WorldWideScience

Sample records for recombination protein gene

  1. Recombinant Brucella abortus gene expressing immunogenic protein

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, J.E.; Tabatabai, L.B.

    1991-06-11

    This patent describes a synthetic recombinant DNA molecule containing a DNA sequence. It comprises a gene of Brucella abortus encoding an immunogenic protein having a molecular weight of approximately 31,000 daltons as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis under denaturing conditions, the protein having an isoelectric point around 4.9, and containing a twenty-five amino acid sequence from its amino terminal end consisting of Gln-Ala-Pro-Thr-Phe-Phe-Arg-Ile-Gly-Thr-Gly-Gly-Thr-Ala-Gly-Thr-Tyr-Tyr-Pro-Ile-Gly-Gly-Leu-Ile-Ala, wherein Gln, Ala, Pro, Thr, Phe, Arg, Ile, Gly, Tyr, and Leu, respectively, represent glutamine, alanine, proline, threonine, phenylalanine, arginine, isolecuine, glycine, tyrosine, and leucine.

  2. Gene Delivery into Plant Cells for Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2015-01-01

    Full Text Available Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications.

  3. Recombinant HT{sub m4} gene, protein and assays

    Science.gov (United States)

    Lim, B.; Adra, C.N.; Lelias, J.M.

    1996-09-03

    The invention relates to a recombinant DNA molecule which encodes a HT{sub m4} protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT{sub m4} protein and a recombinant HT{sub m4} protein. The invention also relates to a method for detecting the presence of a hereditary atopy. 2 figs.

  4. Cloning an artificial gene encoding angiostatic anginex: From designed peptide to functional recombinant protein

    International Nuclear Information System (INIS)

    Brandwijk, Ricardo J.M.G.E.; Nesmelova, Irina; Dings, Ruud P.M.; Mayo, Kevin H.; Thijssen, Victor L.J.L.; Griffioen, Arjan W.

    2005-01-01

    Anginex, a designed peptide 33-mer, is a potent angiogenesis inhibitor and anti-tumor agent in vivo. Anginex functions by inhibiting endothelial cell (EC) proliferation and migration leading to detachment and apoptosis of activated EC's. To better understand tumor endothelium targeting properties of anginex and enable its use in gene therapy, we constructed an artificial gene encoding the biologically exogenous peptide and produced the protein recombinantly in Pichia pastoris. Mass spectrometry shows recombinant anginex to be a dimer and circular dichroism shows the recombinant protein folds with β-strand structure like the synthetic peptide. Moreover, like parent anginex, the recombinant protein is active at inhibiting EC growth and migration, as well as inhibiting angiogenesis in vivo in the chorioallantoic membrane of the chick embryo. This study demonstrated that it is possible to produce a functionally active protein version of a rationally designed peptide, using an artificial gene and the recombinant protein approach

  5. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination.

    Science.gov (United States)

    Carmona, Lina Marcela; Schatz, David G

    2017-06-01

    The adaptive immune system of jawed vertebrates relies on V(D)J recombination as one of the main processes to generate the diverse array of receptors necessary for the recognition of a wide range of pathogens. The DNA cleavage reaction necessary for the assembly of the antigen receptor genes from an array of potential gene segments is mediated by the recombination-activating gene proteins RAG1 and RAG2. The RAG proteins have been proposed to originate from a transposable element (TE) as they share mechanistic and structural similarities with several families of transposases and are themselves capable of mediating transposition. A number of RAG-like proteins and TEs with sequence similarity to RAG1 and RAG2 have been identified, but only recently has their function begun to be characterized, revealing mechanistic links to the vertebrate RAGs. Of particular significance is the discovery of ProtoRAG, a transposon superfamily found in the genome of the basal chordate amphioxus. ProtoRAG has many of the sequence and mechanistic features predicted for the ancestral RAG transposon and is likely to be an evolutionary relative of RAG1 and RAG2. In addition, early observations suggesting that RAG1 is able to mediate V(D)J recombination in the absence of RAG2 have been confirmed, implying independent evolutionary origins for the two RAG genes. Here, recent progress in identifying and characterizing RAG-like proteins and the TEs that encode them is summarized and a refined model for the evolution of V(D)J recombination and the RAG proteins is presented. © 2016 Federation of European Biochemical Societies.

  6. Study of recombinant proteins derived from Ser-2 gene of Bombyx mori

    OpenAIRE

    STAŠKOVÁ, Tereza

    2012-01-01

    Four different variants of recombinant proteins derived from Bombyx mori Ser-2 gene were expressed in bacteria. The ability of these proteins to coat hydrofobic surfaces and to support growth of various types of adherent cells in vitro were examined. It was shown that these proteins support cell adhesion and proliferation, and could be used as coating agents to realize surfaces suitable for growth of vertebrate and insect cells.

  7. [Expression and activity determination of recombinant capsid protein VP2 gene of enterovirus type 71].

    Science.gov (United States)

    Huang, Xueyong; Liu, Guohua; Hu, Xiaoning; Du, Yanhua; Li, Xingle; Xu, Yuling; Chen, Haomin; Xu, Bianli

    2014-04-01

    To clone and express the recombinant capsid protein VP2 of enterovirus type 71 (EV71) and to identify the immune activity of expressed protein in order to build a basis for the investigation work of vaccine and diagnostic antigen. VP2 gene of EV71 was amplified by PCR, and then was cut by restriction enzyme and inserted into expression vector pMAL-c2X. The positive recombinants were transferred into E.coli TB1, the genetically engineered bacteria including pMAL-c2X-VP2 plasmids were induced by isopropyl thiogalactoside ( IPTG) , and the expression products were analyzed by SDS-PAGE and western blotting method. EV71 IgM antibody detection method by ELISA was set up, and the sensitivity and specificity of this method was assessed; 60 neutralizing antibody positive serum samples from hand foot and mouth disease (HFMD) patients were determined, of which 52 samples were positive and 8 samples were negative; a total of 88 acute phase serum samples of HFMD patients diagnosed in clinical were also detected. VP2 gene of 762 bp was obtained by PCR, the gene segment inserted into the recombinant vector was identified using restriction enzyme digestion. The recombinant vector could express a specific about 71 500 fusion protein in E.coli by SDS-PAGE. The purified recombinant protein of EV71-VP2 can react with the serum of HFMD patients to produce a specific band by western blotting. The sensitivity and specificity of ELISA was 87% and 83%, respectively. Of the 88 acute phase serum samples from children with HFMD, 48 samples (55%) were positive by the ELISA assay. VP2 gene of EV71 has been cloned and a prokaryotic high expression system for VP2 gene was successfully constructed in the present study. The recombination EV71-VP2 has well antigenicity, which could be useful for developing diagnose reagent or vaccine of EV71.

  8. Indirect Enzyme-Linked Immunosorbent Assay for Detection of Immunoglobulin G Reactive with a Recombinant Protein Expressed from the Gene Encoding the 116-Kilodalton Protein of Mycoplasma pneumoniae

    OpenAIRE

    Duffy, Michael F.; Whithear, Kevin G.; Noormohammadi, Amir H.; Markham, Philip F.; Catton, Michael; Leydon, Jennie; Browning, Glenn F.

    1999-01-01

    Serology remains the method of choice for laboratory diagnosis of Mycoplasma pneumoniae infection. Currently available serological tests employ complex cellular fractions of M. pneumoniae as antigen. To improve the specificity of M. pneumoniae diagnosis, a recombinant protein was assessed as a serodiagnostic reagent. A panel of recombinant proteins were expressed from a cloned M. pneumoniae gene that encodes a 116-kDa surface protein antigen. The recombinant proteins were assessed for reactiv...

  9. Finding trans-regulatory genes and protein complexes modulating meiotic recombination hotspots of human, mouse and yeast.

    Science.gov (United States)

    Wu, Min; Kwoh, Chee-Keong; Li, Xiaoli; Zheng, Jie

    2014-09-11

    The regulatory mechanism of recombination is one of the most fundamental problems in genomics, with wide applications in genome wide association studies (GWAS), birth-defect diseases, molecular evolution, cancer research, etc. Recombination events cluster into short genomic regions called "recombination hotspots". Recently, a zinc finger protein PRDM9 was reported to regulate recombination hotspots in human and mouse genomes. In addition, a 13-mer motif contained in the binding sites of PRDM9 is found to be enriched in human hotspots. However, this 13-mer motif only covers a fraction of hotspots, indicating that PRDM9 is not the only regulator of recombination hotspots. Therefore, the challenge of discovering other regulators of recombination hotspots becomes significant. Furthermore, recombination is a complex process. Hence, multiple proteins acting as machinery, rather than individual proteins, are more likely to carry out this process in a precise and stable manner. Therefore, the extension of the prediction of individual trans-regulators to protein complexes is also highly desired. In this paper, we introduce a pipeline to identify genes and protein complexes associated with recombination hotspots. First, we prioritize proteins associated with hotspots based on their preference of binding to hotspots and coldspots. Second, using the above identified genes as seeds, we apply the Random Walk with Restart algorithm (RWR) to propagate their influences to other proteins in protein-protein interaction (PPI) networks. Hence, many proteins without DNA-binding information will also be assigned a score to implicate their roles in recombination hotspots. Third, we construct sub-PPI networks induced by top genes ranked by RWR for various species (e.g., yeast, human and mouse) and detect protein complexes in those sub-PPI networks. The GO term analysis show that our prioritizing methods and the RWR algorithm are capable of identifying novel genes associated with

  10. Deleting multiple lytic genes enhances biomass yield and production of recombinant proteins by Bacillus subtilis.

    Science.gov (United States)

    Wang, Yi; Chen, Zhenmin; Zhao, Ruili; Jin, Tingting; Zhang, Xiaoming; Chen, Xiangdong

    2014-08-31

    Bacillus subtilis is widely used in agriculture and industrial biotechnology; however, cell autolysis significantly decreases its yield in liquid cultures. Numerous factors mediate the lysis of B. subtilis, such as cannibalism factors, prophages, and peptidoglycan (PG) hydrolases. The aim of this work was to use molecular genetic techniques to develop a new strategy to prevent cell lysis and enhance biomass as well as the production of recombinant proteins. Five genes or genetic elements representing three different functional categories were studied as follows: lytC encoding PG hydrolases, the prophage genes xpf and yqxG-yqxH-cwlA (yGlA), and skfA and sdpC that encode cannibalism factors. Cell lysis was reduced and biomass was enhanced by deleting individually skfA, sdpC, xpf, and lytC. We constructed the multiple deletion mutant LM2531 (skfA sdpC lytC xpf) and found that after 4 h of culture, its biomass yield was significantly increased compared with that of prototypical B. subtilis 168 (wild-type) strain and that 15% and 92% of the cells were lysed in cultures of LM2531 and wild-type, respectively. Moreover, two expression vectors were constructed for producing recombinant proteins (β-galactosidase and nattokinase) under the control of the P43 promoter. Cultures of LM2531 and wild-type transformants produced 13741 U/ml and 7991 U/ml of intracellular β-galactosidase, respectively (1.72-fold increase). Further, the level of secreted nattokinase produced by strain LM2531 increased by 2.6-fold compared with wild-type (5226 IU/ml vs. 2028 IU/ml, respectively). Our novel, systematic multigene deletion approach designed to inhibit cell lysis significantly increased the biomass yield and the production of recombinant proteins by B. subtilis. These findings show promise for guiding efforts to manipulate the genomes of other B. subtilis strains that are used for industrial purposes.

  11. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing.

    Directory of Open Access Journals (Sweden)

    Olivier J Becherel

    2013-04-01

    Full Text Available Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2, plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI. Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops, and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx⁻/⁻ revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.

  12. Analysis of two lysozyme genes and antimicrobial functions of their recombinant proteins in Asian seabass.

    Directory of Open Access Journals (Sweden)

    Gui Hong Fu

    Full Text Available Lysozymes are important proteins of the innate immune system for the defense against bacterial infection. We cloned and analyzed chicken-type (c-type and goose-type (g-type lysozymes from Asian seabass (Lates calcarifer. The deduced amino acid sequence of the c-type lysozyme contained 144 residues and possessed typical structure residues, conserved catalytic residues (Glu(50 and Asp(67 and a "GSTDYGIFQINS" motif. The deduced g-type lysozyme contained 187 residues and possessed a goose egg white lysozyme (GEWL domain containing three conserved catalytic residues (Glu(71, Asp(84, Asp(95 essential for catalytic activity. Real time quantitative PCR (qRT-PCR revealed that the two lysozyme genes were constitutively expressed in all the examined tissues. The c-type lysozyme was most abundant in liver, while the g-type lysozyme was predominantly expressed in intestine and weakly expressed in muscle. The c-type and g-type transcripts were up-regulated in the kidney, spleen and liver in response to a challenge with Vibrio harveyi. The up-regulation of the c-type lysozyme was much stronger than that of the g-type lysozyme in kidney and spleen. The recombinant proteins of the c-type and g-type lysozymes showed lytic activities against the bacterial pathogens Vibrio harveyi and Photobacterium damselae in a dosage-dependent manner. We identified single nucleotide polymorphisms (SNPs in the two lysozyme genes. There were significant associations of these polymorphisms with resistance to the big belly disease. These results suggest that the c- and g-type genes play an important role in resistance to bacterial pathogens in fish. The SNP markers in the two genes associated with the resistance to bacterial pathogens may facilitate the selection of Asian seabass resistant to bacterial diseases.

  13. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    Science.gov (United States)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  14. Production of Polyclonal Antiobies to a Recombinant Potato Mop-top Virus Non-structural Triple Gene Block Protein l

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Filigarová, Marie; Pečenková, Tamara

    2006-01-01

    Roč. 154, - (2006), s. 422-427 ISSN 0931-1785 R&D Projects: GA ČR GA522/04/1329 Institutional research plan: CEZ:AV0Z50380511 Keywords : Potato mop-top virus * recombinant protein * triple gene block * polyclonal antibodies Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.817, year: 2006

  15. Gene and process level modulation to overcome the bottlenecks of recombinant proteins expression in Pichia pastoris.

    Science.gov (United States)

    Prabhu, Ashish A; Boro, Bibari; Bharali, Biju; Chakraborty, Shuchishloka; Dasu, V Venkata

    2018-03-28

    Process development involving system metabolic engineering and bioprocess engineering has become one of the major thrust for the development of therapeutic proteins or enzymes. Pichia pastoris has emerged as a prominent host for the production of therapeutic protein or enzymes. Despite of producing high protein titers, various cellular and process level bottlenecks hinders the expression of recombinant proteins in P. pastoris. In the present review, we have summarized the recent developments in the expression of foreign proteins in P. pastoris. Further, we have discussed various cellular engineering strategies which include codon optimization, pathway engineering, signal peptide processing, development of protease deficient strain and glyco-engineered strains for the high yield protein secretion of recombinant protein. Bioprocess development of recombinant proteins in large scale bioreactor including medium optimization, optimum feeding strategy and co-substrate feeding in fed batch as well as continuous cultivation have been described. The recent advances in system and synthetic biology studies including metabolic flux analysis in understanding the phenotypic characteristics of recombinant Pichia and genome editing with CRISPR-CAS system have also been summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Construction of a recombinant viral vector containing part of the nucleocapsid protein gene of newcastle disease virus

    Energy Technology Data Exchange (ETDEWEB)

    Bader, D.E.

    1995-09-01

    This report describes the procedures used to clone a 673 base pair gene fragment of the major nucleocapsid protein gene of Newcastle disease virus into a viral vector molecule for the purpose of maintaining a stable, long-term, renewable source of this target sequence for gene probe studies. The gene fragment was prepared by reverse-transcription polymerase chain reaction of Newcastle disease virus RNA and was cloned into the viral DNA vector Ml3mp18 RF to produce a recombinant DNA molecule. The cloned fragment was shown to be present in the recombinant clones based on (i) clonal selection on indicator plates; (ii) restriction enzyme analysis; (iii) gene probe analysis and (iv) nested PCR amplification.

  17. Identification, Characterization and Down-Regulation of Cysteine Protease Genes in Tobacco for Use in Recombinant Protein Production.

    Directory of Open Access Journals (Sweden)

    Kishor Duwadi

    Full Text Available Plants are an attractive host system for pharmaceutical protein production. Many therapeutic proteins have been produced and scaled up in plants at a low cost compared to the conventional microbial and animal-based systems. The main technical challenge during this process is to produce sufficient levels of recombinant proteins in plants. Low yield is generally caused by proteolytic degradation during expression and downstream processing of recombinant proteins. The yield of human therapeutic interleukin (IL-10 produced in transgenic tobacco leaves was found to be below the critical level, and may be due to degradation by tobacco proteases. Here, we identified a total of 60 putative cysteine protease genes (CysP in tobacco. Based on their predicted expression in leaf tissue, 10 candidate CysPs (CysP1-CysP10 were selected for further characterization. The effect of CysP gene silencing on IL-10 accumulation was examined in tobacco. It was found that the recombinant protein yield in tobacco could be increased by silencing CysP6. Transient expression of CysP6 silencing construct also showed an increase in IL-10 accumulation in comparison to the control. Moreover, CysP6 localizes to the endoplasmic reticulum (ER, suggesting that ER may be the site of IL-10 degradation. Overall results suggest that CysP6 is important in determining the yield of recombinant IL-10 in tobacco leaves.

  18. Recombinant Collagenlike Proteins

    Science.gov (United States)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  19. [Construction and prokaryotic expression of recombinant gene EGFRvIII HBcAg and immunogenicity analysis of the fusion protein].

    Science.gov (United States)

    Duan, Xiao-yi; Wang, Jian-sheng; Guo, You-min; Han, Jun-li; Wang, Quan-ying; Yang, Guang-xiao

    2007-01-01

    To construct recombinant prokaryotic expression plasmid pET28a(+)/c-PEP-3-c and evaluate the immunogenicity of the fusion protein. cDNA fragment encoding PEP-3 was obtained from pGEM-T Easy/PEP-3 and inserted into recombinant plasmid pGEMEX/HBcAg. Then it was subcloned in prokaryotic expression vector and transformed into E.coli BL21(DE3). The fusion protein was expressed by inducing IPTG and purified by Ni(2+)-NTA affinity chromatography. BALB/c mice were immunized with fusion protein and the antibody titre was determined by indirect ELISA. The recombinant gene was confirmed to be correct by restriction enzyme digestion and DNA sequencing. After prokaryotic expression, fusion protein existed in sediment and accounted for 56% of all bacterial lysate. The purified product accounted for 92% of all protein and its concentration was 8 g/L. The antibody titre in blood serum reached 1:16 000 after the fourth immunization and reached 1:2.56x10(5) after the sixth immunization. The titre of anti-PEP-3 antibody reached 1:1.28x10(5) and the titre of anti-HBcAg antibody was less than 1:4x10(3). Fusion gene PEP-3-HBcAg is highly expressed in E.coli BL21. The expressed fusion protein can induce neutralizing antibody with high titer and specificity, which lays a foundation for the study of genetically engineering vaccine for malignant tumors with the high expression of EGFRvIII.

  20. Repression of the DCL2 and DCL4 genes in Nicotiana benthamiana plants for the transient expression of recombinant proteins.

    Science.gov (United States)

    Matsuo, Kouki; Matsumura, Takeshi

    2017-08-01

    The production of recombinant proteins in plants has many advantages, including safety and reduced costs. However, this technology still faces several issues, including low levels of production. The repression of RNA silencing seems to be particularly important for improving recombinant protein production because RNA silencing effectively degrades transgene-derived mRNAs in plant cells. Therefore, to overcome this, we used RNA interference technology to develop DCL2- and DCL4-repressed transgenic Nicotiana benthamiana plants (ΔD2, ΔD4, and ΔD2ΔD4 plants), which had much lower levels of NbDCL2 and/or NbDCL4 mRNAs than wild-type plants. A transient gene expression assay showed that the ΔD2ΔD4 plants accumulated larger amounts of green fluorescent protein (GFP) and human acidic fibroblast growth factor (aFGF) than ΔD2, ΔD4, and wild-type plants. Furthermore, the levels of GFP and aFGF mRNAs were also higher in ΔD2ΔD4 plants than in ΔD2, ΔD4, and wild-type plants. These findings demonstrate that ΔD2ΔD4 plants express larger amounts of recombinant proteins than wild-type plants, and so would be useful for recombinant protein production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Alteration of a recombinant protein N-glycan structure in silkworms by partial suppression of N-acetylglucosaminidase gene expression.

    Science.gov (United States)

    Kato, Tatsuya; Kikuta, Kotaro; Kanematsu, Ayumi; Kondo, Sachiko; Yagi, Hirokazu; Kato, Koichi; Park, Enoch Y

    2017-09-01

    To synthesize complex type N-glycans in silkworms, shRNAs against the fused lobe from Bombyx mori (BmFDL), which codes N-acetylglucosaminidase (GlcNAcase) in the Golgi, was expressed by recombinant B. mori nucleopolyhedrovirus (BmNPV) in silkworm larvae. Expression was under the control of the actin promoter of B. mori or the U6-2 and i.e.-2 promoters from Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV). The reduction of specific GlcNAcase activity was observed in Bm5 cells and silkworm larvae using the U6-2 promoter. In silkworm larvae, the partial suppression of BmFDL gene expression was observed. When shRNA against BmFDL was expressed under the control of U6-2 promoter, the Man 3 GlcNAc(Fuc)GlcNAc structure appeared in a main N-glycans of recombinant human IgG. These results suggested that the control of BmFDL expression by its shRNA in silkworms caused the modification of its N-glycan synthetic pathway, which may lead to the alteration of N-glycans in the expressed recombinant proteins. Suppression of BmFDL gene expression by shRNA is not sufficient to synthesize complex N-glycans in silkworm larvae but can modify the N-glycan synthetic pathway.

  2. [Construction of the eukaryotic recombinant vector and expression of the outer membrane protein LipL32 gene from Leptospira serovar Lai].

    Science.gov (United States)

    Huang, Bi; Bao, Lang; Zhong, Qi; Shang, Zheng-ling; Zhang, Hui-dong; Zhang, Ying

    2008-02-01

    To construct the eukaryotic experssion vector of LipL32 gene from Leptospira serovar Lai and express the recombinant plasmid in COS-7 cell. The LipL32 gene was amplified from Leptospira strain 017 genomic DNA by PCR and cloned into pcDNA3.1, through restriction nuclease enzyme digestion. Then the recombinant plasmid was transformed into E.coli DH5alpha. After identified by nuclease digestion, PCR and sequencing analysis, the recombinant vector was transfected into COS-7 cell with lipsome. The expression of the target gene was detected by RT-PCR and Western blot. The eukaryotic experssion vector pcDNA3.1-LipL32 was successfully constructed and stably expressed in COS-7 cell. The eukaryotic recombinant vector of outer membrane protein LipL32 gene from Leptospira serovar Lai can be expressed in mammalian cell, which provides an experimental basis for the application of the Leptospira DNA vaccine.

  3. Multiplex PCR assay for detection of recombinant genes encoding fatty acid desaturases fused with lichenase reporter protein in GM plants.

    Science.gov (United States)

    Berdichevets, Iryna N; Shimshilashvili, Hristina R; Gerasymenko, Iryna M; Sindarovska, Yana R; Sheludko, Yuriy V; Goldenkova-Pavlova, Irina V

    2010-07-01

    Thermostable lichenase encoded by licB gene of Clostridium thermocellum can be used as a reporter protein in plant, bacterial, yeast, and mammalian cells. It has important advantages of high sensitivity and specificity in qualitative and quantitative assays. Deletion variants of LicB (e.g., LicBM3) retain its enzymatic activity and thermostability and can be expressed in translational fusion with target proteins without compromising with their properties. Fusion with the lichenase reporter is especially convenient for the heterologous expression of proteins whose analysis is difficult or compromised by host enzyme activities, as it is in case of fatty acid desaturases occurring in all groups of organisms. Recombinant desaturase-lichenase genes can be used for creating genetically modified (GM) plants with improved chill tolerance. Development of an analytical method for detection of fused desaturase-lichenase transgenes is necessary both for production of GM plants and for their certification. Here, we report a multiplex polymerase chain reaction method for detection of desA and desC desaturase genes of cyanobacteria Synechocystis sp. PCC6803 and Synechococcus vulcanus, respectively, fused to licBM3 reporter in GM plants.

  4. Putative recombination events and evolutionary history of five economically important viruses of fruit trees based on coat protein-encoding gene sequence analysis.

    Science.gov (United States)

    Boulila, Moncef

    2010-06-01

    To enhance the knowledge of recombination as an evolutionary process, 267 accessions retrieved from GenBank were investigated, all belonging to five economically important viruses infecting fruit crops (Plum pox, Apple chlorotic leaf spot, Apple mosaic, Prune dwarf, and Prunus necrotic ringspot viruses). Putative recombinational events were detected in the coat protein (CP)-encoding gene using RECCO and RDP version 3.31beta algorithms. Based on RECCO results, all five viruses were shown to contain potential recombination signals in the CP gene. Reconstructed trees with modified topologies were proposed. Furthermore, RECCO performed better than the RDP package in detecting recombination events and exhibiting their evolution rate along the sequences of the five viruses. RDP, however, provided the possible major and minor parents of the recombinants. Thus, the two methods should be considered complementary.

  5. Cultivating Insect Cells To Produce Recombinant Proteins

    Science.gov (United States)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  6. Serodiagnosis of Leishmania donovani infections: assessment of enzyme-linked immunosorbent assays using recombinant L. donovani gene B protein (GBP) and a peptide sequence of L. donovani GBP

    DEFF Research Database (Denmark)

    Jensen, A T; Gasim, S; Moller, T

    1999-01-01

    The repetitive sequence of Leishmania major gene B protein (GBP) has previously been shown to be a useful tool in the diagnosis of cutaneous leishmaniasis (CL). Here, we have assessed enzyme-linked immunosorbent assays (ELISAs) using recombinant L. donovani GBP (rGBP) and a peptide sequence of L...... for malaria but free of leishmaniasis was negative in both assays....

  7. Functions and structures of eukaryotic recombination proteins

    International Nuclear Information System (INIS)

    Ogawa, Tomoko

    1994-01-01

    We have found that Rad51 and RecA Proteins form strikingly similar structures together with dsDNA and ATP. Their right handed helical nucleoprotein filaments extend the B-form DNA double helixes to 1.5 times in length and wind the helix. The similarity and uniqueness of their structures must reflect functional homologies between these proteins. Therefore, it is highly probable that similar recombination proteins are present in various organisms of different evolutional states. We have succeeded to clone RAD51 genes from human, mouse, chicken and fission yeast genes, and found that the homologues are widely distributed in eukaryotes. The HsRad51 and MmRad51 or ChRad51 proteins consist of 339 amino acids differing only by 4 or 12 amino acids, respectively, and highly homologous to both yeast proteins, but less so to Dmcl. All of these proteins are homologous to the region from residues 33 to 240 of RecA which was named ''homologous core. The homologous core is likely to be responsible for functions common for all of them, such as the formation of helical nucleoprotein filament that is considered to be involved in homologous pairing in the recombination reaction. The mouse gene is transcribed at a high level in thymus, spleen, testis, and ovary, at lower level in brain and at a further lower level in some other tissues. It is transcribed efficiently in recombination active tissues. A clear functional difference of Rad51 homologues from RecA was suggested by the failure of heterologous genes to complement the deficiency of Scrad51 mutants. This failure seems to reflect the absence of a compatible partner, such as ScRad52 protein in the case of ScRad51 protein, between different species. Thus, these discoveries play a role of the starting point to understand the fundamental gene targeting in mammalian cells and in gene therapy. (J.P.N.)

  8. Improving recombinant protein purification yield

    Science.gov (United States)

    Production of adequate amounts of recombinant proteins is essential for antibody production, biochemical activity study, and structural determination during the post-genomic era. It’s technologically challenging and a limiting factor for tung oil research because analytical reagents such as high qua...

  9. Production of Polyclonal Antibodies to the Recombinant Potato virus M (PVM) Non-structural Triple Gene Block Protein 1 and Coat Protein

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Moravec, Tomáš; Plchová, Helena; Hoffmeisterová, Hana; Dědič, P.

    2012-01-01

    Roč. 160, č. 5 (2012), s. 251-254 ISSN 0931-1785 R&D Projects: GA MŠk 1M06030 Institutional research plan: CEZ:AV0Z50380511 Keywords : Potato virus M * recombinant protein * coat protein Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.000, year: 2012

  10. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ziyu; Aryal, Uma K.; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D.; Magnuson, Jon K.; Adney, William S.; Beckham, Gregg T.; Brunecky, Roman; Himmel, Michael E.; Decker, Stephen R.; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E.

    2013-12-01

    ALG3 is a Family 58 glycosyltransferase enzyme involved in early N-linked glycan synthesis. Here, we investigated the effect of the alg3 gene disruption on growth, development, metabolism, and protein secretion in Aspergillus niger. The alg3 gene deletion resulted in a significant reduction of growth on complete (CM) and potato dextrose agar (PDA) media and a substantial reduction of spore production on CM. It also delayed spore germination in the liquid cultures of both CM and PDA media, but led to a significant accumulation of red pigment on both CM and liquid modified minimal medium (MM) supplemented with yeast extract. The relative abundance of 55 proteins of the total 190 proteins identified in the secretome was significantly different as a result of alg3 gene deletion. Comparison of a Trichoderma reesei cellobiohydrolase (Cel7A) heterologously expressed in A. niger parental and Δalg3 strains showed that the recombinant Cel7A expressed in the mutant background was smaller in size than that from the parental strains. This study suggests that ALG3 is critical for growth and development, pigment production, and protein secretion in A. niger. Functional analysis of recombinant Cel7A with aberrant glycosylation demonstrates the feasibility of this alternative approach to evaluate the role of N-linked glycosylation in glycoprotein secretion and function.

  11. Recombinant protein scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-01-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. (topical review)

  12. Development, evaluation, and laboratory validation of immunoassays for the diagnosis of equine infectious anemia (EIA) using recombinant protein produced from a synthetic p26 gene of EIA virus.

    Science.gov (United States)

    Singha, Harisankar; Goyal, Sachin K; Malik, Praveen; Khurana, Sandip K; Singh, Raj K

    2013-12-01

    Equine infectious anemia (EIA)-a retroviral disease caused by equine infectious anemia virus (EIAV)-is a chronic, debilitating disease of horses, mules, and donkeys. EIAV infection has been reported worldwide and is recognized as pathogen of significant economic importance to the horse industry. This disease falls under regulatory control program in many countries including India. Control of EIA is based on identification of inapparent carriers by detection of antibodies to EIAV in serologic tests and "Stamping Out" policy. The current internationally accepted test for diagnosis of EIA is the agar gel immune-diffusion test (AGID), which detects antibodies to the major gag gene (p26) product. The objective of this study was to develop recombinant p26 based in-house immunoassays [enzyme linked immunosorbent assays (ELISA), and AGID] for EIA diagnosis. The synthetic p26 gene of EIAV was expressed in Escherichia coli and diagnostic potential of recombinant p26 protein were evaluated in ELISA and AGID on 7,150 and 1,200 equine serum samples, respectively, and compared with commercial standard AGID kit. The relative sensitivity and specificity of the newly developed ELISA were 100 and 98.6 %, respectively. Whereas, relative sensitivity and specificity of the newly developed AGID were in complete agreement in respect to commercial AGID kit. Here, we have reported the validation of an ELISA and AGID on large number of equine serum samples using recombinant p26 protein produced from synthetic gene which does not require handling of pathogenic EIAV. Since the indigenously developed reagents would be economical than commercial diagnostic kit, the rp26 based-immunoassays could be adopted for the sero-diagnosis and control of EIA in India.

  13. Characterization of opaque2 modifier QTLs and candidate genes in recombinant inbred lines derived from the K0326Y quality protein maize inbred

    KAUST Repository

    Holding, David R.

    2010-11-13

    Quality protein maize (QPM) is a high lysine-containing corn that is based on genetic modification of the opaque2 (o2) mutant. In QPM, modifier genes convert the starchy endosperm of o2 to the vitreous phenotype of wild type maize. There are multiple, unlinked o2 modifier loci (Opm) in QPM and their nature and mode of action are unknown. We previously identified seven Opm QTLs and characterized 16 genes that are differentially up-regulated at a significant level in K0326Y QPM, compared to the starchy endosperm mutant W64Ao2. In order to further characterize these Opm QTLs and the genes up-regulated in K0326Y QPM, we created a population of 314 recombinant inbred lines (RILs) from a cross between K0326Y QPM and W64Ao2. The RILs were characterized for three traits associated with endosperm texture: vitreousness, density and hardness. Genetic linkage analysis of the RIL population confirmed three of the previously identified QTLs associated with o2 endosperm modification in K0326Y QPM. Many of the genes up-regulated in K0326Y QPM showed substantially higher levels of expression in vitreous compared with opaque RILs. These included genes associated with the upstream regulation of the ethylene response pathway, and a gene encoding a regulatory subunit of pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase, an adaptive enzyme of the glycolytic pathway. © 2010 Springer-Verlag.

  14. The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering.

    Science.gov (United States)

    Gawin, Agnieszka; Valla, Svein; Brautaset, Trygve

    2017-07-01

    The XylS/Pm regulator/promoter system originating from the Pseudomonas putida TOL plasmid pWW0 is widely used for regulated low- and high-level recombinant expression of genes and gene clusters in Escherichia coli and other bacteria. Induction of this system can be graded by using different cheap benzoic acid derivatives, which enter cells by passive diffusion, operate in a dose-dependent manner and are typically not metabolized by the host cells. Combinatorial mutagenesis and selection using the bla gene encoding β-lactamase as a reporter have demonstrated that the Pm promoter, the DNA sequence corresponding to the 5' untranslated end of its cognate mRNA and the xylS coding region can be modified and improved relative to various types of applications. By combining such mutant genetic elements, altered and extended expression profiles were achieved. Due to their unique properties, obtained systems serve as a genetic toolbox valuable for heterologous protein production and metabolic engineering, as well as for basic studies aiming at understanding fundamental parameters affecting bacterial gene expression. The approaches used to modify XylS/Pm should be adaptable for similar improvements also of other microbial expression systems. In this review, we summarize constructions, characteristics, refinements and applications of expression tools using the XylS/Pm system. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. In vivo production of recombinant proteins using occluded recombinant AcMNPV-derived baculovirus vectors.

    Science.gov (United States)

    Guijarro-Pardo, Eva; Gómez-Sebastián, Silvia; Escribano, José M

    2017-12-01

    Trichoplusia ni insect larvae infected with vectors derived from the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), are an excellent alternative to insect cells cultured in conventional bioreactors to produce recombinant proteins because productivity and cost-efficiency reasons. However, there is still a lot of work to do to reduce the manual procedures commonly required in this production platform that limit its scalability. To increase the scalability of this platform technology, a current bottleneck to be circumvented in the future is the need of injection for the inoculation of larvae with polyhedrin negative baculovirus vectors (Polh-) because of the lack of oral infectivity of these viruses, which are commonly used for production in insect cell cultures. In this work we have developed a straightforward alternative to obtain orally infective vectors derived from AcMNPV and expressing recombinant proteins that can be administered to the insect larvae (Trichoplusia ni) by feeding, formulated in the insect diet. The approach developed was based on the use of a recombinant polyhedrin protein expressed by a recombinant vector (Polh+), able to co-occlude any recombinant Polh- baculovirus vector expressing a recombinant protein. A second alternative was developed by the generation of a dual vector co-expressing the recombinant polyhedrin protein and the foreign gene of interest to obtain the occluded viruses. Additionally, by the incorporation of a reporter gene into the helper Polh+ vector, it was possible the follow-up visualization of the co-occluded viruses infection in insect larvae and will help to homogenize infection conditions. By using these methodologies, the production of recombinant proteins in per os infected larvae, without manual infection procedures, was very similar in yield to that obtained by manual injection of recombinant Polh- AcMNPV-based vectors expressing the same proteins. However, further analyses will be required for a

  16. [Construction and expression of recombinant Mycobacterium bovis BCG with the ompA-like membrane protein gene Loa22 of Leptospira interrogans serovar].

    Science.gov (United States)

    Li, Dao-kun; Bao, Lang; Zhang, Ying; Sun, Zhan

    2010-03-01

    To study the immunity of Loa22 from Leptospira interrogans serovar Lai strain 56601 by expressing its protein in BCG. Amplified the mature peptide of Loa22 gene from the genome of of Leptospira interrogans serovar Lai strain 56601 and constructed recombinant plasmid rpMV36l-1oa22 with the E. coli-BCG integrating shuttle plasmid pMV361 and the Loa22 mature peptide gene. The rpMV36l-1oa22 plasmid was transformed into BCG by electroporation. The rBCG bearing rpMV36l-1oa22 was induced by high temperature of 45 degrees C and expressed protein was identified by SDS-PAGE and Western Blotting. Fifth 6-week-old BALB/c mice were randomly divided into five groups, which were inoculated intraperitoneally two times at 0-day and 21-day with BCG, rBCG-pMV361, rI3CG-1oa22, Loa22 and killed whole-leptospires respectively. All animals were dislocated from cervical vertebra on the 14Ih day after the last immunization. The proliferative reaction of splenic lymphocyte in tuitro were tested by XTT. The rpMV36l-1oa22 plasmid was constructed successfully and transformed into BCG. The rBCG expressed a 19 X io specifical protein identified by SDS-PAGE and Western Blotting. The splenic lymphocyte proliferate activity (SI) in rBCG-ioa22 group in intro was significantly higher than those in BCG group and rBCG-pMV361 group. We explored the expressing feasibility of Loa22 in Mycobacterium bovis BCG. may therefore make further researches on the induction of protective immunity against human and animal leptospirosis.

  17. Transient Co-Expression of Post-Transcriptional Gene Silencing Suppressors for Increased in Planta Expression of a Recombinant Anthrax Receptor Fusion Protein

    Directory of Open Access Journals (Sweden)

    Kittipong Rattanaporn

    2011-08-01

    Full Text Available Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin, CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA domain of human capillary morphogenesis 2 (CMG2, an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG. We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS: p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI, with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  18. Transient co-expression of post-transcriptional gene silencing suppressors for increased in planta expression of a recombinant anthrax receptor fusion protein.

    Science.gov (United States)

    Arzola, Lucas; Chen, Junxing; Rattanaporn, Kittipong; Maclean, James M; McDonald, Karen A

    2011-01-01

    Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin), CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA) domain of human capillary morphogenesis 2 (CMG2), an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG). We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS): p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI), with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  19. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes

    Science.gov (United States)

    Larremore, Daniel B.; Clauset, Aaron; Buckee, Caroline O.

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences. PMID:24130474

  20. A network approach to analyzing highly recombinant malaria parasite genes.

    Science.gov (United States)

    Larremore, Daniel B; Clauset, Aaron; Buckee, Caroline O

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.

  1. A network approach to analyzing highly recombinant malaria parasite genes.

    Directory of Open Access Journals (Sweden)

    Daniel B Larremore

    Full Text Available The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs, and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.

  2. Viral vectors for production of recombinant proteins in plants.

    Science.gov (United States)

    Lico, Chiara; Chen, Qiang; Santi, Luca

    2008-08-01

    Global demand for recombinant proteins has steadily accelerated for the last 20 years. These recombinant proteins have a wide range of important applications, including vaccines and therapeutics for human and animal health, industrial enzymes, new materials and components of novel nano-particles for various applications. The majority of recombinant proteins are produced by traditional biological "factories," that is, predominantly mammalian and microbial cell cultures along with yeast and insect cells. However, these traditional technologies cannot satisfy the increasing market demand due to prohibitive capital investment requirements. During the last two decades, plants have been under intensive investigation to provide an alternative system for cost-effective, highly scalable, and safe production of recombinant proteins. Although the genetic engineering of plant viral vectors for heterologous gene expression can be dated back to the early 1980s, recent understanding of plant virology and technical progress in molecular biology have allowed for significant improvements and fine tuning of these vectors. These breakthroughs enable the flourishing of a variety of new viral-based expression systems and their wide application by academic and industry groups. In this review, we describe the principal plant viral-based production strategies and the latest plant viral expression systems, with a particular focus on the variety of proteins produced and their applications. We will summarize the recent progress in the downstream processing of plant materials for efficient extraction and purification of recombinant proteins. (c) 2008 Wiley-Liss, Inc.

  3. Recombinant DNA production of spider silk proteins.

    Science.gov (United States)

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-11-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Acetylcholinesterase of Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi: Gene identification, expression, and biochemical properties of recombinant proteins

    Science.gov (United States)

    Rhipicephalus (Boophilus) microplus (Bm) ticks are vectors of bovine babesiosis and anaplasmosis. Tick resistance to organophosphate (OP) acaricide involves acetylcholinesterase (AChE) insensitivity to OP and metabolic detoxification. Sequencing and in vitro expression of Bm genes encoding AChE allo...

  5. Acetylcholinesterases of Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi: Gene identification, expression and biochemical properties of recombinant proteins

    Science.gov (United States)

    Rhipicephalus (Boophilus) microplus (Bm) is a vector of bovine babesiosis and anaplasmosis. Tick resistance to organophosphate (OP) acaricide involves acetylcholinesterase (AChE) insensitivity to OP and metabolic detoxification. In vitro expression of Bm genes encoding AChE allowed biochemical chara...

  6. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Science.gov (United States)

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  7. Recombinant protein blends: silk beyond natural design.

    Science.gov (United States)

    Dinjaski, Nina; Kaplan, David L

    2016-06-01

    Recombinant DNA technology and new material concepts are shaping future directions in biomaterial science for the design and production of the next-generation biomaterial platforms. Aside from conventionally used synthetic polymers, numerous natural biopolymers (e.g., silk, elastin, collagen, gelatin, alginate, cellulose, keratin, chitin, polyhydroxyalkanoates) have been investigated for properties and manipulation via bioengineering. Genetic engineering provides a path to increase structural and functional complexity of these biopolymers, and thereby expand the catalog of available biomaterials beyond that which exists in nature. In addition, the integration of experimental approaches with computational modeling to analyze sequence-structure-function relationships is starting to have an impact in the field by establishing predictive frameworks for determining material properties. Herein, we review advances in recombinant DNA-mediated protein production and functionalization approaches, with a focus on hybrids or combinations of proteins; recombinant protein blends or 'recombinamers'. We highlight the potential biomedical applications of fibrous protein recombinamers, such as Silk-Elastin Like Polypeptides (SELPs) and Silk-Bacterial Collagens (SBCs). We also discuss the possibility for the rationale design of fibrous proteins to build smart, stimuli-responsive biomaterials for diverse applications. We underline current limitations with production systems for these proteins and discuss the main trends in systems/synthetic biology that may improve recombinant fibrous protein design and production. Copyright © 2016. Published by Elsevier Ltd.

  8. Recombinant protein production from stable mammalian cell lines and pools.

    Science.gov (United States)

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger.

    Science.gov (United States)

    Dai, Ziyu; Aryal, Uma K; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D; Magnuson, Jon K; Adney, William S; Beckham, Gregg T; Brunecky, Roman; Himmel, Michael E; Decker, Stephen R; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E

    2013-12-01

    Dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl α-1,3-mannosyltransferase (also known as "asparagine-linked glycosylation 3", or ALG3) is involved in early N-linked glycan synthesis and thus is essential for formation of N-linked protein glycosylation. In this study, we examined the effects of alg3 gene deletion (alg3Δ) on growth, development, pigment production, protein secretion and recombinant Trichoderma reesei cellobiohydrolase (rCel7A) expressed in Aspergillus niger. The alg3Δ delayed spore germination in liquid cultures of complete medium (CM), potato dextrose (PD), minimal medium (MM) and CM with addition of cAMP (CM+cAMP), and resulted in significant reduction of hyphal growth on CM, potato dextrose agar (PDA), and CM+cAMP and spore production on CM. The alg3Δ also led to a significant accumulation of red pigment on both liquid and solid CM cultures. The relative abundances of 54 of the total 215 proteins identified in the secretome were significantly altered as a result of alg3Δ, 63% of which were secreted at higher levels in alg3Δ strain than the parent. The rCel7A expressed in the alg3Δ mutant was smaller in size than that expressed in both wild-type and parental strains, but still larger than T. reesei Cel7A. The circular dichroism (CD)-melt scans indicated that change in glycosylation of rCel7A does not appear to impact the secondary structure or folding. Enzyme assays of Cel7A and rCel7A on nanocrystalline cellulose and bleached kraft pulp demonstrated that the rCel7As have improved activities on hydrolyzing the nanocrystalline cellulose. Overall, the results suggest that alg3 is critical for growth, sporulation, pigment production, and protein secretion in A. niger, and demonstrate the feasibility of this alternative approach to evaluate the roles of N-linked glycosylation in glycoprotein secretion and function. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Protein Crystal Recombinant Human Insulin

    Science.gov (United States)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  11. Extracellular secretion of recombinant proteins

    Science.gov (United States)

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  12. Immunogenicity of recombinant feline infectious peritonitis virus spike protein in mice and kittens

    NARCIS (Netherlands)

    Horzinek, M.C.; Vennema, H.; Groot, R. de; Harbour, D.A.; Dalderup, M.; Gruffydd-Jones, T.; Spaan, W.J.M.

    1990-01-01

    The gene encoding the fusogenic spike protein of the coronavirus causing feline infectious peritonitis (FIVP) was recombined into the genome of vaccinia virus, strain WR. The recombinant induced spike protein specific, in vitro neutralizing antibodies in mkice. When kittens were immunized with the

  13. A Generic Protocol for Intracellular Expression of Recombinant Proteins in Bacillus subtilis.

    Science.gov (United States)

    Phan, Trang; Huynh, Phuong; Truong, Tuom; Nguyen, Hoang

    2017-01-01

    Bacillus subtilis (B. subtilis) is a potential and attractive host for the production of recombinant proteins. Different expression systems for B. subtilis have been developed recently, and various target proteins have been recombinantly synthesized and purified using this host. In this chapter, we introduce a generic protocol to express a recombinant protein in B. subtilis. It includes protocols for (1) using our typical expression vector (plasmid pHT254) to introduce a target gene, (2) transformation of the target vector into B. subtilis, and (3) evaluation of the actual expression of a recombinant protein.

  14. Targeted in vivo inhibition of specific protein-protein interactions using recombinant antibodies.

    Directory of Open Access Journals (Sweden)

    Matej Zábrady

    Full Text Available With the growing availability of genomic sequence information, there is an increasing need for gene function analysis. Antibody-mediated "silencing" represents an intriguing alternative for the precise inhibition of a particular function of biomolecules. Here, we describe a method for selecting recombinant antibodies with a specific purpose in mind, which is to inhibit intrinsic protein-protein interactions in the cytosol of plant cells. Experimental procedures were designed for conveniently evaluating desired properties of recombinant antibodies in consecutive steps. Our selection method was successfully used to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of CYTOKININ INDEPENDENT HISTIDINE KINASE 1. The specific down-regulation of the cytokinin signaling pathway in vivo demonstrates the validity of our approach. This selection method can serve as a prototype for developing unique recombinant antibodies able to interfere with virtually any biomolecule in the living cell.

  15. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    Science.gov (United States)

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  16. Antibodies to a recombinant glutamate-rich Plasmodium falciparum protein

    DEFF Research Database (Denmark)

    Hogh, B; Petersen, E; Dziegiel, Morten Hanefeld

    1992-01-01

    A Plasmodium falciparum antigen gene coding for a 220-kD glutamate-rich protein (GLURP) has been cloned, and the 783 C-terminal amino acids of this protein (GLURP489-1271) have been expressed as a beta-galactosidase fusion protein in Escherichia coli. The encoded 783 amino acid residues contain two...... areas of repeated amino acid sequences. Antibodies against recombinant GLURP489-1271, as well as against a synthetic peptide corresponding to GLURP899-916, and against a synthetic peptide representing the major glutamate rich repeat sequence from the P. falciparum ring erythrocyte surface antigen (Pf155...... between the anti-GLURP489-1271 and anti-(EENV)6 antibody responses. The data provide indirect evidence for a protective role of antibodies reacting with recombinant GLURP489-1271 as well as with the synthetic peptide (EENV)6 from the Pf155/RESA....

  17. Recombinant Amphiphilic Protein Micelles for Drug Delivery

    OpenAIRE

    Kim, Wookhyun; Xiao, Jiantao; Chaikof, Elliot L.

    2011-01-01

    Amphiphilic block polypeptides can self-assemble into a range of nanostructures in solution, including micelles and vesicles. Our group has recently described the capacity of recombinant amphiphilic diblock copolypeptides to form highly stable micelles. In this report, we demonstrate the utility of protein nanoparticles to serve as a vehicle for controlled drug delivery. Drug-loaded micelles were produced by encapsulating dipyridamole as a model hydrophobic drug with anti-inflammatory activit...

  18. Application of native signal sequences for recombinant proteins secretion in Pichia pastoris

    DEFF Research Database (Denmark)

    Borodina, Irina; Do, Duy Duc; Eriksen, Jens C.

    Background Methylotrophic yeast Pichia pastoris is widely used for recombinant protein production, largely due to its ability to secrete correctly folded heterologous proteins to the fermentation medium. Secretion is usually achieved by cloning the recombinant gene after a leader sequence, where...... alpha‐mating factor (MF) prepropeptide from Saccharomyces cerevisiae is most commonly used. Our aim was to test whether signal peptides from P. pastoris native secreted proteins could be used to direct secretion of recombinant proteins. Results Eleven native signal peptides from P. pastoris were tested...... by optimization of expression of three different proteins in P. pastoris. Conclusions Native signal peptides from P. pastoris can be used to direct secretion of recombinant proteins. A novel USER‐based P. pastoris system allows easy cloning of protein‐coding gene with the promoter and leader sequence of choice....

  19. Overview of the purification of recombinant proteins.

    Science.gov (United States)

    Wingfield, Paul T

    2015-04-01

    When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same. Copyright © 2015 John Wiley & Sons, Inc.

  20. Efficient bacterial expression of recombinant potato mop-top virus non-structural triple gene block protein 1 modified by progressive deletion of its N-terminus

    Czech Academy of Sciences Publication Activity Database

    Pečenková, Tamara; Filigarová, Marie; Čeřovská, Noemi

    2005-01-01

    Roč. 41, - (2005), s. 128-135 ISSN 1046-5928 R&D Projects: GA ČR GA522/04/1329 Institutional research plan: CEZ:AV0Z50380511 Keywords : Protein expression * Potato mop-top virus * Triple gene block Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.553, year: 2005

  1. Baculovirus-mediated gene transfer and recombinant protein expression do not interfere with insulin dependent phosphorylation of PKB/Akt in human SHSY-5Y and C3A cells

    Directory of Open Access Journals (Sweden)

    Selander Martin

    2007-02-01

    Full Text Available Abstract Background Recombinant adenovirus vectors and transfection agents comprising cationic lipids are widely used as gene delivery vehicles for functional expression in cultured cells. Consequently, these tools are utilized to investigate the effects of functional over-expression of proteins on insulin mediated events. However, we have previously reported that cationic lipid reagents cause a state of insulin unresponsiveness in cell cultures. In addition, we have found that cultured cells often do not respond to insulin stimulation following adenovirus treatment. Infection with adenovirus compromises vital functions of the host cell leading to the activation of protein kinases central to insulin signalling, such as protein kinase B/Akt. Therefore, we investigated the effect of adenovirus infection on insulin unresponsiveness by means of Akt activation in cultured cells. Moreover, we investigated the use of baculovirus as a heterologous viral gene delivery vehicle to circumvent these phenomena. Since the finding that baculovirus can efficiently transduce mammalian cells, the applications of this viral system in gene delivery has greatly expanded and one advantage is the virtual absence of cytotoxicity in mammalian cells. Results We show that infection of human neuroblastoma SHSY-5Y and liver C3A cells with recombinant adenovirus results in the activation of Akt in a dose dependent manner. In addition, this activation makes treated cells unresponsive to insulin stimulation as determined by an apparent lack of differential phosphorylation of Akt on serine-473. Our data further indicate that the use of recombinant baculovirus does not increase the phosphorylation of Akt in SHSY-5Y and C3A cells. Moreover, following infection with baculovirus, SHSY-5Y and C3A cells respond to insulin by means of phosphorylation of Akt on serine-473 in the same manner as uninfected cells. Conclusion Widely-used adenovirus vectors for gene delivery cause a state of

  2. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    Science.gov (United States)

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  3. Co-solute assistance in refolding of recombinant proteins | Gerami ...

    African Journals Online (AJOL)

    Prokaryotic expression system is the most widely used host for the production of recombinant proteins but inclusion body formation is a major bottleneck in the production of recombinant proteins in prokaryotic cells, especially in Escherichia coli. In vitro refolding of inclusion body into the the proteins with native ...

  4. Engineered mammalian cells for production of recombinant proteins

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to mammalian cells modified to provide for improved expression of a recombinant protein of interest. In particular, the invention relates to CHO cells and other host cells in which the expression of one or more endogenous secreted proteins has been disrupted, as well...... as to the preparation, identification and use of such cells in the production of recombinant proteins....

  5. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    DEFF Research Database (Denmark)

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas Salhøj

    2014-01-01

    falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome...... of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens....

  6. Structural analysis of recombinant human protein QM

    International Nuclear Information System (INIS)

    Gualberto, D.C.H.; Fernandes, J.L.; Silva, F.S.; Saraiva, K.W.; Affonso, R.; Pereira, L.M.; Silva, I.D.C.G.

    2012-01-01

    Full text: The ribosomal protein QM belongs to a family of ribosomal proteins, which is highly conserved from yeast to humans. The presence of the QM protein is necessary for joining the 60S and 40S subunits in a late step of the initiation of mRNA translation. Although the exact extra-ribosomal functions of QM are not yet fully understood, it has been identified as a putative tumor suppressor. This protein was reported to interact with the transcription factor c-Jun and thereby prevent c-Jun actives genes of the cellular growth. In this study, the human QM protein was expressed in bacterial system, in the soluble form and this structure was analyzed by Circular Dichroism and Fluorescence. The results of Circular Dichroism showed that this protein has less alpha helix than beta sheet, as described in the literature. QM protein does not contain a leucine zipper region; however the ion zinc is necessary for binding of QM to c-Jun. Then we analyzed the relationship between the removal of zinc ions and folding of protein. Preliminary results obtained by the technique Fluorescence showed a gradual increase in fluorescence with the addition of increasing concentration of EDTA. This suggests that the zinc is important in the tertiary structure of the protein. More studies are being made for better understand these results. (author)

  7. Recombinant carcinoembryonic antigen as a reporter gene for molecular imaging

    International Nuclear Information System (INIS)

    Kenanova, Vania; Barat, Bhaswati; Olafsen, Tove; Chatziioannou, Arion; Herschman, Harvey R.; Wu, Anna M.; Braun, Jonathan

    2009-01-01

    Reporter genes can provide a way of noninvasively assessing gene activity in vivo. However, current reporter gene strategies may be limited by the immunogenicity of foreign reporter proteins, endogenous expression, or unwanted biological activity. We have developed a reporter gene based on carcinoembryonic antigen (CEA), a human protein with limited normal tissue expression. To construct a CEA reporter gene for PET, a CEA minigene (N-A3) was fused to the extracellular and transmembrane domains of the human FcγRIIb receptor. The NA3-FcγRIIb recombinant gene, driven by a CMV promoter, was transfected in Jurkat (human T cell leukemia) cells. Expression was analyzed by flow cytometry, immunohistochemistry (IHC), and microPET imaging. Flow cytometry identified Jurkat clones stably expressing NA3-FcγRIIb at low, medium, and high levels. High and medium NA3-FcγRIIb expression could also be detected by Western blot. Reporter gene positive and negative Jurkat cells were used to establish xenografts in athymic mice. IHC showed staining of the tumor with high reporter gene expression; medium and low N-A3 expression was not detected. MicroPET imaging, using an anti-CEA 124 I-labeled single-chain Fv-Fc antibody fragment, demonstrated that only high N-A3 expression could be detected. Specific accumulation of activity was visualized at the N-A3 positive tumor as early as 4 h. MicroPET image quantitation showed tumor activity of 1.8 ± 0.2, 15.2 ± 1.3, and 4.6 ± 1.2 percent injected dose per gram (%ID/g) at 4, 20, and 48 h, respectively. Biodistribution at 48 h demonstrated tumor uptake of 4.8 ± 0.8%ID/g. The CEA N-A3 minigene has the potential to be used as a reporter gene for imaging cells in vivo. (orig.)

  8. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine.

    Science.gov (United States)

    Chen, Yang; Guo, Wanzhu; Xu, Zhiwen; Yan, Qigui; Luo, Yan; Shi, Qian; Chen, Dishi; Zhu, Ling; Wang, Xiaoyu

    2011-06-16

    Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.

  9. Molecular quantification of genes encoding for green-fluorescent proteins

    DEFF Research Database (Denmark)

    Felske, A; Vandieken, V; Pauling, B V

    2003-01-01

    A quantitative PCR approach is presented to analyze the amount of recombinant green fluorescent protein (gfp) genes in environmental DNA samples. The quantification assay is a combination of specific PCR amplification and temperature gradient gel electrophoresis (TGGE). Gene quantification...... PCR strategy is a highly specific and sensitive way to monitor recombinant DNA in environments like the efflux of a biotechnological plant....

  10. Insect Larvae: A New Platform to Produce Commercial Recombinant Proteins.

    Science.gov (United States)

    Targovnik, Alexandra M; Arregui, Mariana B; Bracco, Lautaro F; Urtasun, Nicolas; Baieli, Maria F; Segura, Maria M; Simonella, Maria A; Fogar, Mariela; Wolman, Federico J; Cascone, Osvaldo; Miranda, Maria V

    2016-01-01

    In Biotechnology, the expression of recombinant proteins is a constantly growing field and different hosts are used for this purpose. Some valuable proteins cannot be produced using traditional systems. Insects from the order Lepidoptera infected with recombinant baculovirus have appeared as a good choice to express high levels of proteins, especially those with post-translational modifications. Lepidopteran insects, which are extensively distributed in the world, can be used as small protein factories, the new biofactories. Species like Bombyx mori (silkworm) have been analyzed in Asian countries to produce a great number of recombinant proteins for use in basic and applied science and industry. Many proteins expressed in this larva have been commercialized. Several recombinant proteins produced in silkworms have already been commercialized. On the other hand, species like Spodoptera frugiperda, Heliothis virescens, Rachiplusia nu, Helicoverpa zea and Trichoplusia ni are widely distributed in both the occidental world and Europe. The expression of recombinant proteins in larvae has the advantage of its low cost in comparison with insect cell cultures. A wide variety of recombinant proteins, including enzymes, hormones and vaccines, have been efficiently expressed with intact biological activity. The expression of pharmaceutically proteins, using insect larvae or cocoons, has become very attractive. This review describes the use of insect larvae as an alternative to produce commercial recombinant proteins.

  11. Exploiting translational coupling for the selection of cells producing toxic recombinant proteins from expression vectors.

    Science.gov (United States)

    Tagliavia, Marcello; Cuttitta, Angela

    2016-01-01

    High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.

  12. Production of Recombinant Adenovirus Containing Human Interlukin-4 Gene

    OpenAIRE

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-01-01

    Objective(s) Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics ...

  13. Improved means and methods for expressing recombinant proteins

    NARCIS (Netherlands)

    Poolman, Berend; Martinez Linares, Daniel; Gul, Nadia

    2014-01-01

    The invention relates to the field of genetic engineering and the production of recombinant proteins in microbial host cells. Provided is a method for enhanced expression of a recombinant protein of interest in a microbial host cell, comprising providing a microbial host cell wherein the function of

  14. High-level transient expression of recombinant protein in lettuce.

    Science.gov (United States)

    Joh, Lawrence D; Wroblewski, Tadeusz; Ewing, Nicholas N; VanderGheynst, Jean S

    2005-09-30

    Transient expression following agroinfiltration of plant tissue was investigated as a system for producing recombinant protein. As a model system, Agrobacterium tumefaciens containing the beta-glucuronidase (GUS) gene was vacuum infiltrated into lettuce leaf disks. Infiltration with a suspension of 10(9) colony forming units/mL followed by incubation for 72 h at 22 degrees C in continuous darkness produced a maximum of 0.16% GUS protein based on dry tissue or 1.1% GUS protein based on total soluble protein. This compares favorably to expression levels for commercially manufactured GUS protein from transgenic corn seeds. A. tumefaciens culture medium pH between 5.6 and 7.0 and surfactant concentrations lettuce to produce GUS protein more rapidly, but final levels did not exceed the GUS production in leaves incubated in continuous darkness after 72 h at 22 degrees C. The kinetics of GUS expression during incubation in continuous light and dark were represented well using a logistic model, with rate constants of 0.30 and 0.29/h, respectively. To semi-quantitatively measure the GUS expression in large numbers of leaf disks, a photometric enhancement of the standard histochemical staining method was developed. A linear relationship with an R2 value of 0.90 was determined between log10 (% leaf darkness) versus log10 (GUS activity). Although variability in expression level was observed, agroinfiltration appears to be a promising technology that could potentially be scaled up to produce high-value recombinant proteins in planta. Copyright 2005 Wiley Periodicals, Inc

  15. Recombinant proteins in therapeutics: haemophilia treatment as an example

    Directory of Open Access Journals (Sweden)

    Liras Antonio

    2008-04-01

    Full Text Available Abstract One of the most spectacular advances in the history of scientific knowledge was the discovery of deoxyribonucleic acid (DNA by Watson and Crick in 1953. This enabled certain proteins to be prepared in this way for their therapeutic use in clinical practice. Today, in the first decade of the 21st century, hundreds of therapeutic proteins have been produced recombinantly and about 50 of them have been approved for clinical use. Because of the specific procedure used for obtaining these products, which is based on expressing a atherapeutica gene from a fragment of DNA in a cell to produce a functional protein that is free from any human or animal component, they are especially acleana and thus the therapy of choice for many current diseases. The immediate question is: why are recombinant products not used more extensively given their high efficacy and maximum safety? In short, we are faced with an interesting but also unfortunate paradox of pharmacology that greater progress in therapeutic procedures is not always associated with greater introduction of those resources that are safest, for the simple reason that they are more costly.

  16. Expression and Characterisation of Recombinant Rhodocyclus tenuis High Potential Iron-Sulphur Protein

    DEFF Research Database (Denmark)

    Caspersen, Michael Bjerg; Bennet, K.; Christensen, Hans Erik Mølager

    2000-01-01

    The high potential iron-sulfur protein (HiPIP) from Rhodocyclus tenuis strain 2761 has been overproduced in Escherichia coli from its structural gene, purified to apparent homogeneity, and then characterized by an array of methods. UV-visible spectra of the reduced and oxidized recombinant protein...

  17. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2014-02-20

    Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  18. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    Science.gov (United States)

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese.

  19. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  20. Metal binding proteins, recombinant host cells and methods

    Science.gov (United States)

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  1. Regulation of homologous recombination repair protein Rad51 by Ku70

    International Nuclear Information System (INIS)

    Du Liqing; Liu Qiang; Wang Yan; Xu Chang; Cao Jia; Fu Yue; Chen Fenghua; Fan Feiyue

    2013-01-01

    Objective: To explore the regulative effect of non-homologous end joining (NHEJ)protein Ku70 on homologous recombination repair protein Rad51, and to investigate the synergistic mechanism of homologous recombination repair in combination with NHEJ. Methods: Observed Rad51 protein expression after transfect Ku70 small interfering RNA or Ku70 plasmid DNA into tumor cells using Western blot. Results: Expression of Rad51 was obviously reduced after pretreated with Ku70 small interfering RNA. And with the increasing expression of Ku70 protein after transfection of Ku70 plasmid DNA PGCsi3.0-hKu70 into tumor cell lines, the Rad51 protein expression was increased. Conclusion: Ku70 protein has regulating effect on gene expression of Rad51, and it might participate in the collaboration between homologous recombination repair and NHEJ. (authors)

  2. Recombination activating activity of XRCC1 analogous genes in X-ray sensitive and resistant CHO cell lines

    International Nuclear Information System (INIS)

    Golubnitchaya-Labudova, O.; Hoefer, M.; Portele, A.; Vacata, V.; Rink, H.; Lubec, G.

    1997-01-01

    The XRCC1 gene (X-ray repair cross complementing) complements the DNA repair deficiency of the radiation sensitive Chinese hamster ovary (CHO) mutant cell line EM9 but the mechanism of the correction is not elucidated yet. XRCC1 shows substantial homology to the RAG2 gene (recombination activating gene) and we therefore tried to answer the question, whether structural similarities (sequence of a putative recombination activating domain, aa 332-362 for XRCC1 and aa 286-316 in RAG2) would reflect similar functions of the homologous, putative recombination activating domain. PCR experiments revealed that no sequence homologous to the structural part of human XRCC1 was present in cDNA of CHO. Differential display demonstrated two putative recombination activating in the parental CHO line AA8 and one in the radiosensitive mutant EM9. Southern blot experiments showed the presence of several genes with partial homology to human XRCC1. Recombination studies consisted of expressing amplified target domains within chimeric proteins in recA - bacteria and subsequent detection of recombination events by sequencing the recombinant plasmids. Recombination experiments demonstrated recombination activating activity of all putative recombination activating domains amplified from AA8 and EM9 genomes as reflected by deletions within the inserts of the recombinant plasmids. The recombination activating activity of XRCC1 analogues could explain a mechanism responsible for the correction of the DNA repair defect in EM9. (author)

  3. Recombination and population mosaic of a multifunctional viral gene, adeno-associated virus cap.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takeuchi

    Full Text Available Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred.

  4. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs

    Directory of Open Access Journals (Sweden)

    Gong Shiaochin

    2009-03-01

    Full Text Available Abstract Background Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. Results We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1 subclone genes of interest into BAC linking vectors, (2 insert desired reporter genes into respective genes and (3 link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. Conclusion The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  5. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs.

    Science.gov (United States)

    Maye, Peter; Stover, Mary Louise; Liu, Yaling; Rowe, David W; Gong, Shiaochin; Lichtler, Alexander C

    2009-03-13

    Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP) reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1) subclone genes of interest into BAC linking vectors, (2) insert desired reporter genes into respective genes and (3) link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  6. Vaccinia virus recombinants expressing chimeric proteins of human immunodeficiency virus and gamma interferon are attenuated for nude mice.

    OpenAIRE

    Giavedoni, L D; Jones, L; Gardner, M B; Gibson, H L; Ng, C T; Barr, P J; Yilma, T

    1992-01-01

    We have developed a method for attenuating vaccinia virus recombinants by expressing a fusion protein of a lymphokine and an immunogen. Chimeric genes were constructed that coded for gamma interferon (IFN-gamma) and structural proteins of the human immunodeficiency virus type 1 (HIV-1). In this study, we describe the biological and immunological properties of vaccinia virus recombinants expressing chimeric genes of murine or human IFN-gamma with glycoprotein gp120, gag, and a fragment of gp41...

  7. Recombinant human bone morphogenetic protein induces bone formation

    International Nuclear Information System (INIS)

    Wang, E.A.; Rosen, V.; D'Alessandro, J.S.; Bauduy, M.; Cordes, P.; Harada, T.; Israel, D.I.; Hewick, R.M.; Kerns, K.M.; LaPan, P.; Luxenberg, D.P.; McQuaid, D.; Moutsatsos, I.K.; Nove, J.; Wozney, J.M.

    1990-01-01

    The authors have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 μg of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans

  8. Obtaining classical swine fever virus E2 recombinant protein and DNA-vaccine on the basis of one subunit

    International Nuclear Information System (INIS)

    Deryabin, O.; Deryabina, O.; Verbitskiy, P.; Kordyum, V.

    2005-01-01

    Three forms of E2 recombinant protein were expressed in E. coli. Swine sera obtained against different forms of the recombinant protein were cross-studied with indirect ELISA. Using individual proteins as an antigen, only 15% of sera against other forms of protein reacted positively, while 100% of heterologous sera showed positive reaction with fused protein. Challenge experiments showed the existence of protective action only from the individual protein. Specificity and activity of sera obtained from the animals after control challenge was confirmed in a blocking variant of ELISA. Genetic construction used a eukaryotic vector that contained the E2 protein gene. Immunization of mice with the resulting DNA induced synthesis of specific antibodies, the titre of which increased considerably after additional single immunization with the E2 recombinant protein, expressed in E. coli. This demonstrated the effectiveness of animal priming by DNA vaccine, and the possibility of using the E2 recombinant protein in E. coli for booster vaccination. (author)

  9. Overview of the recombinant proteins purification by affinity tags and ...

    African Journals Online (AJOL)

    From protein within isolation process which the same matter increases labor costs further and prevents application of these tags in industrial scale. Therefore proper replacement is emphasized for enzymatic removal of purification tags. Keywords: protein purification; recombinant proteins; self-cleavable tags; Intein tags; ...

  10. Production of recombinant proteins from Plasmodium falciparum in Escherichia coli.

    Science.gov (United States)

    Guerra, Ángela Patricia; Calvo, Eliana Patricia; Wasserman, Moisés; Chaparro-Olaya, Jacqueline

    2016-02-23

    The production of recombinant proteins is essential for the characterization and functional study of proteins from Plasmodium falciparum. However, the proteins of P. falciparum are among the most challenging to express, and when expression is achieved, the recombinant proteins usually fold incorrectly and lead to the formation of inclusion bodies.  To obtain and purify four recombinant proteins and to use them as antigens to produce polyclonal antibodies. The production efficiency and solubility were evaluated as the proteins were expressed in two genetically modified strains of Escherichia coli to favor the production of heterologous proteins (BL21-CodonPlus (DE3)-RIL and BL21-pG-KJE8).  The four recombinant P. falciparum proteins corresponding to partial sequences of PfMyoA (Myosin A) and PfGAP50 (gliding associated protein 50), and the complete sequences of PfMTIP (myosin tail interacting protein) and PfGAP45 (gliding associated protein 45), were produced as glutathione S-transferase-fusion proteins, purified and used for immunizing mice.  The protein expression was much more efficient in BL21-CodonPlus, the strain that contains tRNAs that are rare in wild-type E. coli, compared to the expression in BL21-pG-KJE8. In spite of the fact that BL21-pG-KJE8 overexpresses chaperones, this strain did not minimize the formation of inclusion bodies.  The use of genetically modified strains of E. coli was essential to achieve high expression levels of the four evaluated P. falciparum proteins and lead to improved solubility of two of them. The approach used here allowed us to obtain and purify four P. falciparum proteins in enough quantity to produce polyclonal antibodies in mice, and a fair amount of two pure and soluble recombinant proteins for future assays.

  11. Cheese whey-induced high-cell-density production of recombinant proteins in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Neubauer Peter

    2003-04-01

    Full Text Available Abstract Background Use of lactose-rich concentrates from dairy processes for the induction of recombinant gene's expression has not received much attention although they are interesting low cost substrates for production of recombinant enzymes. Applicability of dairy waste for induction of recombinant genes in Escherichia coli was studied. Clones expressing Lactobacillus phage muramidase and Lactobacillus alcohol dehydrogenase were used for the experiments. Results Shake flask cultivations in mineral salt medium showed that cheese whey or deproteinised whey induced gene expression as efficiently as IPTG (isopropyl-β-D-thiogalactopyranoside or pure lactose. Addition of yeast extract or proteolytically degraded whey proteins did not improve the recombinant protein yield. In contrast, addition of yeast extract to the well-balanced mineral salt medium decreased the product yield. Feeding with glycerol provided sufficient amount of easily assimilable carbon source during the induction period without preventing lactose intake and induction by lactose. High-cell-density fed-batch cultivations showed that product yields comparable to IPTG-induction can be achieved by feeding bacteria with a mixture of glycerol and concentrated whey permeate during the induction. Conclusion Whey and concentrated whey permeate can be applied as an alternative inducer in recombinant high-cell-density fed-batch fermentations. The yield of the recombinant product was comparable to fermentations induced by IPTG. In low-cell-density shake flask experiments the yield was higher with whey or whey permeate than with IPTG.

  12. Production of recombinant dengue non-structural 1 (NS1) proteins from clinical virus isolates.

    Science.gov (United States)

    Yohan, Benediktus; Wardhani, Puspa; Aryati; Trimarsanto, Hidayat; Sasmono, R Tedjo

    2017-01-01

    Dengue is a febrile disease caused by infection of dengue virus (DENV). Early diagnosis of dengue infection is important for better management of the disease. The DENV Non-Structural Protein 1 (NS1) antigen has been routinely used for the early dengue detection. In dengue epidemic countries such as Indonesia, clinicians are increasingly relying on the NS1 detection for confirmation of dengue infection. Various NS1 diagnostic tests are commercially available, however different sensitivities and specificities were observed in various settings. This study was aimed to generate dengue NS1 recombinant protein for the development of dengue diagnostic tests. Four Indonesian DENV isolates were used as the source of the NS1 gene cloning, expression, and purification in bacterial expression system. Recombinant NS1 proteins were successfully purified and their antigenicities were assessed. Immunization of mice with recombinant proteins observed the immunogenicity of the NS1 protein. The generated recombinant proteins can be potentially used in the development of NS1 diagnostic test. With minimal modifications, this method can be used for producing NS1 recombinant proteins from isolates obtained from other geographical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Genetic recombination is targeted towards gene promoter regions in dogs.

    Science.gov (United States)

    Auton, Adam; Rui Li, Ying; Kidd, Jeffrey; Oliveira, Kyle; Nadel, Julie; Holloway, J Kim; Hayward, Jessica J; Cohen, Paula E; Greally, John M; Wang, Jun; Bustamante, Carlos D; Boyko, Adam R

    2013-01-01

    The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred.

  14. Reactions of chicken sera to recombinant Campylobacter jejuni flagellar proteins.

    Science.gov (United States)

    Yeh, Hung-Yueh; Hiett, Kelli L; Line, John E

    2015-03-01

    Campylobacter jejuni is a Gram-negative spiral rod bacterium and is the leading but underreported bacterial food-borne pathogen that causes human campylobacteriosis worldwide. Raw or undercooked poultry products are regarded as a major source for human infection. C. jejuni flagella have been implicated in colonization and adhesion to the mucosal surface of chicken gastrointestinal tracts. Therefore, flagellar proteins would be the excellent targets for further investigation. In this report, we used the recombinant technology to generate a battery of C. jejuni flagellar proteins, which were purified by His tag affinity chromatography and determined antigenic profiles of these recombinant flagellar proteins using sera from chickens older than 6 weeks of age. The immunoblot results demonstrate that each chicken serum reacted to various numbers of recombinant flagellar proteins. Among these recombinant proteins, chicken sera reacted predominantly to the FlgE1, FlgK, FlhF, FliG and FliY proteins. These antibody screening results provide a rationale for further evaluation of these recombinant flagellar proteins as potential vaccines for chickens to improve food safety as well as investigation of host immune response to C. jejuni.

  15. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  16. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    Directory of Open Access Journals (Sweden)

    Chen Dishi

    2011-06-01

    Full Text Available Abstract Background Porcine parvovirus (PPV VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs with similar morphology to the native capsid. Here, a pseudorabies virus (PRV system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Results Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28 following virulent PPV challenge compared with the control (7 of 31. Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. Conclusions In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.

  17. Recombinant Protein Production and Insect Cell Culture and Process

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  18. Expression and the antigenicity of recombinant coat proteins of tungro viruses expressed in Escherichia coli.

    Science.gov (United States)

    Yee, Siew Fung; Chu, Chia Huay; Poili, Evenni; Sum, Magdline Sia Henry

    2017-02-01

    Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Synthesis and characterization of recombinant abductin-based proteins.

    Science.gov (United States)

    Su, Renay S-C; Renner, Julie N; Liu, Julie C

    2013-12-09

    Recombinant proteins are promising tools for tissue engineering and drug delivery applications. Protein-based biomaterials have several advantages over natural and synthetic polymers, including precise control over amino acid composition and molecular weight, modular swapping of functional domains, and tunable mechanical and physical properties. In this work, we describe recombinant proteins based on abductin, an elastomeric protein that is found in the inner hinge of bivalves and functions as a coil spring to keep shells open. We illustrate, for the first time, the design, cloning, expression, and purification of a recombinant protein based on consensus abductin sequences derived from Argopecten irradians . The molecular weight of the protein was confirmed by mass spectrometry, and the protein was 94% pure. Circular dichroism studies showed that the dominant structures of abductin-based proteins were polyproline II helix structures in aqueous solution and type II β-turns in trifluoroethanol. Dynamic light scattering studies illustrated that the abductin-based proteins exhibit reversible upper critical solution temperature behavior and irreversible aggregation behavior at high temperatures. A LIVE/DEAD assay revealed that human umbilical vein endothelial cells had a viability of 98 ± 4% after being cultured for two days on the abductin-based protein. Initial cell spreading on the abductin-based protein was similar to that on bovine serum albumin. These studies thus demonstrate the potential of abductin-based proteins in tissue engineering and drug delivery applications due to the cytocompatibility and its response to temperature.

  20. Recombinant protein expression in microbial systems

    OpenAIRE

    Rosano, Germán L.; Ceccarelli, Eduardo A.

    2014-01-01

    The emergence of recombinant DNA technology during the early 70's set a revolution in molecular biology. This set of techniques was strengthened even further later on with the introduction of the polymerase chain reaction and allowed scientists to explore and understand essential life processes in an easy and straightforward way. It also marked the birth of the modern biotech industry. At that time, it was shown that eukaryotic DNA could be propagated in Escherichia coli (Morrow et al., 1974)...

  1. N-Glycosylation of Plant-produced Recombinant Proteins

    NARCIS (Netherlands)

    Bosch, H.J.; Castilho, A.; Loos, A.; Schots, A.; Steinkeller, H.

    2013-01-01

    Plants are gaining increasingly acceptance as a production platform for recombinant proteins. One reason for this is their ability to carry out posttranslational protein modifications in a similar if not identical way as mammalian cells. The capability of plants to carry out human-like complex

  2. Improving recombinant protein solubility in Escherichia coli ...

    African Journals Online (AJOL)

    user

    2010-11-22

    Nov 22, 2010 ... protein (Baneyx and Mujacic, 2004). Although ... both time-consuming and expensive (Tsumoto et al.,. 2003). Thus ... proteins (Schlieker et al., 2002). ..... Alibolandi M, Mirzahoseini H, Abedi Khalil Abad M, Azami Movahed M.

  3. Trends in recombinant protein use in animal production.

    Science.gov (United States)

    Gifre, Laia; Arís, Anna; Bach, Àlex; Garcia-Fruitós, Elena

    2017-03-04

    Recombinant technologies have made possible the production of a broad catalogue of proteins of interest, including those used for animal production. The most widely studied proteins for the animal sector are those with an important role in reproduction, feed efficiency, and health. Nowadays, mammalian cells and fungi are the preferred choice for recombinant production of hormones for reproductive purposes and fibrolytic enzymes to enhance animal performance, respectively. However, the development of low-cost products is a priority, particularly in livestock. The study of cell factories such as yeast and bacteria has notably increased in the last decades to make the new developed reproductive hormones and fibrolytic enzymes a real alternative to the marketed ones. Important efforts have also been invested to developing new recombinant strategies for prevention and therapy, including passive immunization and modulation of the immune system. This offers the possibility to reduce the use of antibiotics by controlling physiological processes and improve the efficacy of preventing infections. Thus, nowadays different recombinant fibrolytic enzymes, hormones, and therapeutic molecules with optimized properties have been successfully produced through cost-effective processes using microbial cell factories. However, despite the important achievements for reducing protein production expenses, alternative strategies to further reduce these costs are still required. In this context, it is necessary to make a giant leap towards the use of novel strategies, such as nanotechnology, that combined with recombinant technology would make recombinant molecules affordable for animal industry.

  4. Prediction of recombinant protein overexpression in Escherichia coli using a machine learning based model (RPOLP).

    Science.gov (United States)

    Habibi, Narjeskhatoon; Norouzi, Alireza; Mohd Hashim, Siti Z; Shamsir, Mohd Shahir; Samian, Razip

    2015-11-01

    Recombinant protein overexpression, an important biotechnological process, is ruled by complex biological rules which are mostly unknown, is in need of an intelligent algorithm so as to avoid resource-intensive lab-based trial and error experiments in order to determine the expression level of the recombinant protein. The purpose of this study is to propose a predictive model to estimate the level of recombinant protein overexpression for the first time in the literature using a machine learning approach based on the sequence, expression vector, and expression host. The expression host was confined to Escherichia coli which is the most popular bacterial host to overexpress recombinant proteins. To provide a handle to the problem, the overexpression level was categorized as low, medium and high. A set of features which were likely to affect the overexpression level was generated based on the known facts (e.g. gene length) and knowledge gathered from related literature. Then, a representative sub-set of features generated in the previous objective was determined using feature selection techniques. Finally a predictive model was developed using random forest classifier which was able to adequately classify the multi-class imbalanced small dataset constructed. The result showed that the predictive model provided a promising accuracy of 80% on average, in estimating the overexpression level of a recombinant protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Efficient secretory expression of recombinant proteins in Escherichia coli with a novel actinomycete signal peptide.

    Science.gov (United States)

    Cui, Yanbing; Meng, Yiwei; Zhang, Juan; Cheng, Bin; Yin, Huijia; Gao, Chao; Xu, Ping; Yang, Chunyu

    2017-01-01

    In well-established heterologous hosts, such as Escherichia coli, recombinant proteins are usually intracellular and frequently found as inclusion bodies-especially proteins possessing high rare codon content. In this study, successful secretory expression of three hydrolases, in a constructed inducible or constitutive system, was achieved by fusion with a novel signal peptide (Kp-SP) from an actinomycete. The signal peptide efficiently enabled extracellular protein secretion and also contributed to the active expression of the intracellular recombinant proteins. The thermophilic α-amylase gene of Bacillus licheniformis was fused with Kp-SP. Both recombinants, carrying inducible and constitutive plasmids, showed remarkable increases in extracellular and intracellular amylolytic activity. Amylase activity was observed to be > 10-fold in recombinant cultures with the constitutive plasmid, pBSPPc, compared to that in recombinants lacking Kp-SP. Further, the signal peptide enabled efficient secretion of a thermophilic cellulase into the culture medium, as demonstrated by larger halo zones and increased enzymatic activities detected in both constructs from different plasmids. For heterologous proteins with a high proportion of rare codons, it is difficult to obtain high expression in E. coli owing to the codon bias. Here, the fusion of an archaeal homologue of the amylase encoding gene, FSA, with Kp-SP resulted in > 5-fold higher extracellular activity. The successful extracellular expression of the amylase indicated that the signal peptide also contributed significantly to its active expression and signified the potential value of this novel and versatile signal peptide in recombinant protein production. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Enhanced production of recombinant proteins with Corynebacterium glutamicum by deletion of insertion sequences (IS elements).

    Science.gov (United States)

    Choi, Jae Woong; Yim, Sung Sun; Kim, Min Jeong; Jeong, Ki Jun

    2015-12-29

    In most bacteria, various jumping genetic elements including insertion sequences elements (IS elements) cause a variety of genetic rearrangements resulting in harmful effects such as genome and recombinant plasmid instability. The genetic stability of a plasmid in a host is critical for high-level production of recombinant proteins, and in this regard, the development of an IS element-free strain could be a useful strategy for the enhanced production of recombinant proteins. Corynebacterium glutamicum, which is a workhorse in the industrial-scale production of various biomolecules including recombinant proteins, also has several IS elements, and it is necessary to identify the critical IS elements and to develop IS element deleted strain. From the cultivation of C. glutamicum harboring a plasmid for green fluorescent protein (GFP) gene expression, non-fluorescent clones were isolated by FACS (fluorescent activated cell sorting). All the isolated clones had insertions of IS elements in the GFP coding region, and two major IS elements (ISCg1 and ISCg2 families) were identified. By co-cultivating cells harboring either the isolated IS element-inserted plasmid or intact plasmid, it was clearly confirmed that cells harboring the IS element-inserted plasmids became dominant during the cultivation due to their growth advantage over cells containing intact plasmids, which can cause a significant reduction in recombinant protein production during cultivation. To minimize the harmful effects of IS elements on the expression of heterologous genes in C. glutamicum, two IS element free C. glutamicum strains were developed in which each major IS element was deleted, and enhanced productivity in the engineered C. glutamicum strain was successfully demonstrated with three models: GFP, poly(3-hydroxybutyrate) [P(3HB)] and γ-aminobutyrate (GABA). Our findings clearly indicate that the hopping of IS elements could be detrimental to the production of recombinant proteins in C

  7. Manufacturing of recombinant therapeutic proteins in microbial systems.

    Science.gov (United States)

    Graumann, Klaus; Premstaller, Andreas

    2006-02-01

    Recombinant therapeutic proteins have gained enormous importance for clinical applications. The first recombinant products have been produced in E. coli more than 20 years ago. Although with the advent of antibody-based therapeutics mammalian expression systems have experienced a major boost, microbial expression systems continue to be widely used in industry. Their intrinsic advantages, such as rapid growth, high yields and ease of manipulation, make them the premier choice for expression of non-glycosylated peptides and proteins. Innovative product classes such as antibody fragments or alternative binding molecules will further expand the use of microbial systems. Even more, novel, engineered production hosts and integrated technology platforms hold enormous potential for future applications. This review summarizes current applications and trends for development, production and analytical characterization of recombinant therapeutic proteins in microbial systems.

  8. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    Science.gov (United States)

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  9. Genome engineering for improved recombinant protein expression in Escherichia coli.

    Science.gov (United States)

    Mahalik, Shubhashree; Sharma, Ashish K; Mukherjee, Krishna J

    2014-12-19

    A metabolic engineering perspective which views recombinant protein expression as a multistep pathway allows us to move beyond vector design and identify the downstream rate limiting steps in expression. In E.coli these are typically at the translational level and the supply of precursors in the form of energy, amino acids and nucleotides. Further recombinant protein production triggers a global cellular stress response which feedback inhibits both growth and product formation. Countering this requires a system level analysis followed by a rational host cell engineering to sustain expression for longer time periods. Another strategy to increase protein yields could be to divert the metabolic flux away from biomass formation and towards recombinant protein production. This would require a growth stoppage mechanism which does not affect the metabolic activity of the cell or the transcriptional or translational efficiencies. Finally cells have to be designed for efficient export to prevent buildup of proteins inside the cytoplasm and also simplify downstream processing. The rational and the high throughput strategies that can be used for the construction of such improved host cell platforms for recombinant protein expression is the focus of this review.

  10. An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding.

    Science.gov (United States)

    Mamipour, Mina; Yousefi, Mohammadreza; Hasanzadeh, Mohammad

    2017-09-01

    The majority of research topics declared that most of the recombinant proteins have been expressed by Escherichia coli in basic investigations. But the majority of high expressed proteins formed as inactive recombinant proteins that are called inclusion body. To overcome this problem, several methods have been used including suitable promoter, environmental factors, ladder tag to secretion of proteins into the periplasm, gene protein optimization, chemical chaperones and molecular chaperones sets. Co-expression of the interest protein with molecular chaperones is one of the common methods The chaperones are a group of proteins, which are involved in making correct folding of recombinant proteins. Chaperones are divided two groups including; cytoplasmic and periplasmic chaperones. Moreover, periplasmic chaperones and proteases can be manipulated to increase the yields of secreted proteins. In this article, we attempted to review cytoplasmic chaperones such as Hsp families and periplasmic chaperones including; generic chaperones, specialized chaperones, PPIases, and proteins involved in disulfide bond formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    Science.gov (United States)

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  12. Origination of an X-linked testes chimeric gene by illegitimate recombination in Drosophila.

    Directory of Open Access Journals (Sweden)

    J Roman Arguello

    2006-05-01

    Full Text Available The formation of chimeric gene structures provides important routes by which novel proteins and functions are introduced into genomes. Signatures of these events have been identified in organisms from wide phylogenic distributions. However, the ability to characterize the early phases of these evolutionary processes has been difficult due to the ancient age of the genes or to the limitations of strictly computational approaches. While examples involving retrotransposition exist, our understanding of chimeric genes originating via illegitimate recombination is limited to speculations based on ancient genes or transfection experiments. Here we report a case of a young chimeric gene that has originated by illegitimate recombination in Drosophila. This gene was created within the last 2-3 million years, prior to the speciation of Drosophila simulans, Drosophila sechellia, and Drosophila mauritiana. The duplication, which involved the Bällchen gene on Chromosome 3R, was partial, removing substantial 3' coding sequence. Subsequent to the duplication onto the X chromosome, intergenic sequence was recruited into the protein-coding region creating a chimeric peptide with approximately 33 new amino acid residues. In addition, a novel intron-containing 5' UTR and novel 3' UTR evolved. We further found that this new X-linked gene has evolved testes-specific expression. Following speciation of the D. simulans complex, this novel gene evolved lineage-specifically with evidence for positive selection acting along the D. simulans branch.

  13. A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Peng, Nan; Deng, Ling; Mei, Yuxia

    2012-01-01

    Despite major progresses in genetic studies of hyperthermophilic archaea, recombinant protein production in these organisms always suffers from low yields and a robust expression system is still in great demand. Here we report a versatile vector that confers high levels of protein expression...... to remove the peptide tags from expressed recombinant proteins. While pEXA employed an araS promoter for protein expression, pSeSD utilized P(araS-SD), an araS derivative promoter carrying an engineered ribosome-binding site (RBS; a Shine-Dalgarno [SD] sequence). We found that P(araS-SD) directed high...... levels of target gene expression. More strikingly, N-terminal amino acid sequencing of recombinant proteins unraveled that the protein synthesized from pEXA-N-lacS lacked the designed 6×His tag and that translation initiation did not start at the ATG codon of the fusion gene. Instead, it started...

  14. Carbon source feeding strategies for recombinant protein ...

    African Journals Online (AJOL)

    USER

    2010-04-12

    Apr 12, 2010 ... protein expression with the influence of the carbon source feeding ... in the culture media, increasing the peroxisomes numbers ...... source, temperature, pH, O2, methanol feeding strategy) ..... Catabolite Inactivation in Yeast.

  15. Recombination facilitates neofunctionalization of duplicate genes via originalization

    Directory of Open Access Journals (Sweden)

    Huang Ren

    2010-06-01

    Full Text Available Abstract Background Recently originalization was proposed to be an effective way of duplicate-gene preservation, in which recombination provokes the high frequency of original (or wild-type allele on both duplicated loci. Because the high frequency of wild-type allele might drive the arising and accumulating of advantageous mutation, it is hypothesized that recombination might enlarge the probability of neofunctionalization (Pneo of duplicate genes. In this article this hypothesis has been tested theoretically. Results Results show that through originalization recombination might not only shorten mean time to neofunctionalizaiton, but also enlarge Pneo. Conclusions Therefore, recombination might facilitate neofunctionalization via originalization. Several extensive applications of these results on genomic evolution have been discussed: 1. Time to nonfunctionalization can be much longer than a few million generations expected before; 2. Homogenization on duplicated loci results from not only gene conversion, but also originalization; 3. Although the rate of advantageous mutation is much small compared with that of degenerative mutation, Pneo cannot be expected to be small.

  16. Cellular Reprogramming Employing Recombinant Sox2 Protein

    Directory of Open Access Journals (Sweden)

    Marc Thier

    2012-01-01

    Full Text Available Induced pluripotent stem (iPS cells represent an attractive option for the derivation of patient-specific pluripotent cells for cell replacement therapies as well as disease modeling. To become clinically meaningful, safe iPS cells need to be generated exhibiting no permanent genetic modifications that are caused by viral integrations of the reprogramming transgenes. Recently, various experimental strategies have been applied to accomplish transgene-free derivation of iPS cells, including the use of nonintegrating viruses, episomal expression, or excision of transgenes after reprogramming by site-specific recombinases or transposases. A straightforward approach to induce reprogramming factors is the direct delivery of either synthetic mRNA or biologically active proteins. We previously reported the generation of cell-permeant versions of Oct4 (Oct4-TAT and Sox2 (Sox2-TAT proteins and showed that Oct4-TAT is reprogramming-competent, that is, it can substitute for Oct4-encoding virus. Here, we explore conditions for enhanced Sox2-TAT protein stabilization and functional delivery into somatic cells. We show that cell-permeant Sox2 protein can be stabilized by lipid-rich albumin supplements in serum replacement or low-serum-supplemented media. Employing optimized conditions for protein delivery, we demonstrate that Sox2-TAT protein is able to substitute for viral Sox2. Sox2-piPS cells express pluripotency-associated markers and differentiate into all three germ layers.

  17. Serum from Nipah Virus Patients Recognises Recombinant Viral Proteins Produced in Escherichia coli.

    Science.gov (United States)

    Tiong, Vunjia; Lam, Chui-Wan; Phoon, Wai-Hong; AbuBakar, Sazaly; Chang, Li-Yen

    2017-01-24

    The genes for Nipah virus (NiV) proteins were amplified from viral RNA, cloned into the plasmid pTriEx-3 Hygro, expressed, and purified using immobilized metal affinity chromatography. The recombinant N, F, and G NiV proteins (rNiV-N, rNiV-F, and rNiV-G), were successfully expressed in Escherichia coli and purified with a yield of 4, 16, and 4 mg/L, respectively. All 3 recombinant viral proteins reacted with all 19 samples of NiV-positive human sera. The rNiV-N and rNiV-G proteins were the most immunogenic. The recombinant viral proteins did not react with any of the 12 NiV-negative sera. However, serum from a patient with a late-onset relapsing NiV infection complication was found to be primarily reactive to rNiV-G only. Additionally, there is a distinctive variation in the profile of antigen-reactive bands between the sample from a case of relapsing NiV encephalitis and that of acute NiV infection. The overall findings of this study suggest that the recombinant viral proteins have the potential to be developed further for use in the detection of NiV infection, and continuous biosurveillance of NiV infection in resource-limited settings.

  18. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    Science.gov (United States)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  19. Ubiquitin--conserved protein or selfish gene?

    Science.gov (United States)

    Catic, André; Ploegh, Hidde L

    2005-11-01

    The posttranslational modifier ubiquitin is encoded by a multigene family containing three primary members, which yield the precursor protein polyubiquitin and two ubiquitin moieties, Ub(L40) and Ub(S27), that are fused to the ribosomal proteins L40 and S27, respectively. The gene encoding polyubiquitin is highly conserved and, until now, those encoding Ub(L40) and Ub(S27) have been generally considered to be equally invariant. The evolution of the ribosomal ubiquitin moieties is, however, proving to be more dynamic. It seems that the genes encoding Ub(L40) and Ub(S27) are actively maintained by homologous recombination with the invariant polyubiquitin locus. Failure to recombine leads to deterioration of the sequence of the ribosomal ubiquitin moieties in several phyla, although this deterioration is evidently constrained by the structural requirements of the ubiquitin fold. Only a few amino acids in ubiquitin are vital for its function, and we propose that conservation of all three ubiquitin genes is driven not only by functional properties of the ubiquitin protein, but also by the propensity of the polyubiquitin locus to act as a 'selfish gene'.

  20. Respiratory syncytial virus subunit vaccine based on a recombinant fusion protein expressed transiently in mammalian cells.

    Science.gov (United States)

    Nallet, Sophie; Amacker, Mario; Westerfeld, Nicole; Baldi, Lucia; König, Iwo; Hacker, David L; Zaborosch, Christiane; Zurbriggen, Rinaldo; Wurm, Florian M

    2009-10-30

    Although respiratory syncytial virus (RSV) causes severe lower respiratory tract infection in infants and adults at risk, no RSV vaccine is currently available. In this report, efforts toward the generation of an RSV subunit vaccine using recombinant RSV fusion protein (rRSV-F) are described. The recombinant protein was produced by transient gene expression (TGE) in suspension-adapted human embryonic kidney cells (HEK-293E) in 4 L orbitally shaken bioreactors. It was then purified and formulated in immunostimulating reconstituted influenza virosomes (IRIVs). The candidate vaccine induced anti-RSV-F neutralizing antibodies in mice, and challenge studies in cotton rats are ongoing. If successful in preclinical and clinical trials, this will be the first recombinant subunit vaccine produced by large-scale TGE in mammalian cells.

  1. Recombinant dioscorins of the yam storage protein expressed in Escherichia coli exhibit antioxidant and immunomodulatory activities.

    Science.gov (United States)

    Jheng, Yi-Jyun; Tsai, Wei-Yi; Chen, Kuo-Hsuan; Lin, Kuo-Wei; Chyan, Chia-Lin; Yang, Ching-Chi; Lin, Kuo-Chih

    2012-09-01

    Dioscorins, the major storage proteins in yam tubers, exhibit biochemical and immunomodulatroy activities. To investigate the potential application of dioscorins in biomedical research, we expressed the dioscorin genes Dj-dioA3 and Dp-dioA2 from Dioscorea japonica and Dioscorea pseudojaponica, respectively, in E. coli and routinely obtained approximately 15 mg proteins per liter Escherichia coli culture (mg/L) to 30 mg/L of rDj-dioscorinA3 and 4 to 8 mg/L of rDp-dioscorinA2. Western blot analyses revealed that both recombinant dioscorins contained epitopes with similar antigenicities to those of the native dioscorins. Results from dithiothreitol (DTT) treatment followed by monobromobimane (mBBr) staining showed that both recombinant dioscorins, like the native dioscorins, contain an intramolecular disulfide bond between Cys(28) and Cys(187) residues. Circular dichroism spectroscopy findings indicated that the secondary structural contents of the recombinant dioscorins showed high similarity to those of their corresponding native dioscorins. Both recombinant dioscorins, like the native dioscorins, exhibited 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and Toll-like receptor 4 signaling activities, and stimulated the phagocytosis of E. coli by macrophage. Overall, our results indicated that substantial amounts of recombinant dioscorins can be purified easily from E. coli and that these recombinant dioscorins are appropriate for application in future investigations of the biomedical functions of dioscorins. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Bicistronic expression plasmid for the rapid production of recombinant fused proteins in Escherichia coli.

    Science.gov (United States)

    Yero, Daniel; Pajón, Rolando; Niebla, Olivia; Sardiñas, Gretel; Vivar, Isbel; Perera, Yasser; García, Darien; Delgado, Maité; Cobas, Karem

    2006-04-01

    In the post-genomic era, every aspect of the production of proteins must be accelerated. In this way, several vectors are currently exploited for rapid production of recombinant proteins in Escherichia coli. N-terminal fusions to the first 47 amino acids of the LpdA (dihydrolipoamide dehydrogenase A) protein of Neisseria meningitidis have been shown to increase the expression of recombinant proteins. Consequently, we have constructed a modified N-terminal LpdA fusion vector, introducing the blue/white colony selection by exploiting a bicistronic gene organization. In the new vector, the sequence encoding the first 47 amino acids of meningococcal LpdA and the alpha-peptide sequence of beta-galactosidase were connected via a ribosome-binding site, and two MCSs (multiple cloning sites) were located surrounding the latter, allowing efficient cloning by colour selection of recombinants. The vector was also improved with the addition of a C-terminal polyhistidine tag, and an EKS (enterokinase recognition sequence) immediately after the LpdA fusion sequence. The new plasmid was employed in the expression and purification of six different bacterial polypeptides. One of these recombinant proteins, P6 protein from Haemophilus influenzae, was used as a model and its N-terminal fusion sequence was totally removed from the recombinant version after incubation with the enterokinase protease, while the polyhistidine tail successfully allowed the purification of the unfused protein from the protease reaction. Two completely new neisserial vaccine candidates, NMB0088 and NMB1126 proteins, were cloned, expressed and purified using this system. To our knowledge, this constitutes the first report of the cloning and expression of these proteins in E. coli.

  3. Isolation of recombinant cysteine dioxygenase protein from Trichophyton mentagrophytes

    Czech Academy of Sciences Publication Activity Database

    Kašperová, A.; Kunert, J.; Horynová, M.; Weigl, E.; Sebela, M.; Lenobel, René; Raška, M.

    2011-01-01

    Roč. 54, č. 5 (2011), E456-E462 ISSN 0933-7407 R&D Projects: GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : Cysteine dioxygenase * dermatophytes * recombinant protein * keratinolytic fungi * cDNA Subject RIV: CE - Biochemistry Impact factor: 2.247, year: 2011

  4. Step-wise refolding of recombinant proteins.

    Science.gov (United States)

    Tsumoto, Kouhei; Arakawa, Tsutomu; Chen, Linda

    2010-04-01

    Protein refolding is still on trial-and-error basis. Here we describe step-wise dialysis refolding, in which denaturant concentration is altered in step-wise fashion. This technology controls the folding pathway by adjusting the concentrations of the denaturant and other solvent additives to induce sequential folding or disulfide formation.

  5. The new pLAI (lux regulon based auto-inducible expression system for recombinant protein production in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Nocadello Salvatore

    2012-01-01

    Full Text Available Abstract Background After many years of intensive research, it is generally assumed that no universal expression system can exist for high-level production of a given recombinant protein. Among the different expression systems, the inducible systems are the most popular for their tight regulation. However, induction is in many cases less favorable due to the high cost and/or toxicity of inducers, incompatibilities with industrial scale-up or detrimental growth conditions. Expression systems using autoinduction (or self-induction prove to be extremely versatile allowing growth and induction of recombinant proteins without the need to monitor cell density or add inducer. Unfortunately, almost all the actual auto inducible expression systems need endogenous or induced metabolic changes during the growth to trigger induction, both frequently linked to detrimental condition to cell growth. In this context, we use a simple modular approach for a cell density-based genetic regulation in order to assemble an autoinducible recombinant protein expression system in E. coli. Result The newly designed pLAI expression system places the expression of recombinant proteins in Escherichia coli under control of the regulatory genes of the lux regulon of Vibrio fischeri's Quorum Sensing (QS system. The pLAI system allows a tight regulation of the recombinant gene allowing a negligible basal expression and expression only at high cell density. Sequence optimization of regulative genes of QS of V. fischeri for expression in E. coli upgraded the system to high level expression. Moreover, partition of regulative genes between the plasmid and the host genome and introduction of a molecular safety lock permitted tighter control of gene expression. Conclusion Coupling gene expression to cell density using cell-to-cell communication provides a promising approach for recombinant protein production. The system allows the control of expression of the target recombinant gene

  6. Nonreplicative RNA Recombination of an Animal Plus-Strand RNA Virus in the Absence of Efficient Translation of Viral Proteins.

    Science.gov (United States)

    Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann; Becher, Paul

    2017-04-01

    RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5' terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Nonreplicative RNA Recombination of an Animal Plus-Strand RNA Virus in the Absence of Efficient Translation of Viral Proteins

    Science.gov (United States)

    Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann

    2017-01-01

    RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5′ terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. PMID:28338950

  8. Positive and negative regulation of V(D)J recombination by the E2A proteins.

    Science.gov (United States)

    Bain, G; Romanow, W J; Albers, K; Havran, W L; Murre, C

    1999-01-18

    A key feature of B and T lymphocyte development is the generation of antigen receptors through the rearrangement and assembly of the germline variable (V), diversity (D), and joining (J) gene segments. However, the mechanisms responsible for regulating developmentally ordered gene rearrangements are largely unknown. Here we show that the E2A gene products are essential for the proper coordinated temporal regulation of V(D)J rearrangements within the T cell receptor (TCR) gamma and delta loci. Specifically, we show that E2A is required during adult thymocyte development to inhibit rearrangements to the gamma and delta V regions that normally recombine almost exclusively during fetal thymocyte development. The continued rearrangement of the fetal Vgamma3 gene segment in E2A-deficient adult thymocytes correlates with increased levels of Vgamma3 germline transcripts and increased levels of double-stranded DNA breaks at the recombination signal sequence bordering Vgamma3. Additionally, rearrangements to a number of Vgamma and Vdelta gene segments used predominantly during adult development are significantly reduced in E2A-deficient thymocytes. Interestingly, at distinct stages of T lineage development, both the increased and decreased rearrangement of particular Vdelta gene segments is highly sensitive to the dosage of the E2A gene products, suggesting that the concentration of the E2A proteins is rate limiting for the recombination reaction involving these Vdelta regions.

  9. Divergence, recombination and retention of functionality during protein evolution

    Directory of Open Access Journals (Sweden)

    Xu Yanlong O

    2005-09-01

    Full Text Available Abstract We have only a vague idea of precisely how protein sequences evolve in the context of protein structure and function. This is primarily because structural and functional contexts are not easily predictable from the primary sequence, and evaluating patterns of evolution at individual residue positions is also difficult. As a result of increasing biodiversity in genomics studies, progress is being made in detecting context-dependent variation in substitution processes, but it remains unclear exactly what context-dependent patterns we should be looking for. To address this, we have been simulating protein evolution in the context of structure and function using lattice models of proteins and ligands (or substrates. These simulations include thermodynamic features of protein stability and population dynamics. We refer to this approach as 'ab initio evolution' to emphasise the fact that the equilibrium details of fitness distributions arise from the physical principles of the system and not from any preconceived notions or arbitrary mathematical distributions. Here, we present results on the retention of functionality in homologous recombinants following population divergence. A central result is that protein structure characteristics can strongly influence recombinant functionality. Exceptional structures with many sequence options evolve quickly and tend to retain functionality -- even in highly diverged recombinants. By contrast, the more common structures with fewer sequence options evolve more slowly, but the fitness of recombinants drops off rapidly as homologous proteins diverge. These results have implications for understanding viral evolution, speciation and directed evolutionary experiments. Our analysis of the divergence process can also guide improved methods for accurately approximating folding probabilities in more complex but realistic systems.

  10. Influenza vaccines: from whole virus preparations to recombinant protein technology.

    Science.gov (United States)

    Huber, Victor C

    2014-01-01

    Vaccination against influenza represents our most effective form of prevention. Historical approaches toward vaccine creation and production have yielded highly effective vaccines that are safe and immunogenic. Despite their effectiveness, these historical approaches do not allow for the incorporation of changes into the vaccine in a timely manner. In 2013, a recombinant protein-based vaccine that induces immunity toward the influenza virus hemagglutinin was approved for use in the USA. This vaccine represents the first approved vaccine formulation that does not require an influenza virus intermediate for production. This review presents a brief history of influenza vaccines, with insight into the potential future application of vaccines generated using recombinant technology.

  11. A novel genetic system for recombinant protein secretion in the Antarctic Pseudoalteromonas haloplanktis TAC125

    Directory of Open Access Journals (Sweden)

    Marino Gennaro

    2006-12-01

    Full Text Available Abstract Background The final aim of recombinant protein production is both to have a high specific production rate and a high product quality. It was already shown that using cold-adapted bacteria as host vectors, some "intractable" proteins can be efficiently produced at temperature as low as 4°C. Results A novel genetic system for the production and secretion of recombinant proteins in the Antarctic Gram-negative bacterium Pseudoalteromonas haloplanktis TAC125 was set up. This system aims at combining the low temperature recombinant product production with the advantages of extra-cellular protein targeting. The psychrophilic α-amylase from Pseudoalteromonas haloplanktis TAB23 was used as secretion carrier. Three chimerical proteins were produced by fusing intra-cellular proteins to C-terminus of the psychrophilic α-amylase and their secretion was analysed. Data reported in this paper demonstrate that all tested chimeras were translocated with a secretion yield always higher than 80%. Conclusion Data presented here demonstrate that the "cold" gene-expression system is efficient since the secretion yield of tested chimeras is always above 80%. These secretion performances place the α-amylase derived secretion system amongst the best heterologous secretion systems in Gram-negative bacteria reported so far. As for the quality of the secreted passenger proteins, data presented suggest that the system also allows the correct disulphide bond formation of chimera components, secreting a fully active passenger.

  12. Roles of silkworm endoplasmic reticulum chaperones in the secretion of recombinant proteins expressed by baculovirus system.

    Science.gov (United States)

    Imai, Saki; Kusakabe, Takahiro; Xu, Jian; Li, Zhiqing; Shirai, Shintaro; Mon, Hiroaki; Morokuma, Daisuke; Lee, Jae Man

    2015-11-01

    Baculovirus expression vector system (BEVS) is widely used for production of recombinant eukaryotic proteins in insect larvae or cultured cells. BEVS has advantages over bacterial expression system in producing post-translationally modified secreted proteins. However, for some unknown reason, it is very difficult for insects to secrete sufficiently for certain proteins of interest. To understand the reasons why insect cells fail to secrete some kinds of recombinant proteins, we here employed three mammalian proteins as targets, EPO, HGF, and Wnt3A, with different secretion levels in BEVS and investigated their mRNA transcriptions from the viral genome, subcellular localizations, and interactions with silkworm ER chaperones. Moreover, we observed that no significantly influence on the secretion amounts of all three proteins when depleting or overexpressing most endogenous ER chaperone genes in cultured silkworm cells. However, among all detected ER chaperones, the depletion of BiP severely decreased the recombinant protein secretion in BEVS, indicating the possible central role of Bip in silkworm secretion pathway.

  13. Refolding Techniques for Recovering Biologically Active Recombinant Proteins from Inclusion Bodies

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamaguchi

    2014-02-01

    Full Text Available Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  14. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    Science.gov (United States)

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  15. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    Science.gov (United States)

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.

  16. IMGT/GeneInfo: enhancing V(D)J recombination database accessibility

    Science.gov (United States)

    Baum, Thierry-Pascal; Pasqual, Nicolas; Thuderoz, Florence; Hierle, Vivien; Chaume, Denys; Lefranc, Marie-Paule; Jouvin-Marche, Evelyne; Marche, Patrice-Noël; Demongeot, Jacques

    2004-01-01

    IMGT/GeneInfo is a user-friendly online information system that provides information on data resulting from the complex mechanisms of immunoglobulin (IG) and T cell receptor (TR) V(D)J recombinations. For the first time, it is possible to visualize all the rearrangement parameters on a single page. IMGT/GeneInfo is part of the international ImMunoGeneTics information system® (IMGT), a high-quality integrated knowledge resource specializing in IG, TR, major histocompatibility complex (MHC), and related proteins of the immune system of human and other vertebrate species. The IMGT/GeneInfo system was developed by the TIMC and ICH laboratories (with the collaboration of LIGM), and is the first example of an external system being incorporated into IMGT. In this paper, we report the first part of this work. IMGT/GeneInfo_TR deals with the human and mouse TRA/TRD and TRB loci of the TR. Data handling and visualization are complementary to the current data and tools in IMGT, and will subsequently allow the modelling of V(D)J gene use, and thus, to predict non-standard recombination profiles which may eventually be found in conditions such as leukaemias or lymphomas. Access to IMGT/GeneInfo is free and can be found at http://imgt.cines.fr/GeneInfo. PMID:14681357

  17. Rapid production of functionalized recombinant proteins: marrying ligation independent cloning and in vitro protein ligation.

    Science.gov (United States)

    Kushnir, Susanna; Marsac, Yoann; Breitling, Reinhard; Granovsky, Igor; Brok-Volchanskaya, Vera; Goody, Roger S; Becker, Christian F W; Alexandrov, Kirill

    2006-01-01

    Functional genomics and proteomics have been very active fields since the sequencing of several genomes was completed. To assign a physiological role to the newly discovered coding genes with unknown function, new generic methods for protein production, purification, and targeted functionalization are needed. This work presents a new vector, pCYSLIC, that allows rapid generation of Escherichia coli expression constructs via ligation-independent cloning (LIC). The vector is designed to facilitate protein purification by either Ni-NTA or GSH affinity chromatography. Subsequent proteolytic removal of affinity tags liberates an N-terminal cysteine residue that is then used for covalent modification of the target protein with different biophysical probes via protein ligation. The described system has been tested on 36 mammalian Rab GTPases, and it was demonstrated that recombinant GTPases produced with pCYSLIC could be efficiently modified with fluorescein or biotin in vitro. Finally, LIC was compared with the recently developed In-Fusion cloning method, and it was demonstrated that In-Fusion provides superior flexibility in choice of expression vector. By the application of In-Fusion cloning Cys-Rab6A GTPase with an N-terminal cysteine residue was generated employing unmodified pET30a vector and TVMV protease.

  18. Immunization against Rumen Methanogenesis by Vaccination with a New Recombinant Protein.

    Directory of Open Access Journals (Sweden)

    Litai Zhang

    Full Text Available Vaccination through recombinant proteins against rumen methanogenesis provides a mitigation approach to reduce enteric methane (CH4 emissions in ruminants. The objective of present study was to evaluate the in vivo efficacy of a new vaccine candidate protein (EhaF on methanogenesis and microbial population in the rumen of goats. We amplified the gene mru 1407 encoding protein EhaF using fresh rumen fluid samples of mature goats and successfully expressed recombinant protein (EhaF in Escherichia coli Rosetta. This product was evaluated using 12 mature goats with half for control and other half injected with 400ug/goat the purified recombinant protein in day 1 and two subsequent booster immunizations in day 35 and 49. All measurements were undertaken from 63 to 68 days after the initial vaccination, with CH4 emissions determined using respiration calorimeter chambers. The results showed that the vaccination caused intensive immune responses in serum and saliva, although it had no significant effect on total enteric CH4 emissions and methanogen population in the rumen, when compared with the control goats. However, the vaccination altered the composition of rumen bacteria, especially the abundance of main phylum Firmicutes and genus Prevotella. The results indicate that protein EhaF might not be an effective vaccine to reduce enteric CH4 emissions but our vaccine have potential to influence the rumen ecosystem of goats.

  19. Recombinant Protein Production from TPO Gen Cloning and Expression for Early Detection of Autoimmune Thyroid Diseases

    Science.gov (United States)

    Aulanni'am, Aulanni'am; Kinasih Wuragil, Dyah; Wahono Soeatmadji, Djoko; Zulkarnain; Marhendra, Agung Pramana W.

    2018-01-01

    Autoimmune Thyroid Disease (AITD) is an autoimmune disease that has many clinical symptoms but is difficult to detect at the onset of disease progression. Most thyroid autoimmune disease patients are positive with high titre of thyroid autoantibodies, especially thyroid peroxidase (TPO). The detection AITD are still needed because these tests are extremely high cost and have not regularly been performed in most of clinical laboratories. In the past, we have explored the autoimmune disease marker and it has been developed as source of polyclonal antibodies from patient origin. In the current study, we develop recombinant protein which resulted from cloning and expression of TPO gene from normal person and AITD patients. This work flows involves: DNA isolation and PCR to obtain TPO gene from human blood, insertion of TPO gene to plasmid and transformation to E. coli BL21, Bacterial culture to obtain protein product, protein purification and product analysis. This products can use for application to immunochromatography based test. This work could achieved with the goal of producing autoimmune markers with a guaranteed quality, sensitive, specific and economically. So with the collaboration with industries these devices could be used for early detection. Keywords: recombinant protein, TPO gene, Autoimmune thyroid diseases (AITD)ction of the diseases in the community.

  20. Vaccination with recombinant heat shock protein 60 from Histoplasma capsulatum protects mice against pulmonary histoplasmosis.

    Science.gov (United States)

    Gomez, F J; Allendoerfer, R; Deepe, G S

    1995-07-01

    HIS-62 is a glycoprotein that has been isolated from the cell wall and cell membrane fraction of the pathogenic fungus Histoplasma capsulatum. It is a target of the cellular immune response to this fungus, and it protects mice against a lethal intravenous inoculum of H. capsulatum yeast cells. In this study, we cloned the gene encoding this antigen to reveal its biological nature and studied the immunological activity of recombinant antigen. The amino acid sequences of the NH2 terminus and internal peptides were obtained by Edman degradation. Degenerate oligonucleotides were used to isolate a gene fragment of HIS-62 by PCR. One 680-bp segment that corresponded to the known peptide sequence was amplified from H. capsulatum DNA. This DNA was used to screen a genomic library, and the full-length gene was isolated and sequenced. The deduced amino acid sequence of the gene demonstrated approximately 70 and approximately 50% identity to heat shock protein 60 (hsp 60) from Saccharomyces cerevisiae and hsp 60 from Escherichia coli, respectively. A cDNA was synthesized by reverse transcription PCR and was expressed in E. coli. Recombinant protein reacted with a monospecific polyclonal rabbit antiserum raised against native HIS-62, with monoclonal HIS-62-reactive T cells, and with splenocytes from mice immunized with viable yeast cells. Moreover, vaccination with the recombinant protein conferred protection in mice against a lethal intranasal inoculation with yeast cells. Thus, HIS-62 is a member of the hsp 60 family, and the recombinant hsp 60 is protective against pulmonary histoplasmosis in mice.

  1. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus: a trivalent vaccine candidate.

    Science.gov (United States)

    Hong, Qi; Qian, Ping; Li, Xiang-Min; Yu, Xiao-Lan; Chen, Huan-Chun

    2007-11-01

    Pseudorabies (PR), foot-and-mouth disease (FMD), and porcine parvovirus disease are three important infectious diseases in swine worldwide. The gene-deleted pseudorabies virus (PRV) has been used as a live-viral vector to develop multivalent genetic engineering vaccine. In this study, a recombinant PRV, which could co-express protein precursor P1-2A of FMDV and VP2 protein of PPV, was constructed using PRV TK(-)/gE(-)/LacZ(+) mutant as the vector. After homologous recombination and plaque purification, recombinant virus PRV TK(-)/gE(-)/P1-2A-VP2 was acquired and identified. Immunogenicity, safety of the recombinant PRV and its protection against PRV were confirmed in a mouse model by indirect ELISA and serum neutralization test. The results show that the recombinant PRV is a candidate vaccine strain to develop a novel trivalent vaccine against PRV, FMDV and PPV in swine.

  2. Effects of the rad52 gene on recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, S.; Prakash, L.; Burke, W.; Montelone, B.A.

    1979-01-01

    Effects of the rad52 mutation in Saccharomyces cerevisiae on meiotic, γ-ray-induced, uv-induced, and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Intra- and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative medium at different time intervals. No intragenic recombination was observed at the hisl-1/hisl-315 and trp5-2/trp5-48 heteroalleles. Gene-centromere recombination was also not observed in rad52/rad52 diploids. No γ-ray-induced intragenic mitotic recombination is seen in rad52/rad52 diploids and uv-induced intragenic recombination is greatly reduced. However, spontaneous mitotic recombination is not similarly affected. The RAD52 gene thus functions in recombination in meiosis and in γ-ray and uv-induced mitotic recombination but not in spontaneous mitotic recombination

  3. Preparation of a recombinant adenoviral encoding human NIS gene and its specific expression in cardiomyocytes

    International Nuclear Information System (INIS)

    Wang Lihua; Zhang Miao; Guo Rui; Shi Shuo; Li Biao

    2012-01-01

    Objective: To construct a recombinant adenovirus vector containing the human NIS gene with the myosin light chain-2(MLC-2v) gene as the promoter and evaluate its specific expression and feasibility as a reporter gene in cardiomyocytes. Methods: MLC-2v promoter and NIS were subcloned into an adenovirus shuttle vector, and forwarded by homologous recombination in the bacteria BJ5183 containing AdEasy-1 plasmid. Positive recombinant adenovirus vector was selected, packaged and amplified in the HEK293 cells to obtain recombinant adenovirus Ad-MLC-NIS. Ad-cytomegalovirus (CMV)-NIS with cytomegalovirus as the promoter, Ad-MLC without NIS and Ad-NIS without promoter were constructed as the controls. Cardiomyocytes and non-cardiomyocytes were then infected by the adenovirus. The protein expression was tested by Western blot analysis. The function and features of NIS protein were evaluated by dynamic iodide uptake and NaClO 4 iodine uptake inhibition test in vitro. The viability and proliferation of cardiomyocytes after adenovirus transfection and radioiodine incubation were checked by trypan blue staining. Results: Recombinant NIS adenovirus was successfully constructed. Western blot analysis showed that the NIS protein was highly expressed in cardiomyocytes transfected with Ad-MLC-NIS, and all cells transfected with Ad-CMV-NIS. However, in non-cardiomyocytes transfected with Ad-MLC-NIS, little NIS protein was detected. Dynamic iodine uptake tests showed that the peaks of iodide uptake of the three different cell lines (H9C2, A549, U87 cell) transfected with Ad-MLC-NIS were 5844.0, 833.6 and 846.0 counts · min -1 , respectively. The iodide uptake function of H9C2 was inhibited by NaClO 4 . There was almost no change in cell viability and proliferation when the MOI was 100. Conclusions: Ad-MLC-NIS allows myocardial specific expression of an external gene, and the cardiomyocytes with NIS expression are capable of iodine uptake. Further research of NIS as a reporter gene in

  4. Recombination Proteins Mediate Meiotic Spatial Chromosome Organization and Pairing

    Science.gov (United States)

    Storlazzi, Aurora; Gargano, Silvana; Ruprich-Robert, Gwenael; Falque, Matthieu; David, Michelle; Kleckner, Nancy; Zickler, Denise

    2010-01-01

    SUMMARY Meiotic chromosome pairing involves not only recognition of homology but also juxtaposition of entire chromosomes in a topologically regular way. Analysis of filamentous fungus Sordaria macrospora reveals that recombination proteins Mer3, Msh4 and Mlh1 play direct roles in all of these aspects, in advance of their known roles in recombination. Absence of Mer3 helicase results in interwoven chromosomes, thereby revealing the existence of features that specifically ensure “entanglement avoidance”. Entanglements that remain at zygotene, i.e. “interlockings”, require Mlh1 for resolution, likely to eliminate constraining recombinational connections. Patterns of Mer3 and Msh4 foci along aligned chromosomes show that the double-strand breaks mediating homologous alignment have spatially separated ends, one localized to each partner axis, and that pairing involves interference among developing interhomolog interactions. We propose that Mer3, Msh4 and Mlh1 execute all of these roles during pairing by modulating the state of nascent double-strand break/partner DNA contacts within axis-associated recombination complexes. PMID:20371348

  5. Secretion of a recombinant protein without a signal peptide by the exocrine glands of transgenic rabbits.

    Directory of Open Access Journals (Sweden)

    Andrea Kerekes

    Full Text Available Transgenic rabbits carrying mammary gland specific gene constructs are extensively used for excreting recombinant proteins into the milk. Here, we report refined phenotyping of previously generated Venus transposon-carrying transgenic rabbits with particular emphasis on the secretion of the reporter protein by exocrine glands, such as mammary, salivary, tear and seminal glands. The Sleeping Beauty (SB transposon transgenic construct contains the Venus fluorophore cDNA, but without a signal peptide for the secretory pathway, driven by the ubiquitous CAGGS (CAG promoter. Despite the absence of a signal peptide, the fluorophore protein was readily detected in milk, tear, saliva and seminal fluids. The expression pattern was verified by Western blot analysis. Mammary gland epithelial cells of SB-CAG-Venus transgenic lactating does also showed Venus-specific expression by tissue histology and fluorescence microscopy. In summary, the SB-CAG-Venus transgenic rabbits secrete the recombinant protein by different glands. This finding has relevance not only for the understanding of the biological function of exocrine glands, but also for the design of constructs for expression of recombinant proteins in dairy animals.

  6. Secretion of a recombinant protein without a signal peptide by the exocrine glands of transgenic rabbits.

    Science.gov (United States)

    Kerekes, Andrea; Hoffmann, Orsolya Ivett; Iski, Gergely; Lipták, Nándor; Gócza, Elen; Kues, Wilfried A; Bősze, Zsuzsanna; Hiripi, László

    2017-01-01

    Transgenic rabbits carrying mammary gland specific gene constructs are extensively used for excreting recombinant proteins into the milk. Here, we report refined phenotyping of previously generated Venus transposon-carrying transgenic rabbits with particular emphasis on the secretion of the reporter protein by exocrine glands, such as mammary, salivary, tear and seminal glands. The Sleeping Beauty (SB) transposon transgenic construct contains the Venus fluorophore cDNA, but without a signal peptide for the secretory pathway, driven by the ubiquitous CAGGS (CAG) promoter. Despite the absence of a signal peptide, the fluorophore protein was readily detected in milk, tear, saliva and seminal fluids. The expression pattern was verified by Western blot analysis. Mammary gland epithelial cells of SB-CAG-Venus transgenic lactating does also showed Venus-specific expression by tissue histology and fluorescence microscopy. In summary, the SB-CAG-Venus transgenic rabbits secrete the recombinant protein by different glands. This finding has relevance not only for the understanding of the biological function of exocrine glands, but also for the design of constructs for expression of recombinant proteins in dairy animals.

  7. Potency assay design for adjuvanted recombinant proteins as malaria vaccines.

    Science.gov (United States)

    Giersing, Birgitte K; Dubovsky, Filip; Saul, Allan; Denamur, Francoise; Minor, Philip; Meade, Bruce

    2006-05-15

    Many licensed vaccines are composed of live, attenuated or inactivated whole-cell microorganisms, or they comprise purified components from whole-cell extracts or culture supernatants. For some diseases, pathology is fairly well understood, and there may be known correlates of protection that provide obvious parameters for assessment of vaccine potency. However, this is not always the case, and some effective vaccines are routinely used even though the mechanisms or correlates of protection are unknown. Some more modern vaccine approaches employ purified recombinant proteins, based on molecules that appear on the surface of the pathogen. This is one of the strategies that has been adopted in the quest to develop a malaria vaccine. Use of these parasite antigens as vaccine candidates is supported by substantial epidemiological data, and some have demonstrated the ability to elicit protective responses in animal models of malaria infection. However, there is as yet no immunological correlate of protection and no functional assays or animal models that have demonstrated the ability to predict efficacy in humans. There is little precedence for the most appropriate and practical method for assessing potency of vaccines based on these recombinant molecules for malaria vaccines. This is likely because the majority of malaria vaccine candidates have only recently entered clinical evaluation. The PATH Malaria Vaccine Initiative (MVI) convened a panel with expertise in potency assay design from industry, governmental institutions, and regulatory bodies to discuss and review the rationale, available methods, and best approaches for assessing the potency of recombinant proteins, specifically for their use as malarial vaccines. The aim of this meeting was to produce a discussion document on the practical potency assessment of recombinant protein malaria vaccines, focusing on early phase potency assay development.

  8. Construction of occluded recombinant baculoviruses containing the full-length cry1Ab and cry1Ac genes from Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    B.M. Ribeiro

    1998-06-01

    Full Text Available The administration of baculoviruses to insects for bioassay purposes is carried out, in most cases, by contamination of food surfaces with a known amount of occlusion bodies (OBs. Since per os infection is the natural route of infection, occluded recombinant viruses containing crystal protein genes (cry1Ab and cry1Ac from Bacillus thuringiensis were constructed for comparison with the baculovirus prototype Autographa californica nucleopolyhedrovirus (AcNPV. The transfer vector pAcUW2B was used for construction of occluded recombinant viruses. The transfer vector containing the crystal protein genes was cotransfected with linearized DNA from a non-occluded recombinant virus. The isolation of recombinant viruses was greatly facilitated by the reduction of background "wild type" virus and the increased proportion of recombinant viruses. Since the recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve the pathogenicity of the recombinant viruses when compared with the wild type AcNPV, and in order to compare expression levels of the full-length crystal proteins produced by non-occluded and occluded recombinant viruses the full-length cry1Ab and cry1Ac genes were chosen for construction of occluded recombinant viruses. The recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve its pathogenicity but the size of the larvae infected with the recombinant viruses was significantly smaller than that of larvae infected with the wild type virus.

  9. Recombination-stable multimeric green fluorescent protein for characterization of weak promoter outputs in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rugbjerg, Peter; Knuf, Christoph; Förster, Jochen

    2015-01-01

    a less leaky Cu2+-inducible promoter based on CUP1. The basal expression level of the new promoter was approx. 61% below the wild-type CUP1 promoter, thus expanding the absolute range of Cu2+-based gene control. The stability of 3vGFP towards direct-repeat recombination was assayed in S. cerevisiae......Green fluorescent proteins (GFPs) are widely used for visualization of proteins to track localization and expression dynamics. However, phenotypically important processes can operate at too low expression levels for routine detection, i.e. be overshadowed by autofluorescence noise. While GFP...... functions well in translational fusions, the use of tandem GFPs to amplify fluorescence signals is currently avoided in Saccharomyces cerevisiae and many other microorganisms due to the risk of loop-out by direct-repeat recombination. We increased GFP fluorescence by translationally fusing three different...

  10. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.

    Science.gov (United States)

    Overlack, Nora; Goldmann, Tobias; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-06-26

    Human Usher syndrome (USH) is the most frequent cause of inherited deaf-blindness. It is clinically and genetically heterogeneous, assigned to three clinical types of which the most severe type is USH1. No effective treatment for the ophthalmic component of USH exists. Gene augmentation is an attractive strategy for hereditary retinal diseases. However, several USH genes, like USH1C, are expressed in various isoforms, hampering gene augmentation. As an alternative treatment strategy, we applied the zinc-finger nuclease (ZFN) technology for targeted gene repair of an USH1C, causing mutation by homologous recombination. We designed ZFNs customized for the p.R31X nonsense mutation in Ush1c. We evaluated ZFNs for DNA cleavage capability and analyzed ZFNs biocompatibilities by XTT assays. We demonstrated ZFNs mediated gene repair on genomic level by digestion assays and DNA sequencing, and on protein level by indirect immunofluorescence and Western blot analyses. The specifically designed ZFNs did not show cytotoxic effects in a p.R31X cell line. We demonstrated that ZFN induced cleavage of their target sequence. We showed that simultaneous application of ZFN and rescue DNA induced gene repair of the disease-causing mutation on the genomic level, resulting in recovery of protein expression. In our present study, we analyzed for the first time ZFN-activated gene repair of an USH gene. The data highlight the ability of ZFNs to induce targeted homologous recombination and mediate gene repair in USH. We provide further evidence that the ZFN technology holds great potential to recover disease-causing mutations in inherited retinal disorders.

  11. Impact of protein uptake and degradation on recombinant protein secretion in yeast

    DEFF Research Database (Denmark)

    Tyo, Keith E. J.; Liu, Zihe; Magnusson, Ylva

    2014-01-01

    Protein titers, a key bioprocessing metric, depend both on the synthesis of protein and the degradation of protein. Secreted recombinant protein production in Saccharomyces cerevisiae is an attractive platform as minimal media can be used for cultivation, thus reducing fermentation costs...... and transcriptomics, we identify metabolic and regulatory markers that are consistent with uptake of whole proteins by endocytosis, followed by intracellular degradation and catabolism of substituent amino acids. Uptake and degradation of recombinant protein products may be common in S. cerevisiae protein secretion...... and simplifying downstream purification, compared to other systems that require complex media. As such, engineering S. cerevisiae to improve titers has been then the subject of significant attention, but the majority of previous efforts have been focused on improving protein synthesis. Here, we characterize...

  12. Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer.

    Directory of Open Access Journals (Sweden)

    William E Grose

    Full Text Available The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9. Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.

  13. Cloning and characterization of an insecticidal crystal protein gene ...

    Indian Academy of Sciences (India)

    A 1.9-kb DNA fragment, PCR-amplified from HD549 using cryII-gene-specific primers, was cloned and expressed in E. coli. The recombinant protein produced 92% mortality in first-instar larvae of Spodoptera litura and 86% inhibition of adult emergence in Phthorimaea operculella, but showed very low toxicity against ...

  14. Construction and analysis of the transgenic carrot and celery plants expressing the recombinant thaumatin II protein

    Directory of Open Access Journals (Sweden)

    Luchakivska Yu. S.

    2015-08-01

    Full Text Available Aim To obtain the transgenic carrot and celery plants able to express recombinant thaumatin II in order to increase plant stress tolerance. Methods. Agrobacterium-mediated transformation of the carrot and celery seedlings was used for obtaining the transgenic plants. Presence and transcription of the transgene in plant tissues were proved by PCR and RT-PCR analysis. The plants were tested for the biotic stress tolerance by in vitro antifungal and antibacterial activity assays and for the salinity and osmotic stress tolerance by plant survival test in presence of NaCl and PEG in different concentrations. Results. Transgenic plants able to express recombinant thaumatin II gene (transcription proved for 60–100 % were obtained by agrobacterial transformation. The transgenic carrot plant extracts inhibited the growth of the studied phytopathogenic bacteria strains but exhibited no antifungal activity. Survival level of transgenic plants under the salinity and osmotic stress effect was definitely higher comparing to the untransgenic ones. The analysis of the photosynthetic pigment content in the transgenic carrot plants showed no significant difference of this parameter under salinity stress that may indicate a possible protective activity of the recombinant protein. Conclusions. The obtained in our study transgenic carrot and celery plants able to express the recombinant thaumatin II gene were characterized by antibacterial activity and increased tolerance to salinity and osmotic stress factors.

  15. Dynamic organization of genetic recombination proteins and chromosomes

    International Nuclear Information System (INIS)

    Essers, J.; Van Cappellen, G.; Van Drunen, E.; Theil, A.; Jaspers, N.N.G.J.; Houtsmuller, A.B.; Vermeulen, W.; Kanaar, R.

    2003-01-01

    Homologous recombination requires the co-ordinated action of the RAD52 group proteins, including Rad51, Rad52 and Rad54. Upon treatment of mammalian cells with ionizing radiation, these proteins accumulate into foci at sites of DSB induction. We probed the nature of the DNA damage-induced foci in living cells with the use of photobleaching techniques. These foci are not static assemblies of DNA repair proteins. Instead, they are dynamic structures of which Rad51 is a stable core component, while Rad52 and Rad54 reversibly interact with the structure. Furthermore, even though the RAD52 group proteins colocalize in the DNA damage-induced foci, the majority of the proteins are not part of the same multi-protein complex in the absence of DNA damage. Executing DNA transactions through dynamic multi-protein complexes, rather than stable holo-complexes, allows greater flexibility during the transaction. In case of DNA repair, for example, it allows cross talk between different DNA repair pathways and coupling to other DNA transactions, such as replication. In addition to the behavior of proteins in living cells, we have tracked chromosomes during cell division. Our results suggest that the relative position of chromosomes in the mother cell is conserved in its daughter cells

  16. Differential gene expression in human granulosa cells from recombinant FSH versus human menopausal gonadotropin ovarian stimulation protocols

    Directory of Open Access Journals (Sweden)

    Bietz Mandi G

    2010-03-01

    Full Text Available Abstract Background The study was designed to test the hypothesis that granulosa cell (GC gene expression response differs between recombinant FSH and human menopausal gonadotropin (hMG stimulation regimens. Methods Females Results After exclusions, 1736 genes exhibited differential expression between groups. Over 400 were categorized as signal transduction genes, ~180 as transcriptional regulators, and ~175 as enzymes/metabolic genes. Expression of selected genes was confirmed by RT-PCR. Differentially expressed genes included A kinase anchor protein 11 (AKAP11, bone morphogenetic protein receptor II (BMPR2, epidermal growth factor (EGF, insulin-like growth factor binding protein (IGFBP-4, IGFBP-5, and hypoxia-inducible factor (HIF-1 alpha. Conclusions Results suggest that major differences exist in the mechanism by which pure FSH alone versus FSH/LH regulate gene expression in preovulatory GC that could impact oocyte maturity and developmental competence.

  17. Regulation of Recombination between gtfB/gtfC Genes in Streptococcus mutans by Recombinase A

    Directory of Open Access Journals (Sweden)

    Satoko Inagaki

    2013-01-01

    Full Text Available Streptococcus mutans produces 3 types of glucosyltransferases (GTFs, whose cooperative action is essential for cellular adhesion. The recombinase A (RecA protein is required for homologous recombination. In our previous study, we isolated several strains with a smooth colony morphology and low GTF activity, characteristics speculated to be derived from the GTF fusions. The purpose of the present study was to investigate the mechanism of those fusions. S. mutans strain MT8148 was grown in the presence of recombinant RecA (rRecA protein, after which smooth colonies were isolated. The biological functions and sequences of the gtfB and gtfC genes of this as well as other clinical strains were determined. The sucrose-dependent adherence rates of those strains were reduced as compared to that of MT8148. Determination of the sequences of the gtfB and gtfC genes showed that an approximately 3500 bp region was deleted from the area between them. Furthermore, expression of the recA gene was elevated in those strains as compared to MT8148. These results suggest that RecA has an important role in fusions of gtfB and gtfC genes, leading to alteration of colony morphology and reduction in sucrose-dependent adhesion.

  18. [Prokaryotic expression of recombinant prochymosin gene and its antiserum preparation].

    Science.gov (United States)

    Li, Xin-ping; Liu, Huan-huan; Pu, Yan; Zhang, Fu-chun; Li, Yi-jie

    2012-07-01

    To optimize the prochymosin (pCHY) gene codons and express the gene in Escherichia coli (E.coli), and to prepare its antiserum and detect chymosin protein specifically. According to codon usage bias of E.coli, prochymosin gene sequence was synthesized based on the conserved sequences of prochymosin gene from bovine, lamb and camel, and then cloned into the plasmid pET-30a and pcDNA3-AAT-COMP-C3d3 (pcD-ACC), respectively. pET-30a-pCHY was expressed, as the detected antigen, in E.coli BL21(DE3) after IPTG induction. RT-PCR was used to detect prochymosin mRNA expression in liver from the mice injected pcDNA3-AAT-COMP-pCHY-C3d3(pACCC) by hydrodynamics-based transfection method. To prepare the antiserum of prochymosin, pACCC and GST-pCHY proteins were used to immunize New Zealand rabbits in accordance with DNA prime-protein boost strategy. Antibody levels were tested by ELISA. Western blotting showed the molecular weight of His-pCHY protein was about 55 000, similar to the expected molecular size. ELISA demonstrated that the titer level of prochymosin antiserum was high. Based on the codon optimization, we have obtained high-titer prochymosin antiserum through DNA vaccine vector pcD-ACC combined with DNA prime-protein boost strategy, similar to that by protein vaccine.

  19. Tetratricopeptide-motif-mediated interaction of FANCG with recombination proteins XRCC3 and BRCA2.

    Science.gov (United States)

    Hussain, Shobbir; Wilson, James B; Blom, Eric; Thompson, Larry H; Sung, Patrick; Gordon, Susan M; Kupfer, Gary M; Joenje, Hans; Mathew, Christopher G; Jones, Nigel J

    2006-05-10

    Fanconi anaemia is an inherited chromosomal instability disorder characterised by cellular sensitivity to DNA interstrand crosslinkers, bone-marrow failure and a high risk of cancer. Eleven FA genes have been identified, one of which, FANCD1, is the breast cancer susceptibility gene BRCA2. At least eight FA proteins form a nuclear core complex required for monoubiquitination of FANCD2. The BRCA2/FANCD1 protein is connected to the FA pathway by interactions with the FANCG and FANCD2 proteins, both of which co-localise with the RAD51 recombinase, which is regulated by BRCA2. These connections raise the question of whether any of the FANC proteins of the core complex might also participate in other complexes involved in homologous recombination repair. We therefore tested known FA proteins for direct interaction with RAD51 and its paralogs XRCC2 and XRCC3. FANCG was found to interact with XRCC3, and this interaction was disrupted by the FA-G patient derived mutation L71P. FANCG was co-immunoprecipitated with both XRCC3 and BRCA2 from extracts of human and hamster cells. The FANCG-XRCC3 and FANCG-BRCA2 interactions did not require the presence of other FA proteins from the core complex, suggesting that FANCG also participates in a DNA repair complex that is downstream and independent of FANCD2 monoubiquitination. Additionally, XRCC3 and BRCA2 proteins co-precipitate in both human and hamster cells and this interaction requires FANCG. The FANCG protein contains multiple tetratricopeptide repeat motifs (TPRs), which function as scaffolds to mediate protein-protein interactions. Mutation of one or more of these motifs disrupted all of the known interactions of FANCG. We propose that FANCG, in addition to stabilising the FA core complex, may have a role in building multiprotein complexes that facilitate homologous recombination repair.

  20. Overproduction and partial purification of the Norrie disease gene product, norrin, from a recombinant baculovirus.

    Science.gov (United States)

    Shastry, Barkur S; Trese, Michael T

    2003-12-05

    Abnormal vascularization of the peripheral retina and retinal detachment are common clinical characteristics of Norrie disease (ND), familial exudative vitreoretinopathy, Coats' disease, and retinopathy of prematurity. Although little is known about the molecular basis of these diseases, studies have shown that all of these diseases are associated with mutations in the ND gene. In spite of this, little is known about norrin, its molecular mechanism of action, and its functional relationship with the development of abnormal retinal vasculature. To obtain a large quantity of norrin for structural and functional studies, we have overproduced it in insect cells. For this purpose, a cDNA fragment (869 bp) was isolated from a human retinal cDNA library by amplification and was cloned into an expression vector. The purified plasmid was co-transfected with wild-type linearized Bac-N-Blue DNA into S. frugiperda Sf21 insect cells. The recombinant virus plaques were purified and clones were selected based on the level of recombinant protein expressed in Sf21 cells infected with a purified recombinant virus. From these, a high-titer stock was generated and subsequently used to prepare a fused protein on a large scale. The protein was partially purified by the process of immobilized metal affinity chromatography and the use of ion exchange chromatography

  1. Osteoinductive recombinant silk fusion proteins for bone regeneration.

    Science.gov (United States)

    Dinjaski, Nina; Plowright, Robyn; Zhou, Shun; Belton, David J; Perry, Carole C; Kaplan, David L

    2017-02-01

    Protein polymers provide a unique opportunity for tunable designs of material systems due to the genetic basis of sequence control. To address the challenge of biomineralization interfaces with protein based materials, we genetically engineered spider silks to design organic-inorganic hybrid systems. The spider silk inspired domain (SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQGT) 15 served as an organic scaffold to control material stability and to allow multiple modes of processing, whereas the hydroxyapatite binding domain VTKHLNQISQSY (VTK), provided control over osteogenesis. The VTK domain was fused either to the N-, C- or both terminals of the spider silk domain to understand the effect of position on material properties and mineralization. The addition of the VTK domain to silk did not affect the physical properties of the silk recombinant constructs, but it had a critical role in the induction of biomineralization. When the VTK domain was placed on both the C- and N-termini the formation of crystalline hydroxyapatite was significantly increased. In addition, all of the recombinant proteins in film format supported the growth and proliferation of human mesenchymal stem cells (hMSCs). Importantly, the presence of the VTK domain enhanced osteoinductive properties up to 3-fold compared to the control (silk alone without VTK). Therefore, silk-VTK fusion proteins have been shown suitable for mineralization and functionalization for specific biomedical applications. Organic-inorganic interfaces are integral to biomaterial functions in many areas of repair and regeneration. Several protein polymers have been investigated for this purpose. Despite their success the limited options to fine-tune their material properties, degradation patterns and functionalize them for each specific biomedical application limits their application. Various studies have shown that the biological performance of such proteins can be improved by genetic engineering. The present study provides data

  2. Directed mutagenesis affects recombination in Azospirillum brasilense nif genes

    Directory of Open Access Journals (Sweden)

    C.P. Nunes

    2000-12-01

    Full Text Available In order to improve the gene transfer/mutagenesis system for Azospirillum brasilense, gene-cartridge mutagenesis was used to replace the nifD gene with the Tn5 kanamycin resistance gene. The construct was transferred to A. brasilense by electrotransformation. Of the 12 colonies isolated using the suicide plasmid pSUP202 as vector, only four did not show vector integration into the chromosome. Nevertheless, all 12 colonies were deficient in acetylene reduction, indicating an Nif- phenotype. Four Nif- mutants were analyzed by Southern blot, using six different probes spanning the nif and Km r genes and the plasmid vector. Apparently, several recombination events occurred in the mutant genomes, probably caused mainly by gene disruption owing to the mutagenesis technique used: resistance gene-cartridge mutagenesis combined with electrotransformation.Com o objetivo de melhorar os sistemas de transferência gênica e mutagênese para Azospirillum brasilense, a técnica de mutagênese através do uso de um gene marcador ("gene-cartridge mutagenesis" foi utilizada para substituir a região genômica de A. brasilense correspondente ao gene nifD por um segmento de DNA do transposon Tn5 contendo o gene que confere resistência ao antibiótico canamicina. A construção foi transferida para a linhagem de A. brasilense por eletrotransformação. Doze colônias transformantes foram isoladas com o plasmídeo suicida pSUP202 servindo como vetor. Dessas, somente quatro não possuíam o vetor integrado no cromossomo da bactéria. Independentemente da integração ou não do vetor, as 12 colônias foram deficientes na redução do gás acetileno, evidenciando o fenótipo Nif -. Quatro mutantes Nif - foram analisados através da técnica de Southern blot, utilizando-se seis diferentes fragmentos contendo genes nif, de resistência à canamicina e do vetor como sondas. Os resultados sugerem a ocorrência de eventos recombinacionais variados no genoma dos mutantes. A

  3. Designer genes. Recombinant antibody fragments for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, A.M.; Yazaki, P.J. [Beckman Research Institute of the City of Hope, Duarte, CA (United States). Dept. of Molecular Biology

    2000-09-01

    Monoclonal antibodies (MAbs), with high specificity and high affinity for their target antigens, can be utilized for delivery of agents such as radionuclides, enzymes, drugs or toxins in vivo. However, the implementation of radiolabeled antibodies as magic bullets for detection and treatment of diseases such as cancer has required addressing several shortcomings of murine MAbs. These include their immunogenicity, sub-optimal targeting and pharmacokinetic properties, and practical issues of production and radiolabeling. Genetic engineering provides a powerful approach for redesigning antibodies for use in oncologic applications in vivo. Recombinant fragments have been produced that retain high affinity for target antigens, and display a combination of rapid, high-level tumor targeting with concomitant clearance from normal tissues and the circulation in animal models. An important first step was cloning and engineering of antibody heavy and light chain variable domains into single-chain Fvs (molecular weight, 25-17 kDa), in which the variable regions are joined via a synthetic linker peptide sequence. Although scFvs themselves showed limited tumor uptake in preclinical and clinical studies, they provide a useful building block for intermediate sized recombinant fragments. Covalently linked dimers or non-covalent dimers of scFvs (also known as diabodies) show improved targeting and clearance properties due to their higher molecular weight (55kDa) and increased avidity. Further gains can be made by generation of larger recombinant fragments, such as the minibody, an scFv-C{sub H}3 fusion protein that self-assembles into a bivalent dimer of 80 kDa. A systematic evaluation of scFv, diabody, minibody, and intact antibody (based on comparison of tumor uptakes, tumor: blood activity ratios, and calculation of an Imaging Figure of Merit) can form the basis for selection of combinations of recombinant fragments and radionuclides for imaging applications. Ease of engineering

  4. Designer genes. Recombinant antibody fragments for biological imaging

    International Nuclear Information System (INIS)

    Wu, A.M.; Yazaki, P.J.

    2000-01-01

    Monoclonal antibodies (MAbs), with high specificy and high affinity for their target antigens, can be utilized for delivery of agents such as radionuclides, enzymes, drugs or toxins in vivo. However, the implementation of radiolabeled antibodies as magic bullets for detection and treatment of diseases such as cancer has required addressing several shortcomings of murine MAbs. These include their immunogenicity, sub-optimal targeting and pharmacokinetic properties, and practical issues of production and radiolabeling. Genetic engineering provides a powerful approach for redesigning antibodies for use in oncologic applications in vivo. Recombinant fragments have been produced that retain high affinity for target antigens, and display a combination of rapid, high-level tumor targeting with concomitant clearance from normal tissues and the circulation in animal models. An important first step was cloning and engineering of antibody heavy and light chain variable domains into single-chain Fvs (molecular weight, 25-17 kDa), in which the variable regions are joined via a synthetic linker peptide sequence. Although scFvs themselves showed limited tumor uptake in preclinical and clinical studies, they provide a useful building block for intermediate sized recombinant fragments. Covalently linked dimers or non-covalent dimers of scFvs (also known as diabodies) show improved targeting and clearance properties due to their higher molecular weight (55kDa) and increased avidity. Further gains can be made by generation of larger recombinant fragments, such as the minibody, an scFv-C H 3 fusion protein that self-assembles into a bivalent dimer of 80 kDa. A systematic evaluation of scFv, diabody, minibody, and intact antibody (based on comparison of tumor uptakes, tumor: blood activity ratios, and calculation of an Imaging Figure of Merit) can form the basis for selection of combinations of recombinant fragments and radionuclides for imaging applications. Ease of engineering and

  5. Overexpression of the transcription factor Yap1 modifies intracellular redox conditions and enhances recombinant protein secretion

    Directory of Open Access Journals (Sweden)

    Marizela Delic

    2014-10-01

    Full Text Available Oxidative folding of secretory proteins in the endoplasmic reticulum (ER is a redox active process, which also impacts the redox conditions in the cytosol. As the transcription factor Yap1 is involved in the transcriptional response to oxidative stress, we investigate its role upon the production of secretory proteins, using the yeast Pichia pastoris as model, and report a novel important role of Yap1 during oxidative protein folding. Yap1 is needed for the detoxification of reactive oxygen species (ROS caused by increased oxidative protein folding. Constitutive co-overexpression of PpYAP1 leads to increased levels of secreted recombinant protein, while a lowered Yap1 function leads to accumulation of ROS and strong flocculation. Transcriptional analysis revealed that more than 150 genes were affected by overexpression of YAP1, in particular genes coding for antioxidant enzymes or involved in oxidation-reduction processes. By monitoring intracellular redox conditions within the cytosol and the ER using redox-sensitive roGFP1 variants, we could show that overexpression of YAP1 restores cellular redox conditions of protein-secreting P. pastoris by reoxidizing the cytosolic redox state to the levels of the wild type. These alterations are also reflected by increased levels of oxidized intracellular glutathione (GSSG in the YAP1 co-overexpressing strain. Taken together, these data indicate a strong impact of intracellular redox balance on the secretion of (recombinant proteins without affecting protein folding per se. Re-establishing suitable redox conditions by tuning the antioxidant capacity of the cell reduces metabolic load and cell stress caused by high oxidative protein folding load, thereby increasing the secretion capacity.

  6. Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors.

    Science.gov (United States)

    De Jesus, Maria; Wurm, Florian M

    2011-06-01

    Mammalian cells in bioreactors as production host are the focus of this review. We wish to briefly describe today's technical status and to highlight emerging trends in the manufacture of recombinant therapeutic proteins, focusing on Chinese hamster ovary (CHO) cells. CHO cells are the manufacturing host system of choice for more than 70% of protein pharmaceuticals on the market [21]. The current global capacity to grow mammalian cells in bioreactors stands at about 0.5 million liters, whereby the largest vessels can have a working volume of about 20,000l. We are focusing in this article on the upstream part of protein manufacturing. Over the past 25 years, volumetric yields for recombinant cell lines have increased about 20-fold mainly as the result of improvements in media and bioprocess design. Future yield increases are expected to come from improved gene delivery methods, from improved, possibly genetically modified host systems, and from further improved bioprocesses in bioreactors. Other emerging trends in protein manufacturing that are discussed include the use of disposal bioreactors and transient gene expression. We specifically highlight here current research in our own laboratories. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Derek L Lindstrom

    2011-03-01

    Full Text Available Somatic mutations contribute to the development of age-associated disease. In earlier work, we found that, at high frequency, aging Saccharomyces cerevisiae diploid cells produce daughters without mitochondrial DNA, leading to loss of respiration competence and increased loss of heterozygosity (LOH in the nuclear genome. Here we used the recently developed Mother Enrichment Program to ask whether aging cells that maintain the ability to produce respiration-competent daughters also experience increased genomic instability. We discovered that this population exhibits a distinct genomic instability phenotype that primarily affects the repeated ribosomal RNA gene array (rDNA array. As diploid cells passed their median replicative life span, recombination rates between rDNA arrays on homologous chromosomes progressively increased, resulting in mutational events that generated LOH at >300 contiguous open reading frames on the right arm of chromosome XII. We show that, while these recombination events were dependent on the replication fork block protein Fob1, the aging process that underlies this phenotype is Fob1-independent. Furthermore, we provide evidence that this aging process is not driven by mechanisms that modulate rDNA recombination in young cells, including loss of cohesion within the rDNA array or loss of Sir2 function. Instead, we suggest that the age-associated increase in rDNA recombination is a response to increasing DNA replication stress generated in aging cells.

  8. Identifying and engineering promoters for high level and sustainable therapeutic recombinant protein production in cultured mammalian cells.

    Science.gov (United States)

    Ho, Steven C L; Yang, Yuansheng

    2014-08-01

    Promoters are essential on plasmid vectors to initiate transcription of the transgenes when generating therapeutic recombinant proteins expressing mammalian cell lines. High and sustained levels of gene expression are desired during therapeutic protein production while gene expression is useful for cell engineering. As many finely controlled promoters exhibit cell and product specificity, new promoters need to be identified, optimized and carefully evaluated before use. Suitable promoters can be identified using techniques ranging from simple molecular biology methods to modern high-throughput omics screenings. Promoter engineering is often required after identification to either obtain high and sustained expression or to provide a wider range of gene expression. This review discusses some of the available methods to identify and engineer promoters for therapeutic recombinant protein expression in mammalian cells.

  9. Utilizing protein-lean coproducts from corn containing recombinant pharmaceutical proteins for ethanol production.

    Science.gov (United States)

    Paraman, Ilankovan; Moeller, Lorena; Scott, M Paul; Wang, Kan; Glatz, Charles E; Johnson, Lawrence A

    2010-10-13

    Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were evaluated as a potential feedstock to produce fuel ethanol. The levels of residual r-proteins in the coproduct, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein (r-GFP) and a recombinant subunit vaccine of Escherichia coli enterotoxin (r-LTB), primarily expressed in endosperm, and another two corn lines containing recombinant human collagen (r-CIα1) and r-GFP, primarily expressed in germ, were used as model systems. The kernels were either ground and used for fermentation or dry fractionated to recover germ-rich fractions prior to grinding for fermentation. The finished beers of whole ground kernels and r-protein-spent endosperm solids contained 127-139 and 138-155 g/L ethanol concentrations, respectively. The ethanol levels did not differ among transgenic and normal corn feedstocks, indicating the residual r-proteins did not negatively affect ethanol production. r-Protein extraction and germ removal also did not negatively affect fermentation of the remaining mass. Most r-proteins were inactivated during the mashing process used to prepare corn for fermentation. No functionally active r-GFP or r-LTB proteins were found after fermentation of the r-protein-spent solids; however, a small quantity of residual r-CIα1 was detected in DDGS, indicating that the safety of DDGS produced from transgenic grain for r-protein production needs to be evaluated for each event. Protease treatment during fermentation completely hydrolyzed the residual r-CIα1, and no residual r-proteins were detectable in DDGS.

  10. Recombinant human prion protein inhibits prion propagation in vitro.

    Science.gov (United States)

    Yuan, Jue; Zhan, Yi-An; Abskharon, Romany; Xiao, Xiangzhu; Martinez, Manuel Camacho; Zhou, Xiaochen; Kneale, Geoff; Mikol, Jacqueline; Lehmann, Sylvain; Surewicz, Witold K; Castilla, Joaquín; Steyaert, Jan; Zhang, Shulin; Kong, Qingzhong; Petersen, Robert B; Wohlkonig, Alexandre; Zou, Wen-Quan

    2013-10-09

    Prion diseases are associated with the conformational conversion of the cellular prion protein (PrP(C)) into the pathological scrapie isoform (PrP(Sc)) in the brain. Both the in vivo and in vitro conversion of PrP(C) into PrP(Sc) is significantly inhibited by differences in amino acid sequence between the two molecules. Using protein misfolding cyclic amplification (PMCA), we now report that the recombinant full-length human PrP (rHuPrP23-231) (that is unglycosylated and lacks the glycophosphatidylinositol anchor) is a strong inhibitor of human prion propagation. Furthermore, rHuPrP23-231 also inhibits mouse prion propagation in a scrapie-infected mouse cell line. Notably, it binds to PrP(Sc), but not PrP(C), suggesting that the inhibitory effect of recombinant PrP results from blocking the interaction of brain PrP(C) with PrP(Sc). Our findings suggest a new avenue for treating prion diseases, in which a patient's own unglycosylated and anchorless PrP is used to inhibit PrP(Sc) propagation without inducing immune response side effects.

  11. Transfection of primary brain capillary endothelial cells for protein synthesis and secretion of recombinant erythropoietin: a strategy to enable protein delivery to the brain

    DEFF Research Database (Denmark)

    Burkhart, Annette; Andresen, Thomas Lars; Aigner, Achim

    2017-01-01

    , as turning BCECs into recombinant protein factories by transfection could result in protein secretion further into the brain. The present study aims to investigate the possibility of transfecting primary rat brain endothelial cells (RBECs) for recombinant protein synthesis and secretion...... of the neuroprotective protein erythropoietin (EPO). We previously showed that 4% of RBECs with BBB properties can be transfected without disrupting the BBB integrity in vitro, but it can be questioned whether this is sufficient to enable protein secretion at therapeutic levels. The present study examined various......-derived neurotropic factor (BDNF). In conclusion, non-viral gene therapy to RBECs leads to protein secretion and signifies a method for therapeutic proteins to target cells inside the CNS otherwise omitted due to the BBB....

  12. Five low energy phosphorene allotropes constructed through gene segments recombination.

    Science.gov (United States)

    He, Chaoyu; Zhang, ChunXiao; Tang, Chao; Ouyang, Tao; Li, Jin; Zhong, Jianxin

    2017-04-27

    Based on the crystal structures of the previously proposed low energy η-P and θ-P, five new phosphorene allotropes were predicted through gene segments recombination method. These five new phosphorene allotropes are confirmed dynamically stable and energetically more favorable than their parents (η-P and θ-P). Especially, the XX-XX type G1-P is confirmed energetically more favorable than most of all the previously proposed phosphorene allotropes, including black phosphorene and blue phosphorene, which is highly expected to be synthesized in future experiment through vapor deposition or epitaxial growth method like blue β-P. The calculated results also show that such a new promising phosphorene allotrope G1-P is a potential candidate for application in nano-electronics according to its middle band gap of about 1.491 eV from DFT-HSE06 calculation.

  13. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  14. Purification and Characterization of Recombinant Vaccinia L1R Protein from Escherichia coli

    Science.gov (United States)

    2016-08-01

    RECOMBINANT VACCINIA L1R PROTEIN FROM ESCHERICHIA COLI 1. INTRODUCTION 1.1 Background Vaccinia virus (VACV) is the active component of the...the preparation of the recombinant VACV L1R protein fragment by denaturing , refolding, and purifying material expressed into inclusion bodies in...PURIFICATION AND CHARACTERIZATION OF RECOMBINANT VACCINIA L1R PROTEIN FROM ESCHERICHIA COLI ECBC-TR-1370

  15. Cloning and expression of the recombinant NP24I protein from ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... protein from tomato fruit and study of its antimicrobial ... the recombinant NP24, as well as to prove the activity of native protein on the bacterial as well as fungal .... The antifungal effect of the recombinant NP24I protein was.

  16. ACCUMULATION OF RECOMBINANT FUSION PROTEIN – SECRETORY ANALOG OF Ag85B AND ESAT6 MYCOBACTERIUM TUBERCULOSIS PROTEINS – IN TRANSGENIC Lemna minor L. PLANTS

    Directory of Open Access Journals (Sweden)

    A.A.Peterson

    2015-10-01

    Full Text Available Determination of the presence of the recombinant fusion protein (ESAT6-Ag85B(ΔTMD-6His and its accumulation level in duckweed plants (Lemna minor L. was the aim of the research. ESAT6 and Ag85B are secretory proteins of Mycobacterium tuberculosis and are considered as potential candidates for development of new vaccine against tuberculosis (TB. Transgenic duckweed plants were obtained previously by Agrobacterium rhizogenes-mediated transformation and possessed fusion gene sequence esxA-fbpBΔTMD. Specific polyclonal antibodies were produced in immunized mice to identify levels of accumulation of TB antigens in plants. Recombinant antigen used for mice immunization was obtained in our laboratory by expression in E. coli. Western blot analysis revealed the recombinant tuberculosis antigen ESAT6-Ag85B(ΔTMD-6His in extracts from transgenic L. minor plants. The level of accumulation of the protein corresponds to 0.4-0.5 µg protein per 1 g of fresh weight of plant. Additionally, the accumulation of recombinant protein was investigated in lyophilized transgenic plants after 1.5 year storage. Duckweed plants accumulating a recombinant analogue of M. tuberculosis secretory proteins can be used for development of plant-based edible vaccines.

  17. Genetic recombination as a major cause of mutagenesis in the human globin gene clusters.

    Science.gov (United States)

    Borg, Joseph; Georgitsi, Marianthi; Aleporou-Marinou, Vassiliki; Kollia, Panagoula; Patrinos, George P

    2009-12-01

    Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the alpha- and beta-like globin gene families. In numerous occasions, genetic recombination has been previously implicated as a major mechanism that drives mutagenesis in the human globin gene clusters, either in the form of unequal crossover or gene conversion. Unequal crossover results in the increase or decrease of the human globin gene copies, accompanied in the majority of cases with minor phenotypic consequences, while gene conversion contributes either to maintaining sequence homogeneity or generating sequence diversity. The role of genetic recombination, particularly gene conversion in the evolution of the human globin gene families has been discussed elsewhere. Here, we summarize our current knowledge and review existing experimental evidence outlining the role of genetic recombination in the mutagenic process in the human globin gene families.

  18. Recombiner

    International Nuclear Information System (INIS)

    Kikuchi, Nobuo.

    1983-01-01

    Purpose: To shorten the pre-heating time for a recombiner and obtain a uniform temperature distribution for the charged catalyst layer in a BWR type reactor. Constitution: A pre-heating heater is disposed to the outer periphery of a vessel for a recombiner packed with catalysts for recombining hydrogen and oxygen in gases flowing through a radioactive gaseous wastes processing system. Heat pipes for transmitting the heat applied to said container to the catalyst are disposed vertically and horizontally within the container. Different length of the heat pipes are combined. In this way, pre-heating time for the recombiner before the operation start and before the system switching can be shortened and the uniform pre-heating for the inside of the recombiner is also made possible. Further, heater control in the pre-heating can be carried out effectively and with ease. (Moriyama, K.)

  19. Recombinant Protein Production of Earthworm Lumbrokinase for Potential Antithrombotic Application

    Directory of Open Access Journals (Sweden)

    Kevin Yueju Wang

    2013-01-01

    Full Text Available Earthworms have been used as a traditional medicine in China, Japan, and other Far East countries for thousands of years. Oral administration of dry earthworm powder is considered as a potent and effective supplement for supporting healthy blood circulation. Lumbrokinases are a group of enzymes that were isolated and purified from different species of earthworms. These enzymes are recognized as fibrinolytic agents that can be used to treat various conditions associated with thrombosis. Many lumbrokinase (LK genes have been cloned and characterized. Advances in genetic technology have provided the ability to produce recombinant LK and have made it feasible to purify a single lumbrokinase enzyme for potential antithrombotic application. In this review, we focus on expression systems that can be used for lumbrokinase production. In particular, the advantages of using a transgenic plant system to produce edible lumbrokinase are described.

  20. An agmatine-inducible system for the expression of recombinant proteins in Enterococcus faecalis.

    Science.gov (United States)

    Linares, Daniel M; Perez, Marta; Ladero, Victor; Del Rio, Beatriz; Redruello, Begoña; Martin, M Cruz; Fernandez, María; Alvarez, Miguel A

    2014-12-04

    Scientific interest in Enterococcus faecalis has increased greatly over recent decades. Some strains are involved in food fermentation and offer health benefits, whereas others are vancomycin-resistant and cause infections that are difficult to treat. The limited availability of vectors able to express cloned genes efficiently in E. faecalis has hindered biotechnological studies on the bacterium's regulatory and pathogenicity-related genes. The agmatine deiminase (AGDI) pathway of E. faecalis, involved in the conversion of agmatine into putrescine, is driven by a response inducer gene aguR. This study describes that the exposure to the induction factor (agmatine) results in the transcription of genes under the control of the aguB promoter, including the aguBDAC operon. A novel E. faecalis expression vector, named pAGEnt, combining the aguR inducer gene and the aguB promoter followed by a cloning site and a stop codon was constructed. pAGEnt was designed for the overexpression and purification of a protein fused to a 10-amino-acid His-tag at the C-terminus. The use of GFP as a reporter of gene expression in E. faecalis revealed that under induction with 60 mM agmatine, fluorescence reached 40 arbitrary units compared to 0 in uninduced cells. pAGEnt vector can be used for the overexpression of recombinant proteins under the induction of agmatine in E. faecalis, with a close correlation between agmatine concentration and fluorescence when GFP was used as reporter.

  1. A G-protein-coupled chemokine receptor: A putative insertion site for a multi-pathogen recombinant capripoxvirus vaccine strategy.

    Science.gov (United States)

    Cêtre-Sossah, Catherine; Dickmu, Simon; Kwiatek, Olivier; Albina, Emmanuel

    2017-09-01

    Capripoxviruses (CaPVs) have been shown to be ideal viral vectors for the development of recombinant multivalent vaccines to enable delivery of immunogenic genes from ruminant pathogens. So far, the viral thymidine kinase (TK) gene is the only gene used to generate recombinants. A putative non-essential gene encoding a G-protein-coupled chemokine receptor subfamily homologue (GPCR) was targeted as an additional insertion site. Peste des petits ruminants (PPR) was chosen as a disease model. A new recombinant CaPV expressing the viral attachment hemagglutinin (H) of the PPR virus (PPRV) in the GPCR insertion site (rKS1-HPPR-GPCR) was generated in the backbone North African isolate KS1 strain of lumpy skin disease virus (LSDV). Comparison with the recombinant CaPV expressing the H of PPRV in the TK gene (rKS1-HPPR-TK) shown to induce protection against both PPR and LSD in both sheep and goats was assessed. The suitability of the GPCR gene to be a putative additional insertion site in the CaPV genome is evaluated and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Improving heterologous protein secretion at aerobic conditions by activating hypoxia-induced genes in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Lifang; Zhang, Yiming; Liu, Zihe

    2015-01-01

    Oxygen is important for normal aerobic metabolism, as well as for protein production where it is needed for oxidative protein folding. However, several studies have reported that anaerobic conditions seem to be more favorable in terms of recombinant protein production. We were interested in incre......Oxygen is important for normal aerobic metabolism, as well as for protein production where it is needed for oxidative protein folding. However, several studies have reported that anaerobic conditions seem to be more favorable in terms of recombinant protein production. We were interested...... in increasing recombinant protein production under aerobic conditions so we focused on Rox1p regulation. Rox1p is a transcriptional regulator, which in oxidative conditions represses genes induced in hypoxia. We deleted ROX1 and studied the effects on the production of recombinant proteins in Saccharomyces...

  3. The construction and identification of hypoxia-regulated recombinant plasmid with reporter gene hNIS

    International Nuclear Information System (INIS)

    Hu Qunchao; Wu Jinchang; Zhou Jundong; Gu Ke

    2011-01-01

    Objective: To construct pShuttle-5 × HRE-CMV-NIS recombinant plasmid regulated by hypoxia-responsive element, which can possibly by used to detect the expression of hypoxia induced factor-α (HIF-1α) gene under hypoxia condition. Methods: Artificially synthesize the nucleotide sequences of five copies of hypoxia response elements (HREs) were cloned into pGL3-promoter vector to construct pGL3-promoter-5 × HRE vector. Human sodium/iodide symporter (hNIS) gene cDNA was amplified from human genome by RT-PCR, and subcloned into pGL3-promoter-5 × HRE vector then was sequenced. After treated with CoCl 2 as hypoxia mimic, HEK293 cells were transfected with recombinant plasmid with hNIS gene, while cells treated with DMSO as the control. Meanwhile, pcDNA3.1-HIF-1α and recombinant hNIS gene vectors were transfected into HEK293 cells at the ratio of 3 to 1, while co-transfection with pcDNA3.1 and pShuttle-NIS vectors cells were taken as the control. NIS mRNA expression was analyzed by qRT-PCR while function of NIS protein was tested by 99m TcO 4 - -uptake. Results: The sequence data of hNIS gene in recombinant plasmid were in accordance with those reported in the literatures. Compared with control groups, HEK293 cells co-transfected with both pShuttle-5 × HRE-CMV-NIS and HIF-1α gene vectors and CoCl 2 -treated after pShuttle-NIS transfecting presented higher mRNA expressions of NIS and 99m TcO 4 - uptake (P<0.01). Conclusion: HIF-1α can be bound to and activate pShuttle-5 × HRE-CMV-NIS in cells to accumulate radioactive nuclide 99m TcO 4 - and this technique is potential for detection of expression and activity of HIF-1α, the indicator of cell hypoxia. (authors)

  4. Rare codons effect on expression of recombinant gene cassette in Escherichia coli BL21(DE3

    Directory of Open Access Journals (Sweden)

    Aghil Esmaeili-Bandboni

    2017-11-01

    Full Text Available Objective: To demonstrate the sensitivity of expression of fusion genes to existence of a large number of rare codons in recombinant gene sequenced. Methods: Primers for amplification of cholera toxin B, Shiga toxin B and gfp genes were designed by Primer3 software and synthesized. All of these 3 genes were cloned. Then the genes were fused together by restriction sites and enzymatic method. Two linkers were used as a flexible bridge in connection of these genes. Results: Cloning and fusion of cholera toxin B, Shiga toxin B and gfp genes were done correctly. After that, expression of the recombinant gene construction was surveyed. Conclusions: According to what was seen, because of the accumulation of 12 rare codons of Shiga toxin B and 19 rare codons of cholera toxin B in this gene cassette, the expression of the recombinant gene cassette, in Escherichia coli BL21, failed.

  5. Radiosensitization effect of recombinant adenoviral-mediated PUMA gene on pancreatic carcinoma cells

    International Nuclear Information System (INIS)

    Zhu Dongming; Zhang Kejun; Li Dechun; Zhu Xuefeng; Yang Yong

    2009-01-01

    Objective: To study the effect of PUMA gene mediated by recombinant adenovirus vector combined with radiation on the pancreatic carcinoma. Methods: The PANC-1 cells were infected with Ad- PUMA (MOI=10, 50 and 100, respectively) for 48 h. The expression of PUMA mRNA and protein was detected by RT-PCR and Western blot, respectively. PANC-1 cells were divided into 4 groups: control group, transfection group, irradiation group and combined treatment group. The cell growth inhibition rate and apoptotic rate of PANC-1 cells were assessed by MTT assay and flow cytometry. Human pancreatic carcinomas were transplanted subcutaneously in nude mice, which were randomized into 4 groups: control group, transfection group, irradiation group and combined treatment group. Tumor growth rate and apoptotic index at different time points were recorded in 35 days. Results: The expression of PUMA mRNA and protein was increased with the increase of MOI of Ad-PUMA, which was does-dependant (MOI=10, mRNA=0.46± 0.02, protein=0.75± 0.09; MOI=50, mRNA=1.12±0.09, protein=1.01±0.18; MOI=100, mRNA=1.50±0.08, protein= 1.80±0.15; P 3 , (39.5±9.23)mm 3 , (33.6±10.3)mm 3 and (52.0±11.43)mm 3 , respectively, P<0.05]. And the apoptotic index was increased in the same manner (AI=0.43±0.05, 0.29±0.10, 0.24±0.05 and 0.00±0.00, respectively, P<0.05). Conclusions: Recombinant adenoviral-mediated PUMA gene combined with irradiation could increase the cell-killing effect on pancreatic carcinoma. It is better than that of either one kind of therapy. (authors)

  6. Recombinant vectors construction for cellobiohydrolase encoding gene constitutive expression

    Directory of Open Access Journals (Sweden)

    Leontina GURGU

    2012-12-01

    Full Text Available Cellobiohydrolases (EC 3.2.1.91 are important exo enzymes involved in cellulose hydrolysis alongside endoglucanases (EC 3.2.1.4 and β-glucosidases (EC 3.2.1.21. Heterologous cellobiohydrolase gene expression under constitutive promoter control using Saccharomyces cerevisiae as host system is of great importance for a successful SSF process. From this point of view, the main objective of the work was to use Yeplac181 expression vector as a recipient for cellobiohdrolase - cbhB encoding gene expression under the control of the actin promoter, in Saccharomyces cerevisiae. Two hybridvectors, YEplac-Actp and YEplac-Actp-CbhB, were generated usingEscherichia coli XLI Blue for the cloning experiments. Constitutive cbhB gene expression was checked by proteine gel electrophoresis (SDS-PAGE after insertion of these constructs into Saccharomyces cerevisiae.

  7. Recombiner

    International Nuclear Information System (INIS)

    Osumi, Morimichi.

    1979-01-01

    Purpose: To provide a recombiner which is capable of converting hydrogen gas into water by use of high-frequency heating at comparatively low temperatures and is safe and cheap in cost. Constitution: Hydrogen gas is introduced from an outer pipeline to the main structure of a recombiner, and when it passes through the vicinity of the central part of the recombiner, it is reacted with copper oxide (CuO 2 ) heated to a temperature more than 300 0 C by a high-frequency heater, and converted gently into water by reduction operation (2H 2 + CuO 2 → Cu + 2H 2 O). The thus prepared water is exhausted through the outer pipeline to a suppression pool. A part of hydrogen gas which has not been converted completely into water by the reaction and is remaining as hydrogen is recovered through exhaust nozzles and again introduced into the main structure of the recombiner. (Yoshino, Y.)

  8. Functional mitochondrial ATP synthase proteolipid gene produced by recombination of parental genes in a petunia somatic hybrid

    International Nuclear Information System (INIS)

    Rothenberg, M.; Hanson, M.R.

    1988-01-01

    A novel ATP synthase subunit 9 gene (atp9) was identified in the mitochondrial genome of a Petunia somatic hybrid line (13-133) which was produced from a fusion between Petunia lines 3688 and 3704. The novel gene was generated by intergenomic recombination between atp9 genes from the two parental plant lines. The entire atp9 coding region is represented on the recombinant gene. Comparison of gene sequences using electrophoresis and autoradiography, indicate that the 5' transcribed region is contributed by an atp9 gene from 3704 and the 3' transcribed region is contributed by an atp9 gene from 3688. The recombinant atp9 gene is transcriptionally active. The location of the 5' and 3' transcript termini are conserved with respect to the parental genes, resulting in the production of hybrid transcripts

  9. Construction and characterization of recombinant flaviviruses bearing insertions between E and NS1 genes

    Directory of Open Access Journals (Sweden)

    Kubelka Claire F

    2007-10-01

    Full Text Available Abstract Background The yellow fever virus, a member of the genus Flavivirus, is an arthropod-borne pathogen causing severe disease in humans. The attenuated yellow fever 17D virus strain has been used for human vaccination for 70 years and has several characteristics that are desirable for the development of new, live attenuated vaccines. We described here a methodology to construct a viable, and immunogenic recombinant yellow fever 17D virus expressing a green fluorescent protein variant (EGFP. This approach took into account the presence of functional motifs and amino acid sequence conservation flanking the E and NS1 intergenic region to duplicate and fuse them to the exogenous gene and thereby allow the correct processing of the viral polyprotein precursor. Results YF 17D EGFP recombinant virus was grew in Vero cells and reached a peak titer of approximately 6.45 ± 0.4 log10 PFU/mL at 96 hours post-infection. Immunoprecipitation and confocal laser scanning microscopy demonstrated the expression of the EGFP, which was retained in the endoplasmic reticulum and not secreted from infected cells. The association with the ER compartment did not interfere with YF assembly, since the recombinant virus was fully competent to replicate and exit the cell. This virus was genetically stable up to the tenth serial passage in Vero cells. The recombinant virus was capable to elicit a neutralizing antibody response to YF and antibodies to EGFP as evidenced by an ELISA test. The applicability of this cloning strategy to clone gene foreign sequences in other flavivirus genomes was demonstrated by the construction of a chimeric recombinant YF 17D/DEN4 virus. Conclusion This system is likely to be useful for a broader live attenuated YF 17D virus-based vaccine development for human diseases. Moreover, insertion of foreign genes into the flavivirus genome may also allow in vivo studies on flavivirus cell and tissue tropism as well as cellular processes related

  10. Recombinant proteins from plants: production and isolation of clinically useful compounds

    National Research Council Canada - National Science Library

    Cunningham, Charles; Porter, Andrew J. R

    1998-01-01

    ... of recombinant proteins for use as specialist industrial or therapeutic biomolecules. The intention of Recombinant Proteins from Plants is to provide comprehensive and detailed protocols covering all the latest molecular approaches. Because the production oftransgenic plants has become routine in many laboratories, coverage is also given to some of the more "...

  11. Analysis of recombinant proteins by isoelectric focusing in immobilized pH gradients

    NARCIS (Netherlands)

    Bischoff, Rainer; Roecklin, D.; Roitsch, C.

    1992-01-01

    Isoelectric focusing in immobilized pH gradients (IEF-IPG) was used to analyze three different recombinant proteins. Recombinant leech hirudin (65 amino acids, three disulfide bonds) expressed in Saccharomyces cerevisiae as a secreted protein and purified by anion-exchange and reversed-phase

  12. Limiting factors in Escherichia colifed-batch production of recombinant proteins

    DEFF Research Database (Denmark)

    Sanden, A.M.; Prytz, I.; Tubelekas, I.

    2003-01-01

    recombinant protein production, fed-batch, specific growth rate, feed profile, induction, mRNA, transcription, translation, acetic acid formation......recombinant protein production, fed-batch, specific growth rate, feed profile, induction, mRNA, transcription, translation, acetic acid formation...

  13. Recombinant protein expression of Moringa oleifera lectin in methylotrophic yeast as active coagulant for sustainable high turbid water treatment.

    Science.gov (United States)

    Abd Wahid, Muhamad Azhar; Megat Mohd Noor, Megat Johari; Goto, Masafumi; Sugiura, Norio; Othman, Nor'azizi; Zakaria, Zuriati; Ahmad Mohammed, Thamer; Jusoh, Ahmad; Hara, Hirofumi

    2017-08-01

    The natural coagulant Moringa oleifera lectin (MoL) as cationic protein is a promising candidate in coagulation process of water treatment plant. Introducing the gene encoding MoL into a host, Pichia pastoris, to secrete soluble recombinant protein is assessed in this study. Initial screening using PCR confirmed the insertion of MoL gene, and SDS-PAGE analysis detected the MoL protein at 8 kDa. Cultured optimization showed the highest MoL protein at 520 mg/L was observed at 28 °C for 144 h of culturing by induction in 1% methanol. Approximately, 0.40 mg/mL of recombinant MoL protein showed 95 ± 2% turbidity removal of 1% kaolin suspension. In 0.1% kaolin suspension, the concentration of MoL at 10 μg/mL exhibits the highest turbidity reduction at 68 ± 1%. Thus, recombinant MoL protein from P. pastoris is an effective coagulant for water treatment.

  14. Preparation of recombinant coat protein of Prunus necrotic ringspot virus.

    Science.gov (United States)

    Petrzik, K; Mráz, I; Kubelková, D

    2001-02-01

    The coat protein (CP) gene of Prunus necrotic ringspot virus (PNRSV) was cloned into pET 16b vector and expressed in Escherichia coli. CP-enriched fractions were prepared from whole cell lysate by differential centrifugation. The fraction sedimenting at 20,000 x g for 30 mins was used for preparation of a rabbit antiserum to CP. This antiserum had a titer of 1:2048 and reacted in a double-antibody sandwich ELISA (DAS-ELISA).

  15. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    Science.gov (United States)

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  16. Cloning of the Repertoire of Individual Plasmodium falciparum var Genes Using Transformation Associated Recombination (TAR)

    Science.gov (United States)

    Schmid, Christoph D.; Bühlmann, Tobias; Louis, Edward J.; Beck, Hans-Peter

    2011-01-01

    One of the major virulence factors of the malaria causing parasite is the Plasmodium falciparum encoded erythrocyte membrane protein 1 (PfEMP1). It is translocated to It the membrane of infected erythrocytes and expressed from approximately 60 var genes in a mutually exclusive manner. Switching of var genes allows the parasite to alter functional and antigenic properties of infected erythrocytes, to escape the immune defense and to establish chronic infections. We have developed an efficient method for isolating VAR genes from telomeric and other genome locations by adapting transformation-associated recombination (TAR) cloning, which can then be analyzed and sequenced. For this purpose, three plasmids each containing a homologous sequence representing the upstream regions of the group A, B, and C var genes and a sequence homologous to the conserved acidic terminal segment (ATS) of var genes were generated. Co-transfection with P. falciparum strain ITG2F6 genomic DNA in yeast cells yielded 200 TAR clones. The relative frequencies of clones from each group were not biased. Clones were screened by PCR, as well as Southern blotting, which revealed clones missed by PCR due to sequence mismatches with the primers. Selected clones were transformed into E. coli and further analyzed by RFLP and end sequencing. Physical analysis of 36 clones revealed 27 distinct types potentially representing 50% of the var gene repertoire. Three clones were selected for sequencing and assembled into single var gene containing contigs. This study demonstrates that it is possible to rapidly obtain the repertoire of var genes from P. falciparum within a single set of cloning experiments. This technique can be applied to individual isolates which will provide a detailed picture of the diversity of var genes in the field. This is a powerful tool to overcome the obstacles with cloning and assembly of multi-gene families by simultaneously cloning each member. PMID:21408186

  17. Mutations in the RNA-binding domains of tombusvirus replicase proteins affect RNA recombination in vivo

    International Nuclear Information System (INIS)

    Panaviene, Zivile; Nagy, Peter D.

    2003-01-01

    RNA recombination, which is thought to occur due to replicase errors during viral replication, is one of the major driving forces of virus evolution. In this article, we show evidence that the replicase proteins of Cucumber necrosis virus, a tombusvirus, are directly involved in RNA recombination in vivo. Mutations within the RNA-binding domains of the replicase proteins affected the frequency of recombination observed with a prototypical defective-interfering (DI) RNA, a model template for recombination studies. Five of the 17 replicase mutants tested showed delay in the formation of recombinants when compared to the wild-type helper virus. Interestingly, two replicase mutants accelerated recombinant formation and, in addition, these mutants also increased the level of subgenomic RNA synthesis (Virology 308 (2003), 191-205). A trans-complementation system was used to demonstrate that mutation in the p33 replicase protein resulted in altered recombination rate. Isolated recombinants were mostly imprecise (nonhomologous), with the recombination sites clustered around a replication enhancer region and a putative cis-acting element, respectively. These RNA elements might facilitate the proposed template switching events by the tombusvirus replicase. Together with data in the article cited above, results presented here firmly establish that the conserved RNA-binding motif of the replicase proteins is involved in RNA replication, subgenomic RNA synthesis, and RNA recombination

  18. Subdominant Outer Membrane Antigens in Anaplasma marginale: Conservation, Antigenicity, and Protective Capacity Using Recombinant Protein.

    Directory of Open Access Journals (Sweden)

    Deirdre R Ducken

    Full Text Available Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP extracts or a defined surface protein complex reproducibly induce protective immunity. However, there are several knowledge gaps limiting progress in vaccine development. First, are these OMPs conserved among the diversity of A. marginale strains circulating in endemic regions? Second, are the most highly conserved outer membrane proteins in the immunogens recognized by immunized and protected animals? Lastly, can this subset of OMPs recognized by antibody from protected vaccinates and conserved among strains recapitulate the protection of outer membrane vaccines? To address the first goal, genes encoding OMPs AM202, AM368, AM854, AM936, AM1041, and AM1096, major subdominant components of the outer membrane, were cloned and sequenced from geographically diverse strains and isolates. AM202, AM936, AM854, and AM1096 share 99.9 to 100% amino acid identity. AM1041 has 97.1 to 100% and AM368 has 98.3 to 99.9% amino acid identity. While all four of the most highly conserved OMPs were recognized by IgG from animals immunized with outer membranes, linked surface protein complexes, or unlinked surface protein complexes and shown to be protected from challenge, the highest titers and consistent recognition among vaccinates were to AM854 and AM936. Consequently, animals were immunized with recombinant AM854 and AM936 and challenged. Recombinant vaccinates and purified outer membrane vaccinates had similar IgG and IgG2 responses to both proteins. However, the recombinant vaccinates developed higher bacteremia after challenge as compared to adjuvant-only controls and outer membrane vaccinates. These results provide the first evidence that vaccination with specific antigens may exacerbate disease. Progressing from the protective capacity of outer membrane formulations to

  19. High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Ramos Martinez, Erick Miguel; Fimognari, Lorenzo; Sakuragi, Yumiko

    2017-01-01

    Microalga-based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post......-translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas...... in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP)n glycomodule to promote a more efficient biomanufacturing of microalgae-based recombinant proteins....

  20. A novel mouse synaptonemal complex protein is essential for loading of central element proteins, recombination, and fertility.

    Directory of Open Access Journals (Sweden)

    Sabine Schramm

    2011-05-01

    Full Text Available The synaptonemal complex (SC is a proteinaceous, meiosis-specific structure that is highly conserved in evolution. During meiosis, the SC mediates synapsis of homologous chromosomes. It is essential for proper recombination and segregation of homologous chromosomes, and therefore for genome haploidization. Mutations in human SC genes can cause infertility. In order to gain a better understanding of the process of SC assembly in a model system that would be relevant for humans, we are investigating meiosis in mice. Here, we report on a newly identified component of the murine SC, which we named SYCE3. SYCE3 is strongly conserved among mammals and localizes to the central element (CE of the SC. By generating a Syce3 knockout mouse, we found that SYCE3 is required for fertility in both sexes. Loss of SYCE3 blocks synapsis initiation and results in meiotic arrest. In the absence of SYCE3, initiation of meiotic recombination appears to be normal, but its progression is severely impaired resulting in complete absence of MLH1 foci, which are presumed markers of crossovers in wild-type meiocytes. In the process of SC assembly, SYCE3 is required downstream of transverse filament protein SYCP1, but upstream of the other previously described CE-specific proteins. We conclude that SYCE3 enables chromosome loading of the other CE-specific proteins, which in turn would promote synapsis between homologous chromosomes.

  1. The immunophenotypic and immunogenotypic B-cell differentiation arrest in bone marrow of RAG-deficient SCID patients corresponds to residual recombination activities of mutated RAG proteins

    NARCIS (Netherlands)

    J.G. Noordzij; S. de Bruin-Versteeg (Sandra); N.S. Verkaik (Nicole); J.M.J.J. Vossen; R. de Groot (Ronald); E. Bernatowska (Ewa); A.W. Langerak (Anton); D.C. van Gent (Dik); J.J.M. van Dongen (Jacques)

    2002-01-01

    textabstractThe protein products of the recombination activating genes (RAG1 and RAG2) initiate the formation of immunoglobulin (Ig) and T-cell receptors, which are essential for B- and T-cell development, respectively. Mutations in the RAG genes result in severe combined

  2. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression.

    Directory of Open Access Journals (Sweden)

    Athanasios Niarchos

    Full Text Available During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.

  3. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression.

    Science.gov (United States)

    Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Lagoumintzis, George; Poulas, Konstantinos

    2017-01-01

    During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.

  4. Challenges in biotechnology at LLNL: from genes to proteins; TOPICAL

    International Nuclear Information System (INIS)

    Albala, J S

    1999-01-01

    This effort has undertaken the task of developing a link between the genomics, DNA repair and structural biology efforts within the Biology and Biotechnology Research Program at LLNL. Through the advent of the I.M.A.G.E. (Integrated Molecular Analysis of Genomes and their Expression) Consortium, a world-wide effort to catalog the largest public collection of genes, accepted and maintained within BBRP, it is now possible to systematically express the protein complement of these to further elucidate novel gene function and structure. The work has ensued in four phases, outlined as follows: (1) Gene and System selection; (2) Protein expression and purification; (3) Structural analysis; and (4) biological integration. Proteins to be expressed have been those of high programmatic interest. This includes, in particular, proteins involved in the maintenance of genome integrity, particularly those involved in the repair of DNA damage, including ERCC1, ERCC4, XRCC2, XRCC3, XRCC9, HEX1, APN1, p53, RAD51B, RAD51C, and RAD51. Full-length cDNA cognates of selected genes were isolated, and cloned into baculovirus-based expression vectors. The baculoviral expression system for protein over-expression is now well-established in the Albala laboratory. Procedures have been successfully optimized for full-length cDNA clining into expression vectors for protein expression from recombinant constructs. This includes the reagents, cell lines, techniques necessary for expression of recombinant baculoviral constructs in Spodoptera frugiperda (Sf9) cells. The laboratory has also generated a high-throughput baculoviral expression paradigm for large scale expression and purification of human recombinant proteins amenable to automation

  5. Selective Advantage of Recombination in Evolving Protein Populations:. a Lattice Model Study

    Science.gov (United States)

    Williams, Paul D.; Pollock, David D.; Goldstein, Richard A.

    Recent research has attempted to clarify the contributions of several mutational processes, such as substitutions or homologous recombination. Simplistic, tractable protein models, which determine the compact native structure phenotype from the sequence genotype, are well-suited to such studies. In this paper, we use a lattice-protein model to examine the effects of point mutation and homologous recombination on evolving populations of proteins. We find that while the majority of mutation and recombination events are neutral or deleterious, recombination is far more likely to be beneficial. This results in a faster increase in fitness during evolution, although the final fitness level is not significantly changed. This transient advantage provides an evolutionary advantage to subpopulations that undergo recombination, allowing fixation of recombination to occur in the population.

  6. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Qingwen Jin

    Full Text Available Insertion of T4 lysozyme (T4L into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed.We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects.Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1 infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5.Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  7. Gelatin nanoparticles enhance delivery of hepatitis C virus recombinant NS2 gene.

    Science.gov (United States)

    Sabet, Salwa; George, Marina A; El-Shorbagy, Haidan M; Bassiony, Heba; Farroh, Khaled Y; Youssef, Tareq; Salaheldin, Taher A

    2017-01-01

    Development of an effective non-viral vaccine against hepatitis C virus infection is of a great importance. Gelatin nanoparticles (Gel.NPs) have an attention and promising approach as a viable carrier for delivery of vaccine, gene, drug and other biomolecules in the body. The present study aimed to develop stable Gel.NPs conjugated with nonstructural protein 2 (NS2) gene of Hepatitis C Virus genotype 4a (HCV4a) as a safe and an efficient vaccine delivery system. Gel.NPs were synthesized and characterized (size: 150±2 nm and zeta potential +17.6 mv). NS2 gene was successfully cloned and expressed into E. coli M15 using pQE-30 vector. Antigenicity of the recombinant NS2 protein was confirmed by Western blotting to verify the efficiency of NS2 as a possible vaccine. Then NS2 gene was conjugated to gelatin nanoparticles and a successful conjugation was confirmed by labeling and imaging using Confocal Laser Scanning Microscope (CLSM). Interestingly, the transformation of the conjugated NS2/Gel.NPs complex into E. coli DH5-α was 50% more efficient than transformation with the gene alone. In addition, conjugated NS2/Gel.NPs with ratio 1:100 (w/w) showed higher transformation efficiency into E. coli DH5-α than the other ratios (1:50 and 2:50). Gel.NPs effectively enhanced the gene delivery in bacterial cells without affecting the structure of NS2 gene and could be used as a safe, easy, rapid, cost-effective and non-viral vaccine delivery system for HCV.

  8. Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy.

    Science.gov (United States)

    Marconi, Peggy; Fraefel, Cornel; Epstein, Alberto L

    2015-01-01

    Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.

  9. Polyclonal antibodies against the recombinantly expressed coat protein of the Citrus psorosis virus

    Directory of Open Access Journals (Sweden)

    Reda Salem

    2018-05-01

    Full Text Available Psorosis is a damaging disease of citrus that is widespread in many parts of the world. Citrus psorosis virus (CPsV, the type species of the genus Ophiovirus, is the putative causal agent of psorosis. Detection of CPsV by laboratory methods, serology in particular is a primary requirement for large-scale surveys but their production has been impaired by the difficulty of obtaining sufficient clean antigen for immunization. Specific PAbs against coat protein were produced in E. coli using recombinant DNA approach. The full length CP gene fragment was amplified by RT-PCR using total RNA extracted from CPsV infected citrus leaves and CP specific primers. The obtained product (1320bp was cloned, sequenced and sub-cloned into pET-30(+ expression vector. Expression was induced and screened in different bacterial clones by the presence of the expressed protein (48kDa and optimized in one clone. Expressed CP was purified using batch chromatography under denaturing conditions. Specificity of expressed protein was demonstrated by ELISA before used as antigen for raising PAbs in mice. Specificity of the raised PAbs to CPsV was verified by ELISA and western blotting. The raised PAbs were showed highly effectiveness in screening by ELISA comparing with the commercial antibodies purchased from Agritest, Valanzano, Italy.The expression of CPsV CP gene in E. coli, production of PAbs using recombinant protein as an antigen, the suitability of these antibodies for use in immunodiagnostics against the CPsV Egyptian isolate have been accomplished in this work. Keywords: CPsV, CP, PAbs, RT-PCR, ELISA, Western blotting

  10. Analysis of TCRAD gene recombination: radio-induct rearrangement and signal joint structure

    International Nuclear Information System (INIS)

    Touvrey, C.

    2005-09-01

    We have shown that irradiation of pre-TCR-deficient CD3ε -/- mice restores thymocyte differentiation, by a p53-dependent and by a p53-independent pathway. Events normally associated during normal thymocyte development are dissociated in response to radiation exposure. Both of these pathways require LAT expression. Therefore, radiation exposure activates pre-TCR-like signals. TCRA gene rearrangement is induced following radiation exposure. The signal joints resulting from TCRA gene rearrangement have the same structure than those found in wild type mice. All signal joint analyzed in un-manipulated wild type mice do exhibit junctional diversity. This diversity results mainly from TdT activity. We present evidences that proteins involved in DNA repair and genomic stability participated in SJ formation. We propose that signal joint diversity is not an aberrant process but is a key feature of V(D)J recombination. All our work increases our understanding of molecular events associated with V(D)J recombination. (author)

  11. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus.

    Science.gov (United States)

    Flannery, J G; Zolotukhin, S; Vaquero, M I; LaVail, M M; Muzyczka, N; Hauswirth, W W

    1997-06-24

    We describe a general approach for achieving efficient and cell type-specific expression of exogenous genes in photoreceptor cells of the mammalian retina. Recombinant adeno-associated virus (rAAV) vectors were used to transfer the bacterial lacZ gene or a synthetic green fluorescent protein gene (gfp) to mouse or rat retinas after injection into the subretinal space. Using a proximal murine rod opsin promoter (+86 to -385) to drive expression, reporter gene product was found exclusively in photoreceptors, not in any other retinal cell type or in the adjacent retinal pigment epithelium. GFP-expressing photoreceptors typically encompassed 10-20% of the total retinal area after a single 2-microl injection. Photoreceptors were transduced with nearly 100% efficiency in the region directly surrounding the injection site. We estimate approximately 2.5 million photoreceptors were transduced as a result of the single subretinal inoculation. This level of gene transfer and expression suggests the feasibility of genetic therapy for retinal disease. The gfp-containing rAAV stock was substantially free of both adenovirus and wild-type AAV, as judged by plaque assay and infectious center assay, respectively. Thus, highly purified, helper virus-free rAAV vectors can achieve high-frequency tissue-specific transduction of terminally differentiated, postmitotic photoreceptor cells.

  12. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.; Nichol, Stuart T.; Towner, Jonathan S.

    2015-10-15

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulness as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.

  13. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    International Nuclear Information System (INIS)

    Albariño, César G.; Wiggleton Guerrero, Lisa; Lo, Michael K.; Nichol, Stuart T.; Towner, Jonathan S.

    2015-01-01

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulness as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies

  14. Serological diagnosis of Strongylus vulgaris infection: use of a recombinant protein

    DEFF Research Database (Denmark)

    Andersen, Ulla Vestergaard; Howe, Daniel K.; Olsen, Susanne Nautrup

    , an immunoreactive cDNA clone was subcloned into E. coli and the plasmid sequenced, the open reading frame encoding the mature protein was cloned into a pET22b expression vector and expressed as a His-tagged recombinant protein in BL21 expression cells. The recombinant protein was used in an indirect enzyme....... vulgaris (n=9) reacted against the recombinant protein, expressed as optic density (OD) readings of >24 % of a positive control, while sera from negative horses had OD readings

  15. Transfection of primary brain capillary endothelial cells for protein synthesis and secretion of recombinant erythropoietin: a strategy to enable protein delivery to the brain.

    Science.gov (United States)

    Burkhart, Annette; Andresen, Thomas Lars; Aigner, Achim; Thomsen, Louiza Bohn; Moos, Torben

    2017-07-01

    Treatment of chronic disorders affecting the central nervous system (CNS) is complicated by the inability of drugs to cross the blood-brain barrier (BBB). Non-viral gene therapy applied to brain capillary endothelial cells (BCECs) denotes a novel approach to overcome the restraints in this passage, as turning BCECs into recombinant protein factories by transfection could result in protein secretion further into the brain. The present study aims to investigate the possibility of transfecting primary rat brain endothelial cells (RBECs) for recombinant protein synthesis and secretion of the neuroprotective protein erythropoietin (EPO). We previously showed that 4% of RBECs with BBB properties can be transfected without disrupting the BBB integrity in vitro, but it can be questioned whether this is sufficient to enable protein secretion at therapeutic levels. The present study examined various transfection vectors, with regard to increasing the transfection efficiency without disrupting the BBB integrity. Lipofectamine 3000™ was the most potent vector compared to polyethylenimine (PEI) and Turbofect. When co-cultured with astrocytes, the genetically modified RBECs secreted recombinant EPO into the cell culture medium both luminally and abluminally, and despite lower levels of EPO reaching the abluminal chamber, the amount of recombinant EPO was sufficient to evolve a biological effect on astrocytes cultured at the abluminal side in terms of upregulated gene expression of brain-derived neurotropic factor (BDNF). In conclusion, non-viral gene therapy to RBECs leads to protein secretion and signifies a method for therapeutic proteins to target cells inside the CNS otherwise omitted due to the BBB.

  16. [Evaluation of the Recombinant Protein Tp0965 of Treponema Pallidum as Perspective Antigen for the Improved Serological Diagnosis of Syphilis].

    Science.gov (United States)

    Runina, A V; Starovoitova, A S; Deryabin, D G; Kubanov, A A

    2016-01-01

    BACKGRAUND. Treponemal tests based on the detection of antibodies against the Treponema pallidum antigens are the most specific methods for serological diagnosis of syphilis. Due to the inability to cultivate this bacterium in vitro, the most promising sources of antigens for diagnostics are recombinant proteins of T. pallidum. Evaluation of the analytical value of certain T. pallidum proteins is the approach to improve sensitivity, specificity, and reproducibility of syphilis serological tests, including possibilities of differential diagnosis of various forms of the disease. The aim of the research was to evaluate the analytical values (sensitivity and specificity) of recombinant protein Tp0965 of T. pallidum as a candidate antigen for serological diagnosis of syphilis. tp0965 gene was cloned into the expression vector pET28a and the construct was used for the transformation of E. coli BL-21 (DE3) cells and further expression and purification of the recombinant protein. The collected protein was used as T. pallidum antigen for serum analysis (ELISA) of groups of patients with various forms of syphilis (n=84) and the group of healthy donors (n = 25). High frequency of positive ELISA results was shown with serum of patients with syphilis, compared to the group of healthy donors. The sensitivity of serological reactions using recombinant protein Tp0965 was 98.8%, specificity--87.5%. The highest sensitivity (100%) was detected in the groups of patients with primary, secondary and early latent syphilis while in the group of patients with late latent syphilis it decreased to 95.2%. We concluded that due to its specificity T. pallidum recombinant protein Tp0965 can be used as a novel perspective antigen for development of syphilis serological diagnostic assays (for primary and early latent forms).

  17. Strong positive selection and recombination drive the antigenic variation of the PilE protein of the human pathogen Neisseria meningitidis.

    Science.gov (United States)

    Andrews, T Daniel; Gojobori, Takashi

    2004-01-01

    The PilE protein is the major component of the Neisseria meningitidis pilus, which is encoded by the pilE/pilS locus that includes an expressed gene and eight homologous silent fragments. The silent gene fragments have been shown to recombine through gene conversion with the expressed gene and thereby provide a means by which novel antigenic variants of the PilE protein can be generated. We have analyzed the evolutionary rate of the pilE gene using the nucleotide sequence of two complete pilE/pilS loci. The very high rate of evolution displayed by the PilE protein appears driven by both recombination and positive selection. Within the semivariable region of the pilE and pilS genes, recombination appears to occur within multiple small sequence blocks that lie between conserved sequence elements. Within the hypervariable region, positive selection was identified from comparison of the silent and expressed genes. The unusual gene conversion mechanism that operates at the pilE/pilS locus is a strategy employed by N. meningitidis to enhance mutation of certain regions of the PilE protein. The silent copies of the gene effectively allow "parallelized" evolution of pilE, thus enabling the encoded protein to rapidly explore a large area of sequence space in an effort to find novel antigenic variants.

  18. Gene evolutionary trajectories and GC patterns driven by recombination in Zea mays

    Science.gov (United States)

    Recombination occurring during meiosis is critical for creating genetic variation and plays an essential role in plant evolution. In addition to creating novel gene combinations, recombination can affect genome structure through altering GC patterns. In maize (Zea mays) and other grasses, another in...

  19. Recombinant adenovirus-mediated gene transfer suppresses experimental arthritis

    Directory of Open Access Journals (Sweden)

    E. Quattrocchi

    2011-09-01

    Full Text Available Collagen Induced Arthritis (CIA is a widely studied animal model to develop and test novel therapeutic approaches for treating Rheumatoid Arthritis (RA in humans. Soluble Cytotoxic T-Lymphocyte Antigen 4 (CTLA4-Ig, which binds B7 molecule on antigen presenting cells and blocks CD28 mediated T-lymphocyte activation, has been shown to ameliorate experimental autoimmune diseases such as lupus, diabetes and CIA. Objective of our research was to investigate in vivo the effectiveness of blocking the B7/CD28 T-lymphocyte co-stimulatory pathway, utilizing a gene transfer technology, as a therapeutic strategy against CIA. Replication-deficient adenoviruses encoding a chimeric CTLA4-Ig fusion protein, or β-galactosidase as control, have been injected intravenously once at arthritis onset. Disease activity has been monitored by the assessment of clinical score, paw thickness and type II collagen (CII specific cellular and humoral immune responses for 21 days. The adenovirally delivered CTLA4-Ig fusion protein at a dose of 2×108 pfu suppressed established CIA, whereas the control β-galactosidase did not significantly affect the disease course. CII-specific lymphocyte proliferation, IFNg production and anti-CII antibodies were significantly reduced by CTLA4-Ig treatment. Our results demonstrate that blockade of the B7/CD28 co-stimulatory pathway by adenovirus-mediated CTLA4-Ig gene transfer is effective in treating established CIA suggesting its potential in treating RA.

  20. Relationship between recombinant protein expression and host metabolome as determined by two-dimensional NMR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Young Kee Chae

    Full Text Available Escherichia coli has been the most widely used host to produce large amounts of heterologous proteins. However, given an input plasmid DNA, E. coli may produce soluble protein, produce only inclusion bodies, or yield little or no protein at all. Many efforts have been made to surmount these problems, but most of them have involved time-consuming and labor-intensive trial-and-error. We hypothesized that different metabolomic fingerprints might be associated with different protein production outcomes. If so, then it might be possible to change the expression pattern by manipulating the metabolite environment. As a first step in testing this hypothesis, we probed a subset of the intracellular metabolites by partially labeling it with 13C-glucose. We tested 71 genes and identified 17 metabolites by employing the two-dimensional NMR spectroscopy. The statistical analysis showed that there existed the metabolite compositions favoring protein production. We hope that this work would help devise a systematic and predictive approach to the recombinant protein production.

  1. Molecular Evolution at a Meiosis Gene Mediates Species Differences in the Rate and Patterning of Recombination.

    Science.gov (United States)

    Brand, Cara L; Cattani, M Victoria; Kingan, Sarah B; Landeen, Emily L; Presgraves, Daven C

    2018-04-23

    Crossing over between homologous chromosomes during meiosis repairs programmed DNA double-strand breaks, ensures proper segregation at meiosis I [1], shapes the genomic distribution of nucleotide variability in populations, and enhances the efficacy of natural selection among genetically linked sites [2]. Between closely related Drosophila species, large differences exist in the rate and chromosomal distribution of crossing over. Little, however, is known about the molecular genetic changes or population genetic forces that mediate evolved differences in recombination between species [3, 4]. Here, we show that a meiosis gene with a history of rapid evolution acts as a trans-acting modifier of species differences in crossing over. In transgenic flies, the dicistronic gene, mei-217/mei-218, recapitulates a large part of the species differences in the rate and chromosomal distribution of crossing over. These phenotypic differences appear to result from changes in protein sequence not gene expression. Our population genetics analyses show that the protein-coding sequence of mei-218, but not mei-217, has a history of recurrent positive natural selection. By modulating the intensity of centromeric and telomeric suppression of crossing over, evolution at mei-217/-218 has incidentally shaped gross differences in the chromosomal distribution of nucleotide variability between species. We speculate that recurrent bouts of adaptive evolution at mei-217/-218 might reflect a history of coevolution with selfish genetic elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages

    KAUST Repository

    Phelan, Jody E.; Coll, Francesc; Bergval, Indra; Anthony, Richard M.; Warren, Rob; Sampson, Samantha L.; Gey van Pittius, Nicolaas C.; Glynn, Judith R.; Crampin, Amelia C.; Alves, Adriana; Bessa, Theolis Barbosa; Campino, Susana; Dheda, Keertan; Grandjean, Louis; Hasan, Rumina; Hasan, Zahra; Miranda, Anabela; Moore, David; Panaiotov, Stefan; Perdigao, Joao; Portugal, Isabel; Sheen, Patricia; de Oliveira Sousa, Erivelton; Streicher, Elizabeth M.; van Helden, Paul D.; Viveiros, Miguel; Hibberd, Martin L.; Pain, Arnab; McNerney, Ruth; Clark, Taane G.

    2016-01-01

    . tuberculosis complex genomes and long read sequence data were used to validate the approach. SNP analysis revealed that variation in the majority of the 168 pe/ppe genes studied was consistent with lineage. Several recombination hotspots were identified

  3. Recombiner

    International Nuclear Information System (INIS)

    Saalfrank, H.

    1985-01-01

    Air containing hydrogen can be oxidized by heating in a container called a recombiner, in order to avoid the collection of hydrogen. The container is long and a large number of straight heating bars are arranged in parallel in it and they are flanged to a lid. The heating bars are surrounded by tubes, in order to obtain good heat transfer by a narrow annular gap. (orig.) [de

  4. A recombinant lactobacillus strain expressing genes coding for ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... venting sexual transmission of HIV in women. Base on the .... genetically engineer lactobacilli that can express these .... nerative Medicine, an emerging interdisciplinary field of research and ... Barriers to recombination. In S.

  5. Production of Recombinant and Tagged Proteins in the Hyperthermophilic Archaeon Sulfolobus solfataricus

    NARCIS (Netherlands)

    Albers, S.-V.; Jonuscheit, M.; Dinkelaker, S.; Urich, T.; Kletzin, A.; Tampé, R.; Driessen, A.J.M.; Schleper, C.

    Many systems are available for the production of recombinant proteins in bacterial and eukaryotic model organisms, which allow us to study proteins in their native hosts and to identify protein-protein interaction partners. In contrast, only a few transformation systems have been developed for

  6. Protein expression of Myt272-3 recombinant clone and in silico ...

    African Journals Online (AJOL)

    Purpose: To investigate the expression of Myt272-3 recombinant protein and also to predict a possible protein vaccine candidate against Mycobacterium tuberculosis. Methods: Myt272-3 protein was expressed in pET30a+-Myt272-3 clone. The purity of the protein was determined using Dynabeads® His-Tag Isolation ...

  7. Effects of the rad52 gene on recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, S.; Prakash, L.; Burke, W.; Montelone, B.A.

    1980-01-01

    Effects of the rad 52 mutation in Saccharomyces cerevisiae on meiotic, γ-ray-induced, uv-induced and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Both intra and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative medium at different time intervals. No intragenic recombination was observed at the his1-1/his1-315 and trp-5-2/trp5-48 heteroalleles. Gene-centromere recombination also was not observed in rad/52/rad52 diploids. No γ-ray- or uv-induced intragenic mitotic recombination is seen in rad52/rad52 diploids. The rate of spontaneous mitotic recombination is lowered five-fold at the his1-1/his1-315 and leu1-c/leu1-12 heteroalleles. Spontaneous reversion rates of both his1-1 and his1-315 were elevated 10 to 20 fold in rad52/rad52 diploids. The RAD52 gene function is required for spontaneous mitotic recombination, uv- and γ-ray-induced mitotic recombination and mitotic recombination

  8. Copper-zinc-superoxide dismutase (CuZnSOD), an antioxidant gene from seahorse (Hippocampus abdominalis); molecular cloning, sequence characterization, antioxidant activity and potential peroxidation function of its recombinant protein.

    Science.gov (United States)

    Perera, N C N; Godahewa, G I; Lee, Jehee

    2016-10-01

    Copper-zinc-superoxide dismutase (CuZnSOD) from Hippocampus abdominalis (HaCuZnSOD) is a metalloenzyme which belongs to the ubiquitous family of SODs. Here, we determined the characteristic structural features of HaCuZnSOD, analyzed its evolutionary relationships, and identified its potential immune responses and biological functions in relation to antioxidant defense mechanisms in the seahorse. The gene had a 5' untranslated region (UTR) of 67 bp, a coding sequence of 465 bp and a 3' UTR of 313 bp. The putative peptide consists of 154 amino acids. HaCuZnSOD had a predicted molecular mass of 15.94 kDa and a theoretical pI value of 5.73, which is favorable for copper binding activity. In silico analysis revealed that HaCuZnSOD had a prominent Cu-Zn_superoxide_dismutase domain, two Cu/Zn signature sequences, a putative N-glycosylation site, and several active sites including Cu(2+) and Zn(2+) binding sites. The three dimensional structure indicated a β-sheet barrel with 8 β-sheets and two short α-helical regions. Multiple alignment analyses revealed many conserved regions and active sites among its orthologs. The highest amino acid identity to HaCuZnSOD was found in Siniperca chuatsi (87.4%), while Maylandia zebra shared a close relationship in the phylogenetic analysis. Functional assays were performed to assess the antioxidant, biophysical and biochemical properties of overexpressed recombinant (r) HaCuZnSOD. A xanthine/XOD assay gave optimum results at pH 9 and 25 °C indicating these may be the best conditions for its antioxidant action in the seahorse. An MTT assay and flow cytometry confirmed that rHaCuZnSOD showed peroxidase activity in the presence of HCO3(-). In all the functional assays, the level of antioxidant activity of rHaCuZnSOD was concentration dependent; metal ion supplementation also increased its activity. The highest mRNA expressional level of HaCuZnSOD was found in blood. Temporal assessment under pathological stress showed a delay

  9. Construction and Antiapoptosis Activities of Recombinant Adenoviral Expression Vector Carrying EBV Latent Membrane Protein 2A

    Directory of Open Access Journals (Sweden)

    Xishuang Liu

    2011-01-01

    Full Text Available To evaluate the possible effects of LMP2A (EBV latent membrane protein 2A on human gastric cancer cell line SGC-7901, LMP2A coding gene was subcloned into shuttle plasmid pAdTrackCMV to form transfer plasmid pAdTrackCMV-2A, which was linearized with PmeI and cotransformed into E.coli BJ5183 with adenovirus genomic plasmid of pAdeasy-1. The identified recombinant adenovirus plasmid DNA was digested with PacI and transfected into 293 cells to package recombinant adenovirus particles named vAd-2A. Then the expression and antiapoptosis activities of LMP2A on SGC-7901 infected with vAd-2A were analyzed. The vAd-2A was successfully constructed and identified by PCR, restriction digestion, and sequencing. LMP2A expression in SGC was identified by strong green fluorescence expression with fluorescence microscopic photograph and Southern blotting. The growth of LMP2A expressing SGC cells was apparently improved. Both cyclin E expression and S phase ratio in LMP2A expressing SGC cells were upregulated by cell cycle analysis and confocal microscopic analysis respectively. The replication-deficient recombinant adenovirus vector can express LMP2A antigen in SGC cells and inhibit their apoptosis. The results indicate that LMP2A might play an important role in pathogenesis of EBV-associated gastric cancer (EBVaGC. This study establishes a foundation for further study on EBVaGC and its gene therapy.

  10. Cloning, expression and purification of recombinant streptokinase: partial characterization of the protein expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    L. Avilán

    1997-12-01

    Full Text Available We cloned the streptokinase (STK gene of Streptococcus equisimilis in an expression vector of Escherichia coli to overexpress the profibrinolytic protein under the control of a tac promoter. Almost all the recombinant STK was exported to the periplasmic space and recovered after gentle lysozyme digestion of induced cells. The periplasmic fraction was chromatographed on DEAE Sepharose followed by chromatography on phenyl-agarose. Active proteins eluted between 4.5 and 0% ammonium sulfate, when a linear gradient was applied. Three major STK derivatives of 47.5 kDa, 45 kDa and 32 kDa were detected by Western blot analysis with a polyclonal antibody. The 32-kDa protein formed a complex with human plasminogen but did not exhibit Glu-plasminogen activator activity, as revealed by a zymographic assay, whereas the 45-kDa protein showed a Km = 0.70 µM and kcat = 0.82 s-1, when assayed with a chromogen-coupled substrate. These results suggest that these proteins are putative fragments of STK, possibly derived from partial degradation during the export pathway or the purification steps. The 47.5-kDa band corresponded to the native STK, as revealed by peptide sequencing

  11. Companion Protease Inhibitors for the In Situ Protection of Recombinant Proteins in Plants.

    Science.gov (United States)

    Robert, Stéphanie; Jutras, Philippe V; Khalf, Moustafa; D'Aoust, Marc-André; Goulet, Marie-Claire; Sainsbury, Frank; Michaud, Dominique

    2016-01-01

    We previously described a procedure for the use of plant protease inhibitors as "companion" accessory proteins to prevent unwanted proteolysis of clinically useful recombinant proteins in leaf crude protein extracts (Benchabane et al. Methods Mol Biol 483:265-273, 2009). Here we describe the use of these inhibitors for the protection of recombinant proteins in planta, before their extraction from leaf tissues. A procedure is first described involving inhibitors co-expressed along-and co-migrating-with the protein of interest in host plant cells. An alternative, single transgene scheme is then described involving translational fusions of the recombinant protein and companion inhibitor. These approaches may allow for a significant improvement of protein steady-state levels in leaves, comparable to yield improvements observed with protease-deficient strains of less complex protein expression hosts such as E. coli or yeasts.

  12. Generation of monoclonal antibodies for the assessment of protein purification by recombinant ribosomal coupling

    DEFF Research Database (Denmark)

    Kristensen, Janni; Sperling-Petersen, Hans Uffe; Mortensen, Kim Kusk

    2005-01-01

    We recently described a conceptually novel method for the purification of recombinant proteins with a propensity to form inclusion bodies in the cytoplasm of Escherichia coli. Recombinant proteins were covalently coupled to the E. coli ribosome by fusing them to ribosomal protein 23 (rpL23...... therefore purified rpL23-GFP-His, rpL23-His and GFP from E. coli recombinants using affinity, ion exchange and hydrophobic interaction chromatography. These proteins could be purified with yields of 150, 150 and 1500 microg per gram cellular wet weight, respectively. However, rpL23-GFP-His could only...... proteolytic cleavage sites. We conclude that the generated antibodies can be used to evaluate ribosomal coupling of recombinant target proteins as well as the efficiency of their separation from the ribosome....

  13. A new potential secretion pathway for recombinant proteins in Bacillus subtilis.

    Science.gov (United States)

    Wang, Guangqiang; Xia, Yongjun; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Chen, Haiqin; Ai, Lianzhong; Chen, Wei

    2015-11-10

    Secretion of cytoplasmic expressed proteins into growth media has significant advantages. Due to the lack of an outer membrane, Bacillus subtilis is considered as a desirable 'cell factory' for the secretion of recombinant proteins. However, bottlenecks in the classical pathway for the secretion of recombinant proteins limit its use on a wide scale. In this study, we attempted to use four typical non-classically secreted proteins as signals to export three recombinant model proteins to the culture medium. All four non-classically secreted proteins can direct the export of the intrinsically disordered nucleoskeletal-like protein (Nsp). Two of them can guide the secretion of alkaline phosphatase (PhoA). One can lead the secretion of the thermostable β-galactosidase BgaB, which cannot be secreted with the aid of typical Sec-dependent signal peptides. Our results show that the non-classically secreted proteins lead the recombinant proteins to the culture medium, and thus non-classical protein secretion pathways can be exploited as a novel secretion pathway for recombinant proteins.

  14. Advances in Mammalian Cell Line Development Technologies for Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Say Kong Ng

    2013-04-01

    Full Text Available From 2006 to 2011, an average of 15 novel recombinant protein therapeutics have been approved by US Food and Drug Administration (FDA annually. In addition, the expiration of blockbuster biologics has also spurred the emergence of biosimilars. The increasing numbers of innovator biologic products and biosimilars have thus fuelled the demand of production cell lines with high productivity. Currently, mammalian cell line development technologies used by most biopharmaceutical companies are based on either the methotrexate (MTX amplification technology or the glutamine synthetase (GS system. With both systems, the cell clones obtained are highly heterogeneous, as a result of random genome integration by the gene of interest and the gene amplification process. Consequently, large numbers of cell clones have to be screened to identify rare stable high producer cell clones. As such, the cell line development process typically requires 6 to 12 months and is a time, capital and labour intensive process. This article reviews established advances in protein expression and clone screening which are the core technologies in mammalian cell line development. Advancements in these component technologies are vital to improve the speed and efficiency of generating robust and highly productive cell line for large scale production of protein therapeutics.

  15. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    Science.gov (United States)

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    Directory of Open Access Journals (Sweden)

    Camila Figueiredo Pinzan

    Full Text Available Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6 or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6 to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  17. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    Science.gov (United States)

    Pinzan, Camila Figueiredo; Sardinha-Silva, Aline; Almeida, Fausto; Lai, Livia; Lopes, Carla Duque; Lourenço, Elaine Vicente; Panunto-Castelo, Ademilson; Matthews, Stephen; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  18. Sequence Identification, Recombinant Production, and Analysis of the Self-Assembly of Egg Stalk Silk Proteins from Lacewing Chrysoperla carnea.

    Science.gov (United States)

    Neuenfeldt, Martin; Scheibel, Thomas

    2017-06-13

    Egg stalk silks of the common green lacewing Chrysoperla carnea likely comprise at least three different silk proteins. Based on the natural spinning process, it was hypothesized that these proteins self-assemble without shear stress, as adult lacewings do not use a spinneret. To examine this, the first sequence identification and determination of the gene expression profile of several silk proteins and various transcript variants thereof was conducted, and then the three major proteins were recombinantly produced in Escherichia coli encoded by their native complementary DNA (cDNA) sequences. Circular dichroism measurements indicated that the silk proteins in aqueous solutions had a mainly intrinsically disordered structure. The largest silk protein, which we named ChryC1, exhibited a lower critical solution temperature (LCST) behavior and self-assembled into fibers or film morphologies, depending on the conditions used. The second silk protein, ChryC2, self-assembled into nanofibrils and subsequently formed hydrogels. Circular dichroism and Fourier transform infrared spectroscopy confirmed conformational changes of both proteins into beta sheet rich structures upon assembly. ChryC3 did not self-assemble into any morphology under the tested conditions. Thereby, through this work, it could be shown that recombinant lacewing silk proteins can be produced and further used for studying the fiber formation of lacewing egg stalks.

  19. Stabilizing additives added during cell lysis aid in the solubilization of recombinant proteins.

    Directory of Open Access Journals (Sweden)

    David J Leibly

    Full Text Available Insoluble recombinant proteins are a major issue for both structural genomics and enzymology research. Greater than 30% of recombinant proteins expressed in Escherichia coli (E. coli appear to be insoluble. The prevailing view is that insolubly expressed proteins cannot be easily solubilized, and are usually sequestered into inclusion bodies. However, we hypothesize that small molecules added during the cell lysis stage can yield soluble protein from insoluble protein previously screened without additives or ligands. We present a novel screening method that utilized 144 additive conditions to increase the solubility of recombinant proteins expressed in E. coli. These selected additives are natural ligands, detergents, salts, buffers, and chemicals that have been shown to increase the stability of proteins in vivo. We present the methods used for this additive solubility screen and detailed results for 41 potential drug target recombinant proteins from infectious organisms. Increased solubility was observed for 80% of the recombinant proteins during the primary and secondary screening of lysis with the additives; that is 33 of 41 target proteins had increased solubility compared with no additive controls. Eleven additives (trehalose, glycine betaine, mannitol, L-Arginine, potassium citrate, CuCl(2, proline, xylitol, NDSB 201, CTAB and K(2PO(4 solubilized more than one of the 41 proteins; these additives can be easily screened to increase protein solubility. Large-scale purifications were attempted for 15 of the proteins using the additives identified and eight (40% were prepared for crystallization trials during the first purification attempt. Thus, this protocol allowed us to recover about a third of seemingly insoluble proteins for crystallography and structure determination. If recombinant proteins are required in smaller quantities or less purity, the final success rate may be even higher.

  20. Escherichia coli fusion carrier proteins act as solubilizing agents for recombinant uncoupling protein 1 through interactions with GroEL

    International Nuclear Information System (INIS)

    Douette, Pierre; Navet, Rachel; Gerkens, Pascal; Galleni, Moreno; Levy, Daniel; Sluse, Francis E.

    2005-01-01

    Fusing recombinant proteins to highly soluble partners is frequently used to prevent aggregation of recombinant proteins in Escherichia coli. Moreover, co-overexpression of prokaryotic chaperones can increase the amount of properly folded recombinant proteins. To understand the solubility enhancement of fusion proteins, we designed two recombinant proteins composed of uncoupling protein 1 (UCP1), a mitochondrial membrane protein, in fusion with MBP or NusA. We were able to express soluble forms of MBP-UCP1 and NusA-UCP1 despite the high hydrophobicity of UCP1. Furthermore, the yield of soluble fusion proteins depended on co-overexpression of GroEL that catalyzes folding of polypeptides. MBP-UCP1 was expressed in the form of a non-covalent complex with GroEL. MBP-UCP1/GroEL was purified and characterized by dynamic light scattering, gel filtration, and electron microscopy. Our findings suggest that MBP and NusA act as solubilizing agents by forcing the recombinant protein to pass through the bacterial chaperone pathway in the context of fusion protein

  1. Improved antifungal activity of barley derived chitinase I gene that overexpress a 32 kDa recombinant chitinase in Escherichia coli host

    Directory of Open Access Journals (Sweden)

    Nida Toufiq

    Full Text Available Abstract Agricultural crops suffer many diseases, including fungal and bacterial infections, causing significant yield losses. The identification and characterisation of pathogenesis-related protein genes, such as chitinases, can lead to reduction in pathogen growth, thereby increasing tolerance against fungal pathogens. In the present study, the chitinase I gene was isolated from the genomic DNA of Barley (Hordeum vulgare L. cultivar, Haider-93. The isolated DNA was used as template for the amplification of the ∼935 bp full-length chitinase I gene. Based on the sequence of the amplified gene fragment, class I barley chitinase shares 93% amino acid sequence homology with class II wheat chitinase. Interestingly, barley class I chitinase and class II chitinase do not share sequence homology. Furthermore, the amplified fragment was expressed in Escherichia coli Rosetta strain under the control of T7 promoter in pET 30a vector. Recombinant chitinase protein of 35 kDa exhibited highest expression at 0.5 mM concentration of IPTG. Expressed recombinant protein of 35 kDa was purified to homogeneity with affinity chromatography. Following purification, a Western blot assay for recombinant chitinase protein measuring 35 kDa was developed with His-tag specific antibodies. The purified recombinant chitinase protein was demonstrated to inhibit significantly the important phytopathogenic fungi Alternaria solani, Fusarium spp, Rhizoctonia solani and Verticillium dahliae compared to the control at concentrations of 80 µg and 200 µg.

  2. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  3. Advances in animal cell recombinant protein production: GS-NS0 expression system.

    Science.gov (United States)

    Barnes, L M; Bentley, C M; Dickson, A J

    2000-02-01

    The production of recombinant proteins using mammalian cell expression systems is of growing importance within biotechnology, largely due to the ability of specific mammalian cells to carry out post-translational modifications of the correct fidelity. The Glutamine Synthetase-NS0 system is now one such industrially important expression system.Glutamine synthetase catalyses the formation ofglutamine from glutamate and ammonia. NS0 cellscontain extremely low levels of endogenous glutaminesynthetase activity, therefore exogenous glutaminesynthetase can be used efficiently as a selectablemarker to identify successful transfectants in theabsence of glutamine in the media. In addition, theinclusion of methionine sulphoximine, an inhibitor ofglutamine synthetase activity, enables furtherselection of those clones producing relatively highlevels of transfected glutamine synthetase and henceany heterologous gene which is coupled to it. Theglutamine synthetase system technology has been usedfor research and development purposes during thisdecade and its importance is clearly demonstrated nowthat two therapeutic products produced using thissystem have reached the market place.

  4. Bacteriophage T4 gene 32 participates in excision repair as well as recombinational repair of UV damages

    International Nuclear Information System (INIS)

    Mosig, G.

    1985-01-01

    Gene 32 of phage T4 has been shown previously to be involved in recombinational repair of UV damages but, based on a mutant study, was thought not to be required for excision repair. However, a comparison of UV-inactivation curves of several gene 32 mutants grown under conditions permissive for progeny production in wild-type or polA- hosts demonstrates that gene 32 participates in both kinds of repair. Different gene 32 mutations differentially inactivate these repair functions. Under conditions permissive for DNA replication and progeny production, all gene 32 mutants investigated here are partially defective in recombinational repair, whereas only two of them, P7 and P401, are also defective in excision repair. P401 is the only mutant whose final slope of the inactivation curve is significantly steeper than that of wild-type T4. These results are discussed in terms of interactions of gp32, a single-stranded DNA-binding protein, with DNA and with other proteins

  5. Cloning, expression, and purification of recombinant protein MPT-64 from a virulent strain of Mycobacterium bovis in a prokaryotic system.

    Science.gov (United States)

    Tashakkori, Maryam Mohammadi; Tebianian, Majid; Tabatabaei, Mohammad; Mosavari, Nader

    2016-12-01

    Tuberculosis (TB) is a zoonotic infectious disease common to humans and animals that is caused by the rod-shaped acid-fast bacterium Mycobacterium bovis. Rapid and sensitive detection of TB is promoted by specific antigens. Virulent strains of the TB complex from M. bovis contain 16 regions of difference (RD) in their genome that encode important proteins, including major protein of Mycobacterium Tuberculosis 64 (MBT-64, which is a primary immune-stimulating antigen encoded by RD-2. In this study, we cloned, expressed, and purified MPT-64 as a potent M. bovis antigen in a prokaryotic system for use in future diagnostic studies. The antigenic region of the Mpt64 gene was investigated by bioinformatics methods, cloned into the PQE-30 plasmid, and expressed in Escherichia coli M15 cells, followed by isopropyl β-d-1-thiogalactopyranoside induction. The expressed protein was analyzed sodium dodecyl sulfate polyacrylamide gel electrophoresis and purified using a nickel-affinity column. Biological activity was confirmed by western blot using specific antibodies. Our data verified the successful cloning of the Mpt64 gene (687-bp segment) via the expression vector and purification of recombinant MPT-64 as a 24-kDa protein. These results indicated successful expression and purification of recombinant MPT-64 protein in a prokaryotic system. This protein can be used for serological diagnosis, improved detection of pathogenicity and non-pathogenicity between infected cattle, and for verification of suspected cases of bovine TB. Copyright © 2016.

  6. [Study on the anti-NTHi infection of Hap recombinant protein in vivo].

    Science.gov (United States)

    Li, Wan-yi; Wang, Bao-ning; Zuo, Feng-qiong; Zeng, Wei; Feng, Feng; Kuang, Yu; Jiang, Zhong-hua; Li, Ming-yuan

    2010-07-01

    To observe the immune effect of Hap recombinant protein on murine model of bronchopneumonia infected with NTHi, and explore the mechanism about the anti-NTHi infection. The C57BL/6 mice intranasally immunized with purified Hap recombinant protein and CT-B were challenged by NTHi encased in agar beads. The immunifaction of anti-infection was observed through encocyte counting of BALF, bacteria detection of lung and the pathologyical change of lung tissue. In the challenge with NTHi experiment, the inflammatory exudation of the infected murine and pathological change of lung tissue was relieved by combined immunization of Hap recombinant protein and CT-B, and quantity of NTHi in lung of the infected murine was reduced obviously. The Hap recombinant protein also had good ability of anti-NTHi infection in the murine model of NTHi bronchopneumonia. This study could offer the oretical and experimental basis for development of new vaccine against NTHi.

  7. The population and evolutionary dynamics of homologous gene recombination in bacterial populations.

    Directory of Open Access Journals (Sweden)

    Bruce R Levin

    2009-08-01

    Full Text Available In bacteria, recombination is a rare event, not a part of the reproductive process. Nevertheless, recombination -- broadly defined to include the acquisition of genes from external sources, i.e., horizontal gene transfer (HGT -- plays a central role as a source of variation for adaptive evolution in many species of bacteria. Much of niche expansion, resistance to antibiotics and other environmental stresses, virulence, and other characteristics that make bacteria interesting and problematic, is achieved through the expression of genes and genetic elements obtained from other populations of bacteria of the same and different species, as well as from eukaryotes and archaea. While recombination of homologous genes among members of the same species has played a central role in the development of the genetics and molecular biology of bacteria, the contribution of homologous gene recombination (HGR to bacterial evolution is not at all clear. Also, not so clear are the selective pressures responsible for the evolution and maintenance of transformation, the only bacteria-encoded form of HGR. Using a semi-stochastic simulation of mutation, recombination, and selection within bacterial populations and competition between populations, we explore (1 the contribution of HGR to the rate of adaptive evolution in these populations and (2 the conditions under which HGR will provide a bacterial population a selective advantage over non-recombining or more slowly recombining populations. The results of our simulation indicate that, under broad conditions: (1 HGR occurring at rates in the range anticipated for bacteria like Streptococcus pneumoniae, Escherichia coli, Haemophilus influenzae, and Bacillus subtilis will accelerate the rate at which a population adapts to environmental conditions; (2 once established in a population, selection for this capacity to increase rates of adaptive evolution can maintain bacteria-encoded mechanisms of recombination and prevent

  8. An efficient tag derived from the common epitope of tospoviral NSs proteins for monitoring recombinant proteins expressed in both bacterial and plant systems.

    Science.gov (United States)

    Cheng, Hao-Wen; Chen, Kuan-Chun; Raja, Joseph A J; Li, Jian-Xian; Yeh, Shyi-Dong

    2013-04-15

    NSscon (23 aa), a common epitope in the gene silencing suppressor NSs proteins of the members of the Watermelon silver mottle virus (WSMoV) serogroup, was previously identified. In this investigation, we expressed different green fluorescent protein (GFP)-fused deletions of NSscon in bacteria and reacted with NSscon monoclonal antibody (MAb). Our results indicated that the core 9 amino acids, "(109)KFTMHNQIF(117)", denoted as "nss", retain the reactivity of NSscon. In bacterial pET system, four different recombinant proteins labeled with nss, either at N- or C-extremes, were readily detectable without position effects, with sensitivity superior to that for the polyhistidine-tag. When the nss-tagged Zucchini yellow mosaic virus (ZYMV) helper component-protease (HC-Pro) and WSMoV nucleocapsid protein were transiently expressed by agroinfiltration in tobacco, they were readily detectable and the tag's possible efficacy for gene silencing suppression was not noticed. Co-immunoprecipitation of nss-tagged and non-tagged proteins expressed from bacteria confirmed the interaction of potyviral HC-Pro and coat protein. Thus, we conclude that this novel nss sequence is highly valuable for tagging recombinant proteins in both bacterial and plant expression systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    International Nuclear Information System (INIS)

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi; Mathews, Lydia; Lucas, William T.; Murphy, Cynthia G.; Felber, Barbara K.; Pavlakis, George N.; Deluca, Neal A.; Knipe, David M.

    2007-01-01

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV gene products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli β-galactosidase induced durable β-gal-specific IgG and CD8 + T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes

  10. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    Science.gov (United States)

    Withers, III, Sydnor T.; Dominguez, Miguel A; DeLisa, Matthew P.; Haitjema, Charles H.

    2016-08-09

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  11. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein

    DEFF Research Database (Denmark)

    Rolf, B; Oudenampsen-Krüger, E; Börchers, T

    1995-01-01

    The coding part of the cDNA for bovine liver-type fatty acid binding protein (L-FABP) has been amplified by RT-PCR, cloned and used for the construction of an Escherichia coli (E. coli) expression system. The recombinant protein made up to 25% of the soluble E. coli proteins and could be isolated...

  12. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Withers, III, Sydnor T.; Dominguez, Miguel A.; DeLisa, Matthew P.; Haitjema, Charles H.

    2017-02-21

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  13. Recombinant protein production data after expression in the bacterium Escherichia coli

    Directory of Open Access Journals (Sweden)

    J. Enrique Cantu-Bustos

    2016-06-01

    Full Text Available Fusion proteins have become essential for the expression and purification of recombinant proteins in Escherichia coli. The metal-binding protein CusF has shown several features that make it an attractive fusion protein and affinity tag: "Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF" (Cantu-Bustos et al., 2016 [1]. Here we present accompanying data from protein expression experiments; we tested different protein tags, temperatures, expression times, cellular compartments, and concentrations of inducer in order to obtain soluble protein and low formation of inclusion bodies. Additionally, we present data from the purification of the green fluorescent protein (GFP tagged with CusF, using Ag(I metal affinity chromatography.

  14. Yeast expressed recombinant Hemagglutinin protein of Novel H1N1 elicits neutralising antibodies in rabbits and mice

    Directory of Open Access Journals (Sweden)

    Athmaram TN

    2011-11-01

    Full Text Available Abstract Currently available vaccines for the pandemic Influenza A (H1N1 2009 produced in chicken eggs have serious impediments viz limited availability, risk of allergic reactions and the possible selection of sub-populations differing from the naturally occurring virus, whereas the cell culture derived vaccines are time consuming and may not meet the demands of rapid global vaccination required to combat the present/future pandemic. Hemagglutinin (HA based subunit vaccine for H1N1 requires the HA protein in glycosylated form, which is impossible with the commonly used bacterial expression platform. Additionally, bacterial derived protein requires extensive purification and refolding steps for vaccine applications. For these reasons an alternative heterologous system for rapid, easy and economical production of Hemagglutinin protein in its glycosylated form is required. The HA gene of novel H1N1 A/California/04/2009 was engineered for expression in Pichia pastoris as a soluble secreted protein. The full length HA- synthetic gene having α-secretory tag was integrated into P. pastoris genome through homologous recombination. The resultant Pichia clones having multiple copy integrants of the transgene expressed full length HA protein in the culture supernatant. The Recombinant yeast derived H1N1 HA protein elicited neutralising antibodies both in mice and rabbits. The sera from immunised animals also exhibited Hemagglutination Inhibition (HI activity. Considering the safety, reliability and also economic potential of Pichia expression platform, our preliminary data indicates the feasibility of using this system as an alternative for large-scale production of recombinant influenza HA protein in the face of influenza pandemic threat.

  15. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    Science.gov (United States)

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Use of a protein engineering strategy to overcome limitations in the production of "Difficult to Express" recombinant proteins.

    Science.gov (United States)

    Hussain, Hirra; Fisher, David I; Abbott, W Mark; Roth, Robert G; Dickson, Alan J

    2017-10-01

    Certain recombinant proteins are deemed "difficult to express" in mammalian expression systems requiring significant cell and/or process engineering to abrogate expression bottlenecks. With increasing demand for the production of recombinant proteins in mammalian cells, low protein yields can have significant consequences for industrial processes. To investigate the molecular mechanisms that restrict expression of recombinant proteins, naturally secreted model proteins were analyzed from the tissue inhibitors of metalloproteinase (TIMP) protein family. In particular, TIMP-2 and TIMP-3 were subjected to detailed study. TIMP proteins share significant sequence homology (∼50% identity and ∼70% similarity in amino acid sequence). However, they show marked differences in secretion in mammalian expression systems despite this extensive sequence homology. Using these two proteins as models, this study characterized the molecular mechanisms responsible for poor recombinant protein production. Our results reveal that both TIMP-2 and TIMP-3 are detectable at mRNA and protein level within the cell but only TIMP-2 is secreted effectively into the extracellular medium. Analysis of protein localization and the nature of intracellular protein suggest TIMP-3 is severely limited in its post-translational processing. To overcome this challenge, modification of the TIMP-3 sequence to include a furin protease-cleavable pro-sequence resulted in secretion of the modified TIMP-3 protein, however, incomplete processing was observed. Based on the TIMP-3 data, the protein engineering approach was optimized and successfully applied in combination with cell engineering, the overexpression of furin, to another member of the TIMP protein family (the poorly expressed TIMP-4). Use of the described protein engineering strategy resulted in successful secretion of poorly (TIMP-4) and non-secreted (TIMP-3) targets, and presents a novel strategy to enhance the production of "difficult" recombinant

  17. Combinations of SPR and MS for Characterizations of Native and Recombinant Proteins in Cell Lysates

    DEFF Research Database (Denmark)

    Borch, Jonas; Roepstorff, Peter

    2006-01-01

    Surface plasmon resonance and mass spectrometry (SPR-MS) has been combined for quality check of recombinant 6xHis-tagged 14-3-3 proteins expressed in Escherichia coli. Lysates were injected over an SPR sensorchip with immobilized Ni2+ for SPR analysis of the specific Ni2+ binding response...... and stability. To validate the identity, intactness and homogeneity of the captured proteins were eluted for mass spectrometric analysis of intact molecular weight and peptide mass mapping. Additionally, the captured recombinant proteins were investigated for specific binding to known phosphorylated ligands...... of 14-3-3 proteins in order to test their activity. Specific binding of recombinant and native 14-3-3 proteins in complex mixtures to immobilized phosphopeptides and subsequent elution was also tested by SPR-MS. Ammonium sulfate precipitate fractions from lysates of E. coli expressing 14-3-3 protein...

  18. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli

    DEFF Research Database (Denmark)

    Sørensen, Hans; Mortensen, Kim

    2005-01-01

    Pure, soluble and functional proteins are of high demand in modern biotechnology. Natural protein sources rarely meet the requirements for quantity, ease of isolation or price and hence recombinant technology is often the method of choice. Recombinant cell factories are constantly employed...... molecular tools available. In spite of all these qualities, expression of recombinant proteins with E. coli as the host often results in insoluble and/or nonfunctional proteins. Here we review new approaches to overcome these obstacles by strategies that focus on either controlled expression of target...... for the production of protein preparations bound for downstream purification and processing. Eschericia coli is a frequently used host, since it facilitates protein expression by its relative simplicity, its inexpensive and fast high density cultivation, the well known genetics and the large number of compatible...

  19. Genomic polymorphism, recombination, and linkage disequilibrium in human major histocompatibility complex-encoded antigen-processing genes.

    Science.gov (United States)

    van Endert, P M; Lopez, M T; Patel, S D; Monaco, J J; McDevitt, H O

    1992-01-01

    Recently, two subunits of a large cytosolic protease and two putative peptide transporter proteins were found to be encoded by genes within the class II region of the major histocompatibility complex (MHC). These genes have been suggested to be involved in the processing of antigenic proteins for presentation by MHC class I molecules. Because of the high degree of polymorphism in MHC genes, and previous evidence for both functional and polypeptide sequence polymorphism in the proteins encoded by the antigen-processing genes, we tested DNA from 27 consanguineous human cell lines for genomic polymorphism by restriction fragment length polymorphism (RFLP) analysis. These studies demonstrate a strong linkage disequilibrium between TAP1 and LMP2 RFLPs. Moreover, RFLPs, as well as a polymorphic stop codon in the telomeric TAP2 gene, appear to be in linkage disequilibrium with HLA-DR alleles and RFLPs in the HLA-DO gene. A high rate of recombination, however, seems to occur in the center of the complex, between the TAP1 and TAP2 genes. Images PMID:1360671

  20. Transcriptional profiling of protein expression related genes of Pichia pastoris under simulated microgravity.

    Directory of Open Access Journals (Sweden)

    Feng Qi

    Full Text Available The physiological responses and transcription profiling of Pichia pastoris GS115 to simulated microgravity (SMG were substantially changed compared with normal gravity (NG control. We previously reported that the recombinant P. pastoris grew faster under SMG than NG during methanol induction phase and the efficiencies of recombinant enzyme production and secretion were enhanced under SMG, which was considered as the consequence of changed transcriptional levels of some key genes. In this work, transcriptiome profiling of P. pastoris cultured under SMG and NG conditions at exponential and stationary phases were determined using next-generation sequencing (NGS technologies. Four categories of 141 genes function as methanol utilization, protein chaperone, RNA polymerase and protein transportation or secretion classified according to Gene Ontology (GO were chosen to be analyzed on the basis of NGS results. And 80 significantly changed genes were weighted and estimated by Cluster 3.0. It was found that most genes of methanol metabolism (85% of 20 genes and protein transportation or secretion (82.2% of 45 genes were significantly up-regulated under SMG. Furthermore the quantity and fold change of up-regulated genes in exponential phase of each category were higher than those of stationary phase. The results indicate that the up-regulated genes of methanol metabolism and protein transportation or secretion mainly contribute to enhanced production and secretion of the recombinant protein under SMG.

  1. Generation of Nanobodies against SlyD and development of tools to eliminate this bacterial contaminant from recombinant proteins.

    Science.gov (United States)

    Hu, Yaozhong; Romão, Ema; Vertommen, Didier; Vincke, Cécile; Morales-Yánez, Francisco; Gutiérrez, Carlos; Liu, Changxiao; Muyldermans, Serge

    2017-09-01

    The gene for a protein domain, derived from a tumor marker, fused to His tag codons and under control of a T7 promotor was expressed in E. coli strain BL21 (DE3). The recombinant protein was purified from cell lysates through immobilized metal affinity chromatography and size-exclusion chromatography. A contaminating bacterial protein was consistently co-purified, even using stringent washing solutions containing 50 or 100 mM imidazole. Immunization of a dromedary with this contaminated protein preparation, and the subsequent generation and panning of the immune Nanobody library yielded several Nanobodies of which 2/3 were directed against the bacterial contaminant, reflecting the immunodominance of this protein to steer the dromedary immune response. Affinity adsorption of this contaminant using one of our specific Nanobodies followed by mass spectrometry identified the bacterial contaminant as FKBP-type peptidyl-prolyl cis-trans isomerase (SlyD) from E. coli. This SlyD protein contains in its C-terminal region 14 histidines in a stretch of 31 amino acids, which explains its co-purification on Ni-NTA resin. This protein is most likely present to varying extents in all recombinant protein preparations after immobilized metal affinity chromatography. Using our SlyD-specific Nb 5 we generated an immune-complex that could be removed either by immunocapturing or by size exclusion chromatography. Both methods allow us to prepare a recombinant protein sample where the SlyD contaminant was quantitatively eliminated. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Recombinant human parathyroid hormone related protein 1-34 and 1-84 and their roles in osteoporosis treatment.

    Directory of Open Access Journals (Sweden)

    Hua Wang

    Full Text Available Osteoporosis is a common disorder characterized by compromised bone strength that predisposes patients to increased fracture risk. Parathyroid hormone related protein (PTHrP is one of the candidates for clinical osteoporosis treatment. In this study, GST Gene Fusion System was used to express recombinant human PTHrP (hPTHrP 1-34 and 1-84. To determine whether the recombinant hPTHrP1-34 and 1-84 can enhance renal calcium reabsorption and promote bone formation, we examined effects of recombinant hPTHrP1-34 and 1-84 on osteogenic lineage commitment in a primary bone marrow cell culture system and on osteoporosis treatment. Results revealed that both of recombinant hPTHrP1-34 and 1-84 increased colony formation and osteogenic cell differentiation and mineralization in vitro; however, the effect of recombinant hPTHrP1-84 is a little stronger than that of hPTHrP1-34. Next, ovariectomy was used to construct osteoporosis animal model (OVX to test activities of these two recombinants in vivo. HPTHrP1-84 administration elevated serum calcium by up-regulating the expression of renal calcium transporters, which resulted in stimulation of osteoblastic bone formation. These factors contributed to augmented bone mass in hPTHrP1-84 treated OVX mice but did not affect bone resorption. There was no obvious bone mass alteration in hPTHrP1-34 treated OVX mice, which may be, at least partly, associated with shorter half-life of hPTHrP1-34 compared to hPTHrP1-84 in vivo. This study implies that recombinant hPTHrP1-84 is more effective than hPTHrP1-34 to enhance renal calcium reabsorption and to stimulate bone formation in vivo.

  3. Two potential recombinant rabies vaccines expressing canine parvovirus virion protein 2 induce immunogenicity to canine parvovirus and rabies virus.

    Science.gov (United States)

    Luo, Jun; Shi, Hehe; Tan, Yeping; Niu, Xuefeng; Long, Teng; Zhao, Jing; Tian, Qin; Wang, Yifei; Chen, Hao; Guo, Xiaofeng

    2016-08-17

    Both rabies virus (RABV) and canine parvovirus (CPV) cause lethal diseases in dogs. In this study, both high egg passage Flury (HEP-Flury) strains of RABV and recombinant RABV carrying double RABV glycoprotein (G) gene were used to express the CPV virion protein 2 (VP2) gene, and were designated rHEP-VP2 and, rHEP-dG-VP2 respectively. The two recombinant RABVs maintained optimal virus titration according to their viral growth kinetics assay compared with the parental strain HEP-Flury. Western blotting indicated that G protein and VP2 were expressed in vitro. The expression of VP2 in Crandell feline kidney cells post-infection by rHEP-VP2 and rHEP-dG-VP2 was confirmed by indirect immunofluorescence assay with antibody against VP2. Immunogenicity of recombinant rabies viruses was tested in Kunming mice. Both rHEP-VP2 and rHEP-dG-VP2 induced high levels of rabies antibody compared with HEP-Flury. Mice immunized with rHEP-VP2 and rHEP-dG-VP2 both had a high level of antibodies against VP2, which can protect against CPV infection. A challenge experiment indicated that more than 80% mice immunized with recombinant RABVs survived after infection of challenge virus standard 24 (CVS-24). Together, this study showed that recombinant RABVs expressing VP2 induced protective immune responses to RABV and CPV. Therefore, rHEP-VP2 and rHEP-dG-VP2 might be potential combined vaccines for RABV and CPV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The synthesis of recombinant membrane proteins in yeast for structural studies.

    Science.gov (United States)

    Routledge, Sarah J; Mikaliunaite, Lina; Patel, Anjana; Clare, Michelle; Cartwright, Stephanie P; Bawa, Zharain; Wilks, Martin D B; Low, Floren; Hardy, David; Rothnie, Alice J; Bill, Roslyn M

    2016-02-15

    Historically, recombinant membrane protein production has been a major challenge meaning that many fewer membrane protein structures have been published than those of soluble proteins. However, there has been a recent, almost exponential increase in the number of membrane protein structures being deposited in the Protein Data Bank. This suggests that empirical methods are now available that can ensure the required protein supply for these difficult targets. This review focuses on methods that are available for protein production in yeast, which is an important source of recombinant eukaryotic membrane proteins. We provide an overview of approaches to optimize the expression plasmid, host cell and culture conditions, as well as the extraction and purification of functional protein for crystallization trials in preparation for structural studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    Science.gov (United States)

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a

  6. Expression and purification of recombinant proteins in Escherichia coli tagged with a small metal-binding protein from Nitrosomonas europaea.

    Science.gov (United States)

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-02-01

    Escherichia coli is still the preferred organism for large-scale production of recombinant proteins. The use of fusion proteins has helped considerably in enhancing the solubility of heterologous proteins and their purification with affinity chromatography. Here, the use of a small metal-binding protein (SmbP) from Nitrosomonas europaea is described as a new fusion protein for protein expression and purification in E. coli. Fluorescent proteins tagged at the N-terminal with SmbP showed high levels of solubility, compared with those of maltose-binding protein and glutathione S-transferase, and low formation of inclusion bodies. Using commercially available IMAC resins charged with Ni(II), highly pure recombinant proteins were obtained after just one chromatography step. Proteins may be purified from the periplasm of E. coli if SmbP contains the signal sequence at the N-terminal. After removal of the SmbP tag from the protein of interest, high-yields are obtained since SmbP is a protein of just 9.9 kDa. The results here obtained suggest that SmbP is a good alternative as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Eimeria maxima microneme protein 2 delivered as DNA vaccine and recombinant protein induces immunity against experimental homogenous challenge.

    Science.gov (United States)

    Huang, Jingwei; Zhang, Zhenchao; Li, Menghui; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-10-01

    E. maxima is one of the seven species of Eimeria that infects chicken. Until now, only a few antigenic genes of E. maxima have been reported. In the present study, the immune protective effects against E. maxima challenge of recombinant protein and DNA vaccine encoding EmMIC2 were evaluated. Two-week-old chickens were randomly divided into five groups. The experimental group of chickens was immunized with 100 μg DNA vaccine pVAX1-MIC2 or 200 μg rEmMIC2 protein while the control group of chickens was injected with pVAX1 plasmid or sterile PBS. The results showed that the anti-EmMIC2 antibody titers of both rEmMIC2 protein and pVAX1-MIC2 groups were significantly higher as compared to PBS and pVAX1 control (Pmaxima challenge and it could be an effective antigen candidate for the development of new vaccines against E. maxima. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Recombinational DSBs-intersected genes converge on specific disease- and adaptability-related pathways.

    Science.gov (United States)

    Yang, Zhi-Kai; Luo, Hao; Zhang, Yanming; Wang, Baijing; Gao, Feng

    2018-05-03

    The budding yeast Saccharomyces cerevisiae is a model species powerful for studying the recombination of eukaryotes. Although many recombination studies have been performed for this species by experimental methods, the population genomic study based on bioinformatics analyses is urgently needed to greatly increase the range and accuracy of recombination detection. Here, we carry out the population genomic analysis of recombination in S. cerevisiae to reveal the potential rules between recombination and evolution in eukaryotes. By population genomic analysis, we discover significantly more and longer recombination events in clinical strains, which indicates that adverse environmental conditions create an obviously wider range of genetic combination in response to the selective pressure. Based on the analysis of recombinational DSBs-intersected genes (RDIGs), we find that RDIGs significantly converge on specific disease- and adaptability-related pathways, indicating that recombination plays a biologically key role in the repair of DSBs related to diseases and environmental adaptability, especially the human neurological disorders (NDs). By evolutionary analysis of RDIGs, we find that the RDIGs highly prevailing in populations of yeast tend to be more evolutionarily conserved, indicating the accurate repair of DSBs in these RDIGs is critical to ensure the eukaryotic survival or fitness. fgao@tju.edu.cn. Supplementary data are available at Bioinformatics online.

  9. Binding of recombinant apolipoprotein(a) to extracellular matrix proteins

    NARCIS (Netherlands)

    van der Hoek, Y. Y.; Sangrar, W.; Côté, G. P.; Kastelein, J. J.; Koschinsky, M. L.

    1994-01-01

    Elevated levels of lipoprotein(a), which consists of apolipoprotein(a) [apo(a)] covalently linked to a low-density lipoprotein-like moiety, is an independent risk factor for the development of atherosclerosis. We show that a recombinant form of apo(a) [r-apo(a)] binds strongly to fibronectin and

  10. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein

    OpenAIRE

    Bertagnoli, Stéphane; Gelfi, Jacqueline; Le Gall, Ghislaine; Boilletot, Eric; Vautherot, Jean-François; Rasschaert, Denis; Laurent, Sylvie; Petit, Frédérique; Boucraut-Baralon, Corine; Milon, Alain

    1996-01-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma vir...

  11. Recombinant rabies virus expressing the H protein of canine distemper virus protects dogs from the lethal distemper challenge.

    Science.gov (United States)

    Wang, Feng-Xue; Zhang, Shu-Qin; Zhu, Hong-Wei; Yang, Yong; Sun, Na; Tan, Bin; Li, Zhen-Guang; Cheng, Shi-Peng; Fu, Zhen F; Wen, Yong-Jun

    2014-12-05

    The rabies virus (RV) vector LBNSE expressing foreign antigens have shown considerable promise as vaccines against viral and bacteria diseases, which is effective and safe. We produced a new RV-based vaccine vehicle expressing 1.824 kb hemagglutinin (H) gene of the canine distemper virus (CDV) by reverse genetics technology. The recombinant virus LBNSE-CDV-H retained growth properties similar to those of vector LBNSE both in BSR and mNA cell culture. The H gene of CDV was expressed and detected by immunostaining. To compare the immunogenicity of LBNSE-CDV-H, dogs were immunized with each of these recombinant viruses by intramuscular (i.m.). The dogs were bled at third weeks after the immunization for the measurement of virus neutralizing antibody (VNA) and then challenged with virulent virus (ZJ 7) at fourth weeks. The parent virus (LBNSE) without expression of any foreign molecules was included for comparison. Dogs inoculated with LBNSE-CDV-H showed no any signs of disease and exhibited seroconversion against both RV and CDV H protein. The LBNSE-CDV-H did not cause disease in dogs and conferred protection from challenge with a lethal wild type CDV strain, demonstrating its potential value for wildlife conservation efforts. Together, these studies suggest that recombinant RV expressing H protein from CDV stimulated high levels of adaptive immune responses (VNA), and protected all dogs challenge infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Plastoglobules: a new address for targeting recombinant proteins in the chloroplast

    Directory of Open Access Journals (Sweden)

    Kessler Felix

    2007-01-01

    Full Text Available Abstract Background The potential of transgenic plants for cost-effective production of pharmaceutical molecules is now becoming apparent. Plants have the advantage over established fermentation systems (bacterial, yeast or animal cell cultures to circumvent the risk of pathogen contamination, to be amenable to large scaling up and to necessitate only established farming procedures. Chloroplasts have proven a useful cellular compartment for protein accumulation owing to their large size and number, as well as the possibility for organellar transformation. They therefore represent the targeting destination of choice for recombinant proteins in leaf crops such as tobacco. Extraction and purification of recombinant proteins from leaf material contribute to a large extent to the production costs. Developing new strategies facilitating these processes is therefore necessary. Results Here, we evaluated plastoglobule lipoprotein particles as a new subchloroplastic destination for recombinant proteins. The yellow fluorescent protein as a trackable cargo was targeted to plastoglobules when fused to plastoglobulin 34 (PGL34 as the carrier. Similar to adipocyte differentiation related protein (ADRP in animal cells, most of the protein sequence of PGL34 was necessary for targeting to lipid bodies. The recombinant protein was efficiently enriched in plastoglobules isolated by simple flotation centrifugation. The viability of plants overproducing the recombinant protein was not affected, indicating that plastoglobule targeting did not significantly impair photosynthesis or sugar metabolism. Conclusion Our data identify plastoglobules as a new targeting destination for recombinant protein in leaf crops. The wide-spread presence of plastoglobules and plastoglobulins in crop species promises applications comparable to those of transgenic oilbody-oleosin technology in molecular farming.

  13. Differentially expressed genes in iron-induced prion protein conversion

    International Nuclear Information System (INIS)

    Kim, Minsun; Kim, Eun-hee; Choi, Bo-Ran; Woo, Hee-Jong

    2016-01-01

    The conversion of the cellular prion protein (PrP C ) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrP res ) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases. - Highlights: • Differential genes correlated with prion degeneration by Fe(III) were identified. • Genes were identified in cell proliferation and intra- and extracellular transport. • In PrP degeneration, redox related genes were suggested. • Cbr2, Rsad2, Slc40a1, Amph and Mvd were expressed significantly.

  14. Recombinant Cry1Ia protein is highly toxic to cotton boll weevil (Anthonomus grandis Boheman) and fall armyworm (Spodoptera frugiperda).

    Science.gov (United States)

    Martins, E S; Aguiar, R W D S; Martins, N F; Melatti, V M; Falcão, R; Gomes, A C M M; Ribeiro, B M; Monnerat, R G

    2008-05-01

    To evaluate the activity of cry1Ia gene against cotton pests, Spodoptera frugiperda and Anthonomus grandis. Had isolated and characterized a toxin gene from the Bacillus thuringiensis S1451 strain which have been previously shown to be toxic to S. frugiperda and A. grandis. The toxin gene (cry1Ia) was amplified by PCR, sequenced, and cloned into the genome of a baculovirus. The Cry1Ia protein was expressed in baculovirus infected insect cells, producing protein inclusions in infected cells. The Cry1Ia protein has used in bioassays against to S. frugiperda and A. grandis. Bioassays using the purified recombinant protein showed high toxicity to S. frugiperda and A. grandis larvae. Molecular modelling of the Cry1Ia protein translated from the DNA sequence obtained in this work, showed that this protein possibly posses a similar structure to the Cry3A protein. Ultrastructural analysis of midgut cells from A. grandis incubated with the Cry1Ia toxin, showed loss of microvilli integrity. The results indicate that the cry1Ia is a good candidate for the construction of transgenic plants resistant to these important cotton pests.

  15. Knocking out Ornithine Decarboxylase Antizyme 1 (OAZ1 Improves Recombinant Protein Expression in the HEK293 Cell Line

    Directory of Open Access Journals (Sweden)

    Laura Abaandou

    2018-06-01

    Full Text Available Creating efficient cell lines is a priority for the biopharmaceutical industry, which produces biologicals for various uses. A recent approach to achieving this goal is the use of non-coding RNAs, microRNA (miRNA and small interfering RNA (siRNA, to identify key genes that can potentially improve production or growth. The ornithine decarboxylase antizyme 1 (OAZ1 gene, a negative regulator of polyamine biosynthesis, was identified in a genome-wide siRNA screen as a potential engineering target, because its knock down by siRNA increased recombinant protein expression from human embryonic kidney 293 (HEK293 cells by two-fold. To investigate this further, the OAZ1 gene in HEK293 cells was knocked out using CRISPR genome editing. The OAZ1 knockout cell lines displayed up to four-fold higher expression of both stably and transiently expressed proteins, with comparable growth and metabolic activity to the parental cell line; and an approximately three-fold increase in intracellular polyamine content. The results indicate that genetic inactivation of OAZ1 in HEK293 cells is an effective strategy to improve recombinant protein expression in HEK293 cells.

  16. Increasing the production yield of recombinant protein in transgenic seeds by expanding the deposition space within the intracellular compartment

    OpenAIRE

    Takaiwa, Fumio

    2013-01-01

    Seeds must maintain a constant level of nitrogen in order to germinate. When recombinant proteins are produced while endogenous seed protein expression is suppressed, the production levels of the foreign proteins increase to compensate for the decreased synthesis of endogenous proteins. Thus, exchanging the production of endogenous seed proteins for that of foreign proteins is a promising approach to increase the yield of foreign recombinant proteins. Providing a space for the deposition of r...

  17. Isolation of recombinant antibodies directed against surface proteins of Clostridium difficile.

    Science.gov (United States)

    Shirvan, Ali Nazari; Aitken, Robert

    2016-01-01

    Clostridium difficile has emerged as an increasingly important nosocomial pathogen and the prime causative agent of antibiotic-associated diarrhoea and pseudomembranous colitis in humans. In addition to toxins A and B, immunological studies using antisera from patients infected with C. difficile have shown that a number of other bacterial factors contribute to the pathogenesis, including surface proteins, which are responsible for adhesion, motility and other interactions with the human host. In this study, various clostridial targets, including FliC, FliD and cell wall protein 66, were expressed and purified. Phage antibody display yielded a large panel of specific recombinant antibodies, which were expressed, purified and characterised. Reactions of the recombinant antibodies with their targets were detected by enzyme-linked immunosorbent assay; and Western blotting suggested that linear rather than conformational epitopes were recognised. Binding of the recombinant antibodies to surface-layer proteins and their components showed strain specificity, with good recognition of proteins from C. difficile 630. However, no reaction was observed for strain R20291-a representative of the 027 ribotype. Binding of the recombinant antibodies to C. difficile M120 extracts indicated that a component of a surface-layer protein of this strain might possess immunoglobulin-binding activities. The recombinant antibodies against FliC and FliD proteins were able to inhibit bacterial motility. Copyright © 2016. Published by Elsevier Editora Ltda.

  18. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses.

    Science.gov (United States)

    Rasala, Beth A; Mayfield, Stephen P

    2015-03-01

    Recombinant proteins are widely used for industrial, nutritional, and medical applications. Green microalgae have attracted considerable attention recently as a biomanufacturing platform for the production of recombinant proteins for a number of reasons. These photosynthetic eukaryotic microorganisms are safe, scalable, easy to genetically modify through transformation, mutagenesis, or breeding, and inexpensive to grow. Many microalgae species are genetically transformable, but the green alga Chlamydomonas reinhardtii is the most widely used host for recombinant protein expression. An extensive suite of molecular genetic tools has been developed for C. reinhardtii over the last 25 years, including a fully sequenced genome, well-established methods for transformation, mutagenesis and breeding, and transformation vectors for high levels of recombinant protein accumulation and secretion. Here, we review recent successes in the development of C. reinhardtii as a biomanufacturing host for recombinant proteins, including antibodies and immunotoxins, hormones, industrial enzymes, an orally-active colostral protein for gastrointestinal health, and subunit vaccines. In addition, we review the biomanufacturing potential of other green algae from the genera Dunaliella and Chlorella.

  19. Capillary gel electrophoresis for the quantification and purity determination of recombinant proteins in inclusion bodies.

    Science.gov (United States)

    Espinosa-de la Garza, Carlos E; Perdomo-Abúndez, Francisco C; Campos-García, Víctor R; Pérez, Néstor O; Flores-Ortiz, Luis F; Medina-Rivero, Emilio

    2013-09-01

    In this work, a high-resolution CGE method for quantification and purity determination of recombinant proteins was developed, involving a single-component inclusion bodies (IBs) solubilization solution. Different recombinant proteins expressed as IBs were used to show method capabilities, using recombinant interferon-β 1b as the model protein for method validation. Method linearity was verified in the range from 0.05 to 0.40 mg/mL and a determination coefficient (r(2) ) of 0.99 was obtained. The LOQs and LODs were 0.018 and 0.006 mg/mL, respectively. RSD for protein content repeatability test was 2.29%. In addition, RSD for protein purity repeatability test was 4.24%. Method accuracy was higher than 90%. Specificity was confirmed, as the method was able to separate recombinant interferon-β 1b monomer from other aggregates and impurities. Sample content and purity was demonstrated to be stable for up to 48 h. Overall, this method is suitable for the analysis of recombinant proteins in IBs according to the attributes established on the International Conference for Harmonization guidelines. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. TROUBLESHOOTING IN EXPRESSION AND PURIFICATION OF RECOMBINANT SEVERE ACUTE RESPIRATORY SYNDROME-ASSOCIATED CORONAVIRUS NUCLEOCAPSID PROTEIN IN Escherichia coli BL21

    Directory of Open Access Journals (Sweden)

    Budiman Bela

    2010-11-01

    Full Text Available Considering importance of N protein for study of viral pathogenesis or development of immunodiagnostic assay, wereported effects of several conditions on purity and homogeneity of recombinant SARS-CoV N protein expressed in E.coli BL21. The SARS-CoV N gene was reverse transcribed and amplified by the reverse transcription-polymerase chainreaction (RT-PCR technique. The amplicons were cloned into pGEX-6P1 and followed by subcloning of the targetgene into pQE-80L. After inserting the recombinant plasmid (pQE80-N into E. coli, the recombinant protein (6 x Histag-N protein fusion was expressed by inducing the bacterial cells with 0.1-0.5 mM isopropyl-1-thio-Dgalactopyranoside(IPTG for 1-5 h. The protein recombinant were extracted from the bacterial cells by NTT buffercontaining 0-20 mM imidazol, and followed by Ni-NTA affinity resin purification. The results showed that induction ofE. coli BL21 with 0.2 mM IPTG for 4 h and followed with lysis of bacterial cells in NTT buffer containing 10 mMimidazol were optimal conditions to obtain the pure recombinant SARS-CoV N protein.

  1. Genetic recombination within the human T-cell receptor α-chain gene complex

    International Nuclear Information System (INIS)

    Robinson, M.A.; Kindt, T.J.

    1987-01-01

    Genetic analyses of the human T-cell receptor (TCR) α-chain genes indicate that recombination events may occur frequently within this gene complex. Examination of the inheritance of restriction fragment length polymorphisms (RFLP) detected by using probes for constant or variable region gene segments made it possible to assign TCRα haplotypes to the 16 parents and 43 offspring of eight families studied. A total of six RFLP, three for the constant region and three for variable region segments, were examined in the present studies. Most enzyme and probe combinations tested revealed no polymorphism and those finally selected for the study showed limited polymorphism in that only two or, in one case, three allelic forms of the gene were seen. In spite of limited variability at this level, extensive heterogeneity was observed for the combinations of markers present in haplotypes, suggesting that frequent recombination events have occurred. Most strikingly, multiple combinations of RFLP occurring in close proximity of the TCRα constant region gene were observed in this study. A high recombination frequency for the TCRα gene complex is further supported by the observation that two children, one in each of two families, inherited recombinant TCRα haplotypes

  2. Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii.

    Science.gov (United States)

    Oh, Young Hoon; Eom, Gyeong Tae; Kang, Kyoung Hee; Joo, Jeong Chan; Jang, Young-Ah; Choi, Jae Woo; Song, Bong Keun; Lee, Seung Hwan; Park, Si Jae

    2016-04-01

    Gene-expression cassettes for the construction of recombinant Clostridium beijerinckii were developed as potential tools for metabolic engineering of C. beijerinckii. Gene expression cassettes containing ColE1 origin and pAMB origin along with the erythromycin resistance gene were constructed, in which promoters from Escherichia coli, Lactococcus lactis, Ralstonia eutropha, C. acetobutylicum, and C. beijerinckii are examined as potential promoters in C. beijerinckii. Zymogram analysis of the cell extracts and comparison of lipase activities of the recombinant C. beijerinckii strains expressing Pseudomonas fluorescens tliA gene suggested that the tliA gene was functionally expressed by all the examined promoters with different expression level. Also, recombinant C. beijerinckii expressing C. beijerinckii secondary alcohol dehydrogenase by the constructed expression cassettes successfully produced 2-propanol from glucose. The best promoter for TliA expression was the R. eutropha phaP promoter while that for 2-propanol production was the putative C. beijerinckii pta promoter. Gene expression cassettes developed in this study may be useful tools for the construction of recombinant C. beijerinckii strains as host strains for the valuable chemicals and fuels from renewable resources.

  3. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    International Nuclear Information System (INIS)

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun; Lim, Chaeseung; Kim, Jungho; Cha, Dae Ryong; Oh, Junseo

    2012-01-01

    Highlights: ► We designed novel recombinant albumin-RBP fusion proteins. ► Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). ► Fusion proteins are successfully internalized into and inactivate PSCs. ► RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I–III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin domain III (R-III) and albumin domain I -RBP-albumin III (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises of stellate cell inactivation-inducing moiety and targeting moiety, which may lead to the development of effective anti

  4. A dimer of the lymphoid protein RAG1 recognizes the recombination signal sequence and the complex stably incorporates the high mobility group protein HMG2.

    Science.gov (United States)

    Rodgers, K K; Villey, I J; Ptaszek, L; Corbett, E; Schatz, D G; Coleman, J E

    1999-07-15

    RAG1 and RAG2 are the two lymphoid-specific proteins required for the cleavage of DNA sequences known as the recombination signal sequences (RSSs) flanking V, D or J regions of the antigen-binding genes. Previous studies have shown that RAG1 alone is capable of binding to the RSS, whereas RAG2 only binds as a RAG1/RAG2 complex. We have expressed recombinant core RAG1 (amino acids 384-1008) in Escherichia coli and demonstrated catalytic activity when combined with RAG2. This protein was then used to determine its oligomeric forms and the dissociation constant of binding to the RSS. Electrophoretic mobility shift assays show that up to three oligomeric complexes of core RAG1 form with a single RSS. Core RAG1 was found to exist as a dimer both when free in solution and as the minimal species bound to the RSS. Competition assays show that RAG1 recognizes both the conserved nonamer and heptamer sequences of the RSS. Zinc analysis shows the core to contain two zinc ions. The purified RAG1 protein overexpressed in E.coli exhibited the expected cleavage activity when combined with RAG2 purified from transfected 293T cells. The high mobility group protein HMG2 is stably incorporated into the recombinant RAG1/RSS complex and can increase the affinity of RAG1 for the RSS in the absence of RAG2.

  5. Choreography of recombination proteins during the DNA damage response

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2009-01-01

    Genome integrity is frequently challenged by DNA lesions from both endogenous and exogenous sources. A single DNA double-strand break (DSB) is lethal if unrepaired and may lead to loss of heterozygosity, mutations, deletions, genomic rearrangements and chromosome loss if repaired improperly. Such...... research. Here we review the cell biological response to DSBs in mitotically growing cells with an emphasis on homologous recombination pathways in yeast Saccharomyces cerevisiae and in mammalian cells....

  6. Purification of recombinant budgerigar fledgling disease virus VP1 capsid protein and its ability for in vitro capsid assembly

    Science.gov (United States)

    Rodgers, R. E.; Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A recombinant system for the major capsid VP1 protein of budgerigar fledgling disease virus has been established. The VP1 gene was inserted into a truncated form of the pFlag-1 vector and expressed in Escherichia coli. The budgerigar fledgling disease virus VP1 protein was purified to near homogeneity by immunoaffinity chromatography. Fractions containing highly purified VP1 were pooled and found to constitute 3.3% of the original E. coli-expressed VP1 protein. Electron microscopy revealed that the VP1 protein was isolated as pentameric capsomeres. Electron microscopy also revealed that capsid-like particles were formed in vitro from purified VP1 capsomeres with the addition of Ca2+ ions and the removal of chelating and reducing agents.

  7. Transphosphorylation of E. coli proteins during production of recombinant protein kinases provides a robust system to characterize kinase specificity

    Science.gov (United States)

    Protein kinase specificity is of fundamental importance to pathway regulation and signal transduction. Here, we report a convenient system to monitor the activity and specificity of recombinant protein kinases expressed in E.coli. We apply this to the study of the cytoplasmic domain of the plant rec...

  8. Protein Annotation from Protein Interaction Networks and Gene Ontology

    OpenAIRE

    Nguyen, Cao D.; Gardiner, Katheleen J.; Cios, Krzysztof J.

    2011-01-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precis...

  9. Treatment of rat gliomas with recombinant retrovirus harboring Herpes simplex virus thymidine kinase suicide gene

    International Nuclear Information System (INIS)

    Hlavaty, J.; Hlubinova, K.; Altanerova, V.; Liska, J.; Altaner, C.

    1997-01-01

    The retrovirus vector containing Herpes simplex virus type 1 thymidine kinase (HSVtk) gene was constructed. The vector was transfected into the packaging cell line PG13. It was shown that individual transfected cells differ in the production of recombinant retrovirus and in their susceptibility to be killed by ganciclovir. Recombinant retrovirus with a gibbon envelope was able to transduced the HSVtk gene into rat glioma cells. In vivo studies confirmed the ability of intraperitoneal ganciclovir administration to influence subcutaneous and intracerebral tumors developed after injection of C 6 rat glioma cells with subsequent injection of HSVtk retrovirus producing cells. (author)

  10. The recombinant 120-kilodalton protein of Ehrlichia chaffeensis, a potential diagnostic tool.

    OpenAIRE

    Yu, X J; Crocquet-Valdes, P; Cullman, L C; Walker, D H

    1996-01-01

    DNA encoding two repeat units of 120-kDa protein of Ehrlichia chaffeensis was cloned into the expression vector pGEX and expressed in Escherichia coli. The sensitivity and specificity of a dot blot assay for detection of human antibodies with the recombinant protein were 86 and 100%, respectively, compared with an indirect immunofluorescence assay.

  11. Chapter 15. transforming lepidopteran insect cells for continuous recombinant protein expression

    Science.gov (United States)

    The baculovirus expression vector system (BEVS) is widely used to produce large quantities of recombinant proteins. However, yields of extracellular and membrane-bound proteins obtained with this system often are very low, possibly due to the adverse effects of baculovirus infection on the host ins...

  12. Evolved Lactococcus lactis Strains for Enhanced Expression of Recombinant Membrane Proteins

    NARCIS (Netherlands)

    Martinez Linares, Daniel; Geertsma, Eric R.; Poolman, Bert

    2010-01-01

    The production of complex multidomain (membrane) proteins is a major hurdle in structural genomics and a generic approach for optimizing membrane protein expression is still lacking. We have devised a selection method to isolate mutant strains with improved functional expression of recombinant

  13. Effect of Plasmid Design and Type of Integration Event on Recombinant Protein Expression in Pichia pastoris.

    Science.gov (United States)

    Vogl, Thomas; Gebbie, Leigh; Palfreyman, Robin W; Speight, Robert

    2018-03-15

    Saccharomyces cerevisiae , expression cassettes carrying foreign genes integrate highly specifically at the targeted sites in the genome. In contrast, cassettes often integrate at random genomic positions in nonconventional yeasts, such as Pichia pastoris (syn. Komagataella phaffii ). Hence, cells from the same transformation event often behave differently, with significant clonal variation necessitating the screening of large numbers of strains. The importance of this study is that we systematically investigated the influence of integration events in more than 700 strains. Our findings provide novel insight into clonal variation in P. pastoris and, thus, how to avoid pitfalls and obtain reliable results. The underlying mechanisms may also play a role in other yeasts and hence could be generally relevant for recombinant yeast protein production strains. Copyright © 2018 American Society for Microbiology.

  14. Recombinant Expression Screening of P. aeruginosa Bacterial Inner Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Jeffery Constance J

    2010-11-01

    Full Text Available Abstract Background Transmembrane proteins (TM proteins make up 25% of all proteins and play key roles in many diseases and normal physiological processes. However, much less is known about their structures and molecular mechanisms than for soluble proteins. Problems in expression, solubilization, purification, and crystallization cause bottlenecks in the characterization of TM proteins. This project addressed the need for improved methods for obtaining sufficient amounts of TM proteins for determining their structures and molecular mechanisms. Results Plasmid clones were obtained that encode eighty-seven transmembrane proteins with varying physical characteristics, for example, the number of predicted transmembrane helices, molecular weight, and grand average hydrophobicity (GRAVY. All the target proteins were from P. aeruginosa, a gram negative bacterial opportunistic pathogen that causes serious lung infections in people with cystic fibrosis. The relative expression levels of the transmembrane proteins were measured under several culture growth conditions. The use of E. coli strains, a T7 promoter, and a 6-histidine C-terminal affinity tag resulted in the expression of 61 out of 87 test proteins (70%. In this study, proteins with a higher grand average hydrophobicity and more transmembrane helices were expressed less well than less hydrophobic proteins with fewer transmembrane helices. Conclusions In this study, factors related to overall hydrophobicity and the number of predicted transmembrane helices correlated with the relative expression levels of the target proteins. Identifying physical characteristics that correlate with protein expression might aid in selecting the "low hanging fruit", or proteins that can be expressed to sufficient levels using an E. coli expression system. The use of other expression strategies or host species might be needed for sufficient levels of expression of transmembrane proteins with other physical

  15. Hydroxyapatite coating on the titanium substrate modulated by a recombinant collagen-like protein

    International Nuclear Information System (INIS)

    Pan Mingli; Kong Xiangdong; Cai Yurong; Yao Juming

    2011-01-01

    Research highlights: → Hydroxyapatite was deposited on alkali-heat treated Ti substrate by immersing in 1.5 x SBF solution containing the recombinant collagen-like protein. → The recombinant collagen-like protein accelerated the preferential nucleation and growth of hydroxyapatite along c axis on the Ti substrate. → Hydroxyapatite-collagen composite on the Ti substrate promoted the attachment, subsequently proliferation and differentiation of MG-63 cells. - Abstract: Plenty of techniques have been developed to modify the surface character of titanium (Ti) and its alloys in order to realize their biological bond to natural bone. In this work, a biomimetic process was employed to form a hydroxyapatite (HAp) coating on the alkali-heat treated Ti substrate in 1.5 times simulated body fluid (1.5 x SBF) with the addition of a recombinant collagen-like protein. The coating was characterized using SEM-EDX, FESEM, and XRD. Results showed that the recombinant collagen-like protein could accelerate the preferential nucleation and directional growth along c axis of HAp on the pretreated Ti substrates. The investigation of in vitro cell cultivation showed that the existence of recombinant collagen-like protein in coating could improve the initial cell adhesion, proliferation and differentiation of MG-63 cells, which implied the materials possessed excellent biocompatibility and had a wide potential in biomedical application.

  16. Hydroxyapatite coating on the titanium substrate modulated by a recombinant collagen-like protein

    Energy Technology Data Exchange (ETDEWEB)

    Pan Mingli [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Kong Xiangdong [College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Cai Yurong [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Yao Juming, E-mail: yaoj@zstu.edu.cn [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2011-04-15

    Research highlights: {yields} Hydroxyapatite was deposited on alkali-heat treated Ti substrate by immersing in 1.5 x SBF solution containing the recombinant collagen-like protein. {yields} The recombinant collagen-like protein accelerated the preferential nucleation and growth of hydroxyapatite along c axis on the Ti substrate. {yields} Hydroxyapatite-collagen composite on the Ti substrate promoted the attachment, subsequently proliferation and differentiation of MG-63 cells. - Abstract: Plenty of techniques have been developed to modify the surface character of titanium (Ti) and its alloys in order to realize their biological bond to natural bone. In this work, a biomimetic process was employed to form a hydroxyapatite (HAp) coating on the alkali-heat treated Ti substrate in 1.5 times simulated body fluid (1.5 x SBF) with the addition of a recombinant collagen-like protein. The coating was characterized using SEM-EDX, FESEM, and XRD. Results showed that the recombinant collagen-like protein could accelerate the preferential nucleation and directional growth along c axis of HAp on the pretreated Ti substrates. The investigation of in vitro cell cultivation showed that the existence of recombinant collagen-like protein in coating could improve the initial cell adhesion, proliferation and differentiation of MG-63 cells, which implied the materials possessed excellent biocompatibility and had a wide potential in biomedical application.

  17. Mycobacterium tuberculosis HspX/EsxS Fusion Protein: Gene Cloning, Protein Expression, and Purification in Escherichia coli.

    Science.gov (United States)

    Khademi, Farzad; Yousefi-Avarvand, Arshid; Derakhshan, Mohammad; Meshkat, Zahra; Tafaghodi, Mohsen; Ghazvini, Kiarash; Aryan, Ehsan; Sankian, Mojtaba

    2017-10-01

    The purpose of this study was to clone, express, and purify a novel multidomain fusion protein of Micobacterium tuberculosis (Mtb) in a prokaryotic system. An hspX/esxS gene construct was synthesized and ligated into a pGH plasmid, E. coli TOP10 cells were transformed, and the vector was purified. The vector containing the construct and pET-21b (+) plasmid were digested with the same enzymes and the construct was ligated into pET-21b (+). The accuracy of cloning was confirmed by colony PCR and sequencing. E. coli BL21 cells were transformed with the pET-21b (+)/hspX/esxS expression vector and protein expression was evaluated. Finally, the expressed fusion protein was purified on a Ni-IDA column and verified by SDS-PAGE and western blotting. The hspX/esxS gene construct was inserted into pET-21b (+) and recombinant protein expression was induced with IPTG in E. coli BL21 cells. Various concentrations of IPTG were tested to determine the optimum concentration for expression induction. The recombinant protein was expressed in insoluble inclusion bodies. Three molar guanidine HCl was used to solubilize the insoluble protein. An HspX/EsxS Mtb fusion protein was expressed in E. coli and the recombinant protein was purified. After immunological analysis, the HspX/EsxS fusion protein might be an anti-tuberculosis vaccine candidate in future clinical trial studies.

  18. Expression and characterization of recombinant leptospiral outer membrane protein LipL32 from Leptospira interrogans serovar autumnalis.

    Science.gov (United States)

    Boonsathorn, Naphatsawan; Konghom, Ganokrot; Mongkolsiri, Kaveewan; Jirapongwattana, Chanin; Balachandra, Kruavon; Naigowit, Pimjai; Sawanpanyalert, Pathom

    2009-01-01

    Leptospira interrogans serovar autumnalis, a causative agent of leptospirosis in Thailand, was isolated from a patient for DNA extraction and amplification of LipL32 gene by polymerase chain reaction (PCR). The 782 bp PCR product was obtained, which was inserted into pAE plasmid with polyhistidine (His6 tag) to construct pAE-LipL32. This recombinant plasmid was transfected into E. coli BL21 (DE3). His6-LipL32 was purified by Ni-NTA affinity chromatography. The recombinant protein was used as antigen for testing with sera from leptospirosis and syphilis patients by dot-ELISA technique. It reacted positively with leptospirosis patient sera and negatively with syphilis and healthy sera.

  19. A VNTR element associated with steroid sulfatase gene deletions stimulates recombination in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y.; Li, X.M.; Shapiro, L.J. [UCSF School of Medicine, San Francisco, CA (United States)] [and others

    1994-09-01

    Steroid sulfatase deficiency is a common genetic disorder, with a prevalence of approximately one in every 3500 males world wide. About 90% of these patients have complete gene deletions, which appear to result from recombination between members of a low-copy repeat family (CRI-232 is the prototype) that flank the gene. RU1 and RU2 are two VNTR elements found within each of these family members. RU1 consists of 30 bp repeating units and its length shows minimal variation among individuals. The RU2 element consists of repeating sequences which are highly asymmetric, with about 90% purines and no C`s on one strand, and range from 0.6 kb to over 23 kb among different individuals. We conducted a study to determine if the RU1 or RU2 elements can promote recombination in an in vivo test system. We inserted these elements adjacent to the neo gene in each of two pSV2neo derivatives, one of which has a deletion in the 5{prime} portion of the neo gene and the other having a deletion in the 3{prime} portion. These plasmids were combined and used to transfect EJ cells. Survival of cells in G418 indicates restoration of a functional neo gene by recombination between two deletion constructs. Thus counting G418 resistant colonies gives a quantitative measure of the enhancement of recombination by the inserted VNTR elements. The results showed no effect on recombination by the inserted RU1 element (compared to the insertion of a nonspecific sequence), while the RU2 element stimulated recombination by 3.5-fold (P<0.01). A separate set of constructs placed RU1 or RU2 within the intron of an exon trapping vector. Following tranfection of cells, recombination events were monitored by a PCR assay that detected the approximation of primer binding sites (as a result of recombination). These studies showed that, as in the first set of experiments, the highly variable RU2 element is capable of stimulating somatic recombination in mammalian cells.

  20. Immune responses to recombinants of the South African vaccine strain of lumpy skin disease virus generated by using thymidine kinase gene insertion.

    Science.gov (United States)

    Wallace, David B; Viljoen, Gerrit J

    2005-04-27

    The South African vaccine strain of lumpy skin disease virus (type SA-Neethling) is currently being developed as a vector for recombinant vaccines of economically important livestock diseases throughout Africa. In this study, the feasibility of using the viral thymidine kinase gene as the site of insertion was investigated and recombinant viruses were evaluated in animal trials. Two separate recombinants were generated and selected for homogeneity expressing either the structural glycoprotein gene of bovine ephemeral fever virus (BEFV) or the two structural glycoprotein genes of Rift Valley fever virus (RVFV). Both recombinants incorporate the enhanced green fluorescent protein (EGFP) as a visual marker and the Escherichia coli guanine phosphoribosyl transferase (gpt) gene for dominant positive selection. The LSDV-RVFV recombinant construct (rLSDV-RVFV) protected mice against virulent RVFV challenge. In a small-scale BEFV-challenge cattle trial the rLSDV-BEFV construct failed to fully protect the cattle against virulent challenge, although both a humoral and cellular BEFV-specific immune response was elicited.

  1. A Rapid Method for Determining the Concentration of Recombinant Protein Secreted from Pichia pastoris

    International Nuclear Information System (INIS)

    Sun, L W; Zhao, Y; Jiang, R; Song, Y; Feng, H; Feng, K; Niu, L P; Qi, C

    2011-01-01

    Pichia secretive expression system is one of powerful eukaryotic expression systems in genetic engineering, which is especially suitable for industrial utilization. Because of the low concentration of the target protein in initial experiment, the methods and conditions for expression of the target protein should be optimized according to the protein yield repetitively. It is necessary to set up a rapid, simple and convenient analysis method for protein expression levels instead of the generally used method such as ultrafiltration, purification, dialysis, lyophilization and so on. In this paper, acetone precipitation method was chosen to concentrate the recombinant protein firstly after comparing with four different protein precipitation methods systematically, and then the protein was analyzed by SDS-Polyacrylamide Gel Electrophoresis. The recombinant protein was determined with the feature of protein band by the Automated Image Capture and 1-D Analysis Software directly. With this method, the optimized expression conditions of basic fibroblast growth factor secreted from pichia were obtained, which is as the same as using traditional methods. Hence, a convenient tool to determine the optimized conditions for the expression of recombinant proteins in Pichia was established.

  2. Trafficking of endoplasmic reticulum-retained recombinant proteins is unpredictable in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Thomas eDe Meyer

    2014-09-01

    Full Text Available A wide variety of recombinant proteins has been produced in the dicot model plant, Arabidopsis thaliana. Many of these proteins are targeted for secretion by means of an N terminal endoplasmic reticulum (ER signal peptide. In addition, they can also be designed for ER retention by adding a C terminal H/KDEL-tag. Despite extensive knowledge of the protein trafficking pathways, the final protein destination, especially of such H/KDEL-tagged recombinant proteins, is unpredictable. In this respect, glycoproteins are ideal study objects. Microscopy experiments reveal their deposition pattern and characterization of their N-glycans aids in elucidating the trafficking. Here, we combine microscopy and N glycosylation data generated in Arabidopsis leaves and seeds, and highlight the lack of a decent understanding of heterologous protein trafficking.

  3. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    Science.gov (United States)

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    suggesting that the proteins are natively folded and functional. This screen also identified two novel protein-protein interactions, between P12 and PVX_110945, and between MSP3.10 and MSP7.1, the latter of which was confirmed by surface plasmon resonance. Conclusions/Significance We produced a new library of recombinant full-length P. vivax ectodomains, established that the majority of them contain tertiary structure, and used them to identify predicted and novel protein-protein interactions. As well as identifying new interactions for further biological studies, this library will be useful in identifying P. vivax proteins with vaccine potential, and studying P. vivax malaria pathogenesis and immunity. Trial Registration ClinicalTrials.gov NCT00663546 PMID:26701602

  4. Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination.

    NARCIS (Netherlands)

    D.F.R. Muris; O.Y. Bezzubova (Olga); J-M. Buerstedde; K. Vreeken; A.S. Balajee; C.J. Osgood; C. Troelstra (Christine); J.H.J. Hoeijmakers (Jan); K. Ostermann; H. Schmidt (Henning); A.T. Natarajan; J.C.J. Eeken; P.H.M. Lohmann (Paul); A. Pastink (Albert)

    1994-01-01

    textabstractThe RAD52 gene of Saccharomyces cerevisiae is required for recombinational repair of double-strand breaks. Using degenerate oligonucleotides based on conserved amino acid sequences of RAD52 and rad22, its counterpart from Schizosaccharomyces pombe, RAD52 homologs from man and mouse were

  5. RecO protein initiates DNA recombination and strand annealing through two alternative DNA binding mechanisms.

    Science.gov (United States)

    Ryzhikov, Mikhail; Gupta, Richa; Glickman, Michael; Korolev, Sergey

    2014-10-17

    Recombination mediator proteins (RMPs) are important for genome stability in all organisms. Several RMPs support two alternative reactions: initiation of homologous recombination and DNA annealing. We examined mechanisms of RMPs in both reactions with Mycobacterium smegmatis RecO (MsRecO) and demonstrated that MsRecO interacts with ssDNA by two distinct mechanisms. Zinc stimulates MsRecO binding to ssDNA during annealing, whereas the recombination function is zinc-independent and is regulated by interaction with MsRecR. Thus, different structural motifs or conformations of MsRecO are responsible for interaction with ssDNA during annealing and recombination. Neither annealing nor recombinase loading depends on MsRecO interaction with the conserved C-terminal tail of single-stranded (ss) DNA-binding protein (SSB), which is known to bind Escherichia coli RecO. However, similarly to E. coli proteins, MsRecO and MsRecOR do not dismiss SSB from ssDNA, suggesting that RMPs form a complex with SSB-ssDNA even in the absence of binding to the major protein interaction motif. We propose that alternative conformations of such complexes define the mechanism by which RMPs initiate the repair of stalled replication and support two different functions during recombinational repair of DNA breaks. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Application of Recombinant Proteins for Serodiagnosis of Visceral Leishmaniasis in Humans and Dogs.

    Science.gov (United States)

    Farahmand, Mahin; Nahrevanian, Hossein

    2016-07-01

    Visceral leishmaniasis (VL) is a zoonotic disease caused by leishmania species. Dogs are considered to be the main reservoir of VL. A number of methods and antigen-based assays are used for the diagnosis of leishmaniasis. However, currently available methods are mainly based on direct examination of tissues for the presence of parasites, which is highly invasive. A variety of serological tests are commonly applied for VL diagnosis, including indirect fluorescence antibody test, enzyme-linked immunosorbent assay (ELISA), dot-ELISA, direct agglutination test, Western-blotting, and immunochromatographic test. However, when soluble antigens are used, serological tests are less specific due to cross-reactivity with other parasitic diseases. Several studies have attempted to replace soluble antigens with recombinant proteins to improve the sensitivity and the specificity of the immunodiagnostic tests. Major technological advances in recombinant antigens as reagents for the serological diagnosis of VL have led to high sensitivity and specificity of these serological tests. A great number of recombinant proteins have been shown to be effective for the diagnosis of leishmania infection in dogs, the major reservoir of L. infantum. Although few recombinant proteins with high efficacy provide reasonable results for the diagnosis of human and canine VL, more optimization is still needed for the appropriate antigens to provide high-throughput performance. This review aims to explore the application of different recombinant proteins for the serodiagnosis of VL in humans and dogs.

  7. Polymyxin B as inhibitor of LPS contamination of Schistosoma mansoni recombinant proteins in human cytokine analysis

    Directory of Open Access Journals (Sweden)

    Pacífico Lucila G

    2007-01-01

    Full Text Available Abstract Background Recombinant proteins expressed in Escherichia coli vectors are generally contaminated with endotoxin. In this study, we evaluated the ability of Polymyxin B to neutralize the effect of LPS present as contaminant on Schistosoma mansoni recombinant proteins produced in E. coli in inducing TNF-α and IL-10. Peripheral blood mononuclear cells from individuals chronically infected with S. mansoni were stimulated in vitro with recombinant Sm22.6, Sm14 and P24 antigens (10 μg/mL in the presence of Polymyxin B (10 μg/mL. Results The levels of cytokines were measured using ELISA. There was greater than 90 % reduction (p S. mansoni recombinant proteins in the presence of Polymyxin B, a reduction in the levels of TNF-α and IL-10 was also observed. However, the percentage of reduction was lower when compared to the cultures stimulated with LPS, probably because these proteins are able to induce the production of these cytokines by themselves. Conclusion This study showed that Polymyxin B was able to neutralize the effect of endotoxin, as contaminant in S. mansoni recombinant antigens produced in E. coli, in inducing TNF-α and IL-10 production.

  8. The recombination protein RAD52 cooperates with the excision repair protein OGG1 for the repair of oxidative lesions in mammalian cells

    DEFF Research Database (Denmark)

    de Souza-Pinto, Nadja C; Maynard, Scott; Hashiguchi, Kazunari

    2009-01-01

    number of protein interactions have been identified for OGG1, while very few appear to have functional consequences. We report here that OGG1 interacts with the recombination protein RAD52 in vitro and in vivo. This interaction has reciprocal functional consequences as OGG1 inhibits RAD52 catalytic...... knockdown, and mouse cells lacking the protein via gene knockout showed increased sensitivity to oxidative stress. Moreover, cells depleted of RAD52 show higher accumulation of oxidized bases in their genome than cells with normal levels of RAD52. Our results indicate that RAD52 cooperates with OGG1...... to repair oxidative DNA damage and enhances the cellular resistance to oxidative stress. Our observations suggest a coordinated action between these proteins that may be relevant when oxidative lesions positioned close to strand breaks impose a hindrance to RAD52 catalytic activities....

  9. Production of recombinant proteins in Escherichia coli tagged with the fusion protein CusF3H.

    Science.gov (United States)

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2017-04-01

    Recombinant protein expression in the bacterium Escherichia coli still is the number one choice for large-scale protein production. Nevertheless, many complications can arise using this microorganism, such as low yields, the formation of inclusion bodies, and the requirement for difficult purification steps. Most of these problems can be solved with the use of fusion proteins. Here, the use of the metal-binding protein CusF3H+ is described as a new fusion protein for recombinant protein expression and purification in E. coli. We have previously shown that CusF produces large amounts of soluble protein, with low levels of formation of inclusion bodies, and that proteins can be purified using IMAC resins charged with Cu(II) ions. CusF3H+ is an enhanced variant of CusF, formed by the addition of three histidine residues at the N-terminus. These residues then can bind Ni(II) ions allowing improved purity after affinity chromatography. Expression and purification of Green Fluorescent Protein tagged with CusF3H+ showed that the mutation did not alter the capacity of the fusion protein to increase protein expression, and purity improved considerably after affinity chromatography with immobilized nickel ions; high yields are obtained after tag-removal since CusF3H+ is a small protein of just 10 kDa. Furthermore, the results of experiments involving expression of tagged proteins having medium to large molecular weights indicate that the presence of the CusF3H+ tag improves protein solubility, as compared to a His-tag. We therefore endorse CusF3H+ as a useful alternative fusion protein/affinity tag for production of recombinant proteins in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. N-terminal processing of affinity-tagged recombinant proteins purified by IMAC procedures.

    Science.gov (United States)

    Mooney, Jane T; Fredericks, Dale P; Christensen, Thorkild; Bruun Schiødt, Christine; Hearn, Milton T W

    2015-07-01

    The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S-transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine-containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7-triazacyclononane (tacn). The use of this tag-tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli-expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP-1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI-TOF MS analysis of the cleaved products from the DAP-1 digestion of the recombinant N-terminally tagged proteins confirmed the complete removal of the tag within 4-12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn-based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli-expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Analysis of Recombinant Proteins in Transgenic Rice Seeds: Identity, Localization, Tolerance to Digestion, and Plant Stress Response.

    Science.gov (United States)

    Wakasa, Yuhya; Takaiwa, Fumio

    2016-01-01

    Rice seeds are an ideal production platform for high-value recombinant proteins in terms of economy, scalability, safety, and stability. Strategies for the expression of large amounts of recombinant proteins in rice seeds have been established in the past decade and transgenic rice seeds that accumulate recombinant products such as bioactive peptides and proteins, which promote the health and quality of life of humans, have been generated in many laboratories worldwide. One of the most important advantages is the potential for direct oral delivery of transgenic rice seeds without the need for recombinant protein purification (downstream processing), which has been attributed to the high expression levels of recombinant products. Transgenic rice will be beneficial as a delivery system for pharmaceuticals and nutraceuticals in the future. This chapter introduces the strategy for producing recombinant protein in the edible part (endosperm) of the rice grain and describes methods for the analysis of transgenic rice seeds in detail.

  12. Problem-Solving Test: Conditional Gene Targeting Using the Cre/loxP Recombination System

    Science.gov (United States)

    Szeberényi, József

    2013-01-01

    Terms to be familiar with before you start to solve the test: gene targeting, knock-out mutation, bacteriophage, complementary base-pairing, homologous recombination, deletion, transgenic organisms, promoter, polyadenylation element, transgene, DNA replication, RNA polymerase, Shine-Dalgarno sequence, restriction endonuclease, polymerase chain…

  13. Oral Administration of Recombinant Saccharomyces boulardii Expressing Ovalbumin-CPE Fusion Protein Induces Antibody Response in Mice.

    Science.gov (United States)

    Bagherpour, Ghasem; Ghasemi, Hosnie; Zand, Bahare; Zarei, Najmeh; Roohvand, Farzin; Ardakani, Esmat M; Azizi, Mohammad; Khalaj, Vahid

    2018-01-01

    Saccharomyces boulardii , a subspecies of Saccharomyces cerevisiae , is a well-known eukaryotic probiotic with many benefits for human health. In the present study, a recombinant strain of S. boulardii was prepared to use as a potential oral vaccine delivery vehicle. In this sense, a ura3 auxotroph strain of S. boulardii CNCM I-745 (known as S. cerevisiae HANSEN CBS 5926, Yomogi ® ) was generated using CRISPR/Cas9 methodology. Then a gene construct encoding a highly immunogenic protein, ovalbumin (OVA), was prepared and transformed into the ura3 - S. boulardii . To facilitate the transport of the recombinant immunogen across the intestinal barrier, a claudin-targeting sequence from Clostridium perfringens enterotoxin (CPE) was added to the C-terminus of the expression cassette. The recombinant S. boulardii strain expressing the OVA-CPE fusion protein was then administered orally to a group of mice, and serum IgG and fecal IgA levels were evaluated by ELISA. Our results demonstrated that anti-OVA IgG in serum significantly increased in test group ( P boulardii or PBS), and the fecal IgA titer was significantly higher in test group ( P boulardii strain expressing the similar construct lacking C-terminal CPE was also administered orally. The result showed an increased level of serum IgG in group receiving yeasts expressing the CPE negative construct compared to control groups; however, the fecal IgA levels did not increase significantly. In conclusion, our findings indicated that the yeast S. boulardii , as a delivery vehicle with possible immunomodulatory effects, and c-CPE, as a targeting tag, synergistically assist to stimulate systemic and local immunity. This proposed recombinant S. boulardii system might be useful in the expression of other antigenic peptides, making it as a promising tool for oral delivery of vaccines or therapeutic proteins.

  14. High-resolution structure of the recombinant sweet-tasting protein thaumatin I

    International Nuclear Information System (INIS)

    Masuda, Tetsuya; Ohta, Keisuke; Mikami, Bunzo; Kitabatake, Naofumi

    2011-01-01

    The structure of a recombinant form of the sweet-tasting protein thaumatin I was determined at 1.1 Å resolution and refined to an R work of 9.1% and an R free of 11.7%. Comparisons with plant thaumatin revealed the electron density of recombinant thaumatin I to be significantly improved, especially around Asn46 and Ser63. Thaumatin, an intensely sweet-tasting plant protein, elicits a sweet taste at a concentration of 50 nM. The crystal structure of a recombinant form of thaumatin I produced in the yeast Pichia pastoris has been determined to a resolution of 1.1 Å. The model was refined with anisotropic B parameters and riding H atoms. A comparison of the diffraction data and refinement statistics for recombinant thaumatin I with those for plant thaumatin I revealed no significant differences in the diffraction data. The R values for recombinant thaumatin I and plant thaumatin I (F o > 4σ) were 9.11% and 9.91%, respectively, indicating the final model to be of good quality. Notably, the electron-density maps around Asn46 and Ser63, which differ between thaumatin variants, were significantly improved. Furthermore, a number of H atoms became visible in an OMIT map and could be assigned. The high-quality structure of recombinant thaumatin with H atoms should provide details about sweetness determinants in thaumatin and provide valuable insights into the mechanism of its interaction with taste receptors

  15. Cloning, Expression and Purification of the Recombinant HIV-1 Tat-Nef Fusion Protein in Prokaryotic Expression System

    Directory of Open Access Journals (Sweden)

    Somayeh Kadkhodayan

    2016-07-01

    Full Text Available Abstract Background: Nef is one of the HIV-1 critical proteins, because it is essential for viral replication and AIDS disease progression and induction of immune response against it can partially inhibit viral infection. Moreover, a domain of the HIV-1 Trans-Activator of Transcription (Tat, 48-60 aa could act as a cell penetrating peptide (CPP. In current study, cloning and expression of Tat-Nef fusion protein was performed in E. coli for the first time. The protein expression was confirmed by western blot analysis and was purified using reverse staining method. Materials and Methods: In this experimental study, primarily, cloning of Tat-Nef fusion gene was done in pGEX6p2 expression vector. Then, the expression of Tat-Nef recombinat protein in E.coli BL21 (DE3 strain was performed by using IPTG inducer. The protein expression was confirmed by SDS-PAGE and western blotting using anti-Nef monoclonal antibody. Then, the recombinant fusion protein was purified from gel using reverse staining method. Results: The results of PCR analysis and enzyme digestion showed a clear band of ~ 726 bp in agarose gel indicating the correct Tat-Nef fusion cloning in pGEX6p2 prokaryotic expression vector. In addition, a 54 kDa band of Tat-Nef on SDS-PAGE revealed Tat-Nef protein expression that western blot analysis using anti-Nef monoclonal antibody confirmed it. Conclusion: The purified Tat-Nef recombinant fusion protein will be used as an antigen for protein vaccine design against HIV infection.

  16. High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Ramos-Martinez, Erick Miguel; Fimognari, Lorenzo; Sakuragi, Yumiko

    2017-09-01

    Microalga-based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post-translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. To increase the secretion yields, Venus was C-terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP) n , wherein n = 10 or 20]. The yields of the (SP) n -fused Venus were higher than Venus without the glycomodule by up to 12-fold, with the maximum yield of 15 mg/L. Moreover, the presence of the glycomodules conferred an enhanced proteolytic protein stability. The Venus-(SP) n proteins were shown to be glycosylated, and a treatment of the cells with brefeldin A led to a suggestion that glycosylation of the (SP) n glycomodules starts in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP) n glycomodule to promote a more efficient biomanufacturing of microalgae-based recombinant proteins. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies.

    Science.gov (United States)

    Chervyakova, Olga V; Zaitsev, Valentin L; Iskakov, Bulat K; Tailakova, Elmira T; Strochkov, Vitaliy M; Sultankulova, Kulyaisan T; Sandybayev, Nurlan T; Stanbekova, Gulshan E; Beisenov, Daniyar K; Abduraimov, Yergali O; Mambetaliyev, Muratbay; Sansyzbay, Abylay R; Kovalskaya, Natalia Y; Nemchinov, Lev G; Hammond, Rosemarie W

    2016-06-07

    The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV) strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122), orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins.

  18. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Olga V. Chervyakova

    2016-06-01

    Full Text Available The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122, orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins.

  19. The low-recombining pericentromeric region of barley restricts gene diversity and evolution but not gene expression

    Science.gov (United States)

    Baker, Katie; Bayer, Micha; Cook, Nicola; Dreißig, Steven; Dhillon, Taniya; Russell, Joanne; Hedley, Pete E; Morris, Jenny; Ramsay, Luke; Colas, Isabelle; Waugh, Robbie; Steffenson, Brian; Milne, Iain; Stephen, Gordon; Marshall, David; Flavell, Andrew J

    2014-01-01

    The low-recombining pericentromeric region of the barley genome contains roughly a quarter of the genes of the species, embedded in low-recombining DNA that is rich in repeats and repressive chromatin signatures. We have investigated the effects of pericentromeric region residency upon the expression, diversity and evolution of these genes. We observe no significant difference in average transcript level or developmental RNA specificity between the barley pericentromeric region and the rest of the genome. In contrast, all of the evolutionary parameters studied here show evidence of compromised gene evolution in this region. First, genes within the pericentromeric region of wild barley show reduced diversity and significantly weakened purifying selection compared with the rest of the genome. Second, gene duplicates (ohnolog pairs) derived from the cereal whole-genome duplication event ca. 60MYa have been completely eliminated from the barley pericentromeric region. Third, local gene duplication in the pericentromeric region is reduced by 29% relative to the rest of the genome. Thus, the pericentromeric region of barley is a permissive environment for gene expression but has restricted gene evolution in a sizeable fraction of barley's genes. PMID:24947331

  20. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun [Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do 425-707 (Korea, Republic of); Lim, Chaeseung [Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 152-703 (Korea, Republic of); Kim, Jungho [Department of Life Science, Sogang University, Seoul 121-742 (Korea, Republic of); Cha, Dae Ryong [Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Gyeonggi do 425-020 (Korea, Republic of); Oh, Junseo, E-mail: ohjs@korea.ac.kr [Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do 425-707 (Korea, Republic of)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We designed novel recombinant albumin-RBP fusion proteins. Black-Right-Pointing-Pointer Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). Black-Right-Pointing-Pointer Fusion proteins are successfully internalized into and inactivate PSCs. Black-Right-Pointing-Pointer RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I-III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin{sup domain} {sup III} (R-III) and albumin{sup domain} {sup I}-RBP-albumin{sup III} (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises

  1. 周期型马来丝虫复合基因重组质粒和相应表达蛋白的免疫学研究%Immunology comparision of composite gene recombinant plasmid and expressed protein of periodical Brugia malayi

    Institute of Scientific and Technical Information of China (English)

    王慧; 方政; 徐倩; 陆施娟; 钱一言; 徐怿琳; 方浩; 徐邦生

    2014-01-01

    粒/复合重组蛋白/CpG组小鼠淋巴细胞刺激增殖指数(1.629±0.235)高于复合重组蛋白组(1.248±0.110,P<0.05);免疫4、6周后,复合重组质粒/复合重组蛋白/CpG组和复合重组质粒/CpG组小鼠血清IFN-γ水平[(101.660±5.101)、(178.265±7.139)mg/L,(102.067±3.722)、(115.148±6.031)mg/L]均高于复合重组蛋白组[(75.438±2.102)、(82.004±3.777) mg/L,P均<0.05];免疫后6周,复合重组质粒/复合重组蛋白/CpG组和复合重组蛋白/CpG组的小鼠血清IL-4水平[(75.385±3.318)、(46.363±3.672)mg/L]均明显高于复合重组质粒/CpG组[(36.691±3.443)mg/L,P均<0.05).结论 pcDNA3.1-BmCPI/BmGAPDH核酸疫苗和相应蛋白疫苗均可诱导BALB/c小鼠产生特异性体液和细胞免疫应答反应.核酸疫苗-蛋白疫苗联合免疫效果有明显的优势.%Objective To construct a plasmid DNA vector expressing cysteine protease inhibitor and glyceraldehydes-3-phosphate dehydrogenase of periodic Brugia malayi(BmCPI/BmGAPDH),and purify the recombinant protein after transfecting the vector into human cervical carcinoma cells(Hela) for expression.To make a comparison of immunity efficacy between the recombinant plasmid and the homologous protein and to a lay theoretic and experimental basis for developing novel anti-filarial genetic engineering vaccines.Methods The amplified genes BmCPI and BmGAPDH and a plasmid vector were double enzymes digested and ligated to construct a recombinant plasmid pcDNA3.1 (+)-BmCPI/BmGAPDH,and this plasmid was transfected to Hela cells after being identified.G418 was used for screening transfectants,and the monoclonal resistant cell strain was determined by RT-PCR and SDS-PAGE.The recombinant protein was purified by affnity chromatography and identified by Western blotting.Sixty BALB/c mice were divided into 5 groups,12 per group,and they were immunized at 2,4,and 6 weeks.Mice in control groups were injected with PBS 100 μ1 or pcDNA3.1 100 μg/CpG 30 μg,and mice in

  2. [Construction of eukaryotic recombinant vector and expression in COS7 cell of LipL32-HlyX fusion gene from Leptospira serovar Lai].

    Science.gov (United States)

    Huang, Bi; Bao, Lang; Zhong, Qi; Zhang, Huidong; Zhang, Ying

    2009-04-01

    This study was conducted to construct eukaryotic recombinant vector of LipL32-HlyX fusion gene from Leptospira serovar Lai and express it in mammalian cell. Both of LipL32 gene and HlyX gene were amplified from Leptospira strain O17 genomic DNA by PCR. Then with the two genes as template, LipL32-HlyX fusion gene was obtained by SOE PCR (gene splicing by overlap extension PCR). The fusion gene was then cloned into pcDNA3.1 by restriction nuclease digestion. Having been transformed into E. coli DH5alpha, the recombiant plasmid was identified by restriction nuclease digestion, PCR analysis and sequencing. The recombinant plasmid was then transfected into COS7 cell whose expression was detected by RT-PCR and Western blotting analysis. RT-PCR amplified a fragment about 2000 bp and Western blotting analysis found a specific band about 75 KD which was consistent with the expected fusion protein size. In conclusion, the successful construction of eukaryotic recombinant vector containing LipL32-HlyX fusion gene and the effective expression in mammalian have laid a foundation for the application of Leptospira DNA vaccine.

  3. Development of a lectin binding assay to differentiate between recombinant and endogenous proteins in pharmacokinetic studies of protein-biopharmaceuticals.

    Science.gov (United States)

    Weber, Alfred; Minibeck, Eva; Scheiflinger, Friedrich; Turecek, Peter L

    2015-04-10

    Human glycoproteins, expressed in hamster cell lines, show similar glycosylation patterns to naturally occurring human molecules except for a minute difference in the linkage of terminal sialic acid: both cell types lack α2,6-galactosyl-sialyltransferase, abundantly expressed in human hepatocytes and responsible for the α2,6-sialylation of circulating glycoproteins. This minute difference, which is currently not known to have any physiological relevance, was the basis for the selective measurement of recombinant glycoproteins in the presence of their endogenous counterparts. The assay is based on using the lectin Sambucus nigra agglutinin (SNA), selectively binding to α2,6-sialylated N-glycans. Using von Willebrand factor (VWF), factor IX (FIX), and factor VIIa (FVIIa), it was demonstrated that (i) the plasma-derived proteins, but not the corresponding recombinant proteins, specifically bind to SNA and (ii) this binding can be used to deplete the plasma-derived proteins. The feasibility of this approach was confirmed in spike-recovery studies for all three recombinant coagulation proteins in human plasma and for recombinant VWF (rVWF) in macaque plasma. Analysis of plasma samples from macaques after administration of recombinant and a plasma-derived VWF demonstrated the suitability and robustness of this approach. Data showed that rVWF could be selectively measured without changing the ELISAs and furthermore revealed the limitations of baseline adjustment using a single measurement of the predose concentration only. The SNA gel-based depletion procedure can easily be integrated in existing procedures as a specific sample pre-treatment step. While ELISA-based methods were used to measure the recombinant coagulation proteins in the supernatants obtained by depletion, this procedure is applicable for all biochemical analyses. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer

    Directory of Open Access Journals (Sweden)

    Walchli John

    2009-04-01

    Full Text Available Abstract Background With the goal of improving yield and success rates of heterologous protein production for structural studies we have developed the database and algorithm software package Gene Composer. This freely available electronic tool facilitates the information-rich design of protein constructs and their engineered synthetic gene sequences, as detailed in the accompanying manuscript. Results In this report, we compare heterologous protein expression levels from native sequences to that of codon engineered synthetic gene constructs designed by Gene Composer. A test set of proteins including a human kinase (P38α, viral polymerase (HCV NS5B, and bacterial structural protein (FtsZ were expressed in both E. coli and a cell-free wheat germ translation system. We also compare the protein expression levels in E. coli for a set of 11 different proteins with greatly varied G:C content and codon bias. Conclusion The results consistently demonstrate that protein yields from codon engineered Gene Composer designs are as good as or better than those achieved from the synonymous native genes. Moreover, structure guided N- and C-terminal deletion constructs designed with the aid of Gene Composer can lead to greater success in gene to structure work as exemplified by the X-ray crystallographic structure determination of FtsZ from Bacillus subtilis. These results validate the Gene Composer algorithms, and suggest that using a combination of synthetic gene and protein construct engineering tools can improve the economics of gene to structure research.

  5. Expression and affinity purification of recombinant proteins from plants

    Science.gov (United States)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  6. A recombinant lactobacillus strain expressing genes coding for ...

    African Journals Online (AJOL)

    Using genetically engineered endogenous lactobacillus strains colonizing the vagina mucosa to express heterogenous proteins has of late joined the novel strategies aimed at developing a microbicides against HIV. Using the lactobacillus metabolic genome pathway, we found that these bacteria do not naturally produce ...

  7. The Use of Recombinant Hemagglutinine Protein of Rinderpest Virus in Enzyme Immunoassay

    OpenAIRE

    BULUT, Hakan; BOLAT, Yusuf

    2003-01-01

    In this study, Rinderpest virus (RPV) recombinant hemagglutinine protein (rH) fused with protein A region of Staphylococcus aureus was expressed in Escherichia coli and purified by IgG affinity chromatography. rH protein was also used to establish enzyme immunoassay. Therefore, to prevent IgG binding to the protein A the wells coated with the rH proteins were blocked by human serum. Afterwards, RPV antigens were added to the wells to evaluate this assay. To this end, serum from mice immunized...

  8. Rational design of new materials using recombinant structural proteins: Current state and future challenges.

    Science.gov (United States)

    Sutherland, Tara D; Huson, Mickey G; Rapson, Trevor D

    2018-01-01

    Sequence-definable polymers are seen as a prerequisite for design of future materials, with many polymer scientists regarding such polymers as the holy grail of polymer science. Recombinant proteins are sequence-defined polymers. Proteins are dictated by DNA templates and therefore the sequence of amino acids in a protein is defined, and molecular biology provides tools that allow redesign of the DNA as required. Despite this advantage, proteins are underrepresented in materials science. In this publication we investigate the advantages and limitations of using proteins as templates for rational design of new materials. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  9. Smart sustainable bottle (SSB) system for E. coli based recombinant protein production.

    Science.gov (United States)

    Li, Zhaopeng; Carstensen, Bettina; Rinas, Ursula

    2014-11-05

    Recombinant proteins are usually required in laboratories interested in the protein but not in the production process itself. Thus, technical equipment which is easy to handle and straight forward protein production procedures are of great benefit to those laboratories. Companies selling single use cultivation bags and bioreactors are trying to satisfy at least part of these needs. However, single-use systems can contribute to major costs which might be acceptable when "good manufacturing practices" are required but not acceptable for most laboratories facing tight funding. The assembly and application of a simple self-made "smart sustainable bottle" (SSB) system for E. coli based protein production is presented. The core of the SSB system is a 2-L glass bottle which is operated at constant temperature, air flow, and stirrer speed without measurement and control of pH and dissolved oxygen. Oxygen transfer capacities are in the range as in conventional bioreactors operated at intermediate aeration rates and by far exceed those found in conventional shaking flasks and disposable bioreactors. The SSB system was applied for the production of various recombinant proteins using T7-based expression systems and a defined autoinduction medium. The production performance regarding amount and solubility of proteins with robust and delicate properties was as good as in state-of-the-art stirred tank commercial bioreactors. The SSB system represents a low cost protein production device applicable for easy, effective, and reproducible recombinant protein production.

  10. Production of Active Nonglycosylated Recombinant B-Chain of Type-2 Ribosome-Inactivating Protein from Viscum articulatum and Its Biological Effects on Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Tzu-Li Lu

    2011-01-01

    Full Text Available Type-2 ribosome-inactivating proteins, composed of a toxic A-chain and lectin-like B-chain, display various biological functions, including cytotoxicity and immunomodulation. We here cloned the lectin-like B-chain encoding fragment of a newly identified type-2 RIP gene, articulatin gene, from Viscum articulatum, into a bacterial expression vector to obtain nonglycosylated recombinant protein expressed in inclusion bodies. After purification and protein refolding, soluble refolded recombinant articulatin B-chain (rATB showed lectin activity specific toward galactoside moiety and was stably maintained while stored in low ionic strength solution. Despite lacking glycosylation, rATB actively bound leukocytes with preferential binding to monocytes and in vitro stimulated PBMCs to release cytokines without obvious cytotoxicity. These results implicated such a B-chain fragment as a potential immunomodulator.

  11. Immunization of Mice with Recombinant Brucella abortus Organic Hydroperoxide Resistance (Ohr) Protein Protects Against a Virulent Brucella abortus 544 Infection.

    Science.gov (United States)

    Hop, Huynh Tan; Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Arayan, Lauren Togonon; Min, Won Gi; Lee, Hu Jang; Lee, Jin Ju; Chang, Hong Hee; Kim, Suk

    2016-01-01

    In this study, the Brucella abortus ohr gene coding for an organic hydroperoxide resistance protein (Ohr) was cloned into a maltose fusion protein expression system (pMAL), inserted into Escherichia coli, and purified, and its immunogenicity was evaluated by western blot analysis using Brucella-positive mouse sera. The purified recombinant Ohr (rOhr) was treated with adjuvant and injected intraperitoneally into BALB/c mice. A protective immune response analysis revealed that rOhr induced a significant increase in both the IgG1 and IgG2a titers, and IgG2a reached a higher level than IgG1 after the second and third immunizations. Additionally, immunization with rOhr induced high production of IFN-γ as well as proinflammatory cytokines such as TNF, MCP-1, IL-12p70, and IL-6, but a lesser amount of IL-10, suggesting that rOhr predominantly elicited a cell-mediated immune response. In addition, immunization with rOhr caused a significantly higher degree of protection against a virulent B. abortus infection compared with a positive control group consisting of mice immunized with maltose-binding protein. These findings showed that B. abortus rOhr was able to induce both humoral and cell-mediated immunity in mice, which suggested that this recombinant protein could be a potential vaccine candidate for animal brucellosis.

  12. Analysis of antigenic cross-reactivity between subgroup C avian pneumovirus and human metapneumovirus by using recombinant fusion proteins.

    Science.gov (United States)

    Luo, L; Sabara, M I; Li, Y

    2009-10-01

    Avian pneumovirus subgroup C (APV/C) has recently been reported to be more closely related to human metapneumovirus (hMPV) as determined by sequence analysis. To examine the antigenic relationship between APV/C and hMPV, the APV/C fusion (F) gene was cloned and expressed as an uncleaved glycoprotein in a baculovirus system. The reactivity of the APV/C F protein with antibodies against APV subgroups A, B, C, and hMPV was examined by Western blot analysis. The results showed that the expressed APV/C F protein was not only recognized by APV/C-specific antibodies but also by antibodies raised against hMPV. Previously expressed recombinant hMPV F protein also reacted with APV/C-specific antibodies, suggesting that there was significant antigenic cross-reactivity and a potential evolutionary relationship between hMPV and APV/C. Interestingly, the recombinant F proteins from APV/C and hMPV were not recognized by polyclonal antibodies specific to APV subgroups A and B.

  13. Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins.

    Science.gov (United States)

    Mamat, Uwe; Wilke, Kathleen; Bramhill, David; Schromm, Andra Beate; Lindner, Buko; Kohl, Thomas Andreas; Corchero, José Luis; Villaverde, Antonio; Schaffer, Lana; Head, Steven Robert; Souvignier, Chad; Meredith, Timothy Charles; Woodard, Ronald Wesley

    2015-04-16

    Lipopolysaccharide (LPS), also referred to as endotoxin, is the major constituent of the outer leaflet of the outer membrane of virtually all Gram-negative bacteria. The lipid A moiety, which anchors the LPS molecule to the outer membrane, acts as a potent agonist for Toll-like receptor 4/myeloid differentiation factor 2-mediated pro-inflammatory activity in mammals and, thus, represents the endotoxic principle of LPS. Recombinant proteins, commonly manufactured in Escherichia coli, are generally contaminated with endotoxin. Removal of bacterial endotoxin from recombinant therapeutic proteins is a challenging and expensive process that has been necessary to ensure the safety of the final product. As an alternative strategy for common endotoxin removal methods, we have developed a series of E. coli strains that are able to grow and express recombinant proteins with the endotoxin precursor lipid IVA as the only LPS-related molecule in their outer membranes. Lipid IVA does not trigger an endotoxic response in humans typical of bacterial LPS chemotypes. Hence the engineered cells themselves, and the purified proteins expressed within these cells display extremely low endotoxin levels. This paper describes the preparation and characterization of endotoxin-free E. coli strains, and demonstrates the direct production of recombinant proteins with negligible endotoxin contamination.

  14. The quaternary structure of the recombinant bovine odorant-binding protein is modulated by chemical denaturants.

    Directory of Open Access Journals (Sweden)

    Olga V Stepanenko

    Full Text Available A large group of odorant-binding proteins (OBPs has attracted great scientific interest as promising building blocks in constructing optical biosensors for dangerous substances, such as toxic and explosive molecules. Native tissue-extracted bovine OBP (bOBP has a unique dimer folding pattern that involves crossing the α-helical domain in each monomer over the other monomer's β-barrel. In contrast, recombinant bOBP maintaining the high level of stability inherent to native tissue bOBP is produced in a stable native-like state with a decreased tendency for dimerization and is a mixture of monomers and dimers in a buffered solution. This work is focused on the study of the quaternary structure and the folding-unfolding processes of the recombinant bOBP in the absence and in the presence of guanidine hydrochloride (GdnHCl. Our results show that the recombinant bOBP native dimer is only formed at elevated GdnHCl concentrations (1.5 M. This process requires re-organizing the protein structure by progressing through the formation of an intermediate state. The bOBP dimerization process appears to be irreversible and it occurs before the protein unfolds. Though the observed structural changes for recombinant bOBP at pre-denaturing GdnHCl concentrations show a local character and the overall protein structure is maintained, such changes should be considered where the protein is used as a sensitive element in a biosensor system.

  15. The effect of alcohol on recombinant proteins derived from mammalian adenylyl cyclase

    Directory of Open Access Journals (Sweden)

    Emily Qualls-Creekmore

    2017-07-01

    Full Text Available The cyclic AMP (cAMP signaling pathway is implicated in the development of alcohol use disorder. Previous studies have demonstrated that ethanol enhances the activity of adenylyl cyclase (AC in an isoform specific manner; AC7 is most enhanced by ethanol, and regions responsible for enhancement by ethanol are located in the cytoplasmic domains of the AC7 protein. We hypothesize that ethanol modulates AC activity by directly interacting with the protein and that ethanol effects on AC can be studied using recombinant AC in vitro. AC recombinant proteins containing only the C1a or C2 domains of AC7 and AC9 individually were expressed in bacteria, and purified. The purified recombinant AC proteins retained enzymatic activity and isoform specific alcohol responsiveness. The combination of the C1a or C2 domains of AC7 maintained the same alcohol cutoff point as full-length AC7. We also find that the recombinant AC7 responds to alcohol differently in the presence of different combinations of activators including MnCl2, forskolin, and Gsα. Through a series of concentration-response experiments and curve fitting, the values for maximum activities, Hill coefficients, and EC50 were determined in the absence and presence of butanol as a surrogate of ethanol. The results suggest that alcohol modulates AC activity by directly interacting with the AC protein and that the alcohol interaction with the AC protein occurs at multiple sites with positive cooperativity. This study indicates that the recombinant AC proteins expressed in bacteria can provide a useful model system to investigate the mechanism of alcohol action on their activity.

  16. that Bind Specifically to Recombinant Envelope Protein of Dengue

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research June 2015; 14 (6): 997-1003 ... Revised accepted: 30 April 2015. Abstract ... Results: The 45 KDa, 43 KDa and 30 KDa plasma membrane proteins were identified as viral envelope targets.

  17. Solitary BioY Proteins Mediate Biotin Transport into Recombinant Escherichia coli

    Science.gov (United States)

    Finkenwirth, Friedrich; Kirsch, Franziska

    2013-01-01

    Energy-coupling factor (ECF) transporters form a large group of vitamin uptake systems in prokaryotes. They are composed of highly diverse, substrate-specific, transmembrane proteins (S units), a ubiquitous transmembrane protein (T unit), and homo- or hetero-oligomeric ABC ATPases. Biotin transporters represent a special case of ECF-type systems. The majority of the biotin-specific S units (BioY) is known or predicted to interact with T units and ABC ATPases. About one-third of BioY proteins, however, are encoded in organisms lacking any recognizable T unit. This finding raises the question of whether these BioYs function as transporters in a solitary state, a feature ascribed to certain BioYs in the past. To address this question in living cells, an Escherichia coli K-12 derivative deficient in biotin synthesis and devoid of its endogenous high-affinity biotin transporter was constructed as a reference strain. This organism is particularly suited for this purpose because components of ECF transporters do not naturally occur in E. coli K-12. The double mutant was viable in media containing either high levels of biotin or a precursor of the downstream biosynthetic path. Importantly, it was nonviable on trace levels of biotin. Eight solitary bioY genes of proteobacterial origin were individually expressed in the reference strain. Each of the BioYs conferred biotin uptake activity on the recombinants, which was inferred from uptake assays with [3H]biotin and growth of the cells on trace levels of biotin. The results underscore that solitary BioY transports biotin across the cytoplasmic membrane. PMID:23836870

  18. Expression of Hepatitis C Virus Core and E2 antigenic recombinant proteins and their use for development of diagnostic assays.

    Science.gov (United States)

    Ali, Amjad; Nisar, Muhammad; Idrees, Muhammad; Rafique, Shazia; Iqbal, Muhammad

    2015-05-01

    Early diagnosis of HCV infection is based on detection of antibodies against HCV proteins using recombinant viral antigens. The present study was designed to select, clone and express the antigenic regions of Core and E2 genes from local HCV-3a genotype and to utilize the antigenic recombinant proteins (Core & E2) to develop highly sensitive, specific and economical diagnostic assays for detection of HCV infection. The antigenic sites were determined within Core and E2 genes and were then cloned in pET-28a expression vector. The right orientation of the desired inserted fragments of Core and E2 were confirmed via sequencing prior to expression and were then transformed in BL21 (DE3) pLysS strains of E. coli and induced with 0.5mM Isopropyl-b-D-thiogalactopyranoside (IPTG) for the production of antigenic recombinant proteins. The produced truncated antigens were then purified by Nickel affinity chromatography and were confirmed by western blotting, immunoblotting and enzyme-linked immunosorbent assay (ELISA). The expressed Core and E2 recombinant antigens were used to develop immunoblotting assay for the detection of anti-HCV antibodies in sera. With immunoblotting, a total of 93-HCV infected sera and 35-HCV negative individuals were tested for the presence of anti-HCV antibodies to the Core and E2 antigens. Recombinant antigen showed 100% reactivity against HCV infected sera, with no cross reactivity against HCV-negative sera. The immunoblot assay mixture of recombinant antigens (Core+E2) showed a strong reaction intensity in the test area (TA) as compared to the individual truncated Core and E2 recombinant antigens. In the in-house ELISA assay, mixed Core and E2 recombinant antigens showed 100% reactivity against a standardized panel of 150-HCV-positive sera and non reactivity against a standardized panel of 150 HCV-negative sera while also being non reactive to sera positive for other viral infections. The antigenic recombinant antigens also were tested for the

  19. Analysis of A549 cell proteome alteration in response to recombinant influenza A virus nucleoprotein and its interaction with cellular proteins, a preliminary study.

    Science.gov (United States)

    Kumar, D; Tiwari, K; Rajala, M S

    Influenza A virus undergoes frequent changes of antigenicity and contributes to seasonal epidemics or unpredictable pandemics. Nucleoprotein, encoded by gene segment 5, is an internal protein of the virus and is conserved among strains of different host origins. In the current study, we analyzed the differentially expressed proteins in A549 cells transiently transfected with the recombinant nucleoprotein of influenza A virus by 2D gel electrophoresis. The resolved protein spots on gel were identified by MALDI-TOF/Mass spectrometry analysis. The majority of the host proteins detected to be differentially abundant in recombinant nucleoprotein-expressing cells as compared to vector-transfected cells are the proteins of metabolic pathways, glycolytic enzymes, molecular chaperones and cytoskeletal proteins. We further demonstrated the interaction of virus nucleoprotein with some of the identified host cellular proteins. In vitro binding assay carried out using the purified recombinant nucleoprotein (pET29a+NP-His) and A549 cell lysate confirmed the interaction between nucleoprotein and host proteins, such as alpha enolase 1, pyruvate kinase and β-actin. The preliminary data of our study provides the information on virus nucleoprotein interaction with proteins involved in glycolysis. However, studies are ongoing to understand the significance of these interactions in modulating the host factors during virus replication.

  20. A Biallelic Mutation in the Homologous Recombination Repair Gene SPIDR Is Associated With Human Gonadal Dysgenesis.

    Science.gov (United States)

    Smirin-Yosef, Pola; Zuckerman-Levin, Nehama; Tzur, Shay; Granot, Yaron; Cohen, Lior; Sachsenweger, Juliane; Borck, Guntram; Lagovsky, Irina; Salmon-Divon, Mali; Wiesmüller, Lisa; Basel-Vanagaite, Lina

    2017-02-01

    Primary ovarian insufficiency (POI) is caused by ovarian follicle depletion or follicle dysfunction, characterized by amenorrhea with elevated gonadotropin levels. The disorder presents as absence of normal progression of puberty. To elucidate the cause of ovarian dysfunction in a family with POI. We performed whole-exome sequencing in 2 affected individuals. To evaluate whether DNA double-strand break (DSB) repair activities are altered in biallelic mutation carriers, we applied an enhanced green fluorescent protein-based assay for the detection of specific DSB repair pathways in blood-derived cells. Diagnoses were made at the Pediatric Endocrine Clinic, Clalit Health Services, Sharon-Shomron District, Israel. Genetic counseling and sample collection were performed at the Pediatric Genetics Unit, Schneider Children's Medical Center Israel, Petah Tikva, Israel. Two sisters born to consanguineous parents of Israeli Muslim Arab ancestry presented with a lack of normal progression of puberty, high gonadotropin levels, and hypoplastic or absent ovaries on ultrasound. Blood samples for DNA extraction were obtained from all family members. Exome analysis to elucidate the cause of POI in 2 affected sisters. Analysis revealed a stop-gain homozygous mutation in the SPIDR gene (KIAA0146) c.839G>A, p.W280*. This mutation altered SPIDR activity in homologous recombination, resulting in the accumulation of 53BP1-labeled DSBs postionizing radiation and γH2AX-labeled damage during unperturbed growth. SPIDR is important for ovarian function in humans. A biallelic mutation in this gene may be associated with ovarian dysgenesis in cases of autosomal recessive inheritance. Copyright © 2017 by the Endocrine Society

  1. Successful recombinant production of Allochromatium vinosum cytochrome c' requires coexpression of cmm genes in heme-rich Escherichia coli JCB712

    International Nuclear Information System (INIS)

    Evers, Toon H.; Merkx, Maarten

    2005-01-01

    Cytochrome c' from the purple photosynthetic bacterium Allochromatium vinosum (CCP) displays a unique, reversible dimer-to-monomer transition upon binding of NO, CO, and CN - . This small, four helix bundle protein represents an attractive model for the study of other heme protein biosensors, provided a recombinant expression system is available. Here we report the development of an efficient expression system for CCP that makes use of a maltose binding protein fusion strategy to enhance periplasmic expression and allow easy purification by affinity chromatography. Coexpression of cytochrome c maturase genes and the use of a heme-rich Escherichia coli strain were found to be necessary to obtain reasonable yields of cytochrome c'. Characterization using circular dichroism, UV-vis spectroscopy, and size-exclusion chromatography confirms the native-like properties of the recombinant protein, including its ligand-induced monomerization

  2. Functional intersection of ATM and DNA-dependent protein kinase catalytic subunit in coding end joining during V(D)J recombination

    DEFF Research Database (Denmark)

    Lee, Baeck-Seung; Gapud, Eric J; Zhang, Shichuan

    2013-01-01

    V(D)J recombination is initiated by the RAG endonuclease, which introduces DNA double-strand breaks (DSBs) at the border between two recombining gene segments, generating two hairpin-sealed coding ends and two blunt signal ends. ATM and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) ar......V(D)J recombination is initiated by the RAG endonuclease, which introduces DNA double-strand breaks (DSBs) at the border between two recombining gene segments, generating two hairpin-sealed coding ends and two blunt signal ends. ATM and DNA-dependent protein kinase catalytic subunit (DNA......-PKcs) are serine-threonine kinases that orchestrate the cellular responses to DNA DSBs. During V(D)J recombination, ATM and DNA-PKcs have unique functions in the repair of coding DNA ends. ATM deficiency leads to instability of postcleavage complexes and the loss of coding ends from these complexes. DNA...... when ATM is present and its kinase activity is intact. The ability of ATM to compensate for DNA-PKcs kinase activity depends on the integrity of three threonines in DNA-PKcs that are phosphorylation targets of ATM, suggesting that ATM can modulate DNA-PKcs activity through direct phosphorylation of DNA...

  3. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene combined with radiation therapy on human lymphoma cells lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wan Jianmei; Wang Yongqing; Wu Jinchang

    2008-01-01

    This paper analyzes the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Human lymphoma cell lines were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTF. The cell cycle and apoptosis were detected by flow cytometry, and the p53 protein expression was detected by Western blotting. The results showed that extrinsic p53 gene have expressed to some degree, but not at high level. The role of inhibition and radiation sensitivity of rAd-p53 was not significant to human lymphoma cell lines. (authors)

  4. A dual protease approach for expression and affinity purification of recombinant proteins.

    Science.gov (United States)

    Raran-Kurussi, Sreejith; Waugh, David S

    2016-07-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification. Published by Elsevier Inc.

  5. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mireille eHaon

    2015-09-01

    Full Text Available Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes. This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in Pichia pastoris. We first used three fungal glycoside hydrolases that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (glycoside hydrolases, carbohydrate esterases and auxiliary activity enzyme families out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users’ community.

  6. Development of oral cancer vaccine using recombinant Bifidobacterium displaying Wilms' tumor 1 protein.

    Science.gov (United States)

    Kitagawa, Koichi; Oda, Tsugumi; Saito, Hiroki; Araki, Ayame; Gonoi, Reina; Shigemura, Katsumi; Hashii, Yoshiko; Katayama, Takane; Fujisawa, Masato; Shirakawa, Toshiro

    2017-06-01

    Several types of vaccine-delivering tumor-associated antigens (TAAs) have been developed in basic and clinical research. Wilms' tumor 1 (WT1), identified as a gene responsible for pediatric renal neoplasm, is one of the most promising TAA for cancer immunotherapy. Peptide and dendritic cell-based WT1 cancer vaccines showed some therapeutic efficacy in clinical and pre-clinical studies but as yet no oral WT1 vaccine can be administrated in a simple and easy way. In the present study, we constructed a novel oral cancer vaccine using a recombinant Bifidobacterium longum displaying WT1 protein. B. longum 420 was orally administered into mice inoculated with WT1-expressing tumor cells for 4 weeks to examine anti-tumor effects. To analyze the WT1-specific cellular immune responses to oral B. longum 420, mice splenocytes were isolated and cytokine production and cytotoxic activities were determined. Oral administrations of B. longum 420 significantly inhibited WT1-expressing tumor growth and prolonged survival in mice. Immunohistochemical study and immunological assays revealed that B. longum 420 substantially induced tumor infiltration of CD4 + T and CD8 + T cells, systemic WT1-specific cytokine production, and cytotoxic activity mediated by WT1-epitope specific cytotoxic T lymphocytes, with no apparent adverse effects. Our novel oral cancer vaccine safely induced WT1-specific cellular immunity via activation of the gut mucosal immune system and achieved therapeutic efficacy with several practical advantages over existing non-oral vaccines.

  7. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins.

    Science.gov (United States)

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J; Shojaosadati, Seyed Abbas; Nielsen, Jens

    2016-05-01

    Pichia pastoris is used for commercial production of human therapeutic proteins, and genome-scale models of P. pastoris metabolism have been generated in the past to study the metabolism and associated protein production by this yeast. A major challenge with clinical usage of recombinant proteins produced by P. pastoris is the difference in N-glycosylation of proteins produced by humans and this yeast. However, through metabolic engineering, a P. pastoris strain capable of producing humanized N-glycosylated proteins was constructed. The current genome-scale models of P. pastoris do not address native nor humanized N-glycosylation, and we therefore developed ihGlycopastoris, an extension to the iLC915 model with both native and humanized N-glycosylation for recombinant protein production, but also an estimation of N-glycosylation of P. pastoris native proteins. This new model gives a better prediction of protein yield, demonstrates the effect of the different types of N-glycosylation of protein yield, and can be used to predict potential targets for strain improvement. The model represents a step towards a more complete description of protein production in P. pastoris, which is required for using these models to understand and optimize protein production processes. © 2015 Wiley Periodicals, Inc.

  8. Chemical Ligation of Folded Recombinant Proteins: Segmental Isotopic Labeling of Domains for NMR Studies

    Science.gov (United States)

    Xu, Rong; Ayers, Brenda; Cowburn, David; Muir, Tom W.

    1999-01-01

    A convenient in vitro chemical ligation strategy has been developed that allows folded recombinant proteins to be joined together. This strategy permits segmental, selective isotopic labeling of the product. The src homology type 3 and 2 domains (SH3 and SH2) of Abelson protein tyrosine kinase, which constitute the regulatory apparatus of the protein, were individually prepared in reactive forms that can be ligated together under normal protein-folding conditions to form a normal peptide bond at the ligation junction. This strategy was used to prepare NMR sample quantities of the Abelson protein tyrosine kinase-SH(32) domain pair, in which only one of the domains was labeled with 15N Mass spectrometry and NMR analyses were used to confirm the structure of the ligated protein, which was also shown to have appropriate ligand-binding properties. The ability to prepare recombinant proteins with selectively labeled segments having a single-site mutation, by using a combination of expression of fusion proteins and chemical ligation in vitro, will increase the size limits for protein structural determination in solution with NMR methods. In vitro chemical ligation of expressed protein domains will also provide a combinatorial approach to the synthesis of linked protein domains.

  9. Protein annotation from protein interaction networks and Gene Ontology.

    Science.gov (United States)

    Nguyen, Cao D; Gardiner, Katheleen J; Cios, Krzysztof J

    2011-10-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precision and 60% recall versus 45% and 26% for Majority and 24% and 61% for χ²-statistics, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Zou Ruiyang

    2011-04-01

    Full Text Available Abstract Background Accurate interpretation of quantitative PCR (qPCR data requires normalization using constitutively expressed reference genes. Ribosomal RNA is often used as a reference gene for transcriptional studies in E. coli. However, the choice of reliable reference genes has not been systematically validated. The objective of this study is to identify a set of reliable reference genes for transcription analysis in recombinant protein over-expression studies in E. coli. Results In this study, the meta-analysis of 240 sets of single-channel Affymetrix microarray data representing over-expressions of 63 distinct recombinant proteins in various E. coli strains identified twenty candidate reference genes that were stably expressed across all conditions. The expression of these twenty genes and two commonly used reference genes, rrsA encoding ribosomal RNA 16S and ihfB, was quantified by qPCR in E. coli cells over-expressing four genes of the 1-Deoxy-D-Xylulose 5-Phosphate pathway. From these results, two independent statistical algorithms identified three novel reference genes cysG, hcaT, and idnT but not rrsA and ihfB as highly invariant in two E. coli strains, across different growth temperatures and induction conditions. Transcriptomic data normalized by the geometric average of these three genes demonstrated that genes of the lycopene synthetic pathway maintained steady expression upon enzyme overexpression. In contrast, the use of rrsA or ihfB as reference genes led to the mis-interpretation that lycopene pathway genes were regulated during enzyme over-expression. Conclusion This study identified cysG/hcaT/idnT to be reliable novel reference genes for transcription analysis in recombinant protein producing E. coli.

  11. IMGT/GeneInfo: enhancing V(D)J recombination database accessibility

    OpenAIRE

    Baum, Thierry-Pascal; Pasqual, Nicolas; Thuderoz, Florence; Hierle, Vivien; Chaume, Denys; Lefranc, Marie-Paule; Jouvin-Marche, Evelyne; Marche, Patrice-Noël; Demongeot, Jacques

    2004-01-01

    IMGT/GeneInfo is a user-friendly online information system that provides information on data resulting from the complex mechanisms of immunoglobulin (IG) and T cell receptor (TR) V(D)J recombinations. For the first time, it is possible to visualize all the rearrangement parameters on a single page. IMGT/GeneInfo is part of the international ImMunoGeneTics information system® (IMGT), a high-quality integrated knowledge resource specializing in IG, TR, major histocompatibility complex (MHC), an...

  12. Immunogenicity of recombinant Lactobacillus plantarum NC8 expressing goose parvovirus VP2 gene in BALB/c mice.

    Science.gov (United States)

    Liu, Yu-Ying; Yang, Wen-Tao; Shi, Shao-Hua; Li, Ya-Jie; Zhao, Liang; Shi, Chun-Wei; Zhou, Fang-Yu; Jiang, Yan-Long; Hu, Jing-Tao; Gu, Wei; Yang, Gui-Lian; Wang, Chun-Feng

    2017-06-30

    Goose parvovirus (GPV) continues to be a threat to goose farms and has significant economic effects on the production of geese. Current commercially available vaccines only rarely prevent GPV infection. In our study, Lactobacillus (L.) plantarum NC8 was selected as a vector to express the VP2 gene of GPV, and recombinant L. plantarum pSIP409-VP2/NC8 was successfully constructed. The molecular weight of the expressed recombinant protein was approximately 70 kDa. Mice were immunized with a 2 × 10 9 colony-forming unit/200 μL dose of the recombinant L. plantarum strain, and the ratios and numbers of CD11c + , CD3 + CD4 + , CD3 + CD8 + , and interferon gamma- and tumor necrosis factor alpha-expressing spleen lymphocytes in the pSIP409-VP2/NC8 group were higher than those in the control groups. In addition, we assessed the capacity of L. plantarum SIP409-VP2/NC8 to induce secretory IgA production. We conclude that administered pSIP409-VP2/NC8 leads to relatively extensive cellular responses. This study provides information on GPV infection and offers a clear framework of options available for GPV control strategies.

  13. Analysis of the lipidated recombinant outer surface protein A from Borrelia burgdorferi by mass spectrometry

    NARCIS (Netherlands)

    Bouchon, B.; Klein, Michele; Bischoff, Rainer; Van Dorsselaer, A.; Roitsch, C.

    1997-01-01

    The outer surface protein A, OspA, from the spirochete Borrelia burgdorferi is a lipoprotein of 25 kDa. The recombinant OspA (rOspA) expressed in Escherichia coli has been purified and analyzed by electrospray mass spectrometry (ESMS). A heterogenous spectrum gave a measured mass of 28,462 +/- 9 Da

  14. IgM-specific serodiagnosis of acute human cytomegalovirus infection using recombinant autologous fusion proteins

    NARCIS (Netherlands)

    Vornhagen, R; Hinderer, W; Sonneborn, HH; Bein, G; Matter, L; The, T. Hauw; Enders, G; Jahn, G; Plachter, B

    Portions of three human cytomegalovirus (HCMV) polypeptides, which were shown previously to be highly reactive with patient sera, were expressed in Escherichia coli as autologous fusion proteins. Purified recombinant polypeptides were used as antigens in enzyme linked immunosorbent assay (ELISA) and

  15. Human recombinant protein C for severe sepsis and septic shock in adult and paediatric patients

    DEFF Research Database (Denmark)

    Martí-Carvajal, Arturo J; Solà, Ivan; Gluud, Christian

    2012-01-01

    Sepsis is a common and frequently fatal condition. Human recombinant activated protein C (APC) has been introduced to reduce the high risk of death associated with severe sepsis or septic shock. This systematic review is an update of a Cochrane review originally published in 2007....

  16. Production of recombinant proteins GST L1, E6 and E7 tag HPV 16 ...

    African Journals Online (AJOL)

    In the present work recombinant proteins were produced for used in LUMINEX in order to undergo serological study of Tunisian female population. HPV types 16 L1, E6 and E7 sequences fused to their 3'-end to a sequence encoding the terminal undecapeptide of the SV40 large T-antigen (tag) were isolated from plasmids ...

  17. Production of Polyclonal Antibodies to a Recombinant Coat Protein of Potato mop-top virus

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Moravec, Tomáš; Rosecká, Pavla; Dědič, P.; Filigarová, Marie

    2003-01-01

    Roč. 151, č. 4 (2003), s. 195-200 ISSN 0931-1785 R&D Projects: GA ČR GA522/01/1121 Institutional research plan: CEZ:AV0Z5038910 Keywords : potato mop-top virus * recombinant coat protein * Escherichia Coli Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.557, year: 2003

  18. Polyclonal Antibodies to a Recombinant Coat Protein of Potato Virus A

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Moravec, Tomáš; Velemínský, Jiří

    2002-01-01

    Roč. 46, - (2002), s. 147-151 ISSN 0001-723X R&D Projects: GA ČR GA310/00/0381 Institutional research plan: CEZ:AV0Z5038910 Keywords : Potato virus A * recombinant coat protein * Escherichia coli Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.660, year: 2002

  19. A novel multi-epitope recombined protein for diagnosis of human brucellosis.

    Science.gov (United States)

    Yin, Dehui; Li, Li; Song, Xiuling; Li, Han; Wang, Juan; Ju, Wen; Qu, Xiaofeng; Song, Dandan; Liu, Yushen; Meng, Xiangjun; Cao, Hongqian; Song, Weiyi; Meng, Rizeng; Liu, Jinhua; Li, Juan; Xu, Kun

    2016-05-21

    In epidemic regions of the world, brucellosis is a reemerging zoonosis with minimal mortality but is a serious public hygiene problem. Currently, there are various methods for brucellosis diagnosis, however few of them are available to be used to diagnose, especially for serious cross-reaction with other bacteria. To overcome this disadvantage, we explored a novel multi-epitope recombinant protein as human brucellosis diagnostic antigen. We established an indirect enzyme-linked immunosorbent assay (ELISA) based on this recombinant protein. 248 sera obtained from three different groups including patients with brucellosis (146 samples), non-brucellosis patients (82 samples), and healthy individuals (20 samples) were tested by indirect ELISA. To evaluate the assay, a receiver-operating characteristic (ROC) analysis and immunoblotting were carried out using these characterized serum samples. For this test, the area under the ROC curve was 0.9409 (95 % confidence interval, 0.9108 to 0.9709), and a sensitivity of 88.89 % and a specificity of 85.54 % was given with a cutoff value of 0.3865 from this ROC analysis. The Western blot results indicate that it is feasible to differentiate human brucellosis and non-brucellosis with the newly established method based on this recombinant protein. Our results obtained high diagnostic accuracy of the ELISA assay which encourage the use of this novel recombinant protein as diagnostic antigen to implement serological diagnosis of brucellosis.

  20. Variation in a surface-exposed region of the Mycoplasma pneumoniae P40 protein as a consequence of homologous DNA recombination between RepMP5 elements.

    Science.gov (United States)

    Spuesens, Emiel B M; van de Kreeke, Nick; Estevão, Silvia; Hoogenboezem, Theo; Sluijter, Marcel; Hartwig, Nico G; van Rossum, Annemarie M C; Vink, Cornelis

    2011-02-01

    Mycoplasma pneumoniae is a human pathogen that causes a range of respiratory tract infections. The first step in infection is adherence of the bacteria to the respiratory epithelium. This step is mediated by a specialized organelle, which contains several proteins (cytadhesins) that have an important function in adherence. Two of these cytadhesins, P40 and P90, represent the proteolytic products from a single 130 kDa protein precursor, which is encoded by the MPN142 gene. Interestingly, MPN142 contains a repetitive DNA element, termed RepMP5, of which homologues are found at seven other loci within the M. pneumoniae genome. It has been hypothesized that these RepMP5 elements, which are similar but not identical in sequence, recombine with their counterpart within MPN142 and thereby provide a source of sequence variation for this gene. As this variation may give rise to amino acid changes within P40 and P90, the recombination between RepMP5 elements may constitute the basis of antigenic variation and, possibly, immune evasion by M. pneumoniae. To investigate the sequence variation of MPN142 in relation to inter-RepMP5 recombination, we determined the sequences of all RepMP5 elements in a collection of 25 strains. The results indicate that: (i) inter-RepMP5 recombination events have occurred in seven of the strains, and (ii) putative RepMP5 recombination events involving MPN142 have induced amino acid changes in a surface-exposed part of the P40 protein in two of the strains. We conclude that recombination between RepMP5 elements is a common phenomenon that may lead to sequence variation of MPN142-encoded proteins.

  1. Molecular chaperone assisted expression systems: obtaining pure soluble and active recombinant proteins for structural and therapeutic purposes

    CSIR Research Space (South Africa)

    Makhoba, XH

    2015-09-01

    Full Text Available For many years recombinant protein production has been at the center of biosciences used for structural and therapeutic purposes. The production of recombinant proteins in foreign host system such as E. coli has been a biggest challenge. This has...

  2. Improving serodiagnosis of human and canine leishmaniasis with recombinant Leishmania braziliensis cathepsin l-like protein and a synthetic peptide containing its linear B-cell epitope.

    Directory of Open Access Journals (Sweden)

    Daniel Menezes-Souza

    2015-01-01

    Full Text Available The early and correct diagnosis of human leishmaniasis is essential for disease treatment. Another important step in the control of visceral leishmaniasis is the identification of infected dogs, which are the main domestic reservoir of L. infantum. Recombinant proteins and synthetic peptides based on Leishmania genes have emerged as valuable targets for serodiagnosis due to their increased sensitivity, specificity and potential for standardization. Cathepsin L-like genes are surface antigens that are secreted by amastigotes and have little similarity to host proteins, factors that enable this protein as a good target for serodiagnosis of the leishmaniasis.We mapped a linear B-cell epitope within the Cathepsin L-like protein from L. braziliensis. A synthetic peptide containing the epitope and the recombinant protein was evaluated for serodiagnosis of human tegumentary and visceral leishmaniasis, as well as canine visceral leishmaniasis.The recombinant protein performed best for human tegumentary and canine visceral leishmaniasis, with 96.30% and 89.33% accuracy, respectively. The synthetic peptide was the best to discriminate human visceral leishmaniasis, with 97.14% specificity, 94.55% sensitivity and 96.00% accuracy. Comparison with T. cruzi-infected humans and dogs suggests that the identified epitope is specific to Leishmania parasites, which minimizes the likelihood of cross-reactions.

  3. Expression of protein engineered NADP{sup +}-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Matsushika, Akinori; Inoue, Hiroyuki; Murakami, Katsuji; Takimura, Osamu; Sawayama, Shigeki [National Institute of Advanced Industrial Science and Technology, Hiroshima (Japan). Biomass Technology Research Center; Watanabe, Seiya; Kodaki, Tsutomu; Makino, Keisuke [Kyoto Univ. (Japan). Inst. of Advanced Energy

    2008-11-15

    A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis has the ability to convert xylose to ethanol together with the unfavorable excretion of xylitol, which may be due to cofactor imbalance between NADPH-preferring XR and NAD{sup +}-dependent XDH. To reduce xylitol formation, we have already generated several XDH mutants with a reversal of coenzyme specificity toward NADP{sup +}. In this study, we constructed a set of recombinant S. cerevisiae strains with xylose-fermenting ability, including protein-engineered NADP{sup +}-dependent XDH-expressing strains. The most positive effect on xylose-to-ethanol fermentation was found by using a strain named MA-N5, constructed by chromosomal integration of the gene for NADP{sup +}-dependent XDH along with XR and endogenous xylulokinase genes. The MA-N5 strain had an increase in ethanol production and decrease in xylitol excretion compared with the reference strain expressing wild-type XDH when fermenting not only xylose but also mixed sugars containing glucose and xylose. Furthermore, the MA-N5 strain produced ethanol with a high yield of 0.49 g of ethanol/g of total consumed sugars in the nonsulfuric acid hydrolysate of wood chips. The results demonstrate that glucose and xylose present in the lignocellulosic hydrolysate can be efficiently fermented by this redox-engineered strain. (orig.)

  4. Evaluation of recombinant porin (rOmp2a) protein as a potential antigen candidate for serodiagnosis of Human Brucellosis.

    Science.gov (United States)

    Pathak, Prachi; Kumar, Ashu; Thavaselvam, Duraipandian

    2017-07-11

    Brucellosis is an important zoonotic disease caused by different Brucella species and human brucellosis is commonly prevalent in different states of India. Among various Brucella species, B. melitensis is most pathogenic to human and included as category B biothreat which can cause infection through aerosol, cut, wounds in skin and contact with infected animals. The diagnosis of human brucellosis is very important for proper treatment and management of disease as there is no vaccine available for human use. The present study was designed to clone, express and purify immunodominant recombinant omp2a (rOmp2a) porin protein of B. melitensis and to evaluate this new antigen candidate for specific serodiagnosis of human brucellosis by highly sensitive iELISA (indirect enzyme linked immunosorbent assay). Omp2a gene of B. melitensis 16 M strain was cloned and expressed in pET-SUMO expression system. The recombinant protein was purified under denaturing conditions using 8 M urea. The purified recombinant protein was confirmed by western blotting by reacting with anti-HIS antibody. The sero-reactivity of the recombinant protein was also checked by reacting with antisera of experimentally infected mice with B. melitensis 16 M at different time points. Serodiagnostic potential of recombinant porin antigen was tested against 185 clinical serum samples collected from regions endemic to brucellosis in southern part of India by iELISA. The samples were grouped into five groups. Group 1 contained cultured confirmed positive serum samples of brucellosis (n = 15), group 2 contained sera samples from positive cases of brucellosis previously tested by conventional methods of RBPT (n = 28) and STAT (n = 26), group 3 contained sera samples negative by RBPT(n = 36) and STAT (n = 32), group 4 contained sera samples of other febrile illness and PUO case (n = 35) and group 5 contained confirmed negative sera samples from healthy donors (n = 23). The rOmp2a was found to be

  5. Preparation of recombinant proteins in milk to improve human and animal health

    OpenAIRE

    Soler , Eric; Thépot , Dominique; Rival-Gervier , Sylvie; JOLIVET , Geneviève; Houdebine , Louis-Marie

    2006-01-01

    International audience; Milk is a very abundant source of proteins for animal and human consumption. Milk composition can be modified using transgenesis, including exogenous gene addition and endogenous gene inactivation. The study of milk protein genes has provided researchers with regulatory regions capable of efficiently and specifically driving the expression of foreign genes in milk. The projects underway are aimed at modifying milk composition, improving its nutritional value, reducing ...

  6. A role for the malignant brain tumour (MBT domain protein LIN-61 in DNA double-strand break repair by homologous recombination.

    Directory of Open Access Journals (Sweden)

    Nicholas M Johnson

    Full Text Available Malignant brain tumour (MBT domain proteins are transcriptional repressors that function within Polycomb complexes. Some MBT genes are tumour suppressors, but how they prevent tumourigenesis is unknown. The Caenorhabditis elegans MBT protein LIN-61 is a member of the synMuvB chromatin-remodelling proteins that control vulval development. Here we report a new role for LIN-61: it protects the genome by promoting homologous recombination (HR for the repair of DNA double-strand breaks (DSBs. lin-61 mutants manifest numerous problems associated with defective HR in germ and somatic cells but remain proficient in meiotic recombination. They are hypersensitive to ionizing radiation and interstrand crosslinks but not UV light. Using a novel reporter system that monitors repair of a defined DSB in C. elegans somatic cells, we show that LIN-61 contributes to HR. The involvement of this MBT protein in HR raises the possibility that MBT-deficient tumours may also have defective DSB repair.

  7. Protection by recombinant viral proteins against a respiratory challenge with virulent avian metapneumovirus.

    Science.gov (United States)

    Chary, Parag; Njenga, M Kariuki; Sharma, Jagdev M

    2005-12-15

    Protection by recombinant avian metapneumovirus (aMPV) N or M proteins against a respiratory challenge with virulent aMPV was examined. N, M or N+M proteins were administered intramuscularly (IM) with incomplete Freund's adjuvant (IFA) or by the oculonasal (ON) route with cholera toxin-B (CTB). Each turkey received 40 or 80 microg of each recombinant protein. Birds were considered protected against challenge if the challenge virus was not detectable in the choanal swabs by RT-PCR. At a dose of 40 microg/bird, N protein given with IFA by the IM route protected eight out of nine birds. M protein at the same dose protected three out of seven birds, while a combination of N+M proteins (40 microg each) protected three out of four birds. At a dose of 80 microg of each of N and M proteins per bird given with IFA by the IM route, 100% protection was achieved. ON immunization with a mixture of N and M proteins induced partial protection when the proteins were given with CTB; no detectable protection was noted without CTB. N and M proteins induced anti-aMPV antibodies, although protection against virulent virus challenge did not appear to be associated with the level or presence of antibodies.

  8. Gene targeting using homologous recombination in embryonic stem cells: The future for behavior genetics?

    Directory of Open Access Journals (Sweden)

    Robert eGerlai

    2016-04-01

    Full Text Available Gene targeting with homologous recombination in embryonic stem cells created a revolution in the analysis of the function of genes in behavioral brain research. The technology allowed unprecedented precision with which one could manipulate genes and study the effect of this manipulation on the central nervous system. With gene targeting, the uncertainty inherent in psychopharmacology regarding whether a particular compound would act only through a specific target was removed. Thus, gene targeting became highly popular. However, with this popularity came the realization that like other methods, gene targeting also suffered from some technical and principal problems. For example, two decades ago, issues about compensatory changes and about genetic linkage were raised. Since then, the technology developed, and its utility has been better delineated. This review will discuss the pros and cons of the technique along with these advancements from the perspective of the neuroscientist user. It will also compare and contrast methods that may represent novel alternatives to the homologous recombination based gene targeting approach, including the TALEN and the CRISPR/Cas9 systems. The goal of the review is not to provide detailed recipes, but to attempt to present a short summary of these approaches a behavioral geneticist or neuroscientist may consider for the analysis of brain function and behavior.

  9. New sensitive and specific assay for human immunodeficiency virus antibodies using labeled recombinant fusion protein and time-resolved fluoroimmunoassay.

    OpenAIRE

    Siitari, H; Turunen, P; Schrimsher, J; Nunn, M

    1990-01-01

    A new, rapid method for the detection of human immunodeficiency virus type 1 (HIV-1) antibody by time-resolved fluoroimmunoassay (TR-FIA) was developed. In this assay format, microtitration strips were coated with a recombinant fusion protein, and the same protein was labeled with europium and added into the wells simultaneously with the test specimens. The recombinant fusion protein contained the HIV-1 p24 gag protein sequence that carried an insertion, near the carboxyl terminus, of a 23-am...

  10. Correlation Between Expression of Recombinant Proteins and Abundance of H3K4Me3 on the Enhancer of Human Cytomegalovirus Major Immediate-Early Promoter.

    Science.gov (United States)

    Soo, Benjamin P C; Tay, Julian; Ng, Shirelle; Ho, Steven C L; Yang, Yuansheng; Chao, Sheng-Hao

    2017-08-01

    Role of epigenetic regulation in the control of gene expression is well established. The impact of several epigenetic mechanisms, such as DNA methylation and histone acetylation, on recombinant protein production in mammalian cells has been investigated recently. Here we investigate the correlation between the selected epigenetic markers and five trastuzumab biosimilar-producing Chinese hamster ovary (CHO) cell lines in which the expression of trastuzumab is driven by human cytomegalovirus (HCMV) major immediate-early (MIE) promoter. We chose the producing clones in which transcription was the determinative step for the production of recombinant trastuzumab. We found that the abundance of trimethylation of histone 3 at lysine 4 (H3K4Me3) on the enhancer of HCMV MIE promoter correlated well with the relative titers of recombinant trastuzumab among the clones. Such close correlation was not observed between the recombinant protein and other epigenetic markers examined in our study. Our results demonstrate that the HCMV MIE enhancer-bound H3K4Me3 epigenetic marker may be used as the epigenetic indicator to predict the relative production of recombinant proteins between the producing CHO cell lines.

  11. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications.

    Science.gov (United States)

    Gupta, Sanjeev K; Shukla, Pratyoosh

    2016-12-01

    Prokaryotic expression systems are superior in producing valuable recombinant proteins, enzymes and therapeutic products. Conventional microbial technology is evolving gradually and amalgamated with advanced technologies in order to give rise to improved processes for the production of metabolites, recombinant biopharmaceuticals and industrial enzymes. Recently, several novel approaches have been employed in a bacterial expression platform to improve recombinant protein expression. These approaches involve metabolic engineering, use of strong promoters, novel vector elements such as inducers and enhancers, protein tags, secretion signals, high-throughput devices for cloning and process screening as well as fermentation technologies. Advancement of the novel technologies in E. coli systems led to the production of "difficult to express" complex products including small peptides, antibody fragments, few proteins and full-length aglycosylated monoclonal antibodies in considerable large quantity. Wacker's secretion technologies, Pfenex system, inducers, cell-free systems, strain engineering for post-translational modification, such as disulfide bridging and bacterial N-glycosylation, are still under evaluation for the production of complex proteins and peptides in E. coli in an efficient manner. This appraisal provides an impression of expression technologies developed in recent times for enhanced production of heterologous proteins in E. coli which are of foremost importance for diverse applications in microbiology and biopharmaceutical production.

  12. The use of an in vitro microneutralization assay to evaluate the potential of recombinant VP5 protein as an antigen for vaccinating against Grass carp reovirus

    Directory of Open Access Journals (Sweden)

    Xu Dan

    2011-03-01

    Full Text Available Abstract Background Grass carp reovirus (GCRV is the causative pathogen of grass carp hemorrhagic disease, one of the major diseases damaging grass carp Ctenopharyngon idellus breeding industry in China. Prevention and control of the disease is impeded largely due to the lack of research in economic subunit vaccine development. This study aimed to evaluate the potential of viral outer shell protein VP5 as subunit vaccine. Methods The vp5 gene was isolated from the viral genome through RT-PCR and genetically engineered to express the recombinant VP5 protein in E coli. The viral origin of the recombinant protein was confirmed by Western blot analysis with a monoclonal antibody against viral VP5 protein. Polyclonal antibody against the recombinant VP5 protein was prepared from mice. A microneutralization assay was developed to test its neutralizing ability against GCRV infection in cell culture. Results The GST-VP5 fusion protein (rVP5 was produced from E. Coli with expected molecular weight of 90 kDa. The protein was purified and employed to prepare anti-VP5 polyclonal antibody from mice. The anti-VP5 antibody was found to neutralize GCRV through in vitro microneutralization assay and viral progeny quantification analysis. Conclusions The present study showed that the viral VP5 protein was involved in viral infection and bacterially-expressed VP5 could be suitable for developing subunit vaccine for the control of GCRV infection.

  13. Preparative Purification of Recombinant Proteins: Current Status and Future Trends

    Directory of Open Access Journals (Sweden)

    Mayank Saraswat

    2013-01-01

    Full Text Available Advances in fermentation technologies have resulted in the production of increased yields of proteins of economic, biopharmaceutical, and medicinal importance. Consequently, there is an absolute requirement for the development of rapid, cost-effective methodologies which facilitate the purification of such products in the absence of contaminants, such as superfluous proteins and endotoxins. Here, we provide a comprehensive overview of a selection of key purification methodologies currently being applied in both academic and industrial settings and discuss how innovative and effective protocols such as aqueous two-phase partitioning, membrane chromatography, and high-performance tangential flow filtration may be applied independently of or in conjunction with more traditional protocols for downstream processing applications.

  14. Recent advances in recombinant protein-based malaria vaccines

    DEFF Research Database (Denmark)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito...... vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard......, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite...

  15. The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination

    KAUST Repository

    Blomme, Jonas

    2017-04-19

    In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana. Gainand loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.

  16. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  17. Construction and growth properties of bovine herpesvirus type 5 recombinants defective in the glycoprotein E or thymidine kinase gene or both

    Directory of Open Access Journals (Sweden)

    M.C.S. Brum

    2010-02-01

    Full Text Available Bovine herpesvirus type 5 (BoHV-5 is an important pathogen of cattle in South America. We describe here the construction and characterization of deletion mutants defective in the glycoprotein E (gE or thymidine kinase (TK gene or both (gE/TK from a highly neurovirulent and well-characterized Brazilian BoHV-5 strain (SV507/99. A gE-deleted recombinant virus (BoHV-5 gE∆ was first generated in which the entire gE open reading frame was replaced with a chimeric green fluorescent protein gene. A TK-deleted recombinant virus (BoHV-5 TK∆ was then generated in which most of the TK open reading frame sequences were deleted and replaced with a chimeric β-galactosidase gene. Subsequently, using the BoHV-5 gE∆ virus as backbone, a double gene-deleted (TK plus gE BoHV-5 recombinant (BoHV-5 gE/TK∆ was generated. The deletion of the gE and TK genes was confirmed by immunoblotting and PCR, respectively. In Madin Darby bovine kidney (MDBK cells, the mutants lacking gE (BoHV-5 gE∆ and TK + gE (BoHV-5 gE/TK∆ produced small plaques while the TK-deleted BoHV-5 produced wild-type-sized plaques. The growth kinetics and virus yields in MDBK cells for all three recombinants (BoHV-5 gE∆, BoHV-5 TK∆ and BoHV-5 gE/TK∆ were similar to those of the parental virus. It is our belief that the dual gene-deleted recombinant (BoHV-5 gE/TK∆ produced on the background of a highly neurovirulent Brazilian BoHV-5 strain may have potential application in a vaccine against BoHV-5.

  18. Tunable recombinant protein expression with E. coli in a mixed-feed environment.

    Science.gov (United States)

    Sagmeister, Patrick; Schimek, Clemens; Meitz, Andrea; Herwig, Christoph; Spadiut, Oliver

    2014-04-01

    Controlling the recombinant protein production rate in Escherichia coli is of utmost importance to ensure product quality and quantity. Up to now, only the genetic construct, introduced into E. coli, and the specific growth rate of the culture were used to influence and stir the productivity. However, bioprocess technological means to control or even tune the productivity of E. coli are scarce. Here, we present a novel method for the process-technological control over the recombinant protein expression rate in E. coli. A mixed-feed fed-batch bioprocess based on the araBAD promoter expression system using both D-glucose and L-arabinose as assimilable C-sources was designed. Using the model product green fluorescent protein, we show that the specific product formation rate can be efficiently tuned even on the cellular level only via the uptake rate of L-arabinose. This novel approach introduces an additional degree of freedom for the design of recombinant bioprocesses with E. coli. We anticipate that the presented method will result in significant quality and robustness improvement as well as cost and process time reduction for recombinant bacterial bioprocesses in the future.

  19. Construction of green fluorescent protein-tagged recombinant iridovirus to assess viral replication.

    Science.gov (United States)

    Huang, Youhua; Huang, Xiaohong; Cai, Jia; Ye, Fuzhou; Guan, Liya; Liu, Hong; Qin, Qiwei

    2011-09-01

    Green fluorescent protein-tagged recombinant virus has been successfully applied to observing the infective dynamics and evaluating viral replication. Here, we identified soft-shelled turtle iridovirus (STIV) ORF55 as an envelope protein (VP55), and developed a recombinant STIV expressing an enhanced green fluorescent protein (EGFP) fused to VP55 (EGFP-STIV). Recombinant EGFP-STIV shared similar single-step growth curves and ultrastructural morphology with wild type STIV (wt-STIV). The green fluorescence distribution during EGFP-STIV infection was consistent with the intracellular distribution of VP55 which was mostly co-localized with virus assembly sites. Furthermore, EGFP-STIV could be used to evaluate viral replication conveniently under drug treatment, and the result showed that STIV replication was significantly inhibited after the addition of antioxidant pyrrolidine dithiocarbamate (PDTC). Thus, the EGFP-tagged recombinant iridovirus will not only be useful for further investigations on the viral replicative dynamics, but also provide an alternative simple strategy to screen for antiviral substances. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. REC46 gene of Saccharomyces cerevisiae controls mitotic chromosomal stability, recombination and sporulation: cell-type and life cycle stage specific expression of the rec46-1 mutation

    International Nuclear Information System (INIS)

    Maleas, D.T.; Bjornstad, K.A.; Holbrook, L.L.; Esposito, M.S.

    1986-01-01

    Studies of chromosomal recombination during mitosis and meiosis of Saccharomyces cerevisiae have demonstrated that recombination at these two distinct stages of the yeast life cycle proceeds by mechanisms that appear similar but involve discrete mitosis-specific and meiosis-specific properties. UV radiation induced REC mutants are being employed as a genetic tool to identify the partial reactions comprising recombination and the involvement of individual REC gene products in mitotic and meiotic recombination. The sequence of molecular events that results in genetic recombination in eukaryotes is presently ill-defined. Genetic characterization of REC gene mutants and biochemical analyses of them for discrete defects in DNA metabolic proteins and enzymes (in collaboration with the laboratory of Junko Hosoda) are beginning to remedy this gap in the authors knowledge. This report summarizes the genetic properties of the rec46-1 mutation

  1. Multiplexed expression and screening for recombinant protein production in mammalian cells

    Directory of Open Access Journals (Sweden)

    McCafferty John

    2006-12-01

    Full Text Available Abstract Background A variety of approaches to understanding protein structure and function require production of recombinant protein. Mammalian based expression systems have advantages over bacterial systems for certain classes of protein but can be slower and more laborious. Thus the availability of a simple system for production and rapid screening of constructs or conditions for mammalian expression would be of great benefit. To this end we have coupled an efficient recombinant protein production system based on transient transfection in HEK-293 EBNA1 (HEK-293E suspension cells with a dot blot method allowing pre-screening of proteins expressed in cells in a high throughput manner. Results A nested PCR approach was used to clone 21 extracellular domains of mouse receptors as CD4 fusions within a mammalian GATEWAY expression vector system. Following transient transfection, HEK-293E cells grown in 2 ml cultures in 24-deep well blocks showed similar growth kinetics, viability and recombinant protein expression profiles, to those grown in 50 ml shake flask cultures as judged by western blotting. Following optimisation, fluorescent dot blot analysis of transfection supernatants was shown to be a rapid method for analysing protein expression yielding similar results as western blot analysis. Addition of urea enhanced the binding of glycoproteins to a nitrocellulose membrane. A good correlation was observed between the results of a plate based small scale transient transfection dot blot pre-screen and successful purification of proteins expressed at the 50 ml scale. Conclusion The combination of small scale multi-well plate culture and dot blotting described here will allow the multiplex analysis of different mammalian expression experiments enabling a faster identification of high yield expression constructs or conditions prior to large scale protein production. The methods for parallel GATEWAY cloning and expression of multiple constructs in cell

  2. Efficient sortase-mediated N-terminal labeling of TEV protease cleaved recombinant proteins.

    Science.gov (United States)

    Sarpong, Kwabena; Bose, Ron

    2017-03-15

    A major challenge in attaching fluorophores or other handles to proteins is the availability of a site-specific labeling strategy that provides stoichiometric modification without compromising protein integrity. We developed a simple approach that combines TEV protease cleavage, sortase modification and affinity purification to N-terminally label proteins. To achieve stoichiometrically-labeled protein, we included a short affinity tag in the fluorophore-containing peptide for post-labeling purification of the modified protein. This strategy can be easily applied to any recombinant protein with a TEV site and we demonstrate this on Epidermal Growth Factor Receptor (EGFR) and Membrane Scaffold Protein (MSP) constructs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Nuclear Engineering of Microalgae for High Yield Secretion of Recombinant Proteins

    DEFF Research Database (Denmark)

    Ramos Martinez, Erick Miguel

    biotechnology hosts including safety, metabolic diversity, scalability, sustainability and low production cost. Over the past decades, considerable improvement has been made to express and secrete recombinant proteins in high levels: however current yields are still low. The first research project presented...... to the glycomodules, accumulation of a fusion protein was dramatically increased by up to 12 folds, with the maximum yield of 15 mg L-1. Characterization of the secreted Venus showed the presence of glycosylations and increased resistance to proteolytic degradation. The results from this thesis demonstrate...... the potential of microalgae as a cell factory for secretion of recombinant proteins. The second research project presented in this thesis aimed to establish a new robust method to allow in vivo measurements of metabolic enzyme activities in cyanobacteria, with a hope that the method would facilitate further...

  4. Cross-system excision of chaperone-mediated proteolysis in chaperone-assisted recombinant protein production

    Science.gov (United States)

    Martínez-Alonso, Mónica; Villaverde, Antonio

    2010-01-01

    Main Escherichia coli cytosolic chaperones such as DnaK are key components of the control quality network designed to minimize the prevalence of polypeptides with aberrant conformations. This is achieved by both favoring refolding activities but also stimulating proteolytic degradation of folding reluctant species. This last activity is responsible for the decrease of the proteolytic stability of recombinant proteins when co-produced along with DnaK, where an increase in solubility might be associated to a decrease in protein yield. However, when DnaK and its co-chaperone DnaJ are co-produced in cultured insect cells or whole insect larvae (and expectedly, in other heterologous hosts), only positive, folding-related effects of these chaperones are observed, in absence of proteolysis-mediated reduction of recombinant protein yield. PMID:21326941

  5. Crystallization and preliminary crystallographic analysis of recombinant immunoglobulin G-binding protein from Streptococcus suis

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Abdul Hamid; Chu, Fuliang; Feng, Youjun; Zhang, Qinagmin [Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Qi, Jianxun [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Gao, George Fu, E-mail: gaof@im.ac.cn [Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China)

    2008-08-01

    Crystallization of recombinant IgG-binding protein expressed in Escherichia coli using the hanging-drop vapour-diffusion method is described. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å. Streptococcus suis, an important zoonotic pathogen, expresses immunoglobulin G-binding protein, which is thought to be helpful to the organism in eluding the host defence system. Recombinant IgG-binding protein expressed in Escherichia coli has been crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å and one molecule in the asymmetric unit. Diffraction data were collected to 2.60 Å resolution.

  6. Tobacco BY-2 Media Component Optimization for a Cost-Efficient Recombinant Protein Production.

    Science.gov (United States)

    Häkkinen, Suvi T; Reuter, Lauri; Nuorti, Ninni; Joensuu, Jussi J; Rischer, Heiko; Ritala, Anneli

    2018-01-01

    Plant cells constitute an attractive platform for production of recombinant proteins as more and more animal-free products and processes are desired. One of the challenges in using plant cells as production hosts has been the costs deriving from expensive culture medium components. In this work, the aim was to optimize the levels of most expensive components in the nutrient medium without compromising the accumulation of biomass and recombinant protein yields. Wild-type BY-2 culture and transgenic tobacco BY-2 expressing green fluorescent protein-Hydrophobin I (GFP-HFBI) fusion protein were used to determine the most inexpensive medium composition. One particularly high-accumulating BY-2 clone, named 'Hulk,' produced 1.1 ± 0.2 g/l GFP-HFBI in suspension and kept its high performance during prolonged subculturing. In addition, both cultures were successfully cryopreserved enabling truly industrial application of this plant cell host. With the optimized culture medium, 43-55% cost reduction with regard to biomass and up to 69% reduction with regard to recombinant protein production was achieved.

  7. Methods for Using Small Non-Coding RNAs to Improve Recombinant Protein Expression in Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Sarah Inwood

    2018-01-01

    Full Text Available The ability to produce recombinant proteins by utilizing different “cell factories” revolutionized the biotherapeutic and pharmaceutical industry. Chinese hamster ovary (CHO cells are the dominant industrial producer, especially for antibodies. Human embryonic kidney cells (HEK, while not being as widely used as CHO cells, are used where CHO cells are unable to meet the needs for expression, such as growth factors. Therefore, improving recombinant protein expression from mammalian cells is a priority, and continuing effort is being devoted to this topic. Non-coding RNAs are RNA segments that are not translated into a protein and often have a regulatory role. Since their discovery, major progress has been made towards understanding their functions. Non-coding RNA has been investigated extensively in relation to disease, especially cancer, and recently they have also been used as a method for engineering cells to improve their protein expression capability. In this review, we provide information about methods used to identify non-coding RNAs with the potential of improving recombinant protein expression in mammalian cell lines.

  8. Improved Method for the Incorporation of Heme Cofactors into Recombinant Proteins Using Escherichia coli Nissle 1917.

    Science.gov (United States)

    Fiege, Kerstin; Querebillo, Christine Joy; Hildebrandt, Peter; Frankenberg-Dinkel, Nicole

    2018-05-15

    Recombinant production of heme proteins in Escherichia coli is often limited by the availability of heme in the host. Therefore, several methods, including the reconstitution of heme proteins after production but prior to purification or the HPEX system, conferring the ability to take up external heme have been developed and used in the past. Here we describe the use of the apathogenic E. coli strain Nissle 1917 (EcN) as a suitable host for the recombinant production of heme proteins. EcN has an advantage over commonly used lab strains in that it is able to take up heme from the environment through the heme receptor ChuA. Expression of several heme proteins from different prokaryotic sources led to high yield and quantitative incorporation of the cofactor when heme was supplied in the growth medium. Comparative UV-vis and resonance Raman measurements revealed that the method employed has significant influence on heme coordination with the EcN system representing the most native situation. Therefore, the use of EcN as a host for recombinant heme protein production represents an inexpensive and straightforward method to facilitate further investigations of structure and function.

  9. A novel chimeric protein composed of recombinant Mycoplasma hyopneumoniae antigens as a vaccine candidate evaluated in mice.

    Science.gov (United States)

    de Oliveira, Natasha Rodrigues; Jorge, Sérgio; Gomes, Charles Klazer; Rizzi, Caroline; Pacce, Violetta Dias; Collares, Thais Farias; Monte, Leonardo Garcia; Dellagostin, Odir Antônio

    2017-03-01

    Enzootic Pneumonia (EP) is caused by the Mycoplasma hyopneumoniae pathogenic bacteria, and it represents a significant respiratory disease that is responsible for major economic losses within the pig industry throughout the world. The bacterins that are currently commercially available have been proven to offer only partial protection against M. hyopneumoniae, and the development of more efficient vaccines is required. Several recombinant antigens have been evaluated via different immunization strategies and have been found to be highly immunogenic. This work describes the construction and immunological characterization of a multi-antigen chimera composed of four M. hyopneumoniae antigens: P97R1, P46, P95, and P42. Immunogenic regions of each antigen were selected and combined to encode a single polypeptide. The gene was cloned and expressed in Escherichia coli, and the chimeric protein was recognized by specific antibodies against each subunit, as well as by convalescent pig sera. The immunogenic properties of the chimera were then evaluated in a mice model through two recombinant vaccines that were formulated as follows: (1) purified chimeric protein plus adjuvant or (2) recombinant Escherichia coli bacterin. The immune response induced in BALB/c mice immunized with each formulation was characterized in terms of total IgG levels, IgG1, and IgG2a isotypes against each antigen present in the chimera. The results of the study indicated that novel chimeric protein is a potential candidate for the future development of a more effective vaccine against EP. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Oral Administration of Recombinant Saccharomyces boulardii Expressing Ovalbumin-CPE Fusion Protein Induces Antibody Response in Mice

    Directory of Open Access Journals (Sweden)

    Ghasem Bagherpour

    2018-04-01

    Full Text Available Saccharomyces boulardii, a subspecies of Saccharomyces cerevisiae, is a well-known eukaryotic probiotic with many benefits for human health. In the present study, a recombinant strain of S. boulardii was prepared to use as a potential oral vaccine delivery vehicle. In this sense, a ura3 auxotroph strain of S. boulardii CNCM I-745 (known as S. cerevisiae HANSEN CBS 5926, Yomogi® was generated using CRISPR/Cas9 methodology. Then a gene construct encoding a highly immunogenic protein, ovalbumin (OVA, was prepared and transformed into the ura3- S. boulardii. To facilitate the transport of the recombinant immunogen across the intestinal barrier, a claudin-targeting sequence from Clostridium perfringens enterotoxin (CPE was added to the C-terminus of the expression cassette. The recombinant S. boulardii strain expressing the OVA-CPE fusion protein was then administered orally to a group of mice, and serum IgG and fecal IgA levels were evaluated by ELISA. Our results demonstrated that anti-OVA IgG in serum significantly increased in test group (P < 0.001 compared to control groups (receiving wild type S. boulardii or PBS, and the fecal IgA titer was significantly higher in test group (P < 0.05 than control groups. In parallel, a recombinant S. boulardii strain expressing the similar construct lacking C-terminal CPE was also administered orally. The result showed an increased level of serum IgG in group receiving yeasts expressing the CPE negative construct compared to control groups; however, the fecal IgA levels did not increase significantly. In conclusion, our findings indicated that the yeast S. boulardii, as a delivery vehicle with possible immunomodulatory effects, and c-CPE, as a targeting tag, synergistically assist to stimulate systemic and local immunity. This proposed recombinant S. boulardii system might be useful in the expression of other antigenic peptides, making it as a promising tool for oral delivery of vaccines or therapeutic

  11. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein.

    Science.gov (United States)

    Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A

    1996-08-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges.

  12. Purification and characterization of recombinant protein kinase CK2 from Zea mays expressed in Escherichia coli

    DEFF Research Database (Denmark)

    Riera, Marta; Pages, Montserrat; Issinger, Olaf Georg

    2003-01-01

    Recombinant protein kinase subunits rmCK2alpha-1 and rmCK2beta-1 from Zea mays were expressed separately in Escherichia coli and assembled to a fully active tetrameric holoenzyme complex in vitro. The obtained maize holoenzyme was purified to homogeneity, biochemically characterized, and compared...... to CK2 from human. Kinetic measurements of the recombinant maize holoenzyme (rmCK2) revealed k(cat) values for ATP and GTP of 4 and 2s(-1), respectively; whereas the recombinant maize catalytic subunit showed almost equal values for ATP and GTP, i.e., ca. 0.8s(-1). A comparison of the k(cat)/K(m) ratio...

  13. High-level expression of soluble recombinant proteins in Escherichia coli using an HE-maltotriose-binding protein fusion tag.

    Science.gov (United States)

    Han, Yingqian; Guo, Wanying; Su, Bingqian; Guo, Yujie; Wang, Jiang; Chu, Beibei; Yang, Guoyu

    2018-02-01

    Recombinant proteins are commonly expressed in prokaryotic expression systems for large-scale production. The use of genetically engineered affinity and solubility enhancing fusion proteins has increased greatly in recent years, and there now exists a considerable repertoire of these that can be used to enhance the expression, stability, solubility, folding, and purification of their fusion partner. Here, a modified histidine tag (HE) used as an affinity tag was employed together with a truncated maltotriose-binding protein (MBP; consisting of residues 59-433) from Pyrococcus furiosus as a solubility enhancing tag accompanying a tobacco etch virus protease-recognition site for protein expression and purification in Escherichia coli. Various proteins tagged at the N-terminus with HE-MBP(Pyr) were expressed in E. coli BL21(DE3) cells to determine expression and solubility relative to those tagged with His6-MBP or His6-MBP(Pyr). Furthermore, four HE-MBP(Pyr)-fused proteins were purified by immobilized metal affinity chromatography to assess the affinity of HE with immobilized Ni 2+ . Our results showed that HE-MBP(Pyr) represents an attractive fusion protein allowing high levels of soluble expression and purification of recombinant protein in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Plasmid transfer by conjugation as a possible route of horizontal gene transfer and recombination in Xylella fastidiosa

    Science.gov (United States)

    Horizontal gene transfer is an important component of evolution and adaptation of bacterial species. Xylella fastidiosa has the ability to incorporate exogenous DNA into its genome by homologous recombination at relatively high rates. This genetic recombination is believed to play a role in adaptati...

  15. A systematic investigation of production of synthetic prions from recombinant prion protein.

    Science.gov (United States)

    Schmidt, Christian; Fizet, Jeremie; Properzi, Francesca; Batchelor, Mark; Sandberg, Malin K; Edgeworth, Julie A; Afran, Louise; Ho, Sammy; Badhan, Anjna; Klier, Steffi; Linehan, Jacqueline M; Brandner, Sebastian; Hosszu, Laszlo L P; Tattum, M Howard; Jat, Parmjit; Clarke, Anthony R; Klöhn, Peter C; Wadsworth, Jonathan D F; Jackson, Graham S; Collinge, John

    2015-12-01

    According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre 'synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20,000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved. © 2015 The Authors.

  16. Simple and Efficient Purification of Recombinant Proteins Using the Heparin-Binding Affinity Tag.

    Science.gov (United States)

    Jayanthi, Srinivas; Gundampati, Ravi Kumar; Kumar, Thallapuranam Krishnaswamy Suresh

    2017-11-01

    Heparin, a member of the glycosaminoglycan family, is known to interact with more than 400 different types of proteins. For the past few decades, significant progress has been made to understand the molecular details involved in heparin-protein interactions. Based on the structural knowledge available from the FGF1-heparin interaction studies, we have designed a novel heparin-binding peptide (HBP) affinity tag that can be used for the simple, efficient, and cost-effective purification of recombinant proteins of interest. HBP-tagged fusion proteins can be purified by heparin Sepharose affinity chromatography using a simple sodium chloride gradient to elute the bound fusion protein. In addition, owing to the high density of positive charges on the HBP tag, recombinant target proteins are preferably expressed in their soluble forms. The purification of HBP-fusion proteins can also be achieved in the presence of chemical denaturants, including urea. Additionally, polyclonal antibodies raised against the affinity tag can be used to detect HBP-fused target proteins with high sensitivity. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. Construction of a recombinant eukaryotic human ZHX1 gene expression plasmid and the role of ZHX1 in hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Jianping; Liu, Dejie; Liang, Xiaohong; Gao, Lifen; Yue, Xuetian; Yang, Yang; Ma, Chunhong; Liu, Jun

    2013-11-01

    The zinc-fingers and homeoboxes protein 1 (ZHX1) consists of 873 amino acid residues, is localized in the cell nucleus and appears to act as a transcriptional repressor. Previous studies have shown that ZHX1 interacts with nuclear factor Y subunit α (NF-YA), DNA methyltransferases (DNMT) 3B and ZHX2, all of which are involved in tumorigenesis. However, the exact role of ZHX1 in tumorigenesis remains unknown. The aim of the current study was to construct a recombinant eukaryotic expression plasmid containing the human ZHX1 (hZHX1) gene and to investigate the biological activities of ZHX1 in hepatocellular carcinoma (HCC). Reverse transcription-polymerase chain reaction (RT‑PCR) was used to amplify the N- and C-terminal fragments (ZHX1‑N and ZHX1‑C, respectively) of the hZHX1 gene. The two PCR fragments were cloned into the pEASY-T1 vector and subcloned into the pcDNA3 plasmid to generate a recombinant pcDNA3‑ZHX1 plasmid. Following identification by enzyme digestion and DNA sequencing, the recombinant pcDNA3‑ZHX1 plasmid was transfected into SMMC-7721 cells. The level of ZHX1 expression was detected by RT-PCR and western blot analysis. Cell growth curve assays were used to evaluate the effect of ZHX1 on cell proliferation. Moreover, the differential expression of ZHX1 between cancer and adjacent cirrhotic liver tissue was investigated by quantitative PCR (qPCR). Enzyme digestion and DNA sequencing confirmed the successful construction of the recombinant plasmid, pcDNA3‑ZHX1. qPCR and western blot analysis demonstrated that ZHX1 was efficiently expressed in SMMC-7721 cells and overexpression of ZHX1 may inhibit the proliferation of SMMC-7721 cells. In addition, reduced ZHX1 expression is widespread among cancer tissues from HCC patients. In conclusion, a recombinant eukaryotic expression plasmid, pcDNA3‑ZHX1, was successfully constructed. In addition, the current results indicate that a low expression of ZHX1 may be responsible for hepatocarcinogenesis.

  18. Evaluation of a novel Dot-ELISA assay utilizing a recombinant protein for the effective diagnosis of Taenia pisiformis larval infections.

    Science.gov (United States)

    Chen, Lin; Yang, Deying; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2014-08-29

    Cysticercosis, caused by the larvae of Taenia pisiformis, is a common disease in domestic breeds of the rabbit Oryctolagus cuniculus that results in economic losses. At present, there is no convenient and effective method for the rapid detection of T. pisiformis larvae. Here, we developed and tested the efficacy of a Dot-ELISA assay for the diagnosis of T. pisiformis larval infections in rabbits, based on the expression of the recombinant fusion protein (rTp1) from the Tp1 gene. Rapid amplification of cDNA ends (RACE) was used to amplify the 3' ends of the Tp1 gene, based on the unigene similar to Ts1 gene (EU009656.1) which comes from transcriptome sequencing of T. pisiformis. The Tp1 gene was successfully amplified, cloned and expressed in BL21 (DE3). Western blot analysis revealed that the recombinant Tp1 protein is specifically recognized by rabbit T. pisiformis cysticercosis antisera. This purified recombinant fusion protein, rTp1, was probed by Dot-ELISA with sera from rabbits infected with T. pisiformis larvae and with other parasitic infections. Results showed that this Dot-ELISA assay had both high sensitivity (92.9-97.6%) and specificity (95.2-98.4%) to detect T. pisiformis larval infections. We also found very low levels of cross-reaction with other parasitic infections. This study has revealed that our novel Dot-ELISA assay utilizing the recombinant fusion protein, rTp1, has a strong potential for the effective diagnosis of T. pisiformis infections in rabbits. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Gene delivery of therapeutic polypeptides to brain capillary endothelial cells for protein secretion

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Moos, Torben

    . Results: mRNA expression of proteins with neuroprotective potential in RBEC were enabled. Their expression patters were compared with those of RBE4 and HeLa cells using RT-qPCR analyzes. The evidence for protein synthesis and secretion was obtained by detection of FLAG-tagged to the C-terminal of any......Background: The potential for treatment of chronic disorders affecting the CNS is complicated by the inability of several drugs to cross the blood-brain barrier (BBB). None-viral gene therapy applied to brain capillary endothelial cells (BCECs) denotes a novel approach to overcome the restraints...... in this passage, as turning BCECs into recombinant protein factories by transfection could result in protein secretion into the brain. Aim: The aim of the present study was to investigate the possibility of transfection to primary rat brain capillary endothelial cells (RBEC) for recombinant protein synthesis...

  20. Recombinant lactoferrin (Lf) of Vechur cow, the critical breed of Bos indicus and the Lf gene variants.

    Science.gov (United States)

    Anisha, Shashidharan; Bhasker, Salini; Mohankumar, Chinnamma

    2012-03-01

    Vechur cow, categorized as a critically maintained breed by the FAO, is a unique breed of Bos indicus due to its extremely small size, less fodder intake, adaptability, easy domestication and traditional medicinal property of the milk. Lactoferrin (Lf) is an iron-binding glycoprotein that is found predominantly in the milk of mammals. The full coding region of Lf gene of Vechur cow was cloned, sequenced and expressed in a prokaryotic system. Antibacterial activity of the recombinant Lf showed suppression of bacterial growth. To the best of our knowledge this is the first time that the full coding region of Lf gene of B. indicus Vechur breed is sequenced, successfully expressed in a prokaryotic system and characterized. Comparative analysis of Lf gene sequence of five Vechur cows with B. taurus revealed 15 SNPs in the exon region associated with 11 amino acid substitutions. The amino acid arginine was noticed as a pronounced substitution and the tertiary structure analysis of the BLfV protein confirmed the positions of arginine in the β sheet region, random coil and helix region 1. Based on the recent reports on the nutritional therapies of arginine supplementation for wound healing and for cardiovascular diseases, the higher level of arginine in the lactoferrin protein of Vechur cow milk provides enormous scope for further therapeutic studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Bovine Pancreatic Trypsin Inhibitor-Trypsin Complex as a Detection System for Recombinant Proteins

    Science.gov (United States)

    Borjigin, Jimo; Nathans, Jeremy

    1993-01-01

    Bovine pancreatic trypsin inhibitor (BPTI) binds to trypsin and anhydrotrypsin (an enzymatically inactive derivative of trypsin) with affinities of 6 x 10-14 and 1.1 x 10-13 M, respectively. We have taken advantage of the high affinity and specificity of this binding reaction to develop a protein tagging system in which biotinylated trypsin or biotinylated anhydrotrypsin is used as the reagent to detect recombinant fusion proteins into which BPTI has been inserted. Two proteins, opsin and growth hormone, were used as targets for insertional mutagenesis with BPTI. In each case, both domains of the fusion protein appear to be correctly folded. The fusion proteins can be specifically and efficiently detected by biotinylated trypsin or biotinylated anhydrotrypsin, as demonstrated by staining of transfected cells, protein blotting, affinity purification, and a mobility shift assay in SDS/polyacrylamide gels.

  2. Production of Brugia malayi BmSXP Recombinant Protein Expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Khoo, T. K.

    2010-01-01

    Full Text Available A rapid antibody detection test is very useful for detection of lymphatic filariasis, especially for certification and surveillance of post-mass drug administration. One such kit, panLF RapidTM (commercialized by Malaysian BioDiagnostic Research Sdn. Bhd. had been developed in our laboratory for the detection of all species of filarial infections. It is based on the detection of anti-filarial IgG4 antibodies that react with recombinant Brugia malayi antigens, BmR1 and BmSXP. In this study, the growth of recombinant bacteria that produce BmSXP was optimized under shake flask fermentation for high yield of the recombinant antigen. The optimizations involved selection of suitable growth medium, IPTG concentration and induction time. The medium that yielded the highest biomass as well as total protein was Terrific Broth (TB medium, which is an undefined medium. Initiation of induction of protein expression was found to be best at mid-log phase (OD600 = 1.5, with IPTG concentration of 1.0 mM, and harvest time at 9 h post-induction. This study showed that under the optimized conditions, the shake flask culture produced 4 g/L biomass (dry cell weight of recombinant Escherichia coli BmSXP/pPROEXHTa/TOP10F’, which yielded 2.42 mg/L of purified BmSXP recombinant antigen. The purified antigen was analyzed by SDS-PAGE and the antigenicity of protein was confirmed by Western blot.

  3. Comparison of Immunoprotection of Leptospira Recombinant Proteins with conventional vaccine in experimental animals.

    Science.gov (United States)

    Parthiban, M; Kumar, S Senthil; Balachandran, C; Kumanan, K; Aarthi, K S; Nireesha, G

    2015-12-01

    Leptospirosis is a bacterial disease caused by bacteria of the genus Leptospira affecting humans and animals. Untreated leptospirosis may result in severe kidney damage, meningitis, liver failure, respiratory distress, and even death. Virulent leptospirosis can rapidly enter kidney fibroblasts and induce a programmed cell death. Thus, it is a challenge for immunologists to develop an effective and safe leptospirosis vaccine. Here, we compared the commercial canine leptospira vaccine and recombinant proteins (OmpL1 and LipL41) with and without adjuvant in terms of immune response and challenge studies in hamsters and immune response studies alone in experimental dogs. The outer membrane proteins viz., lipL41 and OmpL1 of leptospira interrogans serovars icterohaemorrhagiae were amplified. The primers were designed in such a way that amplified products of OmpL1 and lipL41 were ligated and cloned simultaneously into a single vector. The cloned products were expressed in E. coli BL21 cells. The immunoprotection studies were conducted for both recombinant proteins and commercial vaccine. The challenge experiment studies revealed that combination of both rLip41 and rOmpL1 and commercial vaccine gave 83% and 87% protection, respectively. Histopathological investigation revealed mild sub lethal changes were noticed in liver and kidney in commercially vaccinated group alone. The immune responses against recombinant leptospiral proteins were also demonstrated in dogs.

  4. Towards a more precise serological diagnosis of human tegumentary leishmaniasis using Leishmania recombinant proteins.

    Directory of Open Access Journals (Sweden)

    Ana Paula Souza

    Full Text Available BACKGROUND: Exposure to Leishmania induces a humoral immune response that can be used as a marker of parasite exposure. METHODOLOGY/PRINCIPAL FINDINGS: Herein, ELISA was used to screen sera from patients with Tegumentary Leishmaniasis (TL against different L. infantum-chagasi-derived recombinant proteins (rHSP70, rH2A, rH2B, rH3, rH4 and rKMP11. Among the recombinant proteins, rHSP70 and rH2A showed the best reactivity against human sera obtained from endemic areas of TL. Receiver-Operator Characteristics (ROC curve analysis was used to identify the effectiveness of these proteins for serodiagnosis of TL. ROC curves confirmed the superior performance of rHSP70 and rH2A, in comparison to the other tested recombinant proteins. Additionally, we evaluated the specificity of the response to rHSP70 and rH2A by testing sera obtained from patients with Chagas' disease, Tuberculosis, Leprosy or Systemic Lupus Erythematosus. In this case, rHSP70 displayed an increased ability to discriminate diseases, in comparison to SLA. CONCLUSION: Our results raise possibility of using rHSP70 for the serodiagnosis of TL.

  5. Porcine lung surfactant protein B gene (SFTPB)

    DEFF Research Database (Denmark)

    Cirera Salicio, Susanna; Fredholm, Merete

    2008-01-01

    The porcine surfactant protein B (SFTPB) is a single copy gene on chromosome 3. Three different cDNAs for the SFTPB have been isolated and sequenced. Nucleotide sequence comparison revealed six nonsynonymous single nucleotide polymorphisms (SNPs), four synonymous SNPs and an in-frame deletion of 69...... bp in the region coding for the active protein. Northern analysis showed lung-specific expression of three different isoforms of the SFTPB transcript. The expression level for the SFTPB gene is low in 50 days-old fetus and it increases during lung development. Quantitative real-time polymerase chain...

  6. Induction of antigen-specific immune responses in mice by recombinant baculovirus expressing premembrane and envelope proteins of West Nile virus

    Directory of Open Access Journals (Sweden)

    Zhu Bibo

    2012-07-01

    Full Text Available Abstract Background West Nile Virus (WNV is an emerging arthropod-born flavivirus with increasing distribution worldwide that is responsible for a large proportion of viral encephalitis in humans and horses. Given that there are no effective antiviral drugs available for treatment of the disease, efforts have been directed to develop vaccines to prevent WNV infection. Recently baculovirus has emerged as a novel and attractive gene delivery vehicle for mammalian cells. Results In the present study, recombinant baculoviruses expressing WNV premembrane (prM and envelope (E proteins under the cytomegalovirus (CMV promoter with or without vesicular stomatitis virus glycoprotein (VSV/G were constructed. The recombinant baculoviruses designated Bac-G-prM/E and Bac-prM/E, efficiently express E protein in mammalian cells. Intramuscular injection of the two recombinant baculoviruses (at doses of 108 or 109 PFU/mouse induced the production of WNV-specific antibodies, neutralizing antibodies as well as gamma interferon (IFN-γ in a dose-dependent pattern. Interestingly, the recombinant baculovirus Bac-G-prM/E was found to be a more efficient immunogen than Bac-prM/E to elicit a robust immune response upon intramuscular injection. In addition, inoculation of baculovirus resulted in the secretion of inflammatory cytokines, such as TNF-α, IL-2 and IL-6. Conclusions These recombinant baculoviruses are capable of eliciting robust humoral and cellular immune responses in mice, and may be considered as novel vaccine candidates for West Nile Virus.

  7. Vaccination with recombinant heat shock protein 60 from Histoplasma capsulatum protects mice against pulmonary histoplasmosis.

    OpenAIRE

    Gomez, F J; Allendoerfer, R; Deepe, G S

    1995-01-01

    HIS-62 is a glycoprotein that has been isolated from the cell wall and cell membrane fraction of the pathogenic fungus Histoplasma capsulatum. It is a target of the cellular immune response to this fungus, and it protects mice against a lethal intravenous inoculum of H. capsulatum yeast cells. In this study, we cloned the gene encoding this antigen to reveal its biological nature and studied the immunological activity of recombinant antigen. The amino acid sequences of the NH2 terminus and in...

  8. Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure.

    Science.gov (United States)

    Ruhlman, Tracey A; Zhang, Jin; Blazier, John C; Sabir, Jamal S M; Jansen, Robert K

    2017-04-01

    There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements. We used Illumina paired-end and PacBio single-molecule real-time (SMRT) sequences to characterize repeat structure in the plastome of Monsonia emarginata (Geraniaceae). We used OrgConv and inspected nucleotide alignments to infer ancestral nucleotides and identify gene conversion among repeats and mapped long (>1 kb) SMRT reads against the unit-genome assembly to identify alternative sequence arrangements. Although M. emarginata lacks the canonical IR, we found that large repeats (>1 kilobase; kb) represent ∼22% of the plastome nucleotide content. Among the largest repeats (>2 kb), we identified GC-biased gene conversion and mapping filtered, long SMRT reads to the M. emarginata unit-genome assembly revealed alternative, substoichiometric sequence arrangements. We offer a model based on RDR and gene conversion between long repeated sequences in the M. emarginata plastome and provide support that both intra-and intermolecular recombination between large repeats, particularly in repeat-rich plastomes, varies unit-genome structure while homogenizing the nucleotide sequence of repeats. © 2017 Botanical Society of America.

  9. Single vector system for efficient N-myristoylation of recombinant proteins in E. coli.

    Directory of Open Access Journals (Sweden)

    Julian M Glück

    Full Text Available BACKGROUND: N-myristoylation is a crucial covalent modification of numerous eukaryotic and viral proteins that is catalyzed by N-myristoyltransferase (NMT. Prokaryotes are lacking endogenous NMT activity. Recombinant production of N-myristoylated proteins in E. coli cells can be achieved by coexpression of heterologous NMT with the target protein. In the past, dual plasmid systems were used for this purpose. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a single vector system for efficient coexpression of substrate and enzyme suitable for production of co- or posttranslationally modified proteins. The approach was validated using the HIV-1 Nef protein as an example. A simple and efficient protocol for production of highly pure and completely N-myristoylated Nef is presented. The yield is about 20 mg myristoylated Nef per liter growth medium. CONCLUSIONS/SIGNIFICANCE: The single vector strategy allows diverse modifications of target proteins recombinantly coexpressed in E. coli with heterologous enzymes. The method is generally applicable and provides large amounts of quantitatively processed target protein that are sufficient for comprehensive biophysical and structural studies.

  10. High-throughput purification of recombinant proteins using self-cleaving intein tags.

    Science.gov (United States)

    Coolbaugh, M J; Shakalli Tang, M J; Wood, D W

    2017-01-01

    High throughput methods for recombinant protein production using E. coli typically involve the use of affinity tags for simple purification of the protein of interest. One drawback of these techniques is the occasional need for tag removal before study, which can be hard to predict. In this work, we demonstrate two high throughput purification methods for untagged protein targets based on simple and cost-effective self-cleaving intein tags. Two model proteins, E. coli beta-galactosidase (βGal) and superfolder green fluorescent protein (sfGFP), were purified using self-cleaving versions of the conventional chitin-binding domain (CBD) affinity tag and the nonchromatographic elastin-like-polypeptide (ELP) precipitation tag in a 96-well filter plate format. Initial tests with shake flask cultures confirmed that the intein purification scheme could be scaled down, with >90% pure product generated in a single step using both methods. The scheme was then validated in a high throughput expression platform using 24-well plate cultures followed by purification in 96-well plates. For both tags and with both target proteins, the purified product was consistently obtained in a single-step, with low well-to-well and plate-to-plate variability. This simple method thus allows the reproducible production of highly pure untagged recombinant proteins in a convenient microtiter plate format. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Analysis of direct immobilized recombinant protein G on a gold surface

    International Nuclear Information System (INIS)

    Kim, Hyunhee; Kang, Da-Yeon; Goh, Hyun-Jeong; Oh, Byung-Keun; Singh, Ravindra P.; Oh, Soo-Min; Choi, Jeong-Woo

    2008-01-01

    Abstact: For the immobilization of IgG, various techniques such as chemical linker, thiolated protein G methods, and fragmentation of antibodies have been reported [Y.M. Bae, B.K. Oh, W. Lee, W.H. Lee, J.W. Choi, Biosensors Bioelectron. 21 (2005) 103; W. Lee, B.K. Oh, W.H. Lee, J.W. Choi, Colloids Surf. B-Biointerfaces, 40 (2005) 143; A.A. Karyakin, G.V. Presnova, M.Y. Rubtsova, A.M. Egorov, Anal. Chem. 72 (2000) 3805]. Here, we modified the immunoglobulin Fc-binding B-domain of protein G to contain two cysteine residues at its C-terminus by a genetic engineering technique. The resulting recombinant protein, RPGcys, retained IgG-binding activity in the same manner as native protein G. RPGcys was immobilized on a gold surface by strong affinity between thiol of cysteine and gold. The orientations of both IgG layers immobilized on the base recombinant protein Gs were analyzed by fluorescence microscope, atomic force microscope (AFM), and surface plasmon resonance (SPR). Our data revealed that IgG-binding activity of RPGcys on gold surface significantly increased in comparison to wild type of protein G (RPGwild), which was physically adsorbed due to absence of cysteine residue. Immobilization of highly oriented antibodies based on cysteine-modified protein G could be useful for the fabrication of immunosensor systems

  12. Pichia pastoris: a recombinant microfactory for antibodies and human membrane proteins.

    Science.gov (United States)

    Gonçalves, A M; Pedro, A Q; Maia, C; Sousa, F; Queiroz, J A; Passarinha, L A

    2013-05-01

    During the last few decades, it has become evident that the compatibility of the yeast biochemical environment with the ability to process and translate the RNA transcript, along with its capacity to modify a translated protein, are relevant requirements for selecting this host cell for protein expression in several pharmaceutical and clinical applications. In particular, Pichia pastoris is used as an industrial host for recombinant protein and metabolite production, showing a powerful capacity to meet required biomolecular target production levels in high-throughput assays for functional genomics and drug screening. In addition, there is a great advantage to using P. pastoris for protein secretion, even at high molecular weights, since the recovery and purification steps are simplified owing to relatively low levels of endogenous proteins in the extracellular medium. Clearly, no single microexpression system can provide all of the desired properties for human protein production. Moreover, chemical and physical bioprocess parameters, including culture medium formulation, temperature, pH, agitation, aeration rates, induction, and feeding strategies, can highly influence product yield and quality. In order to benefit from the currently available wide range of biosynthesis strategies using P. pastoris, this mini review focuses on the developments and technological fermentation achievements, providing both a comparative and an overall integration analysis. The main aim is to highlight the relevance and versatility of the P. pastoris biosystem to the design of more cost-effective microfactories to meet the increasing demands for recombinant membrane proteins and clinical antibodies for several therapeutic applications.

  13. Maximized Autotransporter-Mediated Expression (MATE for Surface Display and Secretion of Recombinant Proteins in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Shanna Sichwart

    2015-01-01

    Full Text Available A new optimized system for the surface display and secretion of recombinant proteins is described, termed MATE (maximized autotransporter-mediated expression. It is based on an artificial gene consisting of the coding region for the signal peptide of CtxB, a multiple cloning site for passenger gene insertion, flanked by coding sequences for linear epitopes for monoclonal antibodies and OmpT, and factor Xa protease cleavage sites followed by a codon-optimized DNA sequence of the linker and the β-barrel of the type V autotransporter EhaA from Escherichia coli under control of an IPTG-inducible T5 promoter. The MATE system enabled the continuous secretion of recombinant passenger mCherry via OmpT-mediated cleavage, using native OmpT protease activity in E. coli when grown at 37 °C. It is the first example to show that native OmpT activity is sufficient to facilitate the secretion of a correctly folded target protein in preparative amounts obtaining 240 μg of purified mCherry from 800 mL of crude culture supernatant. Because the release of mCherry was achieved by a simple transfer of the encoding plasmid from an OmpT-negative to an OmpT-positive strain, it bears the option to use surface display for screening purposes and secretion for production of the selected variant. A single plasmid could therefore be used for continuous secretion in OmpT-positive strains or surface display in OmpT-negative strains. In conclusion, the MATE system appears to be a versatile tool for the surface display and for the secretion of target proteins in E. coli.

  14. Overexpression Analysis of emv2 gene coding for Late Embryogenesis Abundant Protein from Vigna radiata (Wilczek

    Directory of Open Access Journals (Sweden)

    Rajesh S.

    2008-10-01

    Full Text Available Late embryogenesis abundant (LEA proteins are speculated to protect against water stress deficit in plants. An over expression system for mungbean late embryogenesis abundant protein, emv2 was constructed in a pET29a vector, designated pET-emv2 which is responsible for higher expression under the transcriptional/translational control of T7/lac promoter incorporated in the Escherichia coli BL21 (DE3.Induction protocol was optimized for pET recombinants harboring the target gene. Overexpressed EMV2 protein was purified to homogeneity and the protein profile monitored by SDS-PAGE.

  15. Expressions of the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase genes are stimulated by recombinant platelet-derived growth factor isomers

    International Nuclear Information System (INIS)

    Roth, M.; Emmons, L.R.; Perruchoud, A.; Block, L.H.

    1991-01-01

    The plausible role that platelet-derived growth factor (PDGF) has in the localized pathophysiological changes that occur in the arterial wall during development of atherosclerotic lesions led the authors to investigate the influence of recombinant (r)PDGF isomers -AA, -AB, and -BB on the expression of low density lipoprotein receptor (LDL-R) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG0CoA) reductase [(S)-mevalonate:NAD + oxidoreductase (CoA-acylating), EC 1.1.1.88] genes. In addition, they clarified the role of protein kinase C (PKC) in expression of the two genes in human skin fibroblasts and vascular smooth muscle cells. The various rPDGF isoforms are distinct in their ability to activate transcription of both genes: (i) both rPDGF-AA and -BB stimulate transcription of the LDL-R gene; in contrast, rPDGF-BB but not -AA, activates transcription of the HMG-CoA reductase gene; (ii) all recombinant isoforms of PDGF activate transcription of the c-fos gene; (iii) while rPDGF-dependent transcription of the lDL-R gene occurs independently of PKC, transcription of the HMG-CoA reductase gene appears to involve the action of that enzyme

  16. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    Science.gov (United States)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, P<0.01; 156.32±10.42 μg/mL vs 66.52±7.35 μg/mL, 5.73±2.89 μg/mL, P<0.01). The tumor volume in mAFP/HSP70 group was significantly smaller than that in mAFP and HSP70 groups (42.44±7.14 mm3 vs 392.23±12.46 mm3, 838.63±13.84 mm3, P<0.01). Conclusions: The study further confirmed the function of heat shock protein 70's immune adjuvant. Sequential immunization with recombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  17. Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation.

    Science.gov (United States)

    Alvarez, M Lucrecia; Topal, Emel; Martin, Federico; Cardineau, Guy A

    2010-01-01

    Improving foreign protein accumulation is crucial for enhancing the commercial success of plant-based production systems since product yields have a major influence on process economics. Cereal grain evolved to store large amounts of proteins in tightly organized aggregates. In maize, gamma-Zein is the major storage protein synthesized by the rough endoplasmic reticulum (ER) and stored in specialized organelles called protein bodies (PB). Zera (gamma-Zein ER-accumulating domain) is the N-terminal proline-rich domain of gamma-zein that is sufficient to induce the assembly of PB formation. Fusion of the Zera domain to proteins of interest results in assembly of dense PB-like, ER-derived organelles, containing high concentration of recombinant protein. Our main goal was to increase recombinant protein accumulation in plants in order to enhance the efficiency of orally-delivered plant-made vaccines. It is well known that oral vaccination requires substantially higher doses than parental formulations. As a part of a project to develop a plant-made plague vaccine, we expressed our model antigen, the Yersinia pestis F1-V antigen fusion protein, with and without a fused Zera domain. We demonstrated that Zera-F1-V protein accumulation was at least 3x higher than F1-V alone when expressed in three different host plant systems: Ncotiana benthamiana, Medicago sativa (alfalfa) and Nicotiana tabacum NT1 cells. We confirmed the feasibility of using Zera technology to induce protein body formation in non-seed tissues. Zera expression and accumulation did not affect plant development and growth. These results confirmed the potential exploitation of Zera technology to substantially increase the accumulation of value-added proteins in plants.

  18. Advanced control of dissolved oxygen concentration in fed batch cultures during recombinant protein production.

    Science.gov (United States)

    Kuprijanov, A; Gnoth, S; Simutis, R; Lübbert, A

    2009-02-01

    Design and experimental validation of advanced pO(2) controllers for fermentation processes operated in the fed-batch mode are described. In most situations, the presented controllers are able to keep the pO(2) in fermentations for recombinant protein productions exactly on the desired value. The controllers are based on the gain-scheduling approach to parameter-adaptive proportional-integral controllers. In order to cope with the most often appearing distortions, the basic gain-scheduling feedback controller was complemented with a feedforward control component. This feedforward/feedback controller significantly improved pO(2) control. By means of numerical simulations, the controller behavior was tested and its parameters were determined. Validation runs were performed with three Escherichia coli strains producing different recombinant proteins. It is finally shown that the new controller leads to significant improvements in the signal-to-noise ratio of other key process variables and, thus, to a higher process quality.

  19. Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance

    Directory of Open Access Journals (Sweden)

    Cashman Kathleen A

    2008-06-01

    Full Text Available Abstract Background There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP, glycoprotein 1 (GP1, and glycoprotein 2 (GP2. Results Full-length NP and the ectodomains of GP1 and GP2 were generated as maltose-binding protein (MBP fusions in the Rosetta strains of Escherichia coli (E. coli using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively. Each protein was captured from cell lysates using amylose resin, cleaved with Factor Xa, and purified using size-exclusion chromatography (SEC. Fermentation cultures resulted in average yields per liter of 1.6 mg, 1.5 mg, and 0.7 mg of purified NP, GP1 and GP2, respectively. LASV-specific antibodies in human convalescent sera specifically detected each of the purified recombinant LASV proteins, highlighting their utility in diagnostic applications. In addition, mouse hyperimmune ascitic fluids (MHAF against a panel of Old and New World arenaviruses demonstrated selective cross reactivity with LASV proteins in Western blot and enzyme-linked immunosorbent assay (ELISA. Conclusion These results demonstrate the potential for developing broadly reactive immunological assays that employ all three arenaviral proteins individually and in combination.

  20. Correction of mutant Fanconi anemia gene by homologous recombination in human hematopoietic cells using adeno-associated virus vector.

    Science.gov (United States)

    Paiboonsukwong, Kittiphong; Ohbayashi, Fumi; Shiiba, Haruka; Aizawa, Emi; Yamashita, Takayuki; Mitani, Kohnosuke

    2009-11-01

    Adeno-associated virus (AAV) vectors have been shown to correct a variety of mutations in human cells by homologous recombination (HR) at high rates, which can overcome insertional mutagenesis and transgene silencing, two of the major hurdles in conventional gene addition therapy of inherited diseases. We examined an ability of AAV vectors to repair a mutation in human hematopoietic cells by HR. We infected a human B-lymphoblastoid cell line (BCL) derived from a normal subject with an AAV, which disrupts the hypoxanthine phosphoribosyl transferase1 (HPRT1) locus, to measure the frequency of AAV-mediated HR in BCL cells. We subsequently constructed an AAV vector encoding the normal sequences from the Fanconi anemia group A (FANCA) locus to correct a mutation in the gene in BCL derived from a FANCA patient. Under optimal conditions, approximately 50% of BCL cells were transduced with an AAV serotype 2 (AAV-2) vector. In FANCA BCL cells, up to 0.016% of infected cells were gene-corrected by HR. AAV-mediated restoration of normal genotypic and phenotypic characteristics in FANCA-mutant cells was confirmed at the DNA, protein and functional levels. The results obtained in the present study indicate that AAV vectors may be applicable for gene correction therapy of inherited hematopoietic disorders.

  1. Production of functional human insulin-like growth factor binding proteins (IGFBPs) using recombinant expression in HEK293 cells

    DEFF Research Database (Denmark)

    Wanscher, Anne Sofie Molsted; Williamson, Michael; Ebersole, Tasja Wainani

    2015-01-01

    on human proteins with therapeutic relevance is needed to design and process the next generation of protein therapeutics. In order to conduct structural and functional investigations large quantities of recombinant proteins are needed. However, finding a suitable recombinant production system for proteins...... and the final protein yields were between 1 and 12mg protein per liter culture media. The recombinant IGFBPs contained PTMs and exhibited high-affinity interactions with their natural ligands IGF-1 and IGF-2.......Insulin-like growth factor binding proteins (IGFBPs) display many functions in humans including regulation of the insulin-like growth factor (IGF) signaling pathway. The various roles of human IGFBPs make them attractive protein candidates in drug discovery. Structural and functional knowledge...

  2. Oral immunization of BALB/c mice with Giardia duodenalis recombinant cyst wall protein inhibits shedding of cysts.

    Science.gov (United States)

    Larocque, R; Nakagaki, K; Lee, P; Abdul-Wahid, A; Faubert, G M

    2003-10-01

    The process of encystation is a key step in the Giardia duodenalis life cycle that allows this intestinal protozoan to survive between hosts during person-to-person, animal-to-person, waterborne, or food-borne transmission. The release of cysts from infected persons and animals is the main contributing factor to contamination of the environment. Genes coding for cyst wall proteins (CWPs), which could be used for developing a transmission-blocking vaccine, have been cloned. Since the immunogenicity of recombinant Giardia CWP is unknown, we have investigated the immunogenicity of recombinant CWP2 (rCWP2) and its efficacy in interfering with the phenomenon of encystation taking place in the small bowels of BALB/c mice vaccinated with the recombinant protein. Here we report that the immunization of BALB/c mice with rCWP2 stimulated the immune system in a manner comparable to that for a live infection with Giardia muris cysts. Fecal and serum anti-rCWP2 immunoglobulin A (IgA) antibodies were detected in the immunized mice. In addition, anti-rCWP2 IgG1 and IgG2a antibodies were detected in the serum. mRNAs coding for Th1 and Th2 types of cytokines were detected in spleen and Peyer's patch cells from immunized mice. When the vaccinated mice were challenged with live cysts, the animals shed fewer cysts. We conclude that rCWP2 is a possible candidate antigen for the development of a transmission-blocking vaccine.

  3. Hijacked then lost in translation: the plight of the recombinant host cell in membrane protein structural biology projects.

    Science.gov (United States)

    Bill, Roslyn M; von der Haar, Tobias

    2015-06-01

    Membrane protein structural biology is critically dependent upon the supply of high-quality protein. Over the last few years, the value of crystallising biochemically characterised, recombinant targets that incorporate stabilising mutations has been established. Nonetheless, obtaining sufficient yields of many recombinant membrane proteins is still a major challenge. Solutions are now emerging based on an improved understanding of recombinant host cells; as a 'cell factory' each cell is tasked with managing limited resources to simultaneously balance its own growth demands with those imposed by an expression plasmid. This review examines emerging insights into the role of translation and protein folding in defining high-yielding recombinant membrane protein production in a range of host cells. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ajimura, M.; Lee, S.H.; Ogawa, H.

    1993-01-01

    Mutants defective in meiotic recombination were isolated from a disomic haploid strain of Saccharomyces cerevisiae by examining recombination within the leu2 and his4 heteroalleles located on chromosome III. The mutants were classified into two new complementation groups (MRE2 and MRE11) and eight previously identified groups, which include SPO11, HOP1, REC114, MRE4/MEK1 and genes in the RAD52 epistasis group. All of the mutants, in which the mutations in the new complementation groups are homozygous and diploid, can undergo premeiotic DNA synthesis and produce spores. The spores are, however, not viable. The mre2 and mre11 mutants produce viable spores in a spo13 background, in which meiosis I is bypassed, suggesting that these mutants are blocked at an early step in meiotic recombination. The mre2 mutant does not exhibit any unusual phenotype during mitosis and it is, thus, considered to have a mutation in a meiosis-specific gene. By contrast, the mre11 mutant is sensitive to damage to DNA by methyl methanesulfonate and exhibits a hyperrecombination phenotype in mitosis. Among six alleles of HOP1 that were isolated, an unusual pattern of intragenic complementation was observed

  5. Production, purification and oxidative folding of the mouse recombinant prion protein

    Czech Academy of Sciences Publication Activity Database

    Pavlíček, A.; Bednárová, Lucie; Holada, K.

    2007-01-01

    Roč. 52, č. 4 (2007), s. 391-397 ISSN 0015-5632 R&D Projects: GA ČR GD310/05/H533 Grant - others:GA ČR(CZ) GA310/04/0419 Institutional research plan: CEZ:AV0Z40550506 Keywords : recombinant prion protein * production * purification * folding Subject RIV: CE - Biochemistry Impact factor: 0.989, year: 2007 http://www.biomed.cas.cz/mbu/folia/

  6. Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization

    Directory of Open Access Journals (Sweden)

    Sanjukta Chakrabarti

    2016-06-01

    Full Text Available Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1–D3-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities.

  7. Robotic high-throughput purification of affinity-tagged recombinant proteins.

    Science.gov (United States)

    Wiesler, Simone C; Weinzierl, Robert O J

    2015-01-01

    Affinity purification of recombinant proteins has become the method of choice to obtain good quantities and qualities of proteins for a variety of downstream biochemical applications. While manual or FPLC-assisted purification techniques are generally time-consuming and labor-intensive, the advent of high-throughput technologies and liquid handling robotics has simplified and accelerated this process significantly. Additionally, without the human factor as a potential source of error, automated purification protocols allow for the generation of large numbers of proteins simultaneously and under directly comparable conditions. The delivered material is ideal for activity comparisons of different variants of the same protein. Here, we present our strategy for the simultaneous purification of up to 24 affinity-tagged proteins for activity measurements in biochemical assays. The protocol described is suitable for the scale typically required in individual research laboratories.

  8. Main Strategies of Plant Expression System Glycoengineering for Producing Humanized Recombinant Pharmaceutical Proteins.

    Science.gov (United States)

    Rozov, S M; Permyakova, N V; Deineko, E V

    2018-03-01

    Most the pharmaceutical proteins are derived not from their natural sources, rather their recombinant analogs are synthesized in various expression systems. Plant expression systems, unlike mammalian cell cultures, combine simplicity and low cost of procaryotic systems and the ability for posttranslational modifications inherent in eucaryotes. More than 50% of all human proteins and more than 40% of the currently used pharmaceutical proteins are glycosylated, that is, they are glycoproteins, and their biological activity, pharmacodynamics, and immunogenicity depend on the correct glycosylation pattern. This review examines in detail the similarities and differences between N- and O-glycosylation in plant and mammalian cells, as well as the effect of plant glycans on the activity, pharmacokinetics, immunity, and intensity of biosynthesis of pharmaceutical proteins. The main current strategies of glycoengineering of plant expression systems aimed at obtaining fully humanized proteins for pharmaceutical application are summarized.

  9. Structure of Mycobacterium tuberculosis RuvA, a protein involved in recombination

    International Nuclear Information System (INIS)

    Prabu, J. Rajan; Thamotharan, S.; Khanduja, Jasbeer Singh; Alipio, Emily Zabala; Kim, Chang-Yub; Waldo, Geoffrey S.; Terwilliger, Thomas C.; Segelke, Brent; Lekin, Tim; Toppani, Dominique; Hung, Li-Wei; Yu, Minmin; Bursey, Evan; Muniyappa, K.; Chandra, Nagasuma R.; Vijayan, M.

    2006-01-01

    RuvA, a protein from M. tuberculosis H37Rv involved in recombination, has been cloned, expressed, purified and analysed by X-ray crystallography. The process of recombinational repair is crucial for maintaining genomic integrity and generating biological diversity. In association with RuvB and RuvC, RuvA plays a central role in processing and resolving Holliday junctions, which are a critical intermediate in homologous recombination. Here, the cloning, purification and structure determination of the RuvA protein from Mycobacterium tuberculosis (MtRuvA) are reported. Analysis of the structure and comparison with other known RuvA proteins reveal an octameric state with conserved subunit–subunit interaction surfaces, indicating the requirement of octamer formation for biological activity. A detailed analysis of plasticity in the RuvA molecules has led to insights into the invariant and variable regions, thus providing a framework for understanding regional flexibility in various aspects of RuvA function

  10. Evaluation of Six Recombinant Proteins for Serological Diagnosis of Lyme Borreliosis in China.

    Science.gov (United States)

    Liu, Wei; Liu, Hui Xin; Zhang, Lin; Hou, Xue Xia; Wan, Kang Lin; Hao, Qin

    2016-05-01

    In this study, we evaluated the diagnostic efficiency of six recombinant proteins for the serodiagnosis of Lyme borreliosis (LB) and screened out the appropriate antigens to support the production of a Chinese clinical ELISA (enzyme-linked immunosorbent assay) kit for LB. Six recombinant antigens, Fla B.g, OspC B.a, OspC B.g, P39 B.g, P83 B.g, and VlsE B.a, were used for ELISA to detect serum antibodies in LB, syphilis, and healthy controls. The ELISA results were used to generate receiver operating characteristic (ROC) curves, and the sensitivity and specificity of each protein was evaluated. All recombinant proteins were evaluated and screened by using logistic regression models. Two IgG (VlsE and OspC B.g) and two IgM (OspC B.g and OspC B.a) antigens were left by the logistic regression model screened. VlsE had the highest specificity for syphilis samples in the IgG test (87.7%, Precombinant antigens, OspC B.g, OspC B.a, and VlsE B.a, were useful for ELISAs of LB. Additionally, the interaction between OspC B.a and Fla B.g should be examined in future research. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  11. Generation of Recombinant Schmallenberg Virus Nucleocapsid Protein in Yeast and Development of Virus-Specific Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Justas Lazutka

    2014-01-01

    Full Text Available Schmallenberg virus (SBV, discovered in continental Europe in late 2011, causes mild clinical signs in adult ruminants, including diarrhoea and reduced milk yield. However, fetal infection can lead to severe malformation in newborn offspring. To develop improved reagents for SBV serology, a high-level yeast expression system was employed to produce recombinant SBV nucleocapsid (N protein. Recombinant SBV N protein was investigated as an antigen in SBV-specific IgG enzyme immunoassay and used for generation of monoclonal antibodies (MAbs. Yeast-expressed SBV N protein was reactive with anti-SBV IgG-positive cow serum specimens collected from different farms of Lithuania. After immunization of mice with recombinant SBV N protein, four MAbs were generated. The MAbs raised against recombinant SBV N protein reacted with native viral nucleocapsids in SBV-infected BHK cells by immunofluorescence assay. The reactivity of recombinant N protein with SBV-positive cow serum specimens and the ability of the MAbs to recognize virus-infected cells confirm the antigenic similarity between yeast-expressed SBV N protein and native viral nucleocapsids. Our study demonstrates that yeast expression system is suitable for high-level production of recombinant SBV N protein and provides the first evidence on the presence of SBV-specific antibodies in cow serum specimens collected in Lithuania.

  12. Fowlpoxvirus recombinants coding for the CIITA gene increase the expression of endogenous MHC-II and Fowlpox Gag/Pro and Env SIV transgenes.

    Science.gov (United States)

    Bissa, Massimiliano; Forlani, Greta; Zanotto, Carlo; Tosi, Giovanna; De Giuli Morghen, Carlo; Accolla, Roberto S; Radaelli, Antonia

    2018-01-01

    A complete eradication of an HIV infection has never been achieved by vaccination and the search for new immunogens that can induce long-lasting protective responses is ongoing. Avipoxvirus recombinants are host-restricted for replication to avian species and they do not have the undesired side effects induced by vaccinia recombinants. In particular, Fowlpox (FP) recombinants can express transgenes over long periods and can induce protective immunity in mammals, mainly due to CD4-dependent CD8+ T cells. In this context, the class II transactivator (CIITA) has a pivotal role in triggering the adaptive immune response through induction of the expression of class-II major histocompatibility complex molecule (MHC-II), that can present antigens to CD4+ T helper cells. Here, we report on construction of novel FPgp and FPenv recombinants that express the highly immunogenic SIV Gag-pro and Env structural antigens. Several FP-based recombinants, with single or dual genes, were also developed that express CIITA, driven from H6 or SP promoters. These recombinants were used to infect CEF and Vero cells in vitro and determine transgene expression, which was evaluated by real-time PCR and Western blotting. Subcellular localisation of the different proteins was evaluated by confocal microscopy, whereas HLA-DR or MHC-II expression was measured by flow cytometry. Fowlpox recombinants were also used to infect syngeneic T/SA tumour cells, then injected into Balb/c mice to elicit MHC-II immune response and define the presentation of the SIV transgene products in the presence or absence of FPCIITA. Antibodies to Env were measured by ELISA. Our data show that the H6 promoter was more efficient than SP to drive CIITA expression and that CIITA can enhance the levels of the gag/pro and env gene products only when infection is performed by FP single recombinants. Also, CIITA expression is higher when carried by FP single recombinants than when combined with FPgp or FPenv constructs and can

  13. Shu proteins promote the formation of homologous recombination intermediates that are processed by Sgs1-Rmi1-Top3

    DEFF Research Database (Denmark)

    Mankouri, Hocine W; Ngo, Hien-Ping; Hickson, Ian D

    2007-01-01

    CSM2, PSY3, SHU1, and SHU2 (collectively referred to as the SHU genes) were identified in Saccharomyces cerevisiae as four genes in the same epistasis group that suppress various sgs1 and top3 mutant phenotypes when mutated. Although the SHU genes have been implicated in homologous recombination ...

  14. [Cloning of VH and VL Gene of Human anti-IL1RAP McAb and Construction of Recombinant Chimeric Receptor].

    Science.gov (United States)

    Yin, Ling-Ling; Ruan, Su-Hong; Tian, Yu; Zhao, Kai; Xu, Kai Lin

    2015-10-01

    To clone the variable region genes of human anti-IL1RAP (IL-1 receptor accessory protein) monoclonal antibodies (McAb) and to construct IL1RAP chimeric antigen receptors (CARs). The VH and VL DNA of IL1RAP single chain antibodies were amplified by RACE and overlap extension PCR from total RNA extracted from 3H6E10 and 10D8A7 hybridoma and ligated into specific IL1RAP single-chain variable fragments (scFv). CD8α transmembrane domain, CD137 intracellular domain, TCR ζ chain, human CD8α signal peptide and scFv-anti-IL1RAP were cloned into plasmid LV-lac. Recombinant lentiviruses were generated by co-transfection of recombinant plasmid LV-lac, pMD2. G, and psPAX2 helper vectors into 293FT packing cells. The VH and VL genes of 2 human anti-IL1RAP McAb were acquired. The 3H6E10 VH and VL genes consisted of 402 bp and 393 bp encoding 134 and 131 aminoacid residues, respectively; 10D8A7 VH and VL genes consisted of 423 bp and 381 bp encoding 141 and 127 amine acid residues, respectively. Recombinant expression vertors LV-3H6E10 scFv-ICD and LV-10D8A7 scFv-ICD (ICD: CD8α transmembrane domain-CD137 intracellular domain-TCR ζ chain) were constructed. The target fragments were demonstrated by sequencing analysis. Recombinant plasmids were transfected into 293FT cells and lentiviral particles were acquired. Human anti-IL1RAP recombinant receptors are constructed successfully and lay a good foundation for the construction of IL1RAP-CAR killer T cell vaccine.

  15. Revised Mimivirus major capsid protein sequence reveals intron-containing gene structure and extra domain

    Directory of Open Access Journals (Sweden)

    Suzan-Monti Marie

    2009-05-01

    Full Text Available Abstract Background Acanthamoebae polyphaga Mimivirus (APM is the largest known dsDNA virus. The viral particle has a nearly icosahedral structure with an internal capsid shell surrounded with a dense layer of fibrils. A Capsid protein sequence, D13L, was deduced from the APM L425 coding gene and was shown to be the most abundant protein found within the viral particle. However this protein remained poorly characterised until now. A revised protein sequence deposited in a database suggested an additional N-terminal stretch of 142 amino acids missing from the original deduced sequence. This result led us to investigate the L425 gene structure and the biochemical properties of the complete APM major Capsid protein. Results This study describes the full length 3430 bp Capsid coding gene and characterises the 593 amino acids long corresponding Capsid protein 1. The recombinant full length protein allowed the production of a specific monoclonal antibody able to detect the Capsid protein 1 within the viral particle. This protein appeared to be post-translationnally modified by glycosylation and phosphorylation. We proposed a secondary structure prediction of APM Capsid protein 1 compared to the Capsid protein structure of Paramecium Bursaria Chlorella Virus 1, another member of the Nucleo-Cytoplasmic Large DNA virus family. Conclusion The characterisation of the full length L425 Capsid coding gene of Acanthamoebae polyphaga Mimivirus provides new insights into the structure of the main Capsid protein. The production of a full length recombinant protein will be useful for further structural studies.

  16. Structural organization of glycophorin A and B genes: Glycophorin B gene evolved by homologous recombination at Alu repeat sequences

    International Nuclear Information System (INIS)

    Kudo, Shinichi; Fukuda, Minoru

    1989-01-01

    Glycophorins A (GPA) and B (GPB) are two major sialoglycoproteins of the human erythrocyte membrane. Here the authors present a comparison of the genomic structures of GPA and GPB developed by analyzing DNA clones isolated from a K562 genomic library. Nucleotide sequences of exon-intron junctions and 5' and 3' flanking sequences revealed that the GPA and GPB genes consist of 7 and 5 exons, respectively, and both genes have >95% identical sequence from the 5' flanking region to the region ∼ 1 kilobase downstream from the exon encoding the transmembrane regions. In this homologous part of the genes, GPB lacks one exon due to a point mutation at the 5' splicing site of the third intron, which inactivates the 5' cleavage event of splicing and leads to ligation of the second to the fourth exon. Following these very homologous sequences, the genomic sequences for GPA and GPB diverge significantly and no homology can be detected in their 3' end sequences. The analysis of the Alu sequences and their flanking direct repeat sequences suggest that an ancestral genomic structure has been maintained in the GPA gene, whereas the GPB gene has arisen from the acquisition of 3' sequences different from those of the GPA gene by homologous recombination at the Alu repeats during or after gene duplication

  17. Purification of Microbially Expressed Recombinant Proteins via a Dual ELP Split Intein System.

    Science.gov (United States)

    Shi, Changhua; Han, Tzu-Chiang; Wood, David W

    2017-01-01

    Fusions of elastin-like peptide (ELP) purification tags and self-cleaving inteins provide a powerful platform for purifying tagless recombinant proteins without the need for conventional packed-bed columns. A drawback to this method has been premature cleaving of the ELP tag during expression, before the purification procedure can take place. Here we demonstrate a split-intein method, where the self-cleaving intein is divided into two inactive segments during expression and purification. Spontaneous assembly of the purified intein segments then restores self-cleaving activity to deliver the tagless target protein.

  18. Prokaryotic Expression of Reindeer β-defensin-1 (reBD-1) Gene and Bioactivity Identification of the Recombinant Protein%驯鹿β-防御素-1(reBD-1)基因的原核表达及蛋白活性的鉴定

    Institute of Scientific and Technical Information of China (English)

    苏丽娜; 杨银凤; 景岚; 曹贵方

    2011-01-01

    The aim of this experiment was to construct prokaryotic expression vector of reindeer β-defensin-l(reBD-l), induce the expression of reBD-1 fusion protein in E. Coli, and evaluate the bioactivity of the expression products. The prepro-peptide of reBD-1 was amplified by RT-PCR. The mature peptide of encoding reBD-1 was amplified from recombinant cloning vector PMD19T/ reBD-1, and then cloned into pET-32a (+ ), in which reBD-1 fusion protein expression was induced by IPTG in E. Coli BL2KDE3). The expressed product was further cultured and purified for experiment of bacteriostasis in vitro. The results showed that the amplified products of prepro-peptide and mature peptide were 215 and 138 bp, respectively, and the homology of the sequences of the targeted gene and reBD-1 mRNA was up to 100%. The molecular weight of fusion proteins of prepro-peptide and mature peptide were 28 and 24 ku. The agar diffusion method has demonstrated that 0. 08 mg · mL-1 purified mature peptide protein has obvious antimicrobial activity against S. Aureus and E. Coli. From the results we can conclude that the prepro-peptide and mature peptides have high expression level in E. Coli, and the mature peptide has resistance to both Gram negative and Gram positive bacteria.%旨在构建驯鹿β防御素-1(Reindeerβ-defensin-1,reBD-1)基因的原核表达载体pET-32a(+ )/reBD-1,诱导reBD-1融合蛋白在大肠杆菌中表达,并对其表达产物的生物学活性进行评价.利用RT-PCR技术扩增reBD-1前原肽.从重组克隆载体PMD19T/reBD-1中扩增reBD-1成熟肽编码基因,并克隆入pET-32a(+)中,在大肠杆菌BL21 (DE3)中用IPTG诱导表达reBD-1融合蛋白.表达的融合蛋白扩大培养,进一步纯化后进行体外抑菌试验.结果表明,reBD-1前原肽和成熟肽扩增产物大小分别为215和138 bp,目的基因的序列与驯鹿防御素-1 mRNA序列同源性为100%.前原肽和成熟肽融合蛋白分子量分别为28和24 ku.利用琼脂糖扩散法表明,0

  19. Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production.

    Science.gov (United States)

    Shamriz, Shabnam; Ofoghi, Hamideh

    Microalgae, also called microphytes, are a vast group of microscopic photosynthetic organisms living in aquatic ecosystems. Microalgae have attracted the attention of biotechnology industry as a platform for extracting natural products with high commercial value. During last decades, microalgae have been also used as cost-effective and easily scalable platform for the production of recombinant proteins with medical and industrial applications. Most progress in this field has been made with Chlamydomonas reinhardtii as a model organism mainly because of its simple life cycle, well-established genetics and ease of cultivation. However, due to the scarcity of existing infrastructure for commercial production and processing together with relatively low product yields, no recombinant products from C. reinhardtii have gained approval for commercial production and most of them are still in research and development. In this review, we focus on the chloroplast of C. reinhardtii as an algal recombinant expression platform and compare its advantages and disadvantages to other currently used expression systems. We then discuss the strategies for engineering the chloroplast of C. reinhardtii to produce recombinant cells and present a comprehensive overview of works that have used this platform for the expression of high-value products.

  20. Exaggerated inflammatory response after use of recombinant bone morphogenetic protein in recurrent unicameral bone cysts.

    Science.gov (United States)

    MacDonald, Kevin M; Swanstrom, Morgan M; McCarthy, James J; Nemeth, Blaise A; Guliani, Teresa A; Noonan, Kenneth J

    2010-03-01

    Recurrent unicameral bone cysts (UBCs) can result in significant morbidity during a child's physical and emotional development. Multiple treatment options are available and a review of the literature fails to clearly define the optimal treatment for UBCs. Recombinant bone morphogenetic protein (BMP) has been used with success in other disorders of poor bone formation. This manuscript is the first to report on the use of recombinant BMP in the treatment of UBCs. Three patients with recurrent UBCs underwent revision surgery with recombinant BMP. Radiographic and medical review was performed and is reported here. In these patients, the use of BMP failed to fully resolve their UBC; 2 patients had complete recurrence that required further surgery. In addition to poor radiographic results, all patients developed exaggerated inflammatory responses in the acute postoperative period. Each child developed clinically significant limb swelling and pain that mimicked infection. On the basis of our poor radiographic results and a paradoxical clinical result, we no longer recommend the use of recombinant BMP in the manner reported here for the treatment of recurrent UBCs. Level IV, case series.

  1. Recombinant nAG (a Salamander-Derived Protein Decreases the Formation of Hypertrophic Scarring in the Rabbit Ear Model

    Directory of Open Access Journals (Sweden)

    Mohammad M. Al-Qattan

    2014-01-01

    Full Text Available nAG (newt-Anterrior Gradient protein is the key mediator of regrowth of amputated limbs in salamanders. In a previous work in our lab, a new nAG gene (suitable for humans was designed and cloned. The cloned vector was transfected into primary human fibroblasts. The expression of nAG in human primary fibroblasts was found to suppress collagen expression. The current study shows that local injection of recombinant nAG reduces scar hypertrophy in the rabbit ear model. This is associated with lower scar elevation index (SEI, lower levels of collagen I & III, higher levels of MMP1, and a higher degree of scar maturation in experimental wounds compared to controls.

  2. Exploratory study of mechanical kinematic innovation design based on gene recombination operation

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yixiong; Gao, Yicong; Tan, Jianrong [Zhejiang University, Hangzhou (China); Hagiwara, Ichiro [Tokyo Institute of Technology, Tokyo (Korea, Republic of)

    2013-03-15

    This paper analyzes the influencing factor of motion output of the inspired mechanism under the premise that the motion input is invariant. These factors are respectively expressed as kinematic pair chromosome number, kinematic pair feature gene and distance relationship vector gene by virtue of several concepts and principles in genetics, and then they are encoded. Mechanism chromosome model is established, which is constituted by mechanism chromosome relationship graph and mechanism chromosome matrix. Three kinematic pair chromosome gene recombination operations on mechanism chromosome model (dominance, translocation and metastasis), are proposed by using meiosis and chromosome variance in genetics for reference. Finally the paper takes shaper as the original mechanism and acquires its inspired mechanism, which proves the convenience and practicality of the methods.

  3. Exploratory study of mechanical kinematic innovation design based on gene recombination operation

    International Nuclear Information System (INIS)

    Feng, Yixiong; Gao, Yicong; Tan, Jianrong; Hagiwara, Ichiro

    2013-01-01

    This paper analyzes the influencing factor of motion output of the inspired mechanism under the premise that the motion input is invariant. These factors are respectively expressed as kinematic pair chromosome number, kinematic pair feature gene and distance relationship vector gene by virtue of several concepts and principles in genetics, and then they are encoded. Mechanism chromosome model is established, which is constituted by mechanism chromosome relationship graph and mechanism chromosome matrix. Three kinematic pair chromosome gene recombination operations on mechanism chromosome model (dominance, translocation and metastasis), are proposed by using meiosis and chromosome variance in genetics for reference. Finally the paper takes shaper as the original mechanism and acquires its inspired mechanism, which proves the convenience and practicality of the methods.

  4. Rogue athletes and recombinant DNA technology: challenges for doping control.

    Science.gov (United States)

    Azzazy, Hassan M E; Mansour, Mai M H

    2007-10-01

    The quest for athletic excellence holds no limit for some athletes, and the advances in recombinant DNA technology have handed these athletes the ultimate doping weapons: recombinant proteins and gene doping. Some detection methods are now available for several recombinant proteins that are commercially available as pharmaceuticals and being abused by dopers. However, researchers are struggling to come up with efficient detection methods in preparation for the imminent threat of gene doping, expected in the 2008 Olympics. This Forum article presents the main detection strategies for recombinant proteins and the forthcoming detection strategies for gene doping as well as the prime analytical challenges facing them.

  5. A potyvirus vector efficiently targets recombinant proteins to chloroplasts, mitochondria and nuclei in plant cells when expressed at the amino terminus of the polyprotein.

    Science.gov (United States)

    Majer, Eszter; Navarro, José-Antonio; Daròs, José-Antonio

    2015-09-01

    Plant virus-based expression systems allow quick and efficient production of recombinant proteins in plant biofactories. Among them, a system derived from tobacco etch virus (TEV; genus potyvirus) permits coexpression of equimolar amounts of several recombinant proteins. This work analyzed how to target recombinant proteins to different subcellular localizations in the plant cell using this system. We constructed TEV clones in which green fluorescent protein (GFP), with a chloroplast transit peptide (cTP), a nuclear localization signal (NLS) or a mitochondrial targeting peptide (mTP) was expressed either as the most amino-terminal product or embedded in the viral polyprotein. Results showed that cTP and mTP mediated efficient translocation of GFP to the corresponding organelle only when present at the amino terminus of the viral polyprotein. In contrast, the NLS worked efficiently at both positions. Viruses expressing GFP in the amino terminus of the viral polyprotein produced milder symptoms. Untagged GFPs and cTP and NLS tagged amino-terminal GFPs accumulated to higher amounts in infected tissues. Finally, viral progeny from clones with internal GFPs maintained the extra gene better. These observations will help in the design of potyvirus-based vectors able to coexpress several proteins while targeting different subcellular localizations, as required in plant metabolic engineering. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Scale-up of hydrophobin-assisted recombinant protein production in tobacco BY-2 suspension cells.

    Science.gov (United States)

    Reuter, Lauri J; Bailey, Michael J; Joensuu, Jussi J; Ritala, Anneli

    2014-05-01

    Plant suspension cell cultures are emerging as an alternative to mammalian cells for production of complex recombinant proteins. Plant cell cultures provide low production cost, intrinsic safety and adherence to current regulations, but low yields and costly purification technology hinder their commercialization. Fungal hydrophobins have been utilized as fusion tags to improve yields and facilitate efficient low-cost purification by surfactant-based aqueous two-phase separation (ATPS) in plant, fungal and insect cells. In this work, we report the utilization of hydrophobin fusion technology in tobacco bright yellow 2 (BY-2) suspension cell platform and the establishment of pilot-scale propagation and downstream processing including first-step purification by ATPS. Green fluorescent protein-hydrophobin fusion (GFP-HFBI) induced the formation of protein bodies in tobacco suspension cells, thus encapsulating the fusion protein into discrete compartments. Cultivation of the BY-2 suspension cells was scaled up in standard stirred tank bioreactors up to 600 L production volume, with no apparent change in growth kinetics. Subsequently, ATPS was applied to selectively capture the GFP-HFBI product from crude cell lysate, resulting in threefold concentration, good purity and up to 60% recovery. The ATPS was scaled up to 20 L volume, without loss off efficiency. This study provides the first proof of concept for large-scale hydrophobin-assisted production of recombinant proteins in tobacco BY-2 cell suspensions. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Use of recombinant purified protein derivative (PPD) antigens as specific skin test for tuberculosis.

    Science.gov (United States)

    Stavri, Henriette; Bucurenci, Nadia; Ulea, Irina; Costache, Adriana; Popa, Loredana; Popa, Mircea Ioan

    2012-11-01

    Purified protein derivative (PPD) is currently the only available skin test reagent used worldwide for the diagnosis of tuberculosis (TB). The aim of this study was to develop a Mycobacterium tuberculosis specific skin test reagent, without false positive results due to Bacillus Calmette-Guerin (BCG) vaccination using recombinant antigens. Proteins in PPD IC-65 were analyzed by tandem mass spectrometry and compared to proteins in M. tuberculosis culture filtrate; 54 proteins were found in common. Top candidates MPT64, ESAT 6, and CFP 10 were overexpressed in Escherichia coli expression strains and purified as recombinant proteins. To formulate optimal immunodiagnostic PPD cocktails, the antigens were evaluated by skin testing guinea pigs sensitized with M. tuberculosis H37Rv and BCG. For single antigens and a cocktail mixture of these antigens, best results were obtained using 3 μg/0.1 ml, equivalent to 105 TU (tuberculin units). Each animal was simultaneously tested with PPD IC-65, 2 TU/0.1 ml, as reference. Reactivity of the multi-antigen cocktail was greater than that of any single antigen. The skin test results were between 34.3 and 76.6 per cent the level of reactivity compared to that of the reference when single antigens were tested and 124 per cent the level of reactivity compared to the reference for the multi-antigen cocktail. Our results showed that this specific cocktail could represent a potential candidate for a new skin diagnostic test for TB.

  8. Engineer medium and feed for modulating N-glycosylation of recombinant protein production in CHO cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N......-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell...

  9. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Brian H. Carrick

    2016-03-01

    Full Text Available Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant “CelTag” DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies.

  10. Methods for efficient high-throughput screening of protein expression in recombinant Pichia pastoris strains.

    Science.gov (United States)

    Camattari, Andrea; Weinhandl, Katrin; Gudiminchi, Rama K

    2014-01-01

    The methylotrophic yeast Pichia pastoris is becoming one of the favorite industrial workhorses for protein expression. Due to the widespread use of integration vectors, which generates significant clonal variability, screening methods allowing assaying hundreds of individual clones are of particular importance. Here we describe methods to detect and analyze protein expression, developed in a 96-well format for high-throughput screening of recombinant P. pastoris strains. The chapter covers essentially three common scenarios: (1) an enzymatic assay for proteins expressed in the cell cytoplasm, requiring cell lysis; (2) a whole-cell assay for a fungal cytochrome P450; and (3) a nonenzymatic assay for detection and quantification of tagged protein secreted into the supernatant.

  11. [A study of recombinant human sestrin 1 and sestrin 2 proteins produced in a prokaryotic system].

    Science.gov (United States)

    Rai, N; Kumar, R; Haque, Md A; Hassan, Md I; Dey, S

    2017-01-01

    Sestrins are highly conserved stress-inducible proteins capable of suppressing the production of ROS and signalling through mTORC1. Here we report a study of human sestrin1 (sesn1) and sestrin2 (sesn2) proteins produced in a pET28^(+) vector based prokaryotic system. Mass spectrometry analysis, western blot and surface plasmon resonance (SPR) of affinity purified sesn1 and sesn2 proteins confirmed their identity; biophysical characteristics were observed using circular dichroism (CD) showing that sesn1 and sesn2 have a predominant α-helical structure. Here we describe a simple, one step purification process to purify a large amount of sestrin proteins with significant yield. Further study of recombinant human sestrins may further facilitate the understanding of their roles in eukaryotic cells.

  12. Recombinant expression, purification, and characterization of an acyl-CoA binding protein from Aspergillus oryzae.

    Science.gov (United States)

    Hao, Qing; Liu, Xiaoguang; Zhao, Guozhong; Jiang, Lu; Li, Ming; Zeng, Bin

    2016-03-01

    To characterize biochemically the lipid metabolism-regulating acyl-CoA binding protein (ACBP) from the industrially-important fungus Aspergillus oryzae. A full-length cDNA encoding a candidate ACBP from A. oryzae (AoACBP) was cloned and expressed in Escherichia coli as a maltose-binding protein (MBP) fusion protein. The MBP-AoACBP protein was purified by an amylose resin chromatography column. SDS-PAGE showed that MBP-AoACBP has an estimated molecular weight of 82 kDa. Microscale thermophoresis binding assay showed that the recombinant AoACBP displayed much greater affinity for palmitoyl-CoA (K d = 80 nM) than for myristoyl-CoA (K d = 510 nM), thus demonstrating the preference of AoACBP for long-chain acyl-CoA. The data support the identification of AoACBP as a long-chain ACBP in A. oryzae.

  13. Recombinant human parvovirus B19 vectors: erythroid cell-specific delivery and expression of transduced genes.

    Science.gov (United States)

    Ponnazhagan, S; Weigel, K A; Raikwar, S P; Mukherjee, P; Yoder, M C; Srivastava, A

    1998-06-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562-566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111-1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited and

  14. Recombinant Human Parvovirus B19 Vectors: Erythroid Cell-Specific Delivery and Expression of Transduced Genes

    Science.gov (United States)

    Ponnazhagan, Selvarangan; Weigel, Kirsten A.; Raikwar, Sudhanshu P.; Mukherjee, Pinku; Yoder, Mervin C.; Srivastava, Arun

    1998-01-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562–566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111–1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited

  15. [Rapid expression and preparation of the recombinant fusion protein sTNFRII-gAD by adenovirus vector system].

    Science.gov (United States)

    Lu, Yue; Liu, Dan; Zhang, Xiaoren; Liu, Xuerong; Shen, Wei; Zheng, Gang; Liu, Yunfan; Dong, Xiaoyan; Wu, Xiaobing; Gao, Jimin

    2011-08-01

    We expressed and prepared the recombinant fusion protein sTNFRII-gAD consisted of soluble TNF receptor II and the globular domain of adiponectin by Adenovirus Vector System in mammalian BHK21c022 cells. First we used the adenovirus vector containing EGFP gene (rAd5-EGFP) to infect BHK21c022 cells at different MOI (from 0 to 1 000), and then evaluated their transduction efficiency and cytotoxicity. Similarly, we constructed the replication-deficient adenovirus type 5-sTNFRII-gAD (rAd5-sTNFRII-gAD). We collected the supernatants for Western blotting to determine the optimal MOI by comparing the expression levels of sTNFRII-gAD fusion protein, 48 h after the BHK21c022 cells were infected by rAd5-sTNFRII-gAD at different MOIs (from 0 to 1 000). Then, we chose rAd5-sTNFRII-gAD at MOI 100 to infect five bottles of BHK21c022 cells in 100 mL of serum-free chemically defined media 100 mL, harvested the supernatant every 48 h for 6 times, and condense and purify sTNFRII-gAD fusion protein by ammonium sulfate salt-out and size-exclusion chromatography, respectively. Finally, we analyzed anti-TNFalpha activity of sTNFRII-gAD fusion protein on L929 cells in vitro. The results showed that the number of BHK21c022 cells expressing EGFP protein was increased significantly with the increase of MOI. However, some cells died at MOI of 1 000 while there was no significant cytotoxicity at MOI from 0 to 100. Western blotting analysis showed that the more adenoviruses, the higher expression of sTNFRII-gAD fusion protein in the supernatant with the highest expression at MOI 1 000. We successfully obtained about 11 mg bioactive and purified sTNFRII-gAD fusion protein at last. The in vitro assay demonstrated that the sTNFRII-gAD fusion protein was potent to antagonize TNFalpha's cytotoxicity to L929 cells. Put together, we established a recombinant adenovirus vector/BHK21 cell expression system, characteristic of the efficient serum-free culture and easy scaling-up.

  16. Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha

    DEFF Research Database (Denmark)

    Hwang, C S; Mandrup, S; MacDougald, O A

    1996-01-01

    Like other adipocyte genes that are transcriptionally activated by CCAAT/enhancer binding protein alpha (C/EBP alpha) during preadipocyte differentiation, expression of the mouse obese (ob) gene is immediately preceded by the expression of C/EBP alpha. While the 5' flanking region of the mouse ob...... gene contains several consensus C/EBP binding sites, only one of these sites appears to be functional. DNase I cleavage inhibition patterns (footprinting) of the ob gene promoter revealed that recombinant C/EBP alpha, as well as a nuclear factor present in fully differentiated 3T3-L1 adipocytes...... to a consensus C/EBP binding site at nucleotides -55 to -47 generated a specific protein-oligonucleotide complex that was supershifted by antibody against C/EBP alpha. Probes corresponding to two upstream consensus C/EBP binding sites failed to generate protein-oligonucleotide complexes. Cotransfection of a C...

  17. Amelogenesis Imperfecta; Genes, Proteins, and Pathways

    Directory of Open Access Journals (Sweden)

    Claire E. L. Smith

    2017-06-01

    Full Text Available Amelogenesis imperfecta (AI is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX, encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/ containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and

  18. Amelogenesis Imperfecta; Genes, Proteins, and Pathways.

    Science.gov (United States)

    Smith, Claire E L; Poulter, James A; Antanaviciute, Agne; Kirkham, Jennifer; Brookes, Steven J; Inglehearn, Chris F; Mighell, Alan J

    2017-01-01

    Amelogenesis imperfecta (AI) is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX , encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/) containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and speculate on the

  19. [Immune Response of Recombinant Pseudorabies Virus rPRV-VP2 Expressing VP2 Gene of Porcine Parvovirus in Mice].

    Science.gov (United States)

    Fu, Pengfei; Pan, Xinlong; Han, Qiao; Yang, Xingwu; Zhu, Qianlei; Guo, Xiaoqing; Zhang, Yu; Chen, Hongying

    2016-03-01

    In order to develop a combined live vaccine that will be used to prevent against porcine parvovirus (PPV) and Pseudorabies virus (PRV) infection, the VP2 gene of PPV was inserted into the transfer vector plasmid pG to produce the recombinant plasmid pGVP2. The plasmid pGVP2 and the genome of PRV HB98 attenuated vaccine were transfected by using lipofectamine into swine testis cells for the homologous recombination. The recombinant virus rPRV-VP2 was purified by selection of green fluorescence plaques for five cycles. 6-week-old female Kunming mice were immunized intramuscularly with attenuated PRV parent HB98 strain, commercial inactivated vaccine against PPV, recombinant virus, DMEM culture solution. The injections were repeated with an equivalent dose after 2 weeks in all of the groups, and then challenged with the virulent PRV NY strain at 7 weeks after the first immunization. The recombinant virus rPRV-VP2 was successfully generated, and the recombinant virus could effectively elicite anti-PPV and PRV antibody and significant cellular immune response as indicated by anti-PPV ELISA and HI, PRV-neutralizing assay and flow cytometry. The challenge assay indicated that recombinant virus could protect the mice against the virulent PRV challenge. These results demonstrated that the recombinant virus can be a candidate recombinant vaccine strain for the prevention of PRV and PPV.

  20. The extent and importance of intragenic recombination

    Directory of Open Access Journals (Sweden)

    de Silva Eric

    2004-11-01

    Full Text Available Abstract We have studied the recombination rate behaviour of a set of 140 genes which were investigated for their potential importance in inflammatory disease. Each gene was extensively sequenced in 24 individuals of African descent and 23 individuals of European descent, and the recombination process was studied separately in the two population samples. The results obtained from the two populations were highly correlated, suggesting that demographic bias does not affect our population genetic estimation procedure. We found evidence that levels of recombination correlate with levels of nucleotide diversity. High marker density allowed us to study recombination rate variation on a very fine spatial scale. We found that about 40 per cent of genes showed evidence of uniform recombination, while approximately 12 per cent of genes carried distinct signatures of recombination hotspots. On studying the locations of these hotspots, we found that they are not always confined to introns but can also stretch across exons. An investigation of the protein products of these genes suggested that recombination hotspots can sometimes separate exons belonging to different protein domains; however, this occurs much less frequently than might be expected based on evolutionary studies into the origins of recombination. This suggests that evolutionary analysis of the recombination process is greatly aided by considering nucleotide sequences and protein products jointly.

  1. Optimizing Production of Antigens and Fabs in the Context of Generating Recombinant Antibodies to Human Proteins.

    Directory of Open Access Journals (Sweden)

    Nan Zhong

    Full Text Available We developed and optimized a high-throughput project workflow to generate renewable recombinant antibodies to human proteins involved in epigenetic signalling. Three different strategies to produce phage display compatible protein antigens in bacterial systems were compared, and we found that in vivo biotinylation through the use of an Avi tag was the most productive method. Phage display selections were performed on 265 in vivo biotinylated antigen domains. High-affinity Fabs (<20nM were obtained for 196. We constructed and optimized a new expression vector to produce in vivo biotinylated Fabs in E. coli. This increased average yields up to 10-fold, with an average yield of 4 mg/L. For 118 antigens, we identified Fabs that could immunoprecipitate their full-length endogenous targets from mammalian cell lysates. One Fab for each antigen was converted to a recombinant IgG and produced in mammalian cells, with an average yield of 15 mg/L. In summary, we have optimized each step of the pipeline to produce recombinant antibodies, significantly increasing both efficiency and yield, and also showed that these Fabs and IgGs can be generally useful for chromatin immunoprecipitation (ChIP protocols.

  2. Immunoadjuvant activities of a recombinant chicken IL-12 in chickens vaccinated with Newcastle disease virus recombinant HN protein.

    Science.gov (United States)

    Su, Bor Sheu; Yin, Hsien Sheng; Chiu, Hua Hsien; Hung, Li Hsiang; Huang, Ji Ping; Shien, Jui Hung; Lee, Long Huw

    2011-08-05

    Recombinant fowlpox virus (rFPV/HN) expressing Newcastle disease virus (NDV) HN gene and rFPV/HN/chIL-12 co-expressing chicken IL-12 (chIL-12) and HN (rHN/chIL-12) genes have been characterized. rHN/chIL-12 or rchIL-12, expressed by our previous construct rFPV/chIL-12, co-administered with rHN was assessed for adjuvant activities of chIL-12. Chickens were vaccinated with various amounts of rHN/chIL-12 mixed with mineral oil (MO), intramuscularly. Levels of hemagglutination-inhibition (HI) antibody production depended on the concentration of the injected rHN or rHN/chIL-12. The lower HI antibody titers were obtained in chicken groups rHN/chIL-12/7-rHN/chIL-12/9, receiving 60ng rHN/8ng chIL-12 with MO, 30ng rHN/4ng chIL-12 with MO or 15ng rHN/2ng chIL-12 with MO, respectively, compared to those in chicken groups rHN/7-rHN/9, receiving rHN with MO alone. However, chickens in group rHN/chIL-12/7 or rHN/chIL-12/8 and rHN with MO alone showed the same effective protection. Chicken group rHN/chIL-12/9 was even more protective than that in group rHN/9. When rchIL-12 was co-injected with 15ng rHN plus MO, chickens produced low levels of HI antibody titers; while higher levels of IFN-γ production and an effective protection rate (83%) were obtained. On the other hand, low levels of IFN-γ production and low protection response (50%) were obtained in chickens injected with rHN with MO alone. Taken together, when the concentration of rHN decreased to certain levels, rchIL-12 reduced HI antibody production. The increase in the induction of IFN-γ production might suggest the enhancement of the cell-mediated immunity which conferred the protection from the NDV challenge. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Reassessment of inclusion body-based production as a versatile opportunity for difficult-to-express recombinant proteins.

    Science.gov (United States)

    Hoffmann, Daniel; Ebrahimi, Mehrdad; Gerlach, Doreen; Salzig, Denise; Czermak, Peter

    2017-11-10

    The production of recombinant proteins in the microbial host Escherichia coli often results in the formation of cytoplasmic protein inclusion bodies (IBs). Proteins forming IBs are often branded as difficult-to-express, neglecting that IBs can be an opportunity for their production. IBs are resistant to proteolytic degradation and contain up to 90% pure recombinant protein, which does not interfere with the host metabolism. This is especially advantageous for host-toxic proteins like antimicrobial peptides (AMPs). IBs can be easily isolated by cell disruption followed by filtration and/or centrifugation, but conventional techniques for the recovery of soluble proteins from IBs are laborious. New approaches therefore simplify protein recovery by optimizing the production process conditions, and often include mild resolubilization methods that either increase the yield after refolding or avoid the necessity of refolding all together. For the AMP production, the IB-based approach is ideal, because these peptides often have simple structures and are easy to refold. The intentional IB production of almost every protein can be achieved by fusing recombinant proteins to pull-down tags. This review discusses the techniques available for IB-based protein production before considering technical approaches for the isolation of IBs from E. coli lysates followed by efficient protein resolubilization which ideally omits further refolding. The techniques are evaluated in terms of their suitability for the process-scale production and downstream processing of recombinant proteins and are discussed for AMP production as an example.

  4. Construction of retroviral recombinant containing human tissue ...

    African Journals Online (AJOL)

    USER

    2010-03-29

    Mar 29, 2010 ... Recombinant retroviral vector containing human tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) gene was ..... heavy metal ions, the protein could be express in an .... involves adhesion, degradation and movement. To.

  5. Multi-Homologous Recombination-Based Gene Manipulation in the Rice Pathogen Fusarium fujikuroi

    Directory of Open Access Journals (Sweden)

    In Sun Hwang

    2016-06-01

    Full Text Available Gene disruption by homologous recombination is widely used to investigate and analyze the function of genes in Fusarium fujikuroi, a fungus that causes bakanae disease and root rot symptoms in rice. To generate gene deletion constructs, the use of conventional cloning methods, which rely on restriction enzymes and ligases, has had limited success due to a lack of unique restriction enzyme sites. Although strategies that avoid the use of restriction enzymes have been employed to overcome this issue, these methods require complicated PCR steps or are frequently inefficient. Here, we introduce a cloning system that utilizes multi-fragment assembly by In-Fusion to generate a gene disruption construct. This method utilizes DNA fragment fusion and requires only one PCR step and one reaction for construction. Using this strategy, a gene disruption construct for Fusarium cyclin C1 (FCC1 , which is associated with fumonisin B1 biosynthesis, was successfully created and used for fungal transformation. In vivo and in vitro experiments using confirmed fcc1 mutants suggest that fumonisin production is closely related to disease symptoms exhibited by F. fujikuroi strain B14. Taken together, this multi-fragment assembly method represents a simpler and a more convenient process for targeted gene disruption in fungi.

  6. Reduction of adenovirus E1A mRNA by RNAi results in enhanced recombinant protein expression in transiently transfected HEK293 cells.

    Science.gov (United States)

    Hacker, David L; Bertschinger, Martin; Baldi, Lucia; Wurm, Florian M

    2004-10-27

    Human embryonic kidney 293 (HEK293) cells, a widely used host for large-scale transient expression of recombinant proteins, are transformed with the adenovirus E1A and E1B genes. Because the E1A proteins function as transcriptional activators or repressors, they may have a positive or negative effect on transient transgene expression in this cell line. Suspension cultures of HEK293 EBNA (HEK293E) cells were co-transfected with a reporter plasmid expressing the GFP gene and a plasmid expressing a short hairpin RNA (shRNA) targeting the E1A mRNAs for degradation by RNA interference (RNAi). The presence of the shRNA in HEK293E cells reduced the steady state level of E1A mRNA up to 75% and increased transient GFP expression from either the elongation factor-1alpha (EF-1alpha) promoter or the human cytomegalovirus (HCMV) immediate early promoter up to twofold. E1A mRNA depletion also resulted in a twofold increase in transient expression of a recombinant IgG in both small- and large-scale suspension cultures when the IgG light and heavy chain genes were controlled by the EF-1alpha promoter. Finally, transient IgG expression was enhanced 2.5-fold when the anti-E1A shRNA was expressed from the same vector as the IgG light chain gene. These results demonstrated that E1A has a negative effect on transient gene expression in HEK293E cells, and they established that RNAi can be used to enhance recombinant protein expression in mammalian cells.

  7. Recombinant Vaccinia Viruses Coding Transgenes of Apoptosis-Inducing Proteins Enhance Apoptosis But Not Immunogenicity of Infected Tumor Cells

    Science.gov (United States)

    Tkachenko, Anastasiya; Richter, Vladimir

    2017-01-01

    Genetic modifications of the oncolytic vaccinia virus (VV) improve selective tumor cell infection and death, as well as activation of antitumor immunity. We have engineered a double recombinant VV, coding human GM-CSF, and apoptosis-inducing protein apoptin (VV-GMCSF-Apo) for comparing with the earlier constructed double recombinant VV-GMCSF-Lact, coding another apoptosis-inducing protein