO2-rich volcanism, quantitatively links the sedimentary composition of slab material to the degree of decarbonation and greatly increases estimates for the magnitude of carbon flux through the arc

  20. Viscous Dissipation and Criticality of Subducting Slabs

    Science.gov (United States)

    Riedel, Mike; Karato, Shun; Yuen, Dave

    2016-04-01

    Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ -h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota

  1. A generalized 2D pencil beam scaling algorithm for proton dose calculation in heterogeneous slab geometries.

    Science.gov (United States)

    Westerly, David C; Mo, Xiaohu; Tomé, Wolfgang A; Mackie, Thomas R; DeLuca, Paul M

    2013-06-01

    Pencil beam algorithms are commonly used for proton therapy dose calculations. Szymanowski and Oelfke ["Two-dimensional pencil beam scaling: An improved proton dose algorithm for heterogeneous media," Phys. Med. Biol. 47, 3313-3330 (2002)] developed a two-dimensional (2D) scaling algorithm which accurately models the radial pencil beam width as a function of depth in heterogeneous slab geometries using a scaled expression for the radial kernel width in water as a function of depth and kinetic energy. However, an assumption made in the derivation of the technique limits its range of validity to cases where the input expression for the radial kernel width in water is derived from a local scattering power model. The goal of this work is to derive a generalized form of 2D pencil beam scaling that is independent of the scattering power model and appropriate for use with any expression for the radial kernel width in water as a function of depth. Using Fermi-Eyges transport theory, the authors derive an expression for the radial pencil beam width in heterogeneous slab geometries which is independent of the proton scattering power and related quantities. The authors then perform test calculations in homogeneous and heterogeneous slab phantoms using both the original 2D scaling model and the new model with expressions for the radial kernel width in water computed from both local and nonlocal scattering power models, as well as a nonlocal parameterization of Molière scattering theory. In addition to kernel width calculations, dose calculations are also performed for a narrow Gaussian proton beam. Pencil beam width calculations indicate that both 2D scaling formalisms perform well when the radial kernel width in water is derived from a local scattering power model. Computing the radial kernel width from a nonlocal scattering model results in the local 2D scaling formula under-predicting the pencil beam width by as much as 1.4 mm (21%) at the depth of the Bragg peak for a 220

  2. Phantom pain in bilateral upper limb amputation.

    Science.gov (United States)

    Modirian, Ehsan; Shojaei, Hadi; Soroush, Mohammad Reza; Masoumi, Mahdi

    2009-01-01

    To alert health professionals on presence and extent of phantom pain and sensation following bilateral upper limb amputation. Of a total of 140 war-related bilateral upper limb amputees in Iran, 103 subjects were thoroughly examined in this cross-sectional study by a physical medicine specialist. The patients were questioned for the presence of phantom pain and sensations, and frequency and intensity of the feeling were recorded. At 17.1 +/- 6.1 years after injury, 82.0% of the 103 amputees suffered from phantom sensation, including varying degrees of phantom limb pain in 53.9% of stumps. Phantom phenomena had a higher frequency in the right extremities, but this was not statistically significant (p > 0.01). Of those amputees who had phantom pain or sensation, 51.2% reported that they 'always' had phantom limb sensation; and approximately one-fourth of the subjects (24.6%) 'always' had phantom pain. Among the stumps who reported phantom pain (N=112), the pain was excruciating (38.5%), distressing (34.9%) or discomforting (25.6%). A significant statistical relation between phantom limb sensation and level of amputation was observed (p phantom pain; medical and surgical modalities only bring temporary relief, and less than 1% of the respondents achieve permanent relief through different treatment methods.

  3. A STUDY ON THE WHEELSET/SLAB TRACK VERTICAL INTERACTION

    Directory of Open Access Journals (Sweden)

    Traian MAZILU

    2012-05-01

    Full Text Available This paper deals with the interaction between a moving wheelset and a slab track due to the short-pitch corrugated rail. The wheelset is modeled using a free-free Timoshenko beam with attached rigid bodies as the axle boxes, wheels and brake discs. The slab track model consists of elastically supported double Euler-Bernoulli beams. In fact, both wheelset and slab track are symmetric structures and the issue of the wheelset/slab track interaction is reduced to the wheel/rail interaction. The nonlinear equations of motion describing the wheelset/slab track interaction due to the short-pitch corrugated rail are solved using the time-domain Green’s functions method and the convolution theorem. The wheelset/slab track interaction due to the short-pitch corrugated rail exhibits a critical velocity when the vibration reaches the maximum level

  4. Optimization of low-contrast detectability in thin-collimated modern multidetector CT using an interactive sliding-thin-slab averaging algorithm.

    Science.gov (United States)

    von Falck, Christian; Hartung, Alexander; Berndzen, Frank; King, Benjamin; Galanski, Michael; Shin, Hoen-oh

    2008-04-01

    To analyze the effects of the sliding-thin-slab averaging algorithm on low-contrast performance in MDCT imaging and to find reasonable parameters for clinical routine work. A low-contrast phantom simulating hypodense lesions (20 HU object contrast) was scanned with a 16-slice spiral CT scanner using different mAs-settings of 25, 50, 100, and 195 mAs. Other scan parameters were as follows: tube voltage = 120 kVp, slice collimation = 0.625 mm, pitch = 1.375 (high speed), reconstruction interval = 0.5 mm. Images were reconstructed with soft, standard, and bone algorithms, resulting in a total of 12 datasets. A sliding-thin-slab averaging algorithm was applied to these primary datasets, systematically varying the slab thickness between 0.5 and 5.0 mm. The low-contrast performance of the resulting datasets was semi-automatically analyzed using a statistical reader-independent approach: A size-dependent analysis of the image noise within the phantom was used to empirically generate a contrast discrimination function (CDF). The ratio between the actual contrast and the minimum contrast necessary for the detection (as given by the CDF) was calculated for all lesions in each dataset and used to evaluate the low-contrast detectability of the different lesions at increasing slab thickness. The results were compared with the original datasets to calculate the improvement in low-contrast detectability. Using the sliding-thin-slab algorithm, low-contrast performance was increased by a factor between 1.1 and 1.7 when compared with the primary dataset. The improvement of the visibility index at optimal slab thickness when compared with the original slice thickness (0.625 mm) was statistically significant (P slab thickness over all datasets was 43% (+/-3%) of the diameter of the lesion to be detected. The use of an interactive sliding-thin-slab averaging algorithm can be readily applied to optimize low-contrast detectability in thin-collimated CT datasets. As a general rule for

  5. Radon Sub-slab Suctioning System Integrated in Insulating Layer

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    of prefabricated lightweight elements were introduced and demonstrated. The principle was demonstrated on a concrete ground slab floor with a concrete slab on top of a thermal insulation layer above a capillary-breaking layer mounted on stable ground. The thermal insulation and the capillary-breaking layer...... material of the ground slab floor. The element and the insulation material were made of expanded polystyrene. The new element can be handled by one man on site....

  6. Development of a universal medical X-ray imaging phantom prototype.

    Science.gov (United States)

    Groenewald, Annemari; Groenewald, Willem A

    2016-11-08

    Diagnostic X-ray imaging depends on the maintenance of image quality that allows for proper diagnosis of medical conditions. Maintenance of image quality requires quality assurance programs on the various X-ray modalities, which consist of pro-jection radiography (including mobile X-ray units), fluoroscopy, mammography, and computed tomography (CT) scanning. Currently a variety of modality-specific phantoms are used to perform quality assurance (QA) tests. These phantoms are not only expensive, but suitably trained personnel are needed to successfully use them and interpret the results. The question arose as to whether a single universal phantom could be designed and applied to all of the X-ray imaging modalities. A universal phantom would reduce initial procurement cost, possibly reduce the time spent on QA procedures and simplify training of staff on the single device. The aim of the study was to design and manufacture a prototype of a universal phantom, suitable for image quality assurance in general X-rays, fluoroscopy, mammography, and CT scanning. The universal phantom should be easy to use and would enable automatic data analysis, pass/fail reporting, and corrective action recommendation. In addition, a universal phantom would especially be of value in low-income countries where finances and human resources are limited. The design process included a thorough investigation of commercially available phantoms. Image quality parameters necessary for image quality assurance in the different X-ray imaging modalities were determined. Based on information obtained from the above-mentioned investigations, a prototype of a universal phantom was developed, keeping ease of use and reduced cost in mind. A variety of possible phantom housing and insert materials were investigated, considering physical properties, machinability, and cost. A three-dimensional computer model of the first phantom prototype was used to manufacture the prototype housing and inserts. Some of the

  7. A STUDY ON THE WHEELSET/SLAB TRACK VERTICAL INTERACTION

    OpenAIRE

    Traian MAZILU

    2012-01-01

    This paper deals with the interaction between a moving wheelset and a slab track due to the short-pitch corrugated rail. The wheelset is modeled using a free-free Timoshenko beam with attached rigid bodies as the axle boxes, wheels and brake discs. The slab track model consists of elastically supported double Euler-Bernoulli beams. In fact, both wheelset and slab track are symmetric structures and the issue of the wheelset/slab track interaction is reduced to the wheel/rail interaction. The n...

  8. Control of exceptional points in photonic crystal slabs

    DEFF Research Database (Denmark)

    Kaminski, Piotr Marek; Taghizadeh, Alireza; Breinbjerg, Olav

    2017-01-01

    Various ways of controlling the extent of the ring of exceptional points in photonic crystal slabs are investigated. The extent of the ring in photonic crystal slabs is found to vary with the thickness of the slab. This enables recovery of Dirac cones in open, non-Hermitian systems......, such as a photonic crystal slab. In this case, all three bands exhibit a bound state in the continuum in close proximity of the Γ point. These results may lead to new designs of small photonic-crystal-based lasers exhibiting high-quality factors....

  9. Rolling method for thick slabs to remove the loose structure

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Yoshihiro; Tsuda, Osamu; Osuna, Hiroshi (Kobe Steel Ltd. (Japan). Central Research and Development Lab.); Tomonaga, Mitsuo; Saito, Shunji

    1983-10-01

    A model test was performed using coupled plasticine specimens to simulate the temperature distribution of the slab section, and a criterion was set up for closure of the inner voids in thick slabs. The most suitable conditions for closure were 300/sup 0/C in temperature difference between the center and the surface of a slab and above 0.37 in rolling shape factor, in the case of a 40% reduction. It was also found that a cooling zone width greater than 3 times the slab thickness is enough for closure.

  10. Slab thickness tuning approach for solid-state strong coupling between photonic crystal slab nanocavity and a quantum dot.

    Science.gov (United States)

    Chen, Gengyan; Liu, Jing-Feng; Jiang, Haoxiang; Zhuo, Xiao-Lu; Yu, Yi-Cong; Jin, Chongjun; Wang, Xue-Hua

    2013-04-23

    The quality factor and mode volume of a nanocavity play pivotal roles in realizing the strong coupling interaction between the nanocavity mode and a quantum dot. We present an extremely simple method to obtain the mode volume and investigate the effect of the slab thickness on the quality factor and mode volume of photonic crystal slab nanocavities. We reveal that the mode volume is approximatively proportional to the slab thickness. As compared with the previous structure finely optimized by introducing displacement of the air holes, via tuning the slab thickness, the quality factor can be enhanced by about 22%, and the ratio between the coupling coefficient and the nanocavity decay rate can be enhanced by about 13%. This can remarkably enhance the capability of the photonic crystal slab nanocavity for realizing the strong coupling interaction. The slab thickness tuning approach is feasible and significant for the experimental fabrication of the solid-state nanocavities.

  11. Sub-slab vs. Near-slab Soil Vapor Profiles at a Chlorinated Solvent Site (1)

    Science.gov (United States)

    A critical issue in assessing the vapor intrusion pathway is the distribution and migration of VOCs from the subsurface source to the near surface environment. Of particular importance is the influence of a slab. Therefore, EPA/ORD is funding a research program with the primary...

  12. Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration.

    Science.gov (United States)

    Wei, S Shawn; Wiens, Douglas A; van Keken, Peter E; Cai, Chen

    2017-01-01

    Double seismic zones are two-layered distributions of intermediate-depth earthquakes that provide insight into the thermomechanical state of subducting slabs. We present new precise hypocenters of intermediate-depth earthquakes in the Tonga subduction zone obtained using data from local island-based, ocean-bottom, and global seismographs. The results show a downdip compressional upper plane and a downdip tensional lower plane with a separation of about 30 km. The double seismic zone in Tonga extends to a depth of about 300 km, deeper than in any other subduction system. This is due to the lower slab temperatures resulting from faster subduction, as indicated by a global trend toward deeper double seismic zones in colder slabs. In addition, a line of high seismicity in the upper plane is observed at a depth of 160 to 280 km, which shallows southward as the convergence rate decreases. Thermal modeling shows that the earthquakes in this "seismic belt" occur at various pressures but at a nearly constant temperature, highlighting the important role of temperature in triggering intermediate-depth earthquakes. This seismic belt may correspond to regions where the subducting mantle first reaches a temperature of ~500°C, implying that metamorphic dehydration of mantle minerals in the slab provides water to enhance faulting.

  13. Neural correlates of evoked phantom limb sensations.

    Science.gov (United States)

    Andoh, J; Diers, M; Milde, C; Frobel, C; Kleinböhl, D; Flor, H

    2017-05-01

    Previous work showed the existence of changes in the topographic organization within the somatosensory cortex (SI) in amputees with phantom limb pain, however, the link between nonpainful phantom sensations such as cramping or tingling or the percept of the limb and cortical changes is less clear. We used functional magnetic resonance imaging (fMRI) in a highly selective group of limb amputees who experienced inducible and reproducible nonpainful phantom sensations. A standardized procedure was used to locate body sites eliciting phantom sensations in each amputee. Selected body sites that could systematically evoke phantom sensations were stimulated using electrical pulses in order to induce phasic phantom sensations. Homologous body parts were also stimulated in a group of matched controls. Activations related to evoked phantom sensations were found bilaterally in SI and the intraparietal sulci (IPS), which significantly correlated with the intensity of evoked phantom sensations. In addition, we found differences in intra- and interhemispheric interaction between amputees and controls during evoked phantom sensations. We assume that phantom sensations might be associated with a functional decoupling between bilateral SI and IPS, possibly resulting from transcallosal reorganization mechanisms following amputation. Copyright © 2017. Published by Elsevier B.V.

  14. Psychophysical correlates of phantom limb experience.

    Science.gov (United States)

    Katz, J

    1992-01-01

    Phantom limb phenomena were correlated with psychophysiological measures of peripheral sympathetic nervous system activity measured at the amputation stump and contralateral limb. Amputees were assigned to one of three groups depending on whether they reported phantom limb pain, non-painful phantom limb sensations, or no phantom limb at all. Skin conductance and skin temperature were recorded continuously during two 30 minute sessions while subjects continuously monitored and rated the intensity of any phantom limb sensation or pain they experienced. The results from both sessions showed that mean skin temperature was significantly lower at the stump than the contralateral limb in the groups with phantom limb pain and non-painful phantom limb sensations, but not among subjects with no phantom limb at all. In addition, stump skin conductance responses correlated significantly with the intensity of non-painful phantom limb paresthesiae but not other qualities of sensation or pain. Between-limb measures of pressure sensitivity were not significantly different in any group. The results suggest that the presence of a phantom limb, whether painful or painless, is related to the sympathetic-efferent outflow of cutaneous vasoconstrictor fibres in the stump and stump neuromas. The hypothesis of a sympathetic-efferent somatic-afferent mechanism involving both sudomotor and vasoconstrictor fibres is proposed to explain the relationship between stump skin conductance responses and non-painful phantom limb paresthesiae. It is suggested that increases in the intensity of phantom limb paresthesiae follow bursts of sympathetic activity due to neurotransmitter release onto apposing sprouts of large diameter primary afferents located in stump neuromas, and decreases correspond to periods of relative sympathetic inactivity. The results of the study agree with recent suggestions that phantom limb pain is not a unitary syndrome, but a symptom class with each class subserved by

  15. TECHNOLOGY FOR INSTALLATION OF REINFORCED CONCRETE FLOOR SLABS LIGHTENED BY CORE DRIVERS WITH PRELIMINARY REINFORCEMENT STRESS

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2015-01-01

    Full Text Available The paper presents technology for installation of floor slabs lightened by plastic core drivers which are preliminary stressed under construction conditions.  Efficiency of such constructive solution is justified by the action of preliminary concrete compression in the tensile zone while reducing structure dead weight due to void arrangement.  The paper provides classification of systems for preliminary stress and contains recommendations on selection of the system depending on peculiariar features of the designed construction.  Main products and materials required for execution of works , requirements to stressed wire rope reinforcement, its main characteristics have been considered in the paper.Principal diagram of the lightened preliminary stressed slab stipulates arrangement of so called  dummy caisson. Strands of reinforcement ropes are located within the framework of bars passing over supporting structures (over vertical bearing structures of  the framework and voids are formed in the cells between bars by laying hollow plastic items joined together by a cage. The paper presents technological sequence of operations required for arrangement of the lightened preliminary stressed slab, schemes for equipment arrangement and characteristics of the applied devices and units (pushing device for reinforcement ropes, hydraulic jack with delivery hydraulic pump, mixing station, injection pump and others.  Recommendations have been given for execution of works in cold weather. The paper considers problems pertaining to control quality of the materials and items which are supplied to a construction site and directly execution of works on preliminary stress of a cellular slab.The executed analysis of technology permits to conclude that it is characterized by high level of applicability for import substitution. It is necessary to consider the possibility to apply the technology at objects of various application while comparing it with other

  16. All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry.

    Science.gov (United States)

    Kramer, R; Khoury, H J; Vieira, J W; Loureiro, E C M; Lima, V J M; Lima, F R A; Hoff, G

    2004-12-07

    The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.

  17. Thick slices from tomosynthesis data sets: phantom study for the evaluation of different algorithms.

    Science.gov (United States)

    Diekmann, Felix; Meyer, Henning; Diekmann, Susanne; Puong, Sylvie; Muller, Serge; Bick, Ulrich; Rogalla, Patrik

    2009-10-01

    Tomosynthesis is a 3-dimensional mammography technique that generates thin slices separated one to the other by typically 1 mm from source data sets. The relatively high image noise in these thin slices raises the value of 1-cm thick slices computed from the set of reconstructed slices for image interpretation. In an initial evaluation, we investigated the potential of different algorithms for generating thick slices from tomosynthesis source data (maximum intensity projection-MIP; average algorithm-AV, and image generation by means of a new algorithm, so-called softMip). The three postprocessing techniques were evaluated using a homogeneous phantom with one textured slab with a total thickness of about 5 cm in which two 0.5-cm-thick slabs contained objects to simulate microcalcifications, spiculated masses, and round masses. The phantom was examined by tomosynthesis (GE Healthcare). Microcalcifications were simulated by inclusion of calcium particles of four different sizes. The slabs containing the inclusions were examined in two different configurations: adjacent to each other and close to the detector and with the two slabs separated by two 1-cm thick breast equivalent material slabs. The reconstructed tomosynthesis slices were postprocessed using MIP, AV, and softMip to generate 1-cm thick slices with a lower noise level. The three postprocessing algorithms were assessed by calculating the resulting contrast versus background for the simulated microcalcifications and contrast-to-noise ratios (CNR) for the other objects. The CNRs of the simulated round and spiculated masses were most favorable for the thick slices generated with the average algorithm, followed by softMip and MIP. Contrast of the simulated microcalcifications was best for MIP, followed by softMip and average projections. Our results suggest that the additional generation of thick slices may improve the visualization of objects in tomosynthesis. This improvement differs from the different

  18. [Phantom limb pain: from physiopathology to prevention].

    Science.gov (United States)

    Roullet, S; Nouette-Gaulain, K; Brochet, B; Sztark, F

    2009-05-01

    First described in 1545, phantom limb pain is a frequent complication after limb amputation, described by 60 to 85% of amputees. Stump pain, phantom limb sensation and phantom limb pain are often combined. Physiopathology is complex and peripheral, medullar and cortical mechanisms are combined. Pharmacological preventive treatments as well as regional anaesthesia techniques have equivalent results. Such treatments must be investigated more precisely as postoperative rehabilitation of amputees mostly depends on pain relief.

  19. Neutron dosimetry in solid water phantom

    Energy Technology Data Exchange (ETDEWEB)

    Benites-Rengifo, Jorge Luis, E-mail: jlbenitesr@prodigy.net.mx [Centro Estatal de Cancerologia de Nayarit, Calzada de la Cruz 118 Sur, Tepic Nayarit, Mexico and Instituto Tecnico Superior de Radiologia, ITEC, Calle Leon 129, Tepic Nayarit (Mexico); Vega-Carrillo, Hector Rene, E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. postal 336, 98000, Zacatecas, Zac. (Mexico)

    2014-11-07

    The neutron spectra, the Kerma and the absorbed dose due to neutrons were estimated along the incoming beam in a solid water phantom. Calculations were carried out with the MCNP5 code, where the bunker, the phantom and the model of the15 MV LINAC head were modeled. As the incoming beam goes into the phantom the neutron spectrum is modified and the dosimetric values are reduced.

  20. Accelerated slab replacement using temporary precast panels and self-consolidating concrete : [summary].

    Science.gov (United States)

    2016-06-01

    Researchers at Florida State University demonstrated the feasibility of using precast reinforced concrete panels to temporarily fill slab removal pits. The precast slabs can be driven on so traffic lanes can be open during the day, and new slab casti...

  1. Ultimate deformation capacity of reinforced concrete slabs underblast load

    NARCIS (Netherlands)

    Doormaal, J.C.A.M. van; Weerheijm, J.

    1996-01-01

    In this paper a test method to determine the deformation capacity and the resistance-deformation curve of blast-loaded slabs is described. This method was developed at TNO-PML. The method has been used to determine the ultimate deformation capacity of some simply supported reinforced concrete slabs

  2. SHRINKAGE OF SOUND AND DEMINERALIZED HUMAN CORONAL DENTIN SLABS

    NARCIS (Netherlands)

    RUBEN, J; ARENDS, J

    1993-01-01

    In this article a method is presented for dentine shrinkage measurements. The relative shrinkage of sound dentine slabs is assessed using a Perthometer with respect to a steel reference. The relative shrinkage of lesions in dentine slabs can be estimated using combined Perthometer/microradiography

  3. Polymer-impregnated bridge slabs : performance over 10 years.

    Science.gov (United States)

    1990-01-01

    This report presents the results of a study to evaluate the performance over a 10-year period of slabs that were impregnated to a depth of about 1 in with a monomer that was subsequently polymerized (shallow polymer impregnation). The slabs were used...

  4. Superluminal pulse reflection from a weakly absorbing dielectric slab.

    Science.gov (United States)

    Wang, Li-Gang; Zhu, Shi-Yao

    2006-07-15

    Group delay for a reflected light pulse from a weakly absorbing dielectric slab is theoretically investigated, and large negative group delay is found for weak absorption near a resonance of the slab [Re(kd)=mpi]. The group delay for both the reflected and transmitted pulses will be saturated with an increase of the absorption.

  5. Three-dimensional MRI with independent slab excitation and encoding.

    Science.gov (United States)

    Eissa, Amir; Wilman, Alan H

    2012-02-01

    Three-dimensional MRI is typically performed with the same orientation for radiofrequency slab excitation and slab select phase encoding. We introduce independent slab excitation and encoding to create a new degree of freedom in three-dimensional MRI, which is the angular relationship between the prescribed excitation volume and the voxel encoding grid. By separating the directions of slab excitation and slab phase encoding, the independent slab excitation and encoding method allows choice of optimal voxel orientation, while maintaining volume excitation based on anatomic landmarks. The method requires simple pulse sequence modifications and uses standard image reconstruction followed by removal of aliasing and image reformatting. The independent slab excitation and encoding method enables arbitrary oblique angle imaging using fixed voxel encoding gradients to maintain similar eddy current, concomitant field, or magnetic dipole effects independent of the oblique angle of excitation. We apply independent slab excitation and encoding to phase and susceptibility-weighted imaging using fixed voxel encoding aligned with the main magnetic field to demonstrate its value in both standardizing and improving image contrast, when using arbitrary oblique imaging volumes. Copyright © 2011 Wiley Periodicals, Inc.

  6. Radon Sub-slab Suctioning System Integrated in Insulating Layer

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    This poster presents a new radon sub-slab suctioning system. This system makes use of a grid of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground floor slab. For this purpose a new system of prefabricated lightweight elements is introduced...

  7. Surface Waves Propagating on Grounded Anisotropic Dielectric Slab

    Directory of Open Access Journals (Sweden)

    Zhuozhu Chen

    2018-01-01

    Full Text Available This paper investigates the characteristics of surface waves propagating on a grounded anisotropic dielectric slab. Distinct from the existing analyses that generally assume that the fields of surface wave uniformly distribute along the transverse direction of the infinitely large grounded slab, our method takes into account the field variations along the transverse direction of a finite-width slab. By solving Maxwell’s equations in closed-form, it is revealed that no pure transverse magnetic (TM or transverse electric (TE mode exists if the fields are non-uniformly distributed along the transverse direction of the grounded slab. Instead, two hybrid modes, namely quasi-TM and quasi-TE modes, are supported. In addition, the propagation characteristics of two hybrid modes supported by the grounded anisotropic slab are analyzed in terms of the slab thickness, slab width, as well as the relative permittivity tensor of the anisotropic slab. Furthermore, different methods are employed to compare the analyses, as well as to validate our derivations. The proposed method is very suitable for practical engineering applications.

  8. Empirical Strengths of Concrete Roof Slabs After 34 Years Service ...

    African Journals Online (AJOL)

    This paper examines the strengths of four reinforced concrete roof slabs which have been in service for over 34years. The non-destructive test hammer was used to obtain data for the empirical determination of the practical strengths of the existing structures. A total of 110 tests were performed on each slab at 11 points ...

  9. On Early Age Crack Formation in FRC Slabs

    DEFF Research Database (Denmark)

    Olesen, John Forbes; Stang, Henrik

    1997-01-01

    The problem of early age crack formation in FRC slabs due to restrained temperature and shrinkage deformations, is given an analytical treatment. A model taking into account the ageing properties of the tensile softening curve and the continued development in the temperature and shrinkage...... deformations after crack initiation, is presented. Based on this model a design strategy for FRC slabs is outlined....

  10. Precast alternative for flat slab bridges : final report.

    Science.gov (United States)

    2013-10-26

    The cast-in-place (CIP) concrete slab bridge and the hollow core flat slab bridge are two very common bridge types utilized by the : South Carolina Department of Transportation (SCDOT). The CIP bridge is durable but has a long construction time while...

  11. Safety of Premature Loading on Reinforced Concrete Slabs | Shema ...

    African Journals Online (AJOL)

    The provision of safe structural systems has always been the object of any structural design formulation and practice. This paper investigates the safety of premature loading on reinforced concrete slabs in a more rational manner. The slab was designed to BS8110 (1985; 1997) provisions. The moment of resistance of a ...

  12. Slab detachment of subducted Indo-Australian plate beneath Sunda ...

    Indian Academy of Sciences (India)

    2007). We investigate the northward subduction of the. Indo-Australian plate along the eastern Sunda arc right from northwestern Sumatra, along Java to. Keywords. Slab detachment; subduction zone; Sunda arc; Indo-Australian slab; trench migration. J. Earth Syst. Sci. 120, No. 2, April 2011, pp. 193–204 c Indian Academy ...

  13. Motor correlates of phantom limb pain.

    Science.gov (United States)

    Kikkert, Sanne; Mezue, Melvin; Henderson Slater, David; Johansen-Berg, Heidi; Tracey, Irene; Makin, Tamar R

    2017-10-01

    Following amputation, individuals ubiquitously report experiencing lingering sensations of their missing limb. While phantom sensations can be innocuous, they are often manifested as painful. Phantom limb pain (PLP) is notorious for being difficult to monitor and treat. A major challenge in PLP management is the difficulty in assessing PLP symptoms, given the physical absence of the affected body part. Here, we offer a means of quantifying chronic PLP by harnessing the known ability of amputees to voluntarily move their phantom limbs. Upper-limb amputees suffering from chronic PLP performed a simple finger-tapping task with their phantom hand. We confirm that amputees suffering from worse chronic PLP had worse motor control over their phantom hand. We further demonstrate that task performance was consistent over weeks and did not relate to transient PLP or non-painful phantom sensations. Finally, we explore the neural basis of these behavioural correlates of PLP. Using neuroimaging, we reveal that slower phantom hand movements were coupled with stronger activity in the primary sensorimotor phantom hand cortex, previously shown to associate with chronic PLP. By demonstrating a specific link between phantom hand motor control and chronic PLP, our findings open up new avenues for PLP management and improvement of existing PLP treatments. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Slab2 - Updated subduction zone geometries and modeling tools

    Science.gov (United States)

    Portner, D. E.; Hayes, G. P.; Furtney, M.; Moore, G.; Flamme, H. E.; Hearne, M. G.

    2016-12-01

    The U.S. Geological Survey database of global subduction zone geometries (Slab1.0) combines a variety of geophysical data sets (earthquake hypocenters, moment tensors, active-source seismic survey images of the shallow subduction zone, bathymetry, trench locations, and sediment thickness information) to image the shape of subducting slabs in three dimensions, at approximately 85% of the world's convergent margins. The database is used extensively for a variety of purposes from earthquake source imaging to magnetotelluric modeling. Gaps in Slab1.0 exist where input data are sparse and/or where slabs are geometrically complex (and difficult to image with an automated approach). Slab1.0 also does not include information on the uncertainty in the modeled geometrical parameters, or the input data used to image them, and provides no means for others to reproduce the models it describes. Now near completion, Slab2 will update and replace Slab1.0 by: (1) extending modeled slab geometries to the full extent of all known global subduction zones; (2) incorporating regional data sets (e.g., tomography models) that may describe slab geometry more comprehensively than do previously used teleseismic data; (3) providing information on the uncertainties in each modeled slab surface; (4) modifying our modeling approach to a fully-three dimensional data interpolation, rather than following the 2-D to 3-D steps of Slab1.0; (5) adding further layers to the base geometry dataset, such as historic moment release, earthquake tectonic providence, and interface coupling; (6) migrating the slab modeling code base to a more universally distributable language, Python; and (7) providing the code base and input data we use to create our models, such that the community can both reproduce the slab geometries, and add their own data sets to ours to further improve upon those models in the future. In this presentation we will describe our progress made in creating Slab2, and provide information on

  15. Numerical Study of FRP Reinforced Concrete Slabs at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Masoud Adelzadeh

    2014-02-01

    Full Text Available One-way glass fibre reinforced polymer (GFRP reinforced concrete slabs at elevated temperatures are investigated through numerical modeling. Serviceability and strength requirements of ACI-440.1R are considered for the design of the slabs. Diagrams to determine fire endurance of slabs by employing “strength domain” failure criterion are presented. Comparisons between the existing “temperature domain” method with the more representative “strength domain” method show that the “temperature domain” method is conservative. Additionally, a method to increase the fire endurance of slabs by placing FRP reinforcement in two layers is investigated numerically. The amount of fire endurance gained by placing FRP in two layers increases as the thickness of slab increases.

  16. Evaluation of dynamic behavior of waffle slab to gym center

    Directory of Open Access Journals (Sweden)

    Yuri Cláudio Vieira da Costa

    Full Text Available In Brazil, the use of reinforced concrete waffle slab in multi-story buildings is widespread nowadays. These buildings are projected for different purposes such as fitness centers, supermarkets, parking garages, offices and residential units. Simple activities as walking, skipping and jumping can generate vibrations in these slabs. Vibrations can cause inconvenience in persons, questions about structure´s safety, and collapse risk that it is determined by its intensity of vibrations. The objective of this paper is evaluating the behavior of reinforced concrete waffle slabs due to the human rhythmic activities. Slabs are modeled by finite elements method using the SAP2000 program. The results are verified according to Brazilian and international codes. The waffle slabs are submitted to high-levels of acceleration and velocity generating discomfort in users.

  17. The Role of Subducting Ridges in the Formation of Flat Slabs: Insights from the Peruvian Flat Slab

    Science.gov (United States)

    Knezevic Antonijevic, Sanja; Wagner, Lara; Kumar, Abhash; Beck, Susan; Long, Maureen; Zandt, George; Eakin, Caroline M.

    2015-04-01

    Flattening of the subducting plate is often used to explain various geological features removed far from the subducting margins, including basement-cored uplifts, the cessation of arc volcanism, ignimbrite flare-ups, and the formation of high plateaus and ore deposits [Humphreys et al., 2003; Gutscher et al., 2000; Rosenbaum et al., 2005, Kay and Mpodozis, 2001]. Today, flat slab subduction is observed in central Chile and Peru, representing the modern analogues to the immense paleo-flat slab that subducted beneath the North American continent during the Laramide orogeny (80-55 Ma) [English et al., 2003]. However, how flat slabs form and what controls their inboard and along-strike extent is still poorly understood. To better understand modern and paleo-flat slabs, we focus on the Peruvian flat slab, where the Nazca plate starts to bend at ~90 km depth and travels horizontally for several hundred kilometers beneath the South American plate. Earlier studies propose a correlation between the flat slab and the subducting Nazca Ridge that has been migrating to the south over the past 11 ~Ma [Hampel et al., 2004, Gutscher et al., 2003]. Combining 3D shear wave velocity structure and Rayleigh wave phase anisotropy between ~10° and 18° S, we find that the flat slab has the greatest inboard extent along the track of the subducting Nazca Ridge. North of the ridge track, where the flat slab was initially formed, the flat slab starts to sag, tear and re-initiate steep slab subduction, allowing inflow of warm asthenosphere. Based on our new constraints on the geometry of the subducted plate, we find that the subduction of buoyant oceanic features with overthickened oceanic crust plays a vital role in the formation of flat slabs. We further develop a model of temporal evolution of the Peruvian flab slab that forms as a result of the combined effects of the subducting ridge, trench retreat, and suction forces. Once the buoyant ridge subducts to ~90 km depth, it will fail to

  18. Calculations of S values and effective dose for the radioiodine carrier and surrounding individuals based on Chinese hybrid reference phantoms using the Monte Carlo technique.

    Science.gov (United States)

    Geng, Changran; Tang, Xiaobin; Qian, Wei; Guan, Fada; Johns, Jesse; Yu, Haiyan; Gong, Chunhui; Shu, Diyun; Chen, Da

    2015-09-01

    The S values for the thyroid as the radioiodine source organ to other target organs were investigated using Chinese hybrid reference phantoms and the Monte Carlo code MCNP5. Two radioiodine isotopes (125)I and (131)I uniformly distributed in the thyroid were investigated separately. We compared our S values for (131)I in Chinese phantoms with previous studies using other types of phantoms: Oak Ridge National Laboratory (ORNL) stylized phantoms, International Commission on Radiological Protection (ICRP) voxel phantoms, and University of Florida (UF) phantoms. Our results are much closer to the UF phantoms. For each specific target organ, the S value for (131)I is larger than for (125)I in both male and female phantoms. In addition, the S values and effective dose to surrounding face-to-face exposed individuals, including different genders and ages (10- and 15-year-old juniors, and adults) from an adult male radioiodine carrier were also investigated. The target organ S values and effective dose for surrounding individuals obey the inverse square law with the distance between source and target phantoms. The obtained effective dose data in Chinese phantoms are comparable to the results in a previous study using the UF phantoms. The data generated in this study can serve as the reference to make recommendations for radiation protection of the Chinese patients or nuclear workers.

  19. Characterizing wet slab and glide slab avalanche occurrence along the Going-to-the-Sun Road, Glacier National Park, Montana, USA

    Science.gov (United States)

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.; Reardon, Blase

    2010-01-01

    Wet slab and glide slab snow avalanches are dangerous and yet can be particularly difficult to predict. Both wet slab and glide slab avalanches are thought to depend upon free water moving through the snowpack but are driven by different processes. In Glacier National Park, Montana, both types of avalanches can occur in the same year and affect the Going-to-the-Sun Road (GTSR). Both wet slab and glide slab avalanches along the GTSR from 2003-2010 are investigated. Meteorological data from two high-elevation weather stations and one SNOTEL site are used in conjunction with an avalanche database and snowpit profiles. These data were used to characterize years when only glide slab avalanches occurred and those years when both glide slab and wet slab avalanches occurred. Results of 168 glide slab and 57 wet slab avalanches along the GTSR suggest both types of avalanche occurrence depend on sustained warming periods with intense solar radiation (or rain on snow) to produce free water in the snowpack. Differences in temperature and net radiation metrics between wet slab and glide slab avalanches emerge as one moves from one day to seven days prior to avalanche occurrence. On average, a more rapid warming precedes wet slab avalanche occurrence. Glide slab and wet slab avalanches require a similar amount of net radiation. Wet slab avalanches do not occur every year, while glide slab avalanches occur annually. These results aim to enhance understanding of the required meteorological conditions for wet slab and glide slab avalanches and aid in improved wet snow avalanche forecasting.

  20. Phantom pain and risk factors : A multivariate analysis

    NARCIS (Netherlands)

    Dijkstra, PU; Geertzen, JHB; Stewart, R; van der Schans, CP

    2002-01-01

    Phantom pain has been given considerable attention in literature. Phantom Pain reduces quality of life, and patients suffering from phantom pain make heavy use of the medical system. Many risk factors have been identified for phantom Pain in univariate analyses, including phantom sensations, stump

  1. Phantom pain and phantom sensations in upper limb amputees : an epidemiological study

    NARCIS (Netherlands)

    Kooijman, CM; Dijkstra, PU; Geertzen, JHB; Elzinga, A; van der Schans, CP

    Phantom pain in subjects with an amputated limb is a well-known problem. However, estimates of the prevalence of phantom pain differ considerably in the literature. Various factors associated with phantom pain have been described including pain before the amputation, gender, dominance, and time

  2. Do you believe in phantoms?

    CERN Multimedia

    Rosaria Marraffino

    2015-01-01

    “Phantoms” are tools that simulate a therapy’s response by mimicking the conditions of the human body. They are required in hadron therapy in order to optimise and verify the therapy before performing it on the patient. The better the phantom, the more accurate the treatment plan and the more effective the therapy. In the framework of the EU-funded project ENTERVISION*, a team of CERN researchers has designed an innovative piece of equipment able to evaluate radiobiology-related parameters in a very accurate way.   The ENTERVISION phantom being tested at HIT. A key challenge in hadron therapy – i.e. the medical use of hadrons to treat cancer – is to evaluate the biological effect of the delivered radiation. This can be achieved by using accurate dosimetry techniques to study the biological response in terms of the dose deposited and other physical parameters of the beam, such as the Linear Energy Transfer (LET). The job of the “phan...

  3. Physical phantom of craniospinal hydrodynamics.

    Science.gov (United States)

    Bouzerar, R; Czosnyka, M; Czosnyka, Z; Balédent, Olivier

    2012-01-01

    Inside the craniospinal system, blood, and cerebrospinal fluid (CSF) interactions occurring through volume exchanges are still not well understood. We built a physical model of this global hydrodynamic system. The main objective was to study, in controlled conditions, CSF-blood interactions to better understand the phenomenon underlying pathogenesis of hydrocephalus. A structure representing the cranium is connected to the spinal channel. The cranium is divided into compartments mimicking anatomical regions such as ventricles or aqueduct cerebri. Resistive and compliant characteristics of blood and CSF compartments can be assessed or measured using pressure and flow sensors incorporated in the model. An arterial blood flow input is generated by a programmable pump. Flows and pressures inside the system are simultaneously recorded. Preliminary results show that the model can mimic venous and CSF flows in response to arterial pressure input. Pulse waveforms and volume flows were measured and confirmed that they partially replicated the data previously obtained with phase-contrast magnetic resonance imaging. The phantom shows that CSF oscillations directly result from arteriovenous flow, and intracranial pressure measurements show that the model obeys an exponential relationship between pressure and intracranial volume expansion. The phantom will be useful to investigate the hydrodynamic hypotheses underlying development of hydrocephalus.

  4. Possible deviations from Griffith’s criterion in shallow slabs, and consequences on slab avalanche release

    Directory of Open Access Journals (Sweden)

    F. Louchet

    2002-01-01

    Full Text Available Possible reasons for deviations from Griffith’s criterion in slab avalanche triggerings are examined. In the case of a major basal crack, we show (i that the usual form of Griffith’s criterion is valid if elastic energy is stored in a shallow and hard slab only, and (ii that rapid healing of broken ice bonds may lead to shear toughnesses larger than expected from tensile toughness experiments. In the case of avalanches resulting from failure of multi-cracked weak layers, where a simple Griffith’s criterion cannot be applied, frequency/size plots obtained from discrete elements and cellular automata simulations are shown to obey scale invariant power law distributions. These findings are confirmed by both frequency/acoustic emission duration and frequency/size plots obtained from field data, suggesting that avalanche triggerings may be described using the formalism of critical phenomena.

  5. All-polymer photonic crystal slab sensor.

    Science.gov (United States)

    Hermannsson, Pétur G; Sørensen, Kristian T; Vannahme, Christoph; Smith, Cameron L C; Klein, Jan J; Russew, Maria-Melanie; Grützner, Gabi; Kristensen, Anders

    2015-06-29

    An all-polymer photonic crystal slab sensor is presented, and shown to exhibit narrow resonant reflection with a FWHM of less than 1 nm and a sensitivity of 31 nm/RIU when sensing media with refractive indices around that of water. This results in a detection limit of 4.5 × 10(-6) RIU when measured in conjunction with a spectrometer of 12 pm/pixel resolution. The device is a two-layer structure, composed of a low refractive index polymer with a periodically modulated surface height, covered with a smooth upper-surface high refractive index inorganic-organic hybrid polymer modified with ZrO2based nanoparticles. Furthermore, it is fabricated using inexpensive vacuum-less techniques involving only UV nanoreplication and polymer spin-casting, and is thus well suited for single-use biological and refractive index sensing applications.

  6. Synaesthesia in phantom limbs induced with mirrors.

    Science.gov (United States)

    Ramachandran, V S; Rogers-Ramachandran, D

    1996-04-22

    Although there is a vast clinical literature on phantom limbs, there have been no experimental studies on the effects of visual input on phantom sensations. We introduce an inexpensive new device--a 'virtual reality box'--to resurrect the phantom visually to study inter-sensory effects. A mirror is placed vertically on the table so that the mirror reflection of the patient's intact had is 'superimposed' on the felt position of the phantom. We used this procedure on ten patients and found the following results. 1. In six patients, when the normal hand was moved, so that the phantom was perceived to move in the mirror, it was also felt to move; i.e. kinesthetic sensations emerged in the phantom. In D.S. this effect occurred even though he had never experienced any movements in the phantom for ten years before we tested him. He found the return of sensations very enjoyable. 2. Repeated practice led to a permanent 'disappearance' of the phantom arm in patient D.S. and the hand became telescoped into the stump near the shoulder. 3. Using an optical trick, impossible postures--e.g. extreme hyperextension of the fingers--could be induced visually in the phantom. In one case this was felt as a transient 'painful tug' in the phantom. 4. Five patients experienced involuntary painful 'clenching spasms' in the phantom hand and in four of them the spasms were relieved when the mirror was used to facilitate 'opening' of the phantom hand; opening was not possible without the mirror. 5. In three patients, touching the normal hand evoked precisely localized touch sensations in the phantom. Interestingly, the referral was especially pronounced when the patients actually 'saw' their phantom being touched in the mirror. Indeed, in a fourth patient (R.L.) the referral occurred only if he saw his phantom being touched: a curious form of synaesthesia. These experiments lend themselves readily to imaging studies using PET and fMRI. Taken collectively, they suggest that there is a

  7. Synthetic breast phantoms from patient based eigenbreasts.

    Science.gov (United States)

    Sturgeon, Gregory M; Park, Subok; Segars, William Paul; Lo, Joseph Y

    2017-12-01

    The limited number of 3D patient-based breast phantoms available could be augmented by synthetic breast phantoms in order to facilitate virtual clinical trials (VCTs) using model observers for breast imaging optimization and evaluation. These synthetic breast phantoms were developed using Principal Component Analysis (PCA) to reduce the number of dimensions needed to describe a training set of images. PCA decomposed a training set of M breast CT volumes (with millions of voxels each) into an M-1-dimensional space of eigenvectors, which we call eigenbreasts. Each of the training breast phantoms was compactly represented by the mean image plus a weighted sum of eigenbreasts. The distribution of weights observed from training was then sampled to create new synthesized breast phantoms. The resulting synthesized breast phantoms demonstrated a high degree of realism, as supported by an observer study. Two out of three experienced physicist observers were unable to distinguish between the synthesized breast phantoms and the patient-based phantoms. The fibroglandular density and noise power law exponent of the synthesized breast phantoms agreed well with the training data. Our method extends our series of digital breast phantoms based on breast CT data, providing the capability to generate new, statistically varying ensembles consisting of tens of thousands of virtual subjects. This work represents an important step toward conducting future virtual trials for task-based assessment of breast imaging, where it is vital to have a large ensemble of realistic phantoms for statistical power as well as clinical relevance. © 2017 American Association of Physicists in Medicine.

  8. Latitudinal variation of ionospheric slab thickness

    Science.gov (United States)

    Gulyaeva, T. L.; Jayachandran, B.; Krishnankutty, T. N.

    The ionospheric slab thickness τ, defined as a ratio of the total electron content (TEC) to the F-region peak electron density NmF2, is a first order measure of the shape of the electron density profile. In the present study, we use GPS-derived TEC and vertical electron content estimates ITEC from ground-based ionosonde observations together with the corresponding foF2 (F2 layer critical frequency) and hmF2 (F2 layer peak height) at 14 world-wide stations lying at different latitude regions from the geomagnetic equator to north pole. The period of study is during 2001-2002, which is close to the solar maximum phase of the 23rd solar cycle. Hourly values of TEC, ITEC, foF2, hmF2 and τ during the period of study are used to compare τ values from the observation and model predictions using the International Reference Ionosphere extended towards the plasmapause with the plasmasphere option of the Russian standard model of the ionosphere, IRI*. For the three latitudinal zones (high, mid and low latitudes) the IRI* predictions of τ are compared with observed τ values for the bottomside ionosphere (below hmF2), topside ionosphere (between hmF2 and 1000 km), plasmasphere (from 1000 to 20,000 km), and the total height range through the ionosphere and plasmasphere. Significant overestimation of τ has been revealed when using IRI*, particularly for the topside ionosphere at high latitudes. Relation of the topside part of slab thickness with the topside half peak density height above the F2 layer peak provides new characteristic parameter for modeling of the topside shape of electron density profile.

  9. Fabrication and characterization of a 3-D non-homogeneous tissue-like mouse phantom for optical imaging

    Science.gov (United States)

    Avtzi, Stella; Zacharopoulos, Athanasios; Psycharakis, Stylianos; Zacharakis, Giannis

    2013-11-01

    In vivo optical imaging of biological tissue not only requires the development of new theoretical models and experimental procedures, but also the design and construction of realistic tissue-mimicking phantoms. However, most of the phantoms available currently in literature or the market, have either simple geometrical shapes (cubes, slabs, cylinders) or when realistic in shape they use homogeneous approximations of the tissue or animal under investigation. The goal of this study is to develop a non-homogeneous realistic phantom that matches the anatomical geometry and optical characteristics of the mouse head in the visible and near-infrared spectral range. The fabrication of the phantom consisted of three stages. Initially, anatomical information extracted from either mouse head atlases or structural imaging modalities (MRI, XCT) was used to design a digital phantom comprising of the three main layers of the mouse head; the brain, skull and skin. Based on that, initial prototypes were manufactured by using accurate 3D printing, allowing complex objects to be built layer by layer with sub-millimeter resolution. During the second stage the fabrication of individual molds was performed by embedding the prototypes into a rubber-like silicone mixture. In the final stage the detailed phantom was constructed by loading the molds with epoxy resin of controlled optical properties. The optical properties of the resin were regulated by using appropriate quantities of India ink and intralipid. The final phantom consisted of 3 layers, each one with different absorption and scattering coefficient (μa,μs) to simulate the region of the mouse brain, skull and skin.

  10. Seismic Constraints on Slab Interaction With the Transition Zone

    Science.gov (United States)

    Lekic, V.; Reif, C.; Dziewonski, A. M.; Sheehan, A.; van Summeren, J.

    2006-12-01

    Over the past decade, seismic tomography has revealed that subducting lithospheric slabs interact with the transition zone in a variety of ways, directly penetrating into the lower mantle in some locations, while stagnating in others. Here, we present preliminary results of attempts to characterize and quantify the stagnation of slab material in the transition zone initiated at the 2006 Cooperative Institute for Deep Earth Research (CIDER) workshop. Providing seismic constraints on slab interaction with the transition zone is essential for verifying dynamic calculations that examine to what degree slabs are hindered from penetrating through the 660 km seismic discontinuity. First we compute the tomographic signature of an end-member mantle model in which 100 km thick slabs descend from the upper to lower mantle without deformation / stagnation in the transition zone. We then compare the amplitude of the predicted shear velocity anomaly with that observed in the most recent Scripps, Berkeley, Harvard, Caltech, and UT Austin global tomographic models. We find that in the western Pacific slab material is accumulating within the transition zone, while under South America, the slabs appear to enter the lower mantle unhindered. This accumulation of slab material in the transition zone indicates that some mechanism is temporarily delaying it from passing into the lower mantle. This finding is consistent with comparisons of power spectra of the observed models in and below the transition zone, which indicate that the pattern of seismic heterogeneity changes drastically across the 660 km discontinuity. Furthermore, the focal mechanisms of deep (>400 km) earthquakes from the Harvard Centroid Moment Tensor project provide a wealth of information on slab deformation within the transition zone. We have systematically compared the orientations of earthquake compressional axes to the slab orientations (as defined by the Wadati-Benioff zone) for all regions of deep seismicity. The

  11. The neural basis of phantom limb pain.

    Science.gov (United States)

    Flor, Herta; Diers, Martin; Andoh, Jamila

    2013-07-01

    A recent study suggests that brain changes in amputees may be pain-induced, questioning maladaptive plasticity as a neural basis of phantom pain. These findings add valuable information on cortical reorganization after amputation. We suggest further lines of research to clarify the mechanisms that underlie phantom pain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Resin phantoms as skin simulating layers

    CSIR Research Space (South Africa)

    Karsten, AE

    2011-07-01

    Full Text Available on the efficiency of Photodynamic Therapy (PDT) treatment. Two resin based solid phantoms were prepared to simulate two different skin types. Cells were prepared and PDT treatment were done on cells with and without the phantoms, by keeping the total dose delivered...

  13. Recommended Wilderness

    Data.gov (United States)

    National Park Service, Department of the Interior — Recommended wilderness is an Arcview shapefile representing the porposed wilderness areas throughout the park. The boundaries for this data set were digitized by...

  14. Technical Note: Experimental carbon ion range verification in inhomogeneous phantoms using prompt gammas

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, M.; Dauvergne, D.; Dedes, G.; Krimmer, J.; Ray, C.; Testa, E., E-mail: e.testa@ipnl.in2p3.fr; Testa, M. [IPNL, Université de Lyon, Lyon F-69003 |(France); Université Lyon 1, Villeurbanne F-69622 (France); CNRS/IN2P3, UMR 5822, Villeurbanne F-69622 (France); De Rydt, M. [IPNL, Université de Lyon, Lyon F-69003 (France); Université Lyon 1, Villeurbanne F-69622 (France); CNRS/IN2P3, UMR 5822, Villeurbanne F-69622 (France); Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, Leuven B-3001 (Belgium); Freud, N.; Létang, J. M. [CREATIS, Université de Lyon, Lyon F-69003 (France); Université Lyon 1, Villeurbanne F-69622 (France); CNRS UMR 5220, INSERM U1044, INSA-Lyon, Centre Léon Bérard, 69008 Lyon (France)

    2015-05-15

    Purpose: The purpose of this study was to experimentally assess the possibility to monitor carbon ion range variations—due to tumor shift and/or elongation or shrinking—using prompt-gamma (PG) emission with inhomogeneous phantoms. Such a study is related to the development of PG monitoring techniques to be used in a carbon ion therapy context. Methods: A 95 MeV/u carbon ion beam was used to irradiate phantoms with a variable density along the ion path to mimic the presence of bone and lung in homogeneous humanlike tissue. PG profiles were obtained after a longitudinal scan of the phantoms. A setup comprising a narrow single-slit collimator and two detectors placed at 90° with respect to the beam axis was used. The time of flight technique was applied to allow the selection between PG and background events. Results: Using the positions at 50% entrance and 50% falloff of the PG profiles, a quantity called prompt-gamma profile length (PGPL) is defined. It is possible to observe shifts in the PGPL when there are absolute ion range shifts as small as 1–2 mm. Quantitatively, for an ion range shift of −1.33 ± 0.46 mm (insertion of a Teflon slab), a PGPL difference of −1.93 ± 0.58 mm and −1.84 ± 1.27 mm is obtained using a BaF{sub 2} and a NaI(Tl) detector, respectively. In turn, when an ion range shift of 4.59 ± 0.42 mm (insertion of a lung-equivalent material slab) is considered, the difference is of 4.10 ± 0.54 and 4.39 ± 0.80 mm for the same detectors. Conclusions: Herein, experimental evidence of the usefulness of employing PG to monitor carbon ion range using inhomogeneous phantoms is presented. Considering the homogeneous phantom as reference, the results show that the information provided by the PG emission allows for detecting ion range shifts as small as 1–2 mm. When considering the expected PG emission from an energy slice in a carbon ion therapy scenario, the experimental setup would allow to retrieve the same PGPL as the high statistics of

  15. Recommender systems

    CERN Document Server

    Kembellec, Gérald; Saleh, Imad

    2014-01-01

    Acclaimed by various content platforms (books, music, movies) and auction sites online, recommendation systems are key elements of digital strategies. If development was originally intended for the performance of information systems, the issues are now massively moved on logical optimization of the customer relationship, with the main objective to maximize potential sales. On the transdisciplinary approach, engines and recommender systems brings together contributions linking information science and communications, marketing, sociology, mathematics and computing. It deals with the understan

  16. A computational model unifies apparently contradictory findings concerning phantom pain

    National Research Council Canada - National Science Library

    Boström, Kim J; de Lussanet, Marc H E; Weiss, Thomas; Puta, Christian; Wagner, Heiko

    2014-01-01

    ...) as a cause of phantom pain. However, it was recently found that BOLD activity during voluntary movements of the phantom positively correlates with phantom pain rating, giving rise to a model of persistent representation...

  17. Behavior of FRP Link Slabs in Jointless Bridge Decks

    Directory of Open Access Journals (Sweden)

    Aziz Saber

    2012-01-01

    Full Text Available The paper investigated the use of fiberglass-reinforced plastic (FRP grid for reinforcement in link slabs for jointless bridge decks. The design concept of link slab was examined based on the ductility of the fiberglass-reinforced plastic grid to accommodate bridge deck deformations. The implementation of hybrid simulation assisted in combining the experimental results and the theoretical work. The numerical analyses and the experimental work investigated the behavior of the link slab and confirmed its feasibility. The results indicated that the technique would allow simultaneous achievement of structural need, lower flexural stiffness of the link slab approaching the behavior of a hinge, and sustainability need of the link slab. The outcome of the study supports the contention that jointless concrete bridge decks may be designed and constructed with fiberglass-reinforced plastic grid link slabs. This concept would also provide a solution to a number of deterioration problems associated with bridge deck joints and can be used during new construction of bridge decks. The federal highway administration provided funds to Louisiana Department of Transportation through the innovative bridge research and development program to implement the use of FRP grid as link slab.

  18. [A dynamic phantom for computer tomography].

    Science.gov (United States)

    Nüsslin, F

    1981-06-01

    A phantom is described which has been developed for investigating factors depending on the scanner itself and on the scanned object which potentially influence the kind and the extent of motion artefacts on the CT-image. Additionally, the phantom may be applied to qualify assurance measurements in computer tomography. A cylindrical insert mounted on a motor driven axis is fitted centrally in a cylindrical block machined from lucite. Two interchangeable inserts are available, one containing test objects made of various materials, and another one containing small vessels which can be filled with test solutions. The insert positioned in the phantom can rotate either continuously or with the direction of motion being altered periodically. Speed, frequency and arc can be varied within wide limits. Examples demonstrating the static and the dynamic mode of the phantom are shown. By means of the dynamic phantom it is quite easy to directly determine the scan-time of a Computer tomograph.

  19. Quality assurance applied to mammographic equipments using phantoms and software for its evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, Patricia, E-mail: p.mayo@titaniast.co [Titania Servicios Tecnologicos S.L., Grupo Dominguis, Apartado 46015, Valencia (Spain); Rodenas, Francisco [Departamento de Matematica Aplicada, Universidad Politecnica de Valencia, Apartado 46022, Valencia (Spain); Manuel Campayo, Juan [Hospital Clinico Universitario de Valencia, Avda. Blasco Ibanez, Apartado 46017, Valencia (Spain); Verdu, Gumersido [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Apartado 46022, Valencia (Spain)

    2010-07-21

    The image quality assessment in radiographic equipments is a very important item for a complete quality control of the radiographic image chain. The periodic evaluation of the radiographic image quality must guarantee the constancy of this quality to carry out a suitable diagnosis. Mammographic phantom images are usually used to study the quality of images obtained by determined mammographic equipment. The digital image treatment techniques allow to carry out an automatic analysis of the phantom image. In this work we apply some techniques of digital image processing to analyze in an automatic way the image quality of mammographic phantoms, namely CIRS SP01 and RACON for different varying conditions of the mammographic equipment. The CIRS SP01 phantom is usually used in analogic mammographic equipments and the RACON phantom has been specifically developed by authors to be applied to acceptance and constancy tests of the image quality in digital radiographic equipments following recommendations of international associations. The purpose of this work consists in analyzing the image quality for both phantoms by means of an automatic software utility. This analysis allows us to study the functioning of the image chain of the mammographic system in an objective way, so an abnormal functioning of the radiographic equipment might be detected.

  20. Quality assurance applied to mammographic equipments using phantoms and software for its evaluation

    Science.gov (United States)

    Mayo, Patricia; Rodenas, Francisco; Manuel Campayo, Juan; Verdú, Gumersido

    2010-07-01

    The image quality assessment in radiographic equipments is a very important item for a complete quality control of the radiographic image chain. The periodic evaluation of the radiographic image quality must guarantee the constancy of this quality to carry out a suitable diagnosis. Mammographic phantom images are usually used to study the quality of images obtained by determined mammographic equipment. The digital image treatment techniques allow to carry out an automatic analysis of the phantom image. In this work we apply some techniques of digital image processing to analyze in an automatic way the image quality of mammographic phantoms, namely CIRS SP01 and RACON for different varying conditions of the mammographic equipment. The CIRS SP01 phantom is usually used in analogic mammographic equipments and the RACON phantom has been specifically developed by authors to be applied to acceptance and constancy tests of the image quality in digital radiographic equipments following recommendations of international associations. The purpose of this work consists in analyzing the image quality for both phantoms by means of an automatic software utility. This analysis allows us to study the functioning of the image chain of the mammographic system in an objective way, so an abnormal functioning of the radiographic equipment might be detected.

  1. Broadband high reflectivity in subwavelength-grating slab waveguides.

    Science.gov (United States)

    Tian, Hao; Cui, Xuan; Du, Yan; Tan, Peng; Shi, Guang; Zhou, Zhongxiang

    2015-10-19

    We computationally study a subwavelength dielectric grating structure, show that slab waveguide modes can be used to obtain broadband high reflectivity, and analyze how slab waveguide modes influence reflection. A structure showing interference between Fabry-Perot modes, slab waveguide modes, and waveguide array modes is designed with ultra-broadband high reflectivity. Owing to the coupling of guided modes, the region with reflectivity R > 0.99 has an ultra-high bandwidth (Δf / ̅f > 30%). The incident-angle region with R > 0.99 extends over a range greater than 40°. Moreover, an asymmetric waveguide structure with a semiconductor substrate is studied.

  2. Performance and damages of R.C. slabs in fire

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Gentili, Filippo

    2015-01-01

    slabs with complex geometry exposed to fire and assessing the entity of the damage on the basis of the decrement of the load bearing capacity at the end of the fire. By considering this quantity for different time of exposure to a standard fire, a curve is obtained that provides important information...... on the vulnerability of the slab to the fire action and can be used for optimizing the design on the basis of the required class of resistance or for choosing between different slab alternatives....

  3. Interaction of an ion bunch with a plasma slab

    Energy Technology Data Exchange (ETDEWEB)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Peoples’ Friendship University of Russia (Russian Federation)

    2016-11-15

    Charge neutralization of a short ion bunch passing through a plasma slab is studied by means of numerical simulation. It is shown that a fraction of plasma electrons are trapped by the bunch under the action of the collective charge separation field. The accelerated electrons generated in this process excite beam−plasma instability, thereby violating the trapping conditions. The process of electron trapping is also strongly affected by the high-frequency electric field caused by plasma oscillations at the slab boundaries. It is examined how the degree of charge neutralization depends on the parameters of the bunch and plasma slab.

  4. May eclogite dehydration cause slab fracturation ?

    Science.gov (United States)

    Loury, Chloé; Lanari, Pierre; Rolland, Yann; Guillot, Stéphane; Ganino, Clément

    2015-04-01

    Petrological and geophysical evidences strongly indicate that fluids releases play a fundamental role in subduction zones as in subduction-related seismicity and arc magmatism. It is thus important to assess quantitatively their origin and to try to quantify the amount of such fluids. In HP metamorphism, it is well known that pressure-dependent dehydration reactions occur during the prograde path. Many geophysical models show that the variations in slab physical properties along depth could be linked to these fluid occurrences. However it remains tricky to test such models on natural sample, as it is difficult to assess or model the water content evolution in HP metamorphic rocks. This difficulty is bound to the fact that these rocks are generally heterogeneous, with zoned minerals and preservation of different paragenesis reflecting changing P-T conditions. To decipher the P-T-X(H2O) path of such heterogeneous rocks the concept of local effective bulk (LEB) composition is essential. Here we show how standardized X-ray maps can be used to constrain the scale of the equilibration volume of a garnet porphyroblast and to measure its composition. The composition of this equilibrium volume may be seen as the proportion of the rock likely to react at a given time to reach a thermodynamic equilibrium with the growing garnet. The studied sample is an eclogite coming from the carboniferous South-Tianshan suture (Central Asia) (Loury et al. in press). Compositional maps of a garnet and its surrounding matrix were obtained from standardized X-ray maps processed with the program XMapTools (Lanari et al, 2014). The initial equilibration volume was modeled using LEB compositions combined together with Gibbs free energy minimization. P-T sections were calculated for the next stages of garnet growth taking into account the fractionation of the composition at each stage of garnet growth. The modeled P-T-X(H2O) path indicates that the rock progressively dehydrates during the

  5. NOTE: A dosimetric evaluation of water equivalent phantoms for kilovoltage x-ray beams

    Science.gov (United States)

    Hill, R.; Holloway, L.; Baldock, C.

    2005-11-01

    Solid phantoms are widely used in radiation therapy for both relative and reference dosimetry. Two water equivalent phantoms, RMI-457 Solid Water and Plastic Water, were evaluated for use in kilovoltage x-ray dosimetry in the energy range from 75 to 300 kVp. Relative and reference dosimetry measurements were performed in the solid phantoms and compared with water. The results indicate that RMI-457 Solid Water could be used for output factor determination for all energies tested and the measurement of percentage depth doses for the 300 kVp x-ray beam, with data agreeing to within 1%, compared to the same measurements in water. For the same criteria, Plastic Water could only be used for output factor determination of the 300 kVp x-ray beam. The superior agreement of the calculated mass energy absorption coefficients for Solid Water and water, as compared to Plastic Water and water was consistent with the experimental results. Reference dosimetry is not recommended with the solid phantoms for the energies studied due to the lack of published correction factors. It is recommended that any solid phantom be tested by comparison with water in the same manner before being used for the dosimetry of kilovoltage x-ray beams.

  6. Galactic dark matter in the phantom field

    Science.gov (United States)

    Li, Ming-Hsun; Yang, Kwei-Chou

    2012-12-01

    We investigate the possibility that the galactic dark matter exists in a scenario where the phantom field is responsible for the dark energy. We obtain the statically and spherically approximate solution for this kind of galaxy system with a supermassive black hole at its center. The solution of the metric functions is satisfied with gtt=-grr-1. Constrained by the observation of the rotational stars moving in circular orbits with nearly constant tangential speed in a spiral galaxy, the background of the phantom field which is spatially inhomogeneous has an exponential potential. To avoid the well-known quantum instability of the vacuum at high frequencies, the phantom field defined in an effective theory is valid only at low energies. Under this assumption, we further investigate the following properties. The absorption cross section of the low-energy S-wave excitations of the phantom field into the central black hole is shown to be the horizontal area of the central black hole. Because the infalling phantom particles have a total negative energy, the accretion of the phantom energy is related to the decrease of the black hole mass, which is estimated to be much less than a solar mass in the lifetime of the Universe. Using a simple model with the cold dark matter very weakly coupled to the “low-frequency” phantom particles that are generated from the background, we show that these two densities can be quasistable in the galaxy.

  7. A phantom design for validating colonoscopy tracking

    Science.gov (United States)

    Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.

    2012-03-01

    Phantom experiments are useful and frequently used in validating algorithms or techniques in applications where it is difficult or impossible to generate accurate ground-truth. In this work we present a phantom design and experiments to validate our colonoscopy tracking algorithms, that serve to keep both virtual colonoscopy and optical colonoscopy images aligned (in location and orientation). We describe the construction of two phantoms, capable of respectively moving along a straight and a curved path. The phantoms are motorized so as to be able to move at a near constant speed. Experiments were performed at three speeds: 10, 15 and 20mm/sec, to simulate motion velocities during colonoscopy procedures. The average velocity error was within 3mm/sec in both straight and curved phantoms. Displacement error was within 7mm over a total distance of 288mm in the straight phantom, and less than 7mm over 287mm in the curved phantom. Multiple trials were performed of each experiment(and their errors averaged) to ensure repeatability.

  8. 29 CFR 1926.705 - Requirements for lift-slab construction operations.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Requirements for lift-slab construction operations. 1926... Masonry Construction § 1926.705 Requirements for lift-slab construction operations. (a) Lift-slab...-slab construction. Such plans and designs shall be implemented by the employer and shall include...

  9. Optimising the Slab Yard Planning and Crane Scheduling Problem using a two-stage heuristic

    DEFF Research Database (Denmark)

    Hansen, Anders Dohn; Clausen, Jens

    2010-01-01

    In this paper, we present the Slab Yard Planning and Crane Scheduling Problem. The problem has its origin in steel production facilities with a large throughput. A slab yard is used as a buffer for slabs that are needed in the upcoming production. Slabs are transported by cranes and the problem...

  10. The reference phantoms: voxel vs polygon.

    Science.gov (United States)

    Kim, C H; Yeom, Y S; Nguyen, T T; Wang, Z J; Kim, H S; Han, M C; Lee, J K; Zankl, M; Petoussi-Henss, N; Bolch, W E; Lee, C; Chung, B S

    2016-06-01

    The International Commission on Radiological Protection (ICRP) reference male and female adult phantoms, described in Publication 110, are voxel phantoms based on whole-body computed tomography scans of a male and a female patient, respectively. The voxel in-plane resolution and the slice thickness, of the order of a few millimetres, are insufficient for proper segmentation of smaller tissues such as the lens of the eye, the skin, and the walls of some organs. The calculated doses for these tissues therefore present some limitations, particularly for weakly penetrating radiation. Similarly, the Publication 110 phantoms cannot represent 8-40-µm-thick target regions in respiratory or alimentary tract organs. Separate stylised models have been used to represent these tissues for calculation of the ICRP reference dose coefficients (DCs). ICRP Committee 2 recently initiated a research project, the ultimate goal of which is to convert the Publication 110 phantoms to a high-quality polygon-mesh (PM) format, including all source and target regions, even those of the 8-40-µm-thick alimentary and respiratory tract organs. It is expected that the converted phantoms would lead to the same or very similar DCs as the Publication 110 reference phantoms for penetrating radiation and, at the same time, provide more accurate DCs for weakly penetrating radiation and small tissues. Additionally, the reference phantoms in the PM format would be easily deformable and, as such, could serve as a starting point to create phantoms of various postures for use, for example, in accidental dose calculations. This paper will discuss the current progress of the phantom conversion project and its significance for ICRP DC calculations. © The International Society for Prosthetics and Orthotics.

  11. Innovation on RC Waffle and Ribbed Slab Analysis Models

    Directory of Open Access Journals (Sweden)

    P. Hájek

    2000-01-01

    Full Text Available Waffle and ribbed reinforced concrete slabs are widely used in building constructions in view of the flexibility design and structural efficiency. The wide range of reinforced concrete and composite waffle and ribbed slabs has been theoretically analysed and tested from the point of view of structural behaviour within the research performed in the last years. The results of the experimental investigation, supported by theoretical conclusions, have confirmed significantly better structural properties of the composite waffle slabs (composed from RC and ceramic fillers than the assumptions usually considered in common analysis models. New analysis equivalent models for structural analysis RC and composite waffle and ribbed structures have been developed and compared with the test results. In the paper are presented some generalized conclusions as a basis for the formulation of principles of an optimized design of RC waffle and ribbed slab structures.

  12. The rideability of a deflected bridge approach slab.

    Science.gov (United States)

    2009-11-01

    This report presents the findings associated with the development of a new pavement roughness index called the Posted Speed Localized Roughness Index (LRIPS) that can be used to rate the ride quality on bridge approach slabs. Currently established pa...

  13. Evaluation of precast concrete slabs using a heavy vehicle simulator

    CSIR Research Space (South Africa)

    Kohler, E

    2008-10-01

    Full Text Available Precast slabs are considered an attractive pavement option for rehabilitation or reconstruction cases where traffic closures of less than eight hours are required. Benefits include long life expectancy of concrete cast in factory...

  14. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    2017-01-01

    Purpose – Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found...... in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of loadbearing capacity of hollow-core slabs when exposed to fire. Design/methodology/approach – Furthermore, it compares theoretica calculation and assessment according...... to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Findings – Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. Originality...

  15. Field demonstration of new bridge approach slab designs and performance.

    Science.gov (United States)

    2014-06-01

    The Louisiana Department of Transportation and Development (DOTD) has initiated a major effort to minimize the bridge end bump problem associated : with differential settlement. As a result, a new design for the approach slab was proposed, which requ...

  16. Fringe integral equation method for a truncated grounded dielectric slab

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Maci, S.; Toccafondi, A.

    2001-01-01

    The problem of scattering by a semi-infinite grounded dielectric slab illuminated by an arbitrary incident TMz polarized electric field is studied by solving a new set of “fringe” integral equations (F-IEs), whose functional unknowns are physically associated to the wave diffraction processes...... occurring at the truncation. The F-IEs are obtained by subtracting from the surface/surface integral equations pertinent to the truncated slab, an auxiliary set of equations obtained for the canonical problem of an infinite grounded slab illuminated by the same source. The F-IEs are solved by the method...... is applied to the case of an electric line source located at the air-dielectric interface of the slab. Numerical results are compared with those calculated by a physical optics approach and by an alternative solution, in which the integral equation is constructed from the field continuity through an aperture...

  17. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Giuliani, Luisa; Sørensen, Lars Schiøtt

    2016-01-01

    Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60- and 120 minutes found in most...... national building regulations. The paper presents a detailed analysis of the mechanisms responsible for the loss of load-bearing capacity of hollow-core slabs when exposed to fire. Furthermore, it compares theoretical calculation and assessment according to the structural codes with data derived from...... a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. For the first time the mechanisms responsible for loss of load...

  18. Optimal Material Layout - Applied on Reinforced Concrete Slabs

    DEFF Research Database (Denmark)

    Dollerup, Niels; Jepsen, Michael S.; Damkilde, Lars

    2015-01-01

    This paper introduces a general, finite-element-based optimisation tool for improving the material layout of concrete structures. The application presented is general and exemplified by material optimisation of reinforced concrete slabs. By utilising the optimisation tool, it is possible to deter......This paper introduces a general, finite-element-based optimisation tool for improving the material layout of concrete structures. The application presented is general and exemplified by material optimisation of reinforced concrete slabs. By utilising the optimisation tool, it is possible...... to determine the optimal material layout of a slab in the ultimate load state, based on simple inputs such as outer geometry, boundary conditions, multiple load cases and design domains. The material layout of the optimal design can either be fully orthotropic or isotropic, or a combination with a predefined......, a number of reinforced concrete slab examples validate the method described and show the potential of saving large amounts of material in constructions....

  19. Active split-ring metamaterial slabs for magnetic resonance imaging

    CERN Document Server

    Lopez, Marcos A; Freire, Manuel J; Behr, Volker C; Jakob, Peter M; Marques, Ricardo

    2011-01-01

    In this work, it is analyzed the ability of split-ring metamaterial slabs with zero/high permeability to reject/confine the radiofrequency magnetic field in magnetic resonance imaging systems. Using an homogenization procedure, split-ring slabs have been designed and fabricated to work in a 1.5T system. Active elements consisting of pairs of crossed diodes are inserted in the split-rings. With these elements, the permeability of the slabs can be automatically switched between a unity value when interacting with the strong excitation field of the transmitting body coil, and zero or high values when interacting with the weak field produced by protons in tissue. Experiments are shown for different configurations where these slabs can help to locally increase the signal-to-noise-ratio.

  20. Calculation of shear strength of prestressed hollow core slabs by use of plastic theory

    DEFF Research Database (Denmark)

    Hoang, Linh Cao; Jørgensen, Henrik Brøner; Nielsen, Mogens Peter

    2014-01-01

    This paper deals with calculations of the shear capacity of precast, prestressed hollow core slabs. Such slabs are often used as floor systems in Building structures. A common way to produce hollow core slabs is to use the extrusion technique where long strips of slabs are extruded and thereafter...... saw-cut into units with the desirable length. For this reason, hollow core slabs are usually not shear reinforced and anchorage of the prestressing strands has to be established by bond. Hollow core slabs may therefore be more critical to shear and Anchorage failure than ordinary two-way spanning...... reinforced concrete slabs....

  1. Calculation of shear strength of prestressed hollow core slabs by use of plastic theory

    DEFF Research Database (Denmark)

    Hoang, Linh Cao; Jørgensen, H.G.; Nielsen, Mogens Peter

    2014-01-01

    Th is paper deals with calculations of the shear capacity of precast, prestressed hollow core slabs. Such slabs are often used as floor systems in building structures. A common way to produce hollow core slabs is to use the extrusion technique where long strips of slabs are extruded and thereafter...... saw-cut into units with the desirable length. For this reason, hollow core slabs are usually not shear reinforced and anchorage of the prestressing strands has to be established by bond. Hollow core slabs may therefore be more critical to shear and anchorage failure than ordinary two-way spanning...... reinforced concrete slabs....

  2. Seismic Evidence for Possible Slab Melting from Strong Scattering Waves

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2011-01-01

    Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.

  3. Seismic anisotropy and mantle flow below subducting slabs

    Science.gov (United States)

    Walpole, Jack; Wookey, James; Kendall, J.-Michael; Masters, T.-Guy

    2017-05-01

    Subduction is integral to mantle convection and plate tectonics, yet the role of the subslab mantle in this process is poorly understood. Some propose that decoupling from the slab permits widespread trench parallel flow in the subslab mantle, although the geodynamical feasibility of this has been questioned. Here, we use the source-side shear wave splitting technique to probe anisotropy beneath subducting slabs, enabling us to test petrofabric models and constrain the geometry of mantle fow. Our global dataset contains 6369 high quality measurements - spanning ∼ 40 , 000 km of subduction zone trenches - over the complete range of available source depths (4 to 687 km) - and a large range of angles in the slab reference frame. We find that anisotropy in the subslab mantle is well characterised by tilted transverse isotropy with a slow-symmetry-axis pointing normal to the plane of the slab. This appears incompatible with purely trench-parallel flow models. On the other hand it is compatible with the idea that the asthenosphere is tilted and entrained during subduction. Trench parallel measurements are most commonly associated with shallow events (source depth < 50 km) - suggesting a separate region of anisotropy in the lithospheric slab. This may correspond to the shape preferred orientation of cracks, fractures, and faults opened by slab bending. Meanwhile the deepest events probe the upper lower mantle where splitting is found to be consistent with deformed bridgmanite.

  4. Strengthening of RC bridge slabs using CFRP sheets

    Directory of Open Access Journals (Sweden)

    Fahmy A. Fathelbab

    2014-12-01

    Full Text Available Many old structures became structurally insufficient to carry the new loading conditions requirements. Moreover, they suffer from structural degradation, reinforcement steel bars corrosion, bad weather conditions…etc. Many official authorities in several countries had recognized many old bridges and buildings as structurally deficient by today’s standards. Due to these reasons, structural strengthening became an essential requirement and different strengthening techniques appeared in market. Fiber Reinforced Polymer (FRP strengthening techniques established a good position among all other techniques, giving excellent structural results, low time required and moderate cost compared with the other techniques. The main purpose of this research is to study analytically the strengthening of a reinforced concrete bridge slabs due to excessive loads, using externally bonded FRP sheets technique. A commercial finite element program ANSYS was used to perform a structural linear and non-linear analysis for strengthened slab models using several schemes of FRP sheets. A parametric study was performed to evaluate analytically the effect of changing both FRP stiffness and FRP schemes in strengthening RC slabs. Comparing the results with control slab (reinforced concrete slab without strengthening it is obvious that attaching FRP sheets to the RC slab increases its capacity and enhances the ductility/toughness.

  5. Percentage depth dose distributions in inhomogeneous phantoms with lung and bone equivalent media for small fields of CyberKnife

    CERN Document Server

    Lee, Chung Il; Yoon, Sei-Chul; Suh, Tae Suk; Hong, Seung-Woo; Min, Kyung Joo; Lee, Sang Deok; Chung, Su Mi; Jung, Jae-Yong

    2014-01-01

    The percentage depth dose distributions in inhomogeneous phantoms with lung and bone equivalent media are studied. For lung equivalent media a Balsa wood is used, and for a soft bone equivalent media a compound material with epoxy resin, hardener and calcium carbonate is used. Polystyrene slabs put together with these materials are used as an inhomogeneous phantom. Dose measurements are performed with Gafchromic EBT film by using photon beams from 6MV CyberKnife at the Seoul Uridul Hospital. The cone sizes of the photon beams are varied from 5, 10 to 30 mm. As a simulation tool GEANT4 Monte Carlo code v9.4.p02 is used. When the Balsa wood is inserted in the phantom, the dose measured with EBT film is found to be significantly different from the dose without the EBT film in and beyond the Balsa wood region, particularly for small field sizes. On the other hand, when the soft bone equivalent material is inserted in the phantom, discrepancy between the dose measured with EBT film and the dose without EBT film ca...

  6. Determination of mammography images constancy parameters for C R system using Phantom Mama and mammographic accreditation phantom;Determinacao de parametros de constancia de imagens mamograficas em sistemas CR utilizando simuladores PhantomMama e Mamographic Accreditation Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Andre U. dos; Souza, Wedla P. de; Hoff, Gabriela [Pontificia Univ. Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil)

    2009-07-01

    In the diagnostic imaging services is common to find the analogical image acquiring method in transition to the digital acquiring method. However it is necessary to define the appropriate techniques for acquisition of images. For that achievement the reference parameter of image must be determinate and based on that, determine the constancy and diagnostic image quality tests. Annually, for each imaging system, it is recommended the technical parameters review for different types of breast, reducing the dose on the mammary gland and preserving the image quality. It should be done based on national regulations and in accordance to the requirements of the medical team. The methodological proposes of this work has the objective of realize the constancy analysis for the image quality, using the PhantonMama and Mamographic Accreditation Phantom model 18-220 (recommended by ACR) and the software. Both protocols suggested were adequate for the analysis proposed. (author)

  7. Characterizing Seismic Anisotropy across the Peruvian Flat-Slab Subduction Zone: Implications for the Dynamics of Flat-Slabs

    Science.gov (United States)

    Eakin, Caroline; Long, Maureen; Beck, Susan; Wagner, Lara; Tavera, Hernando

    2014-05-01

    Although 10% of subduction zones worldwide today exhibit shallow or flat subduction, we are yet to fully understand how and why these slabs go flat. An excellent study location for such a problem is in Peru, where the largest region of flat-subduction currently exists, extending ~1500 km in length (from 3 °S to 15 °S) and ~300 km in width. Across this region we investigate the pattern of seismic anisotropy, an indicator for past and/or ongoing deformation in the upper mantle. To achieve this we conduct shear wave splitting analyzes at 40 broadband stations from the PULSE project (PerU Lithosphere and Slab Experiment). These stations were deployed for 2+ years across the southern half of the Peruvian flat-slab region. We present detailed shear wave splitting results for both teleseismic events (such as SKS, SKKS, PKS, sSKS) that sample the upper mantle column beneath the stations as well as direct S from local events that constrain anisotropy in the upper portion of the subduction zone. We analyze the variability of our results with respect to initial polarizations, ray paths, and frequency content as well as spatial variability between stations as the underlying slab morphology changes. Teleseismic results show predominately NW-SE fast polarizations (trench oblique to sub-parallel) over the flat-slab region east of Lima. These results are consistent with observations of more complex multi-layered anisotropy beneath a nearby permanent station (NNA) that suggests a trench-perpendicular fast direction in the lowest layer in the sub-slab mantle. Further south, towards the transition to steeper subduction, the splitting pattern becomes increasingly dominated by null measurements. Over to the east however, beyond Cuzco, where the mantle wedge might begin to play a role, we record fast polarizations quasi-parallel to the local slab contours. Local S results indicate the presence of weak (delay times typically less than 0.5 seconds) and heterogeneous supra-slab

  8. Energy Method Solution for the Vertical Deformation of Longitudinally Coupled Prefabricated Slab Track

    OpenAIRE

    Juanjuan Ren; Shijie Deng; Zhibin Jin; Junbin Yang; Xueyi Liu

    2017-01-01

    Upwarping on the longitudinally coupled prefabricated slab track system caused by the rising temperature is a common distress, which deteriorates the mechanical properties of the coupled slabs and the vertical stability of slabs. The objective of this paper is to quantify the upwarping deformation on the slab subjected to temperature force and to find out the influence of different factors on the upwarping phenomenon of the slabs. An analytical expression is deduced using energy method, and a...

  9. Can neural blocks prevent phantom limb pain?

    Science.gov (United States)

    Borghi, Battista; D'Addabbo, Marco; Borghi, Raffaele

    2014-07-01

    Phantom limb syndrome (PLS) is a syndrome including stump pain, phantom limb pain and not-painful phantom sensations, which involves a large part of amputee patients and often has devastating effects on their quality of life. The efficacy of standard therapies is very poor. Nerve blocks have been investigated for the treatment and prevention of PLS. Epidural and peripheral blocks limited to the first three postamputation days can only reduce acute pain but cannot prevent the later development of PLS. Recent studies have shown that ambulatory prolonged peripheral nerve block (up to 30 days postamputation) may represent a new possible option to treat phantom pain and prevent the development of PLS and chronic pain.

  10. Phantom perception: voluntary and involuntary nonretinal vision.

    Science.gov (United States)

    Pearson, Joel; Westbrook, Fred

    2015-05-01

    Hallucinations, mental imagery, synesthesia, perceptual filling-in, and many illusions are conscious visual experiences without a corresponding retinal stimulus: what we call 'phantom perception'. Such percepts show that our experience of the world is not solely determined by direct sensory input. Some phantom percepts are voluntary, whereas others are involuntarily, occurring automatically. Here, by way of review, we compare and contrast these two types of phantom perception and their neural representations. We propose a dichotomous framework for phantom vision, analogous to the subtypes of attention: endogenous and exogenous. This framework unifies findings from different fields and species, providing a guide to study the constructive nature of conscious sensory perception. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The effect of phantom parent groups on genetic trend estimation ...

    African Journals Online (AJOL)

    Bias in the estimation of trend was reduced when phantom parent groups were taken into account. The 109 385 base animals were replaced by 64 phantom parent groups. Phantom parent groups were constructed by combining year of birth, country of birth and selection intensity of the phantom parents. In recent years ...

  12. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data.

    Science.gov (United States)

    Kiarashi, Nooshin; Nolte, Adam C; Sturgeon, Gregory M; Segars, William P; Ghate, Sujata V; Nolte, Loren W; Samei, Ehsan; Lo, Joseph Y

    2015-07-01

    Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power-law descriptions of the phantom images

  13. Acupuncture treatment of phantom limb pain and phantom limb sensation in a primary care setting.

    Science.gov (United States)

    Davies, Arwel

    2013-03-01

    A 45-year-old man presented with phantom limb pain and phantom limb sensation 12 weeks after an above-elbow amputation of his right arm. He underwent seven sessions of acupuncture at weekly intervals carried out by his general practitioner on his intact left arm, with complete relief of the phantom limb pain and considerable improvement of the phantom limb sensation of his right arm. This case demonstrates the possible benefits from the use of short acupuncture sessions for a potentially chronic condition undertaken within the constraints of a busy general medical practice.

  14. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    Energy Technology Data Exchange (ETDEWEB)

    Kiarashi, Nooshin [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Nolte, Adam C. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Sturgeon, Gregory M.; Ghate, Sujata V. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Segars, William P. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Nolte, Loren W. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States); and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  15. Conversion of ICRP male reference phantom to polygon-surface phantom.

    Science.gov (United States)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-07

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom for highly penetrating radiations such as

  16. Conversion of ICRP male reference phantom to polygon-surface phantom

    Science.gov (United States)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom

  17. Mirror Therapy for Phantom Limb Pain

    OpenAIRE

    Kim, Sae Young; Kim, Yun Young

    2012-01-01

    Phantom limb pain is a painful sensation that is perceived in a body part that no longer exists. To control this pain, many methods have been used such as medication, physical treatment, nerve block, neuromodulation, surgical treatment and mirror therapy. However, until now, there effects have been uncertain. We report the successful reduction of phantom limb pain using mirror therapy when other treatments initially failed to control the pain.

  18. Cyclic universe due to phantom and quintessence

    OpenAIRE

    Gao, Changjun; Lu, Youjun; Shen, You-Gen

    2014-01-01

    We explore a cyclic universe due to phantom and quintessence fields. We find that, in every cycle of the evolution of the universe, the phantom dominates the cosmic early history and quintessence dominates the cosmic far future. In this model of universe, there are infinite cycles of expansion and contraction. Different from the inflationary universe, the corresponding cosmic space-time is geodesically complete and quantum stable. But similar to the Cyclic Model, the flatness problem, the hor...

  19. The menacing phantom: what pulls the trigger?

    Science.gov (United States)

    Giummarra, Melita J; Georgiou-Karistianis, Nellie; Nicholls, Michael E R; Gibson, Stephen J; Chou, Michael; Bradshaw, John L

    2011-08-01

    Phantom phenomena are frequent following amputation, but how this often painful experience is modified or triggered by spontaneous events or sensations often puzzles amputees and clinicians alike. We explored triggers of phantom phenomena in a heterogeneous sample of 264 upper and lower limb adult amputees with phantom sensations. Participants completed a structured questionnaire to determine the prevalence and nature of the triggers of phantom phenomena. The four categories of triggers identified include: (a) a quarter of participants experiencing psychological, emotional or autonomic triggers; (b) half experiencing behavioral triggers, "forgetting" the limb's absence and attempting to use the phantom; (c) one-fifth experiencing weather-induced triggers; and (d) one-third experiencing sensations referred from parts of the body. Upper limb amputees; and were more likely to experience weather-induced phantom phenomena than lower limb amputees; and upper and lower limb amputees were equally likely to experience referred sensations from the genitals, contradicting the homuncular remapping hypothesis. Traumatic amputees were more likely to report emotional triggers. Further, while those with emotional triggers exhibited poorer acceptance of the limitations of amputation, they were more likely to employ adaptive coping mechanisms. Finally, habitual "forgetting" behaviors were most common soon after amputation, whereas other more adaptive schemata (e.g., self-defense) were equally likely to be performed at any time following amputation. Various likely inter-related mechanisms are discussed in relation to phantom triggers. Ultimately, optimizing stump and neuroma management, as well as restoring function of central networks for pain, limb movement, and amputation-related memories, should help manage spontaneously triggered phantom phenomena. Copyright © 2011 European Federation of International Association for the Study of Pain Chapters. All rights reserved.

  20. Electron Beam Dosimetry in Heterogeneous Phantoms Using a MAGIC Normoxic Polymer Gel

    Directory of Open Access Journals (Sweden)

    Ruhollah Ghahraman Asl

    2010-03-01

    Full Text Available Introduction: Nowadays radiosensitive polymer gels are used as a reliable dosimetry tool for verification of 3D dose distributions. Special characteristics of these dosimeters have made them useful for verification of complex dose distributions in clinical situations. The aim of this work was to evaluate the capability of a normoxic polymer gel to determine electron dose distributions in different slab phantoms in presence of small heterogeneities. Materials and Methods: Different cylindrical phantoms consisting gel were used under slab phantoms during each irradiation. MR images of irradiated gel phantoms were obtained to determine their R2 relaxation maps. 1D and 2D lateral dose profiles were acquired at depths of 1 cm for an 8 MeV beam and 1 and 4 cm for the 15 MeV energy, and then compared with the lateral dose profiles measured using a diode detector. In addition, 3D dose distributions around these heterogeneities for the same energies and depths were measured using a gel dosimeter. Results: Dose resolution for MR gel images at the range of 0-10 Gy was less than 1.55 Gy. Mean dose difference and distance to agreement (DTA for dose profiles were 2.6% and 2.2 mm, respectively. The results of the MAGIC-type polymer gel for bone heterogeneity at 8 MeV showed a reduction in dose of approximately 50%, and 30% and 10% at depths 1 and 4 cm at 15 MeV. However, for air heterogeneity increases in dose of approximately 50% at depth 1 cm under the heterogeneity at 8 MeV and 20% and 45% respectively at 15 MeV were observed. Discussion and Conclusion: Generally, electron beam distributions are significantly altered in the presence of tissue inhomogeneities such as bone and air cavities, this being related to mass stopping and mass scattering powers of heterogeneous materials. At the same time, hot and cold scatter lobes under heterogeneity regions due to scatter edge effects were also seen. However, these effects (increased dose, reduced dose, hot and

  1. The GSF family of voxel phantoms.

    Science.gov (United States)

    Petoussi-Henss, Nina; Zanki, Maria; Fill, Ute; Regulla, Dieter

    2002-01-07

    Voxel phantoms are human models based on computed tomographic or magnetic resonance images obtained from high-resolution scans of a single individual. They consist of a huge number of volume elements (voxels) and are at the moment the most precise representation of the human anatomy. The purpose of this paper is to introduce the GSF voxel phantoms, with emphasis on the new ones and highlight their characteristics and limitations. The GSF voxel family includes at the moment two paediatric and five adult phantoms of both sexes, different ages and stature and several others are under construction. Two phantoms made of physical calibration phantoms are also available to be used for validation purposes. The GSF voxel phantoms tend to cover persons of individual anatomy and were developed to be used for numerical dosimetry of radiation transport but other applications are also possible. Examples of applications in patient dosimetry in diagnostic radiology and in nuclear medicine as well as for whole-body irradiations from idealized external exposures are given and discussed.

  2. The GSF family of voxel phantoms

    Science.gov (United States)

    Petoussi-Henss, Nina; Zankl, Maria; Fill, Ute; Regulla, Dieter

    2002-01-01

    Voxel phantoms are human models based on computed tomographic or magnetic resonance images obtained from high-resolution scans of a single individual. They consist of a huge number of volume elements (voxels) and are at the moment the most precise representation of the human anatomy. The purpose of this paper is to introduce the GSF voxel phantoms, with emphasis on the new ones and highlight their characteristics and limitations. The GSF voxel family includes at the moment two paediatric and five adult phantoms of both sexes, different ages and stature and several others are under construction. Two phantoms made of physical calibration phantoms are also available to be used for validation purposes. The GSF voxel phantoms tend to cover persons of individual anatomy and were developed to be used for numerical dosimetry of radiation transport but other applications are also possible. Examples of applications in patient dosimetry in diagnostic radiology and in nuclear medicine as well as for whole-body irradiations from idealized external exposures are given and discussed.

  3. A nonlinear elasticity phantom containing spherical inclusions

    Science.gov (United States)

    Pavan, Theo Z.; Madsen, Ernest L.; Frank, Gary R.; Jiang, Jingfeng; Carneiro, Antonio A. O.; Hall, Timothy J.

    2012-08-01

    The strain image contrast of some in vivo breast lesions changes with increasing applied load. This change is attributed to differences in the nonlinear elastic properties of the constituent tissues suggesting some potential to help classify breast diseases by their nonlinear elastic properties. A phantom with inclusions and long-term stability is desired to serve as a test bed for nonlinear elasticity imaging method development, testing, etc. This study reports a phantom designed to investigate nonlinear elastic properties with ultrasound elastographic techniques. The phantom contains four spherical inclusions and was manufactured from a mixture of gelatin, agar and oil. The phantom background and each of the inclusions have distinct Young's modulus and nonlinear mechanical behavior. This phantom was subjected to large deformations (up to 20%) while scanning with ultrasound, and changes in strain image contrast and contrast-to-noise ratio between inclusion and background, as a function of applied deformation, were investigated. The changes in contrast over a large deformation range predicted by the finite element analysis (FEA) were consistent with those experimentally observed. Therefore, the paper reports a procedure for making phantoms with predictable nonlinear behavior, based on independent measurements of the constituent materials, and shows that the resulting strain images (e.g., strain contrast) agree with that predicted with nonlinear FEA.

  4. Silicone breast phantoms for elastographic imaging evaluation.

    Science.gov (United States)

    Kashif, Amer S; Lotz, Thomas F; McGarry, Matthew D; Pattison, Adam J; Chase, James G

    2013-06-01

    Breast cancer is a major public health issue for women, and early detection significantly increases survival rate. Currently, there is increased research interest in elastographic soft-tissue imaging techniques based on the correlation between pathology and mechanical stiffness. Anthropomorphic breast phantoms are critical for ex vivo validation of emerging elastographic technologies. This research develops heterogeneous breast phantoms for use in testing elastographic imaging modalities. Mechanical property estimation of eight different elastomers is performed to determine storage moduli (E') and damping ratios (ζ) using a dynamic mechanical analyzer. Dynamic compression testing was carried out isothermally at room temperature over a range of 4-50 Hz. Silicone compositions with physiologically realistic storage modulus were chosen for mimicking skin adipose, cancerous tumors, and pectoral muscles and 13 anthropomorphic breast phantoms were constructed for ex vivo trials of digital image elastotomography (DIET) breast cancer screening system. A simpler fabrication was used to assess the possibility of multiple tumor detection using magnetic resonance elastography (MRE). Silicone materials with ranges of storage moduli (E') from 2 to 570 kPa and damping ratios (ζ) from 0.03 to 0.56 were identified. The resulting phantoms were tested in two different elastographic breast cancer diagnostic modalities. A significant contrast was successfully identified between healthy tissues and cancerous tumors both in MRE and DIET. The phantoms presented promise aid to researchers in elastographic imaging modalities for breast cancer detection and provide a foundation for silicone based phantom materials for mimicking soft tissues of other human organs.

  5. Mantle flow and dynamic topography associated with slab window opening

    Science.gov (United States)

    Guillaume, Benjamin; Moroni, Monica; Funiciello, Francesca; Martinod, Joseph; Faccenna, Claudio

    2010-05-01

    A slab window is defined as an 'hole' in the subducting lithosphere. In the classical view, slab windows develop where a spreading ridge intersects a subduction zone. The main consequences of this phenomenon are the modifications of the physical, chemical and thermal conditions in the backarc mantle that in turn affect the tectonic and magmatic evolution of the overriding plate. In this work, we perform dynamically self-consistent mantle-scale laboratory models, to evaluate how the opening of a window in the subducting panel influences the geometry and the kinematics of the slab, the mantle circulation pattern and, finally, the overriding plate dynamic topography. The adopted setup consists in a two-layer linearly viscous system simulating the roll-back of a fixed subducting plate (simulated using silicone putty) into the upper mantle (simulated using glucose syrup). Our experimental setting is also characterized by a constant-width rectangular window located at the center of a laterally confined slab, modeling the case of the interaction of a trench-parallel spreading ridge with a wide subduction zone. We find that the geometry and the kinematics of the slab are only minorly affected by the opening of a slab window. On the contrary, slab induced mantle circulation, quantified using Feature Tracking image analysis technique, is strongly modified and produces a peculiar non-isostatic topographic signal on the overriding plate. Assuming that our modeling results can be representative of the natural behavior of subduction zones, we compare them to the Patagonian subduction zone finding that anomalous backarc volcanism that developed since middle Miocene could result from the lateral flowage of subslab mantle, and that part of the Patagonian uplift could be dynamically supported.

  6. The threshold contrast thickness evaluated with different CDMAM phantoms and software

    Directory of Open Access Journals (Sweden)

    Fabiszewska Ewa

    2016-03-01

    Full Text Available The image quality in digital mammography is described by specifying the thickness and diameter of disks with threshold visibility. The European Commission recommends the CDMAM phantom as a tool to evaluate threshold contrast visibility in digital mammography [1, 2]. Inaccuracy of the manufacturing process of CDMAM 3.4 phantoms (Artinis Medical System BV, as well as differences between software used to analyze the images, may lead to discrepancies in the evaluation of threshold contrast visibility. The authors of this work used three CDMAM 3.4 phantoms with serial numbers 1669, 1840, and 1841 and two mammography systems of the same manufacturer with an identical types of detectors. The images were analyzed with EUREF software (version 1.5.5 with CDCOM 1.6. exe file and Artinis software (version 1.2 with CDCOM 1.6. exe file. The differences between the observed thicknesses of the threshold contrast structures, which were caused by differences between the CDMAM 3.4 phantoms, were not reproduced in the same way on two mammography units of the same type. The thickness reported by the Artinis software (version 1.2 with CDCOM 1.6. exe file was generally greater than the one determined by the EUREF software (version 1.5.5 with CDCOM 1.6. exe file, but the ratio of the results depended on the phantom and diameter of the structure. It was not possible to establish correction factors, which would allow correction of the differences between the results obtained for different CDMAM 3.4 phantoms, or to correct the differences between software. Great care must be taken when results of the tests performed with different CDMAM 3.4 phantoms and with different software application are interpreted.

  7. Deformable adult human phantoms for radiation protection dosimetry: anthropometric data representing size distributions of adult worker populations and software algorithms

    Science.gov (United States)

    Hum Na, Yong; Zhang, Binquan; Zhang, Juying; Caracappa, Peter F.; Xu, X. George

    2010-07-01

    Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999-2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals' size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms—modeled entirely in mesh surfaces—of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte

  8. Bearing capacity of prestressed concrete decks slabs

    NARCIS (Netherlands)

    Amir, S.; Van der Veen, C.; Walraven, J.C.; De Boer, A.

    2014-01-01

    In the Netherlands, most of the bridges were built more than 50 years ago and it is essential for designers to find out if these bridges are safe for modern traffic especially in shear since that was not considered in design recommendations before 1976. Detailed experiments have been carried out in

  9. Toward a reference standard for tissue phantoms

    Science.gov (United States)

    Di Ninni, Paola; Martelli, Fabrizio; Zaccanti, Giovanni

    2011-03-01

    A reference standard for tissue-simulating phantoms, i.e., a phantom with well known and stable optical properties, reproducible, and easy to be found, would be very useful for many applications based on measurements of diffused light. Although many tissue-equivalent phantoms have been proposed, to our knowledge none of them has been characterized sufficiently well to be suggested as a reference standard. Based on the results of measurements of optical properties we carried out at visible and NIR wavelengths, the use of Intralipid 20% diluted in water as diffusive medium, and of India ink as absorber, is here suggested as a first step towards a diffusive reference standard for tissue-simulating phantoms. As for Intralipid 20%, measurements carried out on samples from nine different batches with expiry dates spreading over ten years showed surprisingly small batch-to-batch variations. For the reduced scattering coefficient the maximum deviation from the value averaged over the nine batches was of about 2%, and the results for the absorption coefficient were very close to those for pure water. As for India ink measurements on samples from different batches and from five different brands showed large inter-brand and inter-batch variations for both the absorption and the extinction coefficient. On the contrary, small variations have been observed for the ratio between the absorption and the extinction coefficient. Intralipid 20% and Indian ink can be therefore easily mixed to obtain liquid phantoms with well known optical properties. This phantom can be a first step towards a reference standard for optical tissue phantoms.

  10. Optical distortions in end-pumped zigzag slab lasers.

    Science.gov (United States)

    Tang, Bing; Zhou, Tangjian; Wang, Dan; Li, Mi

    2015-04-01

    Ray tracing is performed to investigate the optical distortions in the end-pumped, zigzag slab. Optical path differences caused by temperature, slab deformation, and stress birefringence are calculated under uniform pumping; the results show a steep edge in the width dimension and a thermal lens with an effective focal length as short as several meters in the thickness dimension. Dependence of depolarization on total internal reflection phase retardance as well as the slab's cut angle is studied by the Jones matrix technique; results show that although at the pumping power of 10 kW, the mean depolarization of the 2.5  mm×30  mm×150.2  mm Nd:YAG slab is generally below 3%, and it increases rapidly with pumping power. Besides, for the 0°- or 60°-cut slab, an optimal phase retardance range of 5° to 13° exists, in which the depolarization loss can be lower than 0.5%. Finally, experiments on temperature and depolarization measurements verify the numerical results.

  11. The subduction dichotomy of strong plates and weak slabs

    Science.gov (United States)

    Petersen, Robert I.; Stegman, Dave R.; Tackley, Paul J.

    2017-03-01

    A key element of plate tectonics on Earth is that the lithosphere is subducting into the mantle. Subduction results from forces that bend and pull the lithosphere into the interior of the Earth. Once subducted, lithospheric slabs are further modified by dynamic forces in the mantle, and their sinking is inhibited by the increase in viscosity of the lower mantle. These forces are resisted by the material strength of the lithosphere. Using geodynamic models, we investigate several subduction models, wherein we control material strength by setting a maximum viscosity for the surface plates and the subducted slabs independently. We find that models characterized by a dichotomy of lithosphere strengths produce a spectrum of results that are comparable to interpretations of observations of subduction on Earth. These models have strong lithospheric plates at the surface, which promotes Earth-like single-sided subduction. At the same time, these models have weakened lithospheric subducted slabs which can more easily bend to either lie flat or fold into a slab pile atop the lower mantle, reproducing the spectrum of slab morphologies that have been interpreted from images of seismic tomography.

  12. Investigations on Efficiently Interfaced Steel Concrete Composite Deck Slabs

    Directory of Open Access Journals (Sweden)

    K. N. Lakshmikandhan

    2013-01-01

    Full Text Available The strength of the composite deck slab depends mainly on the longitudinal shear transfer mechanism at the interface between steel and concrete. The bond strength developed by the cement paste is weak and causes premature failure of composite deck slab. This deficiency is effectively overcame by a shear transferring mechanism in the form of mechanical interlock through indentations, embossments, or fastening studs. Development of embossment patterns requires an advanced technology which makes the deck profile expensive. Fastening studs by welding weakens the joint strength and also escalates the cost. The present investigation is attempted to arrive at a better, simple interface mechanism. Three types of mechanical connector schemes are identified and investigated experimentally. All of the three shear connector schemes exhibited full shear interaction with negligible slip. The strength and stiffness of the composite slabs with shear connectors are superior about one and half time compared to these of the conventional reinforced concrete slabs and about twice compared to these of composite slabs without mechanical shear connectors. The scheme2 and scheme3 shear connector mechanisms integrate deck webs and improve strength and stiffness of the deck, which can effectively reduce the cost of formworks and supports efficiently.

  13. Evaluation of Absorbed Dose of Critical Organ in Rando Phantom under Head, Abdomen and Pelvis Spiral CT Scan by Thermo Luminescent Dosimetery - TLD

    Directory of Open Access Journals (Sweden)

    Gholamhosein Haddadi

    2011-12-01

    Full Text Available Background & Objectives: Computed tomography (CT represents 11% of all diagnostic radiology procedures but it contributes to almost 67% of the total effective dose to the human population. In head and neck CT which consist of 1/3 of total CT scans, other critical organs such as lenses and thyroid are in the radiation field. Also in the abdomen and pelvis scan, irradiation of ovaries is unavoidable. Because of high sensitivity of these organs, the probability of abnormality and cancer in these organs has increased. Therefore the dose assessment in these organs is very important. The aim of this study is to estimate the absorbed dose in critical organ of patient undergoing common head, neck, abdomen and pelvic spiral CT scan. Materials & Methods: In this study, Lithium fluoride thermo luminescent dosimeters (TLD-100, Harshaw were used to determine the absorbed dose of critical organ of tissue equivalent rando phantom (Alderson research industries, Inc, Stanford, Conn, U.S.A. The phantom was sectional in design and manufactured with a 2.5 cm slab thickness. Each section contained some holes that allowed accommodation of TLDs. At least two crystals were placed in each hole. The average value of the TLD readings was taken as the organ dose. Readouts were obtained on a Harshaw 4500 reader (Harshaw, Ohio, USA. For calibration, the annealed dosimeters were exposed to an X-ray beam resulting from 120 kVp tube voltage and calibration curve was plotted. Results: result of this study showed during head CT scan the maximum absorbed dose belongs to occipital bones skin. Which were about 11.45 mGy and the minimum absorbed dose belong to thyroid gland which was 0.5 mGy. During abdomen & pelvic spiral CT, the maximum absorbed dose of abdomen skin was 23.32 mGy and the minimum absorbed dose in the eye region was 0.15 mGy. The readout results are correlated with the results of spiral CT detector with the “ALARA” principle, we recommend suitable techniques

  14. Innovative anisotropic phantoms for calibration of diffusion tensor imaging sequences.

    Science.gov (United States)

    Kłodowski, Krzysztof; Krzyżak, Artur Tadeusz

    2016-05-01

    The paper describes a novel type of anisotropic phantoms designed for b-matrix spatial distribution diffusion tensor imaging (BSD-DTI). Cubic plate anisotropic phantom, cylinder capillary phantom and water reference phantom are described as a complete set necessary for calibration, validation and normalization of BSD-DTI. An innovative design of the phantoms basing on enclosing the anisotropic cores in glass balls filled with liquid made for the first time possible BSD calibration with usage of echo planar imaging (EPI) sequence. Susceptibility artifacts prone to occur in EPI sequences were visibly reduced in the central region of the phantoms. The phantoms were designed for usage in a clinical scanner's head coil, but can be scaled for other coil or scanner types. The phantoms can be also used for a pre-calibration of imaging of other types of phantoms having more specific applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. IMPROVEMENT OF SLAB REHEATING PROCESS AT USIMINAS THROUGH MATHEMATICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Antônio Adel dos Santos

    2012-09-01

    Full Text Available Basic characteristics and application examples of the mathematical simulator for reheating process in walking-beam type furnaces, that has been developed and applied to Usiminas plate mill line at Ipatinga, are shown in this paper. This is a bi-dimensional mathematical model solved by the finite volume method, validated by temperature measurements inside the slab during heating and coded as a visual tool. Among these applications, the following can be highlighted: (i determination of suitable furnace zone temperatures and residence times for processing steels by accelerated cooling technology; (ii determination of slab average temperature at discharging as well as at each zone exit, supplying data to be fed to the automation system at the comissioning stage; (iii analyses of slab thermal distribution through the reheating process, enabling operational optimization

  16. Abrupt tectonics and rapid slab detachment with grain damage.

    Science.gov (United States)

    Bercovici, David; Schubert, Gerald; Ricard, Yanick

    2015-02-03

    A simple model for necking and detachment of subducting slabs is developed to include the coupling between grain-sensitive rheology and grain-size evolution with damage. Necking is triggered by thickened buoyant crust entrained into a subduction zone, in which case grain damage accelerates necking and allows for relatively rapid slab detachment, i.e., within 1 My, depending on the size of the crustal plug. Thick continental crustal plugs can cause rapid necking while smaller plugs characteristic of ocean plateaux cause slower necking; oceanic lithosphere with normal or slightly thickened crust subducts without necking. The model potentially explains how large plateaux or continental crust drawn into subduction zones can cause slab loss and rapid changes in plate motion and/or induce abrupt continental rebound.

  17. Efficient Vortex Generation in Subwavelength Epsilon-Near-Zero Slabs

    Science.gov (United States)

    Ciattoni, Alessandro; Marini, Andrea; Rizza, Carlo

    2017-03-01

    We show that a homogeneous and isotropic slab, illuminated by a circularly polarized beam with no topological charge, produces vortices of order 2 in the opposite circularly polarized components of the reflected and transmitted fields, as a consequence of the transverse magnetic and transverse electric asymmetric response of the rotationally invariant system. In addition, in the epsilon-near-zero regime, we find that vortex generation is remarkably efficient in subwavelength thick slabs up to the paraxial regime. This physically stems from the fact that a vacuum paraxial field can excite a nonparaxial field inside an epsilon-near-zero slab since it hosts slowly varying fields over physically large portions of the bulk. Our theoretical predictions indicate that epsilon-near-zero media hold great potential as nanophotonic elements for manipulating the angular momentum of the radiation, since they are available without resorting to complicated micro- or nanofabrication processes and can operate even at very small (ultraviolet) wavelengths.

  18. Band-notched ultrawide band antenna loaded with ferrite slab

    Science.gov (United States)

    Wang, Hao; Zong, Weihua; Sun, Nian X.; Lin, Hwaider; Li, Shandong

    2017-05-01

    In this paper, a novel technique to design a band-notched UWB antenna by using Yttrium Iron Garnet (YIG) ferrite is proposed. A printed slot UWB antenna with size of 21mm×26 mm×0.8 mm is adopted as a basic antenna. A piece of ferrite slab with size of 5 mm×10 mm×2 mm is attached on the feeding layer of the antenna to achieve band-notched characteristics. The measured -10 dB bandwidth of the antenna without ferrite slab is 2.91-10.98 GHz. With loading of ferrite slab, the bandwidth turns to 2.73-5.12 and 5.87-10.78 GHz. A band notch of 5.12- 5.87 GHz is achieved to filter WLAN 5 GHz (5.15-5.825 GHz) band. The proposed technique has virtue of easy fabrication and keeping antenna miniaturization.

  19. Cost Effectiveness of Precast Reinforced Concrete Roof Slabs

    Science.gov (United States)

    Parskiy, N. D.; Molodtsov, M. V.; Molodtsova, V. E.

    2017-11-01

    Engineers always seek to free interior space from intermediate supporting elements. Nowadays plants, being at the forefront of technology, produce a new generation of exclusive patented prefabricated reinforced concrete elements with a high load-bearing capacity, excellent heat resistance characteristics combined with the aesthetics and beauty. It is a system of Seagull Gabbiano prestressed roof slabs for the spans of 12m - 40m. The article shows the advantages of the Seagull slabs over conventional precast reinforced concrete and metal roof trusses. It also gives the analysis of the technical and economic indices of design and construction of a building with the Seagull slabs depending on the size of spans to cover. The use of structural systems with increased spans allows for the modern buildings and structures of prefabricated reinforced concrete with enhanced functionality and aesthetics alongside with a wide range of planning solutions.

  20. Numerical models of slab migration in continental collision zones

    Directory of Open Access Journals (Sweden)

    V. Magni

    2012-09-01

    Full Text Available Continental collision is an intrinsic feature of plate tectonics. The closure of an oceanic basin leads to the onset of subduction of buoyant continental material, which slows down and eventually stops the subduction process. In natural cases, evidence of advancing margins has been recognized in continental collision zones such as India-Eurasia and Arabia-Eurasia. We perform a parametric study of the geometrical and rheological influence on subduction dynamics during the subduction of continental lithosphere. In our 2-D numerical models of a free subduction system with temperature and stress-dependent rheology, the trench and the overriding plate move self-consistently as a function of the dynamics of the system (i.e. no external forces are imposed. This setup enables to study how continental subduction influences the trench migration. We found that in all models the slab starts to advance once the continent enters the subduction zone and continues to migrate until few million years after the ultimate slab detachment. Our results support the idea that the advancing mode is favoured and, in part, provided by the intrinsic force balance of continental collision. We suggest that the advance is first induced by the locking of the subduction zone and the subsequent steepening of the slab, and next by the sinking of the deepest oceanic part of the slab, during stretching and break-off of the slab. These processes are responsible for the migration of the subduction zone by triggering small-scale convection cells in the mantle that, in turn, drag the plates. The amount of advance ranges from 40 to 220 km and depends on the dip angle of the slab before the onset of collision.

  1. Peripheral nervous system origin of phantom limb pain.

    Science.gov (United States)

    Vaso, Apostol; Adahan, Haim-Moshe; Gjika, Artan; Zahaj, Skerdi; Zhurda, Tefik; Vyshka, Gentian; Devor, Marshall

    2014-07-01

    Nearly all amputees continue to feel their missing limb as if it still existed, and many experience chronic phantom limb pain (PLP). What is the origin of these sensations? There is currently a broad consensus among investigators that PLP is a top-down phenomenon, triggered by loss of sensory input and caused by maladaptive cortical plasticity. We tested the alternative hypothesis that PLP is primarily a bottom-up process, due not to the loss of input but rather to exaggerated input, generated ectopically in axotomized primary afferent neurons in the dorsal root ganglia (DRGs) that used to innervate the limb. In 31 amputees, the local anesthetic lidocaine was applied intrathecally and/or to the DRG surface (intraforaminal epidural block). This rapidly and reversibly extinguished PLP and also nonpainful phantom limb sensation (npPLS). Control injections were ineffective. For intraforaminal block, the effect was topographically appropriate. The suppression of PLP and npPLS could also be demonstrated using dilute lidocaine concentrations that are sufficient to suppress DRG ectopia but not to block the propagation of impulses generated further distally in the nerve. PLP is driven primarily by activity generated within the DRG. We recommend the DRG as a target for treatment of PLP and perhaps also other types of regional neuropathic pain. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  2. Lower slab boundary in the Japan subduction zone

    Science.gov (United States)

    Tonegawa, Takashi; Hirahara, Kazuro; Shibutani, Takuo; Fujii, Naoyuki

    2006-07-01

    We have successfully detected the lower boundary of a subducting slab. The successive imaging of the lower slab boundary beneath northeastern (NE) Japan is attained by receiver function (RF) depth conversion analysis using a recent 3D tomographic velocity model. We use waveforms from 249 teleseismic events collected by Hi-net and J-array short-period stations in NE Japan. RFs are calculated through frequency domain division of radial components by vertical ones with a water level of 0.001 and a 1.0 Hz low-pass Gaussian filter. Assuming that all later phases in the radial RFs are due to Ps phases converted at discontinuities beneath stations, we calculate depth-converted RFs, mapped onto the cross-section with the CCP (common conversion point) stacking. In a cross section, the slab surface and the oceanic Moho can be imaged down to 120 km depth. For the greater depths, the RF amplitudes corresponding to them cannot be seen, because, in the oceanic crust, basalt would be completely metamorphosed to eclogite below this depth. The lower boundary of the Pacific slab can also be traced down to 200 km depth or more. It is parallel to the slab surface and the oceanic Moho, and the thickness between the slab surface and the lower boundary is ˜ 80 km. Finally, we estimate a top-to-bottom slab velocity model that explains the RFs observed at broadband stations with the synthetic RFs. This model exhibits a 13% velocity reduction downwards the lower slab boundary, which would relatively sharp for the base of the thermal boundary layer. Therefore, this sharp discontinuity is presumably considered to be the subducting G (Gutenberg) discontinuity that is formed by the change of the amount of H 2O (water), meaning that the G discontinuity is the chemical boundary at the bottom of the oceanic lithosphere. The G discontinuity depth is controlled by the potential temperature of the asthenospheric mantle beneath the mid-ocean ridge, and hence the observed thickness of 80 km, i.e. the

  3. Permanent storage of light in a double-slab structure

    Science.gov (United States)

    Chen, Jiangwei; Yuan, Guoxuan; Tao, Zhikuo

    2017-11-01

    In this paper, we shall demonstrate firstly that a normal incidence can be totally reflected from a slab made of active metamaterial with purely-imaginary-impedance. Then we shall predict that a localized steady state of electromagnetic wave dependent on initial input can exist in a double-slab structure, which relates to the non null solution of equations formed by electromagnetic field boundary conditions. These results may provide a feasible way to effectively treat loss and/or gain problems and thus store electromagnetic wave (light) permanently at room temperature. In addition, our work indicates that metamaterials with purely-imaginary-impedance may enable remarkable electromagnetic phenomena and merit further study.

  4. Oscillating Casimir force between two slabs in a Fermi sea

    DEFF Research Database (Denmark)

    Li-Wei, Chen; Guo-Zhen, Su; Jin-Can, Chen

    2012-01-01

    The Casimir effect for two parallel slabs immersed in an ideal Fermi sea is investigated at both zero and nonzero temperatures. It is found that the Casimir effect in a Fermi gas is distinctly different from that in an electromagnetic field or a massive Bose gas. In contrast to the familiar result...... that the Casimir force decreases monotonically with the increase of the separation L between two slabs in an electromagnetic field and a massive Bose gas, the Casimir force in a Fermi gas oscillates as a function of L. The Casimir force can be either attractive or repulsive, depending sensitively on the magnitude...

  5. Analog optical computing by half-wavelength slabs

    Science.gov (United States)

    Zangeneh-Nejad, Farzad; Khavasi, Amin; Rejaei, Behzad

    2018-01-01

    A new approach to perform analog optical differentiation is presented using half-wavelength slabs. First, a half-wavelength dielectric slab is used to design a first order differentiator. The latter works properly for both major polarizations, in contrast to our previously design based on Brewster effect (Youssefi et al., 2016). Inspired by the proposed dielectric differentiator, and by exploiting the unique features of graphene, we further design and demonstrate a reconfigurable and highly miniaturized differentiator using a half-wavelength plasmonic graphene film. To the best of our knowledge, our proposed graphene-based differentiator is even smaller than the most compact differentiator presented so far.

  6. Designing Meta Material Slabs Exhibiting Negative Refraction Using Topology Optimization

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Sigmund, O.

    2016-01-01

    This paper proposes a topology optimization based approach for designing meta materials exhibiting a desired negative refraction with high transmission at a given angle of incidence and frequency. The approach considers a finite slab of meta material consisting of axis-symmetric designable unit...... cells subjected to an exterior field. The unit cell is designed to achieve the desired properties based on tailoring the response of the meta material slab underthe exterior field. The approach is directly applicable to physical problems modeled by the Helmholtz equation, such as acoustic, elastic...

  7. Bayesian Inference for Structured Spike and Slab Priors

    DEFF Research Database (Denmark)

    Andersen, Michael Riis; Winther, Ole; Hansen, Lars Kai

    2014-01-01

    Sparse signal recovery addresses the problem of solving underdetermined linear inverse problems subject to a sparsity constraint. We propose a novel prior formulation, the structured spike and slab prior, which allows to incorporate a priori knowledge of the sparsity pattern by imposing a spatial...... Gaussian process on the spike and slab probabilities. Thus, prior information on the structure of the sparsity pattern can be encoded using generic covariance functions. Furthermore, we provide a Bayesian inference scheme for the proposed model based on the expectation propagation framework. Using...

  8. Simulation of curing of a slab of rubber

    Energy Technology Data Exchange (ETDEWEB)

    Abhilash, P.M. [Department of Mechanical Engineering, IIT Madras, Chennai 600036 (India); Kannan, K., E-mail: krishnakannan@iitm.ac.i [Department of Mechanical Engineering, IIT Madras, Chennai 600036 (India); Varkey, Bijo [Advanced Design Department, MRF Ltd., Chennai 600019 (India)

    2010-04-15

    The objective of the present work is to predict the degree of curing for a rectangular slab of rubber, which was subjected to non-uniform thermal history. As the thermal conductivity of rubber is very low, the temperature gradient across a slab is quite large, which leads to non-uniform vulcanization, and hence non-uniform mechanical properties-an inhomogeneous material. Since curing is an exothermic reaction, heat transfer and chemical reactions are solved in a coupled manner. The effect of heat generation on curing is also discussed.

  9. Cosmological perturbations in transient phantom inflation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Richarte, Martin G. [Universidade Federal do Parana, Departamento de Fisica, Caixa Postal 19044, Curitiba (Brazil); Universidad de Buenos Aires, Ciudad Universitaria 1428, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Kremer, Gilberto M. [Universidade Federal do Parana, Departamento de Fisica, Caixa Postal 19044, Curitiba (Brazil)

    2017-01-15

    We present a model of inflation where the inflaton is accommodated as a phantom field which exhibits an initial transient pole behavior and then decays into a quintessence field which is responsible for a radiation era. We must stress that the present unified model only deals with a single field and that the transition between the two eras is achieved in a smooth way, so the model does not suffer from the eternal inflation issue. We explore the conditions for the crossing of the phantom divide line within the inflationary era along with the structural stability of several critical points. We study the behavior of the phantom field within the slow-climb approximation along with the necessary conditions to have sufficient inflation. We also examine the model at the level of classical perturbations within the Newtonian gauge and determine the behavior of the gravitational potential, contrast density and perturbed field near the inflation stage and the subsequent radiation era. (orig.)

  10. Photoacoustic investigation of a neonatal skull phantom

    Science.gov (United States)

    Volinski, Bridget; Hariri, Ali; Fatima, Afreen; Xu, Qiuyun; Nasiriavanaki, Mohammadreza

    2017-03-01

    There is a need for continued research into the diagnosis, prevention and cure of neonatal brain disease and disorders. These disorders lead to fatalities and developmental disorders in infants. Non-invasive imaging techniques are being researched for this purpose. However, the availability of neonatal skull samples for this work is very low. A phantom can be used to simulate the neonatal skull and brain to improve imaging techniques. This study selects a phantom of polyurethane and titanium dioxide and proves its value as a replacement for neonatal skull in research. The methods used for this proof are validation of choice against the literature, transmissivity and acoustic experimentation compared to existing literature, and finally photoacoustic evaluation of the final choice to show its usefulness as a neonatal skull phantom.

  11. MRI phantoms - are there alternatives to agar?

    Directory of Open Access Journals (Sweden)

    Alexandra Hellerbach

    Full Text Available The suitability of different gelling agents as MRI phantoms was evaluated in terms of homogeneity, gel stability and reproducibility. Time and effort for preparation were also taken into account. The relaxation times of various gel compositions were estimated. Carbomer-980 and Carbopol-974P were determined to be promising novel phantom materials. These gelling agents are readily available, inexpensive and easy to handle given that thermal treatment is not required. Furthermore, the viscoelasticity of their polymer network is pH-dependent. With such characteristics, it was even possible to embed sensitive objects and retrieve them after testing. This was demonstrated with a fiber phantom for Diffusion Weighted MRI applications. Since Carbomer-980 and Carbopol-974P are non-hazardous, they are also suitable for multimodal setups (e.g., MRI as well as ultrasonic imaging.

  12. Punching Shear Behavior of Continuous Bubbled Reinforced Reactive Powder Concrete Slab

    Directory of Open Access Journals (Sweden)

    Mohammad Redha K. Mahmood

    2017-03-01

    Full Text Available This paper presents an experimental investigation on punching shear behavior of continuous bubbled reinforced Reactive Powder Concrete (RPC slabs. Bubbled slab is one of the various types of voided slabs. It consists of bubbles placed inside a concrete slab which will reduce the self-weight of the structure by about 35% (Tina Lai 2009. On the other hand, using RPC make it possible for structural member to have smaller dimensions due to the great strength of this type of concrete. In this study, these two method to increase the building spaces dimensions by reducing self-weigh of the structure by using bubbled slabs and to decrease the structural members' dimensions by using RPC have been investigated together. To study the punching shear behavior of continuous bubbled flat slabs such as the ultimate load carrying capacity, central deflection and slabs crack pattern at the ultimate load, nine different types of slabs were tested. The parameters of the study were type of concrete (RPC and Normal Concrete (NC, bubbles diameter to slab thickness ratio (D/t of (0.6 and 0.7, bubbles location (at all slab area, started from distance D and 1.5D from the center slab and solid slab. The test results show that the crack pattern and ultimate load capacity as well as maximum deflection depends on all of the mentioned parameters, were by increasing (D/t ratio the ultimate load capacity increases about (6.49 and 9.58% for slabs with bubbles started at distance 2D and 3D, respectively. But in the slabs with bubbles at all slab area the ultimate load and the maximum deflection decreases about (6.63 and 9.47% and (7.96 and 6.84% for RPC and NC slabs, respectively. Also, the solid slab increases the ultimate load about (5.28% compare to bubbled slab at all area. It was found that by removing bubbles from center of the slab at distance 2D and 3D the ultimate load will increase about (14.72 and 8.76%, respectively for slabs with (D/t = 0.6 compare to slabs with

  13. New polymer-based phantom for photoacoustic imaging

    Science.gov (United States)

    Kawaguchi, Yasushi; Iwazaki, Hideaki; Ida, Taiichiro; Nishi, Taiji; Tanikawa, Yukari; Nitta, Naotaka

    2014-03-01

    We will report newly developed polymer-based phantom for photoacoustic (PA) imaging systems. Phantoms are important for performance evaluation and calibration of new modalities; however, there is no established method for making phantoms with no long-term change. We have developed skin mimicking phantoms simulating both optical and acoustic properties (i.e. optical scattering and absorption coefficients, and sound velocity). Furthermore, the phantoms are able to give accurate simulation of blood vessels by Inkjet-printing. Newly developed phantoms are consisted of castor oil included acrylic block copolymer and we can fabricate 0.8mm or less thick sheets and pile them using their self-adhesiveness.

  14. Transcutaneous electrical nerve stimulation (TENS) for phantom pain and stump pain following amputation in adults.

    Science.gov (United States)

    Johnson, Mark I; Mulvey, Matthew R; Bagnall, Anne-Marie

    2015-08-18

    This is the first update of a Cochrane review published in Issue 5, 2010 on transcutaneous electrical nerve stimulation (TENS) for phantom pain and stump pain following amputation in adults. Pain may present in a body part that has been amputated (phantom pain) or at the site of amputation (stump pain), or both. Phantom pain and stump pain are complex and multidimensional and the underlying pathophysiology remains unclear. The condition remains a severe burden for those who are affected by it. The mainstay treatments are predominately pharmacological, with increasing acknowledgement of the need for non-drug interventions. TENS has been recommended as a treatment option but there has been no systematic review of available evidence. Hence, the effectiveness of TENS for phantom pain and stump pain is currently unknown. To assess the analgesic effectiveness of TENS for the treatment of phantom pain and stump pain following amputation in adults. For the original version of the review we searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, PsycINFO, AMED, CINAHL, PEDRO and SPORTDiscus (February 2010). For this update, we searched the same databases for relevant randomised controlled trials (RCTs) from 2010 to 25 March 2015. We only included RCTs investigating the use of TENS for the management of phantom pain and stump pain following an amputation in adults. Two review authors independently assessed trial quality and extracted data. We planned that where available and appropriate, data from outcome measures were to be pooled and presented as an overall estimate of the effectiveness of TENS. In the original review there were no RCTs that examined the effectiveness of TENS for the treatment of phantom pain and stump pain in adults. For this update, we did not identify any additional RCTs for inclusion. There were no RCTs to judge the effectiveness of TENS for the management of phantom pain and stump pain. The published literature on TENS

  15. Structured movement representations of a phantom limb associated with phantom limb pain.

    Science.gov (United States)

    Osumi, Michihiro; Sumitani, Masahiko; Wake, Naoki; Sano, Yuko; Ichinose, Akimichi; Kumagaya, Shin-Ichiro; Kuniyoshi, Yasuo; Morioka, Shu

    2015-09-25

    The relation between phantom limb pain (PLP) and the movement representation of a phantom limb remains controversial in several areas of neurorehabilitation, although there are a few studies in which the representation of phantom limb movement was precisely evaluated. We evaluated the structured movement representation of a phantom limb objectively using a bimanual circle-line coordination task. We then investigated the relation between PLP and the structured movement representation. Nine patients with a brachial plexus avulsion injury were enrolled who perceived a phantom limb and had neuropathic pain. While blindfolded, the participants repeatedly drew vertical lines using the intact hand and intended to draw circles using the phantom limb simultaneously. "Drawing of circles" by the phantom limb resulted in an oval transfiguration of the vertical lines ("bimanual coupling" effect). We used an arbitrary ovalization index (OI) to quantify the oval transfiguration. When the OI neared 100%, the trajectory changed toward becoming more circular. A significant negative correlation was observed between the intensity of PLP and the OI (r=-0.66, pphantom limb are necessary for alleviating PLP. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. [Phantom limb pain. Psychological treatment strategies].

    Science.gov (United States)

    Diers, M; Flor, H

    2013-04-01

    Similar to other pain syndromes phantom limb pain is characterized by learning and memory processes that maintain the pain and increase maladaptive plastic changes of the brain: therefore, psychological interventions that change maladaptive memory processes are useful. In addition to traditional psychological interventions, such as pain management training and biofeedback, more recent developments that involve sensory discrimination training, mirror treatment, graded motor imagery, prosthesis training and training in virtual reality are interesting. These interventions not only reduce phantom limb pain but also reverse the associated maladaptive brain changes.

  17. Successful peripheral neuromodulation for phantom limb pain.

    Science.gov (United States)

    Cornish, Philip; Wall, Cindy

    2015-04-01

    For decades, the heterogeneity of the amputee population and the complex interaction of biopsychosocial factors have confounded researchers' attempts to develop an effective treatment for phantom limb pain. Therefore, it remains difficult to treat, and affected patients often experience decreased quality of life, increased psychological distress, and poorer health outcomes. In the case study, we report a novel strategy for the peripheral placement of neuromodulation leads for the treatment of phantom limb pain in a patient who subsequently described complete and consistent pain relief independent of significant variations in psychosocial stress. Wiley Periodicals, Inc.

  18. Static phantom wormholes of finite size

    Science.gov (United States)

    Cataldo, Mauricio; Orellana, Fabian

    2017-09-01

    In this paper we derive new static phantom traversable wormholes by assuming a shape function with a quadratic dependence on the radial coordinate r . We mainly focus our study on wormholes sustained by exotic matter with positive energy density (as seen by any static observer) and a variable equation of state pr/ρ wormhole spacetimes extending to infinity, we show that a quadratic shape function allows us to construct static spacetimes of finite size, composed of a phantom wormhole connected to an anisotropic spherically symmetric distribution of dark energy. The wormhole part of the full spacetime does not fulfill the dominant energy condition, while the dark energy part does.

  19. Slab fluid release: localized in space and time

    Science.gov (United States)

    John, T.; Gussone, N. C.; Podladchikov, Y. Y.

    2012-12-01

    As subducting oceanic plates descend into the Earth's mantle, increasing pressures and temperatures lead to the progressive destabilization of hydrous mineral phases and the release of H2O-rich fluids. Some fraction of these fluids ascend into the overlying mantle wedge, inducing partial melting, and their "chemical freight" is thought to contribute to the distinctive chemical signature of the resulting arc magmas. Field evidences suggest that channelized fluid flow may be the dominant mechanism for intra-slab fluid flow. Along their pathways within slabs, these fluids can trigger mineral reactions and produce chemical changes in rocks with which they interact. However, the spatial and temporal scales of this fluid flow remain largely unknown. We employed the Ca and Li isotope systems on a fossil high-pressure fluid pathway and its associated reaction halo (Chinese Tianshan), formed at ~70 km depth during subduction of a coherent oceanic slab, allowing us to constrain the fluid flux, fluid source and the duration of the fluid-rock interaction. In the reaction halo, the degree of eclogitization along with Ca concentration increases towards the vein. A high fluid flux is required to obtain the observed Ca increase and changes in δ44/40Ca. The Ca isotope composition indicate mixing of two distinct Ca sources, the wall-rock blueschist and an external fluid source, the latter of which is enriched in heavy Ca isotopes. The relatively high δ44/40Ca (>1.3‰) of the infiltrating fluid is suggestive of partially hydrated slab mantle as the fluid source. Alternatively, Ca derived from MORB, (0.7 to 0.9‰) and AOC (0.6 to 1.0‰) might evolve towards heavier Ca isotope values while it is ascending through the slab and reacting with wall-rocks and forming carbonates, which are usually associated with the flow structures. This is because calcium carbonate precipitation preferentially removes light Ca from the fluid while the residual fluid will get heavier proportional to

  20. Overview of the ICRP/ICRU adult reference computational phantoms and dose conversion coefficients for external idealised exposures

    CERN Document Server

    Endo, A; Zankl, M; Bolch, W E; Eckerman, K F; Hertel, N E; Hunt, J G; Pelliccioni, M; Schlattl, H; Menzel, H-G

    2014-01-01

    This paper reviews the ICRP Publications 110 and 116 describing the reference computational phantoms and dose conversion coefficients for external exposures. The International Commission on Radiological Protection (ICRP) in its 2007 Recommendations made several revisions to the methods of calculation of the protection quantities. In order to implement these recommendations, the DOCAL task group of the ICRP developed computational phantoms representing the reference adult male and female and then calculated a set of dose conversion coefficients for various types of idealised external exposures. This paper focuses on the dose conversion coefficients for neutrons and investigates their relationship with the conversion coefficients of the protection and operational quantities of ICRP Publication 74. Contributing factors to the differences between these sets of conversion coefficients are discussed in terms of the changes in phantoms employed and the radiation and tissue weighting factors.

  1. Punching Shear in Steel Fibre Reinforced Concrete Slabs Without Traditional Reinforcement

    Science.gov (United States)

    Tan, K. H.; Venkateshwaran, A.

    2017-09-01

    The punching shear capacity of steel fibre reinforced concrete (SFRC) slabs without traditional steel bar reinforcement was investigated by conducting central point-load tests on twelve square slabs. The test parameters covered fibres with different multi-hook ends, concrete compressive strength, reinforcing index and slab thickness. The statistical performance of two existing models for the prediction of punching shear capacity of SFRC slabs without traditional reinforcement was examined. The load carrying capacity of these slabs were also assessed using the yield line theory. It is noted that the slabs failed primarily in flexure and the yield line theory predicted the load carrying capacities of the slabs most accurately. The reason for a flexural failure in SFRC slabs without steel bars is attributed to the lesser energy required in the propagation of an existing flexural cracks than in the creation of a new circumferential cracks around the column face.

  2. Determination of a natural basis function set on thick, structured slabs using Prony's method

    Science.gov (United States)

    Jorgenson, Roy E.; Epp, Larry; Mittra, Raj

    1991-01-01

    The calculation of currents on a thick, structured slab such as a thick slab of honeycomb is discussed. Unfortunately, for certain applications, the slab can be on the order of several wavelengths, so that the straightforward application of the method of moments using subdomain basis functions is too expensive. The authors discuss how to apply Prony's method to the currents calculated for a thin, structured slab to obtain a natural set of basis functions to represent the currents in the interior of a thick slab. Prony's method represents the currents as a series of complex exponential functions. The thick slab problem is then solved by the method of moments using subdomain basis functions near the slab interfaces and one or two of the complex exponentials as basis functions within the slab.

  3. Investigation of approach slab and its settlement for roads and bridges.

    Science.gov (United States)

    2014-01-01

    Approach slabs serve as a transitional system between an approach road and a bridge. Settlement of bridge approach slabs and their : supporting backfill has been experienced by more than ten Departments of Transportation throughout the United States....

  4. Preliminary performance analysis of a transverse flow spectrally selective two-slab packed bed volumetric receiver

    CSIR Research Space (South Africa)

    Roos, TH

    2016-05-01

    Full Text Available A new volumetric receiver concept has been investigated, based on an adaptation of the spectrally selective, two-slab packed bed volumetric receiver concept of Flamant et al. Both slabs comprise spheres of identical size – borosilicate...

  5. The phantom and the supernumerary phantom limb: historical review and new case.

    Science.gov (United States)

    Cipriani, Gabriele; Picchi, Lucia; Vedovello, Marcella; Nuti, Angelo; Fiorino, Mario Di

    2011-12-01

    The way we experience the world is determined by the way our brain works. The phantom limb phenomenon, which is a delusional belief of the presence of a non-existent limb, has a particular fascination in neurology. This positive phenomenon of the phantom limb raises theoretical questions about its nature. After a stroke, some patients experience the perception of an extra limb in addition to the regular set of two arms and two legs. This complex cognitive and perceptual distortion is called supernumerary phantom limb. Here, we review the pathogenesis and historical aspects, and report a new case.

  6. MAX06 and FAX06: update of two adult human phantoms for radiation protection dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R [Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire 1000, Cidade Universitaria, CEP: 50740-540, Recife, PE (Brazil); Khoury, H J [Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire 1000, Cidade Universitaria, CEP: 50740-540, Recife, PE (Brazil); Vieira, J W [Centro Federal de Educacao Tecnologica de Pernambuco, Recife, PE (Brazil); Lima, V J M [Departamento de Anatomia, Universidade Federal de Pernambuco, Recife, PE (Brazil)

    2006-07-21

    The International Commission on Radiological Protection (ICRP) is currently preparing new recommendations which will replace those released in ICRP 1991, 1990 Recommendations of the ICRP ICRP Publication 60 (Oxford: Pergamon). The draft report previews a change for the effective dose with respect to the number of organs and tissues to be included in its calculation. In the future, adipose tissue, connective tissue, the extrathoracic airways, the gall bladder, the heart wall, the lymphatic nodes, the prostate and the salivary glands have to be taken into account for the determination of the effective dose. This study reports on a second segmentation of the recently introduced male adult voxel (MAX) and female adult voxel (FAX) phantoms with regard to the new organs and tissues, but also presents a revised representation of the skeletons, which had not been adjusted to ICRP-based volumes in the first release of the two phantoms.

  7. MAX06 and FAX06: update of two adult human phantoms for radiation protection dosimetry

    Science.gov (United States)

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Lima, V. J. M.

    2006-07-01

    The International Commission on Radiological Protection (ICRP) is currently preparing new recommendations which will replace those released in ICRP 1991, 1990 Recommendations of the ICRP ICRP Publication 60 (Oxford: Pergamon). The draft report previews a change for the effective dose with respect to the number of organs and tissues to be included in its calculation. In the future, adipose tissue, connective tissue, the extrathoracic airways, the gall bladder, the heart wall, the lymphatic nodes, the prostate and the salivary glands have to be taken into account for the determination of the effective dose. This study reports on a second segmentation of the recently introduced male adult voxel (MAX) and female adult voxel (FAX) phantoms with regard to the new organs and tissues, but also presents a revised representation of the skeletons, which had not been adjusted to ICRP-based volumes in the first release of the two phantoms.

  8. Tests and Evaluation of Upgraded Flat-Plate and Waffle-Slab Floor Systems

    Science.gov (United States)

    1983-12-01

    plate test specimen was constructed to include the positive moment area from a 22-ft-square slab designed according to the Third Edition of the CRSI ... CRSI Handbook. The waffle-slab specimens were constructed to include positive mo- ment areas from 24-foot-square slabs. An 8-inch-thick wall, 8 feet...portions were designed in accordance with the design of a waffle-slab floor given in the Concrete Reinforcing Steel Institute ( CRSI ) Handbook (Ref

  9. Optimizing the Slab Yard Planning and Crane Scheduling Problem using a Two-Stage Heuristic

    OpenAIRE

    Dohn, Anders; Clausen, Jens

    2010-01-01

    Abstract In this paper, we present the Slab Yard Planning and Crane Scheduling Problem. The problem has its origin in steel production facilities with a large throughput. A slab yard is used as a buffer for slabs that are needed in the upcoming production. Slabs are transported by cranes and the problem considered here is concerned with the generation of schedules for these cranes. The problem is decomposed and modeled in two parts, namely a planning problem and a scheduling proble...

  10. Analytical approach to dielectric optical bent slab waveguides

    NARCIS (Netherlands)

    Hiremath, K.R.; Hammer, Manfred; Stoffer, Remco; Prkna, L.; Ctyroky, J.

    A rigorous classical analytic frequency domain model of con?ned optical wave propagation along 2D bent slab waveguides and curved dielectric interfaces is investigated, based on a piecewise ansatz for bend mode profiles in terms of Bessel and Hankel functions. This approach provides a clear picture

  11. Shear and anchorage behaviour of fire exposed hollow core slabs

    NARCIS (Netherlands)

    Fellinger, J.

    2005-01-01

    The fire resistance of hollow core slabs is currently assessed considering flexural failure only. However, fire tests show that shear or anchorage failure can also govern the load bearing behaviour. This paper is based on the dissertation by the author1 and discusses existing and new fire tests. It

  12. Emplacement of the Kodiak batholith and slab-window migration

    Science.gov (United States)

    Farris, David W.; Haeussler, P.; Friedman, R.; Paterson, Scott R.; Saltus, R.W.; Ayuso, R.

    2006-01-01

    The Kodiak batholith is one of the largest, most elongate intrusive bodies in the forearc Sanak-Baranof plutonic belt located in southern Alaska. This belt is interpreted to have formed during the subduction of an oceanic spreading center and the associated migration of a slab window. Individual plutons of the Kodiak batholith track the location and evolution of the underlying slab window. Six U/Pb zircon ages from the axis of the batholith exhibit a northeastward-decreasing age progression of 59.2 ± 0.2 Ma at the southwest end to 58.4 ± 0.2 Ma at the northeast tip. The trench-parallel rate of age progression is within error of the average slab-window migration rate for the entire Sanak-Baranof belt (~19 cm/yr). Structural relationships, U/Pb ages, and a model of new gravity data indicate that magma from the Kodiak batholith ascended 5-10 km as a northeastward-younging series of 1-8-km-diameter viscoelastic diapirs. Individual plutons ascended by multiple emplacement mechanisms including downward flow, collapse of wall rock, stoping, and diking. Stokes flow xenolith calculations suggest ascent rates of 5-100 m/yr and an effective magmatic viscosity of 107-108 Pa s. Pre-existing structural or lithologic heterogeneities did not dominantly control the location of the main batholith. Instead, its location was determined by migration of the slab window at depth. 

  13. Some consequences of the subduction of young slabs

    NARCIS (Netherlands)

    England, P.; Wortel, R.

    The negative buoyancy force exerted by a subducting oceanic slab depends on its descent velocity, and strongly on its age. For lithosphere close to thermal equilibrium, this force dominates by a large margin the resisting forces arising from friction on the plate boundary and compositional buoyancy.

  14. Enhancement of polarizabilities of cylinders with cylinder-slab resonances

    Science.gov (United States)

    Xiao, Meng; Huang, Xueqin; Liu, H.; Chan, C. T.

    2015-01-01

    If an object is very small in size compared with the wavelength of light, it does not scatter light efficiently. It is hence difficult to detect a very small object with light. We show using analytic theory as well as full wave numerical calculation that the effective polarizability of a small cylinder can be greatly enhanced by coupling it with a superlens type metamaterial slab. This kind of enhancement is not due to the individual resonance effect of the metamaterial slab, nor due to that of the object, but is caused by a collective resonant mode between the cylinder and the slab. We show that this type of particle-slab resonance which makes a small two-dimensional object much “brighter” is actually closely related to the reverse effect known in the literature as “cloaking by anomalous resonance” which can make a small cylinder undetectable. We also show that the enhancement of polarizability can lead to strongly enhanced electromagnetic forces that can be attractive or repulsive, depending on the material properties of the cylinder. PMID:25641391

  15. Tensor-guided fitting of subduction slab depths

    Science.gov (United States)

    Bazargani, Farhad; Hayes, Gavin P.

    2013-01-01

    Geophysical measurements are often acquired at scattered locations in space. Therefore, interpolating or fitting the sparsely sampled data as a uniform function of space (a procedure commonly known as gridding) is a ubiquitous problem in geophysics. Most gridding methods require a model of spatial correlation for data. This spatial correlation model can often be inferred from some sort of secondary information, which may also be sparsely sampled in space. In this paper, we present a new method to model the geometry of a subducting slab in which we use a data‐fitting approach to address the problem. Earthquakes and active‐source seismic surveys provide estimates of depths of subducting slabs but only at scattered locations. In addition to estimates of depths from earthquake locations, focal mechanisms of subduction zone earthquakes also provide estimates of the strikes of the subducting slab on which they occur. We use these spatially sparse strike samples and the Earth’s curved surface geometry to infer a model for spatial correlation that guides a blended neighbor interpolation of slab depths. We then modify the interpolation method to account for the uncertainties associated with the depth estimates.

  16. Optimization of design formulations for reinforced concrete slabs ...

    African Journals Online (AJOL)

    The predictions for flexural requirement in singly reinforced concrete slabs and sections have been assessed using the minimum weight approach and mathematical programming. Results indicate that although the predictions in the codes are safe; they are quite conservative, expensive and encourage although the ...

  17. Enhancement of polarizabilities of cylinders with cylinder-slab resonances.

    Science.gov (United States)

    Xiao, Meng; Huang, Xueqin; Liu, H; Chan, C T

    2015-02-02

    If an object is very small in size compared with the wavelength of light, it does not scatter light efficiently. It is hence difficult to detect a very small object with light. We show using analytic theory as well as full wave numerical calculation that the effective polarizability of a small cylinder can be greatly enhanced by coupling it with a superlens type metamaterial slab. This kind of enhancement is not due to the individual resonance effect of the metamaterial slab, nor due to that of the object, but is caused by a collective resonant mode between the cylinder and the slab. We show that this type of particle-slab resonance which makes a small two-dimensional object much "brighter" is actually closely related to the reverse effect known in the literature as "cloaking by anomalous resonance" which can make a small cylinder undetectable. We also show that the enhancement of polarizability can lead to strongly enhanced electromagnetic forces that can be attractive or repulsive, depending on the material properties of the cylinder.

  18. Impact sound insulation improvement of wooden floors on concrete slabs

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Hoffmeyer, Dan; Hansen, Rói

    2014-01-01

    renovating housing. In Denmark, there are about 1 million dwellings in multi-storey housing. About half of the dwellings are built with timber floors, and the other half with wooden floors on concrete slabs, either in-situ cast or prefabricated hollow-core elements. In a project including mapping of sound...

  19. Analysis of Concrete Slabs Subject to Concentrated Loads | Albrecht ...

    African Journals Online (AJOL)

    A simplified procedure for the calculation of the additional reinforcement which is required under concentrated loads acting on concrete slabs is provided. The introduced method can also be used for the treatment of line loads. Conditions for the application of this procedure are stated and tables for necessary design values ...

  20. Lower Bound Limit Analysis Of Slabs With Nonlinear Yield Criteria

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars

    2002-01-01

    A finite element formulation of the limit analysis of perfectly plastic slabs is given. An element with linear moment fields for which equilibrium is satisfied exactly is used in connection with an optimization algorithm taking into account the full nonlinearity of the yield criteria. Both load...

  1. Collisional Effect On Magnetosonic Solitons In A Dusty Plasma Slab ...

    African Journals Online (AJOL)

    An analytical investigation of collisional effect on magnetosonic solitons in a dusty plasma slab is presented. We have derived and presented solutions of nonlinear magetohydrodynamic equations for a warm dusty magnetoplasma. It is observed that, our work could be considered a general case for magnetosonic solutions ...

  2. Experimental and theoretical study of precast beam-slab construction

    African Journals Online (AJOL)

    The use of partially precast beam elements with shear connectors in slab construction relieves the requirement of extensive use of soffit formwork and props and will have the advantage of faster construction. It also reduces adverse effects associated deforestation. Experimental and theoretical investigations were conducted ...

  3. Use of fiber reinforced concrete for concrete pavement slab replacement.

    Science.gov (United States)

    2014-03-01

    Unlike ordinary concrete pavement, replacement concrete slabs need to be open to traffic within 24 hours (sooner in : some cases). Thus, high early-strength concrete is used; however, it frequently cracks prematurely as a result of high : heat of hyd...

  4. Impact performance of FRC slabs under various strain rates

    Directory of Open Access Journals (Sweden)

    Horska Alena

    2015-01-01

    Full Text Available Impact resistance of plain concrete and FRC composites gains high importance in the present days. This paper presents outcomes of the experiments focused on performance of FRC slabs subjected to impact loading of various strain rates. The FRC slabs, thickness 30, 60 and 120 mm were subjected to various drop-weight impacts. The different drop-hammer weights provided different loading speeds and strain rates. The performance of the slabs was recorded with the use of high speed cameras. The cameras were used for impact speed control and specimen deflection measurement. With the use of the recordings, the force-time response of the slabs could be plotted. The plots correspond to the mechanical behaviour obtained by static load tests (loading speed 0.2 mm/min but several differences can be found. Several types of FRC (varying fiber material, fiber content, etc. were tested and evaluated. The experimental program is supplemented by numerical modelling which provides good agreement with the experimental results.

  5. Study of global stability of tall buildings with prestressed slabs

    Directory of Open Access Journals (Sweden)

    L. A. Feitosa

    Full Text Available The use of prestressed concrete flat slabs in buildings has been increasing in recent years in the Brazilian market. Since the implementation of tall and slender buildings a trend in civil engineering and architecture fields, arises from the use of prestressed slabs a difficulty in ensuring the overall stability of a building without beams. In order to evaluate the efficiency of the main bracing systems used in this type of building, namely pillars in formed "U" in elevator shafts and stairs, and pillars in which the lengths are significantly larger than their widths, was elaborated a computational models of fictional buildings, which were processed and analyzed using the software CAD/TQS. From the variation of parameters such as: geometry of the pillars, thick slabs, characteristic strength of the concrete, reduceofthe coefficient of inertia for consideration of non-linearities of the physical elements, stiffness of the connections between slabs and pillars, among others, to analyze the influence of these variables on the overall stability of the building from the facing of instability parameter Gama Z, under Brazilian standard NBR 6118, in addition to performing the processing of building using the P-Delta iterative calculation method for the same purpose.

  6. Support for Conference Entitled The Fifth PHANTOM Users Group Workshop

    National Research Council Canada - National Science Library

    Reinig, Karl

    2001-01-01

    The Fifth PHANToM Users Group (PUG2000) brought together, in an intimate setting, participants who are actively engaged in making computer haptics practical and useful through the use of the PHANTOM Haptic Interface...

  7. A computational model unifies apparently contradictory findings concerning phantom pain

    Science.gov (United States)

    Boström, Kim J.; de Lussanet, Marc H. E.; Weiss, Thomas; Puta, Christian; Wagner, Heiko

    2014-06-01

    Amputation often leads to painful phantom sensations, whose pathogenesis is still unclear. Supported by experimental findings, an explanatory model has been proposed that identifies maladaptive reorganization of the primary somatosensory cortex (S1) as a cause of phantom pain. However, it was recently found that BOLD activity during voluntary movements of the phantom positively correlates with phantom pain rating, giving rise to a model of persistent representation. In the present study, we develop a physiologically realistic, computational model to resolve the conflicting findings. Simulations yielded that both the amount of reorganization and the level of cortical activity during phantom movements were enhanced in a scenario with strong phantom pain as compared to a scenario with weak phantom pain. These results suggest that phantom pain, maladaptive reorganization, and persistent representation may all be caused by the same underlying mechanism, which is driven by an abnormally enhanced spontaneous activity of deafferented nociceptive channels.

  8. Slab Stagnation in the Lower Mantle: A Multidisciplinary Investigation

    Science.gov (United States)

    Waszek, L.; Arredondo, K.; Finkelstein, G. J.; Kellogg, L. H.; Lekic, V.; Li, M.; Lithgow-Bertelloni, C. R.; Romanowicz, B. A.; Schmerr, N. C.; Rudolph, M. L.; Townsend, J. P.; Xing, Z.; Yang, F.

    2014-12-01

    Recent tomographic models show that while many slabs seem to deflect or stagnate at the 660 km discontinuity, some slabs continue to subduct deeper and pond at 1000 km below the earth's surface (Fukao and Obayashi, 2013). Only one slab is observed to penetrate significantly deeper into the mantle. Furthermore, some mantle upwellings also appear to be deflected at 1000 km in depth. The radial correlation functions for the low-order spherical harmonics of most tomographic inversions show that while seismic wave velocities are correlated for all depths below ~1000 km, velocities at depths between 400-1000 km are uncorrelated with velocities at any other depth. This implies that there are large scale velocity features coherent from 1000 km to the core-mantle boundary, but no large scale features coherent from the top of the transition zone down to 1000 km. Seismic studies using precursors and receiver functions find evidence for numerous reflectors in the mid-mantle, ranging from 900 km in depth beneath the southern Pacific and southeast Asia to 1200 km beneath Europe and Japan. This range of depths could indicate topography along a single laterally continuous discontinuity or result from multiple unconnected features. Some reflectors are geographically near, and therefore may be associated with, subducted slabs, however the origin of the others is unclear. The 1000 km 'discontinuity' could potentially be explained by an increase in viscosity or density, such as a compositional difference in the mantle below this depth. We use an interdisciplinary approach to investigate the diversity in apparent slab stagnation behavior and which geophysical mechanisms prevent subduction into the lower mantle. The controlling factor may be a function of the slab itself, including subduction rate, trench rollback, composition, or temperature. Alternatively, bulk mantle properties may control slab penetration. We perform 2D and 3D numerical simulations to determine the influence of

  9. Slab melting and magma formation beneath the southern Cascade arc

    Science.gov (United States)

    Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.

    2016-01-01

    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  10. Analisis Perbandingan Material Slab Beton Pada Perkerasan Apron Dengan Menggunakan Program Bantu Elemen Hingga

    Directory of Open Access Journals (Sweden)

    Hendrawan Setyo Warsito

    2016-04-01

    Full Text Available Kekuatan slab beton sangat dipengaruhi oleh jenis material yang dipakai. Jenis material yang dimaksud adalah material beton dengan menggunakan PC (Portland Cement dan penggunaan geopolimer dalam komposisi campuran slab beton. Beton geopolimer merupakan beton yang ramah lingkungan. Permasalahan lain yang timbul adalah letak roda pesawat tidak selalu berada pada titik yang sama disuatu permukaan slab beton apron. Pada tugas akhir ini dimaksudkan untuk menganalisis suatu slab beton yang dibebani roda pesawat dengan campuran variasi material beton dan variasi letak roda pesawat pada slab beton dengan program bantu metode elemen hingga. Dengan data pergerakan pesawat, spesifikasi apron bandara Juanda kondisi eksisting. Dilakukan perhitungan tebal slab beton menggunakan software FAARFIELD dan diperoleh tebal slab beton sebesar 442,5 mm. Dari analisis program bantu elemen hingga dapat diperoleh tegangan pada slab beton yang ditimbulkan oleh pembebanan roda pesawat. Hasil validasi dari analisis tegangan menggunakan program bantu elemen hingga dengan analisis Westergaard yaitu memiliki nilai tegangan yang hampir sama pada ketebalan slab beton 450mm. Nilai tegangan tiap-tiap material beton menunjukan nilai tebal slab beton yang diijinkan untuk tipe pesawat tertentu. Dari analisis menggunakan program bantu elemen hingga tebal slab beton yang diijinkan untuk material slab beton PC yaitu sebesar 425mm. Sedangkan untuk material beton geopolimer yaitu sebesar  415 mm.

  11. Field demonstration of new bridge approach slab designs and performance : [research project capsule].

    Science.gov (United States)

    2008-10-01

    A normal bridge approach slab in Louisiana is a reinforced concrete slab. It connects : the bridge deck to the adjacent paved roadway. Its intended functions are: : 1. To span the void that may develop below the slab due to soil erosion or : embankme...

  12. Application of yield line theory in pre-cast waffle slab | Akinyele ...

    African Journals Online (AJOL)

    Analysis of precast waffle slabs have concentrated on the rib portions, while the slab portion were left unanalyzed. This has led to cracks or outright failure of the slab portions due to under reinforcement. This paper proposed the use of yield line theory in solving this problem. Yield line theory was adopted to develop a ...

  13. High-power diode-pumped Tm:YLF slab laser

    CSIR Research Space (South Africa)

    Schellhorn, M

    2009-06-01

    Full Text Available The aim is to develop a high-power Tm:YLF slab laser which can be utilized to pump a Ho slab laser. A 68 W Tm:YLF slab laser was recently presented in [1] pumped from one end by a single 6-bar stack delivering ~300 W of pump power. In this work, we...

  14. Influence of concrete slabs on lateral torsional buckling of steel beams

    NARCIS (Netherlands)

    Maljaars, J.; Snijder, H.H.; Hoenderkamp, J.C.D.

    2007-01-01

    The use of pre-cast concrete floor slabs in steel framed structures is quite common. In the de-sign of the steel beams, the lateral restraining effect of the pre-cast concrete slab is normally safely neglected. However, the concrete slab will provide some horizontal restraint, even without special

  15. Phantom breast sensations are frequent after mastectomy

    DEFF Research Database (Denmark)

    Hansen, Dorthe Marie Helbo; Kehlet, Henrik; Gärtner, Rune

    2011-01-01

    Phantom breast sensation (PBS) following mastectomy has been recognized for many years. PBS is a feeling that the removed breast is still there. The reported prevalence and risk factors have not been established in large well-defined patient series. The purpose of this study was to examine...... the prevalence of PBS following mastectomy and associated risk factors....

  16. Phantoms for Radiation Measurements of Mobile Phones

    DEFF Research Database (Denmark)

    Pedersen, Gert Frølund

    2001-01-01

    Measurements of radiation efficiency for a handheld phone equipped with a patch and a helical antenna operated near the human user have been performed. Both measurements include a simple head plus hand phantom and live persons are considered. The position of the hand on the phone is found...

  17. Phantom breast sensations are frequent after mastectomy

    DEFF Research Database (Denmark)

    Hansen, Dorthe Marie Helbo; Kehlet, Henrik; Gærtner, Rune

    2011-01-01

    Phantom breast sensation (PBS) following mastectomy has been recognized for many years. PBS is a feeling that the removed breast is still there. The reported prevalence and risk factors have not been established in large well-defined patient series. The purpose of this study was to examine...

  18. Anisotropic diffusion phantoms based on microcapillaries

    Science.gov (United States)

    Vellmer, Sebastian; Edelhoff, Daniel; Suter, Dieter; Maximov, Ivan I.

    2017-06-01

    Diffusion MRI is an efficient and widely used technique for the investigation of tissue structure and organisation in vivo. Multiple phenomenological and biophysical diffusion models are intensively exploited for the analysis of the diffusion experiments. However, the verification of the applied diffusion models remains challenging. In order to provide a ;gold standard; and to assess the accuracy of the derived parameters and the limitations of the diffusion models, anisotropic diffusion phantoms with well known architecture are demanded. In the present work we built four anisotropic diffusion phantoms consisting of hollow microcapillaries with very small inner diameters of 5, 10 and 20 μ m and outer diameters of 90 and 150 μ m. For testing the suitability of these phantoms, we performed diffusion measurements on all of them and evaluated the resulting data with a set of popular diffusion models, such as diffusion tensor and diffusion kurtosis imaging, a two compartment model with intra- and extra-capillary water spaces using bi-exponential fitting, and time-dependent diffusion coefficients in Mitra's limit. The perspectives and limitations of these diffusion phantoms are presented and discussed.

  19. New eye phantom for ophthalmic surgery

    Science.gov (United States)

    Fogli, Gessica; Orsi, Gianni; De Maria, Carmelo; Montemurro, Francesca; Palla, Michele; Rizzo, Stanislao; Vozzi, Giovanni

    2014-06-01

    In this work, we designed and realized a new phantom able to mimic the principal mechanical, rheological, and physical cues of the human eye and that can be used as a common benchmark to validate new surgical procedures, innovative vitrectomes, and as a training system for surgeons. This phantom, in particular its synthetic humor vitreous, had the aim of reproducing diffusion properties of the natural eye and can be used as a system to evaluate the pharmacokinetics of drugs and optimization of their dose, limiting animal experiments. The eye phantom was built layer-by-layer starting from the sclera up to the retina, using low cost and easy to process polymers. The validation of the phantom was carried out by mechanical characterization of each layer, by diffusion test with commercial drugs into a purposely developed apparatus, and finally by a team of ophthalmic surgeons. Experiments demonstrated that polycaprolactone, polydimethylsiloxane, and gelatin, properly prepared, are the best materials to mimic the mechanical properties of sclera, choroid, and retina, respectively. A polyvinyl alcohol-gelatin polymeric system is the best for mimicking the viscosity of the human humor vitreous, even if the bevacizumab half-life is lower than in the human eye.

  20. A Rat Body Phantom for Radiation Analysis

    Science.gov (United States)

    Qualls, Garry D.; Clowdsley, Martha S.; Slaba, Tony C.; Walker, Steven A.

    2010-01-01

    To reduce the uncertainties associated with estimating the biological effects of ionizing radiation in tissue, researchers rely on laboratory experiments in which mono-energetic, single specie beams are applied to cell cultures, insects, and small animals. To estimate the radiation effects on astronauts in deep space or low Earth orbit, who are exposed to mixed field broad spectrum radiation, these experimental results are extrapolated and combined with other data to produce radiation quality factors, radiation weighting factors, and other risk related quantities for humans. One way to reduce the uncertainty associated with such extrapolations is to utilize analysis tools that are applicable to both laboratory and space environments. The use of physical and computational body phantoms to predict radiation exposure and its effects is well established and a wide range of human and non-human phantoms are in use today. In this paper, a computational rat phantom is presented, as well as a description of the process through which that phantom has been coupled to existing radiation analysis tools. Sample results are presented for two space radiation environments.

  1. The influence of patient size on dose conversion coefficients: a hybrid phantom study for adult cardiac catheterization

    Science.gov (United States)

    Johnson, Perry; Lee, Choonsik; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E.

    2009-06-01

    In this study, the influence of patient size on organ and effective dose conversion coefficients (DCCs) was investigated for a representative interventional fluoroscopic procedure—cardiac catheterization. The study was performed using hybrid phantoms representing an underweight, average and overweight American adult male. Reference body sizes were determined using the NHANES III database and parameterized based on standing height and total body mass. Organ and effective dose conversion coefficients were calculated for anterior-posterior, posterior-anterior, left anterior oblique and right anterior oblique projections using the Monte Carlo code MCNPX 2.5.0 with the metric dose area product being used as the normalization factor. Results show body size to have a clear influence on DCCs which increased noticeably when body size decreased. It was also shown that if patient size is neglected when choosing a DCC, the organ and effective dose will be underestimated to an underweight patient and will be overestimated to an underweight patient, with errors as large as 113% for certain projections. Results were further compared with those published for a KTMAN-2 Korean patient-specific tomographic phantom. The published DCCs aligned best with the hybrid phantom which most closely matched in overall body size. These results highlighted the need for and the advantages of phantom-patient matching, and it is recommended that hybrid phantoms be used to create a more diverse library of patient-dependent anthropomorphic phantoms for medical dose reconstruction.

  2. Cortical Depression and Potentiation: Basic Mechanisms for Phantom Pain

    OpenAIRE

    Zhuo, Min

    2012-01-01

    People experience the feeling of the missing body part long after it has been removed after amputation are known as phantom limb sensations. These sensations can be painful, sometimes becoming chronic and lasting for several years (or called phantom pain). Medical treatment for these individuals is limited. Recent neurobiological investigations of brain plasticity after amputation have revealed new insights into the changes in the brain that may cause phantom limb sensations and phantom pain....

  3. Atypical supernumerary phantom limb and phantom limb pain in two patients with pontine hemorrhage.

    Science.gov (United States)

    Yoo, Seung Don; Kim, Dong Hwan; Jeong, Yong Seol; Chon, Jinmann; Bark, Jihea

    2011-06-01

    Phantom limbs are usually observed after amputation of extremities. In patients after a stroke, a similar but rarely occurring phenomenon consisting of the patient experiencing the presence of an additional limb has been described. This phenomenon, generally called supernumerary phantom limb (SPL), may be caused by lesions in the right or left cerebral hemisphere, but has been predominantly reported in patients who have had a right hemispheric stroke. We report two cases of atypical SPL and phantom limb pain (PLP) after pontine hemorrhage. The patients were treated conservatively and their symptoms lasted more than 1 month. This is the first report of SPLs after left pontine hemorrhage, and phantom perception and pain lasted longer than those in previously observed cases. Our results indicate that SPL may be more common than reported; therefore, thorough examinations are essential for the care of stroke patients.

  4. Computerized scheme for evaluating mammographic phantom images.

    Science.gov (United States)

    Asahara, Masaki; Kodera, Yoshie

    2012-03-01

    The authors developed a computer algorithm to automatically evaluate images of the American College of Radiology (ACR) mammography accreditation phantom. The developed algorithm consist of the edge detection of wax insert, nonuniformity correction of background, and correction for magnification and also calculate the cross-correlation coefficient by image matching technique. The algorithm additionally evaluates target shape for fibers, target contrast for speck groups, and target circularity for masses. To obtain an ideal template image without noise and spatial resolution loss, the wax insert containing the embedded test pattern was extracted from the phantom and radiographed. Two template images and ten test phantom images were prepared for this study. The results of evaluation using the algorithm outputs were compared with the averaged results of observer studies by six skilled observers. In comparing the results from the algorithm outputs with the results of observers, the authors found that the computer outputs were well correlated with the evaluations by observers, and they indicate the quality of the phantom image. The correlation coefficients between results of observer studies and two outputs of computer algorithm, i.e., the cross-correlation coefficient by template matching and indices of target shape for fibers, were 0.89 (95% confidence interval, 0.82-0.93; hereinafter the same) and 0.85 (0.76-0.91). The correlation coefficients between observer's results and two outputs: the cross-correlation coefficient and indices of target contrast for speck groups, were 0.83 (0.79-0.86) and 0.85 (0.81-0.88) and between observer's results and two outputs: the cross-correlation coefficient and indices of target circularity for masses, were 0.90 (0.84-0.94) and 0.87 (0.77-0.92). Image evaluation using the ACR phantom is indispensable in quality control of a mammography system. The proposed algorithm is useful for quality control and image evaluation of mammography

  5. 21 CFR 892.1380 - Nuclear flood source phantom.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with a...

  6. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide test pattern phantom. 892.1420... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern phantom. (a) Identification. A radionuclide test pattern phantom is a device that consists of an arrangement...

  7. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear anthropomorphic phantom. 892.1370 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains a...

  8. Revealing the invisible: the paradox of picturing a phantom limb.

    Science.gov (United States)

    Schott, G D

    2014-03-01

    Illustrations of phantom limbs are intriguing as they depict an invisible perception. But such illustrations are also important: they provide a form of objectivity to phenomena, which particularly in the past, have often stretched credulity. Acknowledging the paradox of using images to reveal an absent though sensate body part, depictions of phantom limbs are discussed from the neurological perspective, starting with medieval pictures that showed the miraculous restoration of limbs, and which possibly represented pictorial metaphors for a phantom limb. Centuries later, phantom limbs-whether resulting from amputation or deafferentation-became illustrated, and some reasons for their illustration are considered. Although often depicted by others, the most precise and perhaps revealing illustrations of these phantoms have been those made when patients guide the artist, or draw the phantom themselves. In the case of phantom pains, the painful component too is sometimes illustrated, again, as with the miraculous, in metaphorical terms. More recently, depictions of phantoms have also been revealing in studies of some underlying mechanisms of phantom phenomena, notably in demonstrating novel patterns of referred sensations after amputation and attributable to cortical plasticity. Mention is made of photographs of phantom hands visualized using a mirror box, such visualization recalling full circle the miraculous restoration of limbs pictured in the past. The nature of the outline of the phantom is included in a discussion of demarcation of an invisible body part, before concluding that images of phantom limbs provide an invaluable background to understanding and studying these remarkable sensory phenomena.

  9. Survey of phantom limb pain, phantom sensation and stump pain in Cambodian and New Zealand amputees.

    Science.gov (United States)

    Byrne, Kelly Patrick Anthony

    2011-05-01

    The primary objective of this study is to compare the prevalence of phantom limb pain in New Zealand and Cambodian amputees and to assess the demographics of a sample of amputees from these two countries. All participants were interviewed using a 12-question survey that covered demographic data and reason for amputation and assessed the presence of phantom limb sensation, phantom limb pain, and stump pain. Amputees attending an artificial limb center in Cambodia were approached and interviewed in person. New Zealand amputees attending the Waikato artificial limb center were randomly selected and interviewed by phone. There was no statistically significant difference in phantom limb sensation, phantom limb pain, or stump pain between the two groups. There was a much higher unemployment rate in the Cambodian amputees. There were no other statistically significant differences between the groups Despite very different environments, there was no difference in the phantom limb pain between the groups. One possible explanation is that the severity of neurological injury associated with amputation overrides all the other risk factors that influence the development of other chronic pain syndromes. Wiley Periodicals, Inc.

  10. Motor control over the phantom limb in above-elbow amputees and its relationship with phantom limb pain.

    Science.gov (United States)

    Gagné, M; Reilly, K T; Hétu, S; Mercier, C

    2009-08-04

    Recent evidence shows that the primary motor cortex continues to send motor commands when amputees execute phantom movements. These commands are retargeted toward the remaining stump muscles as a result of motor system reorganization. As amputation-induced reorganization in the primary motor cortex has been associated with phantom limb pain we hypothesized that the motor control of the phantom limb would differ between amputees with and without phantom limb pain. Eight above-elbow amputees with or without pain were included in the study. They were asked to produce cyclic movements with their phantom limb (hand, wrist, and elbow movements) while simultaneously reproducing the same movement with the intact limb. The time needed to complete a movement cycle and its amplitude were derived from the kinematics of the intact limb. Electromyographic (EMG) activity from different stump muscles and from the homologous muscles on the intact side was recorded. Different EMG patterns were recorded in the stump muscles depending on the movement produced, showing that different phantom movements are associated with distinct motor commands. Phantom limb pain was associated with some aspects of phantom limb motor control. The time needed to complete a full cycle of a phantom movement was systematically shorter in subjects without phantom limb pain. Also, the amount of EMG modulation recorded in a stump muscle during a phantom hand movement was positively correlated with the intensity of phantom limb pain. Since phantom hand movement-related EMG patterns in above-elbow stump muscles can be considered as a marker of motor system reorganization, this result indirectly supports the hypothesis that amputation-induced plasticity is associated with phantom limb pain severity. The discordance between the (amputated) hand motor command and the feedback from above-elbow muscles might partially explain why subjects exhibiting large EMG modulation during phantom hand movement have more phantom

  11. Single tunable laser interrogation of slab-coupled optical sensors through resonance tuning.

    Science.gov (United States)

    Chadderdon, Spencer; Woodard, Leeland; Perry, Daniel; Selfridge, Richard H; Schultz, Stephen M

    2013-04-20

    This paper describes a method for tuning the resonant wavelengths of slab-coupled optical fiber sensors (SCOSs). This method allows multiple sensors to be interrogated simultaneously with a single tunable laser. The resonances are tuned by rotating a biaxial slab waveguide relative to an optical D-fiber. As the slab waveguide rotates, its effective index of refraction changes causing the coupling wavelengths of the slab waveguide and D-fiber to shift. A SCOS fabricated with potassium titanyl phosphate crystal as the slab waveguide is shown to have resonance tuning ranges of 6.67 and 22.24 nm, respectively, for TM and TE polarized modes.

  12. Effect of rheological approximations on slab detachment in 3D numerical simulations of continental collision

    Science.gov (United States)

    Pusok, Adina E.; Kaus, Boris; Popov, Anton

    2017-04-01

    It is commonly accepted that slab detachment results from the development of extensional stresses within the subducting slab. Subduction slowdown due to arrival of buoyant continental material at the trench is considered to cause such stress build up in the slab. Following slab detachment, slab pull partially or completely loses its strength and hot asthenosphere may flow through the slab window, which can have major consequences for continental collision. The dynamics of slab detachment has been extensively studied in 2D (i.e. analytical and numerical), but 3D models of slab detachment during continental collision remain largely unexplored. Some of the previous 3D models have investigated the role of an asymmetric margin on the propagation of slab detachment (van Hunen and Allen, 2011), the impact of slab detachment on the curvature of orogenic belts (Capitanio and Replumaz, 2013), the role of the collision rate on slab detachment depth (Li et al., 2013) or the effect of along-trench variations on slab detachment (Duretz et al., 2014). However, rheology of mantle and lithosphere is known to have a major influence on the dynamics of subduction. Here, we explore a range of different rheological approximations to understand their sensitivity on the possible scenarios. We employ the code LaMEM (Kaus et al., 2016) to perform 3D simulations of subduction/continental collision in an integrated lithospheric and upper-mantle scale model. The models exhibit a wide range of behaviours depending on the rheological law employed: from linear, to temperature-dependent visco-elasto-plastic rheology that takes into account both diffusion and dislocation creep. For example, we find that slab dynamics varies drastically between end member models: in viscous approximations, slab detachment is slow, dominated by viscous thinning, while for a non-linear visco-elasto-plastic rheology, slab detachment is relatively fast, dominated by plastic breaking and inducing strong mantle flow in

  13. Phantom Remodeling Effect of Dorsal Root Entry Zone Lesioning in Phantom Limb Pain Caused by Brachial Plexus Avulsion.

    Science.gov (United States)

    Son, Byung-Chul; Ha, Sang-Woo

    2015-01-01

    Dorsal root entry zone (DREZ) lesioning has been reported to be effective for phantom limb pain caused by brachial plexus avulsion pain. Most reports on DREZ lesioning for brachial plexus avulsion pain have focused on the results of pain relief without a detailed description of phantom sensations following DREZ lesioning. Two patients (1 with amputation and the other nonamputated) with chronic intractable phantom limb pain caused by brachial plexus avulsion underwent DREZ lesioning on the avulsed segments of the cervical spinal cords. Changes of the phantom limb were observed. Immediately following DREZ lesioning, the phantom limb pain disappeared in the amputee, the phantom arm was shortened and the phantom hand disappeared. The other patient with the nonamputated arm reported an immediate 50% reduction in the size of the phantom hand, and pain relief was up to 70% of the preoperative phantom limb pain. There was no further change in the phantom arm and hand during the follow-up of 1.5-2 years. The phantom arms and hands showed a prompt shortening and reduction in size, rather than a disappearance, following successful DREZ lesioning in patients with chronic phantom limb pain caused by brachial plexus avulsion. © 2015 S. Karger AG, Basel.

  14. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    Science.gov (United States)

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    New densitometer installation requires cross-calibration for accurate longitudinal assessment. When replacing a unit with the same model, the International Society for Clinical Densitometry recommends cross-calibrating by scanning phantoms 10 times on each instrument and states that spine bone mineral density (BMD) should be within 1%, whereas total body lean, fat, and %fat mass should be within 2% of the prior instrument. However, there is limited validation that these recommendations provide adequate total body cross-calibration. Here, we report a total body cross-calibration experience with phantoms and humans. Cross-calibration between an existing and new Lunar iDXA was performed using 3 encapsulated spine phantoms (GE [GE Lunar, Madison, WI], BioClinica [BioClinica Inc, Princeton, NJ], and Hologic [Hologic Inc, Bedford, MA]), 1 total body composition phantom (BioClinica), and 30 human volunteers. Thirty scans of each phantom and a total body scan of human volunteers were obtained on each instrument. All spine phantom BMD means were similar (within 1%; phantom (BBCP) BMD and bone mineral content (BMC) values were within 2% with biases of 0.005 g/cm2 and -3.4 g. However, lean and fat mass and %fat differed by 4.6%-7.7% with biases of +463 g, -496 g, and -2.8%, respectively. In vivo comparison supported BBCP data; BMD and BMC were within ∼2%, but lean and fat mass and %fat differed from 1.6% to 4.9% with biases of +833 g, -860 g, and -1.1%. As all body composition comparisons exceeded the recommended 2%, the new densitometer was recalibrated. After recalibration, in vivo bias was lower (phantoms, despite good BMD and BMC agreement, did not detect substantial lean and fat differences observed using BBCP and in vivo assessments. Consequently, spine phantoms are inadequate for dual-energy X-ray absorptiometry whole body composition cross-calibration. Copyright © 2016 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights

  15. Computational assessment of mammography accreditation phantom images and correlation with human observer analysis

    Science.gov (United States)

    Barufaldi, Bruno; Lau, Kristen C.; Schiabel, Homero; Maidment, D. A.

    2015-03-01

    Routine performance of basic test procedures and dose measurements are essential for assuring high quality of mammograms. International guidelines recommend that breast care providers ascertain that mammography systems produce a constant high quality image, using as low a radiation dose as is reasonably achievable. The main purpose of this research is to develop a framework to monitor radiation dose and image quality in a mixed breast screening and diagnostic imaging environment using an automated tracking system. This study presents a module of this framework, consisting of a computerized system to measure the image quality of the American College of Radiology mammography accreditation phantom. The methods developed combine correlation approaches, matched filters, and data mining techniques. These methods have been used to analyze radiological images of the accreditation phantom. The classification of structures of interest is based upon reports produced by four trained readers. As previously reported, human observers demonstrate great variation in their analysis due to the subjectivity of human visual inspection. The software tool was trained with three sets of 60 phantom images in order to generate decision trees using the software WEKA (Waikato Environment for Knowledge Analysis). When tested with 240 images during the classification step, the tool correctly classified 88%, 99%, and 98%, of fibers, speck groups and masses, respectively. The variation between the computer classification and human reading was comparable to the variation between human readers. This computerized system not only automates the quality control procedure in mammography, but also decreases the subjectivity in the expert evaluation of the phantom images.

  16. Photon fluence-to-effective dose conversion coefficients calculated from a Saudi population-based phantom

    Science.gov (United States)

    Ma, A. K.; Altaher, K.; Hussein, M. A.; Amer, M.; Farid, K. Y.; Alghamdi, A. A.

    2014-02-01

    In this work we will present a new set of photon fluence-to-effective dose conversion coefficients using the Saudi population-based voxel phantom developed recently by our group. The phantom corresponds to an average Saudi male of 173 cm tall weighing 77 kg. There are over 125 million voxels in the phantom each of which is 1.37×1.37×1.00 mm3. Of the 27 organs and tissues of radiological interest specified in the recommendations of ICRP Publication 103, all but the oral mucosa, extrathoracic tissue and the lymph nodes were identified in the current version of the phantom. The bone surface (endosteum) is too thin to be identifiable; it is about 10 μm thick. The dose to the endosteum was therefore approximated by the dose to the bones. Irradiation geometries included anterior-posterior (AP), left (LLAT) and rotational (ROT). The simulations were carried out with the MCNPX code version 2.5.0. The fluence in free air and the energy depositions in each organ were calculated for monoenergetic photon beams from 10 keV to 10 MeV to obtain the conversion coefficients. The radiation and tissue weighting factors were taken from ICRP Publication 60 and 103. The results from this study will also be compared with the conversion coefficients in ICRP Publication 116.

  17. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry

    Science.gov (United States)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-09-01

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  18. Analysis of the Behaviour of Composite Steel and Steel Fiber Reinforced Concrete Slabs

    Directory of Open Access Journals (Sweden)

    Mindaugas Petkevičius

    2011-04-01

    Full Text Available There was a pending influence of steel fiber on the strength and stiffness of composite steel–concrete slabs under statical short–time load. Steel profiled sheeting and steel fiber reinforced concrete were used for specimens. Four composite slabs were made. Experimental investigations into the behaviour and influence of steel fiber reinforced concrete in composite slabs were conducted. Transverse, longitudinal, shear deformation and deflection of the slab were measured. The results indicated that the use of steel fiber in composite slabs was effective: strength was 20–24 % higher and the meanings of deflections under the action of the bending moment were 0,6MR (where MR is the bending moment at failure of the slabs and were 16–18 % lower for slabs with usual concrete. Article in Lithuanian

  19. Fabrication of Two Flow Phantoms for Doppler Ultrasound Imaging.

    Science.gov (United States)

    Zhou, Xiaowei; Kenwright, David A; Wang, Shiying; Hossack, John A; Hoskins, Peter R

    2017-01-01

    Flow phantoms are widely used in studies associated with Doppler ultrasound measurements, acting as an effective experimental validation system in cardiovascular-related research and in new algorithm/instrumentation development. The development of materials that match the acoustic and mechanical properties of the vascular system is of great interest while designing flow phantoms. Although recipes that meet the flow phantom standard defined by the International Electrotechnical Commission 61685 are already available in the literature, the standard procedure for material preparations and phantom fabrications has not been well established. In this paper, two types of flow phantoms, with and without blood vessel mimic, are described in detail in terms of the material preparation and phantom fabrication. The phantom materials chosen for the two phantoms are from published phantom studies, and their physical properties have been investigated previously. Both the flow phantoms have been scanned by ultrasound scanners and images from different modes are presented. These phantoms may be used in the validation and characterization of Doppler ultrasound measurements in blood vessels with a diameter above 1 mm.

  20. Pipe Phantoms With Applications in Molecular Imaging and System Characterization.

    Science.gov (United States)

    Wang, Shiying; Herbst, Elizabeth B; Pye, Stephen D; Moran, Carmel M; Hossack, John A

    2017-01-01

    Pipe (vessel) phantoms mimicking human tissue and blood flow are widely used for cardiovascular related research in medical ultrasound. Pipe phantom studies require the development of materials and liquids that match the acoustic properties of soft tissue, blood vessel wall, and blood. Over recent years, pipe phantoms have been developed to mimic the molecular properties of the simulated blood vessels. In this paper, the design, construction, and functionalization of pipe phantoms are introduced and validated for applications in molecular imaging and ultrasound imaging system characterization. There are three major types of pipe phantoms introduced: 1) a gelatin-based pipe phantom; 2) a polydimethylsiloxane-based pipe phantom; and 3) the "Edinburgh pipe phantom." These phantoms may be used in the validation and assessment of the dynamics of microbubble-based contrast agents and, in the case of a small diameter tube phantom, for assessing imaging system spatial resolution/contrast performance. The materials and procedures required to address each of the phantoms are described.

  1. Toxicology Analysis of Tissue-Mimicking Phantom Made From Gelatin

    Science.gov (United States)

    Dolbashid, A. S.; Hamzah, N.; Zaman, W. S. W. K.; Mokhtar, M. S.

    2017-06-01

    Skin phantom mimics the biological skin tissues as it have the ability to respond to changes in its environment. The development of tissue-mimicking phantom could contributes towards the reduce usage of animal in cosmetics and pharmacokinetics. In this study, the skin phantoms made from gelatin were tested with four different commonly available cosmetic products to determine the toxicity of each substance. The four substances used were; mercury-based whitening face cream, carcinogenic liquid make-up foundation, paraben-based acne cleanser, and organic lip balm. Toxicity test were performed on all of the phantoms. For toxicity testing, topographical and electrophysiological changes of the phantoms were evaluated. The ability of each respective phantom to react with mild toxic substances and its electrical resistance were analysed in to determine the toxicity of all the phantom models. Four-electrode method along with custom made electrical impedance analyser was used to differentiate electrical resistance between intoxicated phantom and non-intoxicated phantom in this study. Electrical resistance values obtained from the phantom models were significantly higher than the control group. The result obtained suggests the phantom as a promising candidate to be used as alternative for toxicology testing in the future.

  2. Usefulness of milnacipran in treating phantom limb pain.

    Science.gov (United States)

    Nagoshi, Yasuhide; Watanabe, Akira; Inoue, Saiko; Kuroda, Tomoki; Nakamura, Mitsuo; Matsumoto, Yoshitake; Fukui, Kenji

    2012-01-01

    Amputation of an extremity often results in the sensation of a "phantom limb" where the patient feels that the limb that has been amputated is still present. This is frequently accompanied by "phantom limb pain". We report here the use of milnacipran, a serotonin and norepinephrine reuptake inhibitor, to treat phantom limb pain after amputation of injured or diseased limbs in three patients. The severity of phantom pain before and during treatment was quantified using a visual analog scale. In one case, phantom limb pain responded partially to treatment with high doses of paroxetine, and then replacement with milnacipran further improved the pain relief and long-term full pain relief was achieved. In the two other cases, milnacipran was used as first-line treatment and phantom limb pain responded rapidly. These results suggest that milnacipran administration may be useful in phantom limb pain, possibly as a first-line treatment.

  3. Phantom limb pain after lower limb trauma: origins and treatments.

    Science.gov (United States)

    Foell, Jens; Bekrater-Bodmann, Robin; Flor, Herta; Cole, Jonathan

    2011-12-01

    Phantom sensations, that is, sensations perceived in a body part that has been lost, are a common consequence of accidental or clinical extremity amputations. Most amputation patients report a continuing presence of the limb, with some describing additional sensations such as numbness, tickling, or cramping of the phantom limb. The type, frequency, and stability of these phantom sensations can vary immensely. The phenomenon of painful phantom sensations, that is, phantom limb pain, presents a challenge for practitioners and researchers and is often detrimental to the patient's quality of life. In addition to the use of conventional therapies for chronic pain disorders, recent years have seen the development of novel treatments for phantom limb pain, based on an increasing body of research on neurophysiological changes after amputation. This article describes the current state of research in regard to the demographics, causal factors, and treatments of phantom limb pain.

  4. Usefulness of milnacipran in treating phantom limb pain

    Science.gov (United States)

    Nagoshi, Yasuhide; Watanabe, Akira; Inoue, Saiko; Kuroda, Tomoki; Nakamura, Mitsuo; Matsumoto, Yoshitake; Fukui, Kenji

    2012-01-01

    Background Amputation of an extremity often results in the sensation of a “phantom limb” where the patient feels that the limb that has been amputated is still present. This is frequently accompanied by “phantom limb pain”. We report here the use of milnacipran, a serotonin and norepinephrine reuptake inhibitor, to treat phantom limb pain after amputation of injured or diseased limbs in three patients. Methods and results The severity of phantom pain before and during treatment was quantified using a visual analog scale. In one case, phantom limb pain responded partially to treatment with high doses of paroxetine, and then replacement with milnacipran further improved the pain relief and long-term full pain relief was achieved. In the two other cases, milnacipran was used as first-line treatment and phantom limb pain responded rapidly. Conclusion These results suggest that milnacipran administration may be useful in phantom limb pain, possibly as a first-line treatment. PMID:23185119

  5. A novel breast software phantom for biomechanical modeling of elastography.

    Science.gov (United States)

    Bhatti, Syeda Naema; Sridhar-Keralapura, Mallika

    2012-04-01

    In developing breast imaging technologies, testing is done with phantoms. Physical phantoms are normally used but their size, shape, composition, and detail cannot be modified readily. These difficulties can be avoided by creating a software breast phantom. Researchers have created software breast phantoms using geometric and/or mathematical methods for applications like image fusion. The authors report a 3D software breast phantom that was built using a mechanical design tool, to investigate the biomechanics of elastography using finite element modeling (FEM). The authors propose this phantom as an intermediate assessment tool for elastography simulation; for use after testing with commonly used phantoms and before clinical testing. The authors design the phantom to be flexible in both, the breast geometry and biomechanical parameters, to make it a useful tool for elastography simulation. The authors develop the 3D software phantom using a mechanical design tool based on illustrations of normal breast anatomy. The software phantom does not use geometric primitives or imaging data. The authors discuss how to create this phantom and how to modify it. The authors demonstrate a typical elastography experiment of applying a static stress to the top surface of the breast just above a simulated tumor and calculate normal strains in 3D and in 2D with plane strain approximations with linear solvers. In particular, they investigate contrast transfer efficiency (CTE) by designing a parametric study based on location, shape, and stiffness of simulated tumors. The authors also compare their findings to a commonly used elastography phantom. The 3D breast software phantom is flexible in shape, size, and location of tumors, glandular to fatty content, and the ductal structure. Residual modulus, maps, and profiles, served as a guide to optimize meshing of this geometrically nonlinear phantom for biomechanical modeling of elastography. At best, low residues (around 1-5 KPa) were

  6. Flexural Behavior of Continuous Bubbled Reinforced Reactive Powder Concrete Flat Slab

    Directory of Open Access Journals (Sweden)

    Mohammad Redha K. Mahmood

    2017-05-01

    Full Text Available This paper presents an experimental investigation on flexural behavior of continuous bubbled reinforced Reactive Powder Concrete (RPC flat slabs. Bubbled slab is one of the various types of voided slabs. It consist of bubbles placed inside a concrete slab which will reduce the self-weight of the structure by about 35% (Tina Lai 2009. On the other hand, using RPC make it possible for structural member to have smaller dimensions due to the great strength of this type of concrete. In this study these two method are used to increase the building spaces dimensions by reducing self-weigh of the structure by using bubbled slabs and to decrease the structural members' dimensions by using RPC have been investigated together. To study the flexural behavior of continuous bubbled flat slabs such as the ultimate load carrying capacity, central deflection and slabs crack pattern at the ultimate load, seven types of slabs were tested. The parameters of the study were type of concrete (RPC and Normal Concrete (NC, bubbles diameter to slab thickness ratio (D/t of (0.6 and 0.7, type of loading (distributed and line load and solid slab. The test results show that the crack pattern and ultimate load capacity as well as maximum deflection depends on all of the mentioned parameters, were by increasing (D/t ratio the ultimate load capacity increases about (7.36%, 5.46% and 16.52% for RPC slabs under distributed load, line load and NC slabs, respectively. The solid slab increases the ultimate load about (4.05% compare to bubbled slab. Also, the line load decreases the ultimate load compare to distributed load by (3.45-5.16% for different (D/t ratio, and using the NC also decreases the ultimate load compare to RPC by (48-52.13% for different (D/t ratio

  7. On the role of slab de- and re-hydration and temperature on magmas genesis

    Science.gov (United States)

    Bouilhol, P.; Magni, V.; Van Hunen, J.; Kaislaniemi, L.

    2013-12-01

    Understanding the metamorphic reactions that occurs within the slab is a must to constrain subduction zone processes. Slab dehydration reactions ultimately permit the mantle wedge to melt, by lowering its solidus, thus forming arcs above descending slabs. Alternatively the slab crust may cross its solidus in warm (young) slabs. Moreover, slab dehydration allows chemical fractionation to occur between residual phases and transferred fluid phase, giving arc magmas part of their typical subduction zone chemical characteristics. To better comprehend such complex thermo-chemical open system, we are using a numerical model that reproduces the thermo-mechanical behaviour of a subducting slab and computes the thermodynamic equilibrium paragenesis at each P-T-X conditions of the system. Hence we generate a 'paragenetic map' of a subduction system, allowing us to track the fate of water during dehydration and subsequent re-hydration or melting reactions. Here we highlight the role of dehydration and re-hydration reactions occurring in the slab's igneous crust and mantle and the mantle wedge for different slab ages at fixed rate and dip, hence presenting the evolution of a subduction paragenetic map for different thermal regimes. We intend to show the key roles of a) antigorite and chlorite breakdown in the hydrated part of the slab mantle, b) amphibole and lawsonite in the slab crust, and c) the role of amphibole and chlorite in the mantle wedge. Furthermore, we demonstrate the importance of dehydration / re-hydration reactions occurring within the slab and mantle wedge as a main process for water transport and melting reactions. As a whole, as the slab age decreases, dehydration reactions are occurring in a narrower PT window at shallower depth, and because of early slab dehydration, the role of hydrous phases in the metasomatized mantle wedge become more important. The younger the slab is, the less lawsonite plays a role in the transferred fluid, inducing drastic changes

  8. Optical phantoms with adjustable subdiffusive scattering parameters

    Science.gov (United States)

    Krauter, Philipp; Nothelfer, Steffen; Bodenschatz, Nico; Simon, Emanuel; Stocker, Sabrina; Foschum, Florian; Kienle, Alwin

    2015-10-01

    A new epoxy-resin-based optical phantom system with adjustable subdiffusive scattering parameters is presented along with measurements of the intrinsic absorption, scattering, fluorescence, and refractive index of the matrix material. Both an aluminium oxide powder and a titanium dioxide dispersion were used as scattering agents and we present measurements of their scattering and reduced scattering coefficients. A method is theoretically described for a mixture of both scattering agents to obtain continuously adjustable anisotropy values g between 0.65 and 0.9 and values of the phase function parameter γ in the range of 1.4 to 2.2. Furthermore, we show absorption spectra for a set of pigments that can be added to achieve particular absorption characteristics. By additional analysis of the aging, a fully characterized phantom system is obtained with the novelty of g and γ parameter adjustment.

  9. Electromagnetic wave propagation through a slab of a dispersive medium

    CERN Document Server

    Ismail, Mohamed

    2016-01-01

    A method is proposed for the analysis of the propagation of electromagnetic waves through a homogeneous slab of a medium with Drude-Lorentz dispersion behavior, and excited by a causal sinusoidal source. An expression of the time dependent field, free from branch-cuts in the plane of complex frequencies, is established. This method provides the complete temporal response in both the steady-state and transient regimes in terms of discrete poles contributions. The Sommerfeld and Brillouin precursors are retrieved and the corresponding set of poles are identified. In addition, the contribution in the transient field of the resonance frequency in the Drude-Lorentz model is exhybited, and the effect of reflections resulting from the refractive index mismatch at the interfaces of the slab are analyzed.

  10. Bolometric detection of ferromagnetic resonance in YIG slab

    Science.gov (United States)

    Tu, Sa; Białek, Marcin; Zhang, Youguang; Zhao, Weisheng; Yu, Haiming; Ansermet, Jean-Philippe

    2017-10-01

    The resistance of the Pt bar deposited on the YIG slab was monitored while the magnetic field was ramped through the ferromagnetic resonance with the YIG slab facing a coplanar waveguide resonator excited at 4.3 GHz excitation. The resistance change provides detection of the ferromagnetic resonance with a high signal-to-noise ratio. It is ascribed to a change in the temperature of the Pt bars. The thermal origin of the signal is confirmed by the observation that the signal vanishes when field modulation is applied at frequencies above 6 Hz. The spin pumping effect was vanishingly small, and the anisotropic magnetoresistance of the Pt bar, though quite easily observed, would imply a rectification voltage that is much smaller than the bolometric effect.

  11. Negotiating Multicollinearity with Spike-and-Slab Priors.

    Science.gov (United States)

    Ročková, Veronika; George, Edward I

    2014-08-01

    In multiple regression under the normal linear model, the presence of multicollinearity is well known to lead to unreliable and unstable maximum likelihood estimates. This can be particularly troublesome for the problem of variable selection where it becomes more difficult to distinguish between subset models. Here we show how adding a spike-and-slab prior mitigates this difficulty by filtering the likelihood surface into a posterior distribution that allocates the relevant likelihood information to each of the subset model modes. For identification of promising high posterior models in this setting, we consider three EM algorithms, the fast closed form EMVS version of Rockova and George (2014) and two new versions designed for variants of the spike-and-slab formulation. For a multimodal posterior under multicollinearity, we compare the regions of convergence of these three algorithms. Deterministic annealing versions of the EMVS algorithm are seen to substantially mitigate this multimodality. A single simple running example is used for illustration throughout.

  12. Interface and material engineering for zigzag slab lasers.

    Science.gov (United States)

    Liu, Fei; Dong, Siyu; Zhang, Jinlong; Jiao, Hongfei; Ma, Bin; Wang, Zhanshan; Cheng, Xinbin

    2017-12-01

    Laser damage of zigzag slab lasers occurs at interface between laser crystal and SiO 2 film. Although an additional HfO 2 layer could be used to manipulate electric-field on the crystal-film interface, their high absorption and polycrystalline structure were unacceptable. SiO 2 was then doped in HfO 2 to suppress its crystallization and to achieve low absorption by annealing. Hf x Si 1-x O 2 nanocomposite layers were then inserted between laser crystal and SiO 2 film to minimize electric-field at crystal-film interface. Laser damage resistance of this new architecture is two times higher than that of traditional zigzag slab lasers.

  13. Phantom Space-times in Fake Supergravity

    OpenAIRE

    Taam, Maryam Bu; Sabra, Wafic A.

    2015-01-01

    We discuss phantom metrics admitting Killing spinors in fake N=2 , D=4 supergravity coupled to vector multiplets. The Abelian U(1) gauge fields in the fake theory have kinetic terms with the wrong sign. We solve the Killing spinor equations for the standard and fake theories in a unified fashion by introducing a parameter which distinguishes between the two theories. The solutions found are fully determined in terms of algebraic conditions, the so-called stabilisation equations, in which the ...

  14. Freehand ultrasound calibration: phantom versus tracked pointer

    Science.gov (United States)

    Welch, Mattea; Andrea, Jennifer; Ungi, Tamas; Fichtinger, Gabor

    2013-03-01

    PURPOSE: Ultrasound-guided tracked navigation requires spatial calibration between the ultrasound beam and the tracker. We examined the reproducibility and accuracy of two popular open source calibration methods1 with a handheld linear ultrasound transducer. METHODS: A total of 10 calibrations were performed using (1) a double N-wire phantom with automatic image segmentation and registration; (2) and registration of landmark points collected with a tracked pointer. Reproducibility and accuracy were characterized by comparing the resulting transformation matrices, and by comparing ground truth landmark points. RESULTS: Transformation matrices calculated with an N-wire phantom showed a variance of X: 0.02 mm (in the direction of sound propagation), Y: 0.03 mm (in the direction of transducer elements) and Z: 0.21 mm (in the elevation direction). Transformation matrices obtained with tracked pointer showed a variance of X: 0.1 mm, Y: 0.10 mm and Z: 0.43 mm. Calibration accuracy was tested with ground truth cross wire points. The N-wire phantom provided a calibration with a distance from ground truth of X: 2.44 +/- 1.44 mm, Y: 1.21 +/- 0.88 mm, and Z: 1.12 +/- 0.82 mm. Tracked pointer calibration had a distance from the ground truth of X: 0.23 +/- 0.16 mm, Y: 0.62 +/- 0.31 mm, and Z: 0.45 +/- 0.33 mm. Distance from ground truth was significantly less (ptracked pointer method in all directions. CONCLUSION: Calibration using a tracked pointer had a slightly greater variance; however it showed better accuracy over calibrations calculated with N-wire phantoms.

  15. Evaluating the potential shielding properties of periodic metamaterial slabs

    OpenAIRE

    SEETHARAMDOO, D; BERBINEAU, M; TAROT, A; MAHDJOUBI, K

    2009-01-01

    Metamaterials can prove to be good candidates for shields in EMC applications where weight reduction is a challenge. Indeed metamaterial slabs can provide the same reflective properties as conventional metallic screens but with a lower density and reduced weight. Another advantage is that they can be tailored to exhibit required frequency-selective properties. However, their performance in terms of shielding performance has yet to be evaluated. In this paper, a method to evaluate the shieldin...

  16. Slab track systems for high-speed railways.

    OpenAIRE

    Michas, Georgios

    2012-01-01

    In the last 40 years an increase in train speed and axle load around the world and other challenges in the conventional ballasted track system gave birth to ballastless railway track system. This study examines in depth the various slab track systems that are being used today. Their design characteristics as well as the various requirements for efficient use are thoroughly explained. At least 34 different ballastless systems have been recorded in many railway networks throughout the world. Th...

  17. Beam splitting by a plane-parallel absorptive slab.

    Science.gov (United States)

    Halevi, P

    1982-10-01

    A study of the transmission of inhomogeneous electromagnetic waves through an interface between a transparent and an absorbing medium leads to the prediction of a novel effect. A beam of unpolarized light passing through a dissipative plane-parallel slab splits into two parallel beams. The electric field in one beam is perpendicular to the plane of incidence, whereas in the other beam it is parallel to this plane.

  18. Hydrogen sensor based on metallic photonic crystal slabs.

    Science.gov (United States)

    Nau, D; Seidel, A; Orzekowsky, R B; Lee, S-H; Deb, S; Giessen, H

    2010-09-15

    We present a hydrogen sensor based on metallic photonic crystal slabs. Tungsten trioxide (WO(3)) is used as a waveguide layer below an array of gold nanowires. Hydrogen exposure influences the optical properties of this photonic crystal arrangement by gasochromic mechanisms, where the photonic crystal geometry leads to sharp spectral resonances. Measurements reveal a change of the transmission depending on the hydrogen concentration. Theoretical limits for the detection range and sensitivity of this approach are discussed.

  19. Slab detachment under the Eastern Alps seen by seismic anisotropy.

    Science.gov (United States)

    Qorbani, Ehsan; Bianchi, Irene; Bokelmann, Götz

    2015-01-01

    We analyze seismic anisotropy for the Eastern Alpine region by inspecting shear-wave splitting from SKS and SKKS phases. The Eastern Alpine region is characterized by a breakdown of the clear mountain-chain-parallel fast orientation pattern that has been previously documented for the Western Alps and for the western part of the Eastern Alps. The main interest of this paper is a more detailed analysis of the anisotropic character of the Eastern Alps, and the transition to the Carpathian-Pannonian region. SK(K)S splitting measurements reveal a rather remarkable lateral change in the anisotropy pattern from the west to the east of the Eastern Alps with a transition area at about 12°E. We also model the backazimuthal variation of the measurements by a vertical change of anisotropy. We find that the eastern part of the study area is characterized by the presence of two layers of anisotropy, where the deeper layer has characteristics similar to those of the Central Alps, in particular SW-NE fast orientations of anisotropic axes. We attribute the deeper layer to a detached slab from the European plate. Comparison with tomographic studies of the area indicates that the detached slab might possibly connect with the lithosphere that is still in place to the west of our study area, and may also connect with the slab graveyard to the East, at the depth of the upper mantle transition zone. On the other hand, the upper layer has NW-SE fast orientations coinciding with a low-velocity layer which is found above a more-or-less eastward dipping high-velocity body. The anisotropy of the upper layer shows large-scale NW-SE fast orientation, which is consistent with the presence of asthenospheric flow above the detached slab foundering into the deeper mantle.

  20. Seismic damage assessment of waffled slabs RC buildings of Barcelona

    OpenAIRE

    Moreno González, Rosángel; Bairán García, Jesús Miguel

    2011-01-01

    The seismic damage of waffled-slabs reinforced concrete buildings in the city of Barcelona (Spain) is evaluated using Risk-UE methodology, which enables obtaining fragility curves of the structure in a simplified manner through capacity curves. The seismic hazard is described by means of the reduced 5%-damped elastic response spectrum specific to Barcelona. Capacity curves are obtained using a non-linear static analysis and are used to obtain the performance point and probability damage matri...

  1. Development of Improved Connection Details for Voided Slab Bridges

    OpenAIRE

    Joyce, Patrick Conor

    2014-01-01

    Adjacent voided slab bridges (AVSB) are economical systems for short spans. They provide the advantages of having low clearances due to their small section depths, accelerated construction times, and high torsional stiffness. The current longitudinal connection detail, a partial depth grouted shear key, has been known to fail in many of these bridges. The failure leads to reflective cracking in the wearing surface which allows chloride laden water to seep down through the joint, where it c...

  2. Characteristics of Recycled Concrete Aggregates from Precast Slab Block Buildings

    Science.gov (United States)

    Venkrbec, Václav; Nováková, Iveta; Henková, Svatava

    2017-10-01

    Precast slab block buildings (PSBB) typically and frequently occur in Central and Eastern Europe, as well as elsewhere in the world. Some of these buildings are currently used beyond their service life capacity. The utilization of recycled materials from these buildings with regard to applying the principles of sustainable construction and using recycled materials will probably be significant in the following years. Documentation from the manufacturing processes of prefabricated blocks for precast slab block buildings is not available, and also it is difficult to declare technological discipline during the construction of these buildings. Therefore, properties of recycled concrete aggregates (RCA) produced from construction and demolition waste (C&DW) of precast slab block buildings build between 1950s to 1990s are not sufficiently known. The demolition of these buildings is very rare today, but it can be assumed an increase in demolitions of these buildings in the future. The use of RCA in new concrete requires verification/testing of the geometrical and physical properties of RCA according to the EN 12 620+A1 standard. The aim of the contribution is to present a case study of the demolition of slab block building with emphasis on RCA usage. The paper presents the results of the tests according to European standards for determining selected geometrical and physical properties of the RCA. The paper describes and evaluates tests such as determination of particle size distribution - Sieve Analysis, content of fine particles, determination of density and water absorption. The results of the properties testing of RCA are compared with the properties of natural aggregate. The general boundary conditions of RCA particular tests are presented.

  3. Automatic Synthesis of Anthropomorphic Pulmonary CT Phantoms

    Science.gov (United States)

    Jimenez-Carretero, Daniel; San Jose Estepar, Raul; Diaz Cacio, Mario; Ledesma-Carbayo, Maria J.

    2016-01-01

    The great density and structural complexity of pulmonary vessels and airways impose limitations on the generation of accurate reference standards, which are critical in training and in the validation of image processing methods for features such as pulmonary vessel segmentation or artery–vein (AV) separations. The design of synthetic computed tomography (CT) images of the lung could overcome these difficulties by providing a database of pseudorealistic cases in a constrained and controlled scenario where each part of the image is differentiated unequivocally. This work demonstrates a complete framework to generate computational anthropomorphic CT phantoms of the human lung automatically. Starting from biological and image-based knowledge about the topology and relationships between structures, the system is able to generate synthetic pulmonary arteries, veins, and airways using iterative growth methods that can be merged into a final simulated lung with realistic features. A dataset of 24 labeled anthropomorphic pulmonary CT phantoms were synthesized with the proposed system. Visual examination and quantitative measurements of intensity distributions, dispersion of structures and relationships between pulmonary air and blood flow systems show good correspondence between real and synthetic lungs (p > 0.05 with low Cohen’s d effect size and AUC values), supporting the potentiality of the tool and the usefulness of the generated phantoms in the biomedical image processing field. PMID:26731653

  4. Materials for phantoms for terahertz pulsed imaging

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Gillian C [Academic Unit of Medical Physics, University of Leeds, Wellcome Wing, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX (United Kingdom); Berry, Elizabeth [Academic Unit of Medical Physics, University of Leeds, Wellcome Wing, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX (United Kingdom); Smye, Stephen W [Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Leeds, LS9 7TF (United Kingdom); Brettle, David S [Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, St James University Hospital, Leeds, LS9 7TF (United Kingdom)

    2004-11-07

    Phantoms are commonly used in medical imaging for quality assurance, calibration, research and teaching. They may include test patterns or simulations of organs, but in either case a tissue substitute medium is an important component of the phantom. The aim of this work was to identify materials suitable for use as tissue substitutes for the relatively new medical imaging modality terahertz pulsed imaging. Samples of different concentrations of the candidate materials TX151 and napthol green dye were prepared, and measurements made of the frequency-dependent absorption coefficient (0.5 to 1.5 THz) and refractive index (0.5 to 1.0 THz). These results were compared qualitatively with measurements made in a similar way on samples of excised human tissue (skin, adipose tissue and striated muscle). Both materials would be suitable for phantoms where the dominant mechanism to be simulated is absorption ({approx}100 cm{sup -1} at 1 THz) and where simulation of the strength of reflections from boundaries is not important; for example, test patterns for spatial resolution measurements. Only TX151 had a frequency-dependent refractive index close to that of tissue, and could therefore be used to simulate the layered structure of skin, the complexity of microvasculature or to investigate frequency-dependent interference effects that have been noted in terahertz images. (note)

  5. Automatic Synthesis of Anthropomorphic Pulmonary CT Phantoms.

    Directory of Open Access Journals (Sweden)

    Daniel Jimenez-Carretero

    Full Text Available The great density and structural complexity of pulmonary vessels and airways impose limitations on the generation of accurate reference standards, which are critical in training and in the validation of image processing methods for features such as pulmonary vessel segmentation or artery-vein (AV separations. The design of synthetic computed tomography (CT images of the lung could overcome these difficulties by providing a database of pseudorealistic cases in a constrained and controlled scenario where each part of the image is differentiated unequivocally. This work demonstrates a complete framework to generate computational anthropomorphic CT phantoms of the human lung automatically. Starting from biological and image-based knowledge about the topology and relationships between structures, the system is able to generate synthetic pulmonary arteries, veins, and airways using iterative growth methods that can be merged into a final simulated lung with realistic features. A dataset of 24 labeled anthropomorphic pulmonary CT phantoms were synthesized with the proposed system. Visual examination and quantitative measurements of intensity distributions, dispersion of structures and relationships between pulmonary air and blood flow systems show good correspondence between real and synthetic lungs (p > 0.05 with low Cohen's d effect size and AUC values, supporting the potentiality of the tool and the usefulness of the generated phantoms in the biomedical image processing field.

  6. Application Improvements of Slab-Coupled Optical Fiber Sensors

    Science.gov (United States)

    Chadderdon, Spencer Lee

    This dissertation explores techniques for improving slab-coupled optical fiber sensor (SCOS) technology for use in specific applications and sensing configurations. SCOS are advantageous for their small size and all-dielectric composition which permit non-intrusive measurement of electric fields within compact environments; however, their small size also limits their sensitivity. This work performs a thorough analysis of the factors contributing to the performance of SCOS and demonstrates methods which improve SCOS, while maintaining its small dimensions and high level of directional sensitivity. These improvements include increasing the sensitivity by 9x, improving the frequency response to include sub 300 kHz frequencies, and developing a method to tune the resonances. The analysis shows that the best material for the slab waveguide is an electro-optic polymer because of its low RF permittivity combined with high electro-optic coefficient. Additional improvements are based on changing the crystal orientation to a transverse configuration, which enhances the sensitivity due to a combined increase in the effective electro-optic coefficient and electric field penetration into the slab. The transverse SCOS configuration not only improves the overall sensitivity but increases the directional sensitivity of the SCOS. Lithium niobate and electro-optic polymer are both experimentally shown to exhibit minimal frequency dependent sensitivity making them suitable for broad frequency applications. Simultaneous interrogation of multiple SCOS with a single tunable laser is achieved by tuning the resonant wavelengths of KTP SCOS so their resonances overlap.

  7. Electromagnetic and ultrasonic investigations on a Roman marble slab

    Science.gov (United States)

    Capizzi, P.; Cosentino, P. L.

    2011-09-01

    The archaeological museum of Rome asked our group about the physical consistency of a marble slab (second to third century AD) that recently fell during its travel as part of an exhibition. We decided to use different methodologies to investigate the slab: namely a pacometer (Protovale Elcometer) to individuate the internal coupling pins, and ground-penetrating radar (GPR) (2000 MHz) and ultrasonic (55 kHz) tomographic high-density surveys to investigate the internal extension of all the visible fractures and to search for the hidden ones. For the ultrasonic data, tests were carried out to optimize the inversion parameters, in particular the cell dimensions. Surely, the choice of cell size for the inversion process must take into account the size of the acquisition grid and the ray number acquired. We proposed to calculate a minimum Fresnel's radius using the sampling frequency instead of that of the probes. For every methodology used, the quality of the acquired data was relatively high. This was then processed and compared to provide information that was useful for some of the insurance problems of the museum. Later on, the data was processed in depth to see how to improve the data processing and interpretation. Finally, the results of this in-depth study were exposed in detail. Ultrasonic and GPR tomographies show a strong correlation, and in particular, the inhomogeneous areas are located in correspondence to the slab injuries.

  8. Electromagnetic and ultrasonic investigations on a roman marble slab

    Science.gov (United States)

    Capizzi, Patrizia; Cosentino, Pietro L.

    2010-05-01

    The archaeological Museum of Rome (Museo delle Terme di Diocleziano) asked our group about the physical consistency of a marble slab (II - III century AD) that has recently fallen down during the transportation for an exhibition. In fact, due to insurance conflict, it was necessary to control the new fractures due to the recent accident and distinguish them from the ancient ones. The sculptured slab (today's size is 1280 x 70 x 9 cm), cut at the ends for a re-use as an inscription in the rear face, was restored (assemblage of different broken parts and cleaning) in contemporary times. We used different methodologies to investigate the slab: namely a pacometer (Protovale Elcometer) to individuate internal coupling pins, GPR (2000 MHz) and Ultrasonic (55 kHz) tomographic high-density surveys to investigate the internal extension of all the visible fractures and to search for the unknown internal ones. For every methodology used the quality of the acquired data was relatively high. They have been processed and compared to give a set of information useful for the bureaucratic problems of the Museum. Later on, the data have been processed in depth, for studying how to improve the data processing and for extracting all the information contained in the whole set of experimental data. Finally, the results of such a study in depth are exposed in detail.

  9. Slab Waveguide and Optical Fibers for Novel Plasmonic Sensor Configurations.

    Science.gov (United States)

    Cennamo, Nunzio; Mattiello, Francesco; Zeni, Luigi

    2017-06-24

    The use of plasmonic sensor devices often requires replaceable parts and disposable chips for easy, fast and on-site detection analysis. In light of these requests, we propose a novel low-cost surface plasmon resonance sensor platform for possible selective detection of analytes in aqueous solutions. It is based on a Polymethyl methacrylate (PMMA) slab waveguide with a thin gold film on the top surface inserted in a special holder, designed to produce the plasmonic resonance at the gold-dielectric interface. A wide-band light is launched in the PMMA slab waveguide through a trench realized in the holder directly, and illuminated with a PMMA plastic optical fiber (POF) to excite surface Plasmon waves. The output light is then collected by another PMMA POF kept at the end of the slab at an angle of 90° to the trench, and carried to a spectrometer. In this configuration, the trench has been used because a large incident angle is required for surface plasmon resonance excitation. The preliminary results showed that the sensor's performances make it suitable for bio-chemical applications. The easy replacement of the chip allows for the production of an engineered platform by simplifying the measurement procedures.

  10. Westernmost Mediterranean Mantle Tomography: Slab Rollback and Delaminated Atlas Lithosphere

    Science.gov (United States)

    Bezada, M. J.; Humphreys, E.

    2012-12-01

    We present a new velocity model for the upper mantle in the westernmost Mediterranean including the Iberian Peninsula and northern Morocco. Our imaging improves over previous efforts by taking advantage of the data generated by the PICASSO, IberArray, TopoMed and connected seismograph deployments and by using a new methodology that includes finite-frequency effects and iterative ray tracing, utilizes local earthquakes in addition to teleseismic events and includes constraints from surface wave analyses. We image a subducted slab as a high velocity anomaly located under the Alboran Sea and southern Spain that extends to the bottom of the transition zone. The anomaly has an arcuate shape at most depths and reaches the surface beneath Gibraltar but not under southern Spain. The N-S oriented Gibraltar and E-W oriented southern Spain segments of the slab appear to be separated by a vertical tear or "slab gap". Under the Atlas Mountains in northern Morocco we image low velocities to depths of over 200 km and a high-velocity body at depths of 300-450 km beneath the Middle Atlas, which we tentatively interpret as delaminated lithosphere.

  11. High Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  12. Slab Waveguide and Optical Fibers for Novel Plasmonic Sensor Configurations

    Science.gov (United States)

    Cennamo, Nunzio; Mattiello, Francesco; Zeni, Luigi

    2017-01-01

    The use of plasmonic sensor devices often requires replaceable parts and disposable chips for easy, fast and on-site detection analysis. In light of these requests, we propose a novel low-cost surface plasmon resonance sensor platform for possible selective detection of analytes in aqueous solutions. It is based on a Polymethyl methacrylate (PMMA) slab waveguide with a thin gold film on the top surface inserted in a special holder, designed to produce the plasmonic resonance at the gold-dielectric interface. A wide-band light is launched in the PMMA slab waveguide through a trench realized in the holder directly, and illuminated with a PMMA plastic optical fiber (POF) to excite surface Plasmon waves. The output light is then collected by another PMMA POF kept at the end of the slab at an angle of 90° to the trench, and carried to a spectrometer. In this configuration, the trench has been used because a large incident angle is required for surface plasmon resonance excitation. The preliminary results showed that the sensor’s performances make it suitable for bio-chemical applications. The easy replacement of the chip allows for the production of an engineered platform by simplifying the measurement procedures. PMID:28672796

  13. Non-volcanic tremor and discontinuous slab dehydration

    Science.gov (United States)

    Fagereng, Åke; Diener, Johann F. A.

    2011-08-01

    Non-volcanic tremor is a recently discovered fault slip style occurring with remarkable regularity in space near the down-dip end of the locked zone on several subduction thrust interfaces. The physical mechanisms and the controls on the location of tremor have not yet been determined. We calculate the stable mineral assemblages and their water content in the subducting slab, and find that slab dehydration is not continuous, but rather restricted to a few reactions localised in pressure-temperature space. Along geothermal gradients applicable to Shikoku and Cascadia - where tremor has been relatively easy to detect - tremor locations correlate with discontinuous and localised voluminous water release from the breakdown of lawsonite and chlorite + glaucophane respectively. The shape of the pressure-temperature path for subducting slabs prevents fluid release at depths above and below where these dehydration reactions occur. We conclude that abundant tremor activity requires metamorphic conditions where localised dehydration occurs during subduction, and this may explain why tremor appears more abundant in some subduction zones than others.

  14. [Somatognosis, body schema and the phenomena of somatic and visceral phantoms and phantom pain].

    Science.gov (United States)

    Tichý, J

    2003-01-01

    The body scheme is a complex of memory patterns secured in the structures of the brain, where the parietal lobes play the most important role. Basic principles are given by the genetic programming of the structure and function along with the synthesis of information brought by means of sensory activity. The unitary perception of the body scheme is a dynamic image, enabling conscious and unconscious representation of our body, its parts, their functions, position, shape and/or movements. The recognition of the body scheme in humans is named somatognosia. Disorders of somatognosia include visceral and somatic phantom, phantom pain and other disorders related to the capability of communication by means of language: autotopoagnosia, hemiasomatognosia, pain asymboly, anosognosia of hemiplegia, anosognosia of blindness, deafness, neglect and other defects appearing at the neurologist's and psychiatrist's borderline of interest. Interest in the visceral phantom is usually much smaller than that in the phantom limb. The aim of this paper was to draw the to phantom phenomena in patients following rectum amputation and colostomy. A survey of contemporary knowledge about the body scheme and its disorders, cortical plasticity and the problem of cortical maladaptation are presented.

  15. A study of partial volume effect on SPECT imaging using myocardial phantom. With HCM (ASH) model myocardial phantom

    Energy Technology Data Exchange (ETDEWEB)

    Onoguchi, Masahisa [Kanazawa Univ. (Japan). School of Medicine

    1997-05-01

    In order to evaluate simultaneously both myocardial perfusion and regional wall motion using ECG-gated myocardial SPECT imaging, correction for the partial volume effect (PVE) should be performed. For the quantitative analysis of myocardial SPECT imaging in patients with hypertrophic cardiomyopathy (HCM), we formed a new phantom simulating HCM with various septal wall thicknesses and estimated PVE using the recovery coefficient (RC). The value of RC in all phantoms increased with increasing thickness of the septal wall reaching a plateau at 25 mm for the cylindrical phantom and 25 mm for the Ep-phantom. Compared with the RC value, the PMMA-phantom had little influence on PVE. Therefore, our results suggested that the count in the septal wall could be underestimated if PVE was corrected by the value obtained for the cylindrical phantom. In conclusion, our new phantom simulating HCM was useful in assessing PVE in the hypertrophic septal wall. (author)

  16. Gd(5)Si(4-x)Bi(x) structures: novel slab sequences achieved by turning off the directionality of nearest-slab interactions.

    Science.gov (United States)

    Svitlyk, Volodymyr; Campbell, Branton J; Mozharivskyj, Yurij

    2009-11-02

    Substitution of Bi for Si leads to the complete cleavage of the interslab dimers T-T in the Gd(5)Si(4-x)Bi(x) system with x = 1.58 - 2.42 (T is a mixture of Si and Bi). Equivalence of the interslab T...T contacts, achieved through combination of the electronic and geometrical parameters, removes directionality of nearest-slab interactions and allows for a novel slab stacking. Two new slab sequences, ABCDABCD (x = 2.07, I4(1)/acd space group) and ABADABAD (x = 2.42, P4(2)bc), have been discovered in Gd(5)Si(4-x)Bi(x) in addition to the known one, ABAB, that is dominant among the RE(5)X(4) phases (RE is a rare-earth element, X is a p-element). The slab stacking for x = 2.07 and x = 2.42 is dictated by the second-nearest slab interactions which promote an origin shift either for the entire slab sequence as in ABCDABCD or for every other second-nearest slab pair as in ABADABAD. The loss of the directionality of the nearest-slab bonding allows for extensive stacking faults and leads to diffuse scattering.

  17. Computerized scheme for evaluating mammographic phantom images

    Energy Technology Data Exchange (ETDEWEB)

    Asahara, Masaki; Kodera, Yoshie [Graduate School of Medical Sciences, Nagoya University, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, Aichi 461-8673 (Japan) and Department of Radiology, Kagawa University Hospital, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793 (Japan); Graduate School of Medical Sciences, Nagoya University, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, Aichi 461-8673 (Japan)

    2012-03-15

    Purpose: The authors developed a computer algorithm to automatically evaluate images of the American College of Radiology (ACR) mammography accreditation phantom. Methods: The developed algorithm consist of the edge detection of wax insert, nonuniformity correction of background, and correction for magnification and also calculate the cross-correlation coefficient by image matching technique. The algorithm additionally evaluates target shape for fibers, target contrast for speck groups, and target circularity for masses. To obtain an ideal template image without noise and spatial resolution loss, the wax insert containing the embedded test pattern was extracted from the phantom and radiographed. Two template images and ten test phantom images were prepared for this study. The results of evaluation using the algorithm outputs were compared with the averaged results of observer studies by six skilled observers. Results: In comparing the results from the algorithm outputs with the results of observers, the authors found that the computer outputs were well correlated with the evaluations by observers, and they indicate the quality of the phantom image. The correlation coefficients between results of observer studies and two outputs of computer algorithm, i.e., the cross-correlation coefficient by template matching and indices of target shape for fibers, were 0.89 (95% confidence interval, 0.82-0.93; hereinafter the same) and 0.85 (0.76-0.91). The correlation coefficients between observer's results and two outputs: the cross-correlation coefficient and indices of target contrast for speck groups, were 0.83 (0.79-0.86) and 0.85 (0.81-0.88) and between observer's results and two outputs: the cross-correlation coefficient and indices of target circularity for masses, were 0.90 (0.84-0.94) and 0.87 (0.77-0.92). Conclusions: Image evaluation using the ACR phantom is indispensable in quality control of a mammography system. The proposed algorithm is useful for

  18. Initial quality performance results using a phantom to simulate chest computed radiography.

    Science.gov (United States)

    Muhogora, Wilbroad; Padovani, Renato; Msaki, Peter

    2011-01-01

    The aim of this study was to develop a homemade phantom for quantitative quality control in chest computed radiography (CR). The phantom was constructed from copper, aluminium, and polymenthylmethacrylate (PMMA) plates as well as Styrofoam materials. Depending on combinations, the literature suggests that these materials can simulate the attenuation and scattering characteristics of lung, heart, and mediastinum. The lung, heart, and mediastinum regions were simulated by 10 mm x 10 mm x 0.5 mm, 10 mm x 10 mm x 0.5 mm and 10 mm x 10 mm x 1 mm copper plates, respectively. A test object of 100 mm x 100 mm and 0.2 mm thick copper was positioned to each region for CNR measurements. The phantom was exposed to x-rays generated by different tube potentials that covered settings in clinical use: 110-120 kVp (HVL=4.26-4.66 mm Al) at a source image distance (SID) of 180 cm. An approach similar to the recommended method in digital mammography was applied to determine the CNR values of phantom images produced by a Kodak CR 850A system with post-processing turned off. Subjective contrast-detail studies were also carried out by using images of Leeds TOR CDR test object acquired under similar exposure conditions as during CNR measurements. For clinical kVp conditions relevant to chest radiography, the CNR was highest over 90-100 kVp range. The CNR data correlated with the results of contrast detail observations. The values of clinical tube potentials at which CNR is the highest are regarded to be optimal kVp settings. The simplicity in phantom construction can offer easy implementation of related quality control program.

  19. Initial quality performance results using a phantom to simulate chest computed radiography

    Directory of Open Access Journals (Sweden)

    Muhogora Wilbroad

    2011-01-01

    Full Text Available The aim of this study was to develop a homemade phantom for quantitative quality control in chest computed radiography (CR. The phantom was constructed from copper, aluminium, and polymenthylmethacrylate (PMMA plates as well as Styrofoam materials. Depending on combinations, the literature suggests that these materials can simulate the attenuation and scattering characteristics of lung, heart, and mediastinum. The lung, heart, and mediastinum regions were simulated by 10 mm x 10 mm x 0.5 mm, 10 mm x 10 mm x 0.5 mm and 10 mm x 10 mm x 1 mm copper plates, respectively. A test object of 100 mm x 100 mm and 0.2 mm thick copper was positioned to each region for CNR measurements. The phantom was exposed to x-rays generated by different tube potentials that covered settings in clinical use: 110-120 kVp (HVL=4.26-4.66 mm Al at a source image distance (SID of 180 cm. An approach similar to the recommended method in digital mammography was applied to determine the CNR values of phantom images produced by a Kodak CR 850A system with post-processing turned off. Subjective contrast-detail studies were also carried out by using images of Leeds TOR CDR test object acquired under similar exposure conditions as during CNR measurements. For clinical kVp conditions relevant to chest radiography, the CNR was highest over 90-100 kVp range. The CNR data correlated with the results of contrast detail observations. The values of clinical tube potentials at which CNR is the highest are regarded to be optimal kVp settings. The simplicity in phantom construction can offer easy implementation of related quality control program.

  20. Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9).

    Science.gov (United States)

    Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti

    2017-03-15

    On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab's fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle.

  1. Brachial plexus block in phantom limb pain: a case report.

    Science.gov (United States)

    Preissler, Sandra; Dietrich, Caroline; Meissner, Winfried; Huonker, Ralph; Hofmann, Gunther O; Miltner, Wolfgang H R; Weiss, Thomas

    2011-11-01

    The purpose of this case report is twofold: first, to present evidence of long-lasting relief in a patient suffering from phantom limb pain after pharmacologically blocking his plexus brachialis and, second, to replicate results from a previous study focusing on cortical reorganization and phantom limb pain. Before regional anesthesia, the patient suffered from a phantom hand that cramped and was immovable. We performed a diagnostic axillary blockade of the brachial plexus to differentiate peripheral from more central contributions to phantom limb pain. During blockade of the brachial plexus, the patient reported a reduction of phantom limb pain for the first time following years of suffering and a complete loss of cramping together with muscle relaxation of the phantom hand. Additionally, we found cortical reorganization in the primary somatosensory cortex (re-reorganization). Strikingly, the relaxed phantom limb together with the reduction of phantom limb pain remained preserved even 6 months after blockade of the brachial plexus. A single temporary blockade of the brachial plexus may relieve phantom limb pain and unpleasant phantom feelings (cramping) for an extended period. Wiley Periodicals, Inc.

  2. A realistic pelvic phantom for electrical impedance measurement.

    Science.gov (United States)

    Dunne, Eoghan; McGinley, Brian; O'Halloran, Martin; Porter, Emily

    2017-12-22

    To design and fabricate an anatomically and conductively accurate phantom for electrical impedance studies of non-invasive bladder volume monitoring. Approach: A modular pelvic phantom was designed and fabricated, consisting of a mechanically and conductively stable boundary wall, a background medium, and bladder phantoms. The wall and bladders are made of conductive polyurethane. The background material is an ultrasound gel-based mixture, with conductivity matched to a weighted average of the pelvic cavity organs, bone, muscle and fat. The phantom boundary is developed using a computer tomography model of a male human pelvis. The bladder phantoms were designed to correlate with human bladder dimensions. Electrical impedance measurements of the phantom were recorded, and images produced using six different bladder phantoms and a realistic finite element model. Main results: Five different bladder volumes were successfully imaged using an empty bladder as a reference. The average conductivity index from the reconstructed images showed a strong positive correlation with the bladder phantom volumes. Significance: A conductively and anatomically accurate pelvic phantom was developed for non-invasive bladder volume monitoring using electrical impedance measurements. Several bladders were designed to correlate with actual human bladder volumes, allowing for accurate volume estimation. The conductivity of the phantom is accurate over 50-250 kHz. This phantom can allow: changeable electrode location, contact and size; multi-layer electrodes configurations; increased complexity by addition of other organ or bone phantoms; and electrode movement and deformation. Overall, the pelvic phantom enables greater scope for experimentation and system refinement as a precursor to in-man clinical studies. © 2017 Institute of Physics and Engineering in Medicine.

  3. Evaluation of a Dust Control for a Small Slab-Riding Dowel Drill for Concrete Pavement.

    Science.gov (United States)

    Echt, Alan; Mead, Kenneth

    2016-05-01

    To assess the effectiveness of local exhaust ventilation to control respirable crystalline silica exposures to acceptable levels during concrete dowel drilling. Personal breathing zone samples for respirable dust and crystalline silica were collected while laborers drilled holes 3.5 cm diameter by 36 cm deep in a concrete slab using a single-drill slab-riding dowel drill equipped with local exhaust ventilation. Data were collected on air flow, weather, and productivity. All respirable dust samples were below the 90 µg detection limit which, when combined with the largest sample volume, resulted in a minimum detectable concentration of 0.31 mg m(-3). This occurred in a 32-min sample collected when 27 holes were drilled. Quartz was only detected in one air sample; 0.09 mg m(-3) of quartz was found on an 8-min sample collected during a drill maintenance task. The minimum detectable concentration for quartz in personal air samples collected while drilling was performed was 0.02 mg m(-3). The average number of holes drilled during each drilling sample was 23. Over the course of the 2-day study, air flow measured at the dust collector decreased from 2.2 to 1.7 m(3) s(-1). The dust control performed well under the conditions of this test. The initial duct velocity with a clean filter was sufficient to prevent settling, but gradually fell below the recommended value to prevent dust from settling in the duct. The practice of raising the drill between each hole may have prevented the dust from settling in the duct. A slightly higher flow rate and an improved duct design would prevent settling without regard to the position of the drill. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2016.

  4. New weighting factor of weighted CTDI equation for PMMA phantom diameter from 8 to 40 cm: A Monte Carlo study.

    Science.gov (United States)

    Haba, Tomonobu; Koyama, Shuji; Kinomura, Yutaka; Ida, Yoshihiro; Kobayashi, Masanao

    2017-12-01

    The weighted computed tomography dose index (CTDIw ) uses measured CTDI values at the center and periphery of a cylindrical phantom. The CTDIw value is calculated using conventional, Bakalyar's, and Choi's weighting factors. However, these weighting factors were produced from only 16- and 32-cm-diameter cylindrical phantoms. This study aims to devise new weighting factors to provide more accurate average dose in the central cross-sectional plane of cylindrical phantoms over a wide range of object diameters, by using Monte Carlo simulations. Simulations were performed by modeling a Toshiba Aquilion ONE CT scanner, in order to compute the cross-sectional dose profiles of polymethyl methacrylate (PMMA) cylindrical phantoms of each diameter (8-40 cm at 4-cm steps), for various tube voltages and longitudinal beam widths. Two phantom models were simulated, corresponding to the CTDI100 method and the method recommended by American Association of Physicists in Medicine (AAPM) task group 111. The dose-computation PMMA cylinders of 1 mm diameter were located between the phantom surfaces and the centers at intervals of 1 mm, from which cross-sectional dose profiles were calculated. By using linear least-squares fits to the obtained cross-sectional dose profiles data, we determined new weighting factors to estimate more accurate average doses in the PMMA cylindrical phantoms by using the CTDIw equation: CTDIw = Wcenter ・ CTDIcenter + Wperiphery ・ CTDIperiphery . In order to demonstrate the validity of the devised new weighting factors, the percentage difference between average dose and CTDIw value was evaluated for the weighting factors (conventional, Bakalyar's, Choi's, and devised new weighting factors) in each calculated cross-sectional dose profile. With the use of linear least-squares techniques, new weighting factors (Wcenter = 3/8 and Wperiphery = 5/8 where Wcenter and Wperiphery are weighting factors for CTDIcenter and CTDIperiphery ) were determined. The maximum

  5. Phantom limb pain from spinal sarcoma: a case report.

    Science.gov (United States)

    Cruz, Ernesto; Dangaria, Harsh T

    2013-07-01

    Phantom limb pain is a frequent sequela of amputation. A high prevalence of residual limb pain and back pain also exists among amputees. We present a case of a new-onset severe phantom limb pain resulting from a metastatic spinal mass in an 81-year-old patient with a history of malignant sarcoma and an old hip disarticulation amputation. The metastatic lesion, upon imaging, was found to involve the L3 vertebra and caused moderate compression of the thecal sac on the right and severe right lateral recess stenosis. After the mass was resected, the patient's phantom limb pain resolved. Our case report demonstrates that spinal metastatic pathologies may be a cause of phantom limb pain and should be included in the differential diagnosis of new-onset phantom limb pain or a change in phantom limb pain. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  6. Development of thyroid anthropomorphic phantoms for use in nuclear medicine

    Science.gov (United States)

    Cerqueira, R. A. D.; Maia, A. F.

    2014-02-01

    The objective of this study was to develop thyroid anthropomorphic phantoms to be used in control tests of medical images in scintillation cameras. The main difference among the phantoms was the neck shape: in the first, called OSCT, it was geometrically shaped, while in the second, called OSAP, it was anthropomorphically shaped. In both phantoms, thyroid gland prototypes, which were made of acrylic and anthropomorphically shaped, were constructed to allow the simulation of a healthy thyroid and of thyroids with hyperthyroidism and hypothyroidism. Images of these thyroid anthropomorphic phantoms were obtained using iodine 131 with an activity of 8.695 MBq. The iodine 131 was chosen because it is widely used in studies of thyroid scintigraphy. The images obtained proved the effectiveness of the phantoms to simulate normal or abnormal thyroids function. These phantoms can be used in medical imaging quality control programs and, also in the training of professionals involved in the analysis of images in nuclear medicine centers.

  7. Experimental IMRT breast dosimetry in a thorax phantom

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Elsa B.; Campos, Tarcisio P.R.; Nogueira, Luciana B.; Lima, Andre C.S., E-mail: elsabpimenta@gmail.com, E-mail: tprcampos@pq.cnpq.br, E-mail: lucibn19@yahoo.com.br, E-mail: radioterapia.andre@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro de Tratamento em Radioterapia, Betim, MG (Brazil)

    2017-11-01

    Radiation therapy (RT) is an essential therapeutic method. RT is often used as adjuvant therapy in the treatment of breast cancer. The dose-volume restrictions of the organs at risk limit the prescribed dose to the target volume and biological and clinical effects may influence the final treatment outcome. The breast RT provides large risks to the adjacent organs and consequently the recommended dosimetry to the prescribed dose volume (PTV) is 50 Gy, lower than the most prescribed dose in other treatments (70-85 Gy). Such values implies in less tumor control compared to other sites. The present research proposal aimed to measure absorbed dose in a thorax phantom with synthetic breasts provided by an Intensity-Modulate Radiation Therapy (IMRT) protocol in a RT center. On the methodology, IMRT protocol was selected following recommendations from the Radiation Therapy Oncology Group (RTOG). Radiochromic films and a thorax simulator were prepared by the Ionizing Radiation Research Group (NRI). Dosimeters were calibrated on a selected linear accelerator (LINAC). The comparison of the dosimetry from treatment planning system (TPS), Xio (Elekta) and from experimental data was performed. The spatial distribution of the breast internal dose and in the adjacent organs was depicted by the experimental data. In the film's calibration, the quadratic polynomial fit presented a satisfactory coefficient. Two-dimensional dose profiles were obtained in the breast suggesting that films can supply details and information that TPS does not provide. At the phantom's dosimetry, the internal mean doses taken at the synthetic breast presented usual values above the prescribed dose, besides overall values were within the dosimetric MSKCC criterion. The non full reproduction of the build-up region in the films had occurred due to the asymmetrical positioning of the films in the inner breast, in addition to their non constant distance from the skin. The hot regions were present may

  8. Flexural strength and behaviour of SFRSCC ribbed slab under four point bending

    Science.gov (United States)

    Ahmad, Hazrina; Hashim, Mohd Hisbany Mohd; Bakar, Afidah Abu; Hamzah, Siti Hawa; Rahman, Fadhillah Abdul

    2017-11-01

    An experimental investigation was carried out to study the ultimate strength and behaviour of SFRSCC ribbed slab under four point bending. Comparison was been made between ribbed slab that was fully reinforced with steel fibres (SFWS) with conventionally reinforced concrete ribbed slab (CS and CRC). The volume fraction of the 35 mm hooked end steel fibres used in the mix was 1% (80 kg/m3) with the aspect ratio of 65. Three full scale slab samples with the dimension of 2.8 x 1.2 m with 0.2 m thickness was constructed for the purpose of this study. The slab samples was loaded until failure in a four point bending test. As a whole, based on the results, it can be concluded that the performance of the steel fiber reinforced samples (SFWS) was found to be almost equivalent to the conventionally reinforced concrete ribbed slab sample (CRC).

  9. High-transmission acoustic self-focusing and directional cloaking in a graded perforated metal slab.

    Science.gov (United States)

    Zhao, Sheng-Dong; Wang, Yue-Sheng; Zhang, Chuanzeng

    2017-06-29

    A design strategy and its modeling for high-transmission acoustic self-focusing and directional cloaking in a two-dimensional (2D) and an axisymmetric three-dimensional (3D) gradient-index phononic crystal (GRIN-PC) are reported in this paper. A gradient perforated aluminum slab sandwiched by water is considered. A low-loss directional cloaking device is achieved by controlling the matching coefficient between the slab and the water. The anisotropy coefficient that affects the scattering properties is also introduced. Furthermore, the phase discontinuity for directional cloaking inside and outside the slab is overcome by introducing a non-gradient slab having a lower group velocity behind the GRIN slab as an acoustic delay device. In addition, an axisymmetric 3D directional cloaking structure is obtained by rotating the corresponding 2D structure around the slab axis.

  10. Cenozoic tectonics of western North America controlled by evolving width of Farallon slab.

    Science.gov (United States)

    Schellart, W P; Stegman, D R; Farrington, R J; Freeman, J; Moresi, L

    2010-07-16

    Subduction of oceanic lithosphere occurs through two modes: subducting plate motion and trench migration. Using a global subduction zone data set and three-dimensional numerical subduction models, we show that slab width (W) controls these modes and the partitioning of subduction between them. Subducting plate velocity scales with W(2/3), whereas trench velocity scales with 1/W. These findings explain the Cenozoic slowdown of the Farallon plate and the decrease in subduction partitioning by its decreasing slab width. The change from Sevier-Laramide orogenesis to Basin and Range extension in North America is also explained by slab width; shortening occurred during wide-slab subduction and overriding-plate-driven trench retreat, whereas extension occurred during intermediate to narrow-slab subduction and slab-driven trench retreat.

  11. Fabrication slab waveguide based polymethyl methacrylate (PMMA) with spin coating method

    Science.gov (United States)

    Andriawan, Alan; Pramono, Yono Hadi; Masoed, Asnawi

    2016-11-01

    Fabrication and characterization slab waveguide based polymethyl methacrylate (PMMA) has been carried out. Slab waveguide fabrication done by the spin coating method. Slab waveguide fabrication process carried out by the rotational speed of 1000, 2000, and 3000 rpm respectively played for 10 seconds. Then the slab waveguides heated using a hot plate. Heating process starting from room temperature then increased 5°C to 70°C with a 5 minute warm-up time interval. From the results of characterization fabricated slab waveguides to determine the film thickness is made. Then made observations on the waveguide by passing the light beam He-Ne laser on the thin layer through a single mode optical fiber. From the results of characterization is known that the fabrication of a slab waveguide with a layer thickness of 166 μm. From this research it is known that polymethyl methacrylate (PMMA) can be used as a waveguide with a spin coating method.

  12. Calibrating pen dosimeters with and without a phantom

    Energy Technology Data Exchange (ETDEWEB)

    Nonato, Fernanda B.C.; Cescon, Claudinei T.; Caldas, Linda V.E., E-mail: fbnonato@ipen.b, E-mail: ctcescon@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Thirty one direct reading dosimeters (pen dosimeters) were calibrated and tested in standard beams of gamma radiation, with and without the use of a phantom. The calibration was performed with a Co-60 source and tested with a Cs-137 source. The dose-response curves of the pen dosimeters and their calibration factors for a Co-60 source, with and without the use of a phantom were obtained. The results show the need to calibrate the pen dosimeters with a phantom. (author)

  13. Creating 3D gelatin phantoms for experimental evaluation in biomedicine

    Directory of Open Access Journals (Sweden)

    Stein Nils

    2015-09-01

    Full Text Available We describe and evaluate a setup to create gelatin phantoms by robotic 3D printing. Key aspects are the large workspace, reproducibility and resolution of the created phantoms. Given its soft tissue nature, the gelatin is kept fluid during inside the system and we present parameters for additive printing of homogeneous, solid objects. The results indicate that 3D printing of gelatin can be an alternative for quickly creating larger soft tissue phantoms without the need for casting a mold.

  14. Dynamics of coupled phantom and tachyon fields

    Energy Technology Data Exchange (ETDEWEB)

    Shahalam, M. [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Pathak, S.D.; Li, Shiyuan [Shandong University, School of Physics, Jinan (China); Myrzakulov, R. [Eurasian National University, Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Wang, Anzhong [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Baylor University, Department of Physics, GCAP-CASPER, Waco, TX (United States)

    2017-10-15

    In this paper, we apply the dynamical analysis to a coupled phantom field with scaling potential taking particular forms of the coupling (linear and combination of linear), and present phase space analysis. We investigate if there exists a late time accelerated scaling attractor that has the ratio of dark energy and dark matter densities of the order one. We observe that the scrutinized couplings cannot alleviate the coincidence problem, however, they acquire stable late time accelerated solutions. We also discuss a coupled tachyon field with inverse square potential assuming linear coupling. (orig.)

  15. Getting started with PhantomJS

    CERN Document Server

    Beltran, Aries

    2013-01-01

    The book will follow aA standard tutorial approach, and will beas a complete guide detailing the major aspects of PhantomJS with particular focus on Website website Testingtesting.This book is written forIf you are a JavaScript developers who are is interested in developing applications that interact with various web services, and doing that using a headless browser, then this book is ideal for you. This book iswill also be good for you if you are planning to create a headless browser testing for your web application. Basic understanding of JavaScript is assumed.

  16. Effect of the electron transport through thin slabs on the simulation of linear electron accelerators of use in therapy: A comparative study of various Monte Carlo codes

    Energy Technology Data Exchange (ETDEWEB)

    Vilches, M. [Servicio de Fisica y Proteccion Radiologica, Hospital Regional Universitario ' Virgen de las Nieves' , Avda. de las Fuerzas Armadas, 2, E-18014 Granada (Spain)], E-mail: mvilches@ugr.es; Garcia-Pareja, S. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' Carlos Haya' , Avda. Carlos Haya, s/n, E-29010 Malaga (Spain); Guerrero, R. [Servicio de Radiofisica, Hospital Universitario ' San Cecilio' , Avda. Dr. Oloriz, 16, E-18012 Granada (Spain); Anguiano, M.; Lallena, A.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)

    2007-09-21

    When a therapeutic electron linear accelerator is simulated using a Monte Carlo (MC) code, the tuning of the initial spectra and the renormalization of dose (e.g., to maximum axial dose) constitute a common practice. As a result, very similar depth dose curves are obtained for different MC codes. However, if renormalization is turned off, the results obtained with the various codes disagree noticeably. The aim of this work is to investigate in detail the reasons of this disagreement. We have found that the observed differences are due to non-negligible differences in the angular scattering of the electron beam in very thin slabs of dense material (primary foil) and thick slabs of very low density material (air). To gain insight, the effects of the angular scattering models considered in various MC codes on the dose distribution in a water phantom are discussed using very simple geometrical configurations for the LINAC. The MC codes PENELOPE 2003, PENELOPE 2005, GEANT4, GEANT3, EGSnrc and MCNPX have been used.

  17. Optimization of Technical Solutions to Achieve the Reinforced Concrete Slab Floors through Numerical Simulations

    OpenAIRE

    Munteanu, Mihaela; Dascălu, Gabriela

    2012-01-01

    Widely use of reinforced concrete frame structures highlights the elements study of this structure type. Analysis of reinforced concrete slabs is supported by technical and economic objectives that aim to obtain innovative and feasible solutions. In this respect, the solution of hollow voided slabs is analysed in comparison with classic slab floor, stating the advantages and disadvantages of these two solutions. Previous testing and study of these variant represent another factor to be achiev...

  18. Behaviors of the percentage depth dose curves along the beam axis of a phantom filled with different clinical PTO objects, a Monte Carlo Geant4 study

    Science.gov (United States)

    EL Bakkali, Jaafar; EL Bardouni, Tarek; Safavi, Seyedmostafa; Mohammed, Maged; Saeed, Mroan

    2016-08-01

    The aim of this work is to assess the capabilities of Monte Carlo Geant4 code to reproduce the real percentage depth dose (PDD) curves generated in phantoms which mimic three important clinical treatment situations that include lung slab, bone slab, bone-lung slab geometries. It is hoped that this work will lead us to a better understanding of dose distributions in an inhomogeneous medium, and to identify any limitations of dose calculation algorithm implemented in the Geant4 code. For this purpose, the PDD dosimetric functions associated to the three clinical situations described above, were compared to one produced in a homogeneous water phantom. Our results show, firstly, that the Geant4 simulation shows potential mistakes on the shape of the calculated PDD curve of the first physical test object (PTO), and it is obviously not able to successfully predict dose values in regions near to the boundaries between two different materials. This is, surely due to the electron transport algorithm and it is well-known as the artifacts at interface phenomenon. To deal with this issue, we have added and optimized the StepMax parameter to the dose calculation program; consequently the artifacts due to the electron transport were quasi disappeared. However, the Geant4 simulation becomes painfully slow when we attempt to completely resolve the electron artifact problems by considering a smaller value of an electron StepMax parameter. After electron transport optimization, our results demonstrate the medium-level capabilities of the Geant4 code to modeling dose distribution in clinical PTO objects.

  19. [Phantom limb after amputation--overview and new knowledge].

    Science.gov (United States)

    Schmid, H J

    2000-01-13

    Almost all patients who have an extremity amputated will experience a phantom limb. Amputations of other parts of the body can also cause phantom sensations. One fourth of all women who undergo mastectomy relates phantom breast sensations. Phantoms are common following rectum amputation and may be significant as indicators of rectal tumor relapse. Visual phantoms can appear in patients who undergo eye amputation. Phantom phenomena occur after tooth extraction, ureterocystectomy, penectomy, plexus avulsion or spinal cord injury. The causes underlying phantom sensations are unknown. Sensory deprivation in animals causes reorganization of the cortical and subcortical maps: the areas representing the deprived input shrink and the neighbouring areas expand. The mapping allocates areas to represent the most used peripheral inputs. Every level of the nervous system seems to exhibit plasticity. The primary site seems to be the cortex. The cellular basis of plasticity is unclear. Significant sensory and motor reorganization was found in humans suffering phantom pain. There was a strong relationship between the amount of cortical reorganization and the intensity of phantom pain. These findings may influence the rehabilitation of the amputee. It was shown that pain and cortical reorganization can be reduced or even prevented by the active use of prostheses.

  20. Phantom Extremity Pain Responding to Stellate Ganglion Blockage: Case Report

    Directory of Open Access Journals (Sweden)

    Edip Gonullu

    2013-04-01

    Full Text Available Phantom extremity pain is that which continues to be felt in a non-existent extremity after amputation. The pathophysiological mechanism and etiology of phantom extremity pain are not exactly known, Phantom extremity pain affects the patients in physical and psycho-social aspects. This paper presents a patient with phantom extremity pain that had not responded to medical treatment. A stellate ganglion blockage was performed using lidocaine, bupivacaine and fentanyl and the patient%u2019s pain was observed to be reduced.

  1. Multi-layered tissue head phantoms for noninvasive optical diagnostics

    Directory of Open Access Journals (Sweden)

    M. S. Wróbel

    2015-05-01

    Full Text Available Extensive research in the area of optical sensing for medical diagnostics requires development of tissue phantoms with optical properties similar to those of living human tissues. Development and improvement of in vivo optical measurement systems requires the use of stable tissue phantoms with known characteristics, which are mainly used for calibration of such systems and testing their performance over time. Optical and mechanical properties of phantoms depend on their purpose. Nevertheless, they must accurately simulate specific tissues they are supposed to mimic. Many tissues and organs including head possess a multi-layered structure, with specific optical properties of each layer. However, such a structure is not always addressed in the present-day phantoms. In this paper, we focus on the development of a plain-parallel multi-layered phantom with optical properties (reduced scattering coefficient $\\mu_{s}^{\\prime}$ and absorption coefficient μa corresponding to the human head layers, such as skin, skull, and gray and white matter of the brain tissue. The phantom is intended for use in noninvasive diffuse near-infrared spectroscopy (NIRS of human brain. Optical parameters of the fabricated phantoms are reconstructed using spectrophotometry and inverse adding-doubling calculation method. The results show that polyvinyl chloride-plastisol (PVCP and zinc oxide (ZnO nanoparticles are suitable materials for fabrication of tissue mimicking phantoms with controlled scattering properties. Good matching was found between optical properties of phantoms and the corresponding values found in the literature.

  2. [Gelatine phantom for training of ultrasound guided vascular access].

    Science.gov (United States)

    Clemmesen, Louise; Bendtsen, Thomas F; Sloth, Erik; Oveland, Nils Petter; Knudsen, Lars

    2013-02-25

    This article describes the production of a low-cost training phantom for ultrasound guided invasive procedures of peripheral and central veins and presents a video of the process. The phantom can be adapted for use with other ultrasound techniques. It is a universal useful skill training tool for ultrasound guided invasive procedures. The phantom is easily made of concentrated gelatine. It is cheap and recyclable. The shelf life is prolonged by cold storage in a freezer. The gelatine phantom is a useful tool for practice of probe handling techniques and needle dexterity when placing peripheral and central venous catheters.

  3. [Development of a software for 3D virtual phantom design].

    Science.gov (United States)

    Zou, Lian; Xie, Zhao; Wu, Qi

    2014-02-01

    In this paper, we present a 3D virtual phantom design software, which was developed based on object-oriented programming methodology and dedicated to medical physics research. This software was named Magical Phan tom (MPhantom), which is composed of 3D visual builder module and virtual CT scanner. The users can conveniently construct any complex 3D phantom, and then export the phantom as DICOM 3.0 CT images. MPhantom is a user-friendly and powerful software for 3D phantom configuration, and has passed the real scene's application test. MPhantom will accelerate the Monte Carlo simulation for dose calculation in radiation therapy and X ray imaging reconstruction algorithm research.

  4. Phantom Limb Sensation (PLS) and Phantom Limb Pain (PLP) among Young Landmine Amputees.

    Science.gov (United States)

    Poor Zamany Nejatkermany, Mahtab; Modirian, Ehsan; Soroush, Mohammadreza; Masoumi, Mehdi; Hosseini, Maryam

    2016-01-01

    To determine the frequency of phantom limb sensation (PLS) and phantom limb pain (PLP) in children and young adults suffering landmine-related amputation. All youths with amputation due to landmine explosions participated in this study. The proportions of patients with phantom limb sensation/pain, intensity and frequency of pain were reported. Chi square test was used to examine the relationship between variables. Comparison of PLP and PLS between upper and lower amputation was done by unpaired t-test. There were 38 male and 3 female with the mean age of 15.8±2.4yr. The mean interval between injury and follow-up was 90.7±39.6 months. Twelve (44.4%) upper limb amputees and 11 (26.8%) lower limb amputees had PLS. Nine (33.3%) upper limb amputees and 7 (17.1%) lower limb amputees experienced PLP. Of 27 upper limb amputees, 6 (14.6%) and among 15 lower limb amputees, 6 (14.6%) had both PLS and PLP. One case suffered amputation of upper and lower limbs and was experiencing PLS and PLP in both parts. PLS had a significant difference between the upper and lower amputated groups. Significant relationship was observed between age of casualty and duration of injury with PLP. Phantom limb sensation and pain in young survivors of landmine explosions appear to be common, even years after amputation.

  5. Measuring snow properties relevant to slab avalanche release

    Science.gov (United States)

    Reuter, Benjamin; Proksch, Martin; Löwe, Henning; van Herwijnen, Alec; Schweizer, Jürg

    2014-05-01

    The release of a slab avalanche is preceded by a sequence of fractures. The main material properties relevant for the fracture processes are the specific fracture energy of the weak layer, as also the elastic modulus and the density of the overlying slab layers. The snow micro-penetrometer (SMP) is the method of choice for snow stratigraphy measurements in the field with high resolution. Recent advances in signal processing allow us to derive the most needed material properties to model the fracture behaviour of snow. On a smaller scale, the three dimensional structure of snow samples is obtained from snow micro-tomography (CT) providing snow density directly. By modelling the mechanical behaviour of the ice matrix the elastic properties of the snow sample can be calculated. At the macro-scale, fracture mechanical field tests with particle tracking velocimetry (PTV) allow observing the in-situ fracture behaviour. Specific fracture energy and slab stiffness are derived from PTV measurement by fitting an analytical beam equation to the observed deformation field. Over the past years we were able to generate two datasets of overlapping SMP and CT as well as SMP and PTV measurements. SMP measurements and micro-tomography of snow samples show that snow density is well reproduced with current SMP signal processing algorithms. Also the specific fracture energy as derived from the SMP signal is in agreement with PTV results. The effective modulus, however, being the most sensitive parameter in fracture covers three orders of magnitude depending on measurement method. The present work discusses observed similarities and differences arising from measurement methods, theoretical assumptions and process scales. Reliable methods to determine the parameters describing the fracture process are key to snow instability modelling based on either snow cover simulations or field measurements. Preliminary modelling results from ongoing spatial variability studies illustrate the

  6. Subducting characteristic of the Pacific slab beneath northeast China

    Science.gov (United States)

    Jiang, G.; Zhang, G.; Xu, Y.

    2012-12-01

    The volcanoes locating in northeast China are very active. Some researchers consider that the origin of volcanoes is closely related to the subducting western Pacific plate and the upwelling asthenosphere. The thickness and the existing range of the subducted plate are not clear as far although the seismic tomography results obviously show that the Pacific plate exists below the volcano region. Therefore, in this study, we adopted the method combining the teleseismic tomography with travel time forward modeling to further study the velocity structure beneath northeast China, especially the precise model of subducted Pacific plate. Our results show that (1) the average thickness and velocity perturbation of slab is 85 km and 1%, respectively, and the slab has not been thickened compared with the previous result of the Japan Sea; (2) the Pacific plate subducted into the mantle transition zone with a shallow dip angle, and changed horizontally when it touched the bottom of mantle transition zone, and extended westward to Longitude 127°E and then stops over there; (3) the horizontal slab locates right below the volcano region. These above features help people understand the origin of intraplate volcanoes and the geodynamical process better. (a) Tomographic result along 43°N. Red and blue colors represent the high and low velocity anomalies, respectively, and the scale is shown at the right-bottom; The profile line is shown in (b); The black triangles represent the volcanoes locating near the profile; The black solid and dashed lines show the depths of upper and lower boundaries of Pacific plate, respectively. The red dots represent the deep earthquakes around the profile. (b) Location of profile AA' along 43°N. Black triangles denote volcanoes; White squares represent the stations; Blue contours denote the depth of upper boundary of Pacific plate; Black and red dots represent the deep epicenters.

  7. Contact Loss beneath Track Slab Caused by Deteriorated Cement Emulsified Asphalt Mortar: Dynamic Characteristics of Vehicle-Slab Track System and Prototype Experiment

    Directory of Open Access Journals (Sweden)

    Dan Liu

    2016-01-01

    Full Text Available The contact loss beneath track slab caused by deteriorated cement emulsified asphalt mortar (CA mortar has been one of the main diseases occurring in the CRTS- (China Railway Track System- I Slab Track of high-speed railway in China. Based on the slab track design theory and the vehicle-track coupling vibration theory, a vehicle-track vertical coupling dynamic FEM model was established to analyze the influence of the contact loss length on the dynamic characteristics of vehicle and track subsystems at different train speeds. A prototype dynamic characteristic experimental test of CRTS-I Slab Track with CA mortar contact loss was conducted to verify the FEM model results. The train load was generated by the customized ZSS50 excitation car. The results showed that when the operation speed is less than 300 km/h, the contact loss with length smaller than 2.0 m barely affects the running smoothness ride safety of vehicle. The contact loss length effect on the dynamic characteristics of track subsystem is pronounced, especially on the track slab. Once the contact loss beneath the track slab occurs, the vibration displacement and the acceleration of the track slab increase rapidly, while it has little influence on the displacement and acceleration of the concrete roadbed.

  8. Subduction Mode Selection During Slab and Mantle Transition Zone Interaction: Numerical Modeling

    Science.gov (United States)

    Shi, Yanan; Wei, Dongping; Li, Zhong-Hai; Liu, Ming-Qi; Liu, Mengxue

    2017-12-01

    Global seismic tomography of the subduction zones shows that the subducting slabs could either stagnate around the 660-km discontinuity, or penetrate into the lower mantle. The stagnating slabs also have various morphologies. These are directly related to the interaction between the subducting slabs and the mantle transition zone (MTZ), the dynamics of which are still debated. Using a 2-D thermo-mechanical model, we systematically investigated the modes of subduction in the mantle transition zone and explored the key constraints of various subduction styles. Four basic subduction modes are obtained in the numerical experiments, including one with slab penetrating through the 660-km discontinuity and three other modes with slab stagnating in the MTZ (i.e. folding, lying and rolling-back). The numerical models indicate that the age of subducting oceanic plate, the thickness of overriding continental lithosphere and the convergence velocity play crucial roles in the dynamics of subducting slab and MTZ interaction. In general, the young subducting slab favors the penetration or folding mode, whereas the old subducting slab tends to result in lying or rolling-back mode, although other parameters can also affect. Our models also show a strong correlation between the subduction mode selection and dip angle of the slab tip when reaching the 660-km phase boundary.

  9. Analysis of segregation solute redistribution and centerline in continuously cast thin slab

    Directory of Open Access Journals (Sweden)

    Changwen MA

    2004-11-01

    Full Text Available A model has been built to calculate the solute redistribution in continuously cast thin slab and the effect of the fluid flow in mush on the centerline segregation was analyzed. The corresponding simulation program was developed by applying the SIMPLER algorithm. The momentum, energy and species conservation equations were solved simultaneously. The macro-segregation of a 3-D thin slab with 900 mm x 50 mm cross section was simulated. The obtained results show that negative segregation forms near the slab surface and severe centerline segregation forms in the mid-thickness plane. The species concentration in the centerline of the slab increases obviously at the final solidification stage.

  10. Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers

    Science.gov (United States)

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2015-01-01

    Deep slab avalanches are particularly challenging to forecast. These avalanches are difficult to trigger, yet when they release they tend to propagate far and can result in large and destructive avalanches. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl ski area in southwest Montana to test the usefulness of meteorological variables for predicting seasons and days with deep slab avalanches. We defined deep slab avalanches as those that failed on persistent weak layers deeper than 0.9 m, and that occurred after February 1st. Previous studies often used meteorological variables from days prior to avalanches, but we also considered meteorological variables over the early months of the season. We used classification trees and random forests for our analyses. Our results showed seasons with either dry or wet deep slabs on persistent weak layers typically had less precipitation from November through January than seasons without deep slabs on persistent weak layers. Days with deep slab avalanches on persistent weak layers often had warmer minimum 24-hour air temperatures, and more precipitation over the prior seven days, than days without deep slabs on persistent weak layers. Days with deep wet slab avalanches on persistent weak layers were typically preceded by three days of above freezing air temperatures. Seasonal and daily meteorological variables were found useful to aid forecasting dry and wet deep slab avalanches on persistent weak layers, and should be used in combination with continuous observation of the snowpack and avalanche activity.

  11. Flexural Strengthening of RC Slabs Using a Hybrid FRP-UHPC System Including Shear Connector

    Directory of Open Access Journals (Sweden)

    Jiho Moon

    2017-01-01

    Full Text Available A polymeric hybrid composite system made of UHPC and CFRP was proposed as a retrofit system to enhance flexural strength and ductility of RC slabs. While the effectiveness of the proposed system was confirmed previously through testing three full-scale one-way slabs having two continuous spans, the slabs retrofitted with the hybrid system failed in shear. This sudden shear failure would stem from the excessive enhancement of the flexural strength over the shear strength. In this study, shear connectors were installed between the hybrid system and a RC slab. Using simple beam, only positive moment section was examined. Two full-scale RC slabs were cast and tested to failure: the first as a control and the second using this new strengthening technique. The proposed strengthening system increased the ultimate load carrying capacity of the slab by 70%, the stiffness by 60%, and toughness by 128%. The efficiency of shear connectors on ductile behavior of the retrofitted slab was also confirmed. After the UHPC top is separated from the slab, the shear connector transfer shear load and the slab system were in force equilibrium by compression in UHPC and tension in CFRP.

  12. Issues for Achieving an Experimental Model Concerning Bubble Deck Concrete Slab with Spherical Gaps

    National Research Council Canada - National Science Library

    Sergiu Călin; Ciprian Asăvoaie; N. Florea

    2010-01-01

    After realizing numerous constructions in the world, which use Bubble Deck concrete slabs with spherical gaps, valuable information were gathered, allowing a rigorous processing and systematization...

  13. Punching Shear Behavior of Continuous Bubbled Reinforced Reactive Powder Concrete Slab

    OpenAIRE

    Mohammad Redha K. Mahmood; Dawood, Mustafa B.

    2017-01-01

    This paper presents an experimental investigation on punching shear behavior of continuous bubbled reinforced Reactive Powder Concrete (RPC) slabs. Bubbled slab is one of the various types of voided slabs. It consists of bubbles placed inside a concrete slab which will reduce the self-weight of the structure by about 35% (Tina Lai 2009). On the other hand, using RPC make it possible for structural member to have smaller dimensions due to the great strength of this type of concrete. In this st...

  14. Flexural Behavior of Continuous Bubbled Reinforced Reactive Powder Concrete Flat Slab

    OpenAIRE

    Mohammad Redha K. Mahmood; Dawood, Mustafa B.

    2017-01-01

    This paper presents an experimental investigation on flexural behavior of continuous bubbled reinforced Reactive Powder Concrete (RPC) flat slabs. Bubbled slab is one of the various types of voided slabs. It consist of bubbles placed inside a concrete slab which will reduce the self-weight of the structure by about 35% (Tina Lai 2009). On the other hand, using RPC make it possible for structural member to have smaller dimensions due to the great strength of this type of concrete. In this stud...

  15. Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers

    CERN Document Server

    Gao, Jie; Deng, Huixu; Mathai, Cherian J; Gangopadhyay, Shubhra; Yang, Xiaodong

    2013-01-01

    Epsilon-near-zero (ENZ) metamaterial slabs at visible frequencies based on metal-dielectric multilayers are experimentally realized. Transmission, reflection and absorption spectra are measured and used to determine the complex refractive indices and the effective permittivities of the ENZ slabs, which agree with the results obtained from both the numerical simulations and the optical nonlocalities analysis. Furthermore, light propagation in ENZ slabs and directional emission from ENZ prisms are also analyzed. The accurate determination of the ENZ wavelength for metal-dielectric multilayer metamaterial slabs is important for realizing many unique applications, such as phase front manipulation and enhancement of photonic density of states.

  16. Cause Analysis on the Void under Slabs of Cement Concrete Pavement

    Science.gov (United States)

    Wen, Li; Zhu, Guo Xin; Baozhu

    2017-06-01

    This paper made a systematic analysis on the influence of the construction, environment, water and loads on the void beneath road slabs, and also introduced the formation process of structural void and pumping void, and summarizes the deep reasons for the bottom of the cement concrete pavement. Based on the analysis above, this paper has found out the evolution law of the void under slabs which claimed that the void usually appeared in the slab corners and then the cross joint, resulting void in the four sides with the void area under the front slab larger than the rear one.

  17. Research on mechanical behavior of casting slab during dynamic soft reduction

    Science.gov (United States)

    Qin, Qin; Huang, Jianlin; Zhou, Daomou; Yang, Xiaoying

    2017-10-01

    A three-dimensional dynamic solidification model incorporating the thermo-elastic-plastic coupling model has been proposed in this paper by ABAQUS considering the dynamic contact between the slab and rolls. The thermo-mechanical coupling model produces outputs such as temperature and mechanical behavior of the slab. And the stress-strain distribution of the high-temperature slab at the solidification end has been investigated in this paper. The influences of various reduction interval, reduction amount and reduction distribution on mechanical behavior of casting slab have been systematically discussed.

  18. Tests on reinforced concrete slabs with cut-out openings strengthened with fibre-reinforced polymers

    OpenAIRE

    Floruţ, Sorin-Codruţ; Sas, Gabriel; Popescu, Cosmin; Stoian, Valeriu

    2014-01-01

    This paper presents the results of experimental investigations on reinforced concrete slabs strengthened using fibre-reinforced polymers (FRP). Eight tests were carried out on four two-way slabs, with and without cut-out openings. Investigations on slabs with cut-outs revealed that the FRP can be placed only around the edges of the cut-out when retrofitting the slabs whereas, in the situation of inserting cut-outs combined with increased demands of capacity, it is necessary to apply FRP compo...

  19. Effects of Reinforcement Configuration on Reserve Capacity of Concrete Slabs

    Science.gov (United States)

    1985-08-01

    Reinforced concreted Tensile membrane,, Buried shelters/ Shelters/ ..i, Civil defense, Slab capacity, 120. A34TlRACT rCcnhma in~ r aidit noe..era aad...CHAPTER 1 I XTPODLCT, CI At the- iiti it io., of this Study civil d~efense plwlgcalled for the .;evacuation of nonessenrt*I51 pezrsonnel to safe (lower...lqbal and Derecho (Reference 10). The reinforcement ratio, p , was 0.0062 in "Christianscn’s te,;tts and varied from 0.0023 to 0.0093 in Roberts’ tests

  20. CONCRETE PROPERTIES IMPROVEMENT OF SLAB TRACKS USING CHEMICAL ADDITIVES

    Directory of Open Access Journals (Sweden)

    V. V. Pristinskaya

    2015-11-01

    Full Text Available Purpose. On the Railways of Ukraine a very large number of slab tracks are operated with cracks. Many scientific works of previous years are dedicated to improving the design of slab tracks. The main causes of defects are: poor exploitation of the track; insufficient physic-mechanical characteristics of concrete; poor quality of initial materials. It is therefore necessary to develop an optimum concrete mix for the manufacture of these concrete products. Methodology. To assess the impact of individual factors and effects of their interactions on properties of concrete mix and concrete method of experimental and statistical modeling was used. At this, methodological fundamentals of mathematical experiment planning in concrete technology and modern methods of optimization of composite materials were taking into account. Based on the obtained data during the planned experiment conducting, including15 studies and using the computer program MathCad, were obtained the regression equations, which describe the relevant physical and mechanical properties of concrete. On the basis of the equations with the help of computer program MATLAB R2012b the graphs were drawn, illustrating the dependences of system response from the changes of two factors at a fixed value of the third factor. Findings. Firstly was the analysis of cracks that occur in the process of operation in the constructions of slab tracks. Further reasons of possible occurrence of these cracks were presented. In the process of the conducted research the author has concluded that for rational concrete mix development it is necessary to conduct the planned experiment with the use of quality materials. It was established that to increase the strength, chemical additives should be added in to concrete mix, it will let reduce cement amount. Originality. Experiments proved the usage of modern chemical additives in order to improve the properties of concrete. Models were developed, reflecting

  1. An Incursion on Punching of Reinforced Concrete Flat Slabs

    Directory of Open Access Journals (Sweden)

    Dan-Vasile Bompa

    2009-01-01

    Full Text Available Starting from the early 60s continuous studies have been made regarding punching of concrete flat slabs. The evolution of technology and calculus systems influenced this engineering branch. Nowadays is possible to account in structural analysis all the non-linear behaviour of reinforced and prestressed concrete and to get the most close structural response in comparison with the real behaviour. As a controversy matter, several tests and theories have been developed. Nowadays researchers try to find the most accurate and economic formula for punching. This paper purpose is to make a survey on punching classical model and related nonlinear concrete behaviour regarded to this issue.

  2. The Slab Method to Measure the Topological Susceptibility

    CERN Document Server

    Bietenholz, Wolfgang; de Forcrand, Philippe; Dromard, Arthur; Gerber, Urs

    2016-10-11

    In simulations of a model with topological sectors, algorithms which proceed in small update steps tend to get stuck in one sector, especially on fine lattices. This distorts the numerical results, in particular it is not straightforward to measure the topological susceptibility chi_t. We test a method to measure chi_t even if configurations from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as "slabs". This enables the evaluation of chi_t, as we demonstrate with numerical results for non-linear sigma-models and for 2-flavour QCD.

  3. Effect of Rotation in an Orthotropic Elastic Slab

    Directory of Open Access Journals (Sweden)

    Santra S.

    2017-02-01

    Full Text Available The fundamental equations of the two dimensional generalized thermoelasticity (L-S model with one relaxation time parameter in orthotropic elastic slab has been considered under effect of rotation. The normal mode analysis is used to the basic equations of motion and heat conduction equation. Finally, the resulting equations are written in the form of a vector-matrix differential equation which is then solved by the eigenvalue approach. The field variables in the space time domain are obtained numerically. The results corresponding to the cases of conventional thermoelasticity CTE, extended thermoelasticity (ETE and temperature rate dependent thermoelasticity (TRDTE are compared by means of graphs.

  4. Coherent combination of high-power, zigzag slab lasers

    Science.gov (United States)

    Goodno, G. D.; Komine, H.; McNaught, S. J.; Weiss, S. B.; Redmond, S.; Long, W.; Simpson, R.; Cheung, E. C.; Howland, D.; Epp, P.; Weber, M.; McClellan, M.; Sollee, J.; Injeyan, H.

    2006-05-01

    We demonstrate a scalable architecture for a high-power, high-brightness, solid-state laser based on coherent combinations of master oscillator power amplifier chains. A common master oscillator injects a sequence of multikilowatt Nd:YAG zigzag slab amplifiers. Adaptive optics correct the wavefront of each amplified beamlet. The beamlets are tiled side by side and actively phase locked to form a single output beam. The laser produces 19 kW with beam quality <2× diffraction limited. To the best of our knowledge, this is the brightest cw solid-state laser demonstrated to date.

  5. THE PECULIARITIES OF DESIGNING OF MONOLITHIC FOUNDATION SLABS IN BANGLADESH

    Directory of Open Access Journals (Sweden)

    Анна Николаевна Малахова

    2017-05-01

    Full Text Available The climatic and engineering-geological conditions of the construction sites for civil buildings in the People's Republic of Bangladesh are considered. There are described the features of the constructive solution of load-bearing structures of buildings of mass urban development. Monolithic reinforced concrete buildings of medium height of column and wall construction systems are considered, and the average ground pressure is determined. There are shown the slabs foundations of such buildings, the features of their design and reinforcement, including under the conditions of seismic influences.

  6. Dual Energy Tomosynthesis breast phantom imaging

    Science.gov (United States)

    Koukou, V.; Martini, N.; Fountos, G.; Messaris, G.; Michail, C.; Kandarakis, I.; Nikiforidis, G.

    2017-12-01

    Dual energy (DE) imaging technique has been applied to many theoretical and experimental studies. The aim of the current study is to evaluate dual energy in breast tomosynthesis using commercial tomosynthesis system in terms of its potential to better visualize microcalcifications (μCs). The system uses a tungsten target X-ray tube and a selenium direct conversion detector. Low-energy (LE) images were acquired at different tube voltages (28, 30, 32 kV), while high-energy images at 49 kV. Fifteen projections, for the low- and high-energy respectively, were acquired without grid while tube scanned continuously. Log-subtraction algorithm was used in order to obtain the DE images with the weighting factor, w, derived empirically. The subtraction was applied to each pair of LE and HE slices after reconstruction. The TORMAM phantom was imaged with the different settings. Four regions-of-interest including μCs were identified in the inhomogeneous part of the phantom. The μCs in DE images were more clearly visible compared to the low-energy images. Initial results showed that DE tomosynthesis imaging is a promising modality, however more work is required.

  7. Phantom black holes and critical phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Aïnou, Mustapha [Engineering Faculty, Başkent University, Bağlıca Campus, Ankara (Turkey); Marques, Glauber T. [Universidade Federal Rural da Amazônia ICIBE-LASIC, Av. Presidente Tancredo Neves 2501, CEP 66077-901—Belém/PA (Brazil); Rodrigues, Manuel E., E-mail: azreg@baskent.edu.tr, E-mail: gtadaiesky@hotmail.com, E-mail: esialg@gmail.com [Faculdade de Ciências Exatas e Tecnologia, Universidade Federal do Pará, Campus Universitário de Abaetetuba, CEP 68440-000, Abaetetuba, Pará (Brazil)

    2014-07-01

    We consider the two classes cosh and sinh of normal and phantom black holes of Einstein-Maxwell-dilaton theory. The thermodynamics of these holes is characterized by heat capacities that may have both signs depending on the parameters of the theory. Leaving aside the normal Reissner-Nordström black hole, it is shown that only some phantom black holes of both classes exhibit critical phenomena. The two classes share a nonextremality, but special, critical point where the transition is continuous and the heat capacity, at constant charge, changes sign with an infinite discontinuity. This point yields a classification scheme for critical points. It is concluded that the two unstable and stable phases coexist on one side of the criticality state and disappear on the other side, that is, there is no configuration where only one phase exists. The sinh class has an extremality critical point where the entropy diverges. The transition from extremality to nonextremality with the charge held constant is accompanied by a loss of mass and an increase in the temperature. A special case of this transition is when the hole is isolated (microcanonical ensemble), it will evolve by emission of energy, which results in a decrease of its mass, to the final state of minimum mass and vanishing heat capacity. The Ehrenfest scheme of classification is inaccurate in this case but the generalized one due to Hilfer leads to conclude that the transition is of order less than unity. Fluctuations near criticality are also investigated.

  8. MRI compatible head phantom for ultrasound surgery.

    Science.gov (United States)

    Menikou, Georgios; Dadakova, Tetiana; Pavlina, Matt; Bock, Michael; Damianou, Christakis

    2015-03-01

    Develop a magnetic resonance imaging (MRI) compatible head phantom with acoustic attenuation closely matched to the human attenuation, and suitable for testing focused ultrasound surgery protocols. Images from an adult brain CT scan were used to segment the skull bone from adjacent cerebral tissue. The segmented model was manufactured in a 3-D printer using (Acrylonitrile Butadiene Styrene) ABS plastic. The cerebral tissue was mimicked by an agar-evaporated milk-silica gel (2% w/v-25% v/v-1.2% w/v) which was molded inside a skull model. The measured attenuation of the ABS skull was 16 dB/cm MHz. The estimated attenuation coefficient of the gel replicating brain tissue was 0.6 dB/cm MHz. The estimated agar-silica gel's T1 and T2 relaxation times in a 1.5 Tesla magnetic field were 852 ms and 66 ms respectively. The effectiveness of the skull to reduce ultrasonic heating was demonstrated using MRI thermometry. Due to growing interest in using MRI guided focused ultrasound (MRgFUS) for treating brain cancer and its application in sonothrombolysis, the proposed head phantom can be utilized as a very useful tool for evaluating ultrasonic protocols, thus minimizing the need for animal models and cadavers. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. [Atypical odontalgia - a little known phantom pain].

    Science.gov (United States)

    Türp, J C

    2001-02-01

    Atypical odontalgia (AO) was described in the dental literature more than 200 years ago, and it is included in most taxonomies and textbooks of pain. Nonetheless, it remains one of the most frequently misdiagnosed intraoral pain conditions. Due to similarities with phantom pain, AO is also referred to as "phantom tooth pain". AO is characterized by persistent throbbing pain in or around a former or present permanent tooth (preferably molars and premolars). Clinical and radiographic examination, however, does not reveal any organic cause of the pain. The complaints associated with AO usually begin after deafferentiation of primary afferent trigeminal nerve fibers, e. g., after pulp extirpation, apicectomy, or extraction of a tooth. AO is a diagnosis by exclusion. Patients and dentists must be aware of the fact that the therapeutic options are limited. AO is primarily managed with topically or systemically administered pharmacological agents. Unnecessary and harmful procedures around teeth and jaws must be avoided by all means. A concept was recently proposed which aims to unify a group of four types of orofacial pain under the term "idiopathic orofacial pain" (Woda & Pionchon 1999, 2000). These pain conditions - AO, atypical facial pain, burning mouth syndrome ("stomatodynia"), and subgroups of temporomandibular disorders ("idiopathic facial arthromyalgia") - are characterized by unknown etiology, but common clinical characteristics. It is to be hoped that the suggested classification will stimulate reflection on these enigmatic orofacial pain disorders.

  10. Contact Loss beneath Track Slab Caused by Deteriorated Cement Emulsified Asphalt Mortar: Dynamic Characteristics of Vehicle-Slab Track System and Prototype Experiment

    OpenAIRE

    Liu, Dan; Liu, Yu-feng; Ren, Juan-juan; Yang, Rong-shan; Liu, Xue-yi

    2016-01-01

    The contact loss beneath track slab caused by deteriorated cement emulsified asphalt mortar (CA mortar) has been one of the main diseases occurring in the CRTS- (China Railway Track System-) I Slab Track of high-speed railway in China. Based on the slab track design theory and the vehicle-track coupling vibration theory, a vehicle-track vertical coupling dynamic FEM model was established to analyze the influence of the contact loss length on the dynamic characteristics of vehicle and track su...

  11. Generation of voxelized breast phantoms from surgical mastectomy specimens.

    Science.gov (United States)

    O'Connor, J Michael; Das, Mini; Dider, Clay S; Mahd, Mufeed; Glick, Stephen J

    2013-04-01

    In the research and development of dedicated tomographic breast imaging systems, digital breast object models, also known as digital phantoms, are useful tools. While various digital breast phantoms do exist, the purpose of this study was to develop a realistic high-resolution model suitable for simulating three-dimensional (3D) breast imaging modalities. The primary goal was to design a model capable of producing simulations with realistic breast tissue structure. The methodology for generating an ensemble of digital breast phantoms was based on imaging surgical mastectomy specimens using a benchtop, cone-beam computed tomography system. This approach allowed low-noise, high-resolution projection views of the mastectomy specimens at each angular position. Reconstructions of these projection sets were processed using correction techniques and diffusion filtering prior to segmentation into breast tissue types in order to generate phantoms. Eight compressed digital phantoms and 20 uncompressed phantoms from which an additional 96 pseudocompressed digital phantoms with voxel dimensions of 0.2 mm(3) were generated. Two distinct tissue classification models were used in forming breast phantoms. The binary model classified each tissue voxel as either adipose or fibroglandular. A multivalue scaled model classified each tissue voxel as percentage of adipose tissue (range 1%-99%). Power spectral analysis was performed to compare simulated reconstructions using the breast phantoms to the original breast specimen reconstruction, and fits were observed to be similar. The digital breast phantoms developed herein provide a high-resolution anthropomorphic model of the 3D uncompressed and compressed breast that are suitable for use in evaluating and optimizing tomographic breast imaging modalities. The authors believe that other research groups might find the phantoms useful, and therefore they offer to make them available for wider use.

  12. IMPROVING THE EFFICIENCY OF MINERAL WOOL SLABS TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Perfilov Vladimir Aleksandrovich

    2016-03-01

    Full Text Available The use of thermal insulation materials is an effective method to create an insulating envelope of a building, as well as to reduce energy costs and increase the durability of building structures. The properties of stone wool products and their operational durability is largely determined by the conditions of formation of the mineral wool carpet, uniform distribution of binder and its curing and the heat treatment conditions. Most domestic technologies are aimed at the production of mineral wool products with volume-oriented structure, which is formed using special units: spreader and corrugator placed in a production line. The next step to obtain the optimum structures is the production of dual density slabs. The denser upper layer receives mechanical loads caused by the operating conditions; the lower, less dense, but more thick layer performs the main function - insulation. The dual density slabs are produced on standard lines supplemented with a special unit, which is located in front of the heat treatment camera. Optimization of heat treatment parameters and prediction of the properties of materials is performed using software package.

  13. MODELING OF TRANSIENT HEAT TRANSFER IN FOAMED CONCRETE SLAB

    Directory of Open Access Journals (Sweden)

    MD AZREE OTHUMAN MYDIN

    2013-06-01

    Full Text Available This paper reports the basis of one-dimensional Finite Difference method to obtain thermal properties of foamed concrete in order to solve transient heat conduction problems in multi-layer panels. In addition, this paper also incorporates the implementation of the method and the validation of thermal properties model of foamed concrete. A one-dimensional finite difference heat conduction programme has been developed to envisage the temperature development through the thickness of the foamed concrete slab, based on an initial estimate of the thermal conductivity-temperature relationship as a function of porosity and radiation within the voids. The accuracy of the model was evaluated by comparing predicted and experimental temperature profiles obtained from small scale heat transfer test on foamed concrete slabs, so that the temperature history of the specimen calculated by the programme closely matches those recorded during the experiment. Using the thermal properties of foamed concrete, the validated heat transfer program predicts foamed concrete temperatures in close agreement with experimental results obtained from a number of high temperature tests. The proposed numerical and thermal properties are simple yet efficient and can be utilised to aid manufacturers to develop their products without having to conduct numerous large-scale fire tests.

  14. Mantle flow and dynamic topography associated with slab window opening: Insights from laboratory models

    Science.gov (United States)

    Guillaume, Benjamin; Moroni, Monica; Funiciello, Francesca; Martinod, Joseph; Faccenna, Claudio

    2010-12-01

    We present dynamically self-consistent mantle-scale laboratory models that have been conducted to improve our understanding of the influence of slab window opening on subduction dynamics, mantle flow and associated dynamic topography over geological time scales. The adopted setup consists of a two-layer linearly viscous system simulating the subduction of a fixed plate of silicone (lithosphere) under negative buoyancy in a viscous layer of glucose syrup (mantle). Our experimental setting is also characterized by a constant-width rectangular window located at the center of a laterally confined slab, modeling the case of the interaction of a trench-parallel spreading ridge with a wide subduction zone. We found that the opening of a slab window does not produce consistent changes of the geometry and the kinematics of the slab. On the contrary, slab-induced mantle circulation, quantified both in the vertical and horizontal sections using the Feature Tracking image analysis technique, is strongly modified. In particular, rollback subduction and the opening of the slab window generate a complex mantle circulation pattern characterized by the presence of poloidal and toroidal components, with the importance of each evolving according to kinematic stages. Mantle coming from the oceanic domain floods through the slab window, indenting the supra-slab mantle zone and producing its deformation without any mixing between mantle portions. The opening of the slab window and the upwelling of sub-slab mantle produce a regional-scale non-isostatic topographic uplift of the overriding plate that would correspond to values ranging between ca. 1 and 5 km in nature. Assuming that our modeling results can be representative of the natural behavior of subduction zones, we compared them to the tectonics and volcanism of the Patagonian subduction zone. We found that the anomalous backarc volcanism that has been developing since the middle Miocene could result from the lateral flow of sub-slab

  15. Convective instability of stagnant slabs at the base of the Mantle Transition Zone

    Science.gov (United States)

    Motoki, M.; Ballmer, M. D.

    2013-12-01

    Seismic tomography reveals that subducting slabs descend to a depth of about 660 km to stagnate at the base of the mantle transition zone for long timescales. Most of the slab is composed of harzburgite covered by veneers of eclogite and hydrated mantle, a make-up that is positively buoyant overall. Initially, this positive compositional buoyancy is overwhelmed by the negative thermal buoyancy of the cool slab. However, the plate continues to be heated from above and below while it stagnates. Consequently, its thermal buoyancy is expected to slowly increase, turning an initially stable into an unstable thermochemical density stratification, and triggering convective instability. Plumes rising out of stagnating slabs may enhance the transition zone and asthenosphere with compositional heterogeneity, including water, as well as support decompression melting. To study these important processes, we systematically explore the parameters controlling convective instability of stagnating slabs in two-dimensional thermochemical geodynamic models. Preliminary results show that instability occurs at about 50-75 Myr after subduction, a timescale that increases with the age and speed of the subducting plate, as well as Rayleigh number. This timescale is further found to be sensitive to preexisting heterogeneity within the slab, as well as the occurrence of small-scale convection at the base of the overriding plate. The plumes rising out of the slab can deliver only a small fraction of the slab's eclogite to the transition zone, but a larger fraction of the slab's harzburgite and hydrated mantle to the base of the lithosphere, where hydrated lithologies undergo decompression melting in a subset of our models. Most of the slab's eclogite instead settles at the very base of the transition zone. These findings have important implications for the fate of subducted slabs, material transport across the transition zone, the compositional stratification of the mantle as a whole, as well

  16. Processing and properties of large-sized ceramic slabs

    Directory of Open Access Journals (Sweden)

    Fossa, L.

    2010-10-01

    Full Text Available Large-sized ceramic slabs – with dimensions up to 360x120 cm2 and thickness down to 2 mm – are manufactured through an innovative ceramic process, starting from porcelain stoneware formulations and involving wet ball milling, spray drying, die-less slow-rate pressing, a single stage of fast drying-firing, and finishing (trimming, assembling of ceramic-fiberglass composites. Fired and unfired industrial slabs were selected and characterized from the technological, compositional (XRF, XRD and microstructural (SEM viewpoints. Semi-finished products exhibit a remarkable microstructural uniformity and stability in a rather wide window of firing schedules. The phase composition and compact microstructure of fired slabs are very similar to those of porcelain stoneware tiles. The values of water absorption, bulk density, closed porosity, functional performances as well as mechanical and tribological properties conform to the top quality range of porcelain stoneware tiles. However, the large size coupled with low thickness bestow on the slab a certain degree of flexibility, which is emphasized in ceramic-fiberglass composites. These outstanding performances make the large-sized slabs suitable to be used in novel applications: building and construction (new floorings without dismantling the previous paving, ventilated façades, tunnel coverings, insulating panelling, indoor furnitures (table tops, doors, support for photovoltaic ceramic panels.

    Se han fabricado piezas de gran formato, con dimensiones de hasta 360x120 cm, y menos de 2 mm, de espesor, empleando métodos innovadores de fabricación, partiendo de composiciones de gres porcelánico y utilizando, molienda con bolas por vía húmeda, atomización, prensado a baja velocidad sin boquilla de extrusión, secado y cocción rápido en una sola etapa, y un acabado que incluye la adhesión de fibra de vidrio al soporte cerámico y el rectificado de la pieza final. Se han

  17. Monte Carlo simulation of light propagation in skin tissue phantoms using a parallel computing method

    Science.gov (United States)

    Wu, Di M.; Zhao, S. S.; Lu, Jun Q.; Hu, Xin-Hua

    2000-06-01

    In Monte Carlo simulations of light propagating in biological tissues, photons propagating in the media are described as classic particles being scattered and absorbed randomly in the media, and their path are tracked individually. To obtain any statistically significant results, however, a large number of photons is needed in the simulations and the calculations are time consuming and sometime impossible with existing computing resource, especially when considering the inhomogeneous boundary conditions. To overcome this difficulty, we have implemented a parallel computing technique into our Monte Carlo simulations. And this moment is well justified due to the nature of the Monte Carlo simulation. Utilizing the PVM (Parallel Virtual Machine, a parallel computing software package), parallel codes in both C and Fortran have been developed on the massive parallel computer of Cray T3E and a local PC-network running Unix/Sun Solaris. Our results show that parallel computing can significantly reduce the running time and make efficient usage of low cost personal computers. In this report, we present a numerical study of light propagation in a slab phantom of skin tissue using the parallel computing technique.

  18. 21 CFR 892.1950 - Radiographic anthropomorphic phantom.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1950 Radiographic anthropomorphic phantom. (a) Identification. A radiographic anthropomorphic phantom is a device intended for medical... (general controls). The device is exempt from the premarket notification procedures in subpart E of part...

  19. Mapping phantom movement representations in the motor cortex of amputees.

    Science.gov (United States)

    Mercier, Catherine; Reilly, Karen T; Vargas, Claudia D; Aballea, Antoine; Sirigu, Angela

    2006-08-01

    Limb amputation results in plasticity of connections between the brain and muscles, with the cortical motor representation of the missing limb seemingly shrinking, to the presumed benefit of remaining body parts that have cortical representations adjacent to the now-missing limb. Surprisingly, the corresponding perceptual representation does not suffer a similar fate but instead persists as a phantom limb endowed with sensory and motor qualities. How can cortical reorganization after amputation be reconciled with the maintenance of a motor representation of the phantom limb in the brain? In an attempt to answer this question we explored the relationship between the cortical representation of the remaining arm muscles and that of phantom movements. Using transcranial magnetic stimulation (TMS) we systematically mapped phantom movement perceptions while simultaneously recording stump muscle activity in three above-elbow amputees. TMS elicited sensations of movement in the phantom hand when applied over the presumed hand area of the motor cortex. In one subject the amplitude of the perceived movement was positively correlated with the intensity of stimulation. Interestingly, phantom limb movements that the patient could not produce voluntarily were easily triggered by TMS, suggesting that the inability to voluntarily move the phantom is not equivalent to a loss of the corresponding movement representation. We suggest that hand movement representations survive in the reorganized motor area of amputees even when these cannot be directly accessed. The activation of these representations is probably necessary for the experience of phantom movement.

  20. Anisotropic Bianchi-I universe with phantom field and cosmological ...

    Indian Academy of Sciences (India)

    We study an anisotropic Bianchi-I universe in the presence of a phantom field and a cosmological constant. Cosmological solutions are obtained when the kinetic energy of the phantom field is of the order of anisotropy and dominates over the potential energy of the field. The anisotropy of the universe decreases and the ...

  1. Cosmological model of interacting phantom and Yang–Mills fields

    Indian Academy of Sciences (India)

    interacting with a phantom field in FRW cosmology. Using the specific solution of YM equation previously considered in FRW cosmology [30–34], we generalize the model investigated in [30] in the case of interacting phantom and YM fields. This allows us to obtain some exact solutions for the accelerated expansion of FRW ...

  2. Computational hybrid anthropometric paediatric phantom library for internal radiation dosimetry

    NARCIS (Netherlands)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-01-01

    Hybrid computational phantoms combine voxel-based and simplified equation-based modelling approaches to provide unique advantages and more realism for the construction of anthropomorphic models. In this work, a methodology and C++ code are developed to generate hybrid computational phantoms covering

  3. Building and assessing anatomically relevant phantoms for neonatal transcranial ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Memoli, G; Sadhoo, N; Gelat, P; Shaw, A [Acoustics and Ionising Radiation Division, National Physical Laboratory, Teddington (United Kingdom); Gatto, M; Harris, R A, E-mail: gianluca.memoli@npl.co.uk [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough (United Kingdom)

    2011-02-01

    This study describes the design and construction of a clinically relevant phantom to survey the temperature increase caused by ultrasound equipment, as currently used in neonatal head-scanning in the UK. The phantom is an ellipsoid of bone-mimic material, filled with brain-mimic; a circular hole in the external surface mimicks the fontanel, through which most clinically relevant scans are made. Finite-element simulations were used to identify possible hot spots and decide the most effective thermocouple positions within the phantom to investigate temperature rise during a typical scan. Novel materials were purposively designed to simulate key acoustic and thermal properties. Three Dimensional Printing (3DP) was employed for the fabrication of the skull phantom, and a specific strategy was successfully pursued to embed a thermocouple within the 3DP skull phantom during the manufacturing process. An in-process Non-Destructive Analysis (NDA) was used to assess the correct position of the deposited thermocouple inside the fabricated skull phantom. The temperature increase in the phantom for a typical trans-fontanellar scan is also presented here. The current phantom will be used in a hospital survey in the UK and, in its final design, will allow for a more reliable evaluation of ultrasound heating than is currently possible.

  4. Evaluation of DQA for tomography using 3D volumetric phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Uk [Dept. of Radiation Oncology, Catholic University of Incheon St. Mary' s Hospital, Incheon (Korea, Republic of); Kim, Jeong Koo [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of)

    2016-12-15

    The study investigates the necessity of 3 dimensional dose distribution evaluation instead of point dose and 2 dimensional dose distribution evaluation. Treatment plans were generated on the RANDO phantom to measure the precise dose distribution of the treatment site 0.5, 1, 1.5, 2, 2.5, 3 cm with the prescribed dose; 1,200 cGy, 5 fractions. Gamma analysis (3%/3 mm, 2%/2 mm) of dose distribution was evaluated with gafchromic EBT2 film and ArcCHECK phantom. The average error of absolute dose was measured at 0.76±0.59% and 1.37±0.76% in cheese phantom and ArcCHECK phantom respectively. The average passing ratio for 3%/3 mm were 97.72±0.02% and 99.26±0.01% in gafchromic EBT2 film and ArcCHECK phantom respectively. The average passing ratio for 2%/2 mm were 94.21±0.02% and 93.02±0.01% in gafchromic EBT2 film and ArcCHECK phantom respectively. There was a more accurate dose distribution of 3D volume phantom than cheese phantom in patients DQA using tomotherapy. Therefor it should be evaluated simultaneously 3 dimensional dose evaluation on target and peripheral area in rotational radiotherapy such as tomotherapy.

  5. Phantom limb phenomenon as an example of body image distortion

    Directory of Open Access Journals (Sweden)

    Razmus Magdalena

    2017-06-01

    Full Text Available Introduction: The perception of one’s own body, its mental representation, and emotional attitude to it are the components of so-called “body image” [1]. The aim of the research was to analyse phantom pain and non-painful phantom sensations as results of limb loss and to explain them in terms of body image distortion.

  6. Usefulness of milnacipran in treating phantom limb pain

    Directory of Open Access Journals (Sweden)

    Matsumoto Y

    2012-11-01

    Full Text Available Yasuhide Nagoshi,1 Akira Watanabe,1 Saiko Inoue,1 Tomoki Kuroda,2 Mitsuo Nakamura,3 Yoshitake Matsumoto,4 Kenji Fukui31Department of Psychiatry (Psychosomatic Medicine, Kyoto First Red Cross Hospital, Kyoto, Japan; 2Gojouyama Hospital, Nara, Japan; 3Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; 4Matsumoto Clinic, Kyoto, JapanBackground: Amputation of an extremity often results in the sensation of a “phantom limb” where the patient feels that the limb that has been amputated is still present. This is frequently accompanied by “phantom limb pain”. We report here the use of milnacipran, a serotonin and norepinephrine reuptake inhibitor, to treat phantom limb pain after amputation of injured or diseased limbs in three patients.Methods and results: The severity of phantom pain before and during treatment was quantified using a visual analog scale. In one case, phantom limb pain responded partially to treatment with high doses of paroxetine, and then replacement with milnacipran further improved the pain relief and long-term full pain relief was achieved. In the two other cases, milnacipran was used as first-line treatment and phantom limb pain responded rapidly.Conclusion: These results suggest that milnacipran administration may be useful in phantom limb pain, possibly as a first-line treatment.Keywords: milnacipran, paroxetine, phantom limb pain, selective serotonin reuptake inhibitor (SSRI, serotonin and norepinephrine reuptake inhibitor (SNRI

  7. An MRI digital brain phantom for validation of segmentation methods.

    Science.gov (United States)

    Alfano, Bruno; Comerci, Marco; Larobina, Michele; Prinster, Anna; Hornak, Joseph P; Selvan, S Easter; Amato, Umberto; Quarantelli, Mario; Tedeschi, Gioacchino; Brunetti, Arturo; Salvatore, Marco

    2011-06-01

    Knowledge of the exact spatial distribution of brain tissues in images acquired by magnetic resonance imaging (MRI) is necessary to measure and compare the performance of segmentation algorithms. Currently available physical phantoms do not satisfy this requirement. State-of-the-art digital brain phantoms also fall short because they do not handle separately anatomical structures (e.g. basal ganglia) and provide relatively rough simulations of tissue fine structure and inhomogeneity. We present a software procedure for the construction of a realistic MRI digital brain phantom. The phantom consists of hydrogen nuclear magnetic resonance spin-lattice relaxation rate (R1), spin-spin relaxation rate (R2), and proton density (PD) values for a 24 × 19 × 15.5 cm volume of a "normal" head. The phantom includes 17 normal tissues, each characterized by both mean value and variations in R1, R2, and PD. In addition, an optional tissue class for multiple sclerosis (MS) lesions is simulated. The phantom was used to create realistic magnetic resonance (MR) images of the brain using simulated conventional spin-echo (CSE) and fast field-echo (FFE) sequences. Results of mono-parametric segmentation of simulations of sequences with different noise and slice thickness are presented as an example of possible applications of the phantom. The phantom data and simulated images are available online at http://lab.ibb.cnr.it/. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Phantom limb pain: a case of maladaptive CNS plasticity?

    DEFF Research Database (Denmark)

    Flor, Herta; Nikolajsen, Lone; Jensen, Troels Staehelin

    2006-01-01

    Phantom pain refers to pain in a body part that has been amputated or deafferented. It has often been viewed as a type of mental disorder or has been assumed to stem from pathological alterations in the region of the amputation stump. In the past decade, evidence has accumulated that phantom pain...

  9. Phantom jam avoidance through in-car speed advice

    NARCIS (Netherlands)

    Suijs, L.C.W.; Wismans, Luc Johannes Josephus; Krol, L.; van Berkum, Eric C.

    2015-01-01

    The existence of phantom jams can be explained following the definition of Kerner & Konhäuser (1993) who state that a phantom jam occurs without the existence of a physical bottleneck and is caused by the imperfect driving style of road users under metastable traffic conditions. In order to prevent

  10. THE EFFECT OF PHANTOM GROUPS ON GENETIC TREND

    African Journals Online (AJOL)

    Helena Theron

    North America was a combination between the United States of. America (USA) and Canada ... then be assigned to the following phantom parent group: North America x (1981-1985) x Sire-of-sire. Note ..... animals with phantom parent groups in the analysis, the genetic level of migrant animals is separated from that of base ...

  11. The impact of anthropometric patient-phantom matching on organ dose: A hybrid phantom study for fluoroscopy guided interventions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Perry B.; Geyer, Amy; Borrego, David; Ficarrotta, Kayla; Johnson, Kevin; Bolch, Wesley E. [Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611 (United States); Radiology, University of Florida, Jacksonville, Florida 32209 (United States); Department of Nuclear and Radiological/Biomedical Engineering, University of Florida, Gainesville, Florida 32611-8300 (United States)

    2011-02-15

    Purpose: To investigate the benefits and limitations of patient-phantom matching for determining organ dose during fluoroscopy guided interventions. Methods: In this study, 27 CT datasets representing patients of different sizes and genders were contoured and converted into patient-specific computational models. Each model was matched, based on height and weight, to computational phantoms selected from the UF hybrid patient-dependent series. In order to investigate the influence of phantom type on patient organ dose, Monte Carlo methods were used to simulate two cardiac projections (PA/left lateral) and two abdominal projections (RAO/LPO). Organ dose conversion coefficients were then calculated for each patient-specific and patient-dependent phantom and also for a reference stylized and reference hybrid phantom. The coefficients were subsequently analyzed for any correlation between patient-specificity and the accuracy of the dose estimate. Accuracy was quantified by calculating an absolute percent difference using the patient-specific dose conversion coefficients as the reference. Results: Patient-phantom matching was shown most beneficial for estimating the dose to heavy patients. In these cases, the improvement over using a reference stylized phantom ranged from approximately 50% to 120% for abdominal projections and for a reference hybrid phantom from 20% to 60% for all projections. For lighter individuals, patient-phantom matching was clearly superior to using a reference stylized phantom, but not significantly better than using a reference hybrid phantom for certain fields and projections. Conclusions: The results indicate two sources of error when patients are matched with phantoms: Anatomical error, which is inherent due to differences in organ size and location, and error attributed to differences in the total soft tissue attenuation. For small patients, differences in soft tissue attenuation are minimal and are exceeded by inherent anatomical differences

  12. Correction factors for source strength determination in HDR brachytherapy using the in-phantom method.

    Science.gov (United States)

    Ubrich, Frank; Wulff, Jörg; Engenhart-Cabillic, Rita; Zink, Klemens

    2014-05-01

    For the purpose of clinical source strength determination for HDR brachytherapy sources, the German society for Medical Physics (DGMP) recommends in their report 13 the usage of a solid state phantom (Krieger-phantom) with a thimble ionization chamber. In this work, the calibration chain for the determination of the reference air-kerma rate Ka,100 and reference dose rate to waterDw,1 by ionization chamber measurement in the Krieger-phantom was modeled via Monte Carlo simulations. These calculations were used to determine global correction factors k(tot), which allows a user to directly convert the reading of an ionization chamber calibrated in terms of absorbed dose to water, into the desired quantity Ka,100 or Dw,1. The factor k(tot) was determined for four available (192)Ir sources and one (60)Co source with three different thimble ionization chambers. Finally, ionization chamber measurements on three μSelectron V2 HDR sources within the Krieger-phantom were performed and Ka,100 was determined according to three different methods: 1) using a calibration factor in terms of absorbed dose to water with the global correction factor [Formula: see text] according DGMP 13 2) using a global correction factor calculated via Monte Carlo 3) using a direct reference air-kerma rate calibration factor determined by the national metrology institute PTB. The comparison of Monte Carlo based [Formula: see text] with those from DGMP 13 showed that the DGMP data were systematically smaller by about 2-2.5%. The experimentally determined [Formula: see text] , based on the direct Ka,100 calibration were also systematically smaller by about 1.5%. Despite of these systematical deviations, the agreement of the different methods was in almost all cases within the 1σ level of confidence of the interval of their respective uncertainties in a Gaussian distribution. The application of Monte Carlo based [Formula: see text] for the determination of Ka,100 for three μSelectron V2 sources

  13. Contact Loss beneath Track Slab Caused by Deteriorated Cement Emulsified Asphalt Mortar: Dynamic Characteristics of Vehicle-Slab Track System and Prototype Experiment

    National Research Council Canada - National Science Library

    Liu, Dan; Liu, Yu-feng; Ren, Juan-juan; Yang, Rong-shan; Liu, Xue-yi

    2016-01-01

    .... Introduction Nonballasted track, which is smoother and more stable and requires lower maintenance, has been proven to be the best track structure type for high-speed railway [1, 2]. CRTS-I Slab Track,...

  14. The impact of slab dip variations, gaps and rollback on mantle wedge flow: insights from fluids experiments

    Science.gov (United States)

    MacDougall, Julia G.; Kincaid, Chris; Szwaja, Sara; Fischer, Karen M.

    2014-05-01

    Observed seismic anisotropy and geochemical anomalies indicate the presence of 3-D flow around and above subducting slabs. To investigate how slab geometry and velocity affect mantle flow, we conducted a set of experiments using a subduction apparatus in a fluid-filled tank. Our models comprise two independently adjustable, continuous belts to represent discrete sections of subducting slabs that kinematically drive flow in the surrounding glucose syrup that represents the upper mantle. We analyse how slab dip (ranging from 30° to 80°), slab dip difference between slab segments (ranging from 20° to 50°), rates of subduction (4-8 cm yr-1) and slab/trench rollback (0-3 cm yr-1) affect mantle flow. Whiskers were used to approximate mineral alignment induced by the flow, as well as to predict directions of seismic anisotropy. We find that dip variations between slab segments generate 3-D flow in the mantle wedge, where the path lines of trenchward moving mantle material above the slab are deflected towards the slab segment with the shallower dip. The degree of path line deflection increases as the difference in slab dip between the segments increases, and, for a fixed dip difference, as slab dip decreases. In cases of slab rollback and large slab dip differences, we observe intrusion of subslab material through the gap and into the wedge. Flow through the gap remains largely horizontal before eventual downward entrainment. Whisker alignment in the wedge flow is largely trench-normal, except near the lateral edges of the slab where toroidal flow dominates. In addition, whisker azimuths located above the slab gap deviate most strongly from trench-normal orientations when slab rollback does not occur. Such flow field complexities are likely sufficient to affect deep melt production and shallow melt delivery. However, none of the experiments produced flow fields that explain the trench-parallel shear wave splitting fast directions observed over broad arc and backarc

  15. Validation of phantom-based harmonization for patient harmonization.

    Science.gov (United States)

    Panetta, Joseph V; Daube-Witherspoon, Margaret E; Karp, Joel S

    2017-07-01

    To improve the precision of multicenter clinical trials, several efforts are underway to determine scanner-specific parameters for harmonization using standardized phantom measurements. The goal of this study was to test the correspondence between quantification in phantom and patient images and validate the use of phantoms for harmonization of patient images. The National Electrical Manufacturers' Association image quality phantom with hot spheres was scanned on two time-of-flight PET scanners. Whole-body [18 F]-fluorodeoxyglucose (FDG)-PET scans were acquired of subjects on the same systems. List-mode events from spheres (diam.: 10-28 mm) measured in air on each scanner were embedded into the phantom and subject list-mode data from each scanner to create lesions with known uptake with respect to the local background in the phantom and each subject's liver and lung regions, as a proxy to characterize true lesion quantification. Images were analyzed using the contrast recovery coefficient (CRC) typically used in phantom studies and serving as a surrogate for the standardized uptake value used clinically. Postreconstruction filtering (resolution recovery and Gaussian smoothing) was applied to determine if the effect on the phantom images translates equivalently to subject images. Three postfiltering strategies were selected to harmonize the CRCmean or CRCmax values between the two scanners based on the phantom measurements and then applied to the subject images. Both the average CRCmean and CRCmax values for lesions embedded in the lung and liver in four subjects (BMI range 25-38) agreed to within 5% with the CRC values for lesions embedded in the phantom for all lesion sizes. In addition, the relative changes in CRCmean and CRCmax resulting from the application of the postfilters on the subject and phantom images were consistent within measurement uncertainty. Further, the root mean squared percent difference (RMSpd ) between CRC values on the two scanners

  16. Patterns of Multistakeholder Recommendation

    OpenAIRE

    Burke, Robin; Abdollahpouri, Himan

    2017-01-01

    Recommender systems are personalized information systems. However, in many settings, the end-user of the recommendations is not the only party whose needs must be represented in recommendation generation. Incorporating this insight gives rise to the notion of multistakeholder recommendation, in which the interests of multiple parties are represented in recommendation algorithms and evaluation. In this paper, we identify patterns of stakeholder utility that characterize different multistakehol...

  17. Cortical depression and potentiation: basic mechanisms for phantom pain.

    Science.gov (United States)

    Zhuo, Min

    2012-12-01

    People experience the feeling of the missing body part long after it has been removed after amputation are known as phantom limb sensations. These sensations can be painful, sometimes becoming chronic and lasting for several years (or called phantom pain). Medical treatment for these individuals is limited. Recent neurobiological investigations of brain plasticity after amputation have revealed new insights into the changes in the brain that may cause phantom limb sensations and phantom pain. In this article, I review recent progresses of the cortical plasticity in the anterior cingulate cortex (ACC), a critical cortical area for pain sensation, and explore how they are related to abnormal sensory sensations such as phantom pain. An understanding of these alterations may guide future research into medical treatment for these disorders.

  18. Surgical phantom for off-pump mitral valve replacement

    Science.gov (United States)

    McLeod, A. Jonathan; Moore, John; Guiraudon, Gerard M.; Jones, Doug L.; Campbell, Gordon; Peters, Terry M.

    2011-03-01

    Off-pump, intracardiac, beating heart surgery has the potential to improve patient outcomes by eliminating the need for cardiopulmonary bypass and aortic cross clamping but it requires extensive image guidance as well as the development of specialized instrumentation. Previously, developments in image guidance and instrumentation were validated on either a static phantom or in vivo through porcine models. This paper describes the design and development of a surgical phantom for simulating off-pump mitral valve replacement inside the closed beating heart. The phantom allows surgical access to the mitral annulus while mimicking the pressure inside the beating heart. An image guidance system using tracked ultrasound, magnetic instrument tracking and preoperative models previously developed for off-pump mitral valve replacement is applied to the phantom. Pressure measurements and ultrasound images confirm the phantom closely mimics conditions inside the beating heart.

  19. Development and test of sets of 3D printed age-specific thyroid phantoms for 131I measurements.

    Science.gov (United States)

    Beaumont, Tiffany; Ideias, Pedro Caldeira; Rimlinger, Maeva; Broggio, David; Franck, Didier

    2017-06-21

    In the case of a nuclear reactor accident the release contains a high proportion of iodine-131 that can be inhaled or ingested by members of the public. Iodine-131 is naturally retained in the thyroid and increases the thyroid cancer risk. Since the radiation induced thyroid cancer risk is greater for children than for adults, the thyroid dose to children should be assessed as accurately as possible. For that purpose direct measurements should be carried out with age-specific calibration factors but, currently, there is no age-specific thyroid phantoms allowing a robust measurement protocol. A set of age-specific thyroid phantoms for 5, 10, 15 year old children and for the adult has been designed and 3D printed. A realistic thyroid shape has been selected and material properties taken into account to simulate the attenuation of biological tissues. The thyroid volumes follow ICRP recommendations and the phantoms also include the trachea and a spine model. Several versions, with or without spine, with our without trachea, with or without age-specific neck have been manufactured, in order to study the influence of these elements on calibration factors. The calibration factor obtained with the adult phantom and a reference phantom are in reasonable agreement. In vivo calibration experiments with germanium detectors have shown that the difference in counting efficiency, the inverse of the calibration factor, between the 5 year and adult phantoms is 25% for measurement at contact. It is also experimentally evidenced that the inverse of the calibration factor varies linearly with the thyroid volume. The influence of scattering elements like the neck or spine is not evidenced by experimental measurements.

  20. Development and test of sets of 3D printed age-specific thyroid phantoms for 131I measurements

    Science.gov (United States)

    Beaumont, Tiffany; Caldeira Ideias, Pedro; Rimlinger, Maeva; Broggio, David; Franck, Didier

    2017-06-01

    In the case of a nuclear reactor accident the release contains a high proportion of iodine-131 that can be inhaled or ingested by members of the public. Iodine-131 is naturally retained in the thyroid and increases the thyroid cancer risk. Since the radiation induced thyroid cancer risk is greater for children than for adults, the thyroid dose to children should be assessed as accurately as possible. For that purpose direct measurements should be carried out with age-specific calibration factors but, currently, there is no age-specific thyroid phantoms allowing a robust measurement protocol. A set of age-specific thyroid phantoms for 5, 10, 15 year old children and for the adult has been designed and 3D printed. A realistic thyroid shape has been selected and material properties taken into account to simulate the attenuation of biological tissues. The thyroid volumes follow ICRP recommendations and the phantoms also include the trachea and a spine model. Several versions, with or without spine, with our without trachea, with or without age-specific neck have been manufactured, in order to study the influence of these elements on calibration factors. The calibration factor obtained with the adult phantom and a reference phantom are in reasonable agreement. In vivo calibration experiments with germanium detectors have shown that the difference in counting efficiency, the inverse of the calibration factor, between the 5 year and adult phantoms is 25% for measurement at contact. It is also experimentally evidenced that the inverse of the calibration factor varies linearly with the thyroid volume. The influence of scattering elements like the neck or spine is not evidenced by experimental measurements.

  1. STRUCTURAL PERFORMANCE OF TWO TYPES OF WALL SLAB CONNECTION UNDER OUT-OF-PLANE LATERAL CYCLIC LOADING

    Directory of Open Access Journals (Sweden)

    AHMED ABDULRAZZAQ NASSER AL-AGHBARI

    2012-04-01

    Full Text Available Currently, most of the high-rise buildings in Malaysia are constructed using tunnel form system. However, this type of structural system is still questionable of its safety under ground motion. Thus, the main objective of this study is to test and compare the structural performance of two types of wall-slab connection namely cross and anchorage bracings under reversible quasi-static cyclic loading. Two identical sub-assemblage of wall-slab connections are designed, constructed and tested in heavy structural laboratory. A load actuator together with load cell was positioned horizontally at the upper part of the wall for applying the lateral cyclic load. The experimental result shows that the anchorage bracing connection has higher strength, higher ductility, better energy absorption and less structural damage as compared to cross-bracing connections. Based on this experiment, the ductility of anchorage bracing connection is m=6 which satisfies the requirement of ductility for seismic code of practice. Anchorage bracing connection can resist earthquake loading better than cross-bracing connections. Therefore, it is recommended to the construction industry to adopt this kind of design together with the detailing which consists of double layer of wire fabric at the connections. As a conclusion, the anchorage bracing connection has better seismic performance as compared to cross-bracing connection under lateral cyclic loading.

  2. Flexural performance of steel fiber reinforced concrete (SFRC) ribbed slab with various topping thicknesses

    Science.gov (United States)

    Rahman, Fadhillah Abdul; Bakar, Afidah Abu; Hashim, Mohd Hisbany Mohd; Ahmad, Hazrina

    2017-11-01

    Ribbed slab provides lighter slab than an equivalent solid slab which helps in reducing the weight with its voids. However, in order to overcome the drawbacks in the construction process, the application of steel fibre reinforcement concrete (SFRC) is seen as an alternative material to be used in the slab. This study is performed to investigate the behaviour of SFRC as the main material in ribbed slab, omitting the conventional reinforcements, under four-point bending test. Three equivalent samples of ribbed slabs were prepared for this study with variations in the topping thickness of 100, 75 and 50 mm. The flexural strength of ribbed slab with 100 mm topping shows similar loading carrying capacity with the 75mm topping while 50 mm gave the lowest ultimate loading. First cracks for all slabs occurred at the topping. The cracks began from the external ribs and propagates toward the internal rib. Incorporation of steel fibres help in giving a longer deflection softening than a sudden brittle failure, thus proves its ability to increase energy absorption capacity and improving cracking behaviour.

  3. Bending and Shear Experimental Tests and Numerical Analysis of Composite Slabs Made Up of Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    F. P. Alvarez Rabanal

    2016-01-01

    Full Text Available The aim of this paper is to understand the structural behaviour of composite slabs. These composite slabs are made of steel and different kinds of concrete. The methodology used in this paper combines experimental studies with advanced techniques of numerical simulations. In this paper, four types of concrete were used in order to study their different structural strengths in composite slabs. The materials used were three lightweight concretes, a normal concrete, and a cold conformed steel deck which has embossments to increase the adherence between concrete and steel. Furthermore, two lengths of slabs were studied to compare structural behaviours between short and long slabs. m-k experimental tests were carried out to obtain the flexural behaviour of the composite slabs. These tests provide dimensionless coefficients to compare different sizes of slabs. Nonlinear numerical simulations were performed by means of the finite element method (FEM. Four different multilinear isotropic hardening laws were used to simulate the four concretes. Coulomb friction contact was used to model the coefficient of friction between steel and concrete. Finally, a chemical bond was included to consider sliding resistance in the contact surface between steel and concrete. Experimental and numerical results are in good agreement; therefore, numerical models can be used to improve and optimize lightweight composite slabs.

  4. Quantifying the net slab pull force as a driving mechanism for plate tectonics

    NARCIS (Netherlands)

    Schellart, W. P.

    2004-01-01

    It has remained unclear how much of the negative buoyancy force of the slab (FB) is used to pull the trailing plate at the surface into the mantle. Here I present three-dimensional laboratory experiments to quantify the net slab pull force (FNSP) with respect to FB during subduction. Results show

  5. Collapse test and moment capacity of the Ruytenschildt reinforced concrete slab bridge

    NARCIS (Netherlands)

    Lantsoght, E.O.L.; van der Veen, C.; de Boer, A; Hordijk, D.A.

    2016-01-01

    A large number of existing reinforced concrete solid slab bridges in the Netherlands are found to be insufficient for shear upon assessment. However, research has shown additional sources of capacity in slab bridges, increasing their total capacity and possibly changing their failure mode. Previous

  6. Quality of Slab Track Construction – Track Alignment Design and Track Geometry

    OpenAIRE

    Šestáková Janka

    2015-01-01

    The slab track superstructure design (without ballast) is a perspective construction especially for building tunnels and bridges in the modernized sections of railway tracks in Slovakia. Monitoring of the structure described in this article is focused on the transition areas between standard structure with ballast and slab track construction.

  7. Quality of Slab Track Construction – Track Alignment Design and Track Geometry

    Directory of Open Access Journals (Sweden)

    Šestáková Janka

    2015-05-01

    Full Text Available The slab track superstructure design (without ballast is a perspective construction especially for building tunnels and bridges in the modernized sections of railway tracks in Slovakia. Monitoring of the structure described in this article is focused on the transition areas between standard structure with ballast and slab track construction.

  8. Effect of CFRP strengthening on the response of RC slabs to hard projectile impact

    Energy Technology Data Exchange (ETDEWEB)

    Almusallam, Tarek; Al-Salloum, Yousef; Alsayed, Saleh; Iqbal, Rizwan; Abbas, Husain, E-mail: abbas_husain@hotmail.com

    2015-05-15

    Highlights: • Studied response of CFRP-strengthened RC slabs under the impact load. • Slabs were tested under the strike of hemispherical steel projectiles at varying impact. • The slabs were analyzed numerically using LS-DYNA. • Strengthening increased the ballistic limit velocity by 18% and perforation energy by 56.7%. • CFRP sheet reduced the crater damage and contained the flying concrete fragments. - Abstract: In this paper impact response of CFRP-strengthened RC panels under the impact of non-deformable projectiles has been presented. The control and CFRP-strengthened RC slab panels were tested under the strike of hemispherical nosed steel projectiles at varying impact velocities. The response of these panels was investigated experimentally as well as numerically. The damage of the slab panels was measured in terms of the penetration depth, formation of cracks, spalling and scabbing areas and fracture of CFRP sheet. This study presents a practical and efficient numerical method for analyzing the impact response of CFRP-strengthened RC structures using LS-DYNA. The CFRP strengthening was found to increase the ballistic limit velocity by 18%, perforation energy of RC slabs by 56.7%, reduce the front crater damage and contains the flying of concrete fragments from the rear face. The maximum impact force occurs at almost same penetration depth for the control and CFRP-strengthened slabs but the restraint provided by CFRP increased the penetration depth by about 1/19.3 of the thickness of slab.

  9. Cohesive cracked-hinge model for simulation of fracture in one-way slabs on grade

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe; Olesen, John Forbes

    2017-01-01

    Numerical analysis of slab on grade structures subjected to mechanical loads is a complex matter often requiring computationally expensive models. In order to develop a simplified and general concept for non-linear analysis of slab on grade structures, this paper presents a cohesive cracked-hinge...

  10. Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity

    Science.gov (United States)

    McCrory, Patricia A.; Blair, J. Luke; Waldhause, Felix; Oppenheimer, David H.

    2012-01-01

    A new model of the subducted Juan de Fuca plate beneath western North America allows first-order correlations between the occurrence of Wadati-Benioff zone earthquakes and slab geometry, temperature, and hydration state. The geo-referenced 3D model, constructed from weighted control points, integrates depth information from earthquake locations and regional seismic velocity studies. We use the model to separate earthquakes that occur in the Cascadia forearc from those that occur within the underlying Juan de Fuca plate and thereby reveal previously obscured details regarding the spatial distribution of earthquakes. Seismicity within the slab is most prevalent where the slab is warped beneath northwestern California and western Washington suggesting that slab flexure, in addition to expected metamorphic dehydration processes, promotes earthquake occurrence within the subducted oceanic plate. Earthquake patterns beneath western Vancouver Island are consistent with slab dehydration processes. Conversely, the lack of slab earthquakes beneath western Oregon is consistent with an anhydrous slab. Double-differenced relocated seismicity resolves a double seismic zone within the slab beneath northwestern California that strongly constrains the location of the plate interface and delineates a cluster of seismicity 10 km above the surface that includes the 1992 M7.1 Mendocino earthquake. We infer that this earthquake ruptured a surface within the Cascadia accretionary margin above the Juan de Fuca plate. We further speculate that this earthquake is associated with a detached fragment of former Farallon plate. Other subsurface tectonic elements within the forearc may have the potential to generate similar damaging earthquakes.

  11. Study of stratified dielectric slab medium structures using pseudo-spectral time domain (PSTD) algorithm

    DEFF Research Database (Denmark)

    Tong, M.S.; Lu, Y.; Chen, Y.

    2005-01-01

    A planar stratified dielectric slab medium, which is an interesting problem in optics and geophysics, is studied using a pseudo-spectral time-domain (PSTD) algorithm. Time domain electric fields and frequency domain propagation characteristics of both single and periodic dielectric slab...

  12. High-frequency precursors to P-wave arrivals in New Zealand : implications for slab structure

    NARCIS (Netherlands)

    Hilst, R.D. van der; Snieder, R.K.

    1996-01-01

    This report revisits the very early high-frequency slab phases from earthquakes in the Kermadec slab (between −25°S and −37°S) that arrive as a precursor to the P wave onset at stations in New Zealand. The analysis of short-period digital records for station SNZO (South Karori New Zealand) for the

  13. Strong suppression of radiation states in a slab waveguide sandwiched between omnidirectional mirrors

    NARCIS (Netherlands)

    Hoekstra, Hugo; Yudistira, D.; Stoffer, Remco

    2005-01-01

    Structures in channel or slab waveguides, applied deliberately or due to imperfections, may lead to strong modal losses, corresponding to the excitation of radiation modes. As an example, losses are generally very large in slab photonic crystal (PhC) impurity waveguides (WGs) due to the combined

  14. Accelerated slab replacement using temporary precast panels and self-consolidating concrete.

    Science.gov (United States)

    2016-06-06

    Slab replacement is the main activity in any concrete pavement rehabilitation project. According to a survey of industry and FDOT, contractor productivity in slab replacements has been very low, ranging between 25 to 50 cu. yds. The low number of sla...

  15. ENGINEERING DESIGN CRITERIA FOR SUB-SLAB DEPRESSURIZATION SYSTEMS IN LOW-PERMEABILTY SOLIDS

    Science.gov (United States)

    The report describes the development of engineering design criteria for the successful design, installation, and operation of sub-slab depressurization systems, based on radon (Rn) mitigation experience on 14 slab-on-grade houses in South Central Florida. The Florida houses are c...

  16. Integral equation solution for truncated slab structures by using a fringe current formulation

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Toccafondi, A.; Maci, S.

    1999-01-01

    Full-wave solutions of truncated dielectric slab problems are interesting for a variety of engineering applications, in particular patch antennas on finite ground planes. For this application a canonical reference solution is that of a semi-infinite slab illuminated by a line source. Standard...

  17. Finite element analysis, mechanical assessment and material comparison of two volar slab constructs.

    Science.gov (United States)

    Hamilton, Steven W; Aboud, Hussain

    2009-04-01

    In order to help prevent joint stiffness, the injured or postoperative hand is splinted in the intrinsic-plus position. We aimed to determine the strongest type of volar slab construct that would be appropriate in this treatment. Two constructs were compared, a double-ridged and a non-ridged slab. Two materials were used, plaster of Paris (POP) and resin. We performed finite element analysis (FEA) and mechanical assessment to establish which combination of construct and material resulted in the strongest volar slab. We were unable to form ridges on the resin slab, and therefore this construct was not tested. Finite element analysis showed that most stress occurred at the wrist region, where all the slabs failed. The double-ridged POP slab was found to be 5.3 times stronger than the non-ridged POP slab and 1.4 times stronger than the non-ridged resin slab (pslab, we suggest forming two anterior ridges in the plaster.

  18. Slab track field test and demonstration program for shared freight and high-speed passenger service

    Science.gov (United States)

    2010-08-01

    Two types of slab tracks were installed on the High Tonnage Loop at the Facility for Accelerated Service Testing. Direct fixation slab track (DFST) and independent dual block track (IDBT) were installed into a 5-degree curve with 4-inch superelevatio...

  19. Effect of normal stress under an excitation in poroelastic flat slabs ...

    African Journals Online (AJOL)

    Biot's poroelastic theory is employed to investigate stresses under an excitation in an infinite poroelastic slab of arbitrary thickness. Both for pervious and impervious surfaces, the radial normal stress is obtained, and in the neighbourhood of the centre, the same is computed as function of thickness of the slab. Numerical ...

  20. Phantom space-times in fake supergravity

    Science.gov (United States)

    Bu Taam, Maryam; Sabra, Wafic A.

    2015-12-01

    We discuss phantom metrics admitting Killing spinors in fake N = 2, D = 4 supergravity coupled to vector multiplets. The Abelian U (1) gauge fields in the fake theory have kinetic terms with the wrong sign. We solve the Killing spinor equations for the standard and fake theories in a unified fashion by introducing a parameter which distinguishes between the two theories. The solutions found are fully determined in terms of algebraic conditions, the so-called stabilisation equations, in which the symplectic sections are related to a set of functions. These functions are harmonic in the case of the standard supergravity theory and satisfy the wave-equation in flat (2 + 1)-space-time in the fake theory. Explicit examples are given for the minimal models with quadratic prepotentials.

  1. Phantom space–times in fake supergravity

    Directory of Open Access Journals (Sweden)

    Maryam Bu Taam

    2015-12-01

    Full Text Available We discuss phantom metrics admitting Killing spinors in fake N=2, D=4 supergravity coupled to vector multiplets. The Abelian U(1 gauge fields in the fake theory have kinetic terms with the wrong sign. We solve the Killing spinor equations for the standard and fake theories in a unified fashion by introducing a parameter which distinguishes between the two theories. The solutions found are fully determined in terms of algebraic conditions, the so-called stabilisation equations, in which the symplectic sections are related to a set of functions. These functions are harmonic in the case of the standard supergravity theory and satisfy the wave-equation in flat (2+1-space–time in the fake theory. Explicit examples are given for the minimal models with quadratic prepotentials.

  2. Phantom limb pain: a nursing perspective.

    Science.gov (United States)

    Virani, Anila; Green, Theresa; Turin, Tanvir C

    2014-09-09

    Phantom limb pain (PLP) is a neuropathic pain condition occurring after amputation of a limb. PLP affects amputees' quality of life and results in loss of productivity and psychological distress. The origin of pain from a non-existing limb creates a challenging situation for both patients and nurses. It is imperative to provide patients and nurses with the knowledge that PLP is a real phenomenon that requires care and treatment. This knowledge will lead to reduced problems for patients by allowing them to talk about PLP and ask for help when needed. Understanding of this phenomenon will enable nurses to appreciate the unique features of this form of neuropathic pain and apply appropriate techniques to promote effective pain management. Performing accurate and frequent assessments to understand the unique characteristics of PLP, displaying a non-judgemental attitude towards patients and teaching throughout the peri-operative process are significant nursing interventions.

  3. Validation study of the thorax phantom Lungman for optimization purposes

    Science.gov (United States)

    Rodríguez Pérez, Sunay; Marshall, Nicholas W.; Struelens, Lara; Bosmans, Hilde

    2017-03-01

    This work aims to investigate the advantages and limitations of the Kyoto Kagaku thorax phantom Lungman for use in chest radiography optimization studies. First, patient survey data were gathered for chest posterior anterior (PA) and lateral (LAT) examinations in a standard chest X-ray room over a period of one year, using a Caesium Iodide (CsI) based flat panel detector with automatic exposure control (AEC). Parameters surveyed included exposure index (EI), dose area product (DAP) and AEC exposure time. PA and LAT projections of the phantom were then compared to these values. Additionally, the equivalence in millimetres of poly (methyl methacrylate) (PMMA) was established for the different regions of the Lungman phantom (lungs and mediastinum). Finally, a voxel model of the Lungman phantom was developed by the segmentation of a volumetric dataset of the phantom acquired using CT scanning. Subsequently, the model was used in Monte Carlo simulations with PENELOPE/penEasy code to calculate the energy deposited in the organs of the phantom. This enabled comparison of the phantom tissue-equivalent materials with materials defined by ICRP 89 in terms of energy deposition. For the survey data, close agreement was found between phantom and the median values for the patient data (deviations ranged from 4% to 31%, one outlier). The phantom lung region is equivalent to 89 mm to 106 mm of PMMA, depending on tube voltage. Energy deposited in the phantom material compared to those for ICRP defined material differed by at most 36% in AP irradiations and 49% in PA irradiations.

  4. Experimental phantom verification studies for simulations of light interactions with skin: liquid phantoms

    CSIR Research Space (South Africa)

    Karsten, A

    2010-09-01

    Full Text Available transmission and reflection measured with Integrating Sphere (IS) A B C Slide 8 S a m p le S a m p le Integrating Sphere measurements Measurements of the total transmittance and reflectance of a thin slab-shaped multiple scattering sample can... properties are uniform with in each layer • Trace ~ 3.1 mil rays through sample •Set up a transmission detector (absorbing disc) and a reflecting detector behind light source (absorbing semi sphere) •Evaluation slices in model ~ 0.1 mm thick •Voxels ~ 0...

  5. Precision measurements of the RSA method using a phantom model of hip prosthesis.

    Science.gov (United States)

    Mäkinen, Tatu J; Koort, Jyri K; Mattila, Kimmo T; Aro, Hannu T

    2004-04-01

    Radiostereometric analysis (RSA) has become one of the recommended techniques for pre-market evaluation of new joint implant designs. In this study we evaluated the effect of repositioning of X-ray tubes and phantom model on the precision of the RSA method. In precision measurements, we utilized mean error of rigid body fitting (ME) values as an internal control for examinations. ME value characterizes relative motion among the markers within each rigid body and is conventionally used to detect loosening of a bone marker. Three experiments, each consisting of 10 double examinations, were performed. In the first experiment, the X-ray tubes and the phantom model were not repositioned between one double examination. In experiments two and three, the X-ray tubes were repositioned between one double examination. In addition, the position of the phantom model was changed in experiment three. Results showed that significant differences could be found in 2 of 12 comparisons when evaluating the translation and rotation of the prosthetic components. Repositioning procedures increased ME values mimicking deformation of rigid body segments. Thus, ME value seemed to be a more sensitive parameter than migration values in this study design. These results confirmed the importance of standardized radiographic technique and accurate patient positioning for RSA measurements. Standardization and calibration procedures should be performed with phantom models in order to avoid unnecessary radiation dose of the patients. The present model gives the means to establish and to follow the intra-laboratory precision of the RSA method. The model is easily applicable in any research unit and allows the comparison of the precision values in different laboratories of multi-center trials.

  6. Phantom breast sensations and phantom breast pain : A 2-year prospective study and a methodological analysis of literature

    NARCIS (Netherlands)

    Dijkstra, P.U.; Rietman, J.S.; Geertzen, J.H.B.

    The first aim of this study was to assess prospectively the incidence of phantom breast sensations (PB sensations) and phantom breast pain (PB pain) in a sample of patients treated for breast cancer (n = 204) by means of a modified radical mastectomy (n = 82). Patients were assessed 6 weeks, 6, 12

  7. Phantom breast sensations and phantom breast pain: A 2-year prospective study and a methodological analysis of literature

    NARCIS (Netherlands)

    Dijkstra, P.U.; Rietman, Johan Swanik; Geertzen, J.H.B.

    The first aim of this study was to assess prospectively the incidence of phantom breast sensations (PB sensations) and phantom breast pain (PB pain) in a sample of patients treated for breast cancer (n = 204) by means of a modified radical mastectomy (n = 82). Patients were assessed 6 weeks, 6, 12

  8. The study of carrying capacity of timber slabs with use the finite elements method

    Directory of Open Access Journals (Sweden)

    Demeshok Vitalii

    2017-01-01

    Full Text Available In the article, the results of the study of behavior of timber slab under influence of fire with the standard “time-temperature” curve are presented. The finite element method was used for it. For the calculation we constructed a grid models of timber slabs. As a result of solution of the thermal problem was obtained temperature distribution and the graphs of maximum deflection of timber slabs and its slew rate depending on the time of the test. The obtained graphs allow to obtain data on the occurrence of the limit state of loss of bearing capacity by comparing current values of displacements and velocities with the maximum allowable. Analysis of the graphs shows that the criteria limit state of loss of bearing capacity does not occur. Calculation method of evaluating the fire resistance of timber slabs was developed. For it use database about strain-stress state of this slabs in conditions of influence of the fire.

  9. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Wang

    2016-05-01

    Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  10. Experimental constraints on the impact of slab dip, gaps and rollback on mantle wedge flow

    Science.gov (United States)

    MacDougall, J. G.; Szwaja, S.; Kincaid, C. R.; Fischer, K. M.

    2012-12-01

    We conducted fluids experiments to better understand how subduction zone mantle flow and seismic anisotropy relate to slab dip variations, slab gaps, and retrograde trench motion. Subducting lithosphere was modeled with two rubber-reinforced continuous belts that pass around rollers at the trench and at the equivalent of 670 km depth; the advecting mantle was represented by an isoviscous glucose fluid. Each belt had a variable dip and speed, and trench rollback was modeled using translation of the belt system. Neutral density rotation markers ("whiskers") as well as beads and bubbles were used to track flow patterns; whiskers were also used as proxies for finite strain and were assumed to reflect the evolution of olivine fabrics and anisotropy. The dips of the two slab segments were systematically varied from 30° to 80° at subduction rates equivalent to 4 and 8 cm/yr, and in select cases trench rollback equivalent to 3 cm/yr was imposed. Reference cases with identical parameters for the two slab belts produced mantle wedge flow that reflected simple entrainment by the slab, with flow lines that were roughly trench-normal in much of the wedge, except for toroidal flow around the lateral edges of the slab. Dip variations between the slab segments deflected mantle wedge flow lines towards trench-parallel in the direction of the shallower slab, in agreement with prior numerical modeling studies. The degree of along-arc deflection increased as the slab dip difference grew. Deflection also increased as the absolute dip of the shallower-dipping segment decreased, as predicted by analytical estimates of trench-parallel pressure gradients (Hall et al., 2000). Whisker alignments showed the greatest evidence for extension and alignment of olivine a-axes that are sub-parallel to the trench in the mantle wedge close to the change in slab dip, consistent with the numerical models of Kneller and Van Keken (2007). The addition of trench rollback to a given set of experimental

  11. High-Q hybrid 3D-2D slab-3D photonic crystal microcavity.

    Science.gov (United States)

    Tang, Lingling; Yoshie, Tomoyuki

    2010-09-15

    The radiation loss in the escaping light cone with a two-dimensional (2D) photonic crystal slab microcavity can be suppressed by means of cladding the low-Q slab microcavity by three-dimensional woodpile photonic crystals with the complete bandgap when the resonance frequency is located inside the complete bandgap. It is confirmed that the hybrid microcavity based on a low-Q, single-defect photonic crystal slab microcavity shows improvement of the Q factor without affecting the mode volume and modal frequency. Whereas 2D slab microcavities exhibit Q saturation with an increase in the number of layers, for the analyzed hybrid microcavities with a small gap between the slab and woodpiles, the Q factor does not saturate.

  12. Experimental validation of systematically designed acoustic hyperbolic meta material slab exhibiting negative refraction

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Sigmund, Ole

    2016-01-01

    This Letter reports on the experimental validation of a two-dimensional acoustic hyperbolic metamaterial slab optimized to exhibit negative refractive behavior. The slab was designed using a topology optimization based systematic design method allowing for tailoring the refractive behavior....... The experimental results confirm the predicted refractive capability as well as the predicted transmission at an interface. The study simultaneously provides an estimate of the attenuation inside the slab stemming from the boundary layer effects—insight which can be utilized in the further design...... of the metamaterial slabs. The capability of tailoring the refractive behavior opens possibilities for different applications. For instance, a slab exhibiting zero refraction across a wide angular range is capable of funneling acoustic energy through it, while a material exhibiting the negative refractive behavior...

  13. Farallon slab detachment and deformation of the Magdalena Shelf, southern Baja California

    Science.gov (United States)

    Brothers, Daniel S.; Harding, Alistair J.; Gonzalez-Fernandez, Antonio; Holbrook, W.S. Steven; Kent, Graham M.; Driscoll, Neal W.; Fletcher, John M.; Lizarralde, Daniel; Umhoefer, Paul J.; Axen, Gary

    2012-01-01

    Subduction of the Farallon plate beneath northwestern Mexico stalled by ~12 Ma when the Pacific-Farallon spreading-ridge approached the subduction zone. Coupling between remnant slab and the overriding North American plate played an important role in the capture of the Baja California (BC) microplate by the Pacific Plate. Active-source seismic reflection and wide-angle seismic refraction profiles across southwestern BC (~24.5°N) are used to image the extent of remnant slab and study its impact on the overriding plate. We infer that the hot, buoyant slab detached ~40 km landward of the fossil trench. Isostatic rebound following slab detachment uplifted the margin and exposed the Magdalena Shelf to wave-base erosion. Subsequent cooling, subsidence and transtensional opening along the shelf (starting ~8 Ma) starved the fossil trench of terrigenous sediment input. Slab detachment and the resultant rebound of the margin provide a mechanism for rapid uplift and exhumation of forearc subduction complexes.

  14. Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom.

    Science.gov (United States)

    Keenan, Kathryn E; Ainslie, Maureen; Barker, Alex J; Boss, Michael A; Cecil, Kim M; Charles, Cecil; Chenevert, Thomas L; Clarke, Larry; Evelhoch, Jeffrey L; Finn, Paul; Gembris, Daniel; Gunter, Jeffrey L; Hill, Derek L G; Jack, Clifford R; Jackson, Edward F; Liu, Guoying; Russek, Stephen E; Sharma, Samir D; Steckner, Michael; Stupic, Karl F; Trzasko, Joshua D; Yuan, Chun; Zheng, Jie

    2018-01-01

    The MRI community is using quantitative mapping techniques to complement qualitative imaging. For quantitative imaging to reach its full potential, it is necessary to analyze measurements across systems and longitudinally. Clinical use of quantitative imaging can be facilitated through adoption and use of a standard system phantom, a calibration/standard reference object, to assess the performance of an MRI machine. The International Society of Magnetic Resonance in Medicine AdHoc Committee on Standards for Quantitative Magnetic Resonance was established in February 2007 to facilitate the expansion of MRI as a mainstream modality for multi-institutional measurements, including, among other things, multicenter trials. The goal of the Standards for Quantitative Magnetic Resonance committee was to provide a framework to ensure that quantitative measures derived from MR data are comparable over time, between subjects, between sites, and between vendors. This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI. In addition, application-specific phantoms and implementation of quantitative MRI are reviewed. Magn Reson Med 79:48-61, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Seismic Response Reduction of Structures Equipped with a Voided Biaxial Slab-Based Tuned Rolling Mass Damper

    National Research Council Canada - National Science Library

    Li, Shujin; Fu, Liming; Kong, Fan

    2015-01-01

    .... The hollow slabs in this context, also referred to as "voided biaxial reinforced concrete slabs," feature a large interior space of prefabricated voided modules that are necessary in the construction...

  16. GPS-derived surface imprint of toroidal flow at the Calabrian slab edges

    Science.gov (United States)

    Palano, Mimmo; Piromallo, Claudia; Chiarabba, Claudio

    2017-04-01

    Tearing of the lithosphere and toroidal upper mantle circulation have been modeled and proposed at slab edges of several retreating subduction zones. While tear faults laterally decouple the subducting lithosphere during retreat and promote strike-slip motion in the overriding plate, toroidal flow around slab edges accommodates the displacement, from beneath the stiff slab, of less viscous mantle material towards the mantle wedge. Edge processes jointly contribute to surface crustal deformation, which can be revealed both by geodetic and geological observations. We document this effect in the Calabrian subduction system, where the Ionian slab rollback has been taking place since 30 Ma, following a step-wise process accompanied by migration of lithospheric tearing. We observe GPS velocities with symmetric toroidal patterns around the slab hinges: a counterclockwise rotation rate of 1.29 °/Ma around a pole located in the Sibari Gulf for the northern slab edge and a clockwise rotation rate of 1.74 °/Ma around a pole close to the NE Sicily coastal area at the southern slab edge. These small-scale, opposite rotations occur at complex sets of active faults representing the lithospheric tears currently accommodating the SE-ward migration of the subduction system. At depth, the mantle flow field imaged by seismic anisotropy reveals instead an asymmetry: a toroidal pattern of sub-slab return flow appears only at the southern slab edge, while at the northern end SKS-splitting fast directions are trench parallel. A possible cause for this asymmetric coupling of the upper plate deformation with underlying mantle flow is the immature stage of the northern slab tear.

  17. Technical Report: Optimizing the Slab Yard Planning and Crane Scheduling Problem using a Two-Stage Approach

    OpenAIRE

    Hansen, Anders Dohn; Clausen, Jens

    2008-01-01

    In this paper, we present The Slab Yard Planning and Crane Scheduling Problem. The problem has its origin in steel production facilities with a large throughput. A slab yard is used as a buffer for slabs that are needed in the upcoming production. Slabs are transported by cranes and the problem considered here, is concerned with the generation of schedules for these. The problem is decomposed and modeled in two parts, namely a planning problem and a scheduling problem. In the planning problem...

  18. Strength calculation for fiber concrete slabs under high velocity impact

    Science.gov (United States)

    Artem, Ustinov; Kopanica, Dmitry; Belov, Nikolay; Jugov, Nikolay; Jugov, Alexey; Koshko, Bogdan; Kopanitsa, Georgy

    2017-01-01

    The paper presents results of the research on strength of concrete slabs reinforced with steel fiber and tested under a high velocity impact. Mathematical models are proposed to describe the behavior of continua with a complex structure with consideration of porosity, non-elastic effects, phase transformations and dynamic destructions of friable and plastic materials under shock wave impact. The models that describe the behavior of structural materials were designed in the RANET-3 CAD software system. This allowed solving the tasks of hit and explosion in the full three-dimensional statement using finite elements method modified for dynamic problems. The research results demonstrate the validity of the proposed mathematical model to calculate stress-strain state and fracture of layered fiber concrete structures under high velocity impact caused by blast wave.

  19. Improve power conversion efficiency of slab coupled optical waveguide lasers.

    Science.gov (United States)

    Fan, Jiahua; Zhu, Lin; Dogan, Mehmet; Jacob, Jonah

    2014-07-28

    The slab coupled optical waveguide laser (SCOWL) is a promising candidate for high power, single mode emitter for a number of reasons, including its near diffraction limited optical quality, large modal size and near circular output pattern. Current SCOWL designs have limited electrical-optical power conversion efficiency (PCE) around 40%, which is lower than conventional RWG laser and broad area laser that are known to have much higher PCEs. To improve the SCOWL PCE, we theoretically optimize its structure by reducing Al content, increasing doping concentration and introducing a GRIN layer to prevent carrier leakage. Numerical simulations predict that an optimized SCOWL design has a maximum PCE of about 57% at room temperature.

  20. Modal formulation for diffraction by absorbing photonic crystal slabs

    CERN Document Server

    Dossou, Kokou B; Asatryan, Ara A; Sturmberg, Björn C P; Byrne, Michael A; Poulton, Christopher G; McPhedran, Ross C; de Sterke, C Martijn

    2016-01-01

    A finite element-based modal formulation of diffraction of a plane wave by an absorbing photonic crystal slab of arbitrary geometry is developed for photovoltaic applications. The semi-analytic approach allows efficient and accurate calculation of the absorption of an array with a complex unit cell. This approach gives direct physical insight into the absorption mechanism in such structures, which can be used to enhance the absorption. The verification and validation of this approach is applied to a silicon nanowire array and the efficiency and accuracy of the method is demonstrated. The method is ideally suited to studying the manner in which spectral properties (e.g., absorption) vary with the thickness of the array, and we demonstrate this with efficient calculations which can identify an optimal geometry.

  1. High-Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).

  2. The Stochastic Field Transport associated with the Slab ITG Modes

    CERN Document Server

    Connor, J W; Zocco, A

    2013-01-01

    Many models for anomalous transport consider the turbulent ExB transport arising from electrostatic micro-instabilities. In this paper we investigate whether the perturbed magnetic field that is associated with such instabilities at small but finite values of {beta} can lead to significant stochastic magnetic field transport. Using the tearing parity, long wave-length ion temperature gradient (ITG) modes in a plasma slab with magnetic shear as an example, we calculate the amplitude of the perturbed magnetic field that results at the resonant surface for the case when the plasma dissipation is given by the semi-collisional electron model. The resulting stochastic field transport is estimated and also compared with an estimate for the ExB transport due to the ITG mode.

  3. Hubungan Phantom Vibration Syndrome Terhadap Sleep Disorder dan Kondisi Stress

    Directory of Open Access Journals (Sweden)

    Ajeng Yeni Setianingrum

    2017-10-01

    Full Text Available Phantom vibration syndrome is a condition where a person would feel the sensation of vibration of a cell phone as if there were incoming notification but the fact is not. This research investigated the relationship between phantom vibration syndromes, sleep disorder and stress condition. Questionnaires were distributed to 120 participants with age range 18 to 23 years old. Data of participants showed that all of participants using a smart mobile phone and 24% of them have more than one cell phone. Time usage of cell phone is at least 1 hour. 23% of participants using a cell phone for social media activity, followed by 21% related to entertainment (music, video and games. The results showed a positive relationship between phantom vibration syndrome, sleep disorder and stress condition. Insomnia contributed a greater influence on stress condition. However, the phantom vibration syndrome is more directly affecting the sleep apnea compared to insomnia and stress condition. Therefore, the phantom vibration syndrome more affects stress condition indirectly, through sleep disorder (sleep apnea and insomnia. Consequently, phantom vibration syndrome has a strong relationship with stress condition at the time of the phantom vibration syndrome can cause sleep disorder.

  4. Studies on Phantom Vibration and Ringing Syndrome among Postgraduate Students

    Directory of Open Access Journals (Sweden)

    Atul Kumar Goyal

    2015-03-01

    Full Text Available Phantom vibrations and ringing of mobile phones are prevalent hallucinations in the general population. They might be considered as a normal brain mechanism. The aim of this study was to establish the prevalence of Phantom vibrations and ringing syndrome among students and to assess factors associated it. The survey of 300 postgraduate students belonging to different field of specialization was conducted at Kurukshetra University. 74% of students were found to have both Phantom vibrations and ringing syndrome. Whereas 17% of students felt Phantom vibration exclusively and 4% students face only Phantom ringing syndrome. Both the syndrome occurs more fervent in students who kept their mobile phone in shirt or jean pocket than to who kept mobile in handbag. 75% of students felt vibration or ringing even when the phone is switched off or phone was not in their pocket. Also the frequency of both the syndrome is directly proportional to the duration of mobile phone use and person emotional behavior. Although most of students agree that the Phantom syndrome did not bother them but some students deals with anxiety when they feel symptoms associated with Phantom syndrome. By using mobile phones in proper way, one can avoid these syndromes, or at least can ameliorate the symptoms.

  5. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging.

    Science.gov (United States)

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J; Ramella-Roman, Jessica C; Mathews, Scott A; Coburn, James C; Sorg, Brian S; Chen, Yu; Pfefer, T Joshua

    2015-01-01

    The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance.

  6. Individual differences in response to phantom limb movement therapy.

    Science.gov (United States)

    McAvinue, Laura P; Robertson, Ian H

    2011-01-01

    Phantom limb pain (PLP) is a distressing condition experienced by many amputees. The purpose of this study was to investigate whether motor imagery could be used to treat PLP. Four single case studies were conducted. The participants kept a pain diary in which they recorded the intensity of their PLP during a baseline period, general motor imagery training, phantom limb movement therapy and a follow-up period. Qualitative and quantitative (i.e. interrupted time series) analyses were employed to determine whether phantom limb movement therapy had a significant effect on PLP intensity. Phantom limb movement therapy significantly reduced intensity of PLP in one participant. One participant gained occasional relief by doing phantom limb movement therapy exercises but did not experience an overall reduction in PLP intensity. The third participant did not experience any relief and the fourth participant reported experiencing the re-emergence of an old pain. The results display individual differences in response to phantom limb movement therapy. Individual differences are discussed in the context of motor imagery ability and the phantom limb phenomenon as a multi-dimensional disorder.

  7. Vibration of the soil caused by a vehicle moving over the randomly uneven surface of a slab track

    OpenAIRE

    Grundmann, H.;Lenz, St.

    2012-01-01

    A vehicle which passes an uneven surface of a slab track causes vibrations of the whole system: the vehicle, the slab track and the subsoil. For a given random unevenness ?w of the slab track surface, covariances of the soil surface motion are calculated.

  8. Pharmacologic interventions for treating phantom limb pain.

    Science.gov (United States)

    Alviar, Maria Jenelyn M; Hale, Tom; Dungca, Monalisa

    2016-10-14

    This is an updated version of the original Cochrane review published in Issue 12, 2011. Phantom limb pain (PLP) is pain that arises in the missing limb after amputation and can be severe, intractable, and disabling. Various medications have been studied in the treatment of phantom pain. There is currently uncertainty in the optimal pharmacologic management of PLP. This review aimed to summarise the evidence of effectiveness of pharmacologic interventions in treating PLP. For this update, we searched the Cochrane Central Register of Controlled Trials (CENTRAL, the Cochrane Library), MEDLINE, and Embase for relevant studies. We ran the searches for the original review in September 2011 and subsequent searches for this update up to April 2016. We sought additional studies from clinical trials databases and reference lists of retrieved papers. We included randomised and quasi-randomised trials studying the effectiveness of pharmacologic interventions compared with placebo, another active treatment, or no treatment, in established PLP. We considered the following outcomes: change in pain intensity, function, sleep, depression or mood, quality of life, adverse events, treatment satisfaction, and withdrawals from the study. We independently assessed issues of study quality and extracted efficacy and adverse event data. Due to the wide variability in the studies, we did not perform a meta-analysis for all the interventions and outcomes, but attempted to pool the results of some studies where possible. We prepared a qualitative description and narrative summary of results. We assessed clinical heterogeneity by making qualitative comparisons of the populations, interventions, outcomes/outcome measures, and methods. We added only one new study with 14 participants to this updated review. We included a 14 studies (10 with low risk of bias and 4 with unclear risk of bias overall) with a total of 269 participants. We added another drug class, botulinum neurotoxins (BoNTs), in

  9. Influence of the column rectangularity index and of the boundary conditions in the punching resistance of slab-column connections

    Directory of Open Access Journals (Sweden)

    O. S. PAIVA

    Full Text Available Experimental evidence indicates that both the column rectangularity index and the boundary conditions of the connection may affect the ultimate punching resistance. This paper presents general aspects of these topics and, through the analysis of experimental results of tests on 131 slabs, evaluates the accuracy and suitability of recommendations presented by ABNT NBR 6118, Eurocode 2, ACI 318 and fib Model Code 2010. Experimental results showed that the security level of normative estimates trend to reduce as the column rectangularity increases, and in some cases, the punching resistance was overestimated. Finally, adjustments are suggested in equations presented by NBR 6118 and MC2010 in order to eliminate this trend of unsafe results.

  10. Phantom limb pain: a case of maladaptive CNS plasticity?

    Science.gov (United States)

    Flor, Herta; Nikolajsen, Lone; Staehelin Jensen, Troels

    2006-11-01

    Phantom pain refers to pain in a body part that has been amputated or deafferented. It has often been viewed as a type of mental disorder or has been assumed to stem from pathological alterations in the region of the amputation stump. In the past decade, evidence has accumulated that phantom pain might be a phenomenon of the CNS that is related to plastic changes at several levels of the neuraxis and especially the cortex. Here, we discuss the evidence for putative pathophysiological mechanisms with an emphasis on central, and in particular cortical, changes. We cite both animal and human studies and derive suggestions for innovative interventions aimed at alleviating phantom pain.

  11. Efficacy of progressive muscle relaxation, mental imagery, and phantom exercise training on phantom limb: a randomized controlled trial.

    Science.gov (United States)

    Brunelli, Stefano; Morone, Giovanni; Iosa, Marco; Ciotti, Cristina; De Giorgi, Roberto; Foti, Calogero; Traballesi, Marco

    2015-02-01

    To evaluate the reduction in phantom pain and sensation with combined training of progressive muscle relaxation, mental imagery, and phantom exercises. Randomized controlled prospective trial with 2 parallel groups. Amputee unit of a rehabilitation hospital. Subjects with unilateral lower limb amputation (N=51) with phantom limb pain (PLP) and/or phantom limb sensation (PLS). The experimental group performed combined training of progressive muscle relaxation, mental imagery, and phantom exercises 2 times/wk for 4 weeks, whereas the control group had the same amount of physical therapy dedicated to the residual limb. No pharmacological intervention was initiated during the trial period. The Prosthesis Evaluation Questionnaire and the Brief Pain Inventory were used to evaluate changes over time in different aspects (intensity, rate, duration, and bother) of PLS and PLP. Blind evaluations were performed before and after treatment and after 1-month follow-up. The experimental group showed a significant decrease over time in all the Prosthesis Evaluation Questionnaire domains (in terms of both PLS and PLP; Pprogressive muscle relaxation, mental imagery, and modified phantom exercises should be taken into account as a valuable technique to reduce phantom limb pain and sensation. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Ocular MR imaging: evaluation of different coil setups in a phantom study.

    Science.gov (United States)

    Erb-Eigner, Katharina; Warmuth, Carsten; Taupitz, Matthias; Bertelmann, Eckart; Hamm, Bernd; Asbach, Patrick

    2013-01-01

    Small loop surface coils are generally recommended for ocular magnetic resonance (MR) imaging, but the optimal coil setup has not been systematically investigated. In this phantom study, we investigated which coil setup of those coils available for our MR imaging system provides the highest signal-to-noise ratio (SNR) in ocular MR imaging at 1.5 tesla. Using a phantom to simulate the eyeball and the orbital fat, we employed loop surface coils of 4- and 6-cm diameter and a multi-channel head coil to obtain images using a T1-weighted spin-echo sequence and then measured the SNR for each coil and coil combination. Use of the 6-cm loop coil alone yielded the highest mean SNR (27.5). Even in superficial regions (mesial and temporal), the SNR was higher using the 6-cm loop coil (33.6 and 45.5) than the 4-cm loop coil (28.0 and 33.8). Additional use of the head coil reduced the mean SNR to 10.4. This quantitative analysis suggests that use of a 6-cm loop surface coil offers the best results in ocular MR imaging. Combinations of loop coils or additional use of a head coil cannot be recommended because higher noise degrades image quality.

  13. The Vibro-Acoustic Modelling of Slab Track with Embedded Rails

    Science.gov (United States)

    VAN LIER, S.

    2000-03-01

    The application of concrete slab track in railways has certain advantages compared with conventional ballasted track, but conventional slab track structures generally produce more noise than ballasted track. For this reason a “silent slab track” has been developed in the Dutch ICES “Stiller Treinverkeer” project (silent railway traffic) by optimizing the track. In the design, the rails are embedded in a cork-filled elastomeric material. The paper discusses the vibro-acoustic modelling of this track using the simulation package “TWINS”, combined with finite element techniques. The model evaluates the one-third octave band sound power spectrum radiated by train wheels and track, and provides for a tool to optimize the track design. Three track types are compared using the vibro-acoustic model: an existing slab track with embedded UIC54 rails, a newly designed, acoustically optimized slab track with a less stiff rail embedded in a stiffer elastomere, and, as a reference, a ballasted track. The models of the existing tracks have been validated with measurements. Calculations indicate that the optimized slab track will emit between 4 and 6 dB(A) less noise than the ballasted track. The existing slab track produces between 1·5 and 3 dB(A) more noise than the ballasted track; this is caused by resonances in the elastomeric moulding material in the frequency range determining the dB(A)-level.

  14. Superluminal pulse reflection and transmission in a slab system doped with dispersive materials.

    Science.gov (United States)

    Wang, Li-Gang; Chen, Hong; Zhu, Shi-Yao

    2004-12-01

    The reflection and transmission of a pulse through a slab which is doped with two-level or three-level atoms are investigated theoretically. The doped atoms can be passive (absorptive) or active (gain). We find that both the reflected and transmitted pulses can be superluminal simultaneously for the slab doped with absorptive two-level atoms at the slab thickness equal to (2m+1) lambda(0) /4 sqrt[epsilon(b)] (where lambda(0) is the center wavelength of the incident pulse, and epsilon(b) is the background dielectric constant of the slab) or with active three-level atoms at any thickness. By adjusting the thickness or background dielectric constant of the slab, the reflected pulse can be controlled from superluminal to subluminal or vice versa for the slab doped with absorptive two-level or absorptive three-level atoms. The energy percentage in the reflected pulse can also be controlled by changing the thickness of the slab, and the doped atoms.

  15. Review of Punching Shear Behaviour of Flat Slabs Reinforced with FRP Bars

    Science.gov (United States)

    Mohamed, Osama A.; Khattab, Rania

    2017-10-01

    Using Fibre Reinforced Polymer (FRP) bars to reinforce two-way concrete slabs can extend the service life, reduce maintenance cost and improve-life cycle cost efficiency. FRP reinforcing bars are more environmentally friendly alternatives to traditional reinforcing steel. Shear behaviour of reinforced concrete structural members is a complex phenomenon that relies on the development of internal load-carrying mechanisms, the magnitude and combination of which is still a subject of research. Many building codes and design standards provide design formulas for estimation of punching shear capacity of FRP reinforced flat slabs. Building code formulas take into account the effects of the axial stiffness of main reinforcement bars, the ratio of the perimeter of the critical section to the slab effective depth, and the slab thickness on the punching shear capacity of two-way slabs reinforced with FRP bars or grids. The goal of this paper is to compare experimental data published in the literature to the equations offered by building codes for the estimation of punching shear capacity of concrete flat slabs reinforced with FRP bars. Emphasis in this paper is on two North American codes, namely, ACI 440.1R-15 and CSA S806-12. The experimental data covered in this paper include flat slabs reinforced with GFRP, BFRP, and CFRP bars. Both ACI 440.1R-15 and CSA S806-12 are shown to be in good agreement with test results in terms of predicting the punching shear capacity.

  16. Field Enhancement in a Grounded Dielectric Slab by Using a Single Superstrate Layer

    Directory of Open Access Journals (Sweden)

    Constantinos A. Valagiannopoulos

    2012-01-01

    Full Text Available The addition of a dielectric layer on a slab configuration is frequently utilized in various electromagnetic devices in order to give them certain desired operational characteristics. In this work, we consider a grounded dielectric film-slab, which is externally excited by a normally-incident Gaussian beam. On top of the film-slab, we use an additional suitably selected single isotropic superstrate layer in order to increase the field concentration inside the slab and hence achieve optimal power transfer from the external source to the internal region. We define a quantity of interest, called “enhancement factor,” expressing the increase of the field concentration in the film-slab when the superstrate is present compared to the case that it is absent. It is shown that large enhancement factor values may be achieved by choosing properly the permittivity, the permeability, and the thickness of the superstrate. In particular, it is demonstrated that the field in the film-slab is significantly enhanced when the slab is composed by an ϵ-near-zero (ENZ or low-index metamaterial.

  17. Effects of Metamaterial Slabs Applied to Wireless Power Transfer at 13.56 MHz

    Directory of Open Access Journals (Sweden)

    Gunyoung Kim

    2015-01-01

    Full Text Available This paper analyzes the effects of a metamaterial slab (or a practical “perfect lens” with negative permeability applied to a two loop magnetically coupled wireless power transfer (WPT system at 13.56 MHz, based on theory, full-wave electromagnetic- (EM- simulations, and measurements. When using lossless slabs with ideal negative permeability in EM-simulations, the WPT efficiencies have been found to be enhanced close to 100% due to the magnetic field focusing. For the case of using a realistic slab made of ring resonators (RR μr=-1-j0.23 with s/d=0.5 (s: slab width, d: distance between the transmitting and receiving loops, the WPT efficiency has been found to significantly decrease to about 20%, even lower than that of a free space case (32% due to the heavy power absorption in the slab. However, some efficiency enhancement can be achieved when s/d is optimized between 0.1 and 0.3. Overall, the significant enhancement of efficiencies when using a lossless slab becomes moderate or only marginal when employing a realistic slab.

  18. Tottori earthquakes and Daisen volcano: Effects of fluids, slab melting and hot mantle upwelling

    Science.gov (United States)

    Zhao, Dapeng; Liu, Xin; Hua, Yuanyuan

    2018-03-01

    We investigate the 3-D seismic structure of source areas of the 6 October 2000 Western Tottori earthquake (M 7.3) and the 21 October 2016 Central Tottori earthquake (M 6.6) which occurred near the Daisen volcano in SW Japan. The two large events took place in a high-velocity zone in the upper crust, whereas low-velocity (low-V) and high Poisson's ratio (high-σ) anomalies are revealed in the lower crust and upper mantle. Low-frequency micro-earthquakes (M 0.0-2.1) occur in or around the low-V and high-σ zones, which reflect upward migration of magmatic fluids from the upper mantle to the crust under the Daisen volcano. The nucleation of the Tottori earthquakes may be affected by the ascending fluids. The flat subducting Philippine Sea (PHS) slab has a younger lithosphere age and so a higher temperature beneath the Daisen and Tottori area, facilitating the PHS slab melting. It is also possible that a PHS slab window has formed along the extinct Shikoku Basin spreading ridge beneath SW Japan, and mantle materials below the PHS slab may ascend to the shallow area through the slab window. These results suggest that the Daisen adakite magma was affected by the PHS slab melting and upwelling flow in the upper mantle above the subducting Pacific slab.

  19. Meteorological variables associated with deep slab avalanches on persistent weak layers

    Science.gov (United States)

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2014-01-01

    Deep slab avalanches are a particularly challenging avalanche forecasting problem. These avalanches are typically difficult to trigger, yet when they are triggered they tend to propagate far and result in large and destructive avalanches. For this work we define deep slab avalanches as those that fail on persistent weak layers deeper than 0.9m (3 feet), and that occur after February 1st. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl Ski Area to test the usefulness of meteorological variables for predicting deep slab avalanches. As in previous studies, we used data from the days preceding deep slab cycles, but we also considered meteorological metrics over the early months of the season. We utilized classification trees for our analyses. Our results showed warmer temperatures in the prior twenty-four hours and more loading over the seven days before days with deep slab avalanches on persistent weak layers. In line with previous research, extended periods of above freezing temperatures led to days with deep wet slab avalanches on persistent weak layers. Seasons with either dry or wet avalanches on deep persistent weak layers typically had drier early months, and often had some significant snow depth prior to those dry months. This paper provides insights for ski patrollers, guides, and avalanche forecasters who struggle to forecast deep slab avalanches on persistent weak layers late in the season.

  20. High-quality slab-based intermixing method for fusion rendering of multiple medical objects.

    Science.gov (United States)

    Kim, Dong-Joon; Kim, Bohyoung; Lee, Jeongjin; Shin, Juneseuk; Kim, Kyoung Won; Shin, Yeong-Gil

    2016-01-01

    The visualization of multiple 3D objects has been increasingly required for recent applications in medical fields. Due to the heterogeneity in data representation or data configuration, it is difficult to efficiently render multiple medical objects in high quality. In this paper, we present a novel intermixing scheme for fusion rendering of multiple medical objects while preserving the real-time performance. First, we present an in-slab visibility interpolation method for the representation of subdivided slabs. Second, we introduce virtual zSlab, which extends an infinitely thin boundary (such as polygonal objects) into a slab with a finite thickness. Finally, based on virtual zSlab and in-slab visibility interpolation, we propose a slab-based visibility intermixing method with the newly proposed rendering pipeline. Experimental results demonstrate that the proposed method delivers more effective multiple-object renderings in terms of rendering quality, compared to conventional approaches. And proposed intermixing scheme provides high-quality intermixing results for the visualization of intersecting and overlapping surfaces by resolving aliasing and z-fighting problems. Moreover, two case studies are presented that apply the proposed method to the real clinical applications. These case studies manifest that the proposed method has the outstanding advantages of the rendering independency and reusability. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.